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Abstract. The behaviour of ‘resonances’ in the spin–orbit coupling in celestial mechanics is in-
vestigated in a conservative setting. We consider a Hamiltonian nearly-integrable model describing
an approximation of the spin–orbit interaction. The continuous system is reduced to a mapping
by integrating the equations of motion through a symplectic algorithm. We study numerically the
stability of periodic orbits associated to the above mapping by looking at the eigenvalues of the
matrix of the linearized map over the full cycle of the periodic orbit. In particular, the value of the
trace of the matrix is related to the stability character of the periodic orbit. We denote byε∗(p/q)
the value of the perturbing parameter at which a given elliptic periodic orbit with frequencyp/q

becomes unstable. A plot of the critical functionε∗(p/q) versus the frequency at different orbital
eccentricities shows significant peaks at the synchronous resonance (for low eccentricities) and at
the synchronous and 3:2 resonances (at higher eccentricities) in good agreement with astronomical
observations.
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1. Introduction

This note is an attempt to justify from a purely conservative point of view why
certain ‘resonances’ in the solar system are more common than others. By ‘reson-
ances’ here we mean resonances in the spin–orbit problem, namely commensur-
abilities within the period of rotation and revolution of an oblate satellite orbiting
around a central planet (see Goldreich and Peale, 1966, 1970; Peale, 1973; Mur-
dock, 1978; Henrard, 1985; Wisdom, 1987; Celletti, 1990; Celletti and Falcolini,
1992; Celletti, 1994; Celletti and Chierchia, 1998, and references therein for related
papers on this subject). As examples, we consider the Moon–Earth and Mercury–
Sun systems. We then consider an extremely simple mathematical model for the
spin–orbit problem, described by a time-periodic forced pendulum. In particular,
we assume that an oblate satellite moves on a Keplerian orbit around a central
planet and rotates about an internal spin-axis. We define a spin–orbit resonance of
orderp : q whenever the ratio between the revolutional and rotational periods
is rational, sayTrev/Trot = p/q for some positive integersp, q. The perturb-
ing parameter is the equatorial oblateness of the satellite (the eccentricity of the
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Keplerian orbit is considered as a given parameter). For a fixed frequencyp/q,
we compute the critical valueε∗(p/q) at which the elliptic periodic orbit with
frequencyp/q becomes unstable, while it is stable for 0< ε < ε∗(p/q). Such
value is obtained by studying the trace of the linearized matrix over the full cycle of
the periodic orbit. We then introduce the characteristic stability indicatorσ (p/q),
which provides a measure of the stability of the different periodic orbits. The plot of
σ (p/q) vs.p/q shows that for low values of the eccentricity there is only a marked
peak corresponding to the 1:1 commensurability (occurring when the periods of
revolution and rotation are the same). Increasing the eccentricity, other resonances
appear. Indeed, the 3:2 resonance can be observed at eccentricities larger than 0.01.
Astronomical observations show that most of the evolved satellites or planets of the
solar system are trapped in a 1:1 or ‘synchronous’ spin–orbit resonance. The most
familiar example is provided by the Moon; due to the equality of the periods of
rotation and revolution, the Moon always points the same face to the Earth. The
only known exception is provided by Mercury, which moves in a 3:2 resonance.

The mathematical model for the spin–orbit motion (see Section 2) is described
by an equation of the form

ẍ − ε fx(x, t) = 0, (1.1)

for a suitable functionf depending also on the orbital eccentricitye of the
Keplerian orbit; the parameterε is proportional to the equatorial oblateness coeffi-
cient of the satellite. The above equation can be rewritten as

ẋ = y, ẏ = εfx(x, t), (1.2)

which can be viewed as Hamilton’s equations associated to the non–autonomous,
one-dimensional Hamiltonian

H(y, x, t) = y2

2
− εf (x, t) ,

y ∈ R, x ∈ T ≡ R/2πZ being conjugate coordinates andt ∈ T. The variable
x represents the angle between the longest axis of the ellipsoidal satellite and the
periapsis line (see Figure 1) andẋ ≡ dx/dt represents its velocity.

In Section 3 we introduce a stability criterion for periodic orbits. Such cri-
terion involves the computation of trajectories associated to periodic orbits. This
is achieved by a method introduced by (Greene, 1979) for the standard map, which
we generalize to our specific case in Appendix A. Results and conclusions are
presented in Section 4.

2. The Spin–Orbit Model

We briefly recall a mathematical model introduced in (Celletti, 1990) to describe
the ‘spin–orbit’ interaction in celestial mechanics. LetS be a triaxial ellipsoidal
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Figure 1.The spin-orbit geometry.

satellite orbiting around a central planetP . Let Trev and Trot be the periods of
revolution of the satellite aroundP and the period of rotation about an internal
spin-axis. Ap : q spin–orbit resonance occurs whenever

Trev

Trot
= p

q
, for p, q ∈ N, q 6= 0.

In particular, whenp = q = 1 we speak of 1:1 or synchronous spin–orbit reson-
ance, which implies that the satellite always points the same face towards the host
planet. In the solar system most of the evolved satellites or planets (e.g., the Moon)
are trapped in a 1:1 resonance (Astronomical Almanac, 1997). The only exception
is provided by Mercury which is observed in a nearly 3:2 resonance.

We introduce a mathematical model describing the spin–orbit interaction. In
particular we assume that:

(i) the center of mass of the satellite moves on a Keplerian orbit aroundP with
semimajor axisa and eccentricitye;

(ii) the spin-axis is perpendicular to the orbit plane;
(iii) the spin-axis coincides with the shortest physical axis (i.e., the axis whose

moment of inertia is largest);
(iv) dissipative effects as well as perturbations due to other planets or satellites

are neglected.

Remark.Assumptions (i) and (ii) imply that we neglect secular perturbations
on the orbital parameters as well as the obliquity of the spin–axis. As shown in
(Laskar and Robutel, 1993) a more relevant model from the physical point of view
needs to consider a non-Keplerian orbit as well as a non-zero obliquity. However,
our model may be considered as a starting point to study the spin–orbit dynamics
at the most elementary level. Results could be generalized so as to include secular
perturbations and the spin–axis obliquity. In particular, as is well known in the case
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of the Mercury–Sun system it is definitely important to include the effect of secular
variations of the elliptic elements.

We introduce now a mathematical model (compare with Celletti, 1990) apt to
describe the spin–orbit interaction under the above assumptions. LetA < B < C

be the principal moments of inertia of the satellite. We denote byr and ν, re-
spectively, the instantaneous orbital radius and the true anomaly of the Keplerian
orbit. Finally, letx be the angle between the longest axis of the ellipsoid and the
periapsis line (see Figure 1). The equation of motion may be derived from the
standard Euler’s equations for rigid body. In normalized units (i.e. assuming that
the mean motion is one, 2π/Trev = 1) we obtain

ẍ + ε

(
1

r

)3

sin(2x − 2ν) = 0 , (2.1)

whereε ≡ 3/2(B − A)/C is proportional to the equatorial oblateness coefficient
(B − A)/C (and the dot denotes time differentiation). Notice that(2.1) is trivially
integrated whenA = B or in the case of zero orbital eccentricity.

Due to assumption (i), the quantitiesr andν are known (periodic) Keplerian
functions of the time; therefore we can expand(2.1) in Fourier series as

ẍ + ε

∞∑
m6=0,m=−∞

W
(m

2
, e
)

sin(2x −mt) = 0 , (2.2)

where the coefficientsW(m/2, e) decay as powers of the orbital eccentricity as
W(m/2, e) ∝ e|m−2| (see Cayley 1859, for explicit expressions).

A further simplification of the model is performed as follows. According to
assumption (iv), we neglected dissipative forces and any gravitational attraction
beside that of the central planet. The most important contribution comes from the
non-rigidity of the satellite, which provokes a tidal torque due to internal friction.
Since the magnitude of the dissipative effects is small compared to the gravitational
term, we simplify(2.2) retaining only those terms which are of the same order or
bigger than the average effect of the tidal torque. Thus we are led to consider an
equation of the form

ẍ + ε

N2∑
m6=0,m=N1

W̃
(m

2
, e
)

sin(2x −mt) = 0 , (2.3)

whereN1 andN2 are suitable integers (depending on the structural and orbital
properties of the satellite), whilẽW(m/2, e) are truncations of the coefficients
W(m/2, e) (which are power series ine).

In this paper we are mainly concerned with the Moon–Earth and the Mercury–
Sun systems. In the case of the Moon–Earth systemN1 andN2 are, respectively, 1
and 7. For such system we obtain the equation
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ẍ + ε
[(
−e

2
+ e3

16

)
sin(2x − t) +

+
(

1− 5

2
e2+ 13

16
e4

)
sin(2x − 2t)+

(
7

2
e − 123

16
e3

)
sin(2x − 3t) +

+
(

17

2
e2− 115

6
e4

)
sin(2x − 4t)+

(
845

48
e3− 32525

768
e5

)
sin(2x − 5t)+

+ 533

16
e4 sin(2x − 6t)+ 228347

3840
e5 sin(2x − 7t)

]
= 0. (2.4)

Notice that the largest coefficient (of order unity) corresponds to the synchronous
resonance (i.e., the term related to 2x − 2t). For e = 0 Equation (2.4) reduces to
ẍ + ε sin(2x − 2t) = 0 which corresponds to a pendulum (after the substitution
x → x− t). Other examples, such as the Mercury–Sun system, would be described
by a different Fourier series truncation (for the Mercury–Sun case, it isN1 = −17,
N2 = 6 in (2.3) and with slightly different truncations of thẽW ’s); however,
we checked that results do not change significantly as new terms are added to
Equation (2.4). Precisely, more terms alter the outputs for any initial condition,
provoking a global rescaling of the results, without conditioning the qualitative
conclusions. The (non-integrable) dynamics of(2.4) is represented in Figure 2 by
the Poincar´e (or stroboscopic) map (att = 2π ) around the synchronous resonance

Figure 2. Poincaré map associated to Equation (2.4) around the synchronous resonance in the
(x, ẋ)–plane fore = 0.004, ε = 0.2. The initial conditions are(x, y) = (0,0.8), (0,1.5), (0, 1),
(0,1.1), (1.8,1), (2.1,1), (1.57, 1). Notice that Equation (2.4) isπ–periodic inx. Librational and
rotational regions are divided by the chaotic separatrix.
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for e = 0.004,ε = 0.2: the resonance is surrounded by librational surfaces, whose
amplitude increases as the chaotic separatrix is approached. Outside this region
rotational surfaces can be found.

3. Stability Criterion For Periodic Orbits

In this section we investigate numerically the stability of the periodic orbits. We
define a ‘p : q periodic orbit’ (or Birkhoff periodic orbit with rotation number
p/q) as a solution of(1.1), x : R→ R, such that

x(t + 2πq) = x(t)+ 2πp, (3.1)

that is, afterq orbital revolutions around the central body the satellite makesp

rotations about the spin-axis.
By applying a symplectic Euler’s method with step sizeh to the differential

equations(1.2), we are led to study the mapping

yn+1 = yn + εfx(xn, tn) h, xn+1 = xn + yn+1h, tn+1 = tn + h. (3.2)

Notice that the determinant of the jacobian of the mapping(3.2) is identically
one. LetM be the product of the jacobian of(3.2) over the full cycle of the periodic
orbit with frequencyp/q, that is,

M =
q∏
i=1

(
1 εfxx(xi, ti)h

h 1+ εfxx(xi, ti)h2

)
,

where the points(xi, ti), i = 1, . . . , q, are computed along the periodic orbit.
Following (Greene, 1979) the three-dimensional search (in the variablesy, x, t) for
periodic orbits can be reduced to a one-dimensional problem, using the symmetry
property of the mapping(3.2). In particular, use is made of the fact that the mapping
(3.2) can be decomposed as the product of two involutions. The initial value of a
periodic orbit can be found along the lines of fixed points of one of the above
involutions. More details about this method can be found in AppendixA (see also
Celletti, 1990). The eigenvalues ofM are the associated Floquet multipliers; due to
the area–preserving property of(3.2), one has detM = 1. Therefore, the product
of the eigenvaluesλ1, λ2 of M is unity, while their sum equals the traceT of M:
λ1+ λ2 = T . Sinceλ1, λ2 must satisfy the equationλ2− T λ+ 1= 0, one finds

λ1,2 = T

2
± i
√

1−
(
T

2

)2

.

According to the value ofT , one has different solutions for the eigenvalues provid-
ing the stability character of the periodic orbit as follows:
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(i) if |T | < 2, thenλ1, λ2 are complex conjugates on the unit circle and the motion
is stable;

(ii) if |T | > 2, λ1 andλ2 are real numbers withλ2 = λ−1
1 and one of the eigen-

values is in modulus greater than 1, providing the instability of the periodic
orbit.

Notice that in the integrable caseε = 0, T = 2 andλ1,2 = 1. As is well known,
for any value of the frequencyp/q there exist, in general, periodic orbits of elliptic
andhyperbolic type. We are interested in investigating the stability of the elliptic
periodic orbits as the perturbing parameterε is increased. In particular, for a fixed
eccentricity we look at the value ofε at which the traceT , which originates from
the valueT = 2 asε = 0, decreases down to the transition valueT = −2 becom-
ing, immediately after,T < −2. We denote byε∗(p/q) the value of the perturbing
parameter at which the transition occurs. We take the behaviour ofε∗(p/q) versus
the frequencyp

q
as an index of stability. The graph of the analog of the critical

function ε∗(ω) versusω (diophantine) for invariant tori (i.e. the so-called ‘break-
down threshold’) of the spin-orbit problem has been investigated in (Celletti and
Falcolini, 1992).

Next, we want to give aweight to peaks of the functionε∗; this weight should
take into account, besides the absolute magnitude of the peak, also itsrelative
value compared to nearby (eventually smaller) peaks, or its degree of isolation (an
isolated peak is ‘more stable’ than a peak with other closeby peaks of comparable
magnitude), etc. We proceed as follows: assume thatε∗ has a peak (a relative max-
imum) atω0 = p/q; let δ0 be a positive real number such thatε∗(ω0+δ0) = ε∗(ω0)

or ε∗(ω0−δ0) = ε∗(ω0), andε∗(ω′) < ε∗(ω0) for anyω′ ∈ I0(δ0) ≡ (ω0−δ0, ω0+
δ0)\{ω0}. Then, the quantity

α(ω0, δ0) ≡ max
ω′∈I0(δ0)

ε∗(ω0)− ε∗(ω′)
ε∗(ω0)|ω0− ω′|

provides the relative distance of the transition values in a neighbourhood of size
δ0 around the frequencyω0. In order to have an indicator of stability, we multiply
α(ω0, δ0) by the half size of the domainI0(δ0), that is we define the characteristic
stability indicator (hereafter, CSI) asσ (ω0) ≡ δ0 α(ω0, δ0). We will see in the
next section that the plot ofσ (ω0) versusω0 provides useful informations about
stability properties of periodic orbits.

4. Results and Conclusions

According to standard evolutionary theories, satellites and planets were rotating
fast in the past; a constant decrease of the period of rotation about the spin-axis was
provoked by tidal friction due to the internal non-rigidity. Therefore, a common
scenario suggests that celestial bodies were slowed down until they reached their
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actual dynamical configuration, being typically trapped in a 1:1 (with the 3:2 Mer-
cury exception) resonance. This hypothesis implies that higher order resonances
(i.e., 2:1, 5:4, 7:3, etc.) were bypassed during the slowing process. Beside the tidal
effect, a parameter which might direct the motion toward a resonance is the orbital
eccentricity.

In this section we investigate the stability of the resonant motions corresponding
to periodic orbits as the orbital eccentricity is varied. More precisely, we compute
the critical valueε∗(p/q) and the CSIσ (p/q) for different periodic orbits of fre-
quencyp/q. We let the eccentricity vary in a reasonable (astronomical) range of
values. In particular, we consider the following set of periodic orbits with frequen-
ciesp/q where

q = 1, . . . ,14, p = q + 1, . . . ,15,

and

p = 1, . . . ,14, q = p + 1, . . . ,15.

In order to have a better precision around the main resonances we consider also
the periodic orbits with frequencies

1

2
± 1

10 · k , 1± 1

10 · k ,
5

4
± 1

10 · k ,
4

3
± 1

10 · k ,
3

2
± 1

10 · k ,
5

3
± 1

10 · k ,
7

4
± 1

10 · k , 2± 1

10 · k ,

wherek = 1, . . . ,10.
For a fixed value of the eccentricity we computeε∗(p/q) andσ (p/q) corres-

ponding to the set of rational numbersp/q listed above. Figures 3 and 4 show
the graphs ofε∗(p/q) andσ (p/q) versusp/q for, respectively, the Moon’s ec-
centricity (i.e.,e = 0.0549) and Mercury’s eccentricity (e = 0.2056). In order to
have a better understanding of the behaviour around the resonances of astronomical
interest, we report in panel (a) the results around the 1:2 resonance, while panel (b)
corresponds to the synchronous resonance, panel (c) to the 3:2 resonance and panel
(d) to the 2:1 resonance.

A comparison between the graphs ofσ (p/q) vs. p/q reported in Figures 3
and 4 indicates that the most stable resonances are the 1:1, 3:2 and 2:1. However,
the stability indicator changes as the eccentricity is varied. In particular, the 1:1
resonance is the most stable one for the Moon’s eccentricity (see Figure 3). When
the eccentricity is increased up to Mercury’s value (i.e.e = 0.2056), the 3:2 res-
onance gains stability and its CSI becomes comparable to that of the synchronous
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Figure 3.The transition valueε∗(p/q) vs.p/q for e = 0.0549 (i.e. the eccentricity of the Moon).
The dots correspond to the actual computations associated to the frequencies listed in the text. Lines
are due to interpolation performed by the graphic program. In abscissa are reported the rotation
numbersp/q (the 1:1 resonance corresponds to 1, the 1:2 to 0.5 and so on). (a) 1:2 resonance, (b)
1:1 resonance, (c) 3:2 resonance, (d) 2:1 resonance. (e) The CSIσ(p/q) vs.p/q for e = 0.0549.

resonance (see Figure 4). This remark suggests that the higher value of the ec-
centricity might be responsible of the actual dynamical configuration of Mercury
in the 3:2 resonance. Indeed, it is worth noticing that the 1:1 and 3:2 resonances
attain a comparable stability level for a value of the eccentricity of the order of
e = 0.2. At lower values ofe, for examplee = 0.1 as in Figure 5(c), the motion
associated to the synchronous resonance is still the most stable one. We report in
Figure 5 the behaviour ofε∗(p/q) and ofσ (p/q) for e = 0.001 (Figure 5(a)),
e = 0.01 (Figure 5(b)),e = 0.1 (Figure 5(c)). A comparison among the different
graphs suggests that resonances different from the synchronous one are born as the
eccentricity is increased, while at low values of the eccentricity, saye = 0.001,
the 1:1 resonance is rather isolated. This result is supported by the astronomical
observations, since most of the satellites observed to move in the synchronous
resonance have eccentricities in the range [0, 0.01] (see Astronomical Almanac,
1997).
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Figure 4.The transition valueε∗(p/q) vs. p/q for e = 0.2056 (i.e., the eccentricity of Mercury).
The dots correspond to the actual computations associated to the frequencies listed in the text. Lines
are due to interpolation performed by the graphic program. In abscissa are reported the rotation
numbersp/q (the 1:1 resonance corresponds to 1, the 1:2 to 0.5 and so on). (a) 1:2 resonance, (b)
1:1 resonance, (c) 3:2 resonance, (d) 2:1 resonance. (e) The CSIσ(p/q) vs.p/q for e = 0.2056.

We finally mention that for a further development of this study it would be
clearly necessary to include the spin-axis obliquity as well as the effect of dissipat-
ive terms. In the latter case one is led to the question of the existence of attracting
tori for a dissipative system (i.e., including tidal forces) corresponding to the most
stable resonances. We plan to address this problem in a later study.

Appendix A: Computation of Periodic Orbits

Let S be the mapping(3.2) which we rewrite as

y′ = y + εfx(x, t) h, x′ = x + y′ h, t ′ = t + h,
wherey, x, t ∈ R. Finding periodic orbits associated toS can be considerably
simplified exploiting the symmetry property ofS. Indeed, this fact was already
observed in (Greene, 1979) for the standard mapping

y′ = y + ε sinx, x′ = x + y′.
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Figure 5.Left panel: plot ofε∗(p/q) vs.p/q for the frequencies listed in the text; right panel: plot
of the CSIσ(p/q) vs.p/q for the same frequencies as in the left panel. (a)e = 0.001, (b)e = 0.01,
(c) e = 0.1.

(y ∈ R, x ∈ R/2πZ) and can be generalized to our case as follows. The basic
remark is thatS can be decomposed as the product of two involutions:

S = I2 I1 , I 2
1 = I 2

2 = 1 , I2 = SI1,

whereI1 is given by

y′ = y + εfx(x, t)h, x′ = −x, t ′ = −t,
andI2 is defined as

y′ = y, x′ = −x + h y, t ′ = −t + h.
The periodic orbits correspond to fixed points ofI1 or I2 (Greene, 1979, Appendix
A). Since the functionfx(x, t) is π -periodic in x and 2π periodic in the time,
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the periodic orbits can be found at(x, t) = (0,0), (π/2,0), (0, π), (π/2, π).
This reduces the search for periodic orbits to a one-dimensional problem in the
y variable.
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