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Abstract. The D’Alembert model for the spin/orbit problem in celestial mechanics is considered.
Using a Hamiltonian formalism, it is shown that in a small neighborhood of a p : q spin/orbit
resonance with (p, q) different from (1, 1) and (2, 1) the ‘effective’ D’Alembert Hamiltonian is
a completely integrable system with phase space foliated by maximal invariant curves; instead, in a
small neighborhood of a p : q spin/orbit resonance with (p, q) equal to (1, 1) or (2, 1) the ‘effective’
D’Alembert Hamiltonian has a phase portrait similar to that of the standard pendulum (elliptic and
hyperbolic equilibria, separatrices, invariant curves of different homotopy). A fast averaging with
respect to the ‘mean anomaly’ is also performed (by means of Nekhoroshev techniques) showing
that, up to exponentially small terms, the resonant D’Alembert Hamiltonian is described by a two-
degrees-of-freedom, properly degenerate Hamiltonian having the lowest order terms corresponding
to the ‘effective’ Hamiltonian mentioned above.
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1. Introduction

In this paper, we consider the Hamiltonian version of the D’Alembert model for
the planetary spin/orbit problem. The model may be described as follows. Let a
planet be modeled by a rotational ellipsoid slightly flattened along the symmetry
axis (called ‘north–south’ direction); assume that the center of mass of such planet
revolves on a slightly eccentric Keplerian ellipse around a fixed star occupying one
of the foci of the ellipse: the planet is subject to the gravitational attraction of the
star and the problem is to study the relative position of the planet and, most not-
ably, the time evolution of its angular momentum. Such a model may be described
using Hamiltonian formalism, as done, for example, in Chierchia and Gallavotti
(1998) where action–angle symplectic variables are used (in §2, we recall, in a
self-contained way, the main definitions and properties relative to such Hamilto-
nian formulation). The Hamiltonian system describing the D’Alembert model is a
two-degrees-of-freedom system depending explicitly and periodically on time (the
period being the year of the planet); furthermore, such a Hamiltonian system is
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nearly–integrable (with two smallness parameters: the flatness of the planet and
the eccentricity of the Keplerian ellipse) and properly degenerate.�

In particular, we are interested in studying the D’Alembert model in the vicinity
of a spin/orbit resonance, that is, in a phase space region where the period of
revolution of the planet around the star (the ‘year’) and the period of the rotation of
the planet around its spin axis (the ‘day’) are in a close-to-exact rational relation. If
such rational relation is p/q (p and q positive, co-prime integers) we shall speak
of a p : q (spin/orbit) resonance.

The degeneracy of the system implies that the time variable (better: the angle–
variable corresponding to time, that is, the so-called ‘mean anomaly’) may be
considered a fast variable with respect to the two (‘symplectic’) angles describing
the relative position of the planet. Thus, the explicit dependence of the system
upon time may be averaged out. In more precise mathematical terms, one can use
Nekhoroshev theory (Nekhoroshev, 1977) to show that the D’Alembert resonant
Hamiltonian is equivalent, up to an exponentially small term, to a two-degrees-of-
freedom properly degenerate Hamiltonian. Here, the main ‘smallness parameter’
will be the flatness of the planet and the eccentricity will be taken to be a power
of the flatness: if ε measures the flatness and µ measures the eccentricity, we shall
take µ = εc with c > 0.

Properly degenerate systems have three ‘intrinsic’ scales: a scale of order one
describing the typical time scale of the unperturbed system; an ‘intermediate’ scale
of order, say, ε� 1 describing the ‘effective’ effects of the perturbation; and ‘higher
order terms.’ Such ‘higher order terms’ are measured by a power εa with a > 1
(and are not to be confused with the exponentially, in 1/ε, small term mentioned
above).

Now, it turns out that near a p : q spin/orbit resonance with (p, q) different
from (1, 1) and (2, 1), the intermediate system (and hence the ‘effective’ Hamilto-
nian) is independent of any angle variable: thus the integrable system obtained
dropping (besides the exponential remainder) the higher order term is a completely
integrable system with phase space entirely foliated by (maximal) invariant curves.
On the other hand, near a p : q spin/orbit resonance with (p, q) equal to (1, 1)
or (2, 1), the intermediate system (and hence the ‘effective’ Hamiltonian) does
depend on one (and only one) angle variable: in such ‘exceptional’ case, the system
obtained by dropping the higher order terms is still integrable (being, effectively,
a one-degree-of-freedom system) but its phase space presents a structure similar
to that of a standard pendulum (i.e. elliptic and hyperbolic equilibria, separatrices,
invariant curves of different homotopy).

Thus, the effective Hamiltonian associated to the 1:1 or 2:1 spin–orbit res-
onance exhibits instability phase–space zones that are not present in the general

�Roughly speaking, ‘properly degenerate’ means that in the integrable limit (i.e. when the per-
turbative parameters are set to zero) the Hamiltonian does not depend on the action–variables in a
‘general’ way.
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case, a phenomenon which may be, perhaps, exploited in the understanding of the
exceptional role played by such resonances in our solar system and in its evolution.

We also mention that such peculiarity of the 1:1 and 2:1 spin/orbit resonance is
intrinsic in the model and does not depend upon the particular variables used.

We close this brief introduction by mentioning that the above analysis is the
starting point to prove analytically (using, also, Nekhoroshev techniques) the ex-
ponential stability of the angular momentum (and hence its ‘adiabatic invariance’)
of a planet in a neighborhood of a spin/orbit resonance (Biasco and Chierchia, to
appear); the peculiarity of the case 1:1 and 2:1 makes, however, the proofs in such
two cases much more involved.

2. The D’Alembert Hamiltonian Planetary Model

In this section, we revisit briefly the Hamiltonian version of the planetary
D’Alembert model as presented, for example, in (Chierchia and Gallavotti, 1998).

Consider an oblate planet P of mass mP modeled by a rotational ellipsoid
slightly flattened along the symmetry axis (‘north–south axis’); assume that its
center of mass revolves on a Keplerian orbit (of small eccentricity) around a fixed
star of mass mS occupying one of the foci of the ellipse.� The problem is then to
study the relative motion of the planet and, in particular, the motion (and stability)
of its angular momentum.

We start by writing down the Lagrangian of this system. Let (i, j, k) be an
orthogonal fixed basis with ‘origin’ on the star so that: i is the unit versor pointing
towards the aphelion (or, equivalently, pointing towards the other focus of the el-
lipse); j is the versor in the ecliptic plane (i.e. the plane containing the Keplerian
ellipse) orthogonal to i oriented according to the motion of the center of mass of
the planet (i.e. if xP (t) denotes the position at time t of the center of mass of P and
if xP passes at time t0 at the aphelion, then�� j · ẋP (t0) > 0); k = i × j is the unit
normal to ecliptic plane.� � � Let (i1, i2, i3) be a co-moving frame with ‘origin’ in
the center of mass of the planet so that: i1 and i2 determine the ‘equatorial plane’
and i3 points towards the ‘north pole’‡; clearly i1 and i2 may be interchanged; for
simplicity, we shall assume that i3 is never orthogonal nor parallel to the ecliptic
plane and that the basis (i1, i2, i3) is such that

0 < i3 · k < 1. (1)
�In other words, we assume that the motion of the star is not influenced by the form of the planet.
��a · b denotes the standard inner product in Rn (here n = 3); and ȧ denotes the time derivative

of a.
� � �Here, ‘×’ denotes the standard ‘vector’ (or ‘external’) skew-symmetric product in R3. Informally,
an observer ‘standing’ on the ecliptic in the position identified by k would see the center of mass of
P revolve ‘counter-clockwise’.

‡Recall that we are assuming the the planet is a rotational ellipsoid; thus the ‘equatorial plane’
is the plane identified by the maximal circle of the ellipsoid and the ‘north-south’ axis is the line
orthogonal to the equatorial plane.
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Let, θ := (θ1, θ2, θ3) denote the Euler angles of the planet, namely, if n denotes a
unit vector identifying the equatorial node on the ecliptic (i.e. the line obtained as
intersection between the ecliptic plane and the equatorial plane), then

θ1 = angle (i, n), θ2 = angle (i3, k), θ3 = angle(n, i1). (2)

Then, if I1 = I2 and I3 denotes the inertia moments of the planet, γ denotes the
gravitational constant, xP (t) denotes, as above, the position at time t of the center
of mass of P and P(t) denotes the space region occupied at time t by the planet,
then the Lagrangian describing the above model is given by

L = 1

2
I3(θ̇1 cos θ2 + θ̇3)

2 + 1

2
I1(θ̇

2
2 + θ̇2

1 sin2 θ2)+

+γ mPmS
V olP

∫
P(t)

dx

|xP (t)+ x| . (3)

Thanks to a well known result by Andoyer and Deprit (see, e.g. Gallavotti, 1983;
Arnold, 1988), the Legendre transform of L is equivalent, in suitable physical units,
to the following Hamiltonian function�

Hε,µ(J,ψ) := (J̄1 + J1)
2

2
+ ω̄(J3 − J2)+

+εF0(J1, J2, ψ1, ψ2)+ εµF1(J1, J2, ψ1, ψ2, ψ3;µ), (4)

where:

(a) J̄1 is constant parameter, which may be interpreted as a ‘reference datum’ in a
neighborhood of which the system will be studied;

(b) ε and µ are two small non-negative parameters measuring, respectively, the
flatness of the planet and the eccentricity of the Keplerian orbit described by
the center of mass of the planet;

(c) (J, ψ) := (J1, J2, J3, ψ1, ψ2, ψ3) ∈ A × T3 are standard symplectic coordi-
nates��; the domain A ⊂ R3 is given by

A := {|J1| < d , |J2 − J̄2| < d , J3 ∈ R}, (5)

where d is a suitable fixed (and small) positive number while J̄2 is fixed ‘ref-
erence datum’ (verifying, together with J̄1, certain assumptions spelled out
below);

(d) 2π/ω̄ is the period of the Keplerian motion (‘year of the planet’);
(e) the function F0 is a trigonometric polynomial given by

F0 =
∑
j∈Z

|j |� 2

cj cos(jψ1)+ dj cos(jψ1 + 2ψ2),

where cj and dj are functions of (J̄1 + J1, J2) listed in the following item;
�See (Chierchia and Gallavotti, 1998).
��The symbol Tn denotes the standard n-dimensional flat torus Rn/(2πZn).
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(f) let

κ1 := κ1(J1) := L

J̄1 + J1
, κ2 := κ2(J1, J2) := J2

J̄1 + J1
,

ν1 := ν1(J1) :=
√

1 − κ2
1 , ν2 := ν2(J1, J2) :=

√
1 − κ2

2 ;
where L is a real parameter; the parameters J̄i , L and the constant d are
assumed to satisfy

L+ d < J̄1 , |J̄2| + 2d < J̄1; (6)

in this way 0 < κi < 1 (and the νi’s are well defined on the domain A). Then,
the functions cj and dj are defined by

c0(J1, J2) := 1
4 (2κ

2
1ν

2
2 + ν2

1(1 + κ2
2 )),

d0(J1, J2) := − ν2
2

4
(2κ2

1 − ν2
1),

c±1(J1, J2) := κ1κ2ν1ν2

2
,

d±1(J1, J2) := ∓ (1 ± κ2)κ1ν1ν2

2
,

c±2(J1, J2) := − ν2
1ν

2
2

8
,

d±2(J1, J2) := − ν2
1(1 ± κ2)

2

8
. (7)

(g) the function F1 is a convergent series in µ of trigonometric polynomials (with
increasing degrees); for example F1|µ=0 := F 0

1 is given by

F 0
1 =

∑
j∈Z

|j |� 2

(−3)cj cos(jψ1 + ψ3)+

+ dj

2
{cos(jψ1 + 2ψ2 + ψ3)− 7 cos(jψ1 + 2ψ2 − ψ3)}.

Remark 1. (i) Since J3 appears only linearly with coefficient ω̄, the angle ψ3

corresponds to time t and Hε,µ is actually a two-degrees-of-freedom Hamiltonian
depending explicitly on time in a periodic way (with period 2π/ω̄).

(ii) The physical interpretation of the action–variables J1, J2, the parameter L
and the angles ψi , which are closely related to (but do not coincide with) the An-
doyer canonical variables, is the following. In suitable physical units, the variable
J̄1 + J1 corresponds to the absolute value of the angular momentum of the planet;
the variable J2 corresponds to the value of the projection of the angular momentum
of the planet onto the direction k orthogonal to the ecliptic plane and L corresponds
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to the value of the projection of the angular momentum of the planet in the direction
i3 of the polar axis of the planet (and, because of the symmetry of the planet, is a
constant of the motion). In formulae, if KP denotes the angular momentum of the
planet, then:

J̄1 + J1 = |KP |, J2 = KP · k, L = KP · i3 = const. (8)

To describe the angles ψi let us introduce two more relevant ‘nodes’: let m be a
versor in the direction of the line of intersection (‘node’) of the ecliptic plane with
the ‘angular momentum plane’ (i.e. the plane orthogonal to the angular momentum
of the planet); let, also, n0 be a versor in the direction of the line of intersection
(‘node’) of the equatorial plane with the angular momentum plane. Then: ψ3 is
the so-called ‘mean anomaly’ and is proportional to time, as seen above; ψ1 is the
angle between the nodes m and n0; ψ2 is the difference between the angle between
m and i and ψ3. In formulae:

ψ3 = const. + ω̄t, ψ1 = angle (m, n0),

ψ2 = angle (m, i)− ψ3. (9)

(iii) Under our assumptions (i.e. that 0 < d � 1), the over the angles of Hε,0 is
given by

(J̄1 + J1)
2

2
+ ω̄(J3 − J2)+ ε

1

4

{
(2 − ν̄2

1)− (2 − 3ν̄2
1)
J 2

2

J̄ 2
1

+O(d)

}
, (10)

where ν̄1 := ν1(0) =
√

1 − (L/J̄1)2. The number ν̄1 is the so-called Euler nutation
constant. By (ii) we see that ν̄1 � 1 corresponds to rotations of the planet with spin
axis nearly parallel to the polar axis (a case common, e.g., in the solar system). In
such a case the average over the angles ofHε,0 is not a convex function of the action
variables (J1, J2). This lack of convexity is quite a common feature in celestial
mechanics and is exhibited, for example, also in three-body problems.

We are interested in studying the above system in a neighborhood of a day/year
(or ‘spin/orbit’) resonance. Since the daily rotation is measured by the angle ψ1 and
since in the unperturbed situation (ε = 0 and J1 = 0) ψ1 = ψ0

1 + J̄1t , we see that
an approximate day/year resonance corresponds to take the ‘reference datum’ J̄1

(which, in our units, coincides with the daily frequency) in a rational relation with
the year frequency ω̄, that is, J̄1 = p

q
ω̄ with p and q co-prime positive integers; we

shall speak in such a case of a ‘p : q spin/orbit-resonance’.
Setting

J̄1 := p

q
ω̄, ω := ω̄

q
, (11)

we see that the dynamics near a p : q spin/orbit resonance is described by the
Hamiltonian
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Hε,µ(J,ψ) := J 2
1

2
+ ω(pJ1 − qJ2 + qJ3)+

+ εF0(J1, J2, ψ1, ψ2)+
+ εµF1(J1, J2, ψ1, ψ2, ψ3;µ), (12)

(where we have omitted the constant term J̄ 2
1 /2).

Finally, to make the analysis perturbative, we shall take as action–variable do-
main an ε-dependent subset of A:

(h) the domain of definition A introduced in item (c) above will, from here on, be
replaced by its subset

Aε := {|J1| < dε+ , |J2 − J̄2| < d , J3 ∈ R}, (13)

where 0 � + < 1, (0 < ε < 1).

The Hamiltonian Hε,µ in (12) will be called the ‘resonant D’Alembert Hamilto-
nian’ and, in the rest of this paper, we shall consider only the resonant D’Alembert
Hamiltonian defined on the domain Aε × T3.

3. Linear Analysis and the Effective Hamiltonian

The appearance of the linear combination (pJ1 − qJ2 + qJ3) in the D’Alembert
Hamiltonian Hε,µ suggests to look for a linear symplectic (ε-independent) change
of variables casting Hε,µ in a simpler and more informative form. Calling

,L : (I, ϕ) → (J, ψ) = ,L(I, ϕ) (14)

such a linear change of variables, it is quite natural to set�

I3 := pJ1 − qJ2 + qJ3. (15)

Besides (15) we shall also require the following condition, which needs a little
explanation (given below):∫ 2π

0
F0 ◦,L(I, ϕ)

dϕ3

2π
= function depending on I

and at most on one angle. (16)

The idea beyond these conditions is the following. The unperturbed frequencies of
the transformed Hamiltonian (i.e. ∇IH0,0 ◦,L) are given by��

J1(I ) ∇IJ1(I )+ (0, 0, ω) = (0, 0, ω)+O(ε+).

�Clearly, the choice of the index 3 is arbitrary.
��Recall that in our domain Aε , (13), J1 has been taken of order ε+. The precise quantitative

analysis will be described in the next section, where we will also assume that µ� εc for some c > 0.
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This implies that ϕ1 and ϕ2 are ‘slow’ angles, while ϕ3 is a ‘fast’ angle so that ϕ3

‘averages out’ (see next section for a precise mathematical statement) leaving an
‘effective Hamiltonian’ given by

Heff :=
∫ 2π

0
Hε,0 ◦,L(I, ϕ)

dϕ3

2π

= J1(I )
2

2
+ ωI3 + ε

∫ 2π

0
F0 ◦,L(I, ϕ)

dϕ3

2π
, (17)

which, in view of (16), is a one-degree-of-freedom Hamiltonian (and hence in-
tegrable): Heff depends, possibly, on all the actions Ii but, because of (16), on at
most one angle (ϕ1 or ϕ2). In the case Heff depends explicitly on one angle, say
ϕ1, then the actions I2 and I3 are just parameters for the dynamics generated by
Heff.

The rest of this section is devoted to find linear symplectic diffeomorphisms,
,L, of A × T3 satisfying (16) and the upshot will be that if p : q is different from
1:1 or 2:1, then Heff depends only on the action variables while in the other cases
Heff depends explicitly on one angle also: in the first case the phase portrait of
the integrable system associated to Heff is entirely foliated by (homotopically non
trivial) invariant curves while in the latter case there are also hyperbolic equilibria,
separatrices and curves with different topology (exactly as in the phase portrait of
the standard pendulum).

The linear symplectic diffeomorphism ,L has a generating function given, up
to an arbitrary (and meaningless) plus or minus sign, by�

S(J, ϕ) := MJ · ϕ , with M ∈ SL(3,Z),

J = M−1I, ψ = MT ϕ. (18)

The relation (15) means that M has the form

M =

 a b c

d e f

p −q q


 , (19)

with integers a, . . . , f to be determined. Thus, by (18) and (19), we have that

ψ1 = aϕ1 + dϕ2 + pϕ3, ψ2 = bϕ1 + eϕ2 − qϕ3,

ψ3 = cϕ1 + f ϕ2 + qϕ3. (20)

�SL(3,Z) denotes the group of real (3 × 3) matrices with integer entries and determinant one; the
superscript T denotes matrix transposition.
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By (e) above and (20), we find∫ 2π

0
F0(J1, J2, ψ(ϕ))

dϕ3

2π

=
∫ 2π

0


 ∑

|j | � 2

cj cos j (aϕ1 + dϕ2 + pϕ3)+

+ dj cos((aj + 2b)ϕ1 + (dj + 2e)ϕ2 + (pj − 2q)ϕ3)


 dϕ3

2π

= c0 +
∑
|j |� 2
pj=2q

dj cos((aj + 2b)ϕ1 + (dj + 2e)ϕ2). (21)

If (p, q) is different from (1, 1) and (2, 1) we see that there are no integers j with
|j |� 2 such that pj = 2q, so that, in this case, the sum in the last line of (21) is
absent and we have that Heff depends only on the action variables and is given by

Heff(J (I ), ψ(ϕ)) = J1(I )
2

2
+ ωI3 + εc0(J1(I ), J2(I )). (22)

Next we show that when (p, q) is equal to (1, 1) or (2, 1), then Heff cannot be as
in (22) and it must depend explicitly on one angle (ϕ1 or ϕ2).

Let us consider first the case (p, q) = (1, 1). In this case, pj = 2q means j = 2
and (21) implies that∫ 2π

0
F0(J1, J2, ψ(ϕ))

dϕ3

2π
= c0 + d2 cos(2(a + b)ϕ1 + 2(d + e)ϕ2). (23)

Thus, Heff independent on angles means

a + b = 0 = d + e,

a relation which makes the first two columns of the matrix M proportional (one is
the opposite of the other) and this implies that the determinant of M would vanish.
The case (p, q) = (2, 1) is similar: pj = 2q means j = 1 and (21) implies that∫ 2π

0
F0(J1, J2, ψ(ϕ))

dϕ3

2π
= c0 + d1 cos((a + 2b)ϕ1 + (d + 2e)ϕ2). (24)

Thus, Heff independent on angles means

a + 2b = 0 = d + 2e,

a relation which, as above, makes the first two columns of the matrix M be one the
opposite of the other, implying, again, the vanishing of the determinant of M.
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Remark 2. In what follows we shall make particular (and ‘convenient’) choices
for the matrix M (and hence for the symplectic transformation ,L), but one should
bear in mind that in doing this there is quite a bit of freedom but that the physical
relevant quantities (such as Heff) are essentially intrinsic.

In the case p = 1, 2 and q = 1, by the above analysis, we see that (16) is
satisfied provided

either a + pb = 0 or d + pe = 0.

We then take d = 0 = e and�

M =

 1 0 0

0 0 1
p −1 1,


 , (p = 1, 2), (25)

leading to the linear symplectic transformation

,L : (I, ϕ) →
{
J = (I1, pI1 + I2 − I3, I2),

(p = 1, 2).
ψ = (ϕ1 + pϕ3,−ϕ3, ϕ2 + ϕ3),

(26)

In the new coordinates the Hamiltonian becomes

Hε,µ ◦,L = I 2
1

2
+ ωI3 + εF0(I1, pI1 + I2 − I3, ϕ1 + pϕ3,−ϕ3)+

+εµF1(I1, pI1 + I2 − I3, ϕ1 + pϕ3,−ϕ3, ϕ2 + ϕ3;µ)
:= H00(I1, I3)+ εG0(I, ϕ)+ εµG1(I, ϕ;µ); (27)

and the averaged resonant D’Alembert Hamiltonian is (recall (23) and (24))

Heff(I, ϕ1; ε) :=
∫ 2π

0
Hε,0 ◦,L(I, ϕ)

dϕ3

2π

= I 2
1

2
+ ωI3 +

+ ε{c0(I1, pI1 + I2 − I3)+
+ djp (I1, pI1 + I2 − I3) cos(jpϕ1)}

:= H00(I1, I3)+ εH01(I, ϕ1), (28)

where j1 := 2 and j2 := 1.
Let us turn to the case in which (p, q) is different from (1, 1) and (2, 1). In this
case, as discussed above, (16) is always satisfied and Heff does not depend on
angles. To make a particular choice, let a and b be integers such that

aq + bp = 1. (29)
�In (Chierchia and Gallavotti, 1998), where it is studied the resonant D’Alembert Hamiltonian

when (p, q) = (2, 1), it is taken

(
1 0 0
2 −1 0
p −1 1

)
.
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In view of an elementary algebraic identity,� such (infinitely many) integers always
exist and we shall fix the ones that minimize the sum |a| + |b|. Then, we define

M =

 a b −b

0 1 0
p −q q


 , (p, q) �= (1, 1), (2, 1), (30)

leading to the linear symplectic transformation

,L : (I, ϕ) →
{
J = (qI1 + bI3, I2,−pI1 + I2 + aI3)

ψ = (qϕ1 − pϕ3, ϕ2 + ϕ3, bϕ1 + aϕ3).
(31)

In the new coordinates the resonant D’Alembert Hamiltonian becomes

Hε,µ ◦,L = (qI1 + bI3)
2

2
+ ωI3 +

+εF0(qI1 + bI3, I2, qϕ1 − pϕ3, ϕ2 + ϕ3)+
+εµF1(qI1 + bI3, I2, qϕ1 − pϕ3, ϕ2 + ϕ3, bϕ1 + aϕ3;µ)

:= H00(I1, I3)+ εG0(I, ϕ)+ εµG1(I, ϕ;µ), (32)

and, in this case, the averaged resonant D’Alembert Hamiltonian is simply

Heff(I ; ε) :=
∫ 2π

0
Hε,0 ◦,L(I, ϕ)

dϕ3

2π

= (qI1 + bI3)
2

2
+ ωI3 + εc0(qI1 + bI3, I2)

:= H00(I1, I3)+ εH01(I ). (33)

Remark 3. Notice that we are using a unified notation for different objects (such
as Gi or H00 or H01), which, in fact, depend explicitly on the resonance (p, q).

4. Fast Averaging

In this section, we shall average out the ϕ3 dependence in the (transformed) D’Ale-
mbert Hamiltonian (27) or (32), showing that the D’Alembert model in a neigh-
borhood of a spin/orbit resonance is equivalent, up to an exponentially small term,
to a two-degrees-of-freedom Hamiltonian system; furthermore, such reduced sys-
tem is a properly–degenerate Hamiltonian system,�� whose ‘intermediate part’
corresponds to H01 in (28) or (33).

The mathematical technical tool we shall use in order to carry over the aver-
aging is a ‘normal form lemma’ taken from Nekhoroshev theory. The following
�The so-called ‘Bezout identity,’ which is an immediate consequence of the Euclidean algorithm.
��That is, when ε = 0 the Hamiltonian depends only on one action variable.
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formulation, apart from minor technical points, is taken from Pöschel (1993, p.
192).

In the following we shall use the following notations: if A ⊂ Rd and r > 0,
we denote by Ar the subset of points in Cd at distance less than r from A; Td

s

denotes the complex set {z ∈ Cd : |Imzj | < s for all j} (thought of as a complex
neighborhood of Td). If f (I, ϕ) is a real analytic function on Ar ×Td

s we let ‖f ‖r,s
denote the following norm�

‖f ‖r,s :=
∑
k∈Zd

sup
I∈Ar

|fk(I )|e|k|s, (34)

fk(I ) being the Fourier coefficients of the periodic function ϕ → f (I, ϕ).

LEMMA 1. Let n1 and n2 be two non-negative integers such that n1 + n2 = 3 and
let D ⊂ Rn1 and D′ ⊂ Rn2 . Consider a Hamiltonian H(I, ϕ) := h(I )+ f (I, ϕ)

real-analytic on Wr1,r2,s := (Dr1 × D′
r2
) × T3

s for some r2 � r1 > 0 and s > 0.
Assume that there exist K � 6/s and α > 0 such that

|ω(I) · k|�α, ∀ k ∈ Z3,

|k|�K, k3 �= 0, ∀ I ∈ Dr1 ×D′
r2
, (35)

where ω(I) := ∇h(I ). Assume also that

‖f ‖r1,r2,s �
αr1

28K
. (36)

Then, there exists a real-analytic symplectic transformation

, : (Î , ϕ̂) ∈ Wr1/2,r2/2,s/6 → (I, ϕ) = ,(Î , ϕ̂) ∈ Wr1,r2,s

such that

H ◦,(Î , ϕ̂) = h(Î )+ g(Î , ϕ̂1, ϕ̂2)+ f∗(Î , ϕ̂) (37)

with

‖g − 1

2π

∫ 2π

0
fK(Î , ϕ̂)dϕ̂3‖r1/2,r2/2,s/6

� 211

αr1s
(‖f ‖r1,r2,s)2 � 1

4
‖f ‖r1,r2,s ,

‖f∗‖r1/2,r2/2,s/6 � ‖f ‖r1,r2,s exp

(
−Ks

6

)
,

‖,(Î , ϕ̂)− (Î , ϕ̂)‖r1/2,r2/2,s/6 � ĉ ‖f ‖r1,r2,s, (38)

where fK(Î , ϕ̂) := ∑
|k| �K f̂k(Î ) exp(ik · ϕ̂) and ĉ > 0 is a suitable constant.

�The specific choice of norm will play no role in the sequel; obviously if f is a real-analytic
function on Tds , ‖f ‖s stands for

∑
k∈Zd |fk |e|k|s , fk being the Fourier coefficients of f , while, if f

is a real-analytic function on Ar , then ‖f ‖r = supI∈Ar |f (I)|.
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Remark 4. In the formulation presented here (and used in forthcoming papers
by the authors), one allows for different analyticity radii. In fact, in the above
D’Alembert problem, as well as other problems arising in celestial mechanics,
there appears quite naturally different scales in the action space and it is convenient,
for a quantitative analysis, not to mix such different scales. The modifications of the
proof in (Pöschel, 1993) in order to get the more general statement in Lemma 1 are
routine (notice, in particular, that in the ‘smallness condition’ (36) there appears
the smallest radius). One more technical comment: in (Pöschel, 1993) there ap-
pears the condition r �α/(const. K); such a condition is needed to control the
small divisor bounds on complex domains. Since in the above formulation it is
assumed that the small divisor bounds are valid directly on complex domains, such
a condition is not needed.

We shall apply the Lemma to the (transformed) resonant D’Alembert Hamilto-
nians Hε,µ ◦,L (27) and (32).

We first observe that under the map ,L, the domain Aε (see (13)) gets trans-
formed into

A′
ε := {I ∈ R3 : |I1| < dε+, |(pI1 + I2 − I3)− J̄2| < d, I2 ∈ R}, (39)

when (p, q) = (1, 1) or (p, q) = (1, 2), while, when (p, q) �= (1, 1) and (p, q) �=
(1, 2), Aε gets transformed into

A′
ε := {I ∈ R3 : |qI1 + bI3| < dε+, |I2 − J̄2| < d}. (40)

Let 0 < + < 1 and ε small; let J̄2 and L be so that (6) (with J̄1 = ω̄p/q = pω) is
(abundantly) verified. Then the sets D and D′ in the above lemma can be chosen
as follows. When (p, q) = (1, 1) or (p, q) = (1, 2), we let

n1 = 1, n2 = 2, D := (−dε+, dε+),
D′ := {(I2, I3) ∈ R2 : |I2 − I3 − J̄2| < 2d}; (41)

while, when (p, q) �= (1, 1) and (p, q) �= (1, 2), we let

n1 = 2, n2 = 1, D := {(I1, I3) ∈ R2 : |q1 + bI3| < dε+},
D′ := (J̄2 − d, J̄2 + d). (42)

With such choices one has

A′
ε ⊂ D ×D′. (43)

If we choose also

r1 := d

10
ε+, r2 := d

10
, (44)

we see that the functions νi and κi (and hence the functions ci , di , Gi) are analytic
and bounded, for a suitable s > 0 (depending on the analyticity domain of F1),
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in the domain (Dr1 ×D′
r2
) × T3

s . We can now apply Lemma 1 to the Hamiltonian
Hε,µ ◦,L(I, ϕ) = H(I, ϕ) = h(I )+ f (I, ϕ) with�

h(I ) := H00(I1, I3), f (I, ϕ) := εG0(I1, I2, ϕ)+ εµG1(I1, I2, ϕ;µ).
Under the above positions, for 0 �µ� 1, we have that

‖f ‖r1,r2,s � const. ε.

Thus, letting α = ω/2 and K := ω/(4ε+), we see that (36) is satisfied for any
+ < 1/2, provided ε > 0 is small enough. Thus, by Lemma 1 and (27) or (32), we
find that Hε,µ ◦,L ◦,(Î , ϕ̂) has the form��

Heff(Î1, Î2, ϕ̂1; ε)+ g̃(Î , ϕ̂1, ϕ̂2; ε, µ) + f∗(Î1, Î2, ϕ̂; ε, µ)
:= H00(Î1, Î3)+ εH01(Î , ϕ̂1)+

+g̃(Î , ϕ̂1, ϕ̂2; ε, µ)+ f∗(Î1, Î2, ϕ̂; ε, µ), (45)

where (if g is as in the Lemma) g̃ := g − εH01. The function f∗ is exponentially
small,

‖f∗‖r1/2,r2/2,s/6 � ‖f ‖r1,r2,s exp

(
−Ks

6

)
� const. ε exp

(
−ωs

24

1

ε+

)
, (46)

and, in view of (38), the definition of g̃ and (27) or (32), the function g̃ satisfies the
bound

‖g̃‖r1/2,r2/2,s/6 � const. (ε2−+ + εµ). (47)

Thus, assuming |µ|� εc with c > 0 and 0 < + < 1/2, in the above region of phase
space, the resonant D’Alembert Hamiltonian is described, up to the exponentially
small term in (46), by the Hamiltonian���

HD(Î1, Î2, ϕ̂1, ϕ̂2; ε, µ) := H00(Î1)+ εH01(Î1, Î2, ϕ̂1)+
+εaG(Î1, Î2, ϕ̂1, ϕ̂2; ε, µ), (48)

where

a := min{ 2 − +, 1 + c } > 1,

G := g̃

εa
, ‖G‖r1/2,r2/2,s/6 � const. (49)

�See, respectively (27) and (32).
��Here we are using a unified notation, but bear in mind that all functions (G0, G1, Heff, H00,

and H01, as well as the sets A′
ε) depend on p and q and differ qualitatively if (p, q) is equal to

(1, 1) or (2, 1) or are equal to (p, q) �= (1, 1), (2, 1); in particular if (p, q) �= (1, 1) and (2, 1) then
H01(Î , ϕ̂) = H01(Î ).
���If we disregard f∗ then Î3 becomes a dumb parameter, which we drop. Once again, if (p, q) �=
(1, 1) and (2, 1) then H01(Î , ϕ̂) = H01(Î ).
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Gallavotti, G.: 1983, The Elements of Mechanics, Springer.
Nekhoroshev, N. N.: 1977, ‘An exponential estimate of the time of stability of nearly-integrable

Hamiltonian systems’, Russ. Math. Surv. 32(6), 5–66.
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