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Abstract We review analytical (rigorous) results about the existence of invariant
tori for planetary many-body problems.
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1 Introduction

In this paper, we review analytical results concerning the existence of KAM tori
(smooth invariant tori, for a nearly integrable Hamiltonian system, on which the
flow is quasi-periodic with Diophantine frequencies) in the context of the planetary
many-body problem.

The main body of the paper is divided in two sections and two appendices.
In Sect. 2, general existence theorems for the planetary (1 + n)-body problem

are discussed. In particular, after a brief reminder about the Hamiltonian setting for
the many-body problem (Sect. 2.1) and about classical KAM theory (Sect. 2.2), it is
shown how Kolmogorov’s 1954 theorem yields easily the existence of KAM tori in
the special non-degenerate case of the restricted, planar, circular three-body problem
(Sect. 2.2.2). Kolmogorov’s theorem, on the other hand, does not apply to the general
case because of the proper degeneracy of the (1 + n)-body problem, when n � 2.
In this context, Arnold (1963), stated a general result, which he proved only in the
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planar three-body case; Arnold’s theorem was proven in Fejóz (2004), who completed
Herman’s work on the matter (Sect. 2.3).

In Sect. 3 rigorous “computer-assisted” results about the existence of KAM tori
for Hamiltonian models of solar subsystems are reviewed. In particular, in Sect. 3.2,
the KAM stability of the subsystem Sun–Jupiter–Victoria, modelled by a truncated
restricted, planar, circular three-body problem, obtained recently by the authors, is
discussed.

In Sect. 4, several sets of symplectic variables relevant for analytical investigations
of the many-body problem are reviewed.

In Sect. 5, a numerical comparison between the dynamics of the truncated model
considered in Sect. 3.2 and the non-truncated model is discussed.

2 KAM tori for general many-body problems

2.1 Hamiltonian models for planetary many-body problems

2.1.1 Newton’s equations

Newton’s equations for n + 1 bodies (point masses), interacting only through gravita-
tional attraction, are given by

ü(i) =
∑

0�j�n
j �=i

mj
u(j) − u(i)

|u(i) − u(j)|3 , i = 0, 1, . . . , n, (2.1)

where u(i) = (
u(i)1 , u(i)2 , u(i)3

) ∈ R
3 are Cartesian coordinates of the ith body of mass mi,

|u| = √
u · u =

√∑
i u2

i is the standard Euclidean norm, “dot” denotes time deriva-
tive, and the gravitational constant has been normalized to one (by rescaling time t).
Equation (2.1) is invariant by change of inertial frames, i.e., by change of variables of
the form u(i) → u(i) − (a + ct) with fixed a, c ∈ R

3. This allows to restrict the attention
to the manifold of initial data given by 1

n∑

i=0

miu(i)(0) = 0,
n∑

i=0

miu̇(i)(0) = 0 . (2.2)

The total linear momentum Mtot := ∑n
i=0 miu̇(i) does not change along the flow of

(2.1), i.e., Ṁtot = 0 along trajectories; therefore, by (2.2), Mtot(t) vanishes for all t. But,
then, also the position of the barycenter B(t) := ∑n

i=0 miu(i)(t) is constant (Ḃ = 0)
and, again by (2.2), B(t) ≡ 0. In other words, the manifold of initial data (2.2) is
invariant under the flow (2.1).

1 Replace the coordinates u(i) by u(i) − (a + ct) with

a := m−1
tot

n∑

i=0

miu(i)(0) and c := m−1
tot

n∑

i=0

miu̇(i)(0), mtot :=
n∑

i=0

mi.



KAM tori for N-body problems: a brief history

2.1.2 Hamiltonian point of view

Equations (2.1) are the Hamiltonian equations generated by the Hamiltonian function

ĤNew :=
n∑

i=0

|U(i)|2
2mi

−
∑

0�i<j�n

mimj

|u(i) − u(j)| , (2.3)

where (U(i), u(i)) are standard symplectic variables (U(i) = miu̇(i) is the momentum
conjugated to u(i)) and the phase space is the “collisionless” open domain in R

6(n+1)

given by

M̂ := {U(i), u(i) ∈ R
3 : u(i) �= u(j), 0 � i �= j � n}

endowed with the standard symplectic form

n∑

i=0

dU(i) ∧ du(i) :=
∑

0�i�n
1�k�3

dU(i)
k ∧ du(i)k . (2.4)

As explained above, the physically relevant motions governed by (2.3) lie on

M̂0 :=
{
(U, u) ∈ M̂ :

n∑

i=0

miu(i) = 0 =
n∑

i=0

U(i)

}

(which corresponds to the manifold described in (2.2)). The submanifold M̂0 is sym-
plectic (i.e., the restriction of the form (2.4) to M̂0 is again a symplectic form) and
the ĤNew–flow on it is best described in terms of heliocentric coordinates. Let φhel:
(R, r) → (U, u) be the linear symplectic transformation given by

φhel :

⎧
⎨

⎩

u(0) = r(0), u(i) = r(0) + r(i), (i = 1, . . . , n),

U(0) = R(0) −
n∑

i=1
R(i), U(i) = R(i), (i = 1, . . . , n). (2.5)

In such variables M̂0 reads
{
(R, r) ∈ R

6(n+1) : R(0) = 0, r(0) = −m−1
tot

n∑

i=1

mir(i)and 0 �= r(i) �= r(j) ∀1 � i �= j � n

}
;

the restriction of the 2-form (2.4) on M̂0 is simply
∑n

i=1 dR(i) ∧ dr(i) and

(ĤNew ◦ φhel)|M0 =
n∑

i=1

(
|R(i)|2

2 m0mi
m0+mi

− m0mi

|r(i)|

)

+
∑

1�i<j�n

(
R(i) · R(j)

m0
− mimj

|r(i) − r(j)|

)
=: HNew.

Thus, the dynamics generated by ĤNew on M̂0 is equivalent to the dynamics generated
by the Hamiltonian (R, r) ∈ R

6n → HNew(R, r) on

M0 :=
{
(R, r) = (R(1), . . . , R(n), r(1), . . . , r(n)) ∈ R

6n : 0 �= r(i) �= r(j) ∀ 1 � i �= j � n
}
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with respect to the standard symplectic form
∑n

i=1 dR(i) ∧ dr(i); to recover the full
dynamics on M̂0 from the dynamics on M0 one will simply set R(0)(t) ≡ 0 and
r(0)(t) := −m−1

tot

∑n

i=1
mir(i)(t).

Motivated by the planetary case, let us perform the trivial rescaling by a small
positive parameter ε:

m̄0 := m0, mi = εm̄i (i � 1), X(i) := R(i)

ε
, x(i) := r(i), Hplt(X, x) := 1

ε
HNew(εX, x),

which leaves unchanged Hamilton’s equations. Explicitly, if µi := m̄0m̄i
m̄0+εm̄i

and Mi :=
m̄0 + εm̄i, then

Hplt(X, x) :=
n∑

i=1

(
|X(i)|2

2µi
− µiMi

|x(i)|

)
+ ε

∑

1�i<j�n

(
X(i) · X(j)

m̄0
− m̄im̄j

|x(i) − x(j)|

)

=: H(0)
plt (X, x)+ εH(1)

plt (X, x) (2.6)

the phase space being

M :=
{
(X, x) = (X(1), . . . , X(n), x(1), . . . , x(n)) ∈ R

6n : 0 �= x(i) �= x(j) ∀ 1 � i �= j � n
}

endowed with the standard symplectic form
∑n

i=1 dX(i) ∧ dx(i).

Remarks
(i) The reduction of the general dynamics to the Hplt-dynamics on M is sometimes
referred to as the “reduction of the linear momentum”. Notice that a reflection of
such reduction is that there is no more “conservation of the total linear momentum”,
as

∑n
i=1 X(i) is obviously not an integral2 for Hplt. On the other hand, the transfor-

mation (2.5) does preserve the total angular momentum
∑n

i=0 U(i) × u(i), where “×”
denotes the standard vector product in R

3. Thus, the Hamiltonian Hplt admits, besides
the energy, three more integrals, which are the three components of the total angular
momentum

C = (C1, C2, C3) :=
n∑

i=1

X(i) × x(i). (2.7)

Such integrals do not commute (i.e., their Poisson brackets do not vanish):

{C1, C2} = C3, {C2, C3} = C1, {C3, C1} = C2

but, for example, |C|2 and C3 are two commuting, independent integrals.
(ii) The two-body case (corresponding to n = 1 and no H(1)

plt term) is integrable

for any ε > 0 (Kepler). Therefore, also the term H(0)
plt in the planetary Hamiltonian

(2.6) is integrable, being the sum of n decoupled two-body problems. In Delaunay

2 We recall that F(X, x) is an integral for H(X, x) if {F, H} = 0, where {F, G} = FX · Gx − Fx · GX
denotes the (standard) Poisson bracket.
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Fig. 1 Spatial Delaunay angle variables

action-angle variables ((L, G,�), (�, g, θ)) defined on the phase space3

Mplt :=
{
(L, G,�) ∈ R

3n : Li > Gi > �i > 0 ,
Li

µi
√

Mi
�= Lj

µj
√

Mj
, ∀ i �= j

}
× T

3n

(2.8)

the Hamiltonian H(0)
plt takes the form

H(0)
plt = −

n∑

i=1

µ3
i M2

i

2L2
i

; (2.9)

the phase space Mplt, which corresponds to an open subset of M in (2.6), is endowed
with the standard symplectic form

n∑

i=1

dLi ∧ d�i + dGi ∧ dgi + d�i ∧ dθi =
n∑

i=1

3∑

j=1

dX(i)
j ∧ dx(i)j

(for more information on Delaunay variables, see Sect. 4.1.) (Fig. 1).

Notice that the 6n-dimensional phase space Mplt is foliated by 3n-dimensional

H(0)
plt -invariant tori {L, G,�} × T

3, which, in turn, are foliated by n-dimensional tori
{L} × T

n, expressing geometrically the degeneracy of the integrable Keplerian limit
of the (1 + n)-body problem.

2.2 KAM theory

The perturbative approach to the many-body problem is based on the modern the-
ory of conservative dynamical systems as developed, mainly, by Poincaré, Birkhoff,
Siegel, Kolmogorov, Arnold, Moser, and Herman. We recall here, briefly, some clas-
sical results.

3
T

n denotes the standard flat torus T
n := R

n/(2πZn).
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2.2.1 Quasi-periodic motions and KAM tori

Consider a smooth Hamiltonian (p, q) ∈ M → H(p, q) on a 2d-dimensional phase
space M endowed with standard symplectic coordinates (p, q). A (maximal) KAM
torus for H is a d-dimensional H-invariant torus, on which the H-flow is conjugated
to θ ∈ T

d → θ +ωt with ω ∈ R
d Diophantine. We recall that ω is Diophantine if there

exist positive constants γ and τ such that

|ω · k| �
γ

|k|τ , ∀ k ∈ Z
d\{0}. (2.10)

In particular, the motion on a KAM torus is quasi-periodic with frequenciesω1, . . . ,ωd.

2.2.2 Kolmogorov’s 1954 Theorem

In Kolmogorov (1954), Kolmogorov stated (and gave a beautiful albeit sketchy proof)
of his famous theorem on the persistence of invariant tori, which may be formulated
as follows:

Consider a “nearly-integrable” Hamiltonian system with phase space M := V×T
d,

V being an open bounded region in R
d, and with Hamiltonian function given by

Hε(I,ϕ) := h(I)+ εf (I,ϕ) (2.11)

with real-analytic functions h, f , and ε a small real parameter. The variables (I,ϕ) are
standard symplectic “action-angle” variables, the symplectic form being dI ∧ dϕ :=∑d

i=1 dIi ∧ dϕi.

Theorem 2.1 (Kolmogorov 1954) In any neighborhood of any torus {I0} × T
d ⊂ M

such that

det h′′(I0) := det

(
∂2h
∂Ii∂Ij

(I0)

)

i,j=1,...,d
�= 0, (2.12)

there exists a positive measure set of phase points belonging to analytic KAM tori for
Hε , provided ε is small enough.

A simple variation of the proof of Kolmogorov’s theorem leads to the “iso–energetic”
version of Theorem 2.1, namely:

Theorem 2.2 Let I0 be such that4

det

(
h′′(I0) h′(I0)

h′(I0) 0

)
�= 0; (2.13)

let M0 := {(I,ϕ) ∈ M : Hε(I,ϕ) = h(I0)} be the energy level corresponding to the
“unperturbed” energy h(I0). Then, there exists on M0 a positive measure set of phase
points belonging to analytic KAM tori for Hε, provided ε is small enough.

Clearly, the measure referred to in Theorem 2.1 is the 2d-dimensional Liouville
measure in phase space, while the measure referred to in Theorem 2.2 is the restriction
of the Liouville measure on the energy level M0.
4 The matrix in (2.13) is a (d + 1)× (d + 1)-matrix and the gradient h′(I0) := (∂I1

h(I0), . . . , ∂Id
h(I0))

has to be thought of as a column in the upper right corner and as a row in lower left corner.
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2.2.3 Proper degeneracies

A nearly-integrable system with Hamiltonian (2.11) for which h does not depend
upon all the actions I1, . . . , Id is called properly degenerated. This is the case of the
many-body problem since H(0)

plt in (2.9) depends only on the actions L’s.
For properly degenerate systems neither condition (2.12) nor (2.13) holds and

KAM tori may not exist at all.5 To establish the existence of KAM tori in properly
degenerate systems it is necessary to have more information on the perturbation f .
In Arnold (1963), Arnold proved the following theorem, which he intended (and
partially succeeded) to apply to the planetary many-body problem.

Let M denote the phase space

M :=
{
(I,ϕ, p, q) : (I,ϕ) ∈ V × T

d and (p, q) ∈ B
}

,

where V is an open bounded region in R
d and B is a ball around the origin in R

2m; M
is equipped with the standard symplectic form

dI ∧ dϕ + dp ∧ dq =
d∑

i=1

dIi ∧ dϕi +
m∑

i=1

dpi ∧ dqi.

Let, also, Hε be a real analytic Hamiltonian on M of the form

Hε(I,ϕ, p, q) := h(I)+ εf (I,ϕ, p, q) (2.14)

and denote by f̄ the average of f over the “fast angles” ϕ:

f̄ (I, p, q) :=
∫

Td
f (I,ϕ, p, q)

dϕ
(2π)d

. (2.15)

Theorem 2.3 (Arnold 1963) Assume that f̄ is of the form

f̄ = f0(I)+
m∑

j=1

�j(I)Jj + 1
2

A(I)J · J + o4, Jj := p2
j + q2

j

2
, (2.16)

where A is a symmetric (m × m)-matrix and lim(p,q)→0 |o4|/|(p, q)|4 = 0. Assume, also,
that I0 ∈ V is such that

det h′′(I0) �= 0, (2.17)
m∑

j=1

�j(I0)kj �= 0, ∀ k ∈ Z
m with 0 <

m∑

j=1

|kj| � 6, (2.18)

det A(I0) �= 0. (2.19)

Then, in any neighborhood of {I0} × T
d × {(0, 0)} ⊂ M there exists a positive measure

set of phase points belonging to analytic KAM tori for Hε, provided ε is small enough.

This theorem has been generalized by Herman (1998), as we shall, now, briefly explain.
To formulate the non-degeneracy assumption of Herman’s theorem, we need the
notion of non-planar map introduced by Pyartli (1969). A smooth curve u ∈ U ⊂
5 Trivially, any unperturbed properly degenerate system on a 2d-dimensional phase space with d � 2
will have motions with frequencies not rationally independent over Z

d.
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R → ω(u) ∈ R
n, U open non-empty interval, is called non-planar at u0 ∈ U if all

the u-derivatives up to order (n − 1) at u0,ω(u0),ω′(u0), . . . ,ω(n−1)(u0) are linearly
independent over R

n; a smooth map u ∈ U ⊂ R
d → ω(u) ∈ R

n, d � n, is called
non-planar at u0 ∈ U if there exists a smooth curve α : Û ⊂ R → U such that ω ◦ α is
non-planar at t0 ∈ Û with α(t0) = u0.

Theorem 2.4 (Herman 1998) Let Hε and f̄ be C∞ functions as in (2.14) and (2.15).
Assume that f̄ is of the form

f̄ = f0(I)+
m∑

j=1

�j(I)Jj + o2, Jj := p2
j + q2

j

2
,

where lim(p,q)→0 |o2|/|(p, q)|2 = 0. Assume, also, that I0 ∈ V is such that the “frequency
map”

I ∈ V → (
h′(I),�1(I), . . . ,�m(I)

) ∈ R
d+m (2.20)

is non-planar at I0. Then, in any neighborhood of {I0} × T
d × {(0, 0)} ⊂ M there exists

a positive measure set of phase points belonging to C∞ KAM tori for Hε, provided ε is
small enough.

This theorem is based on a C∞ local inversion theorem on “tame” Frechet spaces due
to F. Sergeraert and R. Hamilton (which, in turn, is related to the Nash–Moser implicit
function theorem; see Bost 1986). A non-properly-degenerate version of Theorem 2.4
was established by Rüssmann (2001). A proof of Herman’s Theorem 2.4 can be found
in Féjoz (2004).

2.3 Arnold’s theorem on planetary motions

The main question, longly studied by astronomers and mathematicians, which Arnold
addressed in his 1963 paper is the following (Arnold 1963, Ch III, p. 125):

“Do there exist, in the n-body problem, a set of initial conditions having positive
measure such that, if the initial position and velocities of the bodies belong to
this set, then the distances of the bodies from each other will remain perpetually
bounded?”

Indeed, in a (very) special case, Kolmogorov’s theorem yields immediately a positive
answer to such a question: it is the case of the restricted, planar, circular three-body
problem (RPC3BP, for short).

The RPC3BP, largely investigated by Poincaré, consists in studying the motion
of a “zero mass” asteroid moving on the plane containing the trajectories of two
unperturbed major bodies (say, Sun and Jupiter) revolving on a Keplerian circle. The
mathematical model for the restricted three-body problem is obtained by taking n = 2
and setting m2 = 0 in (2.1): the equations for the two major bodies (i = 0, 1) decouple
from the equation for the asteroid (i = 2) and form an integrable two-body-system;
the problem consists, then, in studying the evolution of the asteroid u(2)(t). In the
circular, planar case the motion of the two primaries is assumed to be circular and the
motion of the asteroid is assumed to take place on the plane containing the motion
of the two primaries; in fact (to avoid collisions) one considers either inner or outer
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(with respect to the circle described by the relative motion of the primaries) asteroid
motions. Using “rotating” planar Delaunay variables (see Sect. 4.2)

(
(L, G), (�, g)

) ∈ {(L, G) ∈ R
2 : L > G > 0} × T

2

the Hamiltonian Hrcp governing the motion of the RCP3BP problem, in suitably
normalized units, is given by

Hrcp(L, G, �, g; ε) := − 1
2L2 − G + εH1(L, G, �, g; ε), (2.21)

where the perturbation is given by

H1 := x(2) · x(1) − 1
|x(2) − x(1)| (2.22)

expressed in the above Delaunay variables, x(2) being the heliocentric coordinate of
the asteroid and x(1) that of the planet (Jupiter); the parameter ε represents essentially
the mass ratio of the two main bodies (see Appendix 4.2 for more information).

The integrable limit Hamiltonian Hrcp|ε=0 = − 1
2L2 − G satisfies (2.13) in a neigh-

borhood of any point of the phase space (the determinant in (2.13) being equal, in the
present case, to 3/L4) and, therefore, Theorem 2.2 yields the existence of a positive
measure set of initial data, in each energy level M0 := {Hrcp = − 1

2L2
0

− G0}, that

belong to KAM tori for Hrcp, provided ε is small enough. In particular, the distance
between the asteroid and the Keplerian circle described by the major bodies remains
forever bounded.

Remarks 2.1 Indeed, in this very special case, much more is true: since two-
dimensional KAM tori separate the three-dimensional energy levels, also all trajec-
tories starting between two KAM tori remain forever trapped in the region bounded
by such two tori; compare Fig. 4 below.

As for the general planetary many body problem, Arnold (1963) stated the following:

Theorem 2.5 (Arnold’s theorem on planetary motions) Let n � 2. Then if ε is small
enough, the Hamiltonian Hplt in (2.6) admits a positive measure set of phase points, in
a neighborhood of circular and coplanar Keplerian motions, leading to quasi-periodic
motions with 3n − 1 frequencies.

This statement is taken from Féjoz (2004), where a proof of Arnold’s Theorem, in this
generality, appeared for the first time. Actually, in Arnold (1963) a somewhat stronger
result was announced,6 but the proof was given only for the planar three-body case.7

A brief history of the proof of Arnold’s Theorem is the following.

1. In Arnold (1963), Arnold gave a complete proof for the case of three coplanar
bodies: n = 2 and (X, x) ∈ R

2 × R
2 in (2.6). In such a case, the word “coplanar”

in Theorem 2.5, is redundant and 3n − 1 has to be replaced by 4. Arnold’s proof

6 “If the masses, eccentricities and inclinations of the planets are sufficiently small, then for the majority
of initial conditions the true motion is conditionally periodic and differs little from Lagrangian motion
with suitable initial conditions throughout an infinite interval of time −∞ < t < ∞” (Arnold 1963,
Ch. III, p. 127).
7 In fact, Arnold gave indications on how to generalize his approach to the general case, but, appar-
ently, nobody has succeeded in implementing Arnold’s indications.
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is based upon his KAM Theorem 2.3: first, by means of planar Poincaré variables
(see Sect. 4.5 with n = 2), the Hamiltonian Hplt is put in the form (2.14), (2.16)
(with d = m = 2); then conditions (2.18) and (2.19) ((2.17) is trivial) are checked
by means of Leverrier’s tables in the asymptotic regime a1/a2 → 0 (ai being the
semimajor axis of the osculating Keplerian ellipse of the ith planet).

2. The spatial three-body case was proven in Laskar and Robutel (1995) and Robutel
(1995). The strategy is similar to that of Arnold and, in particular, it is again based
upon Theorem 2.5: first, by means of spatial “osculating” Poincaré variables,
Jacobi’s “reduction of the nodes” (see, e.g., Sect. 4.4) and Birkhoff theory of nor-
mal form (see, e.g., Siegel and Moser 1971), the Hamiltonian Hplt is put in the
form (2.14), (2.16) (again, d = m = 2); then, the non-degeneracy conditions (2.18)
and (2.19) are numerically checked, with the aid of computers, in a relatively large
region of semiaxes.

3. The full proof of Theorem 2.5, as mentioned, was published in 2004 by Féjoz
(2004), where Herman’s work8 on the subject was presented for the first time in
a complete manner. The first step is to introduce Poincaré variables (see Sect.
4.3) and, in view of the conservation of the total angular momentum (2.7), to
restrict the attention to the symplectic manifold of vertical total angular momen-
tum, Mvert := {C1 = 0 = C2}. The idea is then to use the KAM Theorem 2.4
and hence to check the non-planarity of the frequency map (2.20). However, this
strategy fails for Hplt (expressed in Poincaré variables and restricted to Mvert);
the reason being the presence of an extra resonance (“Herman’s resonance”). To
overcome this problem, following Poincaré, Féjoz considers the modified Hamil-
tonian Hδ

plt := Hplt + δC2
3. For such Hamiltonian the non-planarity condition of

the frequency map is satisfied; but since the Hamiltonians Hδ
plt and Hplt commute

they have the same Lagrangian tori and hence the result is established also for
Hplt.

3 KAM tori in solar subsystems

3.1 Results

Certainly the main motivation for KAM theory was the existence of regular (relatively
bounded) motions in the Solar System. In fact, as soon as the first KAM theorems
were established, astronomers tried to apply them to astronomical models. However,
such direct applications lead to very poor “practical” results, the restriction on ε (i.e.,
the size of the mass ratios) being far too strong to allow for applications to the Solar
System (or solar subsystems). At this regard, in a 1966 paper (Hénon 1966), Hénon
concludes: “Ainsi, ces théorèmes, bien que d’un très grand intérêt théorique, ne semb-
lent pas pouvoir en leur état actuel être appliqués à des problèmes pratiques.”9

8 Herman worked for long time on the planetary problem and gave several lectures and seminars
on it in the mid 1990s but his untimely death (November 2, 2000) did not allow him to publish the
complete results of his researches. Herman’s work on the planetary problem was, then, taken up by
friends and colleagues in Paris and completed in Féjoz (2004).
9 (Hénon 1966, p. 64): “Les théorèmes d’Arnold et Moser ne s’appliquent qu’à des problèmes qui
diffèrent d’un problème intégrable par une perturbation extrêmement petite. [· · · ] Par exemple, dans
la démonstration d’Arnold (1963, Russian math. Surveys, 18, 9, p. 16) on a: [· · · ] Dans le cas du
problème restreint, on a: n = 2. D’autre part, le cas intégrable est représenté par µ = 0; on retrouve
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A major breakthrough towards applications of KAM theory to physical models
came from the interaction between KAM theory and techniques for computer-assisted
proofs. Such techniques, which are based upon the so-called interval arithmetic,10

allow to perform long computations on computers keeping rigorously track of the
rounding errors introduced by the machine.

For more information about computer-aided proofs and computer-assisted KAM
theory applied to model problems (such as the standard map or a simple forced pen-
dulum), see, e.g., Celletti and Chierchia 1987, 1988, 1995; Celletti et al. 1987, 2000;
Rana 1987; Celletti and Giorgilli, 1988; Llave and Rana 1990, and references therein.

Computer-aided existence of KAM tori for three-body problems with mass ratios
within at most three orders of magnitude of the observed values have been (rigor-
ously) established in the following three papers.

1. In Celletti and Chierchia (1997) the Sun–Jupiter–Ceres problem has been investi-
gated in the context of the RPC3BP using rotating planar Delaunay variables. The
observed average frequency of Ceres is about�C � 2.577107, while eC � 0.0766 is
the observed eccentricity. The perturbing function has been expanded in Fourier–
Taylor series, retaining only the terms whose size is bigger than the gravitational
influence due to Saturn and the Jupiter/Sun mass ratio (which is about 10−3) has
been replaced by ε. Implementing computer-assisted KAM estimates, existence of
quasi-periodic tori with Diophantine frequencies close to�C has been established
for any mass-ratio ε � 10−6.

2. In Locatelli and Giorgilli (2000) the planetary problem formed by the Sun, Jupi-
ter, and Saturn has been considered. After Jacobi’s reduction of the nodes (see,
e.g., Sect. 4.4), one obtains a Hamiltonian function with four degrees of freedom.
Such Hamiltonian is expanded up to the second-order in the masses and averaged
over the fast angles (λ∗

1, λ∗
2) (in the notation of Sect. 4.4). In this way, a two degree–

of-freedom Hamiltonian is obtained, which nearly gives the slow motion of the
parameters characterizing the Keplerian approximation (e.g., the eccentricities).
Looking for invariant tori in the proximity of an equilibrium elliptic point, the
perturbation, written in Poincaré variables, is expanded up to the order 6 in the
eccentricities. Then, a Birkhoff normal form, combined with a computer-assisted
implementation of a KAM theorem, provides the existence of two invariant tori

Footnote continued
alors le problème des deux corps. Pour µ �= 0, la perturbation est proportionelle à la masse µ du
second corps. M et µ sont donc du même ordre de grandeur. Des ínegalités ci–dessus, on tire:

M < 10−333. (14)

Une estimation du même genre peut être faite dans la démonstration de Moser (1962, Nach. Akad.
Wiss. Göttingen, Math. Phys. Kl., 1); on aboutit à:

M < 10−48. (15)

Ainsi, ces théorèmes, bien que d’un très grand intérêt théorique, ne semblent pas pouvoir en leur état
actuel être appliqués á des problèmes pratiques, où les perturbations sont toujours beaucoup plus
grandes que les limites (14) ou (15).”
10 Roughly speaking, computers work with special classes of rational numbers (“representable num-
bers”). In general, an elementary operation (+, −, ∗, ÷) between two representable numbers is no
more a representable number, since the result is affected by rounding–off and propagation errors.
Therefore, one needs to provide the result as an interval, whose endpoints are representable numbers
and which yield lower and upper bounds on the result of the elementary operation.
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Fig. 2 Planar Delaunay angle variables

bounding the secular motions of Jupiter and Saturn for the observed values of the
parameters.11

3. In Celletti and Chierchia (2005), which is extensively reviewed in Sect. 3.2, a trun-
cated RPC3BP model for Sun, Jupiter, and Asteroid 12 Victoria is investigated.
On a fixed energy level,12 invariant KAM tori trapping the motion of Victoria
have been established for the astronomical value of the Jupiter–Sun mass-ratio.

For other computer-aided KAM results of interest for Celestial Mechanics (see
Celletti 1990a,b Celletti and Falcolini 1992) (spin-orbit problem) and (Celletti 1993)
(librational tori).

3.2 KAM stability of the Sun–Jupiter–Victoria system modelled by a truncated
RPC3BP

Here, we describe with some details the results in Celletti and Chierchia (2005) men-
tioned in item 3 above. Let us begin by describing precisely the mathematical model.
The framework is that of RPC3BP as described in Sect. 2.3 and 4.2; see in particu-
lar (2.21), (2.22), and Fig. 2. As main bodies we take the Sun (P0) and Jupiter (P1),
which are therefore assumed to revolve on a circle of radius one. In such a case the
perturbative parameter ε is the Jupiter/Sun mass ratio, which amounts to

ε = εJ := 0.954 × 10−3 (3.23)

(the normalizations are described in Sect. 4.2; see, in particular, Eq. (4.30) and (4.31)).
We, then, proceed to select a minor (“zero mass”) body, P2, within the asteroidal belt;

11 For interesting numerical results related to Locatelli and Giorgilli (2000), see Locatelli and Gior-
gilli (2005a, b).
12 In comparing this result with Celletti and Chierchia (1997), keep in mind that there the energy
level is not a priori fixed as it is done here.
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Fig. 3 Orbital elements of the numbered asteroids: semimajor axis versus eccentricity (left panel),
semimajor axis versus inclination (right panel). The internal lines locate the position of the asteroid
12 Victoria

in order to avoid the introduction of another small parameter, we privileged those
asteroids whose eccentricity is not too small (which also happen to be quite common
in the asteroidal belt, as we shall shortly explain). We pick Asteroid 12 Victoria, whose
orbital elements are:

aV � 2.334 AU eV � 0.220 ıV � 8.363◦,

ĝ � 69.717◦ � � 235.548◦ M � 135.908◦,

where ıV is the inclination with respect to the ecliptic, ĝ the argument of perihelion,
� the longitude of the ascending node, and M is the mean anomaly referred to the
epoch MJD 53400.

In order to explore the peculiarity of this choice, we report in Fig. 3 the ele-
ments of the numbered asteroids.13 The majority of the asteroids lie within the region
1.8 � a � 3.5, while the eccentricity is typically confined to 0 � e � 0.35 and, as
Fig. 3 shows, the orbital elements of Victoria (which are located by the internal lines)
appear to be rather typical in the nearly planar, non-too eccentric region of the orbital
elements of the numbered asteroids.

In our model we disregarded the eccentricity of Jupiter, the mutual inclinations,
the gravitational effects of the other bodies (notably those of Mars and Saturn), any
dissipative phenomena like tides, solar winds, Yarkovsky effect, etc. As empirical
criterion, we decide to expand the perturbation in the eccentricity and semimajor
axes ratio, disregarding the contributions smaller than the most important term we
have neglected in our model, which is actually due to the eccentricity of the orbit of
Jupiter. Moreover, in order to balance the fact that lower harmonics are physically
more relevant than higher ones, we reintroduce in the lowest order harmonics the first
discarded term. We are thus led to consider the one-parameter family of Hamiltonians

HSJV(�, g, L, G; ε) := − 1
2L2 − G − εPSJV(�, g, L, G)

=: H0(L, G)+ εH1(�, g, L, G), (3.24)

13 The elements of the numbered asteroids are provided by the JPL’s DASTCOM database at
http://ssd.jpl.nasa.gov/?sb_elem
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where 0 < G < L (being e = √
1 − G2/L2; see Eq. (4.29), Sect. 4.1) and, setting

a0 := L2, the perturbing function is given by

PSJV(�, g, L, G) := 1 + a0
2

4
+ 9

64
a0

4 + 3
8

a0
2e2 −

(
1
2

+ 9
16

a0
2
)

a0
2e cos �

+
(

3
8

a0
3 + 15

64
a0

5
)

cos(�+ g)−
(

9
4

+ 5
4

a0
2
)

a0
2e cos(�+ 2g)

+
(

3
4

a0
2 + 5

16
a0

4
)

cos(2 �+ 2 g)+ 3
4

a0
2e cos(3 �+ 2 g)

+
(

5
8

a0
3 + 35

128
a0

5
)

cos(3 �+ 3 g)+ 35
64

a0
4 cos(4 �+ 4 g)

+ 63
128

a0
5 cos(5�+ 5g). (3.25)

Fixing the perturbing parameter ε = εJ as in (3.23), we obtain the Sun–Jupiter–
Victoria Hamiltonian:

H∗
SJV(�, g, L, G) := − 1

2L2 − G − εJPSJV(�, g, L, G)

= H0(L, G)+ εJH1(�, g, L, G).

We next fix the energy level. To this end, we remark that the observed values of the

Delaunay’s action variables are
√

aV � 0.670 =: LV and LV

√
1 − e2

V � 0.654 =: GV.
Let

E(0)V := − 1

2L2
V

− GV � −1.768, E(1)V := 〈H1(·, LV, GV)〉 � −1.060,

EV(ε) := E(0)V + εE(1)V .

We define the osculating energy level of the Sun–Jupiter–Victoria model as

E∗
V := EV(εJ) = E(0)V + εJE(1)V � −1.769. (3.26)

On S∗
SJV := (H∗

SJV)
−1(E∗

V) we want to prove the existence of two invariant tori,
bounding from above and below the observed values LV and GV. More precisely, if
L̃± = LV ± 0.001 we consider the frequencies

ω̃± :=
(
∂H0

∂L
,
∂H0

∂G

)
=

(
1

L̃3±
, −1

)
=: (α̃±, −1).

In order to obtain two bounding Diophantine frequencies we compute the continued
fraction expansion up to the order 5 of α̃± and we add a tail of one’s to obtain the
following Diophantine numbers:

α− := [3; 3, 4, 2, 1∞] = 3.30976937631389 . . . ,

α+ := [3; 2, 1, 17, 5, 1∞] = 3.33955990647860 . . .

Finally, we define

ω± := (α±, −1),
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which satisfy the Diophantine condition (2.10) with constants

τ± := τ = 1, γ− := 7.224496 × 10−3, γ+ := 3.324329 × 10−2.

The stability of the asteroid Victoria is an immediate consequence of the following
theorem, which yields the existence of the KAM continuations of the unperturbed
tori T ±

0 := {(L±, G±)} × T
2.

Theorem 3.1 For |ε| � ε* := 10−3 the unperturbed tori T ±
0 can be analytically contin-

ued into invariant KAM tori T ±
ε on the energy level Sε := H−1

SJV

(
EV(ε)

)
keeping fixed

the ratio of the frequencies.

As a consequence (recall Remark 2.1), the orbital elements corresponding to the
semimajor axis and to the eccentricity (which are simply related to the Delaunay’s
variables L and G) stay forever ε-close to their unperturbed values.

The idea of the proof relies on the combination of a new KAM iso-energetic theo-
rem with accurate computer-assisted construction of approximate solutions. First, one
observes that the parametric representation θ ∈ T

2 → (x, y) = (u(θ), v(θ)) of a KAM
torus lying with Diophantine frequencies (ω1,ω2), on the energy level E satisfies the
following semilinear PDE

Du = ∂H
∂y
(u, v), Dv = −∂H

∂x
(u, v), (3.27)

H(u(0), v(0)) = E,

where D denotes the vector field
(
ω1

∂
∂θ1

+ ω2
∂
∂θ2

)
. Then, the system (3.27) is solved

by a “hard implicit function theorem” à la Nash–Moser (compensating the effect of
the small divisors with a quadratic scheme). To apply effectively this implicit function
theorem, we first compute explicitly an “approximate solution”, say z(1), and, then, we
prove that close to it there exists a much better approximate solution, z(2), to which
the stringent smallness condition dictated by the KAM implicit function theorem
applies. In fact, z(1) is a Fourier–Taylor polynomial function (depicted in Figs. 4 and
5), while z(2) is obtained via iteration of a certain non-linear operator and can only
be controlled by estimating suitable norms. The construction of z(1) is based on an
algorithm for computing iso-energetic Lindstedt series.14

Remark 3.1 From the mathematical point of view, the Fourier-truncation introduced
in this model is rather unsatisfactory. However, we believe that a similar strategy to
that leading to Theorem 3.1, could be applied to the full RPC3BP. From the physical
point of view, instead, the truncation does not seem to affect much the dynamics. In
fact, numerical studies suggest that for the frequencies and parameter values consid-
ered in Theorem 3.1, the truncated Hamiltonian (3.24) and (3.25) provides results
very close to those obtained using the complete perturbing function (see Celletti
et al. 2004, briefly reviewed in Sect. 5).

14 Lindstedt series—already known at the times of Poincaré—are formal Fourier–Taylor series expan-
sions of the solution of system (3.27).
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Fig. 4 The upper and lower surfaces are the graphs on the three-dimensional energy level
(H∗

SJV)
−1(E∗

V ) of the approximate solutions z(1) described in the text for the two frequency vectors
ω− = (3.30976937631389 . . . , −1) and ω+ = (3.33955990647860 . . . , −1); the intermediate surface is
obtained integrating numerically a Sun–Jupiter–Victoria sample motion on the same energy level. The
coordinates used are the (rotating) Delaunay angles (�, g) ∈ T

2 in abscissa and the action L > 0 in
ordinates; the perturbing parameter is set equal to the actual Jupiter–Sun mass ratio εJ = 0.954×10−3

Fig. 5 The upper bounding surface, on a different scale, showing the oscillatory structure of the KAM
trapping tori

4 Appendix: symplectic variables for many-body problems

4.1 Delaunay variables

We begin by briefly describing the Delaunay variables for the Keplerian two-body
problem.
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Let HKep = |X|2
2µ − µM

|x| denote the (reduced) two-body Hamiltonian with (X, x) ∈
R

3 × R
3\{0}, where M denotes the total mass of the two bodies and µ is a free rescal-

ing parameter, and consider negative energies HKep < 0. In such a case, if (X(t), x(t))
denotes the HKep-flow, then x(t) describes an ellipse lying in the plane πC orthogonal
to C := X × x, with focus in the origin and fixed symmetry axes. Assume that the
angular momentum C is not vertical and that the ellipse is not a circle. Introduce the
following notations:

a is the semimajor axis of the ellipse spanned by x;
ι (the inclination) is the angle between the x3-axis and C;

G = |C| =
√

C2
1 + C2

2 + C2
3;

� = G cos ı = C3;
L = µ

√
Ma;

� is the mean anomaly of x (:=2π times the normalized area spanned by x measured
from the perihelion Q, which is the point of the ellipse closest to the origin);
θ is the angle between the x1-axis and the node line N (i.e. the intersection of the
(x1, x2)-plane with πC);
g is the argument of the perihelion (:= the angle between N and (O, Q)).

Then

((L, G,�), (�, g, θ)) ∈ MKep := {L > G > � > 0} × T
3 (4.28)

are conjugated symplectic coordinates (i.e., dL∧d�+dG∧dg+d�∧dθ = ∑3
i=1 dXi ∧

dxi) and if φDel is the corresponding symplectic map, then

HKep ◦ φDel = −µ
3M2

2L2 .

The eccentricity e of the Keplerian ellipse with energy −µ3M2/2L2 and absolute value
of angular momentum G is, then, given by

e =
√

1 − G2

L2 . (4.29)

Thus, the inequalities in (4.28) are seen to correspond to regions in phase space of
non-degenerate elliptical motions (i.e., ellipses with 0 < e < 1) taking place on the
plane transversal with and not perpendicular to the (x1, x2)-plane.

In expressing the planetary (1 + n)-problem in Delaunay action-angle variables
one considers Delaunay variables (Li, Gi,�i), (�i, gi, θi) associated to the limiting two-
body problem formed by the Sun (i = 0) and the ith planet (1 � i � n). The (clearly
sympletic) variables (Li, Gi,�i), (�i, gi, θi) are well defined in the Cartesian product of
the Keplerian phase spaces

∏

1�i�n

{Li > Gi > �i > 0} × T
3n

and the relations

ai = Li

µi
√

Mi
�= aj = Lj

µj
√

Mj
, ∀ 1 � i �= j � n

avoid collisions; this accounts for the definition of Mplt given in (2.8).
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Complete details may be found, e.g., in Biasco et al. (2003, Sect. C.1, pp. 117–119)
and Celletti and Chierchia (2005, Sect. 3.2).

4.2 Planar delaunay variables and the RPC3BP Hamiltonian

We start by describing planar Delaunay variables
(
(L, G), (�, ĝ)

)
and then describe

the “rotating” planar Delaunay variables ((L, G), (�, g)). Consider a planar two-body

problem with (X, x) ∈ R
2 × R

2\{0} and HKep,pl = |X|2
2µ − µM

|x| , M being the total mass
of the two body and µ a free rescaling parameter. Introduce the following notations:

a is the semi-major axis of the ellipse spanned by x;
L = µ

√
Ma;

e is the eccentricity of the ellipse spanned by x and G = L
√

1 − e2;
� is the mean anomaly of x;
ĝ is the argument of the perihelion.

Then
(
(L, G), (�, ĝ)

) ∈ MKep,pl := {L > G > 0} × T
2

are conjugated symplectic coordinates (i.e., dL ∧ d�+ dG ∧ dĝ = ∑2
i=1 dXi ∧ dxi) and

if φDel,pl is the corresponding symplectic map, then

HKep,pl ◦ φDel,pl = −µ
3M2

2L2 .

The rotating planar Delaunay variables for the RPC3BP for P0 (main body), P1
(planet), and P2 (zero-mass asteroid) are, then, given by

((L, G), (�, g)) ∈ MKep,pl := {L > G > 0} × T
2, g := ĝ − τ ,

τ being the longitude of P1 (i.e., the angle between the x1-axis and x(1)(τ ), which
denotes the relative position P1–P0). The units are choosen so that:

m0 + m1 = 1, |x(1)(τ )| = 1, (4.30)

where mi denote the masses of Pi. With such normalization the period of the P0–P1
motion is 2π (so that τ ∈ T).
Now, if we also set

µ := 1

m2/3
0

, ε := m1

m2/3
0

= m1

(1 − m1)
2/3 , (4.31)

then the Hamiltonian of the RCP3BP, in rotating planar Delaunay variables, takes
the form (2.21) with

H1(L, G, �, g; ε) := x(2) · x(1)circ(τ )− 1

|x(2) − x(1)circ(τ )|
, x(1)circ(τ ) := (cos τ , sin τ),

where, of course, x(2) (the heliocentric position of the asteroid) has to be expressed in
term of the rotating planar Delaunay variables.

Complete details may be found, e.g., in Celletti and Chierchia (2005, Sect. 3.2 and
3.3).
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4.3 Poincaré variables

The spatial Poincaré variables for the planetary (1 + n)- body-problem is a set of sym-
plectic variables for an open (physically relevant) subset of the phase space Mplt; in
particular such variables are well defined (and analytic) in a neighborhood of circular
and co-planar motions. For 1 � i � n, let ((Li, Gi,�i), (�i, gi, θi)) denote the Delaunay
variables associated to the two–body system Sun-ith planet. The (spatial) Poincaré
variables are given by ((�i, λi), (ηi, ξi), (pi, qi)) where

�i = Li, λi = �i + gi + θi,

and

ηi = √
2(Li − Gi) cos(gi + θi),

ξi = −√
2(Li − Gi) sin(gi + θi),

pi = √
2(Gi −�i) cos θi,

qi = −√
2(Gi −�i) sin θi.

Then, for any �+ > �− > 0 there exists r > 0 such that the Poincaré variables are
symplectic and analytic on the domain

�− < �i < �+ for 0 � i � n , (λ1, . . . , λn) ∈ T
n,

η2
i + ξ2

i < r2 and p2
i + q2

i < r2 for 0 � i � n.

If ei, C(i) and ιi denote, respectively, the eccentricity, angular momentum and incli-
nation of the (instantaneous or osculating) two–body system Sun-ith planet, then the
following relations hold

η2
i + ξ2

i

2
= �i

(
1 −

√
1 − e2

i

)
,

|C(i)| = �i

√
1 − e2

i ,

p2
i + q2

i

2
= |C(i)|(1 − cos ιi)

(for details, see, e.g., Biasco et al. 2003, Sect. C.1).

4.4 Osculating Poincaré Variables and Jacobi’s reduction of the nodes

Poincaré introduced another set of symplectic variables, particularly suited to describe
the classical Jacobi’s reduction of the nodes, which allows to give a representation of
the spatial three-body in terms of a four-degree-of-freedom Hamiltonian system.15

Let, for i = 1, 2,
(
(Li, Gi,�i), (�i, gi, θi)

)
denote the Delaunay variables introduced

in Sect. 4.1. Then the variables
(
(�∗

i , λ∗
i ), (η

∗
i , ξ∗

i ), (�i, θi)
)

(4.32)

defined by

�∗
i = Li,

λ∗
i = �i + gi,

η∗
i = √

2(Li − Gi) cos gi,

ξ∗
i = −√

2(Li − Gi) sin gi

15 This description is borrowed from Chierchia (2005)
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are symplectic and analytic near circular, non-co-planar motions (for details, see, e.g.,
Biasco et al. 2003). Denote by

H3bp := H(0)(�∗)+ εH(1)(�∗, λ∗, η∗, ξ∗,�, θ)

the Hamiltonian (2.6) (with n = 2) expressed in terms of the symplectic variables
(4.32), �∗ = (�∗

1,�∗
2), etc. Then, �1 +�2 is the vertical component, C3 = C · k3, of

the total argument C = C(1) + C(2). Introduce, now, the symplectic variables

(�∗, λ∗, η∗, ξ∗,�,ψ) = φ(�∗, λ∗, η∗, ξ∗,�, θ),

where (�1,�2,ψ1,ψ2) := (�1,�1 +�2, θ1 − θ2, θ2) and let H∗
3bp := H3bp ◦φ−1 denote

the Hamiltonian of the spatial three-body problem in these symplectic variables. Since
the Poisson bracket of �2 = �1 +�2 and H∗

3bp vanishes (C3 being an integral for the
H3bp–flow), the conjugate angle ψ2 is cyclic for H∗

3bp, i.e.,

H∗
3bp = H∗

3bp(�
∗, λ∗, η∗, ξ∗,�1,�2,ψ1).

Because the total angular momentum C is preserved, one can restrict the attention
to the 10-dimensional invariant (and symplectic) submanifold Mver defined by fixing
the total angular momentum to be vertical. Such submanifold, in terms of Delaunay
variables, is given by

θ1 − θ2 = π and G2
1 −�2

1 = G2
2 −�2

2,

so that M∗
ver := φ(Mver) = {

ψ1 = π , �1 = �̂1(�
∗, η∗, ξ∗;�2)

}
with

�̂1 := �2

2
+ (�∗

1 − H∗
1 )

2 − (�∗
2 − H∗

2 )
2

2�2
, H∗

i := η∗
i

2 + ξ∗
i

2

2
.

Since M∗
ver is invariant for the flow φt∗ of H∗

3bp, ψ1(t) := π and ψ̇1 := 0 for motions
starting on M∗

ver, which implies that (∂�1H∗
3bp)|M∗

ver = 0. This fact allows to introduce,
for fixed values of the vertical angular momentum �2 = c �= 0, the following reduced
Hamiltonian:

Hc
red(�

∗, λ∗, η∗, ξ∗) := H∗
3bp(�

∗, λ∗, η∗, ξ∗, �̂1(�
∗, η∗, ξ∗; c), c,π)

on the eight-dimensional phase space Mred := {�∗
i > 0, λ ∈ T

2, (η∗, ξ∗) ∈ B4} en-
dowed with the standard symplectic form d�∗ ∧ dλ∗ + dη∗ ∧ dξ∗ (B4 being a ball
around the origin in R

4). In fact, the (standard) Hamilton’s equations for Hc
red are

immediately recognized to be a subsystem of the full (standard) Hamilton’s equations
for H3bp when the initial data are restricted on M∗

ver and the constant value of �2 is
chosen to be c.

4.5 Planar Poincaré Variables and the planar (1 + n)-body problem

The planar Poincaré variables for (1 + n) co-planar bodies are defined as follows.
For 0 � i � n, let

(
Li, Gi), (�i, ĝi

)
be the planar Delaunay variables (as defined in

Sect. 4.2) associated to the two–body system Sun-ith planet and let

�i = Li,

λi = �i + ĝi,

ηi = √
2(Li − Gi) cos ĝi,

ξi = −√
2(Li − Gi) sin ĝi.



KAM tori for N-body problems: a brief history

Table 1 Truncated Complete

εc ∈ [0.07, 0.09] 0.08
Intermediate value [0.08, 0.1] 0.09

Then, for any�+ > �− > 0 there exists r > 0 such that the planar Poincaré variables
are symplectic and analytic on the domain

�− < �i < �+ for 0 � i � n, (λ1, . . . , λn) ∈ T
n,

η2
i + ξ2

i < r2 for 0 � i � n.

If ei denotes the eccentricity of the (instantaneous or osculating) two-body system
Sun-ith planet then

η2
i + ξ2

i

2
= �i

(
1 −

√
1 − e2

i

)

(for complete details, see, e.g., Biasco et al. 2005, Appendix A).

5 Appendix: Numerical investigation of the RPC3BP

A complementary numerical study of the stability of the asteroid Victoria has been
performed in Celletti et al. (2004) using frequency analysis as introduced in Laskar
et al. (1992) and Laskar (1993). The dynamical system described by (3.24) and (3.25)
has been compared to the system where no truncation of the perturbing function
has been performed.16 If (ωL,ωG) are the fundamental frequencies, we denote by
γ := | ωL

ωG
| the frequency ratio.

In practice one can proceed as follows. Fix E = E0 and ε = ε0; set the initial data as
L = L0, � = 0, g = g0, where L0, g0 vary over a grid (which corresponds to consider
a slice projection by fixing � = 0). Find G0 by solving the relation

E0 = − 1

2L2
0

− G + ε0R(L0, G, 0, g0).

Using the solution of the equations of motion, frequency analysis is implemented
to compute (ωL,ωG). We remark that according to a standard criterion (see Laskar
et al. 1992), the dynamics is discriminated on the basis of the graph of γ versus the
initial conditions L0, g0. More precisely: a region of invariant tori is characterized by a
regular (i.e., monotonically increasing or decreasing) behavior of the frequency-map;
no variation of the frequency ratio corresponds to a resonant regime; a chaotic region
is characterized by consecutive sudden jumps of the frequency map.

Having fixed the energy level according to (3.26), let εc be the critical value of the
perturbing parameter at which the transition from stability to instability occurs. The
results are shown in Table 1, where we provide an interval, say εc ∈ [ε−, ε+] such
that if εc � ε−, then both lower and upper bounding tori (with frequencies ω±) exist;

16 In Celletti et al. (2004), also more realistic models, like those in which Jupiter moves on an eccen-
tric orbit or where the relative inclination of Jupiter and of the asteroid is not neglected, have been
considered.
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whenever εc � ε+ we have numerical evidence of the disappearance of both tori. Due
to the topology of the model (compare Remark 2.1), for εc � ε− the motion of the
asteroid is confined on the given energy level between the two bounding tori. We also
provide an intermediate value at which one of the two tori still survives. The results
provided in Table 1 suggest that the truncated model provides a good approximation
of the complete model, at least as far as the above energy level and frequencies are
considered.

References

Arnold, V.I.: Small denominators and problems of stability of motion in classical and celestial mechan-
ics. Uspehi Mat. Nauk. 18(6) (114), 91–192 (1963)

Biasco, L., Chierchia, L., Valdinoci, E.: Elliptic two-dimensional invariant tori for the planetary three-
body problem. Arch. Rational Mech. Anal. 170, 91–135 (2003)

Biasco, L., Chierchia, L., Valdinoci, E.: N-dimensional invariant tori for the planar (N + 1)-body
problem. SIAM J. Math. Anal. 37, 1560–1580 (Preprint downloadable in http://www.mat.uniro-
ma3.it/users/chierchia/WWW/english_version.html). (2006)

Bost, J.B.: Tores invariants des systèmes dynamiques hamiltoniens’, (d’aprés Kolmogorov, Arnol’d,
Moser, Rüssmann, Zehnder, Herman, Pöschel,. . .) Sémin. Bourbaki, 1984/85, (Astérisque 133–
134), 113–157 (1986)

Celletti, A.: Analysis of resonances in the spin-orbit problem in celestial mechanics: the synchronous
resonance (Part I). J. Appl. Math. Phys. (ZAMP). 41, 174–204 (1990a)

Celletti, A.: Analysis of resonances in the spin-orbit problem in celestial mechanics: higher order
resonances and some numerical experiments (Part II). J. Appl. Math. Phys (ZAMP). 41, 453–479
(1990b)

Celletti, A.: Construction of librational invariant tori in the spin-orbit problem. J. Appl. Math. Phys.
(ZAMP). 45, 61–80 (1993)

Celletti, A., Chierchia, L.: Rigorous estimates for a computer-assisted KAM theory. J. Math. Phys. 28
2078–2086 (1987)

Celletti, A., Chierchia, L.: Construction of analytic KAM surfaces and effective stability bounds.
Commun. Math. Phys. 118, 119–161 (1988)

Celletti, A., Chierchia, L.: A constructive theory of Lagrangian tori and computer-assisted appli-
cations. In: Jones, C.K.R.T., Kirchgraber, U., Walther, H.O. (eds.), Dynamics Reported. vol. 4
Springer-Verlag, Berlin, (New Series), pp. 60–129 (1995)

Celletti, A., Chierchia, L.: On the stability of realistic three-body problems. Commun. Math. Phys.
186, 413–449 (1997)

Celletti, A., Chierchia, L.: KAM stability and celestial mechanics. Memoirs AMS, to
appear. Preprint downloadable in http://www.mat.uniroma3.it/users/chierchia/WWW/english_
version.html. (2005)

Celletti, A., Falcolini, C.: Construction of invariant tori for the spin-orbit problem in the Mercury–Sun
system. Celestial Mech. Dyn. Astronom. 53, 113–127 (1992)

Celletti, A., Falcolini, C., Porzio, A.: Rigorous numerical stability estimates for the existence of KAM
tori in a forced pendulum. Ann. Inst. H. Poincaré. 47, 85–111 (1987)

Celletti, A., Froeschlé, C., Lega, E.: Frequency analysis of the stability of asteroids in the framework
of the restricted, three-body problem. Celest. Mech. Dyn. Astr. 90(3–4), 245–266 (2004)

Celletti, A., Giorgilli, A.: On the numerical optimization of KAM estimates by classical perturbation
theory. J. Appl. Math. Phys (ZAMP). 39, 743–747 (1988)

Celletti, A., Giorgilli, A., Locatelli, U.: Improved estimates on the existence of invariant tori for
Hamiltonian systems. Nonlinearity. 13(2), 397–412 (2000)

Chierchia, L.: KAM theory and celestial mechanics. Encyclopedia Math Phys (to
appear). Preprint downloadable in http://www.mat.uniroma3.it/users/chierchia/WWW/english_
version.html (2005)

Féjoz, J.: Démonstration du théorème d’Arnold sur la stabilité du système planétaire (d’après Michael
Herman). Ergod. Th. Dyn. Sys. 24, 1–62 (2004)

Herman, M.R.: Démonstration d’un théorème de V.I. Arnold Various seminars at University of Paris.
Jussieu and manuscripts. (1998)



KAM tori for N-body problems: a brief history

Hénon, M.: Explorationes numérique du problème restreint IV: masses egales, orbites non periodique.
Bull. Astronom. 3(1, fasc. 2), 49–66 (1966)

Kolmogorov, A.N.: On the conservation of conditionally periodic motions under small perturbation
of the Hamiltonian. Dokl. Akad. Nauk. SSR. 98, 527–530 (1954)

Laskar, J.: Frequency analysis for multi–dimensional systems. Global dynamics and diffusion. Physica
D. 67, 257. (1993)

Laskar, J., Froeschlé, C., Celletti, A.: The measure of chaos by the numerical analysis of the funda-
mental frequencies. Application to the standard mapping. Physica D. 56, 253–269 (1992)

Laskar, J., Robutel, P.: Stability of the planetary three–body problem. I. Expansion of the planetary
Hamiltonian. Celest. Mech. Dyn. Astr. 62(3), 193–217 (1995)

de la Llave, R., Rana, D.: Accurate strategies for small divisor problems. Bull. Am. Math. Soc. (N. S.)
22(1), 85–90 (1990)

Locatelli, U., Giorgilli, A.: Invariant tori in the secular motions of the three-body planetary systems.
Celest. Mech. Dyn. Astr. 78, 47–74 (2000)

Locatelli, U., Giorgilli, A.: Construction of the Kolmogorov’s normal form for a planetary system.
Regular Chaotic Dyn. 10(2), 153–171 (2005a)

Locatelli, U., Giorgilli, A.: Invariant tori in the Sun–Jupiter–Saturn system, Preprint (2005b)
Pyartli, A.S.: Diophantine approximations on Euclidean submanifolds; (in Russian) Funckcional.

Anal. i Prilozen. 3, 59–62; (in English) Funct. Anal. Appl. 3, 303–306 (1969)
Rana, D.: Proof of accurate upper and lower bounds to stability domains in small denominator

problems. Ph.D. thesis, Princeton University Press, Princeton, NJ (1987)
Robutel, P.: Stability of the planetary three–body problem. II. KAM theory and existence of quasi–

periodic motions. Celest. Mech. Dyn. Astr. 62(3), 219–261 (1995)
Rüssmann, H.: Invariant tori in non–degenerate nearly–integrable Hamiltonian systems, Regul. Cha-

otic Dyn. 6, 119–204 (2001)
Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. Springer-Verlag, Berlin (1971)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


