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The stability of invariant (KAM ) surfaces for nonintegrable dynamical systems with few degrees of freedom, as a nonlinearity
parameter is increased, is considered. A rigorous method, which allows one to construct explicitly such surfaces, is discussed. A
byproduct of this method allows one to give lower bounds on breakdown thresholds and applications to the standard map and to
a two wave hamiltonian system yield results that agree within 60% with the numerical expectations.

1. Introduction

Transition to stochastic regimes, in hamiltonian
mechanics with few degrees of freedom, seems to be
intimately related to the disappearance, as a non-lin-
earity parameter is increased, of KAM tori with
highly irrational rotation numbers [1].

In this Letter we consider the “paradigm hamil-
tonian” of Escande [1]

H(y,x, t; €)=4y*+ef(x, 1)
=4y*+e[cos x+cos(x—1)] (1)

and illustrate the main ideas which are needed in or-
der to give a rigorous proof of the stability of the to-
rus with rotation number w= (\/g —1)/2 for
complex values of ¢ with |e]| <0.015. The experi-
mental value at which this torus is expected to dis-
appear is about 0.0276 [2,3] #.

The complete mathematical proof of this stability
result [4] is quite technical and involves computer-
assisted estimations, but its basic scheme is rather
simple and will be described here.

! Permanent address: Dipartimento di Matematica, II Univer-
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# Falcolini [3] applying Greene’s residue criterion [10] to a
“leap-frog map with large integrator step” obtained as Poin-
caré section, obtains a critical value of 0.02758. The value in-
dicated by Escande [2], based on the renormalization theory
of ref. [11,is 0.0276.

This scheme, which is quite general and can be ap-
plied to higher dimensional hamiltonian systems as
well as (directly) to monotone twist diffeomorph-
isms of the plane, is based on two fundamental steps.
One is an implementation of a recent Newton method
[5], which allows one to establish the existence of
KAM surfaces by solving directly a “KAM-torus
equation” (see eq. (2) below and compare also with
ref. [6]) rather than by exploiting repeated use of
symplectic transformations as in classical KAM the-
ory [7,8]. The second step consists in finding a good
initial guess for the Newton method and is based on
smoothness properties in the non-linearity parame-
ter e. Roughly speaking, under analyticity assump-
tions, KAM surfaces depend analytically on ¢ and
from the KAM-torus equation one can compute re-
cursively a few terms of the e-power-series expansion
of the KAM surface. Such truncated series will be
used as initial guess. (For related power series meth-
ods, see ref. [9].)

As mentioned above our method can be applied
tout court to twist maps and, here, we just mention
that an application to the Chirikov—Greene standard
map yields existence of the golden-mean curve for
el <0.65 [4], while the experimental value ob-
tained by Greene [8] predicts a critical threshold of
0.97.

Finally, numerical extrapolations of our method
give results in complete agreement with the experi-
mental ones.
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2. Stability theorem

We recall that a KAM torus for (1) with rotation
number ® is an invariant two-dimensional torus that
can be described parametrically {(x, t) = (8+u(86, ¢
€), t: (6, t)eT?}:'where T2 denotes the standard torus
R2/(2nZ)? and u is a periodic function of (6, ¢) sat-
isfying 14 u,#0 and such that in the (6, t)-coordi-
nates the H-flow is simply given by (8,, t;)— (6,+wt,
tp+t). From this and Hamilton equations, it fol-
lows that u satisfies the following partial differential
equation on T? (“KAM-torus equation”)

af ] d
2 9 — = - + 2
Du+eax (0+u,t)=0, D_wao+at. (2)

Thus, to prove the existence tori is equivalent to solve
(2). We summarize our resvlt in the following

Theorem. Let' w=./5—1)/2 and let € be a com-
plex number with |e¢| <0.015. Then eq. (2) has a
unique solution with mean value (over T?) zero,
which is a real analytic function of 6, ¢ and €. Such
a solution can be written in the form

lo
us Y u(8,1)e'+R, (6, t; €)

=1

where the 4" are odd trygonometric polynomials
and, for /=24,

max R, (0,5 ¢€)]<6.85x10-3.
(6,1)eT2
|e} €0.015

It is worth mentioning that the #” can be com-
puted “explicitly”; for example, the first two terms
are simply given by

uV= —(é sin 6+ ?E_lq_)_;——sin(o—t)) >

1 1 1
<55 + (w-—l)z) (Qw—-1)2

1 __1__) : ,.,.%
@ (-0 e |

sin(20—-t)
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3. Power series expansions

As it turns, u(6, ¢, €) is an analytic function of €
near ¢=0. Thus, we set
Q0

u= Z u(’)(e, t)fl
4

=1
and, expanding (2) in a series, we get

D*u D =sin §+sin(6—1¢) ,

T N A AR .
D*u= k;;(—! EYT: [sin @+sin(6—1¢)]

X ¥ u® oy, [>2.
h+..+lk=i—1
L=

This system of equations has a unique solution (!,
u®, ...) with [ ¥?=0. In Fourier series,
u(/)= ﬁg'),m)ei(n9+mt) ,

(n,m)eZ?

such a solution is given by

1
A (1 .
usn,)rn) = (wn+m)2 1nc(n,M) s

ad !

mm) = (wn+m)?

-1 (iVo. )k+l
b4 —
k=1 h+.+lk={-1vo+..+Vk=(nm) k'

=1 vim (Vi Vp )e22
10 [/
Xt a5

where {(, ,ny=14if (n, m)=%(1,0), +(1, —1) and
0 otherwise. For /=1,2 one will easily recover the
functions of the preceding section.

It will be readily realized that the number of Four-
ier coefficients of # " grows quite rapidly with /. To
handle them and to obtain a rigorous evaluation of
them we used a computer performing the so-called
interval-arithmetic [11].

As mentioned in the introduction we took

24
=Y ule
=1

as initial guess for the Newton iteration, which we
proceed now to describe.
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4. Newton iteration

Let »; be some approximate solution of (2),
namely, let

D2 +¢f, (6+v;, 1) =¢;, (3);

with e; small (in suitable sup-norms). We look for a
new function v;,,=u,+w; satisfying (3);,, with
w;~0(e;) and e+, ~0(e;)?. Recalling that a KAM
torus satisfies 141, 0, we assume that

1+0v;/36#0, (4);

so that we can define z=2z(6, ¢; €) as the unique so-
lution with mean value zero of

D[(1+3,/88)?Dz] = — (1+0v,/38)e, .

Notice that this equation can be solved because the
right-hand side has mean value zero as it follows from
(3),. Then, one sets w;= (1+dv;/60)z, defines ¢, ,
as the left-hand side of (3),,; and checks that w; and
¢+ satisfy the above smallness requirements. Fi-
nally, observe that, if v;and e, are analytic in € in some
disk D, so are v;., and ¢, ,, provided (4), holds uni-
formly in D. This last requirement gives a restriction
on the size of the radius of D.

5. Convergence

Equipping this iteration with a “close-to-optimal”
set of estimates, we obtain an algorithm that, given
vg and some initial guess on the e-analyticity radius
D, yields a sequence of new functions v; and e; with
relative bounds. The v; will converge to the solution
of (2), if one can show that
1+0y;/00£0 Vj;, lime=0. (5)

Jeo

Because of the fast rate of convergence of Newton
procedures, it is quite easy to check if (5) holds. We
did this by making use of a “KAM condition” that,
if satisfied by v;, and e;, for some j, yields (5). Such
a condition, which is nothing else than a completely
explicit version of standard KAM theorems in the
style of, e.g., ref. [ 12], is necessary in order to estab-
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lish a rigorous result and, by its nature, cannot be
close-to-optimal; nevertheless its effect can be highly
mitigated by the step-by-step application of the
Newton iteration as indicated above.

In our computations (p,=0.015, [,=24) we
checked the KAM condition for j,=10, that is, after
applying 10 times the Newton steps described above.

6. Conclusion

The above analysis, together with numerical ex-
trapolations based on it, seems to suggest that, at least
in the case considered here, the radius of conver-
gence in € of the parametric representation of KAM
tori might actually coincide with their stability
threshold.

This phenomenon, if further confirmed, might be
relevant in understanding the breakdown of analytic
KAM tori even in higher dimensions, at least in the
case of systems that are a direct generalization of (1).
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