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1. Introduction

Poincare-Lindstedt series for the (formal) computation of quasi-periodic solutions (in
the context of real-analytic, nearly-integrable Hamiltonian dynamical systems) with fixed
frequencies have been extensively studied, for over a century, fr m both the theoretical
and applicative point of view. For applications, the Poincare-Lindstedt series provide a
simple practical tool to explicitly compute the first few orders of perturbation theory; the
problem of convergence has been instead much more controversial (famous is Poincare
dubious statement in his Methodes nouvelles de la Mechanique Celeste). The matter was
settled indirectly in the sixties thanks to KAM (Kolmogorov, Arnold, Moser) theory.
"Indirectly" means that the convergence is obtained as a byproduct of estimates uniform
in the smallness parameter rather than directly looking at the formal series and trying
to check convergence by studying the rate of growth of coefficiE'nts (as in the classical
Siegel's approach to the small divisor problem arising in linearization of germs of complex
analytic functions). As it is well known, the main problem with the "direct approach"
is that the kth coefficient of the formal power series, if expanded in sums of monomials
composed by Fourier coefficients of the Hamiltonian and of "small divisors" (appearing in
the denominators of the monomials as linear integer combinations of the basic frequencies),
contains, in general, monomials which diverge as k!. Hence, a "direct proof' has necessarily
to deal with compensations, i.e., with the problem of grouping together all the "diverging"
terms showing that they sum up to much smaller contributions, which can be bounded
by a constant to the kth power. Direct proofs (in Hamiltonian setting) were given by
H. Eliasson in 1988, by Gallavotti, Gentile and Mastropietro and, independently, by the
authors in 1993 (for bibliography and more technical discussions see [1, 2, 3] and references
therein).

It is conceivable that direct techniques may solve small divisor problems out of the reach
of the more general KAM techniques. As a possible instance we formulate, in §2, a small
divisor problem (for which KAM [4] yields rather weak results) in a language particularly
suitable to study compensations.

In §3 we prove the convergence of Poincare-Lindstedt series for "isoenergetic maximal
quasi-periodic solutions": even though it is certainly possible to obtain such a result
(which we couldn't find explicitly stated in the literature) by using the direct (but rather
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involved) compensation techniques, we shall discuss a (short) proof based on a KAM result
for Hamiltonians depending analytically on some parameters.

2. Tree Expansion of Lower Dimensional Elliptic Tori

Let us consider the following model problem. Let M be the phase space ]RN+M x 'fN+M

endowed with the standard symplectic form 2::f=1 dYj Adxj + dpj Adqj where (y, x) E
]RN X 'fN, (p, q) E ]RM X 'fM. Let H be the Hamiltonian I

(I)

As it is well known, if J.L = [2, (1) reflects essentially the structure of a Hamiltonian
+ Ip12) + [F(x,q) near a "multiple resonance" of the form (y,p) = (w,O) with

w E ]RN some rationally independent vector2 . We are interested in finding quasi-periodic
solutions with basic frequencies w E ]RN ("non maximal quasi-periodic solutions"), i.e.
solutions of the form x(t) == wt + X(wt) , q(t) == Q(wt) with X and Q smooth functions
over 'fN. Inserting such an expression in the Hamilton equations3 and using the rational
independence of w, one sees that the function 8 E 'fN -t (X(8), Q(8)) E ]RN+M satisfies
the system

where D == w· 80 == L;:', Wi80;'

Let now qo E 'fM be a critical point of 10. The problem is: Fix [ (say) positive (and small)
and study the J.L-analytic continuation of the unperturbed (J.L = 0) motion (w, 0, x, qo) -t
(w, 0, X + wt, qo) (proving possibly that the radius of J.L-analyticity is greater than (2).

This problem is completely understood in the case that w is Diophantine4 and the Hessian
matrix Ao == is negative definite ("partially hyperbolic" case): in such a situation
one can show, by the method mentionecl in §I, that the associated formal (J.L) power
seriess have a radius of convergence that is greater than [2; see [3, §6) (for related methods
and results see [2] and references therein). If the matrix Au is instead positive definite
("partially elliptic" case) the question is much more subtle and has not been settled yet
(see however [4]).
Here, under suitable assumptions on w and the matrix Ao, we shall write down explic-
itly the tree expansion of the formal solution leaving however open the question of its
convergence (which we plan to discuss in a future paper).

Assumption Let us assume that w E lR''V and that the (positive) cigcnva.lues Ai (i =
1, ... , M) of A == [Au == are such that there exist positive constants I and T [or
which

Iw·n± AI2 ' Vi = 0, ... ,M, >"0 == 0 . (2)

'If wis a vector in ]R" we denote by Iwl 2 = W . W = 2::;=1 wi-
2Jn fact, Jo would correspond to the average over the "fast angles" x of F. Of course, in general J would

also depend on the action variables (y,p) (besidp.s depending on c). For simplicity we shall consider here
only the case (1).

3£ = -J.L8,J(x,q) , ij = -c8q Jo(q) - J.L8q J(x,q)
'That is, Iw· nl 2: I'lnl- T for some 1', T > 0 and all n E 'l.,N different from O.
'I.e. X J.L' Xi (Ii), Q '10 +
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By standard arguments, it is easy to check that if T > N - 1, the set of w's in ]RN
satisfying (2) for some "t has full Lebesgue measure.

Following [3, §6], we set

Z(l) == X, Z(2) == Q, a(l) == ax, a(2 ) == aq , Fo == c/o('1), F I == !(x,'1) .

Let us also denote by [·lk the operator acting on (formal) power series, a = L ajJ1.j , by
associating to a its klh coefficients ak: [a]k == ak. One checks immediately that if ZCp) '"
L Z(p)k J1.k , then the recursive equations for Z(p)k (p = 1,2) are

(3)p = 1,2 ,- (D2 + (p - l)A) Z(p)k = L [aCp) ,
x=O,1

where the suffix (k-I) means that the argument of the function within square brackets
is, for k :2: 2, the polynomial in J1. of degree (k - 1) given by

k-l
X = 0 + L J1.h Z(l)h ,

h=l

k-l

q = '10 + L J1.h Z(2)h ,
h=l

and, for k = 1, is (x, '1) = (0, '10)' To construct the formal solution, i.e., to solve recur-
sively (3) we first observe that if ZCp)h solve (3) (with h in place of k) for 0 :::: h :::: k - 1
(ZCI)O == 0, Z(2)0 == '10) then the right hand side 0£(3) has, £01' p = 1, vanishing mean value
over ']['N: this is a non trivial fact6 reflecting the symplectic structure of the Hamiltonian
equations. Thus, we can solve (3) for p = 1 hy inverting the operator D 2 (an operation
that leaves free the average of ZC])k, which we shall normalize to 0) and for p = 2 by
inverting the operator D 2 + A. Notice that by the above Assumption one has

for f. = 0, 1 .

Taking Fourier coefficients of (3) we get

Z;[)k = L (w·n)-a
aE{0,2}'
XE{O,l}

where a E {O,2}* means that a + p E {2,3} and that n = 0 ==> a = 0, and the vector
valued operator D}:') is defined by:

== ((w. n)2 _ A) I-p aCp) .

Notice that the components D;:/ are N if p = 1 and M if p = 2; we therefore let N] == N,
N 2 == M so that j E {1, ... , Np }. The tree expansion of such solution takes the form
(compare with [3, formula (4.11)])

L L II {AvFxv}av II "tv ,
{3:V ....{3uED j:V.... j v E{1, .. ,Npv } vET, vET,

p,=po j,=jo

(4)

6Essentially known to Poincare and Lindstedt Cat least in the case M = 0)
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where: 1) denotes the j6h component of the n-Fourier coefficient of the function
Z(po)k; 2) 7Jc is the set of all labeled, weighted, rooted trees with k vertices introduced
in [3]?; 3) the index set B is defined as: B == {.B = (a,p): a E {0,2}, p E {1,2} with the
constraints a + p E {2,3} and Ov = 0 =:} a = O} with8 Ov Lv'::Ov a v'; 4) the operator
II.v and the positive number IV are defined respectively as9

11. - 11. ('7' R·) - D(Pv) II ,,(Pv')v == v .l.r, Ct,v,) = dvju Ujv
"v'ENv

if Ov ;i 0,
if Ov = O.

The proof of formula (4) can be easily checked by mimicking the deduction of formula
(4.9) (with specifications as in §6) in [3] (where the lower dimensional partially hyperbolic
case is treated in detail). If one could prove compensations in the sense mentioned in §1
(see [3]) for (4) one would he able to conclude the convergence of the formal power series
obtaining a new result lO

3. c-Analyticity of Isoenergetic Tori

Using the standard (analytic) implicit function theorem and a KAM result for Hamiltonian
systems depending analytically on several parameters ll we shall prove here the following
"KAM isoenergetic" result. Let H be a real-analytic, nearly-integrable Hamiltonian of the
form H == h(y) + cf(y, x), (y, x) E V X TN, V being, say, a sphere centered in Yo E ]RN.

Theorem 3.1 Assume that w == hy(Yo) is a Diophantine vector, that det hyy(Yo) ;i 0 and
that l2 w· (hyy(YO))-l w ;i o. Let E == h(yo). Then there exist unique functions u(B;c),
v(B; c), a(c:) depending analytically on B E TN and c (neal· 0) satisfying: u(B; 0) = 0,
v(B; 0) = Yo, J1!'NU = 0 and, letting Wo == (1 + a)w and Dwo == w() . Bo,

W o + Dw"u = Hy(v,B+u;c:) , Dwov= -Hx(v,B+u;c), H(v,B+u;c) == E.

Proof Let if == h(Tfo) + cf(Tfo,x) with a scalar near ao == O. Then the Proposition
in footnote 11 holds. If ii == I and u == ii, then the Proposition implies that fj, and ii

7Given a rooted (unlabeled) tree T,. (rooted at r) one calls a function of the vertices of T" X : v E
VeT,) -t Xv E {O, 1}, a weight {unction. A weighted rooted tree is a couple (T" X) with T, a rooted tree and
X a weight function. We now denote t the set of weighted root.ed trees satisfying (i) deg v ::0 2 = Xv = 1,

(ii) LvEV(T,) Xv = k. Finally, the class Tk of labeled, weighted rooted trees is obtained from t by labelling
with k different labels the k vertices with weight 1.

8R.ooted trees can be naturally equipped with a partial order: v' ::0 v if the path joining the root r of
Tr with II' contains v.

9The set /IIv denotes the vertices smaller than v and adjacent to it.
10The lower dimensional partially elliptic tori found in [4J are not even continuous in J.t and they are

proved to exist only for values of I' in a Cant.or set.
11 Proposition Let Ii = hey; a) +cf(y, x; a) with hand f depending (analytically) on y near yo E ]RN,

on x E TN and on a near ao E ]Rn (w.r.t. the standard form dylldx). Let w = hy(yo; ao) be a Diophantine
vector and assume tllat det hyy(yo; ao) -I O. Then there exist (unique) functions u and V, depending
analytically on 0 E TN, c and a in neighbourhoods of, respectively, 0 and ao, satisfying: u(O; 0, a) = 0,
v(O; 0, ao) = yo, Jl',vu = 0 and w + Du = Hy(v,O + it; 10, a), Dv = -Iix(v,O + u; 10, a) (D = w . 80). [A
proof may be found in A. Celletti, L. Chierchia (1997) On the Stability of R.ealistic Three Body Problems,
Commun. Math. Phys., 186, 413-4491·

12Notice that (since T = hyy(yo) is invertible) the condition w· T-1w -lOis equivalent. to the standard

isoenergetic non·-degeneracy condition, i.e., det (: -10.
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are analytic in () E 1['N and in (E,a) near (0,0) and verify Wo + Dw" u = Hy(v, () + u; E),
Dw"v = -Hx(v,() + U;E). To fix the energy we want to determine 0' as a function of E
using the (analytic) implicit function theorem. Let F{�, 0') == H(v(O; E, 0'), u(O; E, 0'); E) - E.
Then F(O,O) = h(yo) - E = 0 and it remains to check that Fo(O, 0) =1= o. But, Fo(O,O) =
hy(Yo)vo(O;O,O) = wA where A is the matrix vo(O;O,O). To compute A, observe that
evaluating at E = 0 the equations satisfied by it and ii, one finds t.hat hy(v(O; 0,0')) = Wo '

Differentiating this relation one obtains A = hyy(YO)-lw. Whence 1;',,(0, 0) = w.hyy(YO)-lw,
which is different from 0 by hypothesis. From the implicit function theorem it follows that
there exists an analytic function a(E) such that H(v(O; E, a(E)), u(O; E, a{�); E) - E == 0 and
the conclusion of the Theorem holds if u(8; E) == u(8; £, 0'(£)), v(8; E) == v(8; £, 0'(£)). I
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