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1. Introduction 

l) In this paper we are concerned with the construction of quasi-peri- 
odic solutions of systems of nonlinear partial differential equations, for the 
unknown vector function u: y ~ ~M ~ u ( y )  ~ NN, of the type: 

Of(u,y) ,  i - -1 ,  N, (1.1) Au = efx(u, y) i.e. Aui = e ~xi " ' "  

where (x, y )~  Ns+ar A = Z ~  (Oa/Sy2), f = f ( x ,  y) is a smooth (later real- 
analytic) function periodic in each of its N + M variables and e is a 
parameter; "quasi-periodic" means that there exist an N x M matrix, fL 
and a (smooth) periodic function, U: (0, ~p) e T ~v+~-- ~U+M/21r-~ N+M--+ 
U(O, 0) ~ NX, such that 

u(y) =f~y + U(f~y,y), , ( y ~ t .  (1.2) 

(To be precise we should replace (fly, y) by n0(fly, y) as argument of U, re0 
being the projection of ~N+~ onto TN+M: we shall however omit such 
projection). System (1.1) corresponds (formally) to the Euler equations of 
the variational problem associated to the functional 

+ ,=,  (1.3)  

The interest for quasi-periodic solutions of (1.1) is motivated by the 
following two examples. 

(i) M = 1: (1.1) are then the Euler-Lagrange equations, 

d 
Yp(Vu, u, t) = Yx(Vu, u, t), 

associated to the "time-dependent" Lagrangian F(p,  x, t) having the 
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particular form 

1 
F = ~ ~]2 + ef(x, t), (p, X) E ~N X ~N t ~ y e T ,  

bars denot ing Euclidean norm in ~N. Alternatively, (1.1) can also be 
interpreted as the Hamil tonian  equations generated by the non-auto-  
nomous  Hamil tonian  H(p, x, t) =- �89 ef(x, t) (with respect to the 
s tandard symplectic form dp A dx:2  = Hp, 15 = - H ~ ,  x - x ( t )  = 
u(t)). In this case f~ = co is an N-vector and if such a vector is rationally 
independent  with 1 (i.e. co �9 n + q =_ zN= ~ c%nj + q = 0 for some n ~ Z N, 
q e 7/ ~ n = 0 = q), then quasi-periodic solutions correspond to in- 
variant  (N + 1)-dimensional tori embedded (if det[I + 0o U] r 0) in 
the phase space ~NM q]-N+ 1. In parametr ic  equations such tori are 
given by (0, t ) ~ T  x+~ --+(0 + U(O, t), t) on which the Hamil tonian  
flow becomes (00, to) ---, (00 + cot, to + t). The existence (under  suitable 
hypothesis  on co, F a n d  e) of  quasi-periodic solutions is the main object 
of  the so called K A M  (Kolmogorov-Arnold-Moser )  theory (see [1] 
and references therein, and [4] for some recent developments).  

(ii) N = 1: In this case (1.1) is a single elliptic equat ion corresponding to 
the Euler equat ion of the scalar variational problem (1.3) (with 
N = I ) .  The existence of  quasi-periodic solutions (satisfying 
1 + c?0 U > 0) is equivalent to establish minimal foliations for ( 1.3), 
i.e. foliations of  codimension 1 on T M+~ whose leaves are minimal  
for the variational problem (t.3). In 1988, J. Moser,  cont inuing the 
analysis started in [12], proved a stability theorem ("e small") (for 
smooth  F satisfying a "Legendre  condi t ion"  and for suitable f~ E R M) 
for such minimal  foliations ([14], see also [13], [15]). 

2) In this note we construct  quasi-periodic solutions of (1.1) adapt ing to 
the P D E case a "direct me thod  ~t la Siegel", which has been used, for the 
first time, in the Hamil tonian  (ODE)  case by H. Eliasson [7] and which has 
been recently revived (always in the O D E  case: see [5], [8], [9]). The "direct 
me thod"  is based onto two clearly distinct parts: an algebraic (and short) 
par t  and a quantitative (rather lengthy and technical) one. It is interesting to 
note that  to generalize the p roo f  to the PDE case one needs to discuss only 
the algebraic part as the quanti tat ive estimates follows almost  at once f rom 
the analogous estimates of  the ODE case. We also notice that  in the case 
N = 1 we obtain a new proof  of a particular case of  Moser 's  theorem [12]. 

3) Let us briefly describe the precise results discussed in this note. We 
assume a "Diophan t ine"  condi t ion on f~, which generalize the similar 
condit ions needed in (i) and (ii). We denote  by A the M x (N § M) matrix 
(fU, IM) (/at -- M x M-ident i ty  matrix) and assume that  

1 
]All >- ~/IIF l Vl~7/u+~\{0},  A = (~T, IM). (1.4) 
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For example such a condition is verified if one of the column of D is a 
Diophantine vector i.e. denoting f2 = [ c 0 , , . . . ,  O)M], (COj ~ ~U t o  be inter- 
preted as column vectors: D~j = ~oj,~ = i TM component  of the vector coj) if, for 
some 1 _<j _< M, there exist ~, -c > 0 such that 1 

1 koj.n+ql lnl q~7/. (1.5) 

It is well known (see, e.g., [i]) that, given -c > N, the set of vectors o~j ~ NN 
satisfying (1.5) for some 7 > 0, has full Lebesgue measure. In particular, 
(1.4) implies that the map y ~ RM-,(Dy, y) is dense on yX+M. Thus, it is 
immediate to check that u in (1.2) solves (1.1) if  and only if  U(O, ~) solves the 
degenerate system on T N+M given by 

LU = ef~(O + U, 0), 
M 

2 L ~  ~ (~oj-00+ oj) ,  (1.6) 
j = l  

(where, as above, dot denotes inner product: %. 00 = ZN=I O,)j, i ~Oi ). Notice 
that, in Fourier space, L acts on periodic functions g(O, 4!) as a multiplica- 
tion operator transforming the Fourier coefficient gl, l~77 N+M, into 
( - - IA l lZg l ) .  

Theorem 1.1. Let f i n  (1.6) be real-analytic on ~N+M and let D satisfy 
(1.4). Then there exists a unique solution U = U(O, t); e) of (1.6) jointly 
real-analytic in (0, ~) and e (for e in a complex neighborhood of e = 0), and 
such that 

f d 0 d ~  
( U } = [  U(O, ~; 0 - 0 .  (1.7) 

N+M (2~C) N + M  Jv 

Condition (1.7) is just a normalization condition necessary to have 
uniqueness: in fact, if U is a solution of (1.6) then so is (0, ~) 
0o+ U(Oo+O,~bo+~) for any prefixed (Oo, Oo)~T N+M. An immediate 
corollary of this theorem and of the above mentioned abundance of 
matrices f~ satisfying (1.4) is the existence of uncountably many quasi-peri- 
odic solutions u of (1.1) related to U by (1.2). 

To be more quantitative, we introduce, on the space of analytic func- 
tions g: T r ~ C ,  the norm I[g[l~=y,n~zrlgn[elnl~; here gn denote Fourier 
coefficients and o- is a prefixed, positive parameter. Obviously, g is real-ana- 
lytic on T r if and only if there exists a a > 0 such that Ilgt[~ < oo. If 
g ~ ( g l , - - ,  gs) is a v e c t o r - v a l u e d  analytic function, we se t  [Ig - s n p j  I}gJ I1o" 
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We will then show that there exist constants fl = fl(z) and c = c(z, Y) 
(recall (1.4)) such that i f  II/ll~ < ~ then the solution U described in Theorem 
1.1 is real-analytic in the domain 

~,~o={O~CN:l~mO, l<_~ } x {~ e c'": IIm ~,,I _< o-} 

• 

for any 0 < a < 6 and for 

(o - ~) 
~o- cllfll~ (1.8) 

Moreover, for any complex ~ with [e[ < ~o, U satisfies the bound: 

- (1.9) I1 u ( ;  -< to 

Remark 1.1. ("No epsilon case") Obviously, a similar result holds for 
the systems ("no epsilon"): 

Au ---L(u, y), L u  =A(0 + u, 4), (1.10) 

provided Ilfll~ is small enough i.e. IJfll~ <(6-a )~ / (2c )  (just insert the 
auxiliary parameter ~ in the r.h.s, of (1.10): the smallness condition on f 
guarantees that e = 1 is well inside the disk of e-analyticity and the solution 
U(O, t~) of (1.10) is obtained by taking U(O, ~h) - U(O, O; 1), which satisfies 
I[ u[l  - a ) / 2 ) .  

Remark 1.2. ("Autonomous case") In the case f =f (x)  does not depend 
upon y, the definition of quasi-periodic solutions has to be adapted in the 
obvious way: U in (1.2) will depend only on 0 and the operator L becomes 
simply Y~ l(COj. 00) 2 (and the matrix A in (1.4) has to be replaced by fU). 
Then, Theorem 1.1 still holds together with the bounds (1.9), (1.8). Further- 
more, in the autonomous case, the problem with no epsilon (1.10) is 
transformed into the original problem (1.6) by a simple rescaling of the 
frequency matrix: ~--, f ~ / ~ .  Thus, since Diophantine vectors form a set of 
positive measure, we conclude immediately from Theorem 1.1 that there 
exist uncountably many quasi-periodic solutions of  Au =fx(u)for any analytic 
function f, without assuming ]lf]i~ to be small (compare [13], [6]). 

Remark 1.3. It is probably possible to extend Theorem 1.1 so as to 
cover a broader class of elliptic systems corresponding to more general 
Lagrangian functions (satisfying a suitable non-degeneracy condition). On 
the other hand, our techniques do not seem apt to cover the interesting case 
in which f is assumed to be (sufficiently) differentiable. 
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4) The proof of Theorem 1.1 is "elementary and direct": the existence 
and uniqueness of formal solution of (1.6), U ~ Zk>1 eku(k)(O, ~), with U (k) 
real-analytic on y i +  M, is first explicitly established and then it is shown that 
the U(k)'s satisfy the bounds 

1 
[[ U(k)ll~ _< ~ (~ -- a)eo ~, (1.11) 

which leads at once to Theorem 1.1 and to (1.9). In particular no use is 
made of fast converging schemes as it is typical in KAM theory. 

The main (and well known) difficulty in such strategy is that U(k)(O, ~) 
(the k th term of the formal solution) can be written as a sum of many 
"elementary contributions" of the form 

q~=l f i j )~ - z ,  (1.12) 

where q is an integer, f~j are Fourier coefficients and ~ - :  is a product of 
so-called small divisors i.e. e = IIj~j IAl;I with J a finite set made up of at 
least k elements: the "divisors" Alj may get arbitrarily small when Iljl-~ oo 
and the repetition of particularly small divisors generates elementary contri- 
butions of size as large as ~ k  !. Therefore, to get a bound like (1.1 l) one has 
to show that all the large elementary contributions compensate. 

Here, we shall not carry out the explicit evaluation of the constants fi 
and c in (1.8), which could be easily done by mimicking the similar 
estimates performed in full details in [5] leading to (the certainly not 
optimal values of) 

fi = 12"c +6 ,  c = y:23~ 16(12"c +6)!  

5) We close this introduction sketching the main steps on which the 
proof of Theorem 1.1 relies. 

(1) One establishes, for (1.6), existence and uniqueness of formal quasi- 
periodic solutions U ~ ~-~k>l u(k)~k  by a simple recursive argument 
similar to that used in [6]. For this step it is crucial that the 
equations (1.1) are "conservative". 

(2) The formal solution is shown to admit a very explicit representation 
in terms of elementary graph theory or, more precisely, in terms of 
labeled rooted trees 2. 

(3) The first estimates on products of small divisors Q are proved. These 
estimates are based on a simple generalization of the original 
argument given by C. L. Siegel [16] in order to linearize germs of 
analytic functions of the form f (z)  = ei~ + z2g(z), z ~ C, with co a 

2 In this paper we shall need no more than the basic definitions from graph theory, which may be 
found in the first chapters of  most  books on the subject (such as, e.g., [3]) or in Appendix A of [5]. 
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real number  satisfying a Diophantine condition. These first esti- 
mates cannot be generalized in a straightforward way to the case 
considered in the present paper (not even for the case N = M = 1). 
What  happens is that in products (1.12) the same small divisor may 
appear several times as a consequence of vanishing combinations of 
Fourier indices ("resonances"): such repetitions may lead to contri- 
butions (1.12) of size k! (see [5], Appendix B). 

(4) One produces a partition of the terms forming the tree-decomposi- 
tion of U (k) in well behaving families i.e. in families whose elements 
behave as if there were no resonances. This step is algebraic in 
character and constitutes the heart of the proof. 

(5) Using steps 3 and 4, one can bound the sum of the contributions in 
each of the families of the above partition by a constant to the k th 
power using Cauchy's classical method of majorants (see, e.g., [11] 
Chapter 3). 

6) We emphasize that, basically, the only difference from the proof  of the 
ODE case is step 4, which is explained here in full details; the other parts are 
essentially contained in [5] and here we simply point out the needed 
(notational) adjustments. 

2. Proof of Theorem 1.1 

Step 1: Existence and uniqueness o f  formal  solutions 

Given a (convergent) e-power series, g = Zk > 0 g ~ ,  we denote by [.]~ the 
"coefficient operator",  which associates to g its k th coefficient [g]k = gk. A 
formal solution with real-analytic coefficients of (1.6) is a sequence of real- 
analytic functions { U(k)}k > o, U(k): (0, 0 ) ~ ~ N + M ___+ U(k)( O, 0) E ~N,  satisfying 

L U (~ = O, L U (k) = 0 + ~ e h U(h), , (k >_ 1). (2.1) 
h = 0  - 1  

Obviously, if the series Y~k_>0 e~U (k) is convergent (i.e. 3a > 0 such that the 
numerical series Zk>0 ekl]U(k)[I ~ has positive radius of convergence in the 
complex e-plane), then U - Ek > 0 e k U (k) satisfies ( 1.6) if and only if (2.1) holds 
for all k. It is easy to prove, by induction, that given a real-analytic f and 
a real matrix f2 satisfying (1.4), there exists a unique formal solution satisfying 
(2.1) and the normalization condition ( U  (~)} = 0: see, for example, the detailed 
proof  given (in the ODE case) in Appendix B of [5]. The unique (normalized) 
solution is given by 

F~ ~) 
U(~ = O' U ( k ) =  - -  E I IIAll2 ei(n~ (k > 1) (2.2) 

l # O  
l=(n,rn)sZ N + M 

(F (h) being recursively defined in terms of U (I) . . . .  , U(h 1)). 



216 L. Chierchia and C. Falcolini Z A M P  

Step 2: Tree-representation of  the formal solution 

Given a rooted tree T with root  in r ~ V - V(T) ( = {vertices of  T}), we 
introduce on V a partial ordering by setting u > v if the path with endpoints 
r and v contains u; u > v means u > v and u ~ v. Given a rooted tree T and 
a function c~: v ~ V ~  ~ ~ ~_N+M, we denote by 6~(T; ~) (or by 6~(T) or simply 
6~) the NM-vector 

6 ~ = A  ~ c~,. 
V'E V 
V' ~ U  

As in [5], we select the root  r of  T by adding to the set of  edges of  the tree 
T an extra edge t/r where q is a symbol (not  a vertex) (notice that in this way 
for rooted trees one has # E  = # V where E denotes, as customary,  the set 
of  edges of  T). Finally, we denote by ~-k the set of  labeled rooted trees of  
order k. The method of  p roof  of  Proposition 3.1 in [5] yields the following: 

Lemma 2.1. For  1 < j  < N, l~TyN+M\{o}, 
component  of  the Fourier  coefficient of  index 
U(k)( O, O) in (2.2). Then 

1 
U)~) = k-~ Z ~#J,(T), 

T ~ Y  k 

qlj,(T) = ( - i )  2 
a E d(T)s. t .  

a( T )  = l,n~ =- ej 

let USf ) -  U}~ ) denote the jth 
l of  the real-analytic function 

with: 

1-If=  f l  n .no, f l  16 1-2, 
v ~  V vv' E E  v ~  V 

(2.3) 

where N ( T )  is the set of  functions from the vertices of  T into ~ N + M \ { 0 }  

such that Zv, < v ~, r 0 Vv ~ T, n~ denotes, as above, the first N components  of  
the vector ~ ,  ej ~ Z u denotes the versor in t h e j  th direction and cffT) is short 
for Z ~  r c~. 

Step 3: Small divisors bounds (non-critical case) 

As already mentioned in the introduction, in the sum at the r.h.s, of  
(2.3) there are terms that, for k large, behave like k! (an explicit identifica- 
tion and evalaution of  such terms is given, e.g., in [5], Appendix B). This 
phenomenon is due to (rather  obsessive) repetitions of  certain small divisors 
6~. Repetitions of  small divisors are "dangerous"  whenever they occur on 
related vertices i.e. when happens that 3u = 6w for some u > w. In such a 
case, if we let R(u, w) denote the subtree with vertices V(R(u, w))= 
{v <u} \ {v  < w}, it is ~(R(u, w))=0.  A subtree R is called a resonance 
(or a resonant subtree) if: (i) deg R - number  of  edges connecting R with 3 
T \ R  is two; (ii) R is null i.e. cffR)=0; (iii) R cannot be discon- 

3 V(T\R) = V(T)\V(R), E(T\R) = E(r)\{uv ~E(T): ~ ~ V(R)}. 
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nected, by removal  of  one edge, in two null subtrees. Actually, as the 
following L e m m a  shows, only certain ("critical") resonances are really 
dangerous.  Fix 2 = 1/5 (definitions and estimates given below will depend 
upon  a free parameter  )~ _< 1/4, which, for definiteness, we fix, once and for 
all, to be 1/5) and call a 2-resonance a resonant  subtree R, for which, 
setting 4 

I = ~ e~, 6rnin(R)- min I~o(Rol)I, 

one has IAl] < )~6min(R). Then the p roo f  of  L e m m a  5.2 in [5] yields at once 
the following: 

Lemma 2.2. Let T be a rooted tree of  order k, e ~ sO(T). Assume that  
there are no 2-resonances. Then there exist constants q > 1 and fl~ > 1 such 
that  

[ I  16~1-1 < c ~  l-I Ic~[ h. (2.4) 
v � 9  v=~T 

Step 4: Small divisors compensations 

Let us now prove, in full details, the crucial algebraic proper ty  
(analogous to L e m m a  5.3 in [5]). A resonance produces a repetit ion of  
divisors: Let R be a tree, let w e R, let z be an extra vertex (i.e. z r V(R)) and 
consider the rooted tree R w with root  in u defined by V(R~) - V(R) u {z}, 
E ( R S ) - E ( R , ) w { w z } .  Fix an 7 function, ~: V(R~)~zN--M\{o}  with 
~ = l r 0 and ~(R) = 0, so that  R is a resonance for R~'. In the product  
II~�9 z [6~(Rw)[ -2, the divisor 6 -  6 ~ ( R ~ ) - A l  appears at least twice, as 
6,(R w) = 8. We now produce a combina t ion  of  trees similar to R~', so that  
the above repetit ion disappears. A precise s tatement  is as follows. For  
v ~ V(R~) we denote,  as usual, ~ = (n~, m~). Fix 1 _< i , j  <_ N, and consider 
the meromorph ic  function of t ~ C given by 

n.inwi H I6 (Ru) + t 1-2 H = Al, 
u,w �9 R v ~ P(u ,w)  v �9 R \ P ( u , w )  

v r  

where P(u, w) is the pa th  joining u and w (if u - - w  the first product  is 
missing, while if R is a pa th  the second product  is missing). Note  that  

161-%(1) = ~ nuinwj H [6~(nw)1-2. 
u , w ~ R  v ~ R ~  

4 U < R means  v ~ V ( T ) \ V ( R )  and  v < u for some u ~R,  and  recall  t ha t  g)~(Ru) = A E~,<~, %, where the 
order  < is tha t  of  the tree R roo ted  at  u. ~'~R 



218 L. Chierchia  and  C. Falcolini Z A M P  

But, in fact, one o f  the 16] -2 is fictitious" 

~p(O) = -~ (0) = O. (2.5)  

To prove (2.5), recall that e(R) = 0 and define, for any u, w in R 

~(u) =_ [I I6~(Ro)I, v(w) ~- 2 nui E ~'6v(Ru) 
v C u  v C u  

We claim that the functions t~(u) and v(w) are independent of, respectively, u 
and w: p(u) - #, v(w) =- v. The independence of p(u) from u comes immedi- 
ately from the identities 

6~(R,) = 6~(Rw), Vv C P(u, w), (2.6) 

(where as usual P(u, w) denotes the path joining u and w) while, since 
~(R) = 0, 

1~ [6~(R.)I= H I-6~(Rw)l, Vu~w. (2.7) %~,~) ~ w )  

Now, for any u and w with u r w (2.6) and (2.7) imply 

~(u)= FI I6~(R.)I [ i  16~(R~)I 
v e P(u ,w)  v 6 P(u ,w)  

v # u  

= i-I 16~(Rw)I 1-i 16v(Rw)l=~(w), 
v �9 P(u,w) v r P(u,w) 

v r  

which proves the independency of p from points in R. Next, observe that to 
prove the independence of v from points in R it is enough to check that 
v(w) = v(w') for adjacent points w and w'. Thus, let w, w' be adjacent points 
in R. Then 

v(w)-v(w')= E n~ Z 2 
U~W~W ~ V ~ U  

6 . 6 w ( & , )  6 . 6w , (R~)  
+ XR(w')n~,, i 6 ; ~  x~(W)nw~ F s w ~  

6.6w(Rw,) 6 .6w(&, )  
= Z nui ~Z~(w')nw,, 12 .~,~ 16w(e=,)l = 16~(Rw,) 

U ~- W,W' 

6.6w(Rw,) 

( . ~ R )  6.6~(Rw,) 
= n , i  - - ~  - -  0 ,  

16w(Rw,)l- 
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where )~R denotes characteristic function of the set R and, in the second 
equality, we used @(R~) = -(Sw(Rw,). This finishes the proof of the claim. 
Equalities (2.5) are now an immediate consequence of ~(R) = 0: 

Z nuinw I-I g n.,nw =0 
I~wG R t~ R bl,w ff R u#u 

and 

do 
d t ( 0 )  = - 2  E n~,nwj I~ [6~(Ru)1-2 Z 6"6~(R,)I~gR~I 

uCw vCu vCu 

= - 2 # - 2  2 nw ,~Rn~i 2 
u # w  v#u 

=--2#-2v ~ n w=O. 
w~R 

Step 5: Small divisors bounds (general case) 

To any tree T ~ ~-k and any c~ ~ d ( T )  one can associate a family of trees 
~-(T), called "the complete family of T" and y-k can be partitioned into such 
complete families. Essentially, a complete family is constructed by associating 
to critical resonances of T the trees which yield the compensations described 
in step (4) i.e. the trees obtained by "rotating" in all possible ways the two 
edges connecting a critical resonance R with T\R. The precise construction 
of complete families can be found in w of [5]. 

The following estimate is then an easy consequence of Lemma 5.4 in [5]. 

Lemma 2.3. Let T be a rooted tree of order k, c~ed(T)  and let 
= ~ ( T )  be the associated complete family. Then there exist constants 

c2 > Cl 2, fi2 > 2fil such that 

E E nv "nv'I~v (~2  ~ I~  IO(vldeg'yvc2 I~ ~ [0(v[ f12" (2.8) 
T ' ~  vv'sE(T') veV v~V 

where deg~-v = m a x r , ~  degr,v. 

The proof of Theorem 1.1 now follows using, e.g., the well known method 
of majorants (see, e.g., [11] w and its similar application in [5]). 
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Abstract 

We extend a recent method of proof of a theorem by Kolmogorov on the conservation of 
quasi-periodic motion in Hamiltonian systems so as to prove existence of (uncountably many) real-ana- 
lytic quasi-periodic solutions for elliptic systems Au = eft(u, y), where u: y e R M --, u(y) ~ R N, f =f(x, y) 
is a real-analytic periodic function and e is a small parameter. Kolmogorov's theorem is obtained (in a 
special case) when M = 1 while the case N = 1 is (a special case of) a theorem by J. Moser on minimal 
foliations of codimension 1 on a torus T M+ ~. In the autonomous case, f = f ( x ) ,  the above result holds 
for any e. 
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