
ISSN 1560-3547, Regular and Chaotic Dynamics, 2024. c© Pleiades Publishing, Ltd., 2024.

Nineteen Fifty-Four: Kolmogorov’s New “Metrical Approach”

to Hamiltonian Dynamics

Luigi Chierchia1* and Isabella Fascitiello2**

1Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre,
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Abstract—We review Kolmogorov’s 1954 fundamental paper On the persistence of condition-
ally periodic motions under a small change in the Hamilton function (Dokl. akad. nauk SSSR,
1954, vol. 98, pp. 527–530), both from the historical and the mathematical point of view. In
particular, we discuss Theorem 2 (which deals with the measure in phase space of persistent
tori), the proof of which is not discussed at all by Kolmogorov, notwithstanding its centrality
in his program in classical mechanics.
In Appendix, an interview (May 28, 2021) to Ya. Sinai on Kolmogorov’s legacy in classical
mechanics is reported.
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1. INTRODUCTION

Kolmogorov’s 1954 paper On the persistence of conditionally periodic motions under a small
change in the Hamilton function [5] is probably one of — if not, “the” — most influential
contribution to the modern development of classical mechanics and dynamical systems: in four
pages, it started the celebrated KAM theory, with precise statements and a clear outline of the
main result. However, a complete discussion of this brief paper (four pages with a bibliography

containing three items), both from a historical and a mathematical point of view, is still missing1).

The plan of the present paper is the following.

In Section 2 (Historical remarks on Kolmogorov’s influence on classical mechanics in the 20th
century), following [34], and [33], we discuss the circumstances of publication and diffusion of
Kolmogorov’s revolutionary research program in classical mechanics, as it emerges from his 1950s
papers and his lecture at the 1954 International Congress of Mathematicians in Amsterdam. Such
a program implied a deep conceptual change intimately related to a mathematical reformulation of
classical mechanics, with impact also on celestial mechanics.

In Section 3 (The theorems in Kolmogorov’s 1954 paper), we continue the mathematical
discussion started in [26], considering, in particular, Theorem 2, where Kolmogorov states that

*E-mail: luigi.chierchia@uniroma3.it
**E-mail: isabella.fascitiello@uniroma3.it
1)For a “friendly introduction” to the history and mathematics of KAM theory, see [30]; for a short review of KAM
theory and Kolmogorov’s legacy, see also [24].

1



2 CHIERCHIA, FASCITIELLO

the Lebesgue measure of persistent invariant tori of analytic nearly-integrable Hamiltonian systems
(with a nondegenerate integrable Hamiltonian and bounded phase space) tends to full measure, as

the size of the perturbation goes to zero. Theorem 2 (unlike2) Theorem 1) is not followed by any

mathematical details or technical comment3), and in Section 3 we propose a proof of it based on
the scheme of proof of Theorem 1 given in [26].

2. HISTORICAL REMARKS ON KOLMOGOROV’S INFLUENCE ON CLASSICAL
MECHANICS IN THE 20TH CENTURY

The International Congress of Mathematicians in Amsterdam, Netherlands, in 1954, ended with
a lecture by Andrej Nikolaevich Kolmogorov (1903–1987). It was the second International Congress
following the hiatus caused by political tensions and the Second World War, and the first to feature
a Soviet delegation4). The printed text of his lecture in the Proceedings of the Congress (published
in 1957 [7]) starts with the following words:

My aim is to elucidate ways of applying basic concepts and results in the modern general
metrical and spectral theory of dynamical systems to the study of conservative dynamical
systems in classical mechanics [7, 1991, p. 355].

Such a text (20 pages ca., depending on translation) is a literary piece aiming at the reader’s
engagement, with an echo of Kolmogorov’s original oral style. The bibliography consists of 24
references to papers and monographs written by ca. 20 authors, published between 1917 and 1954
mainly in the Soviet Union but also in France, the USA and Germany.

It has to be noted that Kolmogorov’s 1954 research program in dynamical systems and classical
mechanics was elaborated starting from the early 1930s5). In the new age marked by Stalin’s
death (March 5, 1953), Kolmogorov encouraged the implementation of his program as a collective
endeavor:

My papers on classical mechanics appeared under the influence of von Neumann’s papers
on the spectral theory of dynamical systems and, particularly under the influence of the
Bogolyubov –Krylov paper of 1937.
[...] To accumulate specific information we organized a seminar on the study of individual
examples. My ideas concerning this topic and closely related problems aroused wide response
among young mathematicians in Moscow [16, pp. 503–504].

Indeed, in the following years, in Moscow, Kolmogorov directed some of his students toward the
field of dynamical systems, with special attention to classical mechanics and celestial mechanics.

The initial building blocks of the new mathematical landscape presented in the Amsterdam
conference had been published by Kolmogorov in two short papers (4 pages each, [4] and [5]) in
Russian in the proceedings of the Soviet Academy of Sciences (Doklady Akademii Nauk SSSR):

2)Theorem 1 is followed by a precise outline of its proof, without, however, including estimates and, in particular,
without discussing the convergence of the Newton scheme; the missing analytical details have been discussed
in [26], following closely Kolmogorov’s outline.

3)Apart from a brief final remark; compare note 6 below.
4)Suspended in 1936, the International Congress was reinstated only in 1950 in Cambridge, Massachusetts (USA).
However, in that occasion, the Russian academic community did not participate. In Volume I of the 1950 ICM
proceedings, in the section entitled “Report of the Secretary”, the following is stated [3, p. 122]:

Shortly before the opening of the Congress, the following cable was received from the President of the Soviet
Academy of Sciences: “The USSR Academy of Sciences appreciates having received a kind invitation for
Soviet scientists to participate in the International Congress of Mathematicians to be held in Cambridge.
Soviet mathematicians are very busy with their regular work, unable to attend the congress. I hope that the
upcoming congress will be a significant event in mathematical science. Desire for success in congress activities.
S.Vavilov, President, USSR Academy of Sciences.”

For a historical account of International Congresses of Mathematicians, see [27] and [18].
Notice that Kolmogorov’s last travel abroad dated back to the early 1930s: “en 1934 [...] quoique la fondation
Rockefeller lui eût accordé une bourse, Kolmogorov ne fut pas autorisé à se rendre à Paris pour travailler prés
d’Hadamard” in [28, p. 133].

5)For historiographical issues concerning the origins of Kolmogorov’s new paradigm in dynamical systems, see [33].
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KOLMOGOROV’S NEW “METRICAL APPROACH” TO HAMILTONIAN DYNAMICS 3

the first dated November 13, 1953, and the second one August 31, 1954, nine days before the
Amsterdam conference.

The two papers, with bare bibliographical references (respectively two and three items), consist
of the statements and some hints at the proofs of three theorems, without conceptual framing.

Thus, we are faced with two distinct literary genres: on one side, the lecture/speech text [7], more
literary and refined in its expressiveness, and, on the other, two concise typical twentieth-century
research papers [4, 5].

From a historiographical perspective, Kolmogorov’s theorems can be better understood in their
cultural significance within the framework established by the research program presented at the
Amsterdam lecture text. Conversely, the classical mechanics program is validated by the initial
mathematical steps in the research papers, especially in the fundamental 1954 paper [5], which we
now proceed to analyze in more detail.

The paper [5] contains a short introduction, including notation, and two theorems: Theorem 1 —
followed by a precise outline of proof — which deals with the persistence, under perturbation, of a
single invariant Diophantine Lagrangian torus, and Theorem 2 — stated at the end of the paper

without any mathematical discussion, apart from a brief concluding remark6) — where Kolmogorov
claims that, under a suitable nondegeneracy condition, the Lebesgue measure of persistent invariant
tori in nearly-integrable analytic Hamiltonian systems tends to full measure as the size of the
perturbation goes to zero.

Both theorems are considered in the Amsterdam lecture text [7], where Kolmogorov discusses
explicitly the deep meaning he attaches to their significance:

Theorems 1 and 2 in my paper7) [22] assert that in the above-described situation the only

change in the entire pattern for small8) θ is that some of the tori corresponding to systems

of frequencies for which the expression9) (n, λ) decreases too rapidly with increasing

|n| =
√∑

n2
α

may disappear while the majority of the tori10) T s
p , retaining the character of motions

occurring on them, are somewhat displaced in11) Ω2s, and still fill for small θ the region12)

G to within a set of small measure. Thus, under small variations of H the dynamical system
remains nontransitive and the region G continues to be decomposable, to within a residual set
of small measure, into ergodic sets with discrete spectra (of the indicated specific nature) [7,
1991, p. 366].

The centrality of Theorem 2 for Kolmogorov appears particularly evident in the introduction of
the conference text:

In conservative systems, asymptotically stable motions are impossible.
Therefore, for instance, the determination of individual periodic motions, however interesting
it may be from the viewpoint of mathematics, has only a rather restricted real physical
significance in the case of conservative systems. For conservative systems, the metrical

6)In the following citation Mθ denotes the set of all quasi-periodic trajectories, θ being the size of the perturbation,
[3] refers to [4] in our bibliography:

It seems that, in a sense, the “general case” is the case when the set Mθ has an everywhere dense complement
for all positive θ. Complications of this kind appearing in the theory of analytic dynamical systems were
indicated in my paper [3] in connection with a more specific situation (in [5, 1991, p. 354]).

7)He refers to [5].
8)In Kolmogorov’s nomenclature, θ is the size of the perturbation.
9)(n, λ) denotes inner product and λ is the frequency.

10)T s
p are invariant unperturbed s-dimensional tori, s being the number of degrees of freedom.

11)Ω2s is the phase space.
12)G is a bounded region in Ω2s, where H is defined.
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approach13) is of basic importance making it possible to study properties of a major part
of motions [7, 1991, p. 356].

These theorems gave rise to contrasting interpretations and doubts.

Jürgen Moser (1928–1999) questioned the validity of the proof of Theorem 1 already in his 1959
review published in Mathematical Reviews [9]:

In the center of this talk is the author’s new statement on the conservation of conditionally
periodic solutions [...] (The proof of this theorem was published in Dokl. Akad. Nauk SSSR
98 (1954), 527–530 [MR0068687], but the convergence discussion does not seem convincing
to the reviewer.)

Yakov Grigor’evich Sinai (b. 1935), within the volume Kolmogorov in Perspective [21], speaks
about the proof of Theorem 1 in more detail:

In the fall of 1957 I became a graduate student under Andrei Nikolaevich. At the same
time he began a famous course of lectures on the theory of dynamical systems, which later
was continued as a seminar. Much has already been written about this seminar. Among
those present, besides us, were V.M.Alekseev, V. I. Arnol’d, L.D.Meshalkin, M. S. Pinsker,
M.M.Postnikov, K.A. Sitnikov, and many others. The first part of the course definitely had

a probabilistic bias [...]. Later in the course he presented the theorem14) that was to become
the basis for the famous KAM theory, together with a complete proof. In early 1958 Andrei
Nikolaevich departed to spend half a year in France and left Meshalkin and me a program
for preparation for the examination in classical mechanics, which included this proof [21,
pp. 117–118].

Vladimir Igorevich Arnol’d (1937–2010), retrospectively, on the occasion of the 1997 Arnoldfest
(Toronto, CA), states:

Moser complained that a proof of the theorem in the case of analytic Hamiltonians was never
published by Kolmogorov. I think that Kolmogorov was reluctant to write down the proof
because he had other things to do in his remaining years of active work — which is a challenge
when you are sixty. According to Moser, the first proof was published by Arnol’d. My opinion,
however, is that Kolmogorov’s theorem was proved by Kolmogorov [19, 2004, pp. 622–623].

On the other hand, Arnol’d might have considered the lack of discussion of the proof of
Theorem 2 the main motivation for his celebrated paper entitled “Proof of a theorem of
A.N.Kolmogorov on the persistence of conditionally periodic motions under a small perturbation

of the Hamiltonian” [12]. In support of this comment, Sinai says15):

There were some gaps in the estimates of the measure of invariant sets. That was the main
point where Arnol’d complained about the proof by Kolmogorov. In Kolmogorov’s paper,
complete estimates of such a measure were not given.

In [12] Arnol’d provides a detailed proof of Kolmogorov’s Theorem 2, using a quadratic

convergent scheme different from that of Kolmogorov16) .

Paradoxically, Moser seemed to believe in17) 1957–59 that Theorem 2 was a straightforward
consequence of Theorem 1. Indeed, in the above-mentioned 1959 Mathematical Review [9], even
though no direct reference to Theorem 2 is ever made, Moser claims:

This very interesting theorem18) would imply that for an analytic canonical system which is
close to an integrable one, all solutions but a set of small measure lie on invariant tori.

13)The title of our present paper derives from these words.
14)Arguably, Sinai refers here to Theorem 1 in [5]; see, also, the interview in the Appendix.
15)See the interview in Appendix.
16)In Section 2 we shall provide, instead, a proof of Theorem 2 based on Kolmogorov’s original quadratic scheme.
17)Notice that the first contribution on small divisors by Moser is the famous 1962 paper [11] on area-preserving

maps; (in 2001 an addendum [22] to this paper appeared). Note, however, that Moser’s first article on the
quadratic convergence method is [10] (1961).

18)He refers to Theorem 1 in [5].
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Regarding the relevance in a longue durée context of Kolmogorov’s new impulse in dynamical
systems — also in connection with George D. Birkhoff (1884–1944)’s work — Stephen Smale
(b. 1930) wrote in his essay The mathematics of time [15]:

It may be stated in conclusion that the outstanding unsolved problem in the ergodic theory
is the question of the truth or falsity of metrical transitivity for general Hamiltonian systems.
In other words, the Quasi-Ergodic Hypothesis has been replaced by its modern version: the
Hypothesis of Metrical Transitivity.
This hypothesis played an important role in Birkhoff’s later work. He not only believed it
but part of his work is written assuming that it is true.
[...] These beliefs held sway in mathematical physics until Kolmogoroff’s famous Amsterdam
Congress paper in 1954 and subsequent work of Arnol’d and Moser in 1961–1962. The work
of Kolmogoroff, Arnol’d, and Moser, KAM, showed that near “elliptic” closed orbits of a
general Hamiltonian system on an energy surface, ergodicity failed. In that case there exist
families of invariant tori of positive measure.
Furthermore, these elliptic orbits occur frequently in Hamiltonian systems. Thus, the
hypothesis of metrical transitivity is false in a definite way [15, 1980, pp. 138–139].

The bulk of techniques and results stemmed out, in subsequent years, from the seminal works of
Kolmogorov, Moser and Arno’ld in the decade 1953–1963, is usually referred to as “KAM theory”.
Incidentally, regarding the usage of the KAM acronym, Arnol’d is quite resolute:

This theory is called KAM, or Kolmogorov –Arnold –Moser, and people say that there is
even a KAM theorem. I was never able to understand what theorem it is [19, 1999, p. 16].

Doubts concerning the completeness of Kolmogorov’s theorems and issues related to a “KAM
theorem” or “KAM theory” might also have been derived from the late availability of translations

of the original 1954 paper [5]. From a historiographical standpoint19), it is therefore crucial to
analyze the dissemination and transmissions of Kolmogorov’s contributions after 1957. Volume I
of Proceedings of the 1954 ICM in Amsterdam [6] was published only in 1957: here, the original
Russian text of Kolmogorov’s lecture is found, titled in Russian and French; see, also, [7]. In
March 1958, Kolmogorov delivered a presentation, on the same topic, at the Seminar on Analytical
Mechanics and Celestial Mechanics hosted by Maurice Janet (1888–1983) at the Faculty of Sciences
of the Sorbonne in Paris; for a historical account of this trip by Kolmogorov, see [32]. The French
translation of the 1957 Russian Kolmogorov’s text [7] appears in the proceedings of the seminar

of the young mathematician Jean –Paul Benzécri (1932–2019) [8]. A note stated20): “L’auteur
prévoit la publication prochaine de dètails complèmentaires, dans un autre recueil”, however, this
publication never materialized.

In France, there was a certain interest in classical mechanics, yet it is noteworthy that all other
seminars published in that issue of the Janet seminar, except for Kolmogorov’s one, dealt with
general relativity21). The original Russian version of Kolmogorov’s lecture was reprinted in the first
volume of the selected works edited by Vladimir Mikhailovich Tikhomirov (b. 1934) and published
in 1985 by the publisher Nauka, two years before Kolmogorov’s death. Until 1967, there were
only two circulating versions of the conference text: in Russian (1957) and in French (1958). In
1967, an English translation appeared as Appendix D in R.H. Abraham’s (b. 1936) Foundations of

Mechanics22) published by Benjamin (New York); compare [7] (1967). A second English translation

19)Compare also [25].
20)p. 1 of [8], in a footnote.
21)In this regard S.Dumas says: “But KAM theory [· · · ] also had the misfortune of playing out over roughly the

same interval during which the revolutions of modern physics took place” in [30, Preface, p. viii].
22)The book was published with the assistance of Jerrold E. Marsden (1942–2010); (a second edition was published

in 1978). In the introduction of the 1967 edition Abraham writes:
In the spring of 1966, I gave a series of lectures in the Princeton University Department of Physics, aimed
at recent mathematical results in mechanics, especially the work of Kolmogorov, Arnold, and Moser and its
application to Laplace’s question of the stability of the solar system. Mr. Marsden’s notes of the lectures, with
some revision and expansion by both of us, became this book. Although the lectures were attended equally
by mathematicians and physicists, our goal was to make the subject available to the nonspecialists (p. xvii).
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can be found in the National Aeronautics and Space Administration (NASA), [7] (1972). As for the
1954 paper [5], for decades only the Russian original version was available. An English translation
(Los Alamos Scientific Laboratory translation LA-TR-71-67 by Helen Dahlby) was published in
1979 in the proceedings of the Volta Memorial conference at (Como, 1977) Stochastic behavior
in classical and quantum Hamiltonian systems. Finally, the Amsterdam conference text and both
the 1953 and 1954 papers were included in the 1991 American edition by Kluwer in vol. 1 of

Kolmogorov’s Selected Works23).

In addition to the difficulties concerning the availability of translations of the three papers in the
1960s, the circulation of Kolmogorov’s research program beyond the Iron Curtain was conditioned
also by the process of restoring international contacts face-to-face among mathematicians, contacts,
which were formally resumed only after a period of stagnation. Moreover, the shift from French and
German to Russian and English as the dominant languages within the international mathematical

community after World War II created a new communication challenge24).

One more issue, in this context, is related to the relevance of classical mechanics in the
20th century. Classical mechanics seemed to be neglected, both by theoretical physicists and
mathematicians, in many countries west of the Iron Curtain (except France) in the mid-century as

compared to the prominent position it had held in the 19th and early 20th century25). For example,
Clifford Truesdell (1919–2000) in his History of Classical Mechanics, writes:

The word “classical” has two senses in scientific writing; (1) acknowledged as being of the
first rank or authority, and (2) known, elementary, and exhausted (“trivial” in the root
meaning of that word). In the twentieth century mechanics based upon the principles and
concepts used up to 1900 acquired the adjective “classical” in its second and pejorative sense,
largely because of the rise of quantum mechanics and relativity. [...] Engineers still had to be
taught classical mechanics, because in terms of it they could understand the machines with
which they worked and could devise new machines for new purposes. Research in mechanics
came to be slanted toward the needs of engineers and to be carried out largely by university
teachers who regarded mathematics as a scullery-maid, not a goddess or even a mistress [14,
pp. 127–128].

Let us conclude this section with a few remarks.

From the above analysis, discussions on Kolmogorov’s theorems in [5] appear to be linked to
two profound conceptual circumstances:

1. The level of detail required for a proof to be truly convincing and the limits of the general
conception of absolute deductive proof.

2. The connection between an overall research program and the building of a mathematical
theory. Indeed, the statements of both theorems implicitly contain the core of Kolmogorov’s research
program, and the revolutionary features in the 1954 paper [5] could have been better understood by
considering Kolmogorov’s detailed presentation accompanied by the bibliographic references in [7].

Finally, the complete absence of mathematical details concerning Theorem 2 in [5], together with
Moser’s and Arnol’d’s extremely different reactions to this fact, still needs clarification, particularly
in view of the importance given by Kolmogorov to the metrical approach.

In Section 3 below we shall show how Theorem 2 can be derived from Theorem 1, adding a few

standard technical details26).

23)See [4, 5] and [7]. Our quotations in Section 1 of the Amsterdam lecture and of the 1954 paper are taken from this
translation. The Russian mathematical physicist Vladimir Markovich Volosov was in charge of the translation of
the whole volume.

24)Starting in 1945, for instance, the British Mathematical Society had initiated the systematic English translation
of the Russian journal Uspekhi Matematicheskikh Nauk, titled Russian Mathematical Surveys.

25)A revival of classical mechanics and dynamical systems took place in the 1960–80s, also thanks to the contribution
by Smale; compare [17, 23].

26)After all, the already cited words of Arnol’d (“Kolmogorov’s theorem was proved by Kolmogorov”) might be
particularly appropriate.
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3. THE THEOREMS IN KOLMOGOROV’S 1954 PAPER

Here, we analyze in detail the two theorems appearing in Kolmogorov’s paper [5]: in Section 3.1
we recall the discussion made in [26] of Theorem 1, adding a few remarks; in Section 3.2 we
propose a proof of Theorem 2 based on the scheme of proof of Theorem 1 given by Kolmogorov
and implemented in [26].

3.1. Theorem 1

The following is an extended statement of Theorem 1 following [26]. Such a theorem deals with
small analytic perturbations of a real analytic Hamiltonian in “Kolmogorov normal form”, namely,
a Hamiltonian K of the form27)

K = K(y, x) = E + ω · y +Q(y, x), Q = O(|y|2), (3.1)

where E ∈ R,

ω ∈ R
d
γ,τ :=

{
ω ∈ R

d : |ω · n| � γ

|n|τ , ∀ n ∈ Z
d\{0}

}
, (3.2)

is a Diophantine frequency, for some τ � n− 1, γ > 0, and Q is nondegenerate in the sense that

det〈∂2
yQ(0, ·)〉 :=

ˆ
Td

∂2
yQ(0, x)

dx

(2π)d
�= 0. (3.3)

The phase space is28) M = Bξ(0)× T
d, endowed with the standard symplectic form dy ∧ dx =∑

j dyj ∧ dxj , and the Hamiltonian flow generated by the Hamiltonian K, t → Φt
K(y, x) is the

solution of the system of equations
⎧
⎨
⎩

ẏ(t) = −∂xK(y(t), x(t); ε),

ẋ(t) = ∂yK(y(t), x(t); ε),

⎧
⎨
⎩

y(0) = y,

x(0) = x.

The special feature of a Hamiltonian K in Kolmogorov’s normal form is that the torus T0 :=
{0} × T

d ⊆ M is a Lagrangian transitive invariant torus for K, since Φt
K(0, x) = (0, x+ ωt). The

Diophantine vector ω is called the frequency vector of the invariant torus T0.
Given ξ, ε0 > 0, define the complex domain

Wξ,ε0 := Dd
ξ (0) × T

d
ξ ×D1

ε0(0) ⊆ C
2d+1, (3.4)

where Dm
r (z) denotes the complex d-ball of radius r centered at z ∈ C

m, and T
d
ξ is the complex

neighborhood of the torus T
d given by {x ∈ C

d : | Imxj | < ξ,∀j}/(2πRd). For a real analytic
function f : Wξ,ε0 → C we denote its sup-norm on Wξ,ε0 by ‖f‖ξ,ε0 , and its sup-norm (at fixed

ε) by ‖f‖ξ. Then, Theorem 1 in [5] can be formulated as follows29).

Theorem 1. (i) Let ω ∈ R
d
γ,τ and K be a Hamiltonian in Kolmogorov’s normal form as in

(3.1)–(3.3) with K real analytic and bounded on Wξ,ε0 for some ξ, ε0 > 0; let P = P (y, x; ε) be
a real analytic function on Wξ,ε0. Then, for any 0 < ξ∗ < ξ, there exists 0 < ε∗ � ε0 and, for any

0 � ε < ε∗, a near-identity symplectic transformation φ∗ : Dd
ξ∗
(0)×T

d
ξ∗

→ Dd
ξ (0)×T

d
ξ , real analytic

on Wξ∗,ε∗, such that the Hamiltonian H ◦ φ∗, where H := (K + εP ), is in Kolmogorov normal form:

H ◦ φ∗ = K∗ = E∗ + ω · y +Q∗, Q∗ = O(|y|2). (3.5)

27)ω · y =
∑

j ωjyj is the standard inner product and Q = O(|y|2) means that Q vanishes together with its y-

derivatives at y = 0; | · | denotes the standard Euclidean norm, and ∂2
yQ denotes the Hessian matrix ∂2

yiyj
Q.

28)Bξ(y) denotes the Euclidean d-ball with radius ξ, centred at y0 and T
d := R

d/(2πZd) is the standard flat
d-dimensional torus.

29)Part (i) is essentially Kolmogorov’s original statement, part (ii) contains the associated estimates.
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(ii) In the above statement one can take ε∗ = min{ε0, c−1
∗ } where

c∗ = cγ−4(ξ − ξ∗)
−νCν ‖P‖ξ,ε0 , and

⎧
⎨
⎩

C := max
{
|E|, |ω|, ‖Q‖ξ,ε0 , ‖T‖ , 1

}
,

T := ‖〈∂2
yQ(0, ·)〉−1‖,

(3.6)

and c, ν > 1 are suitable constants depending only on d and τ . Furthermore, for any complex ε with
|ε| < ε∗, one has

‖φ∗ − id‖ξ∗ , |E − E∗| , ‖Q∗ −Q‖ξ∗ , ‖〈∂2
yQ(0, ·)〉−1 − 〈∂2

yQ∗(0, ·)〉−1‖ � c∗ |ε|.

Let us make a few remarks.

(1.1) (On the dependence of the smallness condition upon the Diophantine constant γ)
A detailed proof, apart from the explicit dependence upon the Diophantine constant γ (which plays
an important role in the analysis of the measure of persistent tori), based on Kolmogorov’s original
outline, has been given in [26]; compare, in particular, Lemma 5, Eq. (27) (the factor 2 in the
definition of C in Eq. (26) has, here, been absorbed in the constant c), and Eq. (31). The way the
constant c∗ depends upon γ needs a short discussion.

The dependence upon γ comes in through the constant c̄ in Eq. (18) of [26] (beware that the
Diophantine constant γ is denoted by κ in [26]). Now, in the first line of Eq. (18) one can actually
take c̄ = γ−2c̄0 with c̄0 = c̄0(d, τ) depending only on d and τ : indeed, the factor γ−1 appears every

time the small-divisor operatorD−1
ω is applied30), and the formulae defining the functions on the left-

hand side of (18) involve D−1
ω at most twice; compare the formulae at the beginning of p. 135 of [26].

Then, it is easy to check that the constant c̄ in the estimate on the norm of the “new” perturbing
function P ′ in the second line of Eq. (18) can be taken to be31) c̄ = γ−4c̄1, with c̄1 = c̄1(d, τ).
Therefore also, c in Eq. (22) and c∗ in Eq. (27) in [26] are proportional to a constant c̄∗(d, τ)γ−4,
which leads to (3.6) above.

Incidentally, we observe that the argument sketched here shows that the relation cε∗γ−4‖P‖ξ < 1,
with a constant c independent of γ, cannot be improved following Kolmogorov’s scheme: indeed, the
norm of ‖P ′‖ cannot be estimated better than by γ−4‖P‖2 times a constant independent of γ, and
iterating these relations (i. e., replacing ‖P‖ with ‖Pj−1‖, ‖P ′‖ with ‖Pj‖; P0 := P ), one finds that

|ε2j |‖Pj‖ ∼ γ4(|ε|γ−4‖P‖)2j , so that, in order for the Newton scheme to converge, it is necessary

that c ε∗γ−4‖P‖ < 1.
On the other hand, following Arnol’d’s approach [12] — which is a Newton scheme based on

approximate solutions of Hamilton – Jacobi equations, where the new perturbing function is of order
ε2γ−2‖P‖2 — allows for a final condition of the form c ε∗γ−2 < 1, which turns out to be optimal

(as far as primary tori are concerned32)); compare, e. g., [31].

(1.2) (On the structure of Kolmogorov’s transformation)
Kolmogorov’s transformation φ∗ has a particularly simple form. Indeed, Kolmogorov describes

in detail the transformation φ1, which is the first transformation of the iteration, conjugating the
starting Hamiltonian H = K + εP to a new Hamiltonian H1 := K1 + ε2P1 := H ◦ φ1, with K1 in
Kolmogorov’s normal form with the same33) ω.

30)D−1
ω is the inverse of the directional derivative Dω =

∑
j ωj∂xj acting on zero-average, real analytic functions on

T
d.

31)The factor (γ−2)2 comes from the term P (1); compare Eq. (11).
32)Primary tori are invariant tori which are a deformation of integrable tori and which, in particular, are graphs

over Td; for a recent discussion of a KAM theory for primary and secondary tori, see [35].
33)After the description of φ1 Kolmogorov adds:

The construction of further approximations is not associated with new difficulties. Only the use of condition

(3) for proving the convergence of the recursions, K
(k)
θ , to the analytical limit for the recursion Kθ is somewhat

more subtle [5, 1979, p. 55].

In our notation, K
(k)
θ and Kθ correspond to, respectively, φj and φ∗; Eq. (3) in the citation corresponds to the

Diophantine condition (3.2) above.
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Now, the transformation φ1 belongs to the (formal) group of near-identity symplectic transfor-
mations G of the form

φ : (y′, x′) 
→

⎧
⎨
⎩

y = y′ + ε
(
u(x′) + U(x′)y′

)

x = x′ + εα(x′)

with U a (d× d) matrix (depending periodically on x′): such transformations are defined, for

small ε, in a neighborhood of the origin y′ = 0 times T
d; compare Remark 2, and in particular,

Eq. (9), in [26]. In the recursion, φj will have the same form but with ε replaced by ε2
j−1

, and34)

φ∗ = limj φ1 ◦ · · · φj will be given by

(I, θ) 
→ φ∗(I, θ) = (I, θ) + ε
(
u∗(θ) + U∗(θ)I, θ + εα∗(θ)

)
∈ G.

Thus, defining

ζ∗(θ) := φ∗(0, θ) =
(
εu∗(θ), θ + εα∗(θ)

)
, (3.7)

the final invariant torus for the original Hamiltonian H is given by

T∗ :=
{
(y, x) = ζ∗(θ) : θ ∈ T

d
}
, and Φt

H

(
ζ∗(θ)

)
= ζ∗(θ + ωt).

Observe that, since the map θ 
→ θ + εα∗(θ) is a diffeomorphism of Td with inverse of the form

x 
→ x+ εa∗(x), the invariant torus T∗ is a graph over Td given by

T∗ =
{
(y, x) =

(
εȳ∗(x), x

)
: x ∈ T

d
}
, ȳ∗(x) := u∗

(
x+ εa∗(x)

)
.

(1.3) (On ε-analyticity and the convergence of Lindstedt series)

Let us make the obvious remark — which, however, seems to have been completely overlooked! —
that from Theorem 1, it follows immediately that the invariant torus T∗ depends analytically on ε:
indeed, φ∗ is real analytic on Wξ∗,ε∗ , so that the above function ζ∗ is analytic in {ε ∈ C : |ε| < ε∗}.

This observation implies at once that the Lindstedt series proposed for the first time in [1] —
i. e., the formal ε-expansion of quasi-periodic trajectories for nearly-integrable Hamiltonian systems
(which in the present setting is given by ζ∗) — are actually convergent ε-power series, a fact that was
formally settled, after eighty years from Lindstedt’s memoirs and thirteen years after Kolmogorov’s
paper, by J. Moser in 1967 [13] using his version of KAM theory (which, also, is rather different
from Kolmogorov’s approach).

Incidentally, it is worthwhile to mention that H. Poincaré, apparently, thought that Lindstedt
series were divergent, as it appears from his comments in [2] (vol. II, § IX, n. 123):

M. Lindstedt ne démontrait pas la convergence des développements qu’il avait ainsi formès,
et, en effet, ils sont divergents

and later, [2] (vol. II, § XIII entitled “Divergence des series de M. Lindstedt”, n. 149):

Il semble donc permis de conclure que le séries (2) ne convergent pas. Toutfois le raisonnement
qui précède ne suffit pas pour établir ce point avec une rigueur complète[...] Tout ce qu’il m’est
permis de dire, c’est qu’il est fort invraisemblable.

3.2. Theorem 2

In Theorem 2, Kolmogorov considers real analytic nearly-integrable Hamiltonian systems,
namely, one-parameter families of Hamiltonian systems governed by a real analytic Hamiltonian

(y, x, ε) ∈ W := V × T
d × (−ε0, ε0) 
→ H(y, x; ε) := H0(y) + εP(y, x; ε), (3.8)

34)Of course, all the symbols indexed by ∗ depend on ε (and on the fixed ω).
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10 CHIERCHIA, FASCITIELLO

where V ⊆ R
d is a bounded regular open connected set, and ε0 > 0; “regular”, here, means that35)

lim
δ→0

meas(V \V (δ)) = 0, where V (δ) := {y ∈ V : Bδ(y) ⊆ V }.

The phase space is the set M := V × T
d, endowed with the standard symplectic form dy ∧ dx =∑

j dyj ∧ dxj , and ε is a small parameter. Denote by φt
H(y, x) the Hamiltonian flow starting at

(y, x) ∈ M.

In considering such systems, Kolmogorov says36):

There arises the natural hypothesis that at small θ the “displaced tori” obtained in accordance
with Theorem 1 fill a larger part of region G. This is also confirmed by Theorem 2, pointed
out later [5, 1979, p. 56].

Then, Kolmogorov defines the set Qε of Hamiltonian trajectories in M, which are quasi-periodic
with frequencies ω ∈ R

d, i. e., trajectories of the form φt
H(y, x) =

(
Y (ωt),X(ωt)

)
for suitable analytic

functions θ ∈ T
d 
→

(
Y (θ),X(θ)

)
∈ M, and, at the end of [5], states the following37)

Theorem 2. Let H be as in (3.8) and assume det ∂2
yH0 �= 0 on V . Then, lim

ε→0
meas(M\Qε) = 0.

In the rest of this section, we will show how one can deduce Theorem 2 from Theorem 1 and its
proof.

Proof (of Theorem 2).
(2.1) Local reduction

The claim of Theorem 2 is actually of local nature. Indeed, since V is a regular set, it is enough
to show that, for each δ > 0, limε→0meas((V (δ) ×T

d)\Qε) = 0. Furthermore, since H is real analytic

on V ×T
d and V (δ) is compact, H is real analytic and bounded on ∪y∈V (δ)Dd

ξ0
(y)×T

d
ξ0

for a suitable

0 < ξ0 < δ (for all |ε| < ε0). Also, since det H′′0 �= 0 on V , by the implicit function theorem, there
exists 0 < r < ξ0/2 such that the unperturbed frequency map

y ∈ V 
→ ω0(y) := ∂yH0(y),

is an analytic diffeomorphism from B onto Ω := ω0(B), for any closed ball B = Br(y) with y ∈ V (δ).

Therefore, since V (δ) can be covered by a finite number of such balls B, it is enough to prove that
limε→0meas((B × T

d)\Qε) = 0, for any set B = Br(y0) with y0 ∈ V (δ).

(2.2) Application of Theorem 1
Before the statement of Theorem 2, Kolmogorov observes:

The condition of absence of “small divisors” (3) [i. e., the Diophantine inequalities in (3.2)]
should be presumed to be fulfilled “in general” since for any η > s− 1 there exists c(λ) such

that38)

|(n, λ)| � c(λ)/|n|η

at all points of the s-dimensional space λ = (λ1, . . . , λs), except at a set of Lebesgue measure
zero, for any integers n1, n2,. . . , ns [5, 1991, pp. 352–353].

Indeed, it is an elementary observation that, if τ > d− 1 and we define Ωγ := {ω ∈ Ω : ω ∈ R
d
γ,τ},

then

meas(Ω\Ωγ) � cγ, (3.9)

for a suitable constant c depending on d, τ and on the diameter of39) Ω.

35)“meas” denotes Lebesgue measure. This regularity assumption on the boundary of the set V (which is satisfied,
e. g., by sets with piece-wise regular boundary) is not present in Kolmogorov’s paper. Kolmogorov speaks simply
of “bounded regions”.

36)In this citation, θ and G correspond, in our notation, to, respectively, ε and M.
37)As already mentioned, this statement is not accompanied by any remark, nor references.
38)η, s, c, λ correspond in our notation, respectively, to τ , d, γ, ω.
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To proceed in the discussion, fix δ > 0 and pick a ball B = Br(y0) as in (2.1) above; fix (once
and for all) τ > d− 1 and let γ > 0 (eventually, γ will be chosen as a suitable power of ε). Denote

Bγ :=
{
y ∈ B : |ω0(y) · n| � γ

|n|τ , ∀ n ∈ Z
d\{0}

}
, Ωγ := ω0(Bγ) = {ω ∈ ω0(B) : ω ∈ R

d
γ,τ}.

Observe that Bγ and Ωγ are nowhere dense sets and that ω0 is a lipeomorphism (bi-Lipschitz
homeomorphism) between them, being an analytic diffeomorphism of B onto Ω = ω0(B). Given
y ∈ Bγ , consider the trivial symplectic map

φ0 : (y, x) ∈ Bξ(0)× T
d 
→ φ0(y, x; y) := (y+ y, x),

where ξ := ξ0/2. Then, define

H(y, x) := H0 ◦ φ0 + εP ◦ φ0 =: K + εP, P = P (y, x; ε) := P(y+ y, x; ε),

and observe that H is real analytic and bounded on40) Wξ,ε0. By Taylor’s formula, one has

K := E + ω · y +Q, with

⎧
⎪⎨
⎪⎩

E := H0(y), ω := ω0(y)

Q =

(ˆ 1

0
(1− t)∂2

yH0(y+ ty)dt

)
y · y.

For any y ∈ Bγ , one has that ω ∈ Ωγ so that we can apply Theorem 1 to H and get a near-identity
symplectic transformation φ∗ so that (3.5) holds for any ε < ε∗. Notice that everything here (H, φ∗,
etc.) depend on y ∈ Bγ . Thus,

T∗ = T∗(y) := ψ({0} × T
d), where ψ := φ0 ◦ φ∗ ,

is a real analytic Lagrangian torus invariant for the flow of H and spanned by Diophantine quasi-
periodic trajectories. In fact, defining “Kolmogorov’s transformation”

ψ
K
: (y, θ) ∈ Bγ × T 
→ ψ

K
(y, θ) := ψ(0, θ; y)

(3.7)
=

(
y+ εu∗(θ; y), θ + εα∗(θ; y)

)
, (3.10)

we find

t 
→ Φt
HψK

(y, θ) = ψ
K
(y, θ + ωt). (3.11)

(2.3) Kolmogorov’s set

In view of (3.9), in order to get a full measure set as ε goes to zero, it is natural to choose γ as
a suitable power of ε so that the smallness condition of Theorem 1 holds uniformly in phase space.
For example, if we take γ = ε1/5, we see that ε∗ in point (ii) of Theorem 1, for ε small enough,

is given by ε∗ ∼ ε4/5, so that the condition ε < ε∗ is fulfilled for any ε > 0 small enough and any
y ∈ Bγ = Bε1/5 . With these choices, the set

Kε := ψ
K
(Bγ × T

d), γ = ε1/5, (3.12)

defines a set of invariant tori for H, which, by (3.11), is made up of quasi-periodic trajectories, so

that Kε ⊆ Qε. Also, from (3.9), since Bγ = ω−1
0 (Ωγ) and ω0 is a diffeomorphism, it follows that

meas
(
(B× T

d)\(Bγ × T
d)
)

� c′ ε1/5. (3.13)

All this, in our opinion, must have been rather obvious to Kolmogorov. Furthermore, the
Kolmogorov’s map ψ

K
in (3.10) is a near-identity map (analytic in ε) and it is very tempting, at this

point, to conclude that also meas
(
(B× T

d)\Kε

)
→ 0 as ε → 0 concluding the proof of Theorem 2.

39)If δΩ denotes the diameter of Ω, one has Ω\Ωγ ⊆
{
ω ∈ Ω : ∃n �= 0 s.t.

∣
∣ω · n

|n|
∣
∣ < γ

|n|τ+1

}
, which implies

meas(Ω\Ωγ) �
∑

n�=0

γ

|n|τ+1
δd−1
Ω =: cγ.

40)Recall the definition in (3.4), and that, by (2.1), H is real analytic and bounded on ∪y∈V (δ)Dd
ξ0
(y)× T

d
ξ0

for all

|ε| < ε0.
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12 CHIERCHIA, FASCITIELLO

Clearly, to complete the argument, one needs to have more information on the regularity of ψ
K

also in (y, θ) in order to control how Lebesgue measure changes under its action. For example,
the theorem would follow easily if one proved that ψ

K
is a lipeomorphism with Lipschitz constant

arbitrarily close to 1, and this, in turn, (because of (3.10)) follows if one proves that the functions

u∗ and α∗ are Lipschitz functions with uniformly bounded Lipschitz constants on T
d × Bγ .

(2.4) Lipschitz properties

As mentioned above, it is enough to show that the functions u∗ and α∗ are Lipschitz functions
with uniformly bounded Lipschitz constants on T

d × Bγ . The θ dependence is analytic and we may
focus on the dependence on y in Bγ (joint lipschitzianity will follow easily).
The way the variable y enters in the construction of φ∗ is only through ω = ω0(y), and, since ω0 is
an analytic function, it is enough to check that φ∗ (and hence u∗ and α∗) is a Lipschitz function of
ω with uniformly bounded Lipschitz constants on Ωγ .

The starting simple observation is that, if u =
∑

n �=0 une
in·x is an analytic map on T

d with zero

average, then

(D−1
ω u)(x) :=

∑
n �=0

un
iω · ne

in·x (3.14)

depends in a Lipschitz way on ω ∈ Ωγ , as we will shortly see. We collect in the following two
elementary lemmata what is needed in evaluating Lipschitz constants in Kolmogorov’s scheme.
Let f be real analytic on Wξ,ε0 and depending also on ω ∈ Ω ⊆ R

d
γ,ξ and assume it is uniformly

Lipschitz in ω, i. e.:

Lipξ,ε0(f) := sup
|f(y, x, ω)− f(y, x, ω′)|

|ω − ω′| < ∞,

where the supremum is taken over all ω �= ω′ ∈ Ω and over all (y, x, ε) ∈ Wξ,ε0.

Lemma 1. Let f be as above, let λ = Lipξ,ε0(f), and let 0 < δ < ξ. Then, the following holds.

(i) Let41) α, β ∈ N
d
0 be multiindices. Then,

Lipξ−δ,ε0(∂
α
y ∂

β
xf) � c δ−(|α|+|β|)λ,

for a suitable constant c depending only on d and |α| + |β|.
(ii) ∀n ∈ Z

d, the Fourier coefficients fn(y, ω) of x 
→ f(y, x, ω) satisfy42)

|fn(y, ω)− fn(y, ω
′)| � λe−|n|ξ |ω − ω′|, ∀ ω, ω′ ∈ Ω. (3.15)

(iii) Assume f0(y, ω) = 〈f(y, ·, ω)〉 = 0, for all (y, x) ∈ Dd
ξ × Ω. Then, F (y, x, ω) := D−1

ω f(y, x, ω)

is Lipschitz in ω and

|F (y, x, ω)− F (y, x, ω′)| � λ′|ω − ω′|, ∀ y ∈ Dd
ξ , x ∈ T

d
ξ−δ, ω, ω′ ∈ Ω,

where, for suitable constants43) c, k depending only on d and τ ,

λ′ := c δ−kγ−2(m+ λγ), m := sup
Wξ,ε0

×Ω
|f |. (3.16)

Proof.

(i) follows immediately by standard Cauchy estimates;

41)
N0 = {0, 1, 2, 3, . . .}

42)As usual, in Fourier analysis, the norm in the exponents are 1-norms.
43)We take k � k1 where kp is as in the “small-divisor” estimate Eq. (6) of [26].
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(ii) follows immediately by the standard (n-dependent) shift-of-contour argument based on the
Cauchy theorem of complex analysis, observing that

fn(y, ω)− fn(y, ω
′) =

ˆ
Td

(
f(y, x, ω)− f(y, x, ω′)

)
e−in·x dx

(2π)d
,

and that |f(y, x, ω)− f(y, x, ω′)| � λ|ω − ω′| on Wξ,ε0 × Ω.

(iii) By (3.14), (3.15), one has, ∀ y ∈ Dd
ξ , x ∈ T

d
ξ−δ, and ω, ω′ ∈ Ω:

|F (y, x, ω)− F (y, x, ω′)| =
∣∣∣
∑
n �=0

(
fn(y, ω)

(ω′ − ω) · n
(ω · n)(ω′ · n) +

fn(y, ω)− fn(y, ω
′)

ω′ · n

)
ein·x

∣∣∣

� |ω − ω′|
∑
n �=0

(
me−|n|ξ |n|2τ+1

γ2
+ λ

|n|τ
γ

e−|n|ξ
)
e|n|(ξ−δ),

which, since ω ∈ R
d
γ,τ , yields the claim by standard estimates44). �

Lemma 2. (i) Let Ω ⊆ R
d and let A = A(ω) be an invertible matrix such that ‖A(ω)−A(ω′)‖ �

λ|ω − ω′| and ‖A−1(ω)‖ � m, ∀ ω, ω′ ∈ Ω. Then,

‖A−1(ω)−A−1(ω′)‖ � λ′|ω − ω′|, ∀ ω, ω′ ∈ Ω,

with λ′ = λm2.

(ii) For any ω ∈ Ω ⊆ R
d and any |ε| < ε∗, let x ∈ T

d 
→ ϕ(x) = ϕ(x, ω) = x+ εa(x, ω) ∈ T
d be

a near-identity C1 diffeomorphism45), with inverse given by ψ(x′) = ψ(x′, ω) = x′ + εα(x′, ω), and
satisfying ε∗‖ax‖∞ < 1. Assume that |a(x, ω)− a(x, ω′)| � λ|ω − ω′| for any x, ω, ω′. Then,

|α(x′, ω)− α(x′, ω′)| � λ′|ω − ω′| , ∀ ω, ω′ ∈ Ω ,

with λ′ = λ/(1 − |ε|‖ax‖∞). An analogous statement holds in complex neighborhoods of Td.

Proof. (i) Let v �= 0 and let v′ = A−1(ω)v. Then, for any ω, ω′ ∈ Ω,

|A−1(ω)v −A−1(ω′)v| =
∣∣A−1(ω′)

(
A(ω′)−A(ω)

)
v′
∣∣ � m2λ|ω − ω′| |v|.

(ii) Let x1 = ψ(x′1, ω1) and x2 = ψ(x′1, ω2). Then,

|α(x′1, ω1)− α(x′1, ω2)| = |a(x1, ω1)− a(x2, ω2)|
= |a(x1, ω1)− a(x1, ω2) + a(x1, ω2)− a(x2, ω2)|
� λ|ω1 − ω2|+ ‖ax‖∞ |x1 − x2|
= λ|ω1 − ω2|+ |ε|‖ax‖∞ |α(x′1, ω1)− α(x′1, ω2)|,

which implies the claim. The complex case is treated in the same way. �

To describe the iterative step needed to control Lipschitz constant in Kolmogorov’s scheme we
refer to [26] and, in particular, to Lemma 4 and46) its proof in [26].

Proposition 1. Let E, Q, T and P be as in (2.2) above, and assume that they depend in a
Lipschitz way on ω ∈ Ωγ with uniform (on their complex domain of definition) Lipschitz constant Λ.
Let

C := max
{
|E|, |ω|, ‖Q‖ξ,ε0 , ‖T‖,Λ, 1

}
,

44)See, e. g., footnote 10 in [26].
45)The dependence upon ε of the functions is not explicitly indicated.
46)There is a small correction to be done in the statement of Lemma 4 in [26], namely, the bound on ‖P ′‖ξ̄ in

Eq. (18) should be given after hypothesis (19).
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assume that47) γ � 1/2min{1,Λ}, and let 0 < δ < ξ < 1. Finally, let L, φ1 = id+ εφ̃, E1 = E + εẼ,

Q1 = Q+ εQ̃, T1 = T + εT̃ , and P1 be as in step (i) and Lemma 4 of [26]. Then, Ẽ, Q̃, T̃ and φ̃
are Lipschitz in ω ∈ Ωγ uniformly on Wξ̄,ε0

, ξ̄ := ξ − 2
3δ, with Lipschitz constant given by

Λ̃ = c′γ−a′Cμ′
δ−ν′M � L, M := sup

Wξ,ε0
×Ωγ

‖P‖,

where c′, a′, μ′ ν ′ are suitable positive constants depending on τ , d. Furthermore, if ε∗ � ε0 is such

that ε∗Λ̃ � δ/3, then P1 is Lipschitz in ω ∈ Ωγ uniformly on Wξ′,ε∗ with ξ′ := ξ − δ with Lipschitz

constant Λ̃M . Finally, for any |ε| < ε∗, E1, Q1 and T1 are uniformly Lipschitz in ω ∈ Ωγ with

Lipschitz constant Λ1 := Λ + |ε|Λ̃.

Proof. Let us give the details for the estimate on the Lipschitz constant of Ẽ.

Ẽ is defined as48) ω · b+ P0(0;ω) where

b = −T (ω)
(
〈Qyy(0, ·;ω)s〉 + 〈Py(0, ·;ω)〉

)
, s := −D−1

ω

(
Py(0, ·;ω) − P0(0;ω)

)
.

Then, by Lemma 1(iii) with f = Py(0, ·;ω) − P0(0;ω), λ = Λ, and using that Λγ < 1 � M , we

get49)

Lipξ− δ
3
,ε0

(s) � c δ−kγ−2M,

and by Lemma 1(i),

Lipξ− 2δ
3
,ε0

(s) � c δ−(k+1)γ−2M.

Now, by Lemma 2(i) we get Lip(T ) � C3, and therefore50)

Lipξ− 2δ
3
,ε0

(b) � cC4δk+1γ−2M, Lipξ− 2δ
3
,ε0

(E1) � Λ+ |ε| · (cC5δk+1γ−2M).

It is not difficult to check that also the Lipschitz constants of51) Q̃, β0, β (defined in Remark 2 (a)

of [26]), T̃ and φ̃ satisfy similar estimates; also the estimate on Lip(P1) is of the same type, but

with an extra factor M , since in the definition of P1 there appears a term (P (1) in Eq. (11) in [26]),
which is quadratic in β. �

Now, the inductive argument follows easily as in the proof of Lemma 5 of [26]. We give a sketch
of it.

Let, as in Lemma 5 of [26], ξj+1 = ξj − δj , δj = δ0/2
j , δ0 = (ξ − ξ∗)/2,

φj : Wξj ,ε∗ × Ωγ → Dd
ξj−1

× T
d
ξj−1

, Φj = Φj−1 ◦ φj , (j � 1, Φ0 = id),

so that φ∗ in (2.2) above is given by φ∗ = limΦj . From the proof of Lemma 5 in [26] and from the
Cauchy estimate it follows that

sup
B×T×Ωγ

‖∂zΦj‖ � 2, z = (y, x). (3.17)

Let

Λ̃i = c′γ−a′Cμ′
δ−ν′
i Mi � Lipξi,ε∗(φi), (3.18)

47)This assumption, which is armless (since, eventually, γ will be chosen small with ε), is made to simplify the
estimate (3.16).

48)Compare step (i) at p. 135 of [26] and recall that T (ω) := 〈Qyy(0, ·;ω)〉−1. Usually, we do not indicate the
dependence upon ε of the various functions involved.

49)We denote possibly different constants depending on d and τ by c.
50)For products, use Lip(fg) � Lip(f) sup |g|+ Lip(g) sup |f |, and observe that ‖s‖ξ−2/3δ � c δ−bγ−1M ; compare,

e. g., Eq. (6) in [26].
51)Notice that, since Λ̃ � L, the hypotheses of Lemma 4 (compare Eq. (19)) are met.
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be as in the ith iteration of52) Proposition 1, and let λj := Lip(Φj) be the Lipschitz constant of Φj

over B ×Ωγ .

Let ω, ω′ ∈ Ωγ , zj = φj(y, θ;ω) and z′j = φj(y, θ;ω
′), for y ∈ B and θ ∈ T

d. Then, by (3.17) and

(3.18)

|Φj(y, θ;ω)− Φj(y, θ;ω
′)| = |Φj−1(zj ;ω)− Φj−1(z

′
j ;ω

′)|
� |Φj−1(zj ;ω)− Φj−1(z

′
j ;ω)| + |Φj−1(z

′
j ;ω)− Φj−1(z

′
j ;ω

′)|
� 2|φj(z, θ;ω)− φj(z, θ;ω

′)|+ λj−1|ω − ω′|
� 2|ε|2j Λ̃j|ω − ω′|+ λj−1|ω − ω′|,

which (dividing by |ω − ω′| and taking the supremum over y ∈ B, θ ∈ T
d and ω �= ω′) yields the

relation

λj � λj−1 + 2ε2
j
Λ̃j ,

which, iterated, implies53), for |ε| small enough,

λj � 1 + 2
∞∑
i=0

ε2
i
Λ̃i < 2, ∀j.

Taking the limit as j → ∞, we get Lip(φ∗) � 2, which, as discussed above, is all what is needed to
conclude the proof of Theorem 2. �

APPENDIX. AN INTERVIEW TO YA. SINAI

One of the authors (I.F.), during her doctoral thesis [34], supervised by Luca Biasco and Ana
Millán Gasca, had the opportunity to interview Yakov Sinai on May 28, 2021, in his quality of
student and witness to Kolmogorov’s legacy. Here, we provide the transcription of this interview54).

F: The first question concerns Siegel’s work on Diophantine estimates. These techniques are also
used by Kolmogorov in his proof of the theorem in 1954, but he did not mention Siegel in the
bibliography. Do you know if Kolmogorov was aware of Siegel’s work on such a matter?

S: In my opinion, he didn’t know Siegel’s work. Siegel’s work was discussed later in Arnol’d’s
seminar, and I assume that Arnol’d explained Siegel’s work to Kolmogorov. As you know, they
both used small denominators.

F: Do you know what inspired Kolmogorov for Diophantine estimates?

S: I’m not so sure about this.

F: Okay. So, I move on to the next question: in the published text of the Amsterdam conference,
Kolmogorov cited in bibliography “Mathematische Grundlagen der Quantenmechanik” (1932) by
von Neumann. Did Kolmogorov ever work on problems in quantum mechanics?

S: Kolmogorov never worked on problems of quantum mechanics because he used to say that he
didn’t find interesting problems for himself in that field.

F: Okay, but I have a puzzle to solve. I read a sentence written by Kolmogorov that I quote
here: “My papers on classical mechanics appeared under the influence of von Neumann’s papers on

52)For i � 0, E, Ẽ, Q, Q̃, Λ, Λ̃,. . . ,ξ, δ, ε correspond to Ei, Ẽi, Qi, Q̃i, Λi, Λ̃i,. . . ,ξi, δi, ε
2i , while E1, Q1, Λ1, . . .

correspond to Ei+1, Qi+1, Λi+1, etc.
53)The superexponential series is treated as in [26, p. 138].
54)F = Isabella Fascitiello; S = Yakov Sinai; B = Luca Biasco.
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the spectral theory of dynamical systems...”55). In this sentence the reference is to “Mathematical
Foundations of Quantum Mechanics”.

S: No, I remember it was another von Neumann’s paper; there was a paper written by von Neumann
about the ergodic theory.

F: Okay. Actually, in another note, written by Shiryaev56) on Kolmogorov, the author wrote that

there is another reference, “Operator Methods in Classical Mechanics”57).

S: It’s possible. That was the main contribution in the operator method.

B: Professor Sinai, do you think that Kolmogorov, for his theorem on the persistence of invariant
tori, was also motivated by the foundations of statistical mechanics?

S: He never mentioned this. He just mentioned the work of Chazy58). Chazy was a friend, a
mathematician, or maybe a physicist; he was the first person who wrote about statistical and central
limit theory and other papers on probability theory, which can be used in classical mechanics.

F: Another question concerns your article in the book Kolmogorov in Perspective. You wrote that
“in the fall of 1957 Kolmogorov began a famous course of lectures on the theory of dynamical

systems” and that, I quote, “Kolmogorov presented the theorem59) that was to become the basis

for the famous KAM theory, together with a complete proof”60). What did you mean? The history
of science says that the first complete proof is due to Arnol’d in 1963.

S: There is a very good proof of Kolmogorov’s theorem given by a student of Gallavotti61) . I forgot
his name.

B: Maybe it’s Luigi Chierchia.

S: Maybe it was him. Yes.

F: But in 1957, Kolmogorov did present a complete proof in this seminar? Is this assertion true?

S: You see, there is a controversy about this. For example, Arnol’d thought that Kolmogorov did
not give a complete proof, that his proof had some gaps. And this was a reason why Arnol’d wrote
his paper.

F: Okay. What about you? Do you think Kolmogorov give a complete proof of his theorem?

S: It is a controversial question. I believed that Kolmogorov gave a complete proof, but Arnol’d
convinced me that Kolmogorov’s proof was not complete.

B: According to Arnol’d, was the proof incomplete because Kolmogorov omitted certain steps, or
were there indeed certain gaps that Kolmogorov did not address?

55)[16, p. 503]
56)In [20, p. 53].
57)Zur Operatorenmethode in der klassischen Mechanik. Princeton, Annals of Mathematics, Second Series 33(3),

(1932) pp. 587–642.
58)Jean –François Chazy (1882–1955). Two Chazy’s papers, 1929 and 1932, are included in the references of [7],

both titled Sur l’allure finale du mouvement dans le problème des trois corps.
59)He refers to the theorem on the persistence of invariant tori for quasi-integrable Hamiltonian systems, Theorem 1

in [5].
60)See the complete excerpt cited in Section 2 of this article, taken from [21].
61)He refers to Giovanni Gallavotti (b. 1941).
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S: This is a complicated matter. There were some gaps in the estimates of the measure of invariant
sets. That was the main point where Arnol’d complained about the proof by Kolmogorov. In
Kolmogorov’s paper, complete estimates of such a measure were not given.

B: So, only regarding this specific point?

S: Yes.

F: Another question concerning the connection between Kolmogorov and Arnol’d. Did Arnol’d
ever make a comparison between his form of the theorem on the persistence of invariant tori and
Kolmogorov’s original one? What were his motivations for giving a different proof of this theorem?

S: Arnol’d wrote a complete proof of Kolmogorov’s theorem which was published in a Russian
journal, and it was exactly motivated by the fact that the proof in Kolmogorov’s paper was not
complete.

F: Was Arnol’d thinking about celestial mechanics?

S: Arnol’d was used to think about celestial mechanics, but there was another student of

Kolmogorov diligently working on the subject. I am specifically referring to Sitnikov62), who, in
one of his articles, provides a comprehensive example of the solution to oscillations.

F: So, Kolmogorov also was thinking about celestial mechanics in 1954?

S: He was very much interested in problems in celestial mechanics. Alekseev’s papers63) on celestial
mechanics were certainly influenced by discussions with Kolmogorov.
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Matematicheskii Sbornik in 1953. Incidentally, Sitnikov was mainly a student of P. S. Aleksandrov.

63)He refers to the following papers of Vladimir Mikhailovich Alekseev (1932–1980), a student of Kolmogorov
specializing in celestial mechanics: “Quasirandom vibrations and the problem of capture in the bounded three-
body problem” (1967) in Doklady Akademii Nauk SSSR, “On the possibility of capture in the three-body problem
with a negative value for the total energy constant” (1969) in Uspekhi Matematicheskikh Nauk, and “Final motions
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