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Abstract—This paper continues the discussion started in [10] concerning Arnold’s legacy on
classical KAM theory and (some of) its modern developments. We prove a detailed and explicit
“global” Arnold’s KAM theorem, which yields, in particular, the Whitney conjugacy of a non-
degenerate, real-analytic, nearly-integrable Hamiltonian system to an integrable system on a
closed, nowhere dense, positive measure subset of the phase space. Detailed measure estimates
on the Kolmogorov set are provided in case the phase space is: (A) a uniform neighbourhood
of an arbitrary (bounded) set times the d-torus and (B) a domain with C2 boundary times the
d-torus. All constants are explicitly given.
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1. INTRODUCTION

a. In [10], we revised Arnold’s original analytic “KAM scheme” [2] and showed, in particular,
how to implement it so as to get the optimal relation between the size of the perturbation ε
and the Diophantine constant α associated to a persistent integrable torus (for generalities,
we refer to the Introduction in [10]).

In the present paper we show how Arnold’s “pointwise theorem” (Theorem A in [10])
leads naturally to a “global theorem”, unifying and improving various previous versions
of such a result: compare, in particular, with [9, 14–16]. The term “global” refers here to the
simultaneous (and “smooth”) construction, in phase space, of all persistent KAM tori having
a prefixed Diophantine constant. The main theorem (Theorem 1 below) is formulated in terms
of a (Whitney) symplectic transformation conjugating a given (Kolmogorov non-degenerate)
analytic, nearly-integrable Hamiltonian system to a Hamiltonian system integrable on a
closed, nowhere dense set1). All constants involved in Theorem 1 are explicitly computed,
and, in particular, the optimal relation between ε and α is retained.

b. An immediate corollary of “Arnold’s global theorem” is that measure estimates of the
(complement of the) Kolmogorov set (i. e., the set of all persistent integrable tori of a nearly-
integrable Hamiltonian system) become essentially trivial (since symplectic transformations
preserve Liouville measure on phase space). The problem of finding explicit measure estimates
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1)Indeed, closed sets of uniform Diophantine numbers may have, in general, isolated points; compare [1].

61



62 CHIERCHIA, KOUDJINAN

of the Kolmogorov set in terms of the structure of the phase space is, therefore, reduced to
a purely geometrical problem. In particular, as in [5], we are interested in analyzing how
such measure estimates depend upon general geometric properties of the action domain, an
issue which is particularly relevant in developing KAM theory for secondary tori (i. e., those
invariant Lagrangian tori which arise because of the perturbation and are not a continuation
of integrable tori); compare [3, 4, 6].

In this paper, we shall discuss detailed measure estimates in two different cases, namely:

(A) (General case) The Hamiltonian is “uniformly real-analytic” on D × T
d, with action

domain D ⊆ R
d being a completely arbitrary bounded set, and the unperturbed frequency

map is a local diffeomorphism; “uniformly analytic” means that the Hamiltonian is real-
analytic on the union of complex balls with centers in D and fixed radius R > 0. In this case
the phase space will be D × T

d, where D is a suitable (“minimal”) open cover of D. This
set-up is similar to that considered in [5].

(B) (Smooth case) The Hamiltonian is real-analytic on a phase space D × T
d with D being

a bounded, connected, open set with C2 boundary and the unperturbed frequency map is a
global diffeomorphism on D .

c. Let us briefly describe the type of measure estimates we get.

Case (A): As usual in classical KAM theory, we consider real-analytic Hamiltonians

H : (y, x) ∈ D × T
d �→ H(y, x) := K(y) + εP (y, x) ∈ R , (∗)

where (y, x) ∈ R
d × T

d are standard action-angle variables (i. e., the phase space is endowed
with the standard symplectic form dy ∧ dx), ε is a small parameter, and H is real-analytic

on the union of R-balls with centers in some bounded set D ⊆ R
d, while D is a suitable

neighbourhood of D (see below). The integrable Hamiltonian K is assumed to be Kolmogorov
non-degenerate on D (i. e., the frequency map y ∈ D �→ ω = ∂yK(y) is a real-analytic local

diffeomorphism). Let us denote by KD (α, τ) the set of Lagrangian graphs over Td in D ×T
d,

which are invariant under the flow governed by H and on which the flow is analytically
conjugated to the Kronecker flow x ∈ T

d �→ x+ ωt, with ω ∈ R
d (α, τ)-Diophantine2), for

some τ > d− 1. Then there exist positive numbers C∗, α∗, ε∗ and r � R/9, depending only
on d, τ , K and P (and explicitly given in Theorem 4 below), such that, if 0 < ε < ε∗, then

meas
(
(D × T

d)\KD (α∗
√
ε, τ)

)
� C∗N

int
r (D)

√
ε,

where N int
r (D) is the so-called r-internal covering number of D and D is a R-neighbourhood

of a minimal R-internal cover of D (compare Section 3.1 for precise definitions).

Case (B): Here H is as above, but D is assumed to be an open, bounded, connected set with
C2 boundary; H is R-uniformly real-analytic on D and the unperturbed frequency map is
assumed to be a global diffeomorphism on D . Let

r := min{R, minfoc (∂D) , 1/κ}/
√
d,

where “minfoc ” denotes the so-called minimal focal distance, and κ is the maximum modulus
of the principal curvatures of ∂D . Then there exist positive numbers C̄∗, α∗, and ε∗ depending
only on d, τ , K and P (and explicitly given in Theorem 5 below) such that, if 0 < ε < ε∗,
then

meas
(
(D × T

d)\KD (α∗
√
ε, τ)

)
� C̄∗ max

{
secd−1(D) , Hd−1(∂D)

} √
ε,

where secd−1(D) is the measure of the maximal (d− 1)-dimensional section of D and

Hd−1 denotes the (d− 1)-dimensional Hausdorff measure (compare Section 3.2 for precise
definitions).

2)i. e., |ω · k| � α/|k|τ , for any k ∈ Z
d\{0}.
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d. Remarks

(i) For the optimality of the relation between ε and α (and the reason for choosing
α = α∗

√
ε in the Kolmogorov set), see item d in the Introduction of [10].

(ii) Theorem 4 below extends and generalizes the main result (Theorem 1) in [5].

(iii) In Appendix A (see, in particular, Remark A.5), we correct a small flaw (concerning
the choice of some constants) in [10].

(iv) In Remark A.4 (Appendix A) all constants appearing in the proof are explicitly given.

e. The paper is organized as follows.

In Section 2.1 we introduce some of the notation used in the paper and in Section 2.2 we state
the “global Arnold theorem” (Theorem 1). The statement of such a theorem is quite detailed;
in particular, the introduction of apparently arbitrary sets of parameters (such as D0 or ρ)
allows applications to be made in quite different circumstances (such as cases (A) and (B)
mentioned above). On the other hand, the proof of this theorem does not really contain novel
ideas and is based on the schemes in [2, 12] and [10]. However, since we put some emphasis in
making everything explicit, we felt it necessary to outline the proof, detailing, in particular,
the choice of the (many) parameters involved (this is done in Appendix A).

Section 3 is devoted to measure estimates and, in particular, to the statements and proofs of
Theorem 4 and 5, which have been briefly explained in item c above.

Finally, Appendix B contains some of the technical tools used in the paper, namely:

B.1 Classical estimates (Cauchy, Fourier)
B.2 An inverse function theorem
B.3 Internal coverings
B.4 Extensions of Lipschitz continuous functions
B.5 Lebesgue measure and Lipschitz continuous map
B.6 Lipeomorphisms “close” to identity
B.7 Whitney smoothness
B.8 Measure of tubular neighbourhoods of hypersurfaces
B.9 Kolmogorov non-degenerate normal forms.

2. ARNOLD’S GLOBAL KAM THEOREM

2.1. Notations

• N := {1, 2, 3, · · · } and N0 := {0, 1, 2, 3, · · · }.

• For d ∈ N and x, y ∈ C
d, we let x · y := x1ȳ1 + · · ·+ xdȳd be the standard inner product (the

bar denotes complex conjugate). We denote, respectively, the sup-norm, the 1-norm and the
Euclidean norm, by:

|x| := max
1�j�d

|xj |, |x|1 :=
d∑

j=1

|xj |, |x|2 :=

√√√√
d∑

j=1

|xj |2.

• T
d := R

d/2πZd is the d-dimensional (flat) torus.

• Given α > 0, τ � d− 1 � 1, we denote by

Diophτα :=
{
ω ∈ R

d : |ω · k| � α

|k|τ1
, ∀ 0 
= k ∈ Z

d
}

(2.1)

the set of (α, τ)-Diophantine vectors in R
d.
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64 CHIERCHIA, KOUDJINAN

• For r, s > 0, y0 ∈ C
d, ∅ 
= D ⊆ C

d, we denote:

Br(y0) :=
{
y ∈ R

d : |y − y0| < r
}
, (y0 ∈ R

d) ,

Br(D) :=
⋃

y0∈D
Br(y0) , (D ⊆ R

d) ,

Br(y0) :=
{
y ∈ C

d : |y − y0| < r
}
,

Br(D) :=
⋃

y0∈D
Br(y0) ,

T
d
s :=

{
x ∈ C

d : | Imx| < s
}
/2πZd ,

Br,s(y0) := Br(y0)× T
d
s ,

Br,s(D) := Br(D)× T
d
s ;

we shall also denote, in bold face characters, Euclidean balls:

Br(y0) :=
{
y ∈ R

d : |y − y0|2 < r
}
, (y0 ∈ R

d),

Br(D) :=
⋃

y0∈D
Br(y0), (D ⊆ R

d).

• If �d := diag(1) is the unit (d× d) matrix, we denote the standard symplectic matrix by

J :=

⎛
⎝ 0 −�d
�d 0

⎞
⎠ .

• For D ⊆ R
d, r � 0 and s > 0, Br,s(D) denotes the Banach space of real-analytic functions

f : Br(D)× Ts → C

with bounded holomorphic extensions to Br,s(D), with uniform norm

‖f‖r,s := ‖f‖r,s,D := sup
Br,s(D)

|f | < ∞.

Analogously, Br(D) denotes the Banach space of real-analytic functions

f : Br(D) → C

with bounded holomorphic extensions to Br(D), with

‖f‖r := ‖f‖r,D := sup
Br(D)

|f | < ∞.

• For a differentiable function f : A ⊆ C
d ×C

d � (y, x) �→ f(y, x) ∈ C, its gradient/Jacobian is
denoted by ∇f or by f ′.

• We equip C
d × C

d (and its subsets) with the canonical symplectic form


 := dy ∧ dx = dy1 ∧ dx1 + · · ·+ dyd ∧ dxd ,

and denote by φt
H the associated Hamiltonian flow governed by the Hamiltonian H(y, x),

y, x ∈ C
d, i. e., z(t) := φt

H(z) is the unique solution of

ż = J∇H , z(0) = z.
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• Given a linear operator L from the normed space (Va, ‖ · ‖a) into the normed space (Vb, ‖ · ‖b),
its “operator norm” is given by

‖L‖ := sup
x∈Va\{0}

‖Lx‖b
‖x‖a

, so that ‖Lx‖b � ‖L‖ ‖x‖a for any x ∈ Va.

• Given ω ∈ R
d, the directional derivative of a C1 function f with respect to ω is given by

Dωf := ω · fx =

d∑
j=1

ωjfxj .

• If f is a (smooth or analytic) function on T
d, its Fourier expansion is given by

f =
∑

k∈Zd

fk e
ik·x, fk :=

1

(2π)d

∫

Td

f(x) e−ik·x dx,

(where, as usual, e := exp(1) denotes the Neper number, and i, the imaginary unit). We also
set:

〈f〉 := f0 =
1

(2π)d

∫

Td

f(x) dx , TNf :=
∑

|k|1�N

fk e
ik·x, N > 0.

• For a function f : (M1,d1) → (M2,d2), where (Mj ,dj), j = 1, 2 are metric spaces, we denote

LipM1
(f) := ‖f‖L,M1

:= sup
x �=x′∈M1

d2(f(x), f(x
′))

d1(x, x′)
� ∞,

and f is said to be Lipschitz continuous on M1 if LipM1
(f) < ∞.

If M1 = R
d, we usually denote LipRd(f) = Lip(f).

• Ck
W (D) denotes the set of functions which are Ck in the sense of Whitney on the set D. A C1

W

map φ : D × T
d → R

d × T
d is symplectic if the Whitney gradient ∇φ = (∂yφ, ∂xφ) satisfies

(∇φ)J(∇φ)T = J on D × T
d. For more details, see Appendix B.7.

• The s-dimensional Hausdorff measure on R
d will be denoted by Hs; in particular, Hd, which

coincides with the d-dimensional outer Lebesgue measure, will be denoted by “meas ”.

2.2. KAM Theorem

Given an open set D ⊆ R
d and a real-analytic Hamiltonian H : D × T

d → R, we say that
T ⊆ D ×T

d is a (primary3)) Kolmogorov (or “KAM”) torus for H if T is a real-analytic Lagrangian

embedded torus T = φ(Td), which is a graph over Td, and such that

φt
H

(
φ(θ)

)
= φ(θ + ωt) , ∀ θ ∈ T

d, t ∈ R,

for a given Diophantine “frequency vector” ω ∈ Diophτα (for some α, τ > 0).

Theorem 1. Let d � 2; R > 0; 0 < s � 1; ∅ 
= D ⊆ R
d; ε, α > 0. Let the “integrable Hamiltonian”

K ∈ BR(D) be a uniformly (Kolmogorov) non-degenerate (i.e., detKyy 
= 0 on BR(D)) and let the
“perturbation” P belong to BR,s(D). Define

M := ‖Kyy‖R,D , L := ‖K−1
yy ‖R,D, P := ‖P‖R,s,D , θ := ML, ε := ε

MP

α2
. (2.2)

3)As opposed to secondary tori (the same definition, but removing the graph assumption); for a KAM theory for
secondary tori, see [3]. In this paper, we shall only consider primary KAM tori.

REGULAR AND CHAOTIC DYNAMICS Vol. 26 No. 1 2021



66 CHIERCHIA, KOUDJINAN

Choose 0 < ρ < r � R, D0 ⊆ D, τ � d− 1; define the following “action domains”:

D := Br(D0), D̂ := Br−ρ(D0), D∗ :=
{
y ∈ D̂ : Ky(y) ∈ Diophτα

}
, (2.3)

and consider the “nearly-integrable”, non-degenerate Hamiltonian given by

H : (y, x) ∈ D × T
d �→ H(y, x) := K(y) + εP (y, x) ∈ R ;

the “phase space” D × T
d being endowed with the standard symplectic form 
. Fix 0 < s∗ < s.

There exist constants c∗, c0, c1, c2, c3, c4 > 1, depending only on d and τ , such that, if

α � c0
ρ

L
; ε � ε∗ :=

(s− s∗)a

c∗ θ6
, (2.4)

with a := 7ν + 4d+ 2 and ν := τ + 1, then the following statements hold.
There exists a nowhere dense set D∗ ⊆ Br− ρ

2
(D0) ⊆ D , a lipeomorphism

Y ∗ : D∗ onto−→ D∗,

a function K∗ ∈ C∞
W (D∗) and a C∞

W -symplectic transformation

φ∗ := id+ (v∗, u∗) : D∗ × T
d → K := φ∗(D∗ × T

d) ⊆ D × T
d , (2.5)

real-analytic in x ∈ T
d
s∗, such that4)

∂y∗K∗ ◦ Y ∗ = ∂yK , on D∗ , (2.6)

∂β
y∗(H ◦ φ∗)(y∗, x) = ∂β

y∗K∗(y∗), ∀ (y∗, x) ∈ D∗ × T
d, ∀ β ∈ N

d
0. (2.7)

Furthermore, the following estimates hold:

‖Y ∗ − id‖D∗ � c1 (s− s∗)
ν θ2

εP

α
, (2.8)

LipD∗(Y ∗ − id) � c2 θ
3 (s− s∗)

−1 MεP

α2

(
log

α2

MεP

)ν

� 1

4d
, (2.9)

max

{
‖u∗‖∗, 2d

√
2
M�ν

α
‖v∗‖∗

}
� c3 �

ν θ2
MεP

α2
, (2.10)

‖∂xu∗‖∗ � c4 θ
2
0 �ν

MεP

α2
� 1

4(18d3 + 70)θ
, (2.11)

where
‖ · ‖∗ := sup

D∗×Td
s∗

| · |, � := 8(s − s∗)
−1 log ε−1 .

The “Kolmogorov set” K defined in (2.5) is foliated, as y∗ ∈ D∗, by Kolmogorov tori T∗ :=
φ∗({y∗} × T

d), which are Kolmogorov non-degenerate5).

The proof of this theorem is based upon Arnold’s original KAM scheme, revised and improved
in [10], where, in particular, all constants are computed and optimal smallness conditions concerning
the relation between small divisors and smallness of the perturbation are given. Since essentially
no new ideas are needed, details are deferred to Appendix A.
However, let us make here a few observations.

Remark 1. (i) The hypotheses on H can be rephrased by saying that H is R-uniformly real-

analytic on D. Notice that D can be a completely arbitrary subset of Rd, but D and D̂ are
open sets.

(ii) The introduction of D0 and ρ is made in order to be able to apply the theorem in quite
different contexts; compare, e. g., the next section on measure estimates.

4)y∗-derivatives are Whitney derivatives.
5)For a precise definition, see Appendices A and B.9.
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(iii) Even if D0 is a single point, the theorem guarantees, in general, a set of positive measure of
Kolmogorov tori for H, since the set D∗ is a set of positive measure, provided τ > d− 1 and
α is small enough. Precise measure estimates are one of the objectives of this paper and will
be given in the next section.

(iv) The parameter θ defined in (2.2) measures the “torsion” of the unperturbed system and is
always greater than or equal to 1; indeed, for any y0 ∈ D , denoting T (y) := Kyy(y)

−1, one
has

θ := LM � ‖T (y0)‖‖Kyy(y0)‖ = ‖T (y0)‖‖T (y0)−1‖ � 1. (2.12)

(v) The constants ci appearing in the theorem are explicitly given in Appendix A; compare, in
particular, Eq. (A.38).

3. MEASURE ESTIMATES

The fact that the Kolmogorov set K in Theorem 1 is the image of a (Whitney) symplectic map
leads to straightforward measure estimates of its complement:

Theorem 2. Under the same notations and assumptions of Theorem 1, let

β :=
(
1 + 2LipD∗(Y ∗ − id)

)d
(2π)d,

Tρ := Br+ρ(D0) \ Br−ρ(D0),

Rα :=
{
y ∈ D : Ky(y) /∈ Diophτα

}
. (3.1)

Then one has
meas (D × T

d \ K ) � β meas
(
B ρ

2
(D) \ D∗) (3.2)

� β
(
meas (Tρ) + meas (Rα)

)
.

Proof. By Theorem B.2, we can extend Y ∗ − id componentwise to obtain a global Lipschitz
continuous function f : Rd �� satisfying f |D∗ = Y ∗ − id and

sup
Rd

|f | = sup
D∗

|Y ∗ − id|
(2.8),(2.4)

� ρ

2
, LipRd(f) = LipD∗(Y ∗ − id) <

1

4d
. (3.3)

Set g := f + id. Then, by Lemma 7 and (3.3), one has6)

D ⊆ g
(
B ρ

2
(D)

)
. (3.4)

Notice also that, by (3.3) and Lemma 7, g is a lipeomorphism of Rd. Consequently,

meas (D × T
d \ K ) = meas (D × T

d)− meas
(
φ∗(D∗ × T

d)
)

= meas (D × T
d)− meas (D∗ × T

d)

= (2π)d
(
meas (D)− meas (D∗)

)
(3.4)

� (2π)d
(
meas

(
g(B ρ

2
(D))

)
− meas (D∗)

)

= (2π)d meas
(
g(B ρ

2
(D)) \ g(D∗)

)

= (2π)d meas
(
g
(
B ρ

2
(D) \ D∗)) (because g is injective)

(B.11)

� (2π)d(Lip g)d meas
(
B ρ

2
(D) \ D∗)

(3.3)

� (2π)d(1 + 2Lip(Y ∗ − id))d meas
(
B ρ

2
(D) \ D∗).

6)The bar on sets denotes closure.
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Finally, recalling that D = Br(D0) and (2.3), one sees that

B ρ
2
(D) \ D∗ = B ρ

2
(D) \ D̂ ∪̇ D̂ \ D∗

= Br+ ρ
2
(D0) \ Br−ρ(D0) ∪̇

{
y ∈ Br−ρ(D0) : Ky(y) /∈ Diophτα

}

⊆ Tρ ∪Rα,

from which the second inequality in (3.2) follows at once. �

Theorem 2 reduces the problem of estimating the measure of the complement of the Kolmogorov
set K to the estimate on the measure of the complement of Diophantine numbers in a given set
and to the purely geometrical problem of estimating the measure of the tubular neighbourhood
Tρ of the boundary of D = Br(D0). Therefore, concrete measure estimates will depend upon the
structure of the action domain D and of the (unperturbed) frequency map

y ∈ D �→ ω0(y) := Ky(y) ∈ R
d. (3.5)

We shall discuss in detail two different cases:

(A) (General case) D is an arbitrary bounded set, H uniformly real-analytic on D × T
d, and ω0

is a local diffeomorphism on D (which is always the case if the unperturbed Hamiltonian is
assumed to be Kolmogorov non-degenerate). In this case, as phase space we shall consider a

“minimal” (in a suitable sense) open cover of D times T
d. This set-up is analogous to that

considered in [5].

(B) (Smooth case) D is a bounded, connected, open set with C2 boundary and ω0 is a global

diffeomorphism on D. In this case the phase space is just D × T
d := D × T

d.

3.1. General Case

In order to state the result for case (A), let us give two definitions.

• Given a bounded non-empty set D ⊆ R
d, and given r > 0, an r-internal covering of D is

a subset D0 of D such that

D ⊆ Br(D0) =
⋃
y∈D0

Br(y); (3.6)

N int
r (D), the r–internal covering number of D, is defined as7)

N int
r := min

{
n ∈ N : {y1, . . . , yn} is an r−internal covering of D

}
; (3.7)

an r-internal cover D0 of D with cardinality equal to the r-internal covering number will be
called a minimal r-internal covering of D.

• Given a real-analytic Hamiltonian H : D × T
d → R, we denote the set of KAM tori for H

with frequency vector in Diophτα by

KD (α, τ) :=
{
T ⊆ D × T

d| T is a KAM torus for H with frequency ω ∈ Diophτα
}
. (3.8)

7)N int
r (D) is finite if and only if D is bounded. A simple upper bound on N int

r (D) for bounded domains D is:

N int
r (D) � ([diam(D)/r] + 1)d; compare [5] or Appendix B, Section B.3.
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Theorem 3. Let D be an arbitrary bounded non-empty set in R
d, τ > d− 1 � 1, R, s > 0. Let

K ∈ BR(D) be uniformly (Kolmogorov) non-degenerate, P ∈ BR,s(D) and let M, L, P, θ as in (2.2).
Let c0 and c∗ be as in Theorem 1. Fix 0 < s∗ < s, let ε∗ be as in (2.4) and define:

r :=
R

1 + 2d2θ
, α∗ :=

√
MP

ε∗
, ε∗ :=

( c0r

Lα∗

)2
,

δ0 := inf
Br(D)

|detKyy|, θ0 := max
{Md

δ0
, θ
}
, ρ :=

α∗L

c0

√
ε. (3.9)

Let D0 ⊆ D be a minimal r-internal covering of D, D := Br(D0) and let KD (α∗
√
ε, τ) be as in (3.8)

with H = K + εP . Then, if 0 < ε < ε∗, one has

meas
(
(D × T

d)\KD (α∗
√
ε, τ)

)
� c̄∗ θ0 N int

r (D) M−1 rd−1 α∗
√
ε, (3.10)

with

c̄∗ :=
5

4
(2π)d

(d22d
c0

+ 2dd
d−1
2

∑

k∈Zd\{0}

1

|k|τ1 |k|2

)
. (3.11)

Proof. Let α := α∗
√
ε. Then ρ = Lα/c0, so that the first inequality in (2.4) is satisfied (with the

equal sign). Furthermore, with the above positions, ε in (2.2) is given by

ε =
MP

α2
∗
,

so that the second inequality in (2.4) is also satisfied (with the equal sign). Finally, the relation ρ < r
is equivalent to ε < ε∗, which is satisfied by hypothesis. Hence, all the assumptions of Theorem 1
are satisfied and therefore the measure estimate (3.2) holds with K as in (2.5).

We proceed to estimate the two terms on the right-hand side of (3.2) separately. Let us first
discuss the measure of Rα.

We claim that the map y ∈ Br(y0) �→ ω0(y) is a diffeomorphism for every y0 ∈ D. To see this,
we shall apply the quantitative inverse function theorem B.1 to f(y) = Ky(y). In such a case, we

can take T = Kyy(y0)
−1 (using Cauchy estimates, see Lemma 4),

‖�d − TKyy(y)‖ � ‖T‖‖Kyy(y0)−Kyy(y)‖

� d2L‖∂yKyy‖r r � d2L
‖Kyy‖R
R− r

r

� d2 LM
r

R− r
=

1

2
,

where ‖∂yKyy‖r := supBr(y0)max{|∂3
yiyjyk

K| : i, j, k = 1, · · · , d}. Hence, by Theorem B.1, ω0 is

invertible on any ball Br(y0) with y0 ∈ D, as claimed.

Now let D0 = {y1, . . . , yn0} with n0 := N int
r (D). Then

meas (Rα) �
n0∑
j=1

meas ({y ∈ Br(yj) : ω0(y) /∈ Diophτα})

�
n0∑
j=1

∑

k∈Zd\{0}
meas

({
y ∈ Br(yj) : |ω0(y) · ek| �

α

|k|τ1 |k|2

})
,

where ek := k
|k|2 . Since on Br(yj), y → ω0(y) is a diffeomorphism, by the change of variables

y = ω−1
0 (ω), we find

meas
({

y ∈ Br(yj) : |ω0(y) · ek| �
α

|k|τ1 |k|2

})
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� δ−1
0 meas

({
ω ∈ ω0

(
Br(yj)

)
: |ω · ek| �

α

|k|τ1 |k|2

})

� δ−1
0

(
diamω0

(
Br(yj))

)d−1 2α

|k|τ1 |k|2

� δ−1
0

(
M2

√
dr
)d−1 2α

|k|τ1 |k|2
.

Summing up over j and k, one gets

meas (Rα) �
(
2dd

d−1
2

∑

k∈Zd\{0}

1

|k|τ1 |k|2

)
n0 δ

−1
0 Md−1 rd−1 α. (3.12)

Let us turn to the estimate of meas (Tρ). Observing that

Tρ := Br+ρ(D0)\Br−ρ(D0) ⊆
n0⋃
j=1

Br+ρ(yj)\Br−ρ(yj),

one finds

meas (Tρ) �
n0∑
j=1

meas
(
Br+ρ(yj)\Br−ρ(yj)

)

= n02
d
(
(r + ρ)d − (r− ρ)d

)

� d22d n0 ρ r
d−1 =

d22d

c0
n0

θ

M
rd−1α. (3.13)

Observing that K ⊆ KD (α∗
√
ε, τ) and that, by (2.9), β in (3.1) satisfies β < 5

4(2π)
d, one sees that

(3.12) and (3.13) imply (3.10) with c̄∗ as in (3.11). �

3.2. Smooth Case

In order to state the result for case (B), we need the following definitions.

• Let S be a compact and connected C2-hypersurface of Rd. The minimal focal distance of
S is defined as

minfoc (S) := min
{
inf{ec(u, ν+(u)) : u ∈ S}, inf{ec(u, ν−(u)) : u ∈ S}

}
,

where ν±(u) denotes the outwards/inwards normal to S at u and

ec(u, v) := sup{t > 0 : dist2(u+ tv, S) = t},
dist2 being the Euclidean distance.

• Given any bounded set D in R
d, we define the (measure of the) maximal (d− 1)-

dimensional section of D as

secd−1(D) := sup
λ∈Λd−1

Hd−1(λ ∩D),

where Λd−1 denotes the set of all hyperplanes in R
d and Hd−1 the (d− 1)-dimensional

Hausdorff measure.

• Given a set D ⊆ R
d and ρ > 0, we define ρ-inner domains of D (which depend upon the

choice of the metric) as8)

D′
ρ :=

{
y ∈ D : Bρ(y) ⊆ D

}
, D′′

ρ :=
{
y ∈ D : Bρ(y) ⊆ D

}
. (3.14)

8)Recall that Bρ denotes a ball with respect to the sup-norm | · | = | · |∞, while Bρ denotes a ball with respect to
the Euclidean norm | · |2.
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Theorem 4. Let D ⊆ R
d be an open and bounded set with C2 a compact and connected boundary.

Let τ > d− 1 � 1, s > 0. Let K ∈ BR(D) be uniformly (Kolmogorov) non-degenerate and so that

the unperturbed frequency map y ∈ D �→ ω0(y) := Ky(y) ∈ C
d is a global diffeomorphism. Let P ∈

BR,s(D) and let M, L, P, θ as in (2.2) and define

r := min{R, minfoc (∂D), 1/κ}/
√
d, (3.15)

where κ := sup∂D max1�j�d−1 |κj |, κj ’s being the principal curvatures of ∂D . Let c0 and c∗ be as
in Theorem 1; fix 0 < s∗ < s, let ε∗ be as in (2.4); let α∗, ε∗, δ0, θ0 and ρ be as in (3.9). Let
KD (α∗

√
ε, τ) be as in (3.8) with H = K + εP . Then, if 0 < ε < ε∗, one has

meas
(
(D × T

d)\KD (α∗
√
ε, τ)

)
� ĉ∗ θ0 M−1 max

{
secd−1(D) , Hd−1(∂D)

}
α∗

√
ε, (3.16)

with

ĉ∗ :=
5

2
(2π)d

( 2d√
d c0

+
∑

k∈Zd\{0}

1

|k|τ1 |k|2

)
. (3.17)

Proof. The idea is again to apply Theorem 1 and Theorem 2.

Let D0
:= D ′′√

dr
. Since

√
dr � minfoc (∂D), by Lemma 9,

Br(D0) ⊆ B√
dr(D

′′√
dr
) = D , and D̂ = Br−ρ(D0) ⊇ Br−ρ(D0) = D ′′

(
√
d−1)r+ρ

. (3.18)

As in the proof of Theorem 3, we let α := α∗
√
ε, so that ρ = Lα/c0 and ε = MP/α2

∗ (cfr. (2.2)).
Then the inequalities in (2.4) hold with the equal sign. The relation ρ < r is equivalent to ε < ε∗,
which is satisfied by hypothesis. Hence, all the assumptions of Theorem 1 are satisfied and the
measure estimate (3.2) holds with K as in (2.5).

By hypothesis the frequency map y → ω0(y) is a diffeomorphism on D , so we can repeat the
estimate on the measure of Rα done in the proof of Theorem 3 without the need of localizing the
actions. Letting, as above, ek := k

|k|2 , we find

meas (Rα) = meas ({y ∈ D : ω0(y) /∈ Diophτα})

�
∑

k∈Zd\{0}

meas
({

y ∈ D : |ω0(y) · ek| �
α

|k|τ1 |k|2

})
.

�
∑

k∈Zd\{0}

δ−1
0 meas

({
ω ∈ ω0

(
D
)
: |ω · ek| �

α

|k|τ1 |k|2

})

� δ−1
0 Md−1 secd−1(D)

∑

k∈Zd\{0}

2α

|k|τ1 |k|2

� θ0 M
−1 secd−1(D)

∑

k∈Zd\{0}

2α

|k|τ1 |k|2
.

The estimate on the measure of Tρ follows from Lemma 10. Indeed, if we denote Tρ(S) :=

{u ∈ R
d : dist2(u, S) < ρ}, we have (compare (B.23))

Tρ = Br+ρ(D0) \ Br−ρ(D0)
(3.18)

⊆ B√
dρ(D)\D ′′

(
√
d−1)r+ρ

⊆ T√
dr(∂D).

Since r � min{minfoc (∂D)/
√
d, 1/(

√
dκ)}, by (B.24), we get

meas (Tρ) � meas (T√
dr(∂D))

� 2

d

(1 +
√
drκ)d − 1

κ
Hd−1(∂D)
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<
2d+1

√
d

ρHd−1(∂D)

=
2d+1

√
dc0

θM−1Hd−1(∂D)α.

Since α = α∗
√
ε, (3.16) follows, with ĉ∗ as in (3.17). �

APPENDIX A. PROOF OF THEOREM 1

In this appendix we provide the details needed to prove Arnold’s Global KAM Theorem
(Theorem 1). The main point is the choice of the various parameters and sequences involved in the
Newton-like procedure based on the iteration of a “KAM step” (in turn, based upon the original
scheme by Arnold; compare [2] and its revisions in [12] and [10]). Although the main ideas are well
known, some details are needed, especially in order to compute explicitly constants and to keep
the optimal relation between ε and α. Furthermore, the construction of the “integrating map” also
requires a discussion. All this is done in the present appendix.

By following [12, Chap. 6], one gets the following:

General Step of the KAM Scheme

Lemma 1 (KAM step). Let r > 0, 0 < 2σ < s � 1, D
 ⊆ R
d be a non-empty, bounded domain.

Consider the Hamiltonian parametrized by ε ∈ R

H(y, x; ε) := K(y) + εP (y, x),

where K,P ∈ Br,s(D
). Assume that9)

detKyy(y) 
= 0 , T (y) := Kyy(y)
−1, ∀ y ∈ D
 ,

‖Kyy‖r,D�
� M, ‖T‖D�

� L ,

‖P‖r,s,D�
� P, Ky(D
) ⊆ Δτ

α.

(A.1)

Fix ε 
= 0 and assume that

λ � log

(
σ2ν+d α2

εPM

)
� 1 . (A.2)

Let

� := 4σ−1λ, ř � r

32dLM
, r̄ � min

{ α

2dM�ν
, ř
}
,

r̃ :=
řσ

16dLM
, s̄ := s− 2

3
σ, s′ := s− σ,

(A.3)

and10)

p := Pmax

{
16L

rr̄
σ−(ν+d),

C4

αr̄
σ−2(ν+d)

}
.

Assume:

εp � σ

3
. (A.4)

Then there exists a diffeomorphism G : Br̃(D
)→G(Br̃(D
)), a symplectic change of coordinates

φ′ = id+ εφ̃ : Br̄/2,s′(D
′

) → B2r/3,s̄(D
), (A.5)

9)In the sequel, K and P stand for generic real-analytic Hamiltonians which later on will, respectively, play the
roles of Kj and Pj , and y0, r, the roles of yj , rj in the iterative step.

10)Notice that p � σ−d
p � p since σ � 1. Notice also that LM � 1, so that 16L

rř
σ−(ν+d) > 16L

r2
� 4

Mr2
.
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such that {
H ◦ φ′ =: H ′ =: K ′ + ε2P ′ ,

∂y′K
′ ◦G = ∂yK, det ∂2

y′K
′ ◦G 
= 0 on D
,

(A.6)

with K ′(y′) := K(y′) + εK̃(y′) := K(y′) + ε〈P (y′, ·)〉. Moreover, letting
(
∂2
y′K

′(y′)
)−1

=: T (y′) +

ε T̃ (y′), y′ ∈ G(D
), the following estimates hold:

⎧
⎪⎨
⎪⎩

‖∂2
y′K̃‖r/2,D�

� Mp, ‖G− id‖r̃,D�
� σν+dr̄εp, ‖T̃‖D ′

�
� Lp ,

max

{
C12

C4
‖W∇φ̃ W

−1‖r̄/2,s′,D ′
�
, ‖W φ̃‖r̄/2,s′,D ′

�

}
� σdp , ‖P ′‖r̄/2,s′,D ′

�
� pP,

(A.7)

where

D ′

 := G(D
),

(
∂2
y′K

′(y′)
)−1

=: T ◦G−1(y′) + ε T̃ (y′), ∀ y′ ∈ D ′

,

W := diag(r̄−1
�d,�d) , W := diag(σ−τ r̄−1

�d,�d) .

Implementation

As in [10], we shall separate the first step from the others. Let H, K, P , ρ, s, s∗, W, P, M, L, θ,
ε be as in Section 2. Set

σ0 := (s− s∗)/2, ε0 := ε , θ0 := θ, r0 := ρ, L0 := L , M0 := M, P0 := P, W1 := W ,

λ0 := log ε−1
0 , λ∗ := C7σ

−(4ν+2d+1)
0 θ20λ

2ν
0 , θ∗ := 22ν+2d+1C2

5θ
2
0, �0 := 4σ−1

0 λ0 ,

K0 := K , P0 := P, H0 := H , D0 := D∗.

First step

Let

s1 := s0 − σ0 , ř1 :=
r0

64dθ0
, r̃1 :=

ř1σ0
32dθ0

, r1 :=
1

2
min

{
α

2d
√
2M0�ν0

, ř1

}
,

M1 :=
(
1 +

σ0
3

)
M0, L1 :=

(
1 +

σ0
3

)
L0, ε̂0 := C8σ

−(3ν+2d+1)
0 ε

1/2
0 , P1 :=

ε̂0P0

ε
,

p0 := P0max

{
8L0
r0r1

σ
−(ν+d)
0 ,

C4

2αr1
σ
−2(ν+d)
0

}
.

Lemma 2. Under the above assumptions and notations, if

α � C4

16

r0
L0

and max { e ε0, ε̂0} � 1, (A.8)

then there exist D1 ⊆ D , a real-analytic diffeomorphism

G1 : Br̃1(D
∗)→G1(Br̃1(D

∗))

and a real-analytic symplectomorphism

φ1 : Br1,s1(D1) → Br0,s0(D0) (A.9)

such that

G1(D
∗) = D1, (A.10)

∂y1K1 ◦G1 = ∂yK0, (A.11)

H1 := H0 ◦ φ1 =: K1 + ε2P1 on Br1,s1(D1) (A.12)
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and11)

D1 ⊆ Dr1 , (A.13)

‖∂2
y1K1‖r0/4,D1

� M1, ‖T1‖D1
� L1, T1 := (∂2

y1K1)
−1, (A.14)

‖P1‖r1,s1,D1 � P1, (A.15)

‖G1 − id‖r̃1,D∗ � 2σν+d
0 r1 εp0, (A.16)

‖∂zG1 − �d‖r̃1/2,D∗ � 25dC4

√
2θ0σ

τ+d
0 �−ν

0 εp0, (A.17)

max{C12C
−1
4 ‖W1∇(φ1 − id)W

−1
1 ‖r1,s1,D1 , ‖W1(φ1 − id)‖r1,s1,D1} � σd

0 εp0. (A.18)

Second step, iteration and convergence

For a given j � 1, define12)

σj :=
σ0
2j

, sj+1 := sj − σj = s∗ +
σ0
2j

, s̄j := sj −
2σj
3

, �j := 4j�0,

Mj+1 := M0

j∏
k=0

(1 +
σk
3
) < M0

√
2, Lj+1 := L0

j∏
k=0

(1 +
σk
3
) < L0

√
2,

εj :=
M0ε

2jPj

α2
, řj+1 :=

rj
64dθ0

, r̃j+1 :=
řj+1σj
32dθ0

, rj+1 :=
1

2
min

{
α

2d
√
2M0�νj

,
rj

64dθ0

}
,

Pj+1 := λ∗θ
j−1
∗

M0P
2
j

α2
, ε̂j := λ∗θ

j
∗εj, Wj+1 := diag

(
(2rj+1)

−1
�d ,�d

)
,

Wj+1 := diag
(
σ−τ
j (2rj+1)

−1
�d,�d

)
, pj := Pj max

{
8L0

√
2

rjrj+1
σ
−(ν+d)
j ,

C4

2αrj+1
σ
−2(ν+d)
j

}
.

Observe that, for any j � 1,

ε̂j+1 = λ∗θ
j+1
∗ εj+1 = λ∗θ

j+1
∗

M0ε
2j+1

Pj+1

α2
= λ∗θ

j+1
∗

M0ε
2j+1

α2
λ∗θ

j−1
∗

M0P
2
j

α2

(
λ∗ θ

j
∗ εj
)2

= ε̂2j

i.e.

ε̂j = ε̂2
j−1

1 .

Lemma 3. Assume (A.12) ÷ (A.15) with some ε 
= 0 and

max
{
e ε0 , 2

11d2θ0σ
ν+d
0 ε̂/3 , 2C6θ0ε̂1

}
� 1 . (A.19)

Then one can construct a sequence of real-analytic diffeomorphisms

Gj : Br̃j (Dj−1)→Gj(Br̃j(Dj−1)), j � 2,

and of real-analytic symplectic transformations

φj : Brj ,sj(Dj) → Brj−1,sj−1(Dj−1), (A.20)

such that

Gj(Dj−1) = Dj ⊆ Drj ,

∂yKj+1 ◦Gj+1 = ∂yKj,

Hj := Hj−1 ◦ φj =: Kj + ε2
j
Pj on Brj ,sj(Dj)

converge uniformly. More precisely, we have the following:

11)(A.17) follows trivially (A.16) using Cauchy’s estimate.
12)Notice that sj ↓ s∗ and rj ↓ 0.
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(i) the sequence Gj := Gj ◦Gj−1 ◦ · · · ◦G2 ◦G1 converges uniformly on D∗ to a lipeomorphism
Y ∗ : D∗ → D∗ := Y ∗(D∗) ⊆ D and Y ∗ ∈ C∞

W (D∗) .

(ii) ε2
j
∂β
yPj converges uniformly on D∗ × T

d
s∗ to 0, for any β ∈ N

d
0 ;

(iii) φj := φ2 ◦ · · · ◦ φj converges uniformly on D∗ × T
d to a symplectic transformation

φ∗ : D∗ × T
d into−→ Br1(D1)× T

d,

with φ∗ ∈ C∞
W (D∗ × T

d) and φ∗(y, ·) : Td
s∗ � x �→ φ∗(y, x) holomorphic, for any y ∈ D∗;

(iv) Kj converges uniformly on D∗ to a function K∗ ∈ C∞
W (D∗), with

∂y∗K∗ ◦ Y ∗ = ∂yK0 on D∗,

∂β
y∗(H1 ◦ φ∗)(y∗, x) = ∂β

y∗K∗(y∗), ∀(y∗, x) ∈ D∗ × T
d ,∀ β ∈ N

d
0.

Finally, the following estimates hold for any i � 2:13)

‖Gi − id‖r̃i,Di−1
� 2ri σ

ν+d
i−1 ε2

i−1
pi−1, (A.21)

‖∂zGi − �d‖r̃i/2,Di−1
� 25dθ0 σ

τ+d
i−1 ε2

i−1
pi−1, (A.22)

‖Pi‖ri,si,Di
� Pi , (A.23)

‖W2(φ
i+2 − φi+1)‖ri+2,si+2,Di+2

� a2

(
C6θ

1
4
0 ε̂1

)2i

, (A.24)

|W2(φ
∗ − id)| � 2σd+1

0 ε̂1
3 θ∗

on D∗ × T
d
s∗ , (A.25)

where

a2 := a1 σ
d
2 ‖W2φ2‖r2,s2,D2 .

We can now complete the proof of Theorem 1. First of all, observe that

(log t)a �
(
2a

e

)a√
t, ∀ t � e, ∀ a >

1

2
, (A.26)

and from the proof we have

εp0(3σ
−1
0 )

(A.8)

� 6dC4

√
2σ

−2(ν+d)−1
0

K0εP0

α2
�ν0 (A.27)

(A.26)

� ε̂0
(A.8)

� 1, (A.28)

and, for j � 1,

ε2
j
pj(3σ

−1
j ) � ε̂2

j−1

1 /θ∗. (A.29)

Let φ∗ := φ1 ◦ φ∗. Thus, uniformly on D∗ × T
d
s∗,

14)

|W1(φ∗ − id)| � |W1(φ1 ◦ φ∗ − φ∗)|+ |W1(φ
∗ − id)|

� ‖W1(φ1 − id)‖r1,s1,D1
+ ‖W1W

−1
2 ‖ |W2(φ

∗ − id)|

� σd
0 εp0 +

2σd+1
0 ε̂1
3 θ∗

13)Observe that (A.22) follows (A.21) using Cauchy’s estimate.

14)Observe that λ2ν
0 ε0

(A.19)

� (4ν)2ν
√
ε0

(A.19)

� (4ν)2ν(211d2C5)
−1/2θ−1

0 σ
(ν+d+1)/2
0 .
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(A.26)+(A.27)

� 6dC4

√
2σ

−(2ν+2d+1)
0 ε0�

ν
0 +

( ν

2 e

)ν
C7σ

−(6ν+4d+2)
0 θ20�

ν
0ε0

� C9θ
2
0�

ν
0ε0 ,

i. e., (2.10). Moreover, setting G0 := id, we have, for any i � 3,

‖Gi − id‖D∗ �
i−1∑
j=0

‖Gj+1 −Gj‖D∗ =

i−1∑
j=0

‖Gj − id‖Dj−1

(A.21)+(A.16)

� 2

i−1∑
j=0

rj+1σ
ν+d
j ε2

j
pj

� 2 r1σ
ν
0

∞∑
j=0

σd
j ε

2j
pj

(A.28)+(A.29)

� 2r1σ
ν
0 · C9θ

2
0�

ν
0ε0 ,

and then, passing to the limit, we get

‖Y ∗ − id‖D∗ � 22τ+1/2d−1C9σ
ν
0θ

2
0

εP0

α
,

i. e., (2.8). Now, observing that, for any j � 1, ∇φj+1 = ∇φj∇φj+1, ‖WjW
−1
j+1‖ = 1 and

‖Wj+1W
−1
j ‖ � C5 θ0, we obtain

‖W1(∇φj+1 − �2d)W
−1
j+1‖∗ �

(
‖W1(∇φj − �2d)W

−1
j ‖∗ + 1

)(
‖Wj+1(∇φj+1 − �2d)W

−1
j+1‖∗ + 1

)

− 1

�
(
‖W1(∇φj − �2d)W

−1
j ‖∗ + 1

)( C4

C12
σd
j ε

2j
pj + 1

)
− 1,

which iterated yields15)

‖W1(∇φj+1 − �2d)W
−1
j+1‖∗ �

∞∏
j=1

(
C4

C12
σd
j−1ε

2j−1
pj−1 + 1

)
− 1

� exp

⎛
⎝

∞∑
j=1

C4

C12
σd
j−1ε

2j−1
pj−1

⎞
⎠− 1

(A.28)+(A.29)

� exp(C4C9C
−1
12 θ

2
0�

ν
0ε0)− 1

� exp((4d)−1)C4C9C
−1
12 θ

2
0�

ν
0ε0

(2.4)+(A.26)

� 1

4(18d3 + 70)θ
,

and letting j → ∞, we obtain

‖∂xu∗‖∗ � exp((4d)−1)C4C9C
−1
12 θ

2
0�

ν
0ε0 �

1

4(18d3 + 70)θ
, (A.30)

i. e., (2.11).

Next, we show that LipD∗(Y ∗ − id) < 1, which will imply that16) Y ∗ : D∗ onto−→ D∗ is a lipeo-
morphism. Observe first that, for any j � 1, 0 < r < r̃j/2, yj−1 ∈ Dj−1 and any y ∈ Br(yj−1), we
have

|Gj(y)−Gj(yj−1)| � |(Gj(y)− y)− (Gj(yj−1)− yj−1)|+ |y− yj−1|
(A.22)+(A.19)

� 1

2
|y− yj−1|+ r < 2r,

so that

Gj(Br(Dj−1)) ⊆ B2r(Gj(Dj−1)) = B2r(Dj). (A.31)

15)Use: et − 1 � t et, for any t � 0.
16)See Proposition II.2 in [20].
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Thus, as the sequence r̃j is strictly decreasing, for any j � k � 1, Gk is well-defined on
B2−j−1r̃j+1

(D0) and we have

Gk(B2−j−1r̃j+1
(D0))

(A.31)

⊆ Gj ◦ · · · ◦G2(B2−j r̃j+1
(D1))

(A.31)

⊆ · · ·
(A.31)

⊆ B2k−j−1r̃j+1
(Dk) ⊆

⊆ B2−1r̃k+1
(Dk).

(A.32)

Therefore, for any j � 2,

‖Gj − id‖L,B
2−j−1 r̃j+1

(D∗) + 1 = ‖(Gj − id) ◦Gj−1 + (Gj−1 − id)‖L,B
2−j−1 r̃j+1

(D0) + 1

� (‖Gj − id‖L,Gj−1(B r̃j+1

2j+1

(D0)) + 1)(‖Gj−1 − id‖L,B r̃j+1

2j+1

(D0) + 1)

(A.32)

� (‖Gj − id‖L,B r̃j
2

(Dj−1) + 1)(‖Gj−1 − id‖L,B r̃j

2j

(D0) + 1)

= (‖∂zGj − �d‖r̃j/2,Dj−1
+ 1)(‖Gj−1 − id‖L,B r̃j

2j

(D0) + 1)

(A.22)+(A.17)

� (25dθ0 σ
τ+d
j−1 ε2

j−1
Lj−1 + 1)(‖Gj−1 − id‖L,B r̃j

2j

(D∗) + 1),

which iterated leads to17)

‖Gj − �d‖L,D∗ � −1 + (1 + (32d)−1)

∞∏
i=2

(25dθ0σ
τ+d
j−1 ε

2i−1
Li−1 + 1)

� −1 + exp((32d)−1 + 25dθ0

∞∑
i=1

στ+d
i ε2

i
Li)

� −1 + exp((32d)−1 + 25dθ0σ
τ
1

∞∑
i=1

σd
i ε

2iLi)

� −1 + exp

(
(32d)−1 + 25dθ0σ

τ
1

2σd+1
0 ε̂1
3 θ∗

)

(A.19)
< −1 + exp

(
(32d)−1 + (32d)−1

)
� e1/(16d)/(16d) <

1

4d
. (A.33)

Hence, letting j → ∞, we find that Y ∗ is Lipschitz continuous, with LipD∗(Y ∗ − id) satisfying (2.9)
as

25dC4

√
2θ0σ

τ+d
0 �−ν

0 εL0 +
∑
j�2

25dθ0 σ
τ+d
j−1 ε2

j−1
Lj−1

(A.19)

� c2 θ
3 (s− s∗)

−1 MεP

α2

(
log

α2

MεP

)ν

.

Next, we show that φ∗ ∈ C∞
W (D∗ × T

d). For any n, j � 1, we have

‖Gn+j −Gj‖D∗ �
n+j−1∑
k=j

‖Gk+1 −Gk‖D∗

(A.21)

�
n+j−1∑
k=j

2rk+1σ
ν+d
k ε2

k
Lk

� 2rj+1σ
ν
j

∑
k�1

σd
kε

2kLk

17)Use, again, et − 1 � t et , ∀ t � 0, and 25dC4

√
2θ0σ

τ+d
0 	−ν

0 εL0

(A.27)

� 27d2C2
4θ0σ

−(ν+d+1)
0 ε0

(A.19)
< (32d)−1.
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� 2rj+1σ
ν
j

2σd+1
0 ε̂1
3 θ∗

(A.19)
< σν

j r̃j+1 .

Now, letting n → ∞, we get

‖Y ∗ −Gj‖D∗ < σν
j r̃j+1 <

r̃j+1

4
. (A.34)

Hence18), for any j � 1,

B r̃j+1
4

(
Gj(D∗)

) (A.34)

⊆ B r̃j+1
2

(D∗)
(A.34)

⊆ Br̃j+1(Dj) ⊆ Brj(Dj) . (A.35)

Therefore, for any n � 1, we have

∑
j�3

‖W2(φ
j − φj−1)‖r̃j+1/2,sj ,D∗

(
r̃j+1

2

)−n (A.35)

� (212d2θ20)
n
∑
j�3

‖W2(φ
j − φj−1)‖rj ,sj ,Dj

(rjσj)
−n

(A.24)

� (212d2θ20σ1r1)
na2
∑
j�3

(
C6θ

1
4
0 ε̂1

)2j−2

(2a1)
n(j−1)

< +∞ ,

since, for j sufficiently large,
(
C6θ

1
4
0 ε̂1

)2j−1

(2a1)
nj <

(√
2C6θ

1
4
0 ε̂1

)2j−1
(A.19)

� (1/
√
2)2

j−1
.

Thus, letting Φj := φ1 ◦ φj and using the mean value theorem, we have

∑
j�2

‖W2(Φj − Φj−1)‖r̃j+1/2,sj ,D∗

(
r̃j+1

2

)−n

� ‖W2∇φ1W
−1
2 ‖r1,s1,D1

×

×
∑
j�3

‖W2(φ
j − φj−1)‖r̃j+1/2,sj ,D∗

(
r̃j+1

2

)−n

< ∞.

Consequently, writing

Φj = (Φj − Φj−1) + · · ·+ (Φ3 −Φ2) , j � 2,

and invoking Lemma 8 (see Appendix B.7), we conclude that φ∗ = limΦj ∈ C∞
W (D∗ × T

d).

Now we prove Y ∗ ∈ C∞
W (D∗) analogously. For any j � 2 and n � 1, we have

Gj = (Gj −Gj−1) + · · ·+ (G2 −G1),

and, thanks to (A.31), Gj+1 −Gj is well-defined on B2−j−2 r̃j+2
(D∗), for any j � 1, so that

∑
j�1

‖Gj+1 −Gj‖ r̃j+2

2j+2 ,D
∗

(
r̃j+2

2j+2

)−n

=
∑
j�1

(2j+2r̃−1
j+2)

n‖(Gj+1 − id) ◦Gj‖ r̃j+2

2j+2 ,D
∗

(A.32)

�
∑
j�2

(2j+2r̃−1
j+2)

n‖Gj+1 − id‖r̃j+1,Dj

� 2
∑
j�1

(2j+2r̃−1
j+2)

nrj+1σ
ν+d
j ε2

j
Lj

18)Recall that, by definition, Gj(D∗) = Dj and Y ∗(D∗) = D∗.
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(A.19)
< ∞ ,

which proves that Y ∗ ∈ C∞
W (D∗).

Finally, we prove Kolmogorov’s non-degeneracy19) of the Kolmogorov tori φ∗(D∗ × T
d).

Fix y∗ ∈ D∗. Let y0 := (Y ∗)−1(y∗) and

ε̂ :=
1

4(18d3 + 70)θ
.

Since ‖∂xu∗‖∗
(2.11)

� ε̂ < 1/2, the map x �−→ x+ u∗(y∗, x) is a diffeomorphism of Td. Letting

(∂x(id+ u∗)(y∗, x))
−1 =: �d +A(y∗, x) ,

we have

‖A‖∗ � 2‖∂xu∗‖∗
(2.11)

� 2ε̂ < 1 ; ‖v∗‖∗
(2.11)

� C9

√
2

4d
θ2

εP

α

(2.4)

� C4C9

√
2

25dC∗
ρ <

ρ

8
. (A.36)

Moreover, write Kyy(y∗) = Kyy(y0)(�d +Kyy(y0)
−1(Kyy(y∗)−Kyy(y0))) and observe

dist(y0, ∂D) � ρ and |y∗ − y0|
(2.8)+(2.4)

� 2τ−5C4C9

√
2

dC∗
ρ <

ρ

64d
,

so that

dist(y∗, ∂D) � ρ

2
. (A.37)

Thus, by the mean value theorem, we have

‖Kyy(y0)
−1(Kyy(y∗)−Kyy(y0))‖

(A.37)

� T
d2K

ρ/2
|y∗ − y0|

(2.8)

� 2τ+11/2d2C9 θ
3 KεP0

αρ

(2.4)

� 2τ+15/2d2C4C9

C∗
� 1

2
.

Hence, Kyy(y∗) is invertible and ‖Kyy(y∗)−1‖ � 2‖Kyy(y0)
−1‖ � 2T.

In [17] it is proven that the map

φy∗(y, x) := (y∗ + v∗(y∗, x) + y +AT y, x+ u∗(y∗, x))

is symplectic. Then

H ◦ φy∗(y, x) = Ey∗ + ωy∗ · y +Qy∗(y, x)

with

Ey∗ = K(y∗), ωy∗ := Ky(y0), 〈Qy∗
yy(0, ·)〉 = Kyy(y∗) + 〈M〉 ,

M := ∂2
y

(
K(y∗ + v∗ + y +AT y)− 1

2
yTKyy(y∗)y

)∣∣∣
y=0

+ ∂2
y(εP ◦ φ)

∣∣∣
y=0

,

‖Kyy(y∗)
−1M‖∗ � 2TM

(A.36)

� 2(18d3 + 70)ε̂θ = 1/2,

which shows that 〈Qy∗
yy(0, ·)〉 is invertible. �

Remark 2. Here we list all the constants, which appear in the above proof and give an explicit
expression for the constants ck’s appearing in the statement of Theorem 1.
Recall that τ > d− 1 � 1 and notice that all the Ci’s are greater than 1 and depend only upon d
and τ :

ν := τ + 1, C0 := 4

(
3

2

)2ν+d ∫

Rd

(
|y|ν1 + d|y|2ν1

)
e−|y|1dy, C1 := 2

(
3

2

)ν+d ∫

Rd

|y|ν1 e−|y|1dy,

19)See Appendix B.9.
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C2 := 23dd, C3 := d2C2
1 + 6dC1 + C2, C4 := max

{
(1 + d2)C0,C3

}
, C5 := max

{
22ν , 27d

}
,

C6 :=
(
2−dC5

) 1
4
, C7 := 3 · 24ν+2d+3d

√
2max

{
22ν+6d,C4/2

}
C5, C8 := 3 · 23ν+1νν e−νdC4

√
2,

C9 := 3 · 2−(4ν+2d)dC4

√
2 + 2−ννν e−νC7C8, C10 := 2

(
3

2

)ν+d+1 ∫

Rd

|y|ν+1
1 e−|y|1dy,

C11 := 8

(
3

2

)3τ+d+2 ∫

Rd

(2|y|τ1 + 3|y|2τ+1
1 + |y|3τ+2

1 ) e−|y|1dy , C12 := max{2C10 , 2C11 , 12C0} ,

C∗ := max{211ν+6d+4νν e−νC2
5C6C7C8, (2

ν/2−2d+2(18d3 + 70)νν e−νC4C9C
−1
12 )

2, 2τ+8d2C4C9

√
2} .

Then

c∗ := C∗ , c0 := 2−4C4 , c1 := 2τ−1/2d−1C9 ,

c2 := 22ν+6dC9 , c3 := C9 , c4 := e(4d)
−1
C4C9C

−1
12 . (A.38)

Remark 3. There is a small flaw in [10]: The parameter20) L chosen in [10, Lemma 1] is not big
enough to ensure that the new perturbation P ′ and the symplectic change of coordinates φ are
well-defined on Dr̄/2,s′(D

′

). The right choice is the following:

L := Pmax
{40dT2K

rr̄σν+d
,

2C4

αr̄σ2(ν+d)

}
, W := diag(r̄−1

�d, �d), ε̂0 := C9 σ
−2(ν+d)−1
0 ε0 θ

2
0 λν

0 ,

Lj :=
Pj

rj+1
max

{80d√2T0θ0

rjσ
ν+d
j

,
C4

ασ
2(ν+d)
j

}
, Wj := diag(2r−1

j+1�d, �d), ε̂j+1 :=
K0ε

2j+1
Pj+1

α2
,

Pj+2 := λ∗θ
j+1
∗

K0P
2
j+1

α2
, ε̂j+1 := λ∗θ

j+2
∗ εj+1 .

Of course, one needs then to change accordingly (and in a straightforward way) the constants
involved, as follows:

ν := τ + 1

C0 := 4
√
2

(
3

2

)2ν+d ∫

Rd

(
|y|ν1 + |y|2ν1

)
e−|y|1dy , C1 := 2

(
3

2

)ν+d ∫

Rd

|y|ν1 e−|y|1dy ,

C2 := 23dd , C3 :=
(
d2C2

1 + 6dC1 + C2

)√
2 , C4 := max

{
6d2C0, C3

}
,

C5 :=
3 · 25d

5
, C6 := max

{
22ν , C5

}
, C7 := 3d · 24ν+2

√
2max

{
640d2 , C4

}
,

C8 :=
(
2−dC6

)1/8
, C9 := 3d · 22ν+2

√
2max

{
80d

√
2 , C4

}
,

C10 := (4ν e−1)2ν
(
1 + 24ν+2d+2(ν e−1)2νC2

6C7

)
C9/(3d

2) , C11 := (5d · 23(ν+1))−1C10 ,

C12 := 22(5ν+4d+2) C2
6 C7 C8 C9 , C13 := C10 + C11 , C14 := C12 ,

C15 := 18d3 + 70 , C16 := (6ν e−1)4ν , C := max{3C10, C13} ,

C∗ := max
{
C16C

2/3
14 , 6C15C16C

2, 22(4ν+2d+1)C16C
2
9, C

2
10

}
.

The smallness condition (14) and the estimate (16) become, respectively,

α � r

T
and ε � ε∗ :=

(s− s∗)a

C∗ θ6
,

20)In the present remark, we will adopt the notations of [10].
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and

max
{
‖u∗‖s∗ , ‖∂xu∗‖s∗ ,

K

α
(log ε−1)ν ‖v∗‖s∗

}
� C θ3

(s − s∗)a/2
ε (log ε−1)ν � 1

4 e
,

where a := 6ν + 3d+ 2.

APPENDIX B. TOOLS

B.1. Classical Estimates (Cauchy, Fourier)

Lemma 4 ([7]). Let p ∈ N, r, s > 0, y0 ∈ C
d and let f be a real-analytic function Br,s(y0) with

‖f‖r,s := supBr,s(y0) |f | < ∞. Then

(i) For any multi–index (l, k) ∈ N
d × N

d with |l|1 + |k|1 � p and for any 0 < r′ < r, 0 < s′ < s,21)

‖∂l
y∂

k
xf‖r′,s′ � p! ‖f‖r,s(r − r′)|l|1(s− s′)|k|1 .

(ii) For any k ∈ Z
d and any y ∈ Br(y0)

|fk(y)| � e−|k|1s‖f‖r,s.

B.2. An Inverse Function Theorem

Theorem B.1. Let D be a convex subset of C
d, y0 ∈ D and let f ∈ C1(D,Cd) such that22)

det f ′(y0) 
= 0.Assume

� := sup
y∈D

‖�− Tf ′(y)‖ < 1 , T := (f ′(y0))
−1 . (B.1)

Then det f ′(y) 
= 0, for each y ∈ D and

‖(f ′(y))−1‖ � λ :=
‖T‖
1− �

. (B.2)

Moreover, f is injective on D and its inverse function g : f(D)
onto→ D satisfies

Lipf(D)(g) � λ . (B.3)

Furthermore, if D := Br(y0), ρ := r/λ and z0 := f(y0), then

Bρ(z0) ⊆ f(D) . (B.4)

Proof. For every y ∈ D, we have f ′(y) = f ′(y0)(�−A), where A := �− Tf ′(y) with ‖A‖ � � < 1.
Thus, f ′(y) is invertible and

‖(f ′(y))−1‖ = ‖(
∑
n�0

An)T‖ � ‖T‖
1− �

,

proving (B.2). Now, consider the auxiliary map F : D � y �−→ y − Tf(y). We have F ∈ C1(D,Cd)

and supD ‖F ′‖
(B.1)

� �. Thus, for every y, ȳ ∈ D with y 
= ȳ, we have

‖T‖‖f(y)− f(ȳ)‖
(B.1)

�
∥∥T (f(y)− f(ȳ)

)∥∥
= ‖(y − ȳ) + (F (ȳ)− F (y))‖
� ‖y − ȳ‖ − ‖y − ȳ‖ sup

D
‖F ′‖

� ‖y − ȳ‖(1− �)
(B.1)
> 0 , (B.5)

which shows that f is injective on D and, hence, that (B.3) holds.

21)As usual, ∂l
y := ∂|l|1

∂y
l1
1 ···∂yld

d

, ∀ y ∈ R
d, l ∈ Z

d.

22)f ′ being the Jacobian matrix of f .
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To show (B.4) in the case D := Br(y0) and ρ := r/λ, fix η ∈ C
d with ‖η − z0‖ < ρ. We have to

show that there exists ȳ ∈ D such that f(ȳ) = η. Define the map

Φ : y ∈ D �→ Φ(y) := y − T
(
f(y)− η

)
∈ Y . (B.6)

Then Φ is a contraction on D. Indeed, Φ is C1, Φ′(y) = �− Tf ′(y) and

LipD Φ = sup
D

‖Φ′‖ = � < 1. (B.7)

Furthermore, Φ : D → D, since, if y ∈ D, then

‖Φ(y)− y0‖ � ‖Φ(y)− Φ(y0)‖+ ‖Φ(y0)− y0‖
(B.7)

� � r + ‖T‖‖η − z0‖ < � r + ‖T‖ ρ = r .

Hence, by the contraction lemma, Φ has a (unique) fixed point ȳ ∈ D, but Φ(ȳ) = ȳ means f(ȳ) = η.
�

B.3. Internal Coverings

Given any non-empty subset D of Rd, and given r > 0, an r-internal covering of D is a subset
P of D such that D ⊆

⋃
y∈P Br(y); the r-internal covering number of D, denoted N int

r (D), is

the minimal cardinality of any r-internal cover.

In [5] the following simple upper bound (having fixed the sup-norm in R
d) on N int

r (D) for
bounded sets D is given:

Lemma 5. Let D ⊆ R
d be a non-empty bounded set. Then, for any r > 0, one has23)

N int
r (D) �

([diamD

r

]
+ 1
)d

. (B.8)

For convenience of the reader, we reproduce here the elementary proof of the lemma.

Proof. It is enough to produce an r-internal cover of D with cardinality N bounded by the
right-hand side of (B.8). If D is a singleton, the claim is obvious with N = 1. Assume now that

δ := diamD > 0, and let M := [δ/r] + 1 and zi = inf{xi| x ∈ D}. Then D ⊆ K := z + [0, δ]d and
one can find 0 < r′ < r close enough to r so that �δ/r′� � [δ/r] + 1 = M . Then one can cover K

with Md closed, contiguous cubes Kj , 1 � j � Md, with edge of length r′. Let ji be the indices such
that Kji ∩D 
= ∅ and pick a yi ∈ Kji ∩ E; let 1 � N � Md be the number of such cubes. Observe

that, since we have chosen the sup-norm in R
d, we have Kji ⊆ Br(yi) and (B.8) follows. �

B.4. Extensions of Lipschitz Continuous Functions

Here we recall a theorem due to Minty according to which a Lipschitz continuous function can
be extended keeping unchanged both the sup-norm and the Lipschitz constant.

Theorem B.2 (G. J. Minty [13]). Let (V, 〈· , ·〉) be a separable inner product space, ∅ 
= A ⊆ V ,

L > 0, 0 < α � 1 and g : A → R
d a (L,α)-Lipschitz –Hölder continuous function on A, namely, let

g satisfy

|g(x1)− g(x2)|2 � L ‖x1 − x2‖α, ∀ x1, x2 ∈ A , (B.9)

where ‖ · ‖ denotes the norm on V induced by the inner product. Then there exists a global (L,α)-

Lipschitz –Hölder continuous function24) G : V → R
d such that G|A = g. Futhermore, G can be

chosen in such a way that G(V ) is contained in the closed convex hull of g(A). Hence, in particular,

sup
x∈V

|G(x)|2 = sup
x∈A

|g(x)|2 and sup
x1 �=x2∈V

|G(x1)−G(x2)|2
‖x1 − x2‖α

= sup
x1 �=x2∈A

|g(x1)− g(x2)|2
‖x1 − x2‖α

. (B.10)

23)[x] denotes the integer-part (or “floor”) function max{n ∈ Z| n � x}, while �x� denote the “ceiling function”
min{n ∈ Z| n � x}; observe that �x� � [x] + 1.

24)I. e., satisfying (B.9) on V .
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B.5. Lebesgue Measure and Lipschitz Continuous Map

Lemma 6. Let ∅ 
= A ⊆ R
d be a Lebesgue-measurable set and f : A → R

d be Lipschitz continuous.
Then

meas
(
f(A)

)
� LipA(f)

d meas (A) (B.11)

and25)

|meas (f(A))− meas (A)| � ((1 + δ)d − 1)meas (A) , (B.12)

where

δ := LipA(f − id). (B.13)

Proof. Eq. (B.11) is standard: see, e. g., Theorem 2, Section 2.2 and Theorem 1, Section 2.4 in [11].

Let us prove (B.13). By Theorem B.2, f − id can be extended to a Lipschitz continuous function

g : Rd �� with

Lip(g) = LipA(f − id) = δ .

By Rademacher’s theorem, there exists a set N ⊆ R
d with meas (N) = 0 such that g is differentiable

on R
d \N and

‖gy‖Rd\N � LipRd\N (g) � Lip(g) = δ .

Now pick y ∈ R
d \N . Then

|det(�d + gy(y))− 1| =
∣∣∣∣
∫ 1

0

d

dt
det(�d + tgy)dt

∣∣∣∣ =
∣∣∣∣
∫ 1

0
tr ( Adj (�d + tgy)gy) dt

∣∣∣∣

�
∫ 1

0
d‖�d + tgy‖d−1‖gy‖dt �

∫ 1

0
d (1 + δt)d−1 δdt = (1 + δ)d − 1.

Thus, by the change of variable (or area) formula26), we have

|meas (f(A))− meas (A)| = |meas ((id + g)(A))− meas (A)| =
∣∣∣∣∣
∫

(id+g)(A)
dy −

∫

A
dy

∣∣∣∣∣

=

∣∣∣∣∣
∫

(id+g)(A\N)
dy −

∫

A\N
dy

∣∣∣∣∣ =
∣∣∣∣∣
∫

A\N
|det(�d + gy)|dy −

∫

A\N
dy

∣∣∣∣∣

�
∫

A\N
|det(�d + gy)− 1|dy � ((1 + δ)d − 1)meas (A).

�

B.6. Lipeomorphisms “Close” to Identity

Lemma 7. Let g : Cd → C
d be a Lipschitz continuous function such that

δ := sup
Rd

|g − id| < ∞ , (B.14)

θ := Lip
Rd(g − id) < 1. (B.15)

Then g has a Lipschitz global inverse G satisfying

sup
Rd

|G− id| � δ , (B.16)

25)Inequality (B.12) is sharp as shown by the example f = (1 + δ) id.
26)See [11], §3.3.
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LipRd(G− id)‖ <
1

1− θ
. (B.17)

Furthermore, for any ∅ 
= A ⊆ C
d,

A ⊆ g
(
Bδ(A)

)
. (B.18)

Proof. Let f := g − id, then, for any xi ∈ R
d, one has

|g(x1)− g(x2)| =
∣∣x1 − x2 +

(
f(x1)− f(x2)

)∣∣ (B.15)> |x1 − x2| − θ|x1 − x2|
= (1− θ)|x1 − x2| ,

which proves injectivity of g and that

inf
x1 �=x2

|g(x1)− g(x2)|
|x1 − x2|

� 1− θ > 0 . (B.19)

Let us now prove (B.18). Let ȳ ∈ A. It is enough to show that there exists |y| � δ such that
ȳ = g(y + ȳ), i.e., y = −f(y + ȳ), i.e., y is a fixed point of the map

h : Bδ(0) � y �→ −f(y + ȳ).

But, for any y ∈ Bδ(0),

|h(y)| = |f(y + ȳ)| � ‖f‖Rd

(B.14)

� δ ,

i.e., h : Bδ(0) → Bδ(0). Moreover, h is a contraction since Lip
Bδ(0)

(h) � Lip
Rd(f)

(B.15)
< 1. Thus, by

Banach’s fixed point theorem, we see that (B.18) holds.

From (B.18) it follows at once that g is onto R
d.

Now (B.16) and (B.17) follow easily from (B.14) and (B.19), respectively. �

B.7. Whitney Smoothness

Definition 1. Let A ⊆ R
d be non-empty and n ∈ N0, m ∈ N. A function f : A → R

m is said to
be Cn on A in the Whitney sense, with Whitney derivatives (fν)ν∈Nd

0,|ν|1�n , f0 = f , and we write

f ∈ Cn
W (A,Rm) if, for any ε > 0 and y0 ∈ A, there exists δ > 0 such that, for any y, y′ ∈ A∩Bδ(y0)

and ν ∈ N
d
0, with |ν|1 � n,

∣∣∣fν(y′)−
∑

μ∈Nd
0

|μ|1�n−|ν|1

1

μ!
fν+μ(y)(y

′ − y)μ
∣∣∣ � ε|y′ − y|n−|ν|1 . (B.20)

Lemma 8 ([8, 12]). Let A ⊆ R
d be non-empty and n ∈ N0. For m ∈ N, let fm be a real-analytic

function with holomorphic extension to Drm(A), with rm ↓ 0 as m → ∞. Assume that

a :=

∞∑
m=1

‖fm‖rm,A r−n
m < ∞, ‖fm‖rm,A := sup

Bd
rm

(A)

|fm| . (B.21)

Then f :=

∞∑
m=1

fm ∈ Cn
W (A,R) with Whitney derivatives fν :=

∞∑
m=1

∂ν
y fm.

For completeness, we recall the beautiful Whitney extension theorem.

Theorem B.3 ([19]). Let A ⊆ R
d be a closed set and f ∈ Cn

W (A,R), n ∈ N0. Then there exists

f̄ ∈ Cn(Rd,R), real-analytic on R
d \A and such that Dν f̄ = fν on A, for any ν ∈ N

d
0, with |ν|1 � n.
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B.8. Measure of Tubular Neighbourhoods of Hypersurfaces

Recall the definitions of minimal focal distance and of inner domains given in Section 3.2.
The first elementary remark is that, for smooth domains, taking ρ–inner domains is the inverse

operation of taking ρ-neighbourhood:

Lemma 9. Let D ⊆ R
d be an open and bounded set with C2 boundary ∂D = S compact and

connected. Then, for any 0 < ρ′ < ρ � minfoc (S), one has

Bρ

(
D ′′

ρ

)
= D , and Bρ−ρ′

(
D ′′

ρ

)
= D ′′

ρ′ . (B.22)

Proof. We start proving the first part of (B.22). By definition, Bρ

(
D ′′

ρ

)
⊆ D . Thus, it remains only

to show that D \ D ′′
ρ ⊆ Bρ

(
D ′′

ρ

)
.

Let then y0 ∈ D \ D ′′
ρ . As S is compact and dist2 is continuous, there exists ȳ0 ∈ S such that

dist2(y0,R
d \ D

)
= dist2(y0, S

)
= |y0 − ȳ0|2. The vector ν := (y0 − ȳ0)/|y0 − ȳ0|2 is the inward unit

normal to ∂D = S at ȳ0. Indeed, for any smooth curve γ : [0, 1] → S with γ(0) = ȳ0, 0 is a minimum
of the smooth map f(t) := |γ(t)− y0|22. Thus,

0 = f ′(0) = 2γ̇(0) · (ȳ0 − y0).

which, by the arbitrariness of γ, implies that the line (ȳ0y0) is perpendicular to the tangent space to
S at ȳ0 and, therefore ν is the inward unit normal to ∂D at ȳ0. Let y1 := ȳ0 + ρν. By assumption,
we have dist2(y1, S

)
= ρ, and, therefore, y1 ∈ D . In addition, y1 ∈ D ′′

ρ . Indeed, for any y ∈ Bρ(y1),

dist2
(
y,Rd \D

)
� dist2

(
y1,R

d \D
)
− |y1 − y|2 = dist2

(
y1, S

)
− |y1 − y|2 = ρ− |y1 − y|2 > 0. Thus,

as Rd \ D is a closed set, y 
∈ R
d \ D , i. e., y ∈ D . Hence, Bρ(y1) ⊆ D , i.e., y1 ∈ D ′′

ρ . In particular,

the argument above shows that:27) for any y ∈ R
d, dist2

(
y,Rd \ D

)
� ρ implies that y ∈ D ′′

ρ . Thus,

as y0 ∈ D \ D ′′
ρ , we have dist2

(
y0,R

d \ D
)
< ρ, which means y0 is in the open segment (ȳ0, y1).

Therefore, |y0 − y1|2 < |ȳ0 − y1|2 = ρ, i.e., y0 ∈ Bρ(y1) ⊆ Bρ(D
′′
ρ ).

We now prove the second part of (B.22). We have Bρ−ρ′
(
D ′′

ρ

)
⊆ D ′′

ρ′ . Indeed, for any y0 ∈ D ′′
ρ ,

y1 ∈ Bρ−ρ′(y0) and y ∈ Bρ′(y1),

|y − y0| � |y − y1|+ |y1 − y0| < ρ′ + (ρ− ρ′) = ρ i.e., y ∈ Bρ(y0),

which implies Bρ−ρ′
(
D ′′

ρ

)
⊆ D ′′

ρ′ . It remains to show that D ′′
ρ′\D ′′

ρ ⊆ Bρ−ρ′
(
D ′′

ρ

)
. The proof follows

analogously to the previous one. Let y0 ∈ D ′′
ρ′\D ′′

ρ and ȳ0 ∈ S such that dist2(y0,R
d \ D

)
=

dist2(y0, S
)
= |y0 − ȳ0|2. Then ρ′ � |y0 − ȳ0|2 < ρ, and the vector ν := (y0 − ȳ0)/|y0 − ȳ0|2 is the

inward unit normal to ∂D = S at ȳ0. Set y
′
1 := ȳ0+ ρ′ν. Thus, |y′1 − ȳ0|2 = ρ′ � |y0 − ȳ0|2 and, hence,

y′1 ∈ D ′′
ρ′ and y′1 is in the semi-open segment (ȳ0, y0]. Therefore, |y′1 − y0|2 = |y0 − ȳ0|2 − |y′1 − ȳ0|2 <

ρ− ρ′. Hence, y0 ∈ Bρ−ρ′(y
′
1) ⊆ Bρ−ρ′(D

′′
ρ′), i.e., D ′′

ρ′\D ′′
ρ ⊆ Bρ−ρ′

(
D ′′

ρ

)
. �

The next result gives a precise evaluation of tubular domains in the case where the metric is the
Euclidean one. Define

Tρ(S) := {u ∈ R
d : dist2(u, S) < ρ} . (B.23)

Lemma 10. Let D ⊆ R
d be a bounded set with C2 boundary ∂D = S compact and connected. Then,

for any 0 < ρ � minfoc (S), then,

meas (Tρ(S)) �
2

d

(1 + ρκ)d − 1

κ
Hd−1(S), (B.24)

where κ := supS max1�j�d−1 |κj | with κj the principal curvatures of S, while Hd−1 denotes the
(d− 1)-dimensional Hausdorff measure (“surface area”).

27)Actually, one checks easily that ∂D ′′
ρ = {y ∈ R

d : dist2
(
y,Rd \ D

)
= ρ} and int (D ′′

ρ ) = {y ∈ R
d : dist2

(
y,Rd \

D
)
> ρ}, int (D ′′

ρ ) being the interior of D ′′
ρ .
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Proof. 28) We will estimate the “inner tubular neighbourhoods”

T′
ρ(S) := {y ∈ D : dist2(y, S) < ρ},

as the argument for “outer tubular neighbourhood” {y /∈ D : dist2(y, S) < ρ} is completely analo-
gous.
Since S is compact and connected, we may assume that S = f−1({0}) with f ∈ C2(Rd,R) and 0 a
regular value for f . Set

ν(x) =
∇f

|∇f |2
, | · |2 := dist2(·, 0) ,

and replacing eventually f by −f , we can assume that ν is the inwards unit normal vector field of
S. Let {φj : Uj → R

m}pj=1 be an atlas of S,

Ψj(u, t) := φj(u) + tν(φj(u)), Oj := Ψj(Uj × [0, ρ)),

and observe that29)

T′
ρ(S) =

p⋃
j=1

Oj .

Let {ψj}pj=1 be a partition of unity subordinated to the open covering of {Oj}pj=1 of T′
ρ(S), i. e.,

(i) ψj ∈ C∞
c (T′

ρ(S)) ;

(ii) 0 � ψj � 1 ;

(iii) suppψj ⊆ Oj ;

(iv)

p∑
j=1

ψj ≡ 1 on T′
ρ(S) .

Given 1 � j � p, define nj : Uj −→ S
d = {x ∈ R

d : |x|2 = x21 + · · ·+ x2d = 1} ⊆ R
d as

nj := ν ◦ φj ,

and Kj : Uj −→ T ∗S such that30)

Kj(u) := −ν ′(φj(u)).

Then Kj is symmetric31) and therefore diagonalizable, with eigenvalues κi ◦ φ−1
j , 1 � i � d− 1, and

satisfies

∂nj

∂u
= −Kj

∂φj

∂u
. (B.25)

Thus, recalling that 0 = ∂xν
2 = 2ν ′ · ν, we have

meas (T′
ρ(S)) =

p∑
j=1

∫

Oj

ψj dudt

=

p∑
j=1

∫

Ψj(Uj×[0,ρ))
ψj dudt

28)Compare [18], Ch. 1.
29)As S =

⋃p
j=1 φj(Uj), we have Tρ(S) =

⋃p
j=1 Oj for any 0 < ρ � minfoc (S).

30)T ∗S being the cotangent bundle of S.
31)Kj is actually the Weingarten map Wx = −ν′(x) “written in the local chart” (Uj , φj).

REGULAR AND CHAOTIC DYNAMICS Vol. 26 No. 1 2021



V. I. ARNOLD’S “GLOBAL” KAM THEOREM AND GEOMETRIC MEASURE ESTIMATES 87

=

p∑
j=1

∫

Uj×[0,ρ)
Ψ∗

j(ψjdudt)

=

p∑
j=1

∫

Uj×[0,δ)
ψj ◦Ψj

∣∣∣∣det
(

∂Ψj

∂(u, t)

)∣∣∣∣ dudt

(B.25)
=

p∑
j=1

∫

Uj×[0,ρ)
ψj ◦Ψj

∣∣∣∣det
[
∂φj

∂u
− tKj ·

∂φj

∂u
, ν(φj(u))

]∣∣∣∣ dudt

=

p∑
j=1

∫

Uj×[0,ρ)
ψj ◦Ψj

∣∣∣∣det
((

�d−1 − tKj

) [∂φj

∂u
, ν(φj(u))

])∣∣∣∣ dudt

=

p∑
j=1

∫

Uj×[0,ρ)
ψj ◦Ψj |det(�d−1 − tKj)|

∣∣∣∣det
[
∂φj

∂u
, ν(φj(u))

]∣∣∣∣ dudt

�
∫ ρ

0

p∑
j=1

∫

Uj

ψj

(
φj(u) + tν(φj(u))

) ∣∣∣∣det
[
∂φj

∂u
, ν(φj(u))

]∣∣∣∣ du (1 + tκ)d−1dt

=

∫ ρ

0

p∑
j=1

∫

Uj

ψj

(
φj(u) + tν(φj(u))

)
(
det

(
∂φj

∂u

)T ∂φj

∂u

)1/2

du (1 + tκ)d−1dt

=

∫ ρ

0

p∑
j=1

∫

φj(Uj)
ψj

(
x+ tν(x)

)
dHd−1(x) (1 + tκ)d−1dt (see [11, Theorem 2, pg. 99])

(ii)

�
∫ ρ

0

p∑
j=1

∫
⋃p

i=1 φi(Ui)
ψj

(
x+ tν(x)

)
dHd−1(x) (1 + tκ)d−1dt

=

∫ ρ

0

∫

S

p∑
j=1

ψj

(
x+ tν(x)

)
dHd−1(x) (1 + tκ)d−1dt

(iv)
=

∫ ρ

0

∫

S
dHd−1(x) (1 + tκ)d−1dt

=
(1 + ρκ)d − 1

d κ
Hd−1(S) .

�

B.9. Kolmogorov Non-degenerate Normal Forms

Let H : M := R
d × T

d → R be a C2-Hamiltonian. An embedded torus T in M is said to be
H-Kolmogorov non-degenerate if there exists a neighbourhood M0 of {0} × T

d in M, a symplectic

change of coordinates φ : M0 → M with φ({0} × T
d) = T , a constant E ∈ R, a vector ω ∈ R

d and
a function Q : M0 → R of class C2 such that

H ◦ φ(y, x) = E + ω · y +Q(y, x) and ∂μ
yQ(0, ·) ≡ 0, ∀ μ ∈ N

d
0, |μ|1 � 1, (B.26)

and

det 〈∂yyQ(0, ·)〉 
= 0. (B.27)

A Hamiltonian H in the form (B.26) is said to be in Kolmogorov normal form. The Kolmogorov
normal form is said to be non-degenerate if, in addition, the quadratic (in y) part Q satisfies (B.27).
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