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Glossary

Action-angles variables A particular set of vari-
ables (y, x) = ((y1, . . ., yd), (x1, . . ., xd)), xi
(“angles”) defined modulus 2p, particularly
suited to describe the general behavior of a
finite dimensional integrable system.

Complex symplectic variables The identifica-
tion of the real symplectic space (ℝ2d, dp ^ dq)
with the complex space ℂd: one sets

zj ¼ qj þ ipj

� �
=
ffiffiffi
2

p
for j = 1, . . . d, in this

way the symplectic two-form is the imaginary
part of the hermitian product.

Fast convergent (Newton) method Super-
exponential algorithms, mimicking Newton’s
method of tangents, used to solve differential
problems involving small divisors.

Hamiltonian dynamics The dynamics gener-
ated by a Hamiltonian differential equation on
a symplectic space/manifold (in the finite

dimensional case, an even-dimensional mani-
fold endowed with a symplectic structure).

Hamiltonian System A time reversible, conser-
vative (without dissipation or expansion)
dynamical system, which generalizes classical
mechanical systems (solutions of Newton’s
equation mi€xi ¼ f i xð Þ , with 1 � i � d and
f = ( f1, . . ., fd) a conservative force field);
they are described by the flow of differential
equations (i.e., the time tmap associating to an
initial condition, the solution of the initial
value problem at time t) on a symplectic
space/manifold.

Integrable Hamiltonian systems Very special
class of Hamiltonian systems, whose flow can
be “explicitly computed” for all initial data and
typically is described through a linear flow on a
(in)finite dimensional torus.

Invariant tori Manifolds diffeomorphic to tori
invariant for the flow of a differential equation
(especially, of Hamiltonian differential equa-
tions); establishing the existence of tori invari-
ant for Hamiltonian flows is the main object of
KAM theory.

KAM Acronym from the names of Kolmogorov
(Andrey Nikolaevich Kolmogorov,
1903–1987), Arnold (Vladimir Igorevich
Arnold, 1937–2010) and Moser (Jürgen
K. Moser, 1928–1999), whose results, in the
1950s and 1960s, in Hamiltonian dynamics,
gave rise to the theory presented in this article.

Nearly–integrable Hamiltonian systems Ha-
miltonian systems which are small perturba-
tions of an integrable systems and which, in
general, exhibits a much richer dynamics than
the integrable limit. Nevertheless, finite dimen-
sional KAM theory asserts that, under suitable
assumptions, the majority (in measure sense)
of the initial data of a nearly integrable system
behaves as in the integrable limit.

Quasi-periodic motions Trajectories (solutions
of a system of differential equations), which

are conjugate to linear flow on tori x � d 7!
x + ot with o = (o1, . . ., od) � ℝd called
frequency vector.
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Small divisors/denominators Arbitrary small

combinations of the form o � k≔
Pd

j¼1 oiki
with o = (o1, . . ., od) � ℝd a real vector
and k � ℤd an integer vector different from
zero; these combinations arise in the denomi-
nators of certain expansions appearing in the
perturbation theory of Hamiltonian systems,
making (when d > 1) convergent arguments
very delicate. Physically, small divisors are
related to “resonances,” which are a typical
feature of conservative systems.

Stability The property of orbits of having certain
properties similar to a reference limit; more
specifically, in the context of KAM theory,
stability is normally referred to the property
of action variables of staying close to their
initial values.

Symplectic structure A mathematical structure
(a differentiable, nondegenerate, closed
2-form) apt to describe, in an abstract setting,
the main geometrical features of conservative
differential equations arising in mechanics.

Definition of the Subject

KAM theory is a mathematical, quantitative the-
ory which has as primary object the persistence,
under small (Hamiltonian) perturbations, of
quasi-periodic trajectories of integrable Hamilto-
nian systems. Quasi-periodic motions may be
described through the linear flow x � d

! x + ot � d where d denotes the standard
d-dimensional torus (see section “Introduction”
below), t is time, and o = (o1, . . ., od) � ℝd is
the set of frequencies of the trajectory (if d = 1,
2p/o is the period of the motion).

In finite dimensional integrable systems with
bounded motions, the typical trajectory is indeed
quasi-periodic and KAM theory is apt to describe
the behavior of “most” initial data. In general, this
is not the case in infinite dimensional systems and
PDEs. Still, the search for periodic and quasi-
periodic solutions is obviously an interesting and
challenging task.

Introduction

The main motivation for KAM theory is related to
stability questions arising in celestial mechanics
which were addressed by astronomers and math-
ematicians such as Kepler, Newton, Lagrange,
Liouville, Delaunay, Weierstrass, and, from a
more modern point of view, Poincaré, Birkhoff,
Siegel, etc.

The major breakthrough, in this context, was
due to Kolmogorov in 1954, followed by the
fundamental work of Arnold and Moser in the
early 1960s, who were able to overcome the for-
midable technical problem related to the appear-
ance, in perturbative formulae, of arbitrarily small
divisors1. Small divisors make impossible the use
of classical analytical tools (such as the standard
Implicit Function Theorem, fixed point theorems)
and could be controlled only through a “fast con-
vergent method” of Newton-type2, which allo-
wed, in view of the super-exponential rate of
convergence, to counterbalance the divergences
introduced by small divisors.

KAM theory was extended to the context of
Hamiltonian PDEs starting from the early 1990s
by Kuksin, Wayne, Pöschel, with the purpose of
proving the existence and linear stability of
small-quasi-periodic solutions for semi-linear
PDEs with Dirichlet boundary conditions.
Although there is no general theory available,
the KAM approach has been successively devel-
oped in order to cover also examples of PDEs on
tori and compact Lie groups, quasi-linear and
fully nonlinear PDEs on the circle, and PDEs on
the line with a coercive potential.

Actually, the main bulk of KAM theory is a set
of techniques based, as mentioned, on fast con-
vergent methods and solving various questions in
Hamiltonian (or generalizations of Hamiltonian)
dynamics. There are excellent reviews of KAM
theory – especially Sect. 6.3 of Arnold et al.
(2006) and Sevryuk (2003) – which should com-
plement the reading of this article, whose main
objective is not to review but rather to explain the
main fundamental ideas of KAM theory. To do
this, we re-examine, in modern language, the
main ideas introduced, respectively, by the foun-
ders of KAM theory, namely, Kolmogorov
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(in section “Kolmogorov Theorem”), Arnold
(in section “Arnold’s Scheme”), and Moser
(section “The Differentiable Case: Moser’s
Theorem”).

While the tools and techniques in finite dimen-
sions are by now quite well understood, the situ-
ation in infinite dimensions is, as can be expected,
significantly more complicated and there are
many fundamental open issues, such as the “gen-
eral” behavior of a “nearly integrable” system.
Therefore, in discussing the finite dimensional
case, we shall try to give a quite complete and
quantitative description of results and, especially,
the techniques used in order to obtain them. On
the other hand, in infinite dimension, we mainly
focus on specific examples, trying to convey the
main ideas and the similarities and differences
with the finite dimensional case.

A set of technical notes (such as notes 17, 18,
19, 21, 24, 26, 29, 30, 31, 34, 39), which the
reader not particularly interested in technical
mathematical arguments may skip, are collected
in Appendix B and complete the mathematical
exposition. Appendix B includes also several
other complementary notes, which contain either
standard material or further references or side
comments.

In section “Future Directions,” we briefly and
informally describe a few developments and
applications of KAM theory: this section is by
no means exhaustive and is meant to give a non-
technical, short introduction to some of the most
important (in our opinion) extensions of the orig-
inal contributions.

Finite Dimensional Context
In the finite dimensional setting, we will be
concerned with Hamiltonian flows on the
symplectic manifold (M, dy ^ dx); for general
information, see, e.g., Arnold (1974) or Sect. 1.3
of Arnold et al. (2006). Notation, main definitions,
and properties are listed in the following items.

(a) M: = B � d with d � 2 (the case d = 1 is
trivial for the questions addressed in this
entry); B is an open, connected, bounded set

in ℝd; d : = ℝd/(2pℤd) is the standard flat
d-dimensional torus with periods3 2p;

(b) dy ^ dx≔
Pd
i¼1

dyi ^ dxi, (y � B, x � d) is the

standard symplectic form4;
(c) Given a real-analytic (or smooth) function H:

M!ℝ, theHamiltonian flow governed by H
is the one-parameter family of
diffeomorphisms ft

H : M ! M , which to
z � M associates the solution at time t of
the differential equation5

_z ¼ J 2d▽H zð Þ, z 0ð Þ ¼ z, (1)

where _z ¼ dz
dt , J2d is the standard symplectic

(2d � 2d)-matrix J 2d ¼
0 �1d
1d 0

� �
, 1d

denotes the unit (d � d)-matrix and 0 denotes
a (d � d) block of zeros, and ∇ denotes gradi-
ent; in the symplectic coordinates (y, x) �
B � d , Eq. (1) reads

_y ¼ �Hx y,xð Þ
_x ¼ Hy y,xð Þ ,

y 0ð Þ ¼ y
x 0ð Þ ¼ x

��
(2)

Clearly, the flowft
H is defined until y(t) reaches

eventually the border of B.
Equations (1) or (2) are called the

Hamilton’s equations with Hamiltonian H;
usually, the symplectic (or “conjugate”) vari-
ables (y, x) are called action-angles variables6;
the number d (= half of the dimension of the
phase space) is also referred to as “the number
of degrees of freedom7.”

The Hamiltonian H is constant over trajec-
tories ft

H zð Þ , as it follows immediately by
differentiating t ! H ft

H zð Þ
� 	

. The constant
value E ¼ H ft

H zð Þ
� 	

is called the energy of
the trajectory ft

H zð Þ.
Hamilton equations are left invariant by

symplectic (or “canonical”) change of vari-
ables, i.e., by diffeomorphisms of M which
preserve the 2-form dy^ dx; i.e., iff: (�, x) �
M ! (y, x) � M is a diffeomorphism such
that d� ^ dx = dy ^ dx, then
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f�1∘ft
H∘f ¼ ft

H∘f: (3)

An equivalent condition for a map f to be
symplectic is that its Jacobian f0 is a
symplectic matrix, i.e.,

f0TJ 2df
0 ¼ J 2d (4)

where J2d is the standard symplectic matrix
introduced above and the superscript
T denotes matrix transpose.

By a (generalization of a) theorem of
Liouville, the Hamiltonian flow is symplectic,
i.e., the map y,xð Þ ! �,xð Þ ¼ ft

H y,xð Þ is
symplectic for any H and any t; see Corollary
1.8, Arnold et al. (2006).

A classical way of producing symplectic
transformations is by means of generating
functions. For example, if g(�, x) is a smooth
function of 2d variables with

det
@2g

@�@x
6¼ 0,

then, by the IFT (Implicit Function Theorem;
see Kolmogorov and Fomin (1999) or Appen-
dix A below), the map f: (y, x) ! (�, x)
defined implicitly by the relations

y ¼ @g

@x
, x ¼ @g

@�
,

yields a local symplectic diffeomorphism; in
such a case, g is called the generating function
of the transformation f; the function � � x is
the generating function of the identity map.

For general information about symplectic
changes of coordinates, generating functions,
and, in general, about symplectic structures,
we refer the reader to Arnold (1974) or Arnold
et al. (2006).

(d) A solution z(t)= (y(t), x(t)) of (2) is amaximal
quasi-periodic solutionwith frequency vector
o = (o1, . . ., od) � ℝd if o is a rationally
independent vector, i.e.,

∃n�ℤd s:t: o � n≔
Xd
i¼1

oini ¼ 0

) n ¼ 0, (5)

and if there exist smooth (periodic) functions
v, u: d ! ℝd such that8

y tð Þ ¼ v otð Þ
x tð Þ ¼ ot þ u otð Þ

�
(6)

is a solution of (2).
(e) Let o, u and v be as in the preceding item and

let U and f denote, respectively, the maps

U : y�d ! U yð Þ≔yþ u yð Þ�d

f : y�d ! f yð Þ≔ v yð Þ,U yð Þð Þ�M

�

IfU is a smooth diffeomorphism ofd (so that,
in particular9 det Uy 6¼ 0) then f is an embed-
ding of d into M and the set

T o ¼ T d
o≔f d

� 	
(7)

is an embedded d-torus invariant for ft
H and

on which the motion is conjugated to the
linear (Kronecker) flow y ! y + ot, i.e.,

f�1∘ft
H∘f yð Þ ¼ yþ ot, 8y�d : (8)

Furthermore, the invariant torus T o is a graph
overd and is Lagrangian, i.e., the restriction
of the symplectic form dy ^ dx on T o

vanishes10.
(f) In KAM theory, a major rôle is played by the

numerical properties of the frequencies o.
A typical assumption is that o is a
Diophantine vector: o � ℝd is called
Diophantine or (k, t)-Diophantine if, for
some constants 0<k�mini |oi| and t� d� 1,
it verifies the following inequalities:

j o � n j� k
nj jt , 8n�ℤdn 0f g, (9)

(normally, for integer vectors n, |n| denotes
|n1| + � � � + |nd|, but other norms may as well
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be used). We shall refer to k and t as the
Diophantine constants of o. The set of
Diophantine numbers in ℝd with constants k
and twill be denoted byDk,t orDd

k,t, while the

union over all k> 0 ofDk,twill be denoted by

Dt ¼ Dd
t . Basic facts about these sets are

11: if
t < d � 1 then Dd

t ¼ f if t > d � 1 then the
Lebesgue measure of ℝd\ Dt is zero; if
t = d � 1, the Lebesgue measure of Dt is
zero, but its intersection with any open set has
the cardinality of ℝ. The union over all
t � d � 1 of Dd

t will be denoted by Dd.

(g) The tori T o defined in (e) with o � Dd will
be called maximal KAM tori.

(h) AHamiltonian function (�, x) � M!H(�, x)
having a maximal KAM torus (or, more in
general, a maximal invariant torus as in
(e) with o rationally independent) T o can be
put into the form.12

K≔E þ o � yþ Q y,xð Þ with

@a
yQ 0,xð Þ ¼ 0, 8a�ℕd , j a j� 1;

(10)

compare, e.g., Sect. 1 of Salamon (2004).
A Hamiltonian in the form (10) is said to be
in Kolmogorov normal form.

If

det @2
yQ 0,�ð Þ

D E
6¼ 0, (11)

(where the brackets denote average overd and@2
y

the Hessian with respect to the y-variables) we
shall say that the Kolmogorov normal form
K in (10) is nondegenerate; similarly, we shall
say that the KAM torusT o is nondegenerate if
it admits a nondegenerate Kolmogorov
normal.

(i) Quasi-periodic solutions with 1 � n < d fre-
quencies, i.e., solutions of (2) of the form

y tð Þ ¼ v otð Þ
x tð Þ ¼ U otð Þ

�
(12)

where v: n ! ℝd, U: n ! d are smooth
functions, o � ℝn is a rationally independent

n-vector. Also in this case, if the map U is a
diffeomorphism onto its image, the set

T n
o≔ y,xð Þ�M : y¼ v yð Þ, x¼U yð Þ, y�nf g

(13)

defines an invariant n-torus on which the flow
ft
H acts by the linear translation y ! y + ot.

Such tori are normally referred to as lower
dimensional tori.

Remark 1 (i) A classical theorem by H. Weyl
says that the flow

y�d ! yþ ot �d , t�ℝ

is dense (ergodic) in d if and only if o � ℝd is
rationally independent (compare Arnold et al.
(2006), Theorem 5.4 of Katok and Hasselblatt
(1995), Sect. 1.4). Thus, trajectories on KAM
tori fill them densely (i.e., pass in any neighbor-
hood of any point).

(ii) In view of the preceding remark, it is easy
to see that ifo is rationally independent, (y(t), x(t))
in (6) is a solution of (2) if and only if the func-
tions v and u satisfy the following quasi-linear

system of PDE’s on d:

Dov ¼ �Hx v yð Þ, yþ u yð Þð Þ
oþ Dou ¼ Hy v yð Þ, yþ u yð Þð Þ

�
(14)

where Do denotes the directional derivativePd
i¼1

oi
@
@yi
.

(iii) Probably, the main motivation for studying
quasi-periodic solutions of Hamiltonian systems

on ℝd � d comes from perturbation theory for
nearly integrable Hamiltonian systems: a
completely integrable system may be described
by a Hamiltonian system on M: = B(y0, r) �
d � ℝd � d with Hamiltonian H = K(y)
(compare Theorem 5.8, Arnold et al. (2006));
here B(y0, r) denotes the open ball {y � ℝd:
|y � y0| < r} centered at y0 � ℝd; we shall also
denote byD(y0, r) the complex ball inℂd of radius
r centered in y0 � ℂd. In such a case, the Hamil-
tonian flow is simply
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ft
K y,xð Þ ¼ y, xþ o yð Þtð Þ,

o yð Þ≔Ky yð Þ≔ @K

@y
yð Þ:

(15)

Thus, if the frequency map y � B ! o(y)

is a diffeomorphism (which is guaranteed if
det Kyy (y0) 6¼ 0, for some x0 � B and B is small
enough), in view of (f), for almost all initial data,
the trajectories (15) belong to maximal KAM tori
{y} � d with o(y) � Dd .

The main content of (classical) KAM theory, in
our language, is that, if the frequency map o is a
diffeomorphism, KAM tori persist under small
perturbations of K; compare Remark
7–(iv) below.

The study of the dynamics generated by the
flow of a one-parameter family of Hamiltonians of
the form

K yð Þ þ eP y,x;eð Þ, 0 < e � 1, (16)

was called by H. Poincarè le problème général de
la dynamique, to which he dedicated a large part
of his monumental Méthodes Nouvelles de la
Mécanique Céleste (Poincarè).

Infinite Dimensional Context
In the infinite dimensional setting, we will be
concerned with Hamiltonian flows on a scale of
Banach or Hilbert spaces; for a more detailed
presentation we refer the reader to Kuksin (2000,
2004), Grébert and Kappeler (2014), Kappeler
and Pöschel (2003); for properties of analytic
functions on Hilbert spaces, see Pöschel and
Trubowitz (1987).

(A) A symplectic structure on scale of real Hilbert
spaces ℋs, (�, �)s is defined by an antisym-
metric morphism J: Hs ! Hs + d of order
d� 0 so that the symplectic two form defined
by o(u, v): = (u, J�1v)0 is a skew-symmetric
bilinear form.

(B) Given a complex Hilbert space H with a
Hermitian product h�, �i, its realification is a
real symplectic Hilbert space with scalar
product and symplectic form given by

u,vð Þ ¼ 2Re u,vh i, o u,vð Þ ¼ 2Im u,vh i:

(C) Given a real-analytic (or smooth) function H:
Os 	 ℋs ! ℝ, Os open, the Hamiltonian
flow governed by H is, if the equation is at
least locally well posed, the one-parameter
family of diffeomorphisms ft

H : ℋs ! ℋs ,
which to z � ℋs associates the solution at
time t of the differential equation

_z ¼ J▽H zð Þ, z 0ð Þ ¼ z�ℋs, (17)

where J is the symplectic morphism and ∇H
is identified through the bilinear product (,)0
namely

dH �½ 
 ¼ ▽H,�ð Þ0:

Note that in general in the infinite dimensional
case the fact that H is smooth does not guar-
antee that the equation is even locally well
posed. As in the finite dimensional counter-
part, the Hamiltonian H is constant
over trajectories ft

H zð Þ, and the constant value
E ¼ H ft

H zð Þ
� 	

is called the energy of the
trajectory ft

H zð Þ.
(D) A Hamiltonian H whose Hamiltonian vector

field is an analytic mapℋs !ℋs is called a
regular Hamiltonian; in this case the Hamil-
tonian flow is at least locally well posed.

(E) Hamilton equations are left invariant by
symplectic (or “canonical”) change of vari-
ables, i.e., by diffeomorphisms of ℋs which
preserve the 2-form o. A classical way to
generate such changes of coordinates is as
the time-one flow of an auxiliary Hamiltonian
function, say S. We recall that given a smooth
Hamiltonian S: Os ! ℝ if the corresponding
Hamilton equation

wt ¼ J▽S wð Þ, wjt¼0 ¼ z

is well posed for t � 1 then the flow f1
H zð Þ

defines a symplectic change of variables.
(F) A solution z(t) of (17) is quasi-periodic with

frequency vector o= (o1, . . .,od) � ℝd ifo
is a rationally independent vector, see (5), and
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there exists an embedding U: d ! ℋs such
that z(t) = U(ot) is a solution of (17).

(G) A partial differential equation, supplemented
by some boundary conditions, is called a
Hamiltonian partial differential equation, or
an HPDE, if under a suitable choice of a
symplectic Hilbert scale, domain, and Ham-
iltonian, it can be written in the form (17).

(H) A nonlinear PDE is called fully nonlinear if
the highest order derivatives appear with
degree higher than one, and it is called
quasi-linear if the highest order derivatives
appear with degree one both in the linear and
in the nonlinear terms of the equation. It is
called semi-linear if the linear term contains
derivatives of higher order with respect to the
nonlinear terms.

(I) Integrable PDEs is a fascinating, deep, and
interesting field by its own, and it has been
widely studied starting from the 1960s with a
variety of methods (formal algebraic methods,
algebraic geometry, inverse spectral
methods,. . .). For the connection of infinite
integrable systems and KAM methods, see,
e.g., Kappeler and Pöschel (2003) and Kuksin
(2004).

Finite Dimensional KAM Theory

Kolmogorov Theorem
In the 1954 International Congress of Mathemati-
cians, in Amsterdam, A.N. Kolmogorov
announced the following fundamental (for the
terminology, see (f), (g) and (h) above).

Theorem 1 (Kolmogorov (1954) Consider a
one-parameter family of real-analytic Hamilto-

nian functions on M: = B(0, r) � d given by

H≔K þ eP, e�ℝð Þ, (18)

where: (i) K is a nondegenerate Kolmogorov nor-
mal form; (ii) o � Dd is Diophantine. Then,
there exists e0 > 0 and for any |e| � e0 a real-
analytic symplectic transformation f*: M

�: =
B(0, r*) � d !M, for some 0 < r* < r, putting
H in nondegenerate Kolmogorov normal form,

H ∘f* = K*, with K*: = E* + o � y0 + Q*(y0, x0).
Furthermore13, f� � idk kC1 M�ð Þ , |E* � E|, and
Q� � Qk kC1 M�ð Þ are small with e.

Remark 2 (i) From Theorem 1, it follows that the
torus

T o,e≔f� 0,d
� 	

is a maximal nondegenerate KAM torus forH and
the H-flow on T o,e is analytically conjugated
(by f*) to the translation x0 ! x0 + ot with the
same frequency vector of T o,0:= {0}�d, while
the energy of T o,e , namely, E*, is in general
different from the energy E of T o,0 . The idea of
keeping fixed the frequency is a key idea intro-
duced by Kolmogorov, and its importance will be
made clear in the analysis of the proof.

(ii) In fact, the dependence upon e is analytic
and therefore the torus T o,e is an analytic defor-
mation of the unperturbed torus T o,0 (which is
invariant for K); see Remark 7-(iii) below.

(iii) Actually, Kolmogorov not only stated the
above result but gave also a precise outline of its
proof, which is based on a fast convergent “New-
ton” scheme, as we shall see below.

The map f* is obtained as

f� ¼ lim
j!1

f1∘� � �∘fj,

where the fj’s are (e-dependent) symplectic trans-
formations ofM closer and closer to the identity.
It is enough to describe the construction of f1; f2

is then obtained by replacing H0:= H with H1 =
H ∘ f1 and so on.

We proceed to analyze the scheme of
Kolmogorov’s proof, which will be divided into
three main steps.

Step 1: Kolmogorov Transformation
The map f1 is close to the identity and it is
generated by

g y0,xð Þ≔y0 � xþ e b � xþ s xð Þ þ y0 � a xð Þð Þ

Kolmogorov-Arnold-Moser (KAM) Theory for Finite and Infinite Dimensional Systems 7



where s and a are (respectively, scalar- and vector-
valued) real-analytic functions on d with zero
average and b � ℝd: setting

b0 ¼ b0 xð Þ≔bþ sx,

A ¼ A xð Þ≔ax and b ¼ b y0,xð Þ≔b0 þ Ay0,

(19)

sx ¼ @xs ¼ sx1 , . . . , sxdðð Þ and ax denotes the
matrix axð Þij≔

@aj
@xi

	
f1 is implicitly defined by

y ¼ y0 þ eb y0,xð Þ≔y0 þ e b0 xð Þ þ A xð Þy0ð Þ
x0 ¼ xþ ea xð Þ:

�
(20)

Thus, for e small, x � d ! x + ea(x) � d

defines a diffeomorphism of d with inverse

x ¼ ’ x0ð Þ≔x0 þ ea x0;eð Þ, (21)

for a suitable real-analytic function a, and f1 is
explicitly given by

f1 : y0,x0ð Þ ! y ¼ y0 þ eb y0,’ y0,’ x0ðð Þð Þ
x ¼ ’ x0ð Þ:

�
(22)

Remark 3 (i) Kolmogorov transformation f1 is
actually the composition of two “elementary”

symplectic transformations: f1 ¼ f 1ð Þ
1 ∘f 2ð Þ

1

where f 2ð Þ
1 : y0,x0ð Þ ! �,xð Þ is the symplectic lift

of the d-diffeomorphism given by x0 = x + ea(x)
(i.e., f 2ð Þ

1 is the symplectic map generated by
y0 � x + ey0 � a(x)), while f 1ð Þ

1 : �,xð Þ ! y,xð Þ is
the angle-dependent action translation generated
by � � xþ e b � xþ s xð Þð Þ;f 2ð Þ

1 acts in the “angle
direction” and will be needed to straighten out
the flow up to order O(e2), while f 1ð Þ

1 acts in the
“action direction” and will be needed to keep the
frequency of the torus fixed.

(ii) The inverse of f1 has the form

y,xð Þ ! y0 ¼ M xð Þyþ c xð Þ
x0 ¼ ’ xð Þ

�
(23)

with M a (d � d)-invertible matrix and ’ a
diffeomorphism of d (in the present case M ¼

1d þ eA xð Þð Þ�1 ¼ 1d þ O eð Þ and ’ = id +ea) and
it is easy to see that the symplectic
diffeomorphisms of the form (23) form a sub-
group of the symplectic diffeomorphisms, which
we shall call the group of Kolmogorov
transformation.

Determination of Kolmogorov transforma-
tion. Following Kolmogorov, we now try to deter-
mine b, s, and a so that the “new Hamiltonian”
(better: “the Hamiltonian in the new symplectic
variables”) takes the form

H1≔H∘f1 ¼ K1 þ e2P1, (24)

with K1 in the Kolmogorov normal form

K1 ¼ E1 þ o � y0 þ Q1 y0,x0ð Þ, Q1 ¼ O y0j j2
�� �

:

(25)

To proceed we insert y = y0 + eb(y0, x) into
H and, after some elementary algebra and using
Taylor formula, we find14

H y0 þ eb,xð Þ ¼ E þ o � y0 þ Q0 y0,xð Þ þ eF y0,xð Þ

þ e2P0 y0,xð Þ
(26)

where, letting

Q 1ð Þ ≔ Qy y0,xð Þ�Qyy 0,xð Þy0
h i

�b0

¼ 1

2

Z 1

0
Qyyy ty0,xð Þy0 � y0 �b0dt

Q 2ð Þ ≔P y0,xð Þ�P 0,xð Þ�Py 0,xð Þy0

¼ 1

2

Z 1

0
Pyy ty0,xð Þy0 � y0dt

P 1ð Þ ≔
1

e2
Q y0 þ eb,xð Þ�Q y0,xð Þ� eQy y0,xð Þ �b
h i

¼ 1

2

Z 1

0
Qyy y0 þ teb,xð Þb �bdtP 2ð Þ

≔
1

e
P y0 þ eb,xð Þ�P y0,xð Þ½ 


¼
Z 1

0
Py y0 þ teb,xð Þ �bdt,

(27)

(recall that Qy(0, x) = 0) and denoting the
o-directional derivative
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Do≔
Xd
j¼1

oj
@

@xj

one sees that Q0 = Q0(y0, x), F = F(y0, x) and
P0 = P0(y0, x) are given by, respectively

Q0≔Q y0,xð Þ þ e ~Q y0,xð Þ,
~Q y0,xð Þ≔Qy y0,xð Þ � axy

0ð Þ þ Q 1ð Þ þ Q 2ð Þ

F≔b � oþ Dosþ Doa � y0

þ Qyy 0,xð Þy0 � b0 þ P 0,xð Þ þ Py 0,xð Þ � y0

P0≔P 1ð Þ þ P 2ð Þ,

(28)

where Doa is the vector function with kth-entryPd
j¼1 oj

@ak
@xj
;Doa � y0 ¼ o � axy0ð Þ ¼

Pd
j,k¼1 oj

@ak
@xj

y0k; recall, also, that Q = O(|y|2) so that Qy = O(y)
and Q0 = O(|y0|2).

Notice that, as intermediate step, we are con-
sidering H as a function of mixed variables y0 and
x (and this causes no problem, as it will be clear
along the proof).

Thus, recalling that x is related to x0 by the
(y0-independent) diffeomorphism x = x0 + ea(x0; e)
in (22), we see that in order to achieve relations
(24)-(25), we have to determine b, s, and a so that

F y0,xð Þ ¼ const: (29)

Remark 4 (i) F is a first degree polynomial in y0

so that (29) is equivalent to

b � oþ Dosþ P 0,xð Þ ¼ const,
Doaþ Qyy 0,xð Þb0 þ Py 0,xð Þ ¼ 0:

�
(30)

Indeed, the second equation is necessary to
keep the torus frequency fixed and equal to o,
which, as we shall see in more detail later, is
a key ingredient introduced by Kolmogorov.
(ii) In solving (29) or (30), we shall encounter
differential equations of the form

Dou ¼ f , (31)

for some given function f real-analytic on d .
Taking the average over d shows that hfi = 0,

and we see that Eq. (31) can be solved only if f
has vanishing mean value

fh i ¼ f 0 ¼ 0;

in such a case, expanding in Fourier series15, one
sees that (31) is equivalent toX

n�ℤd

n 6¼0

io � nunein�x ¼
X
n�ℤd

n 6¼0

f ne
in�x, (32)

so that the solutions of (31) are given by

u ¼ u0 þ
X
n�ℤd

n 6¼0

f n
io � n e

in�x, (33)

for an arbitrary u0. Recall that for a continuous
function f over d to be analytic is necessary and
sufficient that its Fourier coefficients fn decay
exponentially fast in n, i.e., that there exist posi-
tive constants M and s such that

j f n j� Me�sjnj, 8n: (34)

Now, since o � Dk,t one has that

1

j o � n j �
nj jt

k
(35)

and one sees that if f is analytic so is u in (33)
(although the decay constants of u will be differ-
ent to those of f; see below).

Summarizing, if f is real-analytic ond and has
vanishing mean value f0, then there exists a
unique real-analytic solution of (31) with
vanishing mean value, which is given by

D�1
o f≔

X
n�ℤd

n 6¼0

f n
io � n e

in�x; (36)

all other solutions of (31) are obtained by adding
an arbitrary constant to D�1

o f as in (33) with u0
arbitrary.
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Taking the average of the first relation in (30),
we may the determine the value of the constant
denoted const, namely,

const ¼ b � oþ P0 0ð Þ≔b � oþ P 0,�ð Þh i: (37)

Thus, by (ii) of Remark 4, we see that

s ¼ D�1
o P 0,xð Þ � P0 0ð Þð Þ ¼

X
n�ℤd

n 6¼0

Pn 0ð Þ
io � n e

in�x,

(38)

where Pn(0) denote the Fourier coefficients of
x ! P(0, x); indeed s is determined only up to a
constant by the relation in (30) but we select the
natural zero-average solution. Thus, s has been
completely determined.

To solve the second (vector) equation in (30),
we first have to require that the l.h.s. (left hand
side) has vanishing mean value, i.e., recalling that
b0 = b + sx (see (19)), we must have

Qyy 0,�ð Þ
D E

bþ Qyy 0,�ð Þsx
D E

þ Py 0,�ð Þ

 �

¼ 0:

(39)

In view of (11), this relation is equivalent to

b ¼ � Qyy 0,�ð Þ
D E�1

Qyy 0,�ð Þsx
D E

þ Py 0,�ð Þ

 �� �

,

(40)

which determines uniquely b. Thus, b0 is
completely determined, the l.h.s. of the second equa-
tion in (30) has zero average and the unique zero-
average solution (again zero-average of a is required
as a normalization condition) is given by

a ¼ �D�1
o Qyy 0,xð Þb0 þ Py 0,xð Þ
� �

: (41)

Finally, if ’(x0) = x0 + ea(x0; e) is the inverse
diffeomorphism of x ! x + ea(x) (compare (21)),
then by Taylor’s formula,

Q y0 ’ x0ð Þð Þ ¼ Q y0,x0ðð Þ þ e
Z 1

0
Qx y0, x0 þ eatð Þ

� adt:

In conclusion, we have proved.

Proposition 1 Iff1 is defined in (20)–(19)with s,
b, and a given in (38), (40), and (41), respectively,
then (24) holds with

E1≔Eþ e~E , ~E≔b �oþP0 0ð Þ Q≔
Z 1

0
Qx y0,x0 þ teað Þ �adtþQ0 y0,’ x0ð Þð Þ,P1 y0,x0ð Þ≔P0 y0,’ x0ð Þð Þ

(42)

with Q0 and P0 defined in (27), (28) and ’ in (21).

Remark 5 The main technical problem is now
transparent: because of the appearance of the
small divisors o � n (which may become arbi-

trarily small), the solution D�1
o f is less regular

than f so that the approximation scheme cannot
work on a fixed function space. To overcome this
fundamental problem – which even Poincaré was
unable to solve notwithstanding his enormous
efforts (see, e.g., Poincarè) – three ingredients
are necessary:

(i) To set up a Newton scheme: this step has just
been performed and it has been summarized
in the above Proposition 1; such schemes
have the following fundamental advantages:
they are “quadratic” and furthermore, after
one step one has reproduced the initial situ-
ation (i.e., the form of H1 in (24) has the
same properties of H0). It is important to
notice that the new perturbation e2P1 is pro-
portional to the square e; thus, if one could
iterate, at the jth step, would find
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Hj ¼ Hj�1∘fj ¼ Kj þ e2
j

Pj: (43)

The appearance of the exponential of the expo-
nential of e justifies the term “super-
converge” used, sometimes, in connection
with Newton schemes.

(ii) One needs to introduce a scale of Banach
function spaces {ℬx: x > 0} with the prop-
erty that ℬx0 � ℬx when x < x0: the gener-
ating functions fj will belong to ℬxj for a
suitable decreasing sequence xj.

(iii) One needs to control the small divisors at each
step, and this is granted by Kolmogorov’s
idea of keeping fixed the frequency in the
normal form so that one can systematically
use the Diophantine estimate (9).

Kolmogorov in his paper explained very neatly
steps (i) and (iii) but did not provide the details for
step (ii); at this regard he added: “Only the use of
condition (9) for proving the convergence of the
recursions, fj, to the analytic limit for the recur-
sion f* is somewhat more subtle.” In the next
paragraph, we shall introduce classical Banach
spaces and discuss the needed straightforward
estimates.

Step 2: Estimates
For x� 1, we denote byℬx the space of functions
f: B(0, x) � d ! ℝ analytic on

W x≔D 0,xð Þ � d
x , (44)

where

D 0,xð Þ≔ y�ℂd : jyj < x
� 


and d
x≔ x�ℂd : j Im xjj < x
� 


= 2pℤd
� 	

(45)

with finite sup-norm

fk kx≔ sup
D 0,xð Þ�d

x

j f j , (46)

(in other words, d
x denotes the complex points

x with real parts Re xj defined modulus 2p and
imaginary part Imxjwith absolute value less than x).

The following properties are elementary:

(P1)ℬx equipped with the k � kx norm is a Banach
space

(P2)ℬx0 � ℬxwhen x< x0 and fk kx � fk kx0 for
any f �ℬx0

(P3) if f � ℬx, and fn(y) denotes the n-Fourier
coefficient of the periodic function x ! f(y, x),
then

f n yð Þj j � fk kxe�jnjx, 8n�ℤd ,
8y�D 0,xð Þ: (47)

Another elementary property, which together
with (P3) may be found in any book of complex
variables (e.g., Ahlfors (1978)), is the following
“Cauchy estimate” (which is based on Cauchy
integral formula):

(P4) let f � ℬx and let p � ℕ then there
exists a constant Bp= Bp(d)� 1 such that, for any
multiindex (a, b) � ℕd � ℕd with |a| + |b| � p
(as above for integer vectors a, |a| = �j |aj|) and
for any 0 � x0 < x one has

@a
y@

b
x f

��� ���
x0
� Bp fk kx x� x0ð Þ� jajþjbjð Þ: (48)

Finally, we shall need estimate onD�1
o f , i.e., on

solutions of (31):
(P5) Assume that x ! f(x) � ℬx has zero

average; assume thato � Dk,t (recall point (f) of
section “Introduction”), and let p � ℕ. Then,
there exist constants �Bp ¼ �Bp d,tð Þ � 1 and
kp = kp(d, t) � 1 such that, for any multiindex b
in ℕd with |b| � p and for any 0 � x0 < x one has

@b
xD

�1
o f

�� ��
x0 � �Bp

fk kx
k

x� x0ð Þ�kp : (49)

Remark 6 (i) A proof of (49) is easily obtained
observing that by (36) and (47), calling d: =
x � x0, one has

Kolmogorov-Arnold-Moser (KAM) Theory for Finite and Infinite Dimensional Systems 11



@b
xD

�1
o f

�� ��
x0 �

X
n�ℤd

n 6¼0

nj jjbj j f n j
j o � n j ex

0 jnj

� fk kx
X
n�ℤd

n 6¼0

nj jjbjþt

k
e�djnj

¼
fk kx
k

d� jbjþtþdð Þ X
n�ℤd

n6¼0

djnj½ 
jbjþte�djnjdd

� const
fk kx
k

x� x0ð Þ� jbj þtþdð Þ,

where last estimate comes from approximating the
sum with the Riemann integralZ

ℝd
yj jjbjþte�jyjdy:

More surprising (and much more subtle) is that
(49) holds with kp = |b| + t; such estimate has
been obtained by Rüssmann (1975, 1976). For
other explicit estimates, see, e.g., Celletti and
Chierchia (1988) or Celletti and Chierchia (1995).

(ii) If |b| > 0, it is not necessary to assume that
h f i = 0.

(iii) Other norms may be used (and, some-
times, are more useful); for example, rather pop-
ular are Fourier norms

fk k0x≔
X
n�ℤd

j f n j exjnj; (50)

see, e.g., Celletti and Chierchia (2007) and
references therein.

By the hypotheses of Theorem 1, it follows that
there exist 0 < x � 1, k > 0 and t � d � 1 such
that H � ℬx and o � Dk,t. Denote

T≔ Qyy 0,�ð
D E�1

, M≔ Pk kx: (51)

and let C > 1 be a constant such that16

Ej j, oj j, Qk kx, Tk k < C (52)

(i.e., each term on the l.h.s. is bounded by the r.h.
s.); finally, fix

0 < d < x and define x≔x� 2

3
d, x0≔x� d:

(53)

The parameter x0 will be the size of the domain
of analyticity of the new symplectic variables
(y0, x0), domain on which we shall bound the
Hamiltonian H1 = H ∘ f1, while x refers to an
intermediate domain where we shall bound vari-
ous functions of y0 and x.

By (P4) and (P5), it follows that there exist
constants �c ¼ �c d,t,kð Þ > 1 , m�ℤþ and �v ¼ �v
d,tð Þ > 1 such that17

sxk kx , jb j , j ~E j , ak kx, axk kx, b0k kx, bk kx, Q0k kx, @2
y0Q

0 0,�ð Þ
��� ���

0
��cCmd��vM≕�L, P0k kx��cCmd��vM2¼ �LM :

(54)

The estimate in (54) allows to construct, for e
small enough, the symplectic transformation f1,
whose main properties are collected in the
following.

Lemma 1 If |e| � e0 and e0 satisfies

e0 �L � d
3
, (55)
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then the map the map ce(x): = x + ea(x) has an
analytic inverse ’(x0)= x0 + ea(x0; e) such that, for
all |e| < e0,

ak kx0 � �L and ’ ¼ idþ ea : d
x0 ! d

x
:

(56)

Furthermore, for any y0,xð Þ�W x,

|y0 + eb(y0, x)| < x, so that

f1 ¼ y0 þ eb y0,’ x0ð Þð Þ,’ x0ð Þð Þ : W x0

! W x, and f1 � idk kx0 � ej j�L; (57)

finally, the matrix 1d þ eax is, for any x�d
x
,

invertible with inverse 1d þ eS x;eð Þ satisfying

Sk kx �
axk kx

1� ej j axk kx
<

3

2
�L, (58)

so that f1 defines a symplectic diffeomorphism.

The simple proof18 of this statement is based
upon standard tools in mathematical analysis such
as the contraction mapping theorem or the inver-
sion of close-to-identity matrices by Neumann
series (see, e.g., Kolmogorov and Fomin (1999)).

From the Lemma and the definition of P1 in
(42), it follows immediately that

P1k kx0 � �LM : (59)

Next, by the same technique used to derive
(54), one can easily check that

~Q
�� ��

x0 ,2C
2 @2

y0
~Q 0,�ð Þ

��� ���
0
� cCmd�vM ¼ L, (60)

for suitable constants c � �c , m � m , v � �v (the
factor 2C2 has been introduced for later conve-
nience; notice also that L � �L). Then, if

e0L≔e0cCmd�vM � d
3
, (61)

there follows that19 ~T
�� �� � L; this bound, together

with (54), (60), (57), and (59), shows that

~E
�� ��, ~Q

�� ��
x0 ,

~T
�� ��, f1 � idk kx0 � L

P1k kx0 � LM ;

(
(62)

provided (61) holds (notice that (61) implies (55)).
One step of the iteration has been concluded

and the needed estimates obtained. The idea is to
iterate the construction infinitely many times, as
we proceed to describe.

Step 3: Iteration and Convergence
In order to iterate Kolmogorov’s construction ana-
lyzed in Step 2, so as to construct a sequence of
symplectic transformations

fj : W xjþ1
! W xj , (63)

closer and closer to the identity, and such that (43)
hold, the first thing to do is to choose the sequence
xj: such sequence has to be convergent, so that
dj= xj� xj + 1 has to go to zero rather fast. Inverse
power of dj (which, at the jth step will play the rôle
of d in the previous paragraph) appear in the
smallness conditions (see, e.g., (55)): this “diver-
gence” will, however, be beaten by the super-fast
decay of e2

j
.

Fix 0 < x* < x (x* will be the domain of
analyticity of f* and K* in Theorem 1) and, for
j � 0, let

x0≔x

d0≔
x� x�

2

(
dj≔

d0
2j

xjþ1≔x0 � dj ¼ x� þ
d0
2j

8><>:
(64)

and observe that xj # x*. With this choice20, Kol-
mogorov algorithm can be iterated infinitely many
times, provided e0 is small enough. To be more
precise, let c, m and n be as in (54), and define

C≔2max Ej j, oj j, Qk kx, Tk k,1
n o

: (65)

Smallness assumption: Assume that |e| � e0
and that e0 satisfies
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e0DB Pk kx � 1 where D≔3cd� vþ1ð Þ
0 Cm,

B≔2vþ1;

(66)

notice that the constant C in (65) satisfies (52) and
that (66) implies (55). Then the following claim
holds.

Claim C Under condition (66) one can itera-
tively construct a sequence of Kolmogorov
symplectic maps fj as in (63) so that (43) holds

in such a way that e2
j
Pj, Fj:= f1 ∘ f2 ∘ � � � ∘ fj,

Ej, Kj, Qj converge uniformly on W x� to, respec-
tively, 0,f*, E*,K*,Q*, which are real-analytic on
W x� and H ∘ f* = K* = E* + o � y + Q* with
Q* = O(|y|2). Furthermore, the following esti-
mates hold for any |e| � e0 and for any i � 0:

ej j2
i

Mi≔ ej j2
i

Pik kxi �
jejDBMð Þ2i

DBiþ1 , (67)

f� � idk kx� , E � E�j j, Q� Q�k kx� , T � T�k k

� ej jDBM ,

(68)

Where T�≔ @2
yQ� 0,�ð Þ

D E�1
, showing that K* is

nondegenerate.

Remark 7 (i) From Claim C Kolmogorov Theo-
rem 1 follows at once. In fact we have proven the

following quantitative statement: Let o�Dd
k,t

with t � d � 1 and 0 < k < 1; let Q and P be
real-analytic on W x ¼ Dd 0,xð Þ � d

x for some
0 < x � 1 and let 0 < y < 1; let T and C be as
in, respectively, (51) and (65). There exist
c* = c*(d, t, k, y) > 1 and positive integers
s = s(d, t), b such that if

ej j � e�≔
xs

c� Pk kxCb (69)

then one can construct a near-to-identity Kolmo-
gorov transformation (Remark 3-(ii)) f*:

Wyx ! Wx such that the thesis of Theorem 1
holds together with the estimates

f� � idk kyx, E � E�j j, Q� Q�k kyx, T � T�k k

� j e j
e�

¼ ej jc� Pk kxCbx�s:

(70)

(The correspondence with the above constants
being: x* = yx, d0 = x(1 � y)/2, s = n + 1,
b = m + 1, D = 3c(2/(1 � y))n + 1Cm + 1, c* =
3c(4/(1 � y))n + 1).

(ii) From Cauchy estimates and (68), it follows
that f� � idk kCp and Q� Q�k kCp are small for any
p (small in |e| but not uniformly in21 p).

(iii) All estimates are uniform in e therefore,
from Weierstrass theorem (compare note 18), it
follows that f* and K* are analytic in e in the
complex ball of radius e0. Analyticity in e and
e-power series expansions were very popular in
the XIX and XX century22, however, was only
J. Moser, within the framework of KAM theory,
who proved rigorously (but “indirectly”) for the
first time, the convergence of such expansions in
1967: see Moser (1967). Some of this matter is
briefly discussed in section “Other Chapters in
classical KAM Theory” below.

(iv) The nearly integrable case. In Kolmogo-
rov (1954), it is pointed out that Kolmogorov
Theorem yields easily the existence of many
KAM tori for nearly integrable systems (16) for
|e| small enough, provided K is nondegenerate in
the sense that

det Kyy y0ð Þ 6¼ 0: (71)

In fact, without loss of generality, we may
assume that o≔H 0

0 is a diffeomorphism on
B(y0, 2r) and det Kyy(y) 6¼ 0 for all y � B(y0, 2r).
Furthermore, letting B= B(y0, r), fixing t> d� 1
and denoting by ‘d the Lebesgue measure on ℝd,
from the remark in note 11 and from the fact thato
is a diffeomorphism, there follows that there
exists a constant c# depending only on d, t, and
r such that
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‘d o Bð ÞnDk,t
� 	

,‘d y�B : o yð Þ=2Dk,t
� 
� 	

< c#k:

(72)

Now, let Bk,t:= {y � B:o(y) � Dk,t} (which
by (72) has Lebesgue measure ‘d(Bk,t) �
‘d(B) � c# k), then for any �y�Bk,t we can make
the trivial symplectic change of variables y ! �y
þy, x! x so that K can be written as in (10) with

E≔K �yð Þ,o≔Ky �yð Þ,
Q y,xð Þ ¼ Q yð Þ≔K yð Þ � K �yð Þ � Ky �yð Þ � y,

(where, for ease of notation, we did not change
name to the new symplectic variables) and
P �yþ y,xð Þ replacing (with a slight abuse of nota-
tion) P(y, x). By Taylor’s formula, Q = O(|y|2)
and, furthermore (since Q(y, x) = Q(y),

@2
yQ 0,xð Þ

D E
¼ Qyy 0ð Þ ¼ Kyy �yð Þ, which is invert-

ible according to our hypotheses. Thus, K is Kol-
mogorov nondegenerate and Theorem 1 can be
applied yielding, for |e| < e0, a KAM torus T o,e ,
with o ¼ Ky �yð Þ, for each �y�Bk,t. Notice that the
measure of initial phase points, which, perturbed,
give rise to KAM tori, has a small complementary
bounded by c# k (see (72)).

(v) In the nearly integrable setting described in
the preceding point, the union of KAM tori is,
usually, called the Kolmogorov set. It is not dif-
ficult to check that the dependence upon �y of the
Kolmogorov transformation f* is Lipschitz23,
implying that the measure of the complementary
of Kolmogorov set itself is also bounded by ĉ#k
with a constant ĉ# depending only on d, t, and r.

Indeed, the estimate on the measure of Kolmo-
gorov set can be made more quantitative (i.e., one
can see how such estimate depends upon e as
e ! 0). In fact, revisiting the estimates discussed
in Step 2 above one sees easily that the constant
c defined in (54) has the form24

c ¼ ĉk�4: (73)

where ĉ ¼ ĉ d,tð Þ depends only on d and t (here
the Diophantine constant k is assumed, without
loss of generality, to be smaller than one). Thus,

the smallness condition (66) reads e0k�4 �D � 1
with some constant �D independent of k: such
condition is satisfied by choosing k ¼ �De0ð Þ1=4
and since ĉ# k was an upper bound on the com-
plementary of Kolmogorov set, we see that the set
of phase points which do not lie on KAM tori may
be bounded by a constant times

ffiffiffiffi
e04

p
. Actually, it

turns that this bound is not optimal, as we shall see
in the next section: see Remark 10.

(vi) The proof of claim C follows easily by
induction on the number j of the iterative steps25.

Arnold’s Scheme
The first detailed proof of Kolmogorov Theorem,
in the context of nearly integrable Hamiltonian
systems (compare Remark 1-(iii)), was given by
V.I. Arnold in 1963.

Theorem 2 (Arnold 1963a) Consider a one-
parameter family of nearly integrable
Hamiltonians

H y,x;eð Þ≔K yð Þ þ eP y,xð Þ, e�ℝð Þ (74)

with K and P real-analytic onM:= B(y0, r)�d

(endowed with the standard symplectic form
dy ^ dx) satisfying

Ky y0ð Þ ¼ o�Dk,t, det Kyy y0ð Þ 6¼ 0: (75)

Then, if e is small enough, there exists a real-
analytic embedding

f : y�d ! M (76)

close to the trivial embedding (y0, id), such that
the d-torus

T o,e≔f d
� 	

(77)

is invariant for H and

ft
H∘f yð Þ ¼ f yþ otð Þ, (78)

showing that such a torus is a nondegenerate
KAM torus for H.
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Remark 8 (i) The above Theorem is a corollary
of Kolmogorov Theorem 1 as discussed in
Remark 7-(iv).

(ii) Arnold’s proof of the above Theorem is not
based upon Kolmogorov’s scheme and is rather
different in spirit – although still based on a New-
ton method – and introduces several interesting
technical ideas.

(iii) Indeed, the iteration scheme of Arnold’s is
more classical and, from the algebraic point of
view, easier to construct than Kolmogorov’s one,
but the estimates involved are somewhat more
delicate and introduce a logarithmic correction,
so that, in fact, the smallness parameter will be

ϵ≔ ej j log ej j�1
� �r

(79)

(for some constant r = r(d, t) � 1) rather than |e|
as in Kolmogorov’s scheme, see, also, Remark 9-
(iii) and (iv) below.

Arnold’s scheme. Without loss of generality,
one may assume that K and P have analytic and
bounded extension toWr,x y0ð Þ≔D y0,rð Þ � d

x for

some x > 0, where, as above, D(y0, r) denotes the
complex ball of center y0 and radius r. We remark
that, in what follows, the analyticity domains of
actions and angles play a different rôle.

The HamiltonianH in (74) admits, for e= 0 the
(KAM) invariant torusT o,0= {y0}�d on which
the K-flow is given by x! x + ot. Arnold’s basic
idea is to find a symplectic transformation

f1 : W 1≔D y1, r1ð Þ � d
x1
! W 0≔D y0,rð Þ � d

x ,

(80)

so that W1 	 W0 and

H1≔H∘f1 ¼ K1 þ e2P1, K1 ¼ K1 yð Þ,
@yK1 y1ð Þ ¼ o, det @2

yK1 y1ð Þ 6¼ 0

�
(81)

(with abuse of notation we denote here the new
symplectic variables with the same name of the
original variables; as above, dependence on ewill,
often, not be explicitly indicated). In this way, the

initial setup is reconstructed and, for e small
enough, one can iterate the scheme so as to build
a sequence of symplectic transformations

fj : Wj≔D y j, rj
� �

� d
xj
! Wj�1 (82)

so that

Hj≔Hj�1∘fj ¼ Kj þ e2
j
Pj, Kj ¼ Kj yð Þ,

@yKj yj
� �

¼ o, det@2
yKj yj
� �

6¼ 0:

(
(83)

Arnold’s transformations, as in Kolmogorov’s
case, are closer and closer to the identity, and the
limit

f yð Þ≔ lim
j!1

Fj yi,yð Þ, Fj≔f1∘� � �∘fj :

Wj ! W 0,
(84)

defines a real-analytic embedding of d into the
phase space B(y0, r) � d , which is close to the
trivial embedding (y0, id); furthermore, the torus

T o,e≔f d
� 	

¼ lim
j!1

Fj yj,
d

� �
(85)

is invariant for H and (78) holds as announced in
Theorem 2. Relation (78) follows from the fol-
lowing argument. The radius rj will turn out to
tend to 0 but in a much slower way than e2

j
Pj. This

fact, together with the rapid convergence of the
symplectic transformation Fj in (84), implies

ft
H∘f yð Þ ¼ lim

j!1
ft
H Fj yj,y

� �� �
¼ lim

j!1
Fj∘f

t
Hj

yj,y
� �

¼ lim
j!1

Fj yj, yþ ot
� �

¼ f yþ otð Þ

(86)

(the first equality is just smooth dependence upon
initial data of the flow ft

H together with (84); the
second equality is (3); the third equality is due to
the fact thatft

Hj
yj,y
� �

¼ yj, yþ ot
� �

þ ϵnwhere
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ϵn goes very rapidly to zero and the fourth equality
is again (84)).

Arnold’s transformation. Let us look for a
near-to-the-identity transformation f1 so that the
first line of (81) holds; such transformation will be
determined by a generating function of the form

y0 � xþ eg y0,xð Þ, y ¼ y0 þ egx y0,xð Þ
x0 ¼ xþ egy0 y

0,xð Þ:

�
(87)

Inserting y = y0 + egx(y0, x) into H, one finds

H y0 þ egx,xð Þ ¼ K y0ð Þ þ e Ky y0ð Þ � gx þ P y0,xð Þ
� �

þ e2 P 1ð Þ þ P 2ð Þ
� �

(88)

with (compare (27))

P 1ð Þ ≔
1

e2
K y0 þ egxð Þ�K y0ð Þ� eKy y0ð Þ �gx
� �

¼ 1

2

Z 1

0
Kyy y0 þ tegxð Þgx�

gxdtP
2ð Þ ≔

1

e
P y0 þ egx,xð Þ�P y0,xð Þ½ 


¼
Z 1

0
Py y0 þ tegx,xð Þ �gxdt:

(89)

Remark 9 (i) The (naive) idea is to try determine
g so that

Ky y0ð Þ � gx þ P y0,xð Þ ¼ function of y0 only,

(90)

however, such relation is impossible to achieve.
First of all, by taking the x-average of both sides of
(90) one sees that the “function of y0 only” has to
be the mean of P(y0, �), i.e., the zero-Fourier coef-
ficient P0(y0), so that the formal solution of (90), is
(by Fourier expansion)

g ¼
X
n 6¼0

�Pn y0ð Þ
iKy y0ð Þ � n e

in�x,

Ky y0ð Þ � gx þ P y0,xð Þ ¼ P0 y0ð Þ:

8><>: (91)

But (at difference with Kolmogorov’s scheme)
the frequency Ky(y0) is a function of the action y0

and since, by the Inverse Function Theorem
(Appendix A), y ! Ky(y) is a local
diffeomorphism, it follows that, in any neighbor-
hood of y0, there are points y such that Ky(y) �
n = 0 for some26 n � ℤd. Thus, in any neighbor-
hood of y0, some divisors in (91) will actually
vanish and, therefore, an analytic solution g can-
not exist27.

(ii) On the other hand, since Ky(y0) is rationally
independent, it is clearly possible (simply by con-
tinuity) to control a finite number of divisors in a
suitable neighborhood of y0, more precisely, for
any N � ℕ one can find �r > 0 such that

Ky yð Þ � n 6¼ 0, 8y�D y0,�rð Þ,
80 < nj j � N ;

(92)

the important quantitative aspects will be shortly
discussed below.

(iii) Relation (90) is also one of the main “iden-
tity” in Averaging Theory and is related to the
so-called Hamilton–Jacobi equation. Arnold’s
proof makes rigorous such theory and shows
how a Newton method can be built upon it in
order to establish the existence of invariant tori.
In a sense, Arnold’s approach is much more clas-
sical than Kolmogorov’s one.

(iv) When (for a given y and n) it occurs that
Ky(y) � n = Ky(y) � n = 0, one speaks of an (exact)
resonance. As mentioned at the end of point (i), in
the general case, resonances are dense. This rep-
resents the main problem in Hamiltonian pertur-
bation theory and is a typical feature of
conservative systems. For generalities on Averag-
ing Theory, Hamilton–Jacobi equation, reso-
nances, etc., see, e.g., Arnold (1974) or Sect. 6.1
and Sect. 6.2 of Arnold et al. (2006).
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The key (simple!) idea of Arnold is to split the
perturbation in two terms

P ¼ P̂ þ P̌ where

P̂≔
X
nj j�N

Pn yð Þein�x

P̌≔
X
nj j>N

Pn yð Þein�x
:

8>><>>:
(93)

choosing N so that

P̌ ¼ O eð Þ (94)

(this is possible because of the fast decay of the
Fourier coefficients of P; compare (34)). Then, for
e 6¼ 0, (88) can be rewritten as follows

H y0 þ egx,xð Þ ¼ K y0ð Þ þ e Ky y0ð Þ � gx þ P̂ y0,xð Þ
� �

þ e2 P 1ð Þ þ P 2ð Þ þ P 3ð Þ
� �

(95)

with P(1) and P(2) as in (89) and

P 3ð Þ y0,xð Þ≔ 1

e
P̌ y0,xð Þ: (96)

Thus, letting28

g ¼
X

0< nj j�N

�Pn y0ð Þ
iKy y0ð Þ � n e

in�x, (97)

one gets

H y0 þ egx,xð Þ ¼ K1 y0ð Þ þ e2P0 y0,xð Þ (98)

where

K1 y0ð Þ≔K y0ð Þ þ eP0 y0ð Þ,
P0 y0,xð Þ≔P 1ð Þ þ P 2ð Þ þ P 3ð Þ:

(99)

Now, by the IFT (Appendix A), for e small
enough, the map x ! xþ egy0 y

0,xð Þ can be

inverted with a real-analytic map of the form

’ y0,x0;eð Þ≔x0 þ ea y0,x0;eð Þ (100)

so that Arnold’s symplectic transformation is
given by

f1 : y0,x0ð Þ

! y ¼ y0 þ egx y0,’ y0,x0;eð Þð Þ
x ¼ ’ y0,x0;eð Þ ¼ x0 þ ea y0,x, ;eð Þ

�
(101)

(compare (22)). To finish the construction,
observe that from the IFT (see Appendix A and
the quantitative discussion below) it follows that
there exists a (unique) point y1 �B y0,�rð Þ so that
the second line of (81) holds, provided e is small
enough.

In conclusion, the analogous of Proposition 1
holds, describing Arnold’s scheme:

Proposition 2 If f1 is defined in (101) with g
given in (97) (with N so that (94) holds) and ’

given in (100), then (81) holds with K1 as in (99)
and P1(y0, x0): = P0(y0, ’(y0, x0)) with P0 defined in
(99), (96), and (89).

Estimates and convergence. If f is a real-
analytic function with analytic extension to Wr,x,
we denote, for any r0 � r and x0 � x,

fk kr0,x0≔ sup
Wr0,x0 y0ð Þ

f y,xð Þj j; (102)

furthermore, we define

T≔Kyy y0ð Þ�1, M≔ Pk kr,x, (103)

and assume (without loss of generality)

k < 1, r < 1, x � 1,

max 1, Ky

�� ��
r
, Kyy

�� ��
r
, Tk k

n o
< C,

(104)

for a suitable constant C (which, as above, will not
change during the iteration).

18 Kolmogorov-Arnold-Moser (KAM) Theory for Finite and Infinite Dimensional Systems



We begin by discussing how N and �r depend
upon e. From the exponential decay of the Fourier
coefficients (34), it follows that, choosing

N≔5d�1l, where l≔log ej j�1, (105)

then

kP̌kr,x�d
2
� ej jM (106)

provided

ej j � constd4d (107)

for a suitable29 const = const(d).
The second key inequality concerns the control

of the small divisors Ky(y0) � n appearing in the
definition of g (see (97)), in a neighborhood D
y0,�rð Þ of y0: this will determine the size of �r.
Recalling that Ky(y0)= o � Dt,k, by Taylor’s

formula and (9), one finds, for any 0< |n|� N and
any y0 �D y0,�rð Þ,

Ky y0ð Þ � n
�� �� ¼ o � nþ Ky y0ð Þ � Ky y0ð Þ

� 	
� n

�� ��
� o � nj j 1�

Kyy

�� ��
r

o � nj j nj j�r
 !

� k
nj jt 1� C

k
nj jtþ1�r

� �
� k

nj jt 1� C

k
N tþ1�r

� �
� 1

2

k
nj jt ,

(108)

provided �r � r satisfies also

�r � k
2CN tþ1 ¼105ð Þ k

2 � 5tþ1C d�1l
� 	tþ1 : (109)

Equation (108) allows easily to control
Arnold’s generating function g. For example:

gxk k�r,x�d
2
¼ sup

D y0,�rð Þ�e

x�d
2

X
0< nj j�N

nPn y0ð Þ
Ky y0ð Þ � n e

in�x

������
������

� �
X

0< nj j�N

supD y0,rð Þ Pn y0ð Þj j
Ky y0ð Þ � n
�� �� nj je x�d

2ð Þ nj j

�
X
n�ℤd

M
2 nj jt

k
e�

d
2 nj j

� const
M

k
d� tþ1þdð Þ,

(110)

where “const” denotes a constant depending on
d and t only; compare also Remark 6-(i). Let us
now discuss, from a quantitative point of view,
how to choose the new “center” of the action
variables y1, which is determined by the require-
ments in (81). Assuming that

�r � r

2
(111)

(allowing to use Cauchy estimates for
y-derivatives ofK or P inD y0,�rð Þ), it is not difficult
to see that the quantitative IFT of Appendix A
implies that there exists a unique y1 �D y0,�rð Þ
such that (81) holds. In fact, assuming

8C2 �r

r
� 1,

8CM

r�r
ej j � 1

8><>: (112)

one can show that30

y1 � y0j j � 4CMr�1 ej j � �r

2
, (113)

and

@2
yK1 y1ð Þ≔Kyy y1ð Þ þ e@2

yP0 y1ð Þ≕T�1 1d þ Að Þ
(114)

with A≔T Kyy y1ð Þ � Kyy y0ð Þ þ e@2
yP0 y1ð Þ

� �
satisfying
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Ak k � 12C3M

r2
ej j �

112ð Þ 12C3M

r

1

8C2�r
ej j �

112ð Þ 3

16
:

(115)

Equations (114) and (115) imply that @2
yK y1ð Þ

is invertible (Neumann series) and that31

@2
yK1 y1ð Þ�1 ¼ T þ e~T , ~T

�� �� � 15
C4M

r2
:

(116)

Finally, notice that by (113),

D y1, �r=2ð Þ 	 D y0,�rð Þ: (117)

Now, all the estimating tools are set up and,
writing

K1≔K þ e ~K ¼ K þ eP0 y0ð Þ,y1≔y0 þ e~y, (118)

one can easily prove (along the lines that led to
(54)) the following estimates, where as in section
“Kolmogorov Theorem,” x≔x� 2

3 d and �r is as
above:

gxk k�r,x
r

, gy0
�� ��

�r,x,
~yj j
r
, ~Ky

�� ��
�r
, ~Kyy

�� ��, ~T
�� �� � ck�2Cmd�nlrM≕L, P0k kx � ck�2Cmd�nlrM 2 ¼ LM ,

(119)

where c = c(d, t) > 1, m � ℤ+, n and r are
positive integers depending on d and t. Now,
by32 Lemma 1 and (119), one has that map
x ! x + egy(y0, x) has, for any y0 �D�r y0ð Þ , an
analytic inverse ’= x0 + ea(x0; y0, e)=: ’(y0, x0) on
d
x�d

3

provided (55) holds (with L as in (119)), in

which case (56) holds (for any |e| � e0 and any
y0 � Dr(y0)). Furthermore, under the above
hypothesis, it follows that33

f1≔ y0 þ egx y0,’ y0,x0ð Þð Þ,’ y0,x0ð Þð Þ : W �r=2,x�d y1ð Þ ! Wr,x y0ð Þ
f1 � idk k�r=2,x�d � ej jL:

�
(120)

Finally, letting P1(y0, x0): = P0(y0, ’(y0, x0)) one
sees that P1 is real-analytic on W �r=2,x�d y1ð Þ and

bounded on such domain by

P1k k�r=2,x�d � LM : (121)

In order to iterate the above construction, we
fix 0 < x* < x and set

C≔2max 1, Ky

�� ��
r
, Kyy

�� ��
r
, Tk k

n o
, g≔3C,

d0≔
g� 1ð Þ x� x�ð Þ

g
;

(122)

xj and dj as in (64) but with d0 as in (122); we
also define, for any j � 0,

lj≔2jl ¼ loge�2j

0 , rj≔
k

4 � 5tþ1C d�1
j lj

� �tþ1 ;

(123)

(this part is adapted from Step 3 in section “Kol-
mogorov Theorem”; see, in particular, (104)).
With such choices, it is not difficult to check that
the iterative construction may be carried out infi-
nitely many times yielding, as a byproduct, The-
orem 2 with f real-analytic on d

x�
, provided

|e| � e0 with e0 satisfying
34
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e0� e�b with b≔
d0
5

k
Cr

� � 1
tþ1

e0DB Pk kr,x�1 with D≔3ck�2d� nþ1ð Þ
0 Cmþ1,

B≔gnþ1 loge�1
0

� 	r
:

8>>><>>>:
(124)

Remark 10 Notice that the power of k�1 (the
inverse of the Diophantine constant) in the second
smallness condition in (124) is two, which implies
(compare Remark 7-(v)) that the measure of the
complementary of Kolmogorov set may be
bounded by a constant times

ffiffi
ϵ

p
, where ϵ: =

e(log e)�r. This bound is almost optimal (i.e.,
optimal, up to logarithmic corrections) as the triv-
ial example y21þy22

� 	
=2þecos x1ð Þ shows: such

Hamiltonian is integrable and the phase por-
trait shows that the separatrices of the pendulum

y21=2þecosx1 bound a region of area
ffiffiffiffiffi
ej j

p
with no

KAM tori (as the librational curves within such
region are not graphs over the angles).

Taking out the logarithm is not a completely
trivial matter, and even though in the literature is
normally claimed that the sharp estimate holds, a
complete proof of this fact is hard to find. For a
recent detailed proof, see Biasco and Chierchia
(2018).

The Differentiable Case: Moser’s Theorem
J.K. Moser, in 1962, proved a perturbation
(KAM) Theorem, in the framework of area-
preserving twist mappings of an annulus35

[0, 1] � 1 , for integrable analytic systems
perturbed by a Ck perturbation (Moser 1961,
1962). Moser’s original set up corresponds to the
Hamiltonian case with d = 2 and the required
smoothness was Ck with k = 333. Later, this
number was brought down to 5 by H. Rüssmann
(Rüssmann 1970).

Moser’s original approach, similarly to the
approach that led J. Nash to prove its theorem on
the smooth embedding problem of compact Rie-
mannian manifolds, Nash (1956), is based on a
smoothing technique (via convolutions), which
re-introduces at each step of the Newton iteration
a certain number of derivatives which one looses
in the inversion of the small divisor operator.

The technique, which we shall describe here, is
again due to Moser (1970) but is rather different
from the original one, and it is based on a quanti-
tative analytic KAM Theorem (in the style of
statement in Remark 7-(i) above) in conjunction
with a characterization of differentiable functions
in terms of functions, which are real-analytic on
smaller and smaller complex strips; see Moser
(1966) and, for an abstract functional approach,
Zehnder (1975, 1976). By the way, this approach,
suitably refined, leads to optimal differentiability
assumptions (i.e., the Hamiltonian may be
assumed to be C‘ with ‘ > 2d); see, Pöschel
(1982) and the beautiful exposition Salamon
(2004), which inspires the presentation
reported here.

Let us consider a Hamiltonian H = K + eP
(as in (18)) with K a real-analytic Kolmogorov
normal form as in (10) witho � Dk,t andQ real-
analytic; P is assumed to be a C‘(ℝd � d )
function with ‘ = ‘(d, t) to be specified later36.

Remark 11 The analytic KAM theorem, we shall
refer to, is the quantitative Kolmogorov Theorem
as stated in in Remark 7-(i) above, with (70)
strengthened by including in the left hand side of
(70) also37 k@(f* � id)kyx and k@(Q � Q*)kyx
(where “@” denotes, here, “Jacobian” with respect
to (y, x) for (f*� id) and “gradient” for (Q�Q*)).

The analytic characterization of differentiable
functions, suitable for our purposes, is explained
in the following two lemmata38.

Lemma 2 (Jackson, Moser, Zehnder) Let f �
Cl(ℝd) with l > 0. Then, for any 0 < x � 1 there
exists a real-analytic function

f x : X
d
x≔ x�ℂd : Imxj

�� �� < x
� 


! ℂ such that

supX d
x
f x
�� ��� c fk kC0 , f x� f

�� ��
Cs � c fk kClxl�s, s�ℕ,s� lð Þ

supX d
x0
f x� f x0
�� ��� c fk kClxl, 80<x0<x,

(
(125)

where c = c(d, l) is suitable constant; if f is
periodic in some variable xj, so is fx.

Kolmogorov-Arnold-Moser (KAM) Theory for Finite and Infinite Dimensional Systems 21



Lemma 3 (Bernstein, Moser) Let l � ℝ+\ℤ; let
f0 = 0 and let, for any j � 1, fj be real analytic

functions on X d
j ≔ x�ℂd : Imxkj j < 2�j
� 


such

that

sup
Xd

j

f j � f j�1

�� �� � A2�jl (126)

for some constant A. Then, fj tends uniformly on
ℝd to a function f � Cl(ℝd) such that, for a
suitable constant C = C(d, l) > 0,

fk kCl ℝdð Þ � CA: (127)

Finally, if the fi’s are periodic in some variable
xk then so is f.

Now, denote by X x ¼ X d
x � d � ℂ2d and

define (compare Lemma 2)

Pj≔Pxj , xj≔
1

2j
: (128)

Claim M If |e| is small enough and if ‘ > s + 1,
then there exists a sequence of Kolmogorov
symplectic transformations {Fj}j � 0, |e|-close to
the identity, and a sequence of Kolmogorov nor-
mal forms Kj such that

Hj∘Fj ¼ Kjþ1 on W xjþ1
(129)

where

Hj≔K þ ePj

F0 ¼ f0 and Fj≔Fj�1∘fj, j � 1ð Þ

fj : W xjþ1
! W axj , Fj�1 : W axj ! X xj , j � 1 and a≔

1ffiffiffi
2

p ,

sup
x�d

xjþ1

Fj 0,xð Þ � Fj�1 0,xð Þ
�� ��� � const ej j2� ‘�sð Þj:

(130)

The proof of Claim M follows easily by induc-
tion39 from Kolmogorov Theorem (compare
Remark 11) and Lemma 2.

FromClaimM and Lemma 3 (applied to fj(x)=
Fj(0, x) � F0(0, x) and l = ‘ � s, which may be
assumed not integer), it then follows that Fj(0, x)
converges in the C1 norm to a C1 function f: d

! ℝd � d , which is e-close to the identity, and,
because of (129),

f xþ otð Þ ¼ lim Fj 0, xþ otð Þ
¼ lim ft

Hj
∘Fj 0,xð Þ ¼ ft

H∘f xð Þ
(131)

showing that f(d) is a C1 KAM torus for H (note
that the map f is close to the trivial embedding
x ! (0, x)).

Lower Dimensional KAM Tori
We consider the existence of quasi-periodic solu-
tions with a number of frequencies smaller than
the number of degrees of freedom49. Such solu-
tions span lower dimensional (non-Lagrangian)
tori. Certainly, this is one of the most important
topics in modern KAM theory, not only in view of
applications to classical problems, but especially
in view of extensions to infinite dimensional sys-
tems, namely, PDEs (Partial Differential Equa-
tions) with a Hamiltonian structure. For a review
on lower dimensional tori (in finite dimensions),
we refer the reader to Sevryuk (2003).

In 1965 V.K. Melnikov (1965) stated a precise
result concerning the persistence of stable
(or “elliptic”) lower dimensional tori; the hypoth-
eses of such result are, now, commonly referred to
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as “Melnikov conditions.” However, a proof of
Melnikov’s statement was given only later by
Moser (1967) for the case n = d � 1 and, in the
general case, by H. Eliasson in (1988) and, inde-
pendently, by S.B. Kuksin (1988). The unstable
(“partially hyperbolic”) case (i.e., the case for
which the lower dimensional tori are linearly
unstable and lie in the intersection of stable and
unstable Lagrangian manifolds) is simpler and a
complete perturbation theory was already given in
Graff (1974), Moser (1967) and Zehnder (1976)
(roughly speaking, the normal frequencies to the
torus do not resonate with the inner (or “proper”)
frequencies associated to the quasi-periodic
motion). Since then, Melnikov conditions have
been significantly weakened and a lot of technical
progress has been done; see Sevryuk (2003),
Sects. 5, 6, and 7, and references therein.

As an example we consider a system with
n + m degrees of freedom with Hamiltonian

H ¼ K x,y,z;xð Þ þ eP x,y,z;xð Þ (132)

where (x, y) � n�ℝn, z ¼ 1ffiffi
2

p pþ iqð Þ�ℂm are

pairs of standard symplectic coordinates, while x
is a real parameter running over a compact set
P � ℝn of positive Lebesgue measure50. K,
P are Lipschitz in x and analytic with respect to
the dynamical variables x, y, z, �z (note that when
we complexify (p, q) the variables z, �z become
independent) in the complexified domain

x,y,z,�zð Þ�D s,rð Þ≔n
s � Br2 ℂnð Þ � Br ℂmð Þ

� Br ℂmð Þ

namely, they can be written in totally convergent
Taylor Fourier series as

K ¼
X
d �ℕ

K dð Þ ¼
X
d �ℕ

X
‘�ℤn,l �ℕn,a,b�ℕm

2 lj jþ aj jþ bj j¼d

K‘,a,be
i‘�xylza�zb,

where ylza�zb ¼
Qn

i¼1 y
li
i

Qm
j¼1 z

aj
j �z

bj
j .

Here the apex (d) denotes the homogeneous
components of degree d, provided that we assign
degree two to the variables y, degree one to the
variables z, and degree zero to the variables x.
Note that this choice of degrees is the one that
makes the symplectic form homogeneous of
degree two, since the variables x, which are not
close to zero, must have degree zero.

We shall assume that, for all x � P, K admits
the n-torus

T 0 xð Þ≔ y ¼ 0f g � n � z ¼ 0f g

as a linearly stable invariant torus and is written in
normal form

K ¼ K 0ð Þ xð Þ þ o 0ð Þ xð Þ � yþ
Xm
j¼1

O 0ð Þ
j xð Þ zj

�� ��2 þ K �3ð Þ

(133)

here K(�3) is an analytic Hamiltonian with mini-
mal degree at least three while K(0)(x) is a con-
stant. The ft

K flow decouples in the linear flow
x � n ! x + o(0)(x)t times the motion of
m (decoupled) harmonic oscillators with charac-
teristic frequenciesO 0ð Þ

j xð Þ (sometimes referred to
as normal frequencies).

We have the following result:

Theorem 3 (Pöschel 1989) Fix g> 0, t> n then
for all |e| sufficiently small there exists Lipschitz
functions o(x), O(x): P ! ℝn+m e-close to
o(0)(x), O(0)(x) such that setting

ð134Þ
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then for all x � P* there exists a change of vari-
ables F, e-close to the identity, such that

H∘F ¼ o xð Þ � yþ
Xm
j¼1

Oj xð Þ zj
�� ��2 þ H �3ð Þ

(135)

namely, it is in normal form with frequencieso(x),
O(x).

Now in order to make this result interesting, we
have to give conditions which ensure that the set
P* has positive Lebesgue measure. This follows,
for instance, by requiring that x ! o(0)(x) is a
Lipeomorphism and that the Melnikov conditions
hold. Explicitly, for any (‘, k) � ℤn+m\{0} with
|k| � 2, we define:

ð136Þ

This formulation has been borrowed from
Pöschel (1989), to which we refer for a complete
proof; the description of the setP* in terms of the
final frequencies is the one given in Berti and
Biasco (2011); for the differentiable analog, see
Chierchia and Qian (2004).

In order to give a sketch of the proof, let us
introduce some notation: we define the degree
projections P�j, Pj, P>j as

PjH ¼ H jð Þ, P�jH ¼
X
0�d�j

H dð Þ,

in the same way H�3 is a Hamiltonian with min-
imal degree at least three, while H�2 is a polyno-
mial Hamiltonian of maximal degree two, etc.

We endow the space of Hamiltonians with a
structure of scale of Banach spaces with respect to
the norm defined as follows.

We represent a vector field on ℝ2n � ℂm as

X ¼
Xn
i¼1

X xið Þ x,y,zð Þ @

@xi
þ X yið Þ x,y,zð Þ @

@yi

þ
Xm
j¼1

X zjð Þ x,y,zð Þ @

@zj
,

where each component is an analytic function,

X vð Þ x,y,zð Þ ¼
X

‘�ℤn,l�ℕn,a,b�ℕm

X vð Þ
‘,a,be

i‘�xylza�zb,

v ¼ x1, . . . xn,y1, . . . ,yn,z1, . . . ,zm:

Finally we define the majorant vector field X by

setting X vð Þ
‘,a,b ¼ X vð Þ

‘,a,b

��� ���.
Hj js,r≔ sup

D s,rð Þ
Hj j þ X xð Þ

H

��� ���lip þ 1

r2
X zð Þ

H

��� ���lip þ 1

r
X zð Þ

H

��� ���lip� �
(137)

where given a Lipschitz map f: P ! E with E a
Banach space, we denote by fj jlipE the inhomoge-
neous Lipschitz norm

fj jlipE ≔ sup
x�P

f xð Þj jE þ sup
x 6¼x0 �P

f xð Þ � f x0ð Þj jE
x� x0j j

This norm is less natural than the one defined
in (46), in particular due to the presence of the
majorant it is not coordinate independent. How-
ever, it is closed with respect to Poisson brackets,
projection onto the components of homogeneous
degree, and has exponentially small smoothing
estimates for the ultraviolet terms, i.e., has prop-
erties similar to (P1)–(P5); moreover, it turns out
that with this definition the smallness assumptions
on e in the KAM theorem 3 are independent of m.
Now our goal is to find:
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(A) A sequence o(n), O(n) defined and Lipschitz
for x � P and tending to o, O super-
exponentially

(B) A sequence en rapidly converging to zero and
a (rapidly converging) sequence of changes
of variables Cn, well defined and Lipschitz
for x in a nested sequence of domains which
contains P* defined by

P�
n≔ x�P�

n�1 : o nð Þ � ‘þ k � O nð Þ
��� ���n

� g
‘j jt ,8 ‘,kð Þ�ℤnþmn 0f g :

kj j � 2, ‘j j� Nng,

(138)

with Nn � ln e�1
n

� 	
, such that

H0 ¼ K0 þ e0P0,

Hnþ1 ¼ CnHn ¼ Knþ1 þ enþ1Pnþ1,

Kn ¼ K 0ð Þ
n þ K 2ð Þ

n þ K �3ð Þ
n withK 0ð Þ

n depending
only on x,

K 2ð Þ
n ¼ o nð Þ � yþ

X
j

O nð Þ
j zj
�� ��2,

Finally Pn is a polynomial of maximal degree

two and en � e3=2n�1 tends to zero super-
exponentially.

Let us show how to perform one step of this
procedure. We claim that Cn is the time-one flow
of a generating function Sn � O N3t

n en
� 	

, where
the closeness in the norm (137) with an appropri-
ate choice of parameters sn, rn. Recalling the Lie
exponentiation formula, we have

Hn∘Cn ¼ Hn þ Sn,Hnf g þ O e2n
� 	

¼ Kn þ enPn þ Sn,Knf g þ O N6t
n e

2
n

� 	
:

Our goal is achieved provided that we fix Sn so
that

P �2ð Þ Kn þ enPn þ Sn,Knf gð Þ

¼ P �2ð ÞKnþ1 þ O e3=2n

� �
,

recall that we only want the terms of degree at
most two to be in normal form, this is why we
apply the projectionP(�2). We assume that Sn is a
polynomial of maximal degree two and solve the
equations above in increasing homogeneous
degrees, recalling that F d1ð Þ,G d2ð Þ� 


has degree
d1 + d2–2. We get a triangular system:

S 0ð Þ
n ,K 2ð Þ

n

� 

¼ �enP 0ð Þ

n þ K 0ð Þ
nþ1 � K 0ð Þ

n þ O e3=2n

� 	
S 1ð Þ
n ,K 2ð Þ

n

� 

¼ �enP 1ð Þ

n � S 0ð Þ
n ,K 3ð Þ

n

� 

þ O e3=2n

� 	
S 2ð Þ
n ,K 2ð Þ

n

� 

¼ �enP 2ð Þ

n � S 0ð Þ
n ,K 4ð Þ

n

� 

� S 1ð Þ

n ,K 3ð Þ
n

� 

þK 2ð Þ

nþ1 � K 2ð Þ
n þ O e3=2n

� 	
:

(139)

which we solve for x � Pn, just like we did for
Eq. (31), by noticing that

K 2ð Þ
n , ei‘�xylza�zb

� 

¼ i o nð Þ � ‘þ O nð Þ � a� bð Þ
� �

ei‘�xylza�zb

and that all the ultraviolet terms with fre-
quency � Nn can be ignored since they are
O e3=2n

� 	
.

One can also consider more general cases, for
instance, where the conditions (136) hold only for
(‘, k) with |k| � 1, namely, the second Melnikov
conditions do not hold. Then one can still prove
the existence of a torus, for x in some positive
measure Cantor-like set, this was done by
J. Bourgain in 1997. We state his theorem
(written with our notations):

Theorem 4 (Bourgain 1997) Let H(x, y, z) be of
the form

H ¼ o 0ð Þ xð Þ � yþ 1

2
yj j2 þ

Xm
j¼1

O 0ð Þ
j xð Þ zij j2 þ eP

where we assume thato(0) is diophantine and that
condition (136) holds for (‘, k) with |k| � 1. Then,
for any fixed small e> 0 and for l taken in a set of
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positive measure, there exists a perturbed torus
with frequency vector o= lo(0), parametrized as

x ¼ ot þ X otð Þ, y ¼ Y otð Þ, z ¼ Z otð Þ

with (X, Y, Z) quasi-periodic and of size, say, O(e1/2)
in a suitable real analytic function space norm.

We remark that in general in this case one does
not have information on the stability in the
z directions.

Bourgain’s approach to this problem was to
look directly for the quasi-periodic solution. This
amounts to looking for a map

i : n ! ℂn � ℂn � ℂm,

’ ! i ’ð Þ ¼ ’þ X ’ð Þ,Y ’ð Þ, Z ’ð Þð Þ,

and for a frequency o � ℝn, which solve the
functional equation

F ið Þ≔o � @’i ’ð Þ � XH i ’ð Þð Þ ¼ 0:

Now in order to solve this functional problem,
we apply a Nash-Moser quadratic algorithm,
starting from the approximate solution
i= i0(’)= (’, 0, 0) ando=o(0) and constructing
a super-exponentially convergent sequence of
approximate solutions in(’), o

(n). The key point
is to invert (with some quantitative control on the
bounds) the linearized operator at an approximate
solution. This is in general a much more difficult
task with respect to solving the homological
Eqs. (139), since it involves a linear operator
which depends quasi-periodically on time. In the
case of maximal tori, this problem can be over-
come, e.g., Celletti and Chierchia (1988), by
exploiting the symplectic structure. In the more
difficult elliptic lower-dimensional case,
Bourgain solves the problem by a “multiscale
theorem,” which he first developed in the context
of KAM for PDEs, see Bourgain (2005a) or Berti
et al. (2015). Actually as shown in (Berti and
Bolle 2014) this approach is completely parallel
to a KAM scheme. Indeed the existence of a
quasi-periodic solution i(’) implies the existence
of a symplectic change of variables which puts the
Hamiltonian in the normal form:

H∘F ¼ o xð Þ � yþ Q x,z;xð Þ þ H �3ð Þ (140)

whereQ is a quadratic form in zwhich depends on
the angles x.

Other Chapters in Classical KAM Theory
In this section, we review in a schematic and
informal way some developments and applica-
tions of KAM theory; for other more exhaustive
surveys, we refer to Arnold et al. (2006), Broer
et al. (1996) (Sect. 6.3), or Sevryuk (2003).

1. Structure of the Kolmogorov set and Whitney
smoothness

The Kolmogorov set (i.e., the union of
KAM tori), in nearly integrable systems,
tends to fill up (in measure) the whole phase
space as the strength of the perturbation goes to
zero (compare Remark 7-(v) and Remark 10).
A natural question is: what is the global geom-
etry of KAM tori?

It turns out that KAM tori smoothly inter-
polate in the following sense. For e small
enough, there exists a C1 symplectic
diffeomorphism f* of the phase space

M = B � d of the nearly-integrable, non-
degenerate Hamiltonians H = K(y) + eP(y, x)
and a Cantor set C� � B such that, for each y0

� C�, the set f�1
� y0f g � d
� 	

is a KAM torus
for H; in other words, the Kolmogorov set is a
smooth, symplectic deformation of the fiber
bundle C� � d . Still another way of describ-
ing this result is that there exists a smooth
function K*: B ! ℝ such that (K + eP) ∘ f*

and K* agree, together with their derivatives,
on C�� d: we may, thus, say that, in general,
nearly integrable Hamiltonian systems are
integrable on Cantor sets of relative big
measure.

Functions defined on closed sets which
admits Ck extensions are called Whitney
smooth; compare (Whitney 1934), where
H. Whitney gives a sufficient condition,
based on Taylor uniform approximations, for
a function to be Whitney Ck.
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The proof of the above result – given, indepen-
dently, in Chierchia and Gallavotti (1982) and
Pöschel (1982) in, respectively, the analytic and
the differentiable case – follows easily from the
following lemma40:

Lemma 4 Let C � ℝd a closed set and
let {fj}, f0 = 0, be a sequence of functions
analytic on Wj ¼ [y� CD (y, rj). Assume thatP

j�1supWi
f j � f j�1

�� ��r�k
j < 1 . Then, fj con-

verges uniformly to a function f, which is Ck in
the sense of Whitney on C.

Actually, the dependence upon the angles x0 of
f* is analytic and it is only the dependence upon
y0 � C� which is Whitney smooth (“anisotropic
differentiability,” compare Sect. 2 in Pöschel
(1982)).

For more information and a systematic use of
Whitney differentiability, see Broer et al. (1996).

2. Power series expansions

KAM toriT o,e=fe(
d) of nearly integrable

Hamiltonians correspond to quasi-periodic tra-
jectories z t;y,eð Þ¼fe yþotð Þ¼ft

H z 0;y,0ð Þð Þ;
compare items (d) and (e) of section “Introduc-
tion” and Remark 2-(i) above. While the actual
existence of such quasi-periodic motions was
proven, for the first time, only thanks to KAM
theory, the formal existence, in terms of formal
e-power series41 was well known in the XIX
century to mathematicians and astronomers
(such as Newcombe, Lindstedt and, especially,
Poincaré; compare (Poincarè), Vol. II). Indeed,
formal power solutions of nearly integrable
Hamiltonian equations are not difficult to con-
struct (see, e.g., Sect. 7.1 of Celletti and
Chierchia (1995)) but direct proofs of the con-
vergence of the series, i.e., proofs not based on
Moser’s “indirect” argument recalled in
Remark 7-(iii) but, rather, based upon direct
estimates on the kth e-expansion coefficient,
are quite difficult and were carried out only in
the late eighties by H. Eliasson (1996). The
difficulty is due to the fact that, in order to
prove the convergence of the Taylor–Fourier
expansion of such series, one has to recognize

compensations among huge terms with differ-
ent signs42. After Eliasson’s breakthrough
based upon a semi-direct method (compare
the “Postscript 1996” at p. 33 of Eliasson
(1996)), fully direct proofs were published in
1994 in Chierchia and Falcolini (1994) and
Gallavotti (1994).

3. Nondegeneracy assumptions
Kolmogorov’s nondegeneracy assumption

(71) can be generalized in various ways. First
of all, Arnold pointed out in Arnold (1963a)
that the condition

det
Kyy Ky

Ky 0

� �
6¼ 0, (141)

(this is a (d + 1) � (d + 1) matrix where last
column and last row are given by the (d + 1)-
vector (Ky, 0)) which is independent from con-
dition (71), is also sufficient to construct KAM
tori. Indeed, (141) may be used to construct
iso-energetic KAM tori, i.e., tori on a fixed
energy level43 E.

More recently, Rüssmann (1989) (see, also,
Rüssmann (2001)), using results of
Diophantine approximations on manifolds
due to Pyartly (1969), formulated the follow-
ing condition (“Rüssmann non-degeneracy
condition”), which is essentially necessary
and sufficient for the existence of a positive
measure set of KAM tori in nearly integrable
Hamiltonian systems: the image o(B) � ℝd of
the unperturbed frequency map y ! o(y): =
Ky(y) does not lie in any hyperplane passing
through the origin. We simply add that one of
the prices that one has to pay to obtain these
beautiful general results is that one cannot fix
ahead the frequency.

For a thorough discussion of this topic, see
Sect. 2 of Sevryuk (2003).

4. Some physical applications
We now mention a short (and non-

exhaustive) list of important physical applica-
tion of KAM theory. For more information, see
Sect. 6.3.9 of Arnold et al. (2006) and refer-
ences therein.
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4.1 Perturbation of classical integrable
systems

As mentioned above (Remark 1-(iii)),
one of the main original motivation of
KAM theory is the perturbation theory
for nearly integrable Hamiltonian systems.
Among the most famous classical integra-
ble systems we recall: one-degree-of free-
dom systems; Keplerian two-body
problem, geodesic motion on ellipsoids;
rotations of a heavy rigid body with a
fixed point (for special values of the
parameters: Euler’s, Lagrange’s,
Kovalevskaya’s and Goryachev–
Chaplygin’s cases); Calogero–Moser’s
system of particles; see, Sect. 5 of Arnold
et al. (2006) and Moser (1983).

A first highly non-trivial step, in order
to apply KAM theory to such classical
systems, is to construct explicitly action-
angle variables and to determine their ana-
lyticity properties, which is in itself a tech-
nical non-trivial problem. A second
problem which arises, especially in Celes-
tial Mechanics, is that the integrable
(transformed) Hamiltonian governing the
system may be highly degenerate (proper
degeneracies – see Sect. 6.3.3, B of
Arnold et al. (2006)), as is the case of the
planetary n-body problem. Indeed, the first
complete proof of the existence of a posi-
tive measure set of invariant tori44 for the
planetary (n + 1) problem (one body with
mass 1 and n bodies with masses smaller
than e) has been published only in 2004
(Féjoz 2004) (see, also, Chierchia (2006));
a completion of Arnold’s project (1963b)
(where Arnold proved the first nontrivial
case of the circular planar three body prob-
lem and gave a sketch of how to generalize
to the general case) has been carried out in
Chierchia and Pinzari (2011a); see also,
Chierchia and Pinzari (2010, 2011b,
2014).

4.2 Topological trapping in low dimensions
The general 2-degree-of-freedom

nearly integrable Hamiltonian exhibits a
kind of stability particularly strong: the

phase space is 4-dimensional and the
energy levels are 3-dimensional; thus,
KAM tori (which are two-dimensional
and which are guaranteed, under condition
(141), by the iso-energetic KAM theorem)
separate the energy levels and orbits lying
between two KAM tori will remain forever
trapped in such invariant region. In partic-
ular the evolution of the action variables
stays forever close to the initial position
(“total stability”).

This observation is originally due to
Arnold (1963a); for applications to the
stability of three-body problems in celes-
tial mechanics see Celletti and Chierchia
(2007) and item 4.4 below.

In higher dimension, this topological
trapping is no more available, and in prin-
ciple nearby any point in phase space, it
may pass an orbit whose action variables
undergo a displacement of order one
(“Arnold’s diffusion”). A rigorous com-
plete proof of this conjecture is still
missing45.

4.3 Spectral Theory of Schrödinger operators
KAM methods have been applied also

very successfully to the spectral analysis
of the one-dimensional Schrödinger
(or “Sturm-Liouville”) operator on the
real line ℝ

L≔� d2

dt2
þ v tð Þ, t �ℝ: (142)

If the “potential” v is bounded, then there exists
a unique self-adjoint operator on the real
Hilbert space ℒ2 (ℝ) (the space of
Lebesgue square-integrable functions on

ℝ) which extends L above on C2
0 (the

space of twice differentiable functions
with compact support). The problem is
then to study the spectrum s(L) of L; for
generalities, see Coddington and
Levinson (1955).

If v is periodic, then s(L) is a continu-
ous band spectrum, as it follows immedi-
ately from Floquet theory (Coddington
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and Levinson 1955). Much more compli-
cate is the situation for quasi-periodic
potentials v(t):=V (ot)=V (o1t, . . .,ont),
where V is a (say) real-analytic function on
n , since small-divisor problems appear,
and the spectrum can be nowhere dense.
For a beautiful classical exposition, see
Moser (1983), where, in particular, inter-
esting connections with mechanics are
discussed46; for deep developments of
generalization of Floquet theory (“reduc-
ibility”) to quasi-periodic Schrödinger
operators, see Avila and Krikorian
(2006); Eliasson (1992).

4.4 Physical stability estimates and break-
down thresholds

KAM Theory is perturbative and works
if the parameter e measuring the strength
of the perturbation is small enough. It is
therefore a fundamental question: how
small e has to be in order for KAM results
to hold. The first concrete applications
were extremely discouraging: in 1966,
the French astronomer M. Hénon (1966)
pointed out that Moser’s theorem applied
to the restricted three-body problem (i.e.,
the motion of an asteroid under the gravi-
tational influence of two unperturbed pri-
mary bodies revolving on as given
Keplerian ellipse) yields existence of
invariant tori if the mass ratio of the pri-
maries is less than47 10�50. Since then, a
lot of progress has been done and, in
(Celletti and Chierchia 2007), it has been
shown via a computer-assisted proof48,
that, for a restricted-three body model of
a subsystem of the Solar system (namely,
Sun, Jupiter, and Asteroid Victoria), KAM
tori exist for the “actual” physical values
(in such model the Jupiter/Sun mass ratio
is about 10�3) and, in this mathematical
model – thanks to the trapping mechanism
described in item 4.2 above – trap the
actual motion of the subsystem.

From a more theoretical point of view,
we notice that (compare Remark 2-(ii))
KAM tori (with a fixed Diophantine

frequency) are analytic in e; on the other
hand, it is known, at least in lower dimen-
sional settings (such as twist maps), that
above a certain critical value KAM tori
(curves) cannot exist (Mather 1984).
Therefore, there must exist a critical
value ec(o) (“breakdown threshold”)
such that, for 0 � e < ec(o), the KAM
torus (curve) T o,e exists, while for
e > ec(o) does not. The mathematical
mechanism for the breakdown of KAM
tori is far from being understood; for a
brief review and references on this topic,
see, e.g., Sect. 1.4 in Celletti and Chierchia
(2007).

Infinite Dimensional KAM Theory

One of the most important developments of KAM
theory, besides the full applications to classical
n-body problems mentioned above, is the success-
ful extension to infinite dimensional settings, so as
to deal with classes of partial differential equa-
tions carrying a Hamiltonian or a reversible struc-
ture. The concept of integrability for a
Hamiltonian PDE has been studied widely since
the 1960s. Most of the literature on KAM theory
for PDEs however is on the existence of small
quasi-periodic solutions for PDEs with an elliptic
fixed point at zero and such that the equation
linearized at zero has a numerable basis of eigen-
vectors, either on a compact manifold or on ℝd

with a confining potential. Regarding the con-
struction of large quasi-periodic solutions for
PDEs close to a nonlinear integrable model, the
results are much fewer; see, however, Berti et al.
(2018).

It must be remarked that quasi-periodic solu-
tions are the infinite dimensional analogue of
lower dimensional tori; hence, they are expected
to cover a set of measure zero in phase space.
Results on maximal tori for PDEs are very few
and mostly on ad hoc models; see, e.g., Bourgain
(2005b); Chierchia and Perfetti (1995);
Pöschel (2002).
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The first results on quasi-periodic solutions
were obtained by using an adaptation of Theorem
3 (see, for instance, Kuksin (1988), Wayne
(1990), Pöschel (1996a)) and were for semi-linear
PDEs with Dirichlet boundary conditions in [0, p].
As an example, we state the result for the NLS
equation

iut � uxx þ uj j2uþ f uj j2
� �

u (143)

Theorem 5 (Kuksin-Pöschel 1996) Suppose the
nonlinearity f(y) is analytic and has a zero of
degree at least two in y = 0. Then for all n � ℕ
and all S= {j1, . . ., jn}� ℕ, there exists a Cantor
manifold eS of real analytic, linearly stable,
diophantine n-tori for Eq. (143). More precisely
there exists a Cantor set C , with asymptotically
full density at zero, such that for all x � C there
exists a linearly stable solution of (143) of the form

u t,x;xð Þ ¼
X

j� S
2
ffiffiffiffi
xj

q
sin ojt þ jx
� 	

þ o
ffiffiffiffiffiffi
xj j

p� �
, oj≔j2 þ O xj jð Þ,

(144)

where o
ffiffiffiffiffiffi
xj j

p� 	
is small in some appropriate

analytic norm and the map x ! u(x) is Lipschitz
continuous.

A first remark is that in this equation there are
no parameters; hence, it is not directly written in
the setting of Theorem 3. Just as one would do in
the finite dimensional case, this problem is over-
come by performing a step of Birkhoff normal
form, in order to start from an unperturbed system
which has a twist, and then using the initial actions
as parameters.

In order to concentrate on the problems
connected with small divisors, we shall outline
the proof only in the simplified case

iut � uxx þ V � uþ uj j2u
u t,0ð Þ ¼ u t,pð Þ

�
(145)

where V * u is convolution with an even function
V= V (x), and we consider its Fourier coefficients
{Vj}j � 0 as parameters.

Just as (143), this is a Hamiltonian system with
respect to the symplectic form

o u,vð Þ ¼ 2Im

Z p

0
u�v:

In order to highlight the equivalence with the
problem of lower dimensional tori, we pass this
equation in sin-Fourier series

u t,xð Þ≔
ffiffiffi
2

p

r X
j�ℕ

uj tð Þ sin jxð Þ

and we write the Hamiltonian as

H ¼
X
j�ℕ

j2 þ V j

� 	
uj
�� ��2 þ Z p

0

X
j�ℕ

uj sin jxð Þ
�����

�����
4

We choose:

• Any finite set S: = {j1, . . ., jn} � ℕ
• Any initial actions I : = {I1, . . ., In} � ℝ+

we fix all the Vj with j =2 S and keep the rest as
free parameters. For example, we might fix Vj= 0
8j =2 S and denote V ji ¼ xi for i = 1, . . ., n.

Now we look for small quasi-periodic solu-
tions of the form

ffiffi
e

p Xn
i¼1

ffiffiffiffi
I i

p
eioi t sin jixð Þ þ o eð Þ,

oi ¼ j2i þ xi þ O eð Þ
(146)

For this purpose, we pass to action-angle vari-
ables all the uj

� 

j�S , by writing

uji ¼
ffiffi
e

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
I i þ yi

p
eixi ,i ¼ 1, . . . ,n

uj ¼
ffiffi
e

p
zj, 8j=2S:

After rescaling the time, the Hamiltonian
becomes

30 Kolmogorov-Arnold-Moser (KAM) Theory for Finite and Infinite Dimensional Systems



K 0ð Þ I ,xð Þ þ
Xn
i¼1

j2i þ xi
� 	

yi þ
X
j=2S

j2 zj
�� ��2

þ eP y,x,zð Þ,

namely, it has the form (132) withm=1. Now in
order to apply Theorem 3, we have to specify in
which space the sequence zj

� 

j=2S lives. Typically

one uses a weighted Hilbert space such as

‘a,p≔ z¼ zj
� 	

j�ℕnS : zj j2a,p≔
X
j�ℕnS

jh i2pe2a jj j zj
�� ��28<:

9=;
and redefines the domain D(s, r) accordingly by
substituting ℂm with ‘a,p; see Pöschel and
Trubowitz (1987) for an analysis of the properties
of analytic functions on a Banach space. One also
defines the regular Hamiltonians as those analytic
Hamiltonians for which the norm (137) (again
substituting ℂm with ‘a,p) is finite. Also in the
infinite dimensional case, this class of Hamilto-
nians is a scale of Banach spaces closed with
respect to Poisson brackets, homogeneous projec-
tions and which satisfies smoothing estimates for
the ultraviolet cut off in the variables x. Since the
proof of Theorem 3 depends only on such prop-
erties and is uniform inm, we have the same result
also in this case.

We have proved that for any choice of S , I
there exists a Cantor-like setP*(explicitly defined
in (134), and depending on S, I ) such that for all
x � P* there exists quasi-periodic solutions for
(145) of the form (146).

One easily verifies that the conditions (136)
hold. However, in this infinite dimensional setting
this is not enough in order to ensure that the
measure of P* is positive. By exploiting the fact
that Oj = j2 + O(e), one can however verify
directly that |P*| � g, provided that t > n + 1.

The same kind of result can be formulated in
the more natural case where the potential is mul-
tiplicative, and one can prove that for any S and
for most choices of potential there exist analytic
solutions such as (146).

This strategy for proving the existence of finite
dimensional invariant tori is quite general and can

be applied to many dispersive PDEs on an interval
with Dirichlet boundary conditions. A similar
strategy can be used also for the Klein-Gordon
equation, even though the linear dispersion law
makes the measure estimates more complex, see
Pöschel (1996b).

This approach, based on applying Theorem 3
in an infinite dimensional setting, has two main
drawbacks:

(A) It relies on the fact that the unperturbed nor-
mal frequencies are distinct or at least have
finite and uniformly bounded multiplicity as
in Chierchia and You (2000). In the context
of PDEs, this gives strong restrictions on the
domains. For instance, it cannot be applied to
equations such as the Nonlinear Schrödinger
or the Nonlinear Wave on compact domains
without boundary, except in the simplest case
of the circle, since the eigenvalues are multi-
ple with unbounded multiplicity.

(B) By construction the change of coordinates
which puts the Hamiltonian in normal form
must be the time one flow of a regular Ham-
iltonian, i.e., with finite norm (137). In the
infinite dimensional case, this creates unnec-
essary restrictions, since there exist bounded
symplectic changes of variables which are
not of this form.

The first results in the direction of removing
the assumptions on the multiplicity of eigenvalues
were obtained by using a different strategy, pro-
posed by Craig, Wayne for periodic solutions and
then developed by Bourgain. This approach is the
infinite dimensional analogue of Theorem 5.
Actually the first results were in the infinite
dimensional setting, and the applications to finite
dimensional systems came afterwards. As in the
KAM approach, in order to work in an infinite
dimensional setting, one needs some knowledge
on the asymptotics of the normal sites; we refer to
Berti and Bolle (2013), Bourgain (1998, 2005a) or
Berti et al. (2015) for details. We remark that these
types of results do not imply any stability of the
quasi-periodic solutions, nor the existence of a
constant coefficients normal form such as the
one in (135).
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The first results on stable KAM tori ond were
given by Geng and You in 2006, for Nonlinear
Wave and Beam equations with a convolution
potential. The main ideas were: 1. to exploit the
translation invariance of such equations and to use
the consequent constants of motion in order to
simplify the small divisor problem; 2. to exploit
the fact that the nonlinearities in the Wave and
Beam equations are 1-smoothing in order to prove
the measure estimates (in our notation, this
amounts to proving thatP* has positive Lebesgue
measure). The more difficult case of the Nonlinear
Schrödinger equation was studied by Eliasson and
Kuksin (2009, 2010), where the authors deal with
an equation with external parameters, like (145),
but with x � d . In these papers, the authors do
not require translation invariance, instead they
deal with clusters of multiple eigenvalues. More-
over, they introduce the notion of Töplitz-
Lipschitz hamiltonians in order to handle the mea-
sure estimates. We mention also the papers
(Procesi and Procesi 2015, 2016), which prove
existence and stability of quasi-periodic solutions
for the NLS equation without outer parameters.
The statement of the result is essentially identical
to the one of Theorem 3, but there are two main
differences:

1. Due to the complicated resonant structure of

the NLS on d , there are some pathological
choices of tangential sites S on which one is
not able to prove existence of quasi-periodic
solutions and which are the basis of the con-
struction of weakly turbulent solutions as in
Colliander et al. (2010). More precisely the
existence of quasi-periodic solutions is proved
for generic choices of the tangential sites, i.e.,
allSwhich are not on the zero set of an explicit
but very complicated polynomial.

2. There exist positive measure sets of actions in
which solutions exist but there are a finite
number of linearly unstable directions.

Concerning results on more complicated mani-
folds, we mention Berti et al. (2015); Grébert and
Paturel (2016) and finally Grébert and Paturel

(2011) which deals with a nonlinear quantum
harmonic oscillator.

A breakthrough step in overcoming the restric-
tions explained in point (B) above was first pro-
posed for the much simpler case of periodic
solutions in Iooss et al. (2005), in order to study
Euler’s equations of water waves. This strategy
was developed and extended to the quasi-periodic
case by Baldi Berti and Montalto, who started by
considering an equation of the form

ut þ uxxx � 6uux
� @x @ufð Þ x,u, uxð Þ � @x @ux fð Þ x,u, uxð Þð Þ ¼ 0,½

(147)

under periodic boundary conditions x �  : =
ℝ/2pℤ, and assuming that f(x, u, v) � Cq has a
zero of order at least five in u, v = 0.

Theorem 6 (Baldi Berti and Montalto (2015))
For any n � 1 and for all generic choices of
tangential sites S = {j1, . . ., jn} � ℕ, the KdV
equation (147) possesses small amplitude quasi-
periodic solutions of the form

u t,xð Þ ¼
X

j� S
2
ffiffiffiffi
xj

q
cos ojt þ jx
� 	

þ o
ffiffiffiffiffiffi
xj j

p� �
, oj≔j3 � 6xjj

�1, (148)

for a “Cantor-like” set of small amplitudes x�
ℝn

þ with density 1 at x = 0. The term o
ffiffiffiffiffiffi
xj j

p� 	
is

small in some Hs-Sobolev norm, s < q. These
quasi-periodic solutions are linearly stable.

The proof is done by applying a Nash-Moser
scheme, as explained in the proof of Theorem 4.
The key problem is in inverting a linear
unbounded operator ℒ of the form

ℒ ¼ @t þ 1þ ea x,otð Þð Þ@3
x þ eb x,otð Þ@x

þ ec x,otð Þ

with o � ℝn a diophantine vector. The simplest
way to invert ℒ is to diagonalize it by a bounded
change of variables. One could try to construct
such change of variables by a KAM scheme:

32 Kolmogorov-Arnold-Moser (KAM) Theory for Finite and Infinite Dimensional Systems



recall that a linear Hamiltonian vector field corre-
sponds to a quadratic Hamiltonian, hence one can
try to apply Theorem 3 (putting the Hamiltonian
in normal form corresponds to diagonalizing ℒ).
This approach however fails, indeed even in the
simplest cases it may not be possible to diagonal-
ize ℒ by using the flow of a regular Hamiltonian.

As an example, assume for simplicity thatℒ ¼ @t

þ 1
1þea xð Þ @x

� �3
where a(x) has zero mean. Then,

clearly, the diagonalizing change of variables is

u xð Þ ! v xð Þ ¼ u xþ eb xð Þð Þ, bx ¼ a xð Þ,

which is not the flow of a regular Hamiltonian but
is bounded fromHs to itself for all s. In this simple
case, the change of variables is constructed by
hand directly, in more complicated examples the
main feature that one exploits is that ℒ is a
pseudo-differential operator. Then the strategy
proposed in Baldi et al. (2015) is:

(i) Apply changes of variables which are the
flow of pseudo-differential vector fields, in

order to conjugate ℒ to an operator, say bℒ,
sum of a diagonal operator plus a correction
which is a bounded operator of size e.

(ii) Use a KAM scheme like the one in Theorem

3 in order to diagonalize bℒ.

This approach is quite general, and it can be
adapted to cover also autonomous equations and
has allowed to prove existence and stability for
quasi-periodic solutions for many fully nonlinear
PDEs on the circle. We mention, among others,
the paper (Baldi et al. 2017) where the authors
show the existence of quasi-periodic solutions for
water waves with gravity.

Future Directions

Many natural questions, especially in infinite
dimensions, remain widely open in KAM theory.
In this final section, we briefly mention a (very)
few of them.

(i) In finite dimensional Hamiltonian system, a
basic question is still to fully understand the
“Kolmogorov set,” i.e., the set of all
Diophantine invariant maximal tori, includ-
ing the maximal invariant tori, which are not
deformation of integrable tori and which, in
general, arise near resonances. In Arnold
et al. (2006), it conjectured that the comple-
ment of the Kolmogorov set is, in general,
bounded by e if e is the size of the perturba-
tion (recall that, as mentioned above, the
complementary of the KAM primary tori –
namely, the invariant tori which are defor-
mation of integrable tori – may be bounded
by a constant times

ffiffi
e

p
). In Biasco and

Chierchia (2015), it is announced a partial
proof of this conjecture in the special case of
“mechanical systems,” i.e., Hamiltonian sys-
tems of the form |p|2/2 + ef(q) with (p, q) �
ℝd � d .

(ii) A very interesting and widely open topic in
the study of Hamiltonian PDEs, is the study
of maximal tori, or possibly even lower
dimensional tori of infinite dimension, see,
e.g., Bourgain (2005b); Chierchia and
Perfetti (1995); Pöschel (2002). Such results
concern problems with external parameters,
of the form say (145). The application to
more natural parameterless equations, such
as (143), is still beyond our reach. In partic-
ular it would be interesting to understand the
regularity of such almost-periodic solutions
and whether they can cover positive measure
(in any reasonable sense) sets, as in the finite
dimensional case.

(iii) Another important open problem is that of
proving existence of quasi-periodic solutions
for general compact Riemannian manifolds.
Up to now the, few, results are confined to
the case of Zoll manifolds (Grébert and
Paturel 2016), or Lie groups (Berti et al.
2015), where there is a very good knowledge
of the harmonic analysis.

(iv) The strategy proposed in Baldi et al. (2015)
has allowed to prove existence and stability
for many fully nonlinear PDEs on the circle
and has been developed, in the similar
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setting of reducibility, in order to tackle var-
ious classes of PDEs in one space variable.
Whether this strategy can be generalized in
order to cover higher dimensional cases,

both on the torus d or on the line, is a very
challenging open problem, in this direction
we mention (Bambusi et al. 2018.; Corsi and
Montalto 2018).

Appendix A: The Classical Implicit
Function Theorem

Here we discuss the classical Implicit Function The-
orem for complex functions from a quantitative
point of view. The following Theorem is a simple
consequence of the Contraction Lemma, which
asserts that a contraction on a closed, nonempty
metric space51 has a unique fixed point, which is
obtained as limj ! 1 Fj(u0) for any

52 u0 � X.

Implicit Function Theorem Let

F : y,xð Þ�Dn y0,rð Þ � Dm x0,sð Þ � ℂnþm

! F y,xð Þ�ℂn

be continuous with continuous Jacobian matrix
Fy; assume that Fy(y0, x0) is invertible and denote
by T its inverse; assume also that

sup
D y0,rð Þ�D x0,sð Þ

1n � TFy y,xð Þ
�� �� � 1

2
,

sup
D x0,sð Þ

F y0,xð Þj j � r

2 Tk k :

(149)

Then, all solutions (y, x) � D(y0, r) � D(x0, s)
of F(y, x) = 0 are given by the graph of a unique
continuous function g: D(x0, s) ! D(y0, r) satis-
fying, in particular,

sup
D x0,sð Þ

g � y0j j � 2 Tk k sup
D x0,sð Þ

F y0,xð Þj j: (150)

Proof Let X = C(Dm(x0, s), D
n(y0, r)) be the

closed ball of continuous function from Dm(x0, s)
to Dn(y0, r) with respect to the supnorm k � k (X is
a nonempty metric space with distance d(u, v): =
ku� vk) and denoteF(y; x):= y� TF(y, x). Then,
u!F(u):=F(u, �) mapsC(Dm(x0, s)) intoC(ℂ

m)
and, since @yF ¼ 1n � TFy y,xð Þ , from the first
relation in (149), it follows that is a contraction.
Furthermore, for any u � C(Dm(x0, s), D

n(y0, r)),

F uð Þ � y0j j � F uð Þ � F y0ð Þj j þ F y0ð Þ � y0j j

� 1

2
u� y0k k þ Tk k F y0,xð Þk k

� 1

2
r þ Tk k r

2 Tk k ¼ r,

showing that F: X! X. Thus, by the Contraction
Lemma, there exists a unique g � X such that
F(g)= g, which is equivalent to F(g, x)= 0 8x. If
F(y1, x1)= 0 for some (y1, x1) � D(y0, r)�D(x0, s),
it follows that |y1 � g(x1)| = |F(y1; x1) �
F(g(x1), x1)| � a|y1 � g(x1)|, which implies that
y1 = g(x1) and that all solutions of F = 0 in D(y0,
r) � D(x0, s) coincide with the graph of g.
Finally, (150) follows by observing that g � y0k k
¼ F gð Þ � y0k k � F gð Þ � F y0ð Þk k þ F y0ð Þ�k
y0k � 1

2 g � y0k k þ Tk k F y0,�ð Þk k , finishing the
proof.

Additions (i) If F is periodic in x or/and real on
reals, then (by uniqueness) so is g.

(ii) If F is analytic, then so is g (Weierstrass
Theorem, since g is attained as uniform
limit of analytic functions).

(iii) The factors 1/2 appearing in the r.h.s.’s of
(149) may be replaced by, respectively, a and
b for any positive a and b such that a + b= 1.

Taking n= m and F(y, x)= f(y)� x for a given
C1(D(y0, r), ℂn) function, one obtains the
Inverse Function Theorem
Let f: y � Dn(y0, r) ! ℂn be a C1 function with
invertible Jacobian fy(y0) and assume that
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sup
D y0,rð Þ

1n � Tf y
�� �� � 1

2
, T≔f y y0ð Þ�1, (151)

then there exists a unique C1 function g: D(x0, s)
! D(y0, r) with x0:= f(y0) and s:= r/(2kTk) such
that f ∘ g(x) = id = g ∘ f.

Additions analogous to the above ones holds
also in this case.

Appendix B: Complementary Notes

1 Actually, the first instance of small divisor
problem solved analytically is the linearization of
the germs of analytic functions and it due to
C.L. Siegel (1942). [Page 5]

2 The well-known Newton’s tangent
scheme is an algorithm, which allows to find
roots (zeros) of a smooth function f in a region
where the derivative f 0 is bounded away from
zero. More precisely, if xn is an “approximate
solution” of f(x) = 0, i.e., f(xn): = en is small,
then the next approximation provided by New-

ton’s tangent scheme is xnþ1≔xn � f xnð Þ
f 0 xnð Þ [which

is the intersection with x-axis of the tangent to the
graph of f passing through (xn, f(xn))] and, in view
of the definition of en and Taylor’s formula, one
has that enþ1≔f xnþ1ð Þ ¼ 1

2 f
00 xnð Þen2= f 0 xnðð Þ2 (for

a suitable xn) so that enþ1 ¼ O e2n
� 	

¼ O e2
n

1

� 	
and,

in the iteration, xn will converge (at a super-
exponential rate) to a root �x of f. This type of
extremely fast convergence will be typical in the
analysis considered in the present article. [Page 5]

3 The elements of d are equivalence clas-
ses x ¼ �xþ 2pℤd with �x�ℝd . If x ¼ �xþ 2pℤd

and y ¼ �yþ 2pℤd are elements of d , then their
distance d(x, y) is given by minn�ℤd �x� �yþ 2pnj j
where |�| denotes the standard Euclidean norm in
ℝn; a smooth (analytic) function on d may be
viewed as (“identified with”) a smooth (analytic)
function on ℝd with period 2p in each variable.
The torus d endowed with the above metric is a
real-analytic, compact manifold. For more infor-
mation, see Spivak (1999). [Page 6]

4 A symplectic form on a (even dimen-
sional) manifold is a closed, nondegenerate

differential 2-form. The symplectic form
a= dy ^ dx is actually exact symplectic, meaning
that a = d(�i = 1 yidxi). For general information,
see Arnold (1974). [Page 6]

5 For general facts about the theory of ODE
(such as Picard theorem, smooth dependence
upon initial data, existence times), see, e.g.,
Coddington and Levinson (1955). [Page 6]

6 This terminology is due to the fact
that the xj are “adimensional” angles, while ana-
lyzing the physical dimensions of the quantities
appearing in Hamilton’s equations one sees that
dim(y)� dim(x)= dimH� dim(t) so that y has the
dimension of an energy (the Hamiltonian) times
the dimension of time, i.e., by definition, the
dimension of an action. [Page 7]

7 This terminology is due to the fact that a
classical mechanical systems of d particles of
masses mi > 0 and subject to a potential V(q)
with q � A � ℝd is governed by a Hamiltonian

of the form
Pd

j¼1
p2j
2mi

þ V qð Þ and d may be

interpreted as the (minimal) number of coordi-
nates necessary to physically describe the system.
[Page 7]

8 To be precise, Eq. (6) should be written as
y tð Þ ¼ v pd otð Þ

� 	
,x tð Þ ¼ pd

ot þ u pd otð Þ
� 	� 	

where pd denotes the stan-
dard projection of ℝd onto d

; however, we
normally omit the projection of ℝd onto d .
[Page 8]

9 As standard, Uy denotes the (d � d) Jaco-
bian matrix with entries @Ui

@yj
¼ dij þ @ui

@yj
. [Page 8]

10 For generalities, see Arnold (1974); in
particular, a Lagrangian manifold L � M which
is a graph overd admits a “generating function,”
i.e., there exists a smooth function g:d!ℝ such
that L = {(y, x): y = gx(x), x � d}. [Page 8]

11 Compare Rüssmann (1975) and refer-
ences therein. We remark that, if B(o0, r) denote
the ball in ℝd of radius r centered at o0 and fix
t > d � 1, then one can prove that the Lebesgue
measure of B(o0, r)\ Dk,t can be bounded by
cdkr

d � 1 for a suitable constant cd depending
only on d; for the simple proof, see, e.g., Chierchia
and Perfetti (1995). [Page 9]

12 The sentence “can be put into the form”
means “there exists a symplectic diffeomorphism
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f: (y, x) � M! (�, x) � M such thatH ∘ f has
the form (10)”; formultiindicesa, |a|=a1+ � � �+ad
and @a

y ¼ @a1
y1
� � �@ad

yd
; the vanishing of the deriva-

tives of a function f(y) up to order k in the origin
will also be indicated through the expression
f = O(|y|k + 1). [Page 9]

13 Notation: If A is an open set and p � ℕ,
then the Cp-norm of a function f: x � A ! f(x) is
defined as fk kCp Að Þ : sup aj j�psupA @a

x f
�� ��. [Page 12]

14 Standard notation: If f is a scalar function
fy is a d-vector; fyy the Hessian matrix (f yiyj ); fyyy

the symmetric 3-tensor of third derivatives acting
as follows: f yyy a � b � c≔

Pd
i,j,k¼1

@3f
@yi@yj@yk

aibjck .
[Page 14]

15 Standard notation: If f is (a regular
enough) function over d, its Fourier coefficients
are defined as f n≔

R
d f xð Þe�in�x dx

2pð Þd ; where, as
usual, i ¼

ffiffiffiffiffiffiffi
�1

p
denotes imaginary unit; for gen-

eral information about Fourier series see, e.g.,
Katznelson (2004). [Page 16]

16 The choice of norms on finite dimen-
sional spaces (ℝd, ℂd, space of matrices, tensors,
etc.) is not particularly relevant for the analysis in
this article (since changing norms will change
d-depending constants); however, for matrices,
tensors (and, in general, linear operators), it is
convenient to work with the “operator norm,”
i.e., the norm defined as kLk = supu 6¼ 0 kLuk/kuk,
so that kLuk � klkkuk, an estimate, which will be
constantly be used; for a general discussion on
norms, see, e.g., Kolmogorov and Fomin (1999).
[Page 21]

17 As an example, let us work out the first
two estimates, i.e., the estimates on sxk kx and |b|:

actually these estimates will be given on a larger
intermediate domain, namely, W x�d

3
, allowing to

give the remaining bounds on the smaller domain
W x (recall that Ws denotes the complex domain

D 0,sð Þ � d
s ). Let f (x): = P(0, x) � hP(0, �)i. By

definition of k � kx and M, it follows that
k fkx � kP(0, x)kx + khP(0, �)ikx � 2 M. By (P5)
with p = 1 and x0 ¼ x� d

3, one gets

sxk kx�d
3
� �B0

2M

k
3k0d�k0 ,

which is of the form (54), provided
c � �B02 � 3k0

� 	
=k and n � k0. To estimate b, we

need to bound first |Qyy(0, x)| and |Py(0, x)| for real
x. To do this we can use Cauchy estimate: by (P4)
with p= 2 and, respectively, p= 1, and x0 = 0, we
get

Qyy 0,�ð Þ
�� ��

0
�mB2Cx

�2

�mB2Cd
�2, and

Py 0,xð Þ
�� ��

0
�mB1Md�1,

where m = m(d) � 1 is a constant which depend
on the choice of the norms, (recall also that d< x).
Putting these bounds together, one gets that
|b| can be bounded by the r.h.s. of (54) provided
c � m B2 �B22 � 3k0 þ B1

� 	
, m � 1, m � 2 and

n� k0 + 2. The other bounds in (54) follow easily
along the same lines. The factor 3C in front of

@2
y0
~Q

��� ���
0
has been inserted to simplify later esti-

mates. [Page 21]
18 We sketch here the proof of Lemma 1.

The defining relation ce ∘ ’ = id implies that
a(x0) = �a(x0 + ea(x0)), where a(x0) is short for
a(x0; e) and such equation is a fixed point
equation for the nonlinear operator f: u ! f(u): =
� a(id + eu). To find a fixed point for this equa-
tion, one can use a standard contraction Lemma
(see Kolmogorov and Fomin (1999)). Let
Y denote the closed ball (with respect to the
supnorm) of continuous functions u : d

x0 ! ℂd

such that uk kx0 � L . By (55), Im x0 þ eu x0ð Þð Þj j
< x0 þ e0L < x0 þ d

3 ¼ x, for any u � Y, and any
x0 �d

x0 , so that f: Y! Y; notice that, in particular,

this means that f sends periodic functions into
periodic functions. Moreover, (55) implies also
that f is a contraction: if u, v � Y, then, by the
mean value theorem, | f (u) � f (v)| � L|e| |u � v|
(with a suitable choice of norms), so that, by
taking the sup–norm, one has f uð Þ � f vð Þk kx0 <
e0L u� vk kx0 showing that f is a contraction. Thus,
there exists a unique a � Y such that f (a) = a.
Furthermore, recalling that the fixed point is
achieved as the uniform limit limn ! 1
f n(0) (0 � Y ) and since f (0) = �a is analytic,
so is f n(0) for any n and, hence, by Weierstrass
Theorem on the uniform limit of analytic function
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(see Ahlfors (1978)), the limit a itself is
analytic. In conclusion, ’�ℬx0 and (56) holds.

Next, for y0,xð Þ�W x , by (54), one has

y0 þ eb y0,xð Þj j< xþ e0L< xþ d
3¼ x so that (57)

holds. Furthermore, since eaxk kx< e0L< 1=3
the matrix 1dþ eax is invertible with inverse
given by the “Neumann series” 1dþ eaxð Þ�1¼
1dþ

P1
k¼1

�1ð Þk eaxð Þk≕1dþ eS x;eð Þ , so that (58)

holds. The proof is finished. [Page 22]
19 From (60) it follows immediately that:

@2
y0Q1 0,�ð Þ

D E
¼ @2

yQ 0,�ð Þ
D E

þ e @2
y0
~Q 0,�ð Þ

D E
¼

T�1 1d þ eTð @2
y0
~Q 0,�ð Þ

D E
Þ≕T�1 1d þ eRð Þ and,

in view of (52) and (60), we see that kRk <

L/(2C). Therefore, by (61), e0kRk < 1/6 < 1/2,
implying that 1þ eRð Þ is invertible and
1d þ eRð Þ�1 ¼ 1d þ

P1
k¼1 �1ð ÞkekRk≕1þ eD

with Dk k � Rk k= 1� ej j Rk kð Þ < L=C. In conclu-
sion, T1 ¼ 1þ eRð Þ�1T ¼ T þ eDT≕T þ e~T ,
~T
�� �� � Dk kC � L=Cð ÞC ¼ L. [Page 22]

20 Actually, there is quite some freedom in
choosing the sequence {xj} provided the conver-
gence is not too fast; for general discussion, see,
Rüssmann (1980), or, also, Celletti and Chierchia
(1987) and Chierchia (1986). [Page 23]

21 In fact, denoting by B* the real d-ball cen-
tered at 0 and of radius yx* for y � (0, 1), from
Cauchy estimate (48) with x= x* and x0 = yx*, one

has f� � idk kCp B� � d
� 	

¼ sup
B��d

sup
aj j

þ bj j �

p @a
y@

b
x f� � idð Þ

��� ��� � sup
aj jþ bj j�p

@a
y@

b
x f� � idð Þ

��� ���
yx�

� Bp f� � idk kx�1=ð yx�Þp � constp ej j with constp
≔BpDBM1= yx�ð Þp: An identical estimate hold for
Q� � Qk kCp B��dð Þ. [Page 24]

22 Also in the third millennium, however,
e-power expansions turned out to be an important
and efficient tool; see Celletti and Chierchia
(2007). [Page 24]

23 A function f: A � ℝn ! ℝn is Lipschitz
on A if there exists a constant (“Lipschitz con-
stant”) L > 0 such that |f(x) � f(y)| � L|x � y| for
all x, y � A. For a general discussion on how
Lebesgue measure changes under Lipschitz map-
pings, see, e.g., Evans and Gariepy (1992). In fact,

the dependence of f* on �y is much more regular,
compare Remark 11. [Page 25]

24 In fact, notice that inverse powers of k
appear through (49) (inversion of the operator
Do); therefore, one sees that the terms in the first
line of (54) may be bounded by ~ck�2 (in defining
a one has to apply the operator D�1

o twice), but
then in P(1) (see (27)) there appears kbk2, so that
the constant c in the second line of (54) has the
form (73); since k < 1, one can replace in
(54) c with ĉk�4 as claimed. [Page 25]

25 Proof of Claim C. Let H0:= H, E0:= E,
Q0: = Q, K0: = K, P0: = P, x0:= x and let us
assume (inductive hypothesis) that we can iterate
j times Kolmogorov transformation obtaining j
symplectic transformations fiþ1 : W xiþ1

! W xi ,
for 0 � i � j � 1, and j Hamiltonians
Hiþ1 ¼Hi∘fiþ1 ¼ Ki þ e2

i
Pi real-analytic on

W xi such that

oj j, Eij j, Qik kxi , Tik k < C,

ej j2
i

Li≔ ej j2
i

cCmd�n
0 2niM i �

di
3
,

80 � i � j� 1: �ð Þ

By (*), Kolmogorov iteration (Step 2) can be
applied to Hi and therefore all the bounds
described in paragraph Step 2 holds (having
replaced H, E, . . ., x, d, H0, E0, . . ., x0 with,
respectively, Hi, Ei, . . ., xi, di, Hi + 1, Ei + 1, . . .,
xi + 1); in particular (see (62)) one has, for
0 � i � j � 1 (and for any |e| � e0),

Eiþ1j j � Eij j þ ej j2
i

Li, Qiþ1

�� ��
xiþ1

� Qik kxi þ ej j2
i

Li, fiþ1 � id
�� ��

xiþ1

� ej j2
i

Li,Miþ1 � MiLi (152)

Observe that the definition of D, B, and Li,

ej j2
j

Lj 3Cd�1
j

� �
≕DBj ej j2

j

M j , so that Li < DBiMi,

thusbythesecond line in (152), forany0� i� j�1,

ej j2
iþ1

Miþ1 < DBi Mi ej j2
i

� �2
, which iterated,

yields (67) for 0 � i � j. Next, we show that,
thanks to (66), (*) holds also for i = j (and this
means that Kolmogorov’s step can be iterated an
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infinite number of times). In fact, by (*) and the
definition of C in (65): Ej

�� �� � Ej j þ
Pj�1

i¼0 e
2i
0 Li �

1
3C

P
i�0di < Ej j þ 1

6

P
i�12

�i < Ej j þ 1 < C .

The bounds for kQik and kTik are proven in an
identical manner. Now, by (67)i = j and (66), ej j2

j

Lj 3Cd�1
j

� �
¼ DBj ej j2

j

M j � DBj DBe0Mð Þ2
j

=

DBjþ1
� 	

� 1=B < 1 , which implies the second
inequality in (*) with i = j; the proof of the induc-
tion is finished and one can construct an infinite
sequence of Kolmogorov transformations satisfy-
ing (*), (152) and (67) for all i� 0. To check (68),
we observe that ej j2

i

Li ¼ d0
3C2i

DBi ej j2
i

M i

� 1
2iþ1 ej jDBMð Þ2

i

� ej jDBM
2

� �iþ1
and thereforeP

i�0 ej j
2i Li �

P
i�1

ej jDBM
2

� �i
� ej jDBM . Thus,

Q� Q�k kx� �
P

i�0
~Qi

�� ��
xi
� ej j2

i

Li � ej jDBM ;

and analogously for |E � E*| and kT � T*k. To
estimate f� � idk kx� , observe that Fi� idk kxi �
Fi�1∘fi�fik kxi þ fi� idk kxi � Fi�1� idk kxi�1

þ ej j2
i

Li , which iterated yields Fi� idk kxi �Pi
k¼0 ej j2

k

Lk � ej jDBM : taking the limit over
i completes the proof of (68) and the proof of
Claim C. [Page 25]

26 In fact, observe: (i) given any integer
vector 0 6¼ n � ℤd with d � 2, one can find
0 6¼ m � ℤd such n � m = 0; (ii) the set {tn:
t > 0 and n � ℤd} is dense in ℝd; (iii) if U is a
neighborhood of y0, then Ky(U) is a neighborhood
of o = Ky(y0). Thus, by (ii) and (iii), in Ky(U)
there are infinitely many points of the form tnwith
t> 0 and n � ℤd to which correspond points y(t, n)
� U such that Ky(y(t, n)) = tn and for any of such
points one can find, by (i), m � ℤ such that
m � n = 0, whence Ky(y(t, n)) � m = tn � m = 0.
[Page 28]

27 This fact was well known to Poincaré,
who based on the above argument his nonexis-
tence proof of integral of motions in the general
situation; compare Sect. 7.1.1, Arnold et al.
(2006). [Page 28]

28 Compare (91) but observe, that, since P̂ is
a trigonometric polynomial, in view of Remark 9-
(ii), g in (97) defines a real-analytic function onD
y0,�rð Þ � d

x0 with a suitable �r ¼ �r eð Þ and x0 < x.

Clearly is important to see explicitly how the
various quantities depend upon e; this is shortly
discussed after Proposition 2. [Page 29]

29 In fact: Pk kr,x�d
2
� M

P
nj j>Ne

� nj jd2 �
Me�

d
4N
P

nj j>Ne
� nj jd4 � Me�

d
4N
P

nj j>0e
� nj jd4 � const

Me�
d
4Nd�d � ej jM if (107) holds and N is taken as

in (105). [Page 30]
30 Apply the IFT of Appendix A (with

r replaced by �r, x0 by 0 and s by |e|) to F(y, �):
= Ky(y) + �@yP0(y) � Ky(y0) defined onD

d y0,�rð Þ
�D1 0, ej jð Þ . Using the mean value theorem,
Cauchy estimates and (112), 1d � TFy

�� ��
� 1d � TKyy

�� �� þ ej j @2
yP0

��� ��� � Tk k Kyyy

�� ���rþ
Tk k ej j @2

yP0

��� ��� � C22
�r

r
þ C ej j 4

r2
M � 2C2 �r

r
þ

ej jM
2r�r

� 1

4
þ 1

16
<

1

2
; also: 2 Tk k F y0,�ð Þk k ¼

2 Tk k �j j @yP0 y0ð Þk < 2C ej jM 2
r � r

2 (where last
inequality is due to the second condition in
(112)), showing that conditions (149) are ful-
filled. Equation (113) comes from (150).
Finally, by Cauchy estimates and (113), Ak k �
C C 2

r � 4CMr ej j þ ej j 4r2 M
� 	

� 12C3M
r2 ej j and (115)

follows. [Page 32]
31 Recall note 18 and notice that

1d þ Að Þ�1 ¼ 1d þ Dwith Dk k � Ak k
1� Ak k � 16

13 Ak k
< 192

13 C
3M ej j=r2, where last two inequalities are

due to (115). [Page 32]
32 Lemma 1 can be immediately extended

to the y0-dependent case (which appear as a
dummy parameter) as far as the estimates are
uniform in y0 (which is the case). [Page 32]

33 By (119) and (55), ej j gxk k�r,x � ej jrL �
r=2 so that, by (117), if y0 �D�r=2 y1ð Þ, then one has
y0 + egx(y0, ’(y0, x0)) � Dr(y0). [Page 33]

34 The first requirement in (124) is equiva-
lent to require that r0� r, which implies that if �r is
defined as the r.h.s. of (109), then �r � r=2 as
required in (111). Next, the first requirement in
(112) at the (j + 1)th step of the iteration translates
into 16C2rj + 1/rj � 1, which is satisfied, since,
by definition, rj + 1/rj = (1/(2g))t + 1 � (1/(2g))2 =
1/(36C2)< 1/(16C2). The second condition in (112),
which at the (j + 1)th step, reads 2CMjr�2

jþ1 ej j
2j , is

implied by ej j2
j

Lj � dj= 3Cð Þ (corresponding to
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(55)), which, in turn, is easily controlled along the
lines explained in the note 25. [Page 33]

35 An area-preserving twist mappings of an
annulus A= [0, 1]�1, (1,=1), is a symplectic
diffeomorphism f= (f1, f2): (y, x) � A! f(y, x) �
A, leaving invariant the boundary circles of A and
satisfying the twist condition @yf2> 0 (i.e., f twists
clockwise radial segments). The theory of area
preserving maps, which was started by Poincaré
(who introduced such maps as section of the
dynamics of Hamiltonian systems with two
degrees of freedom), is, in a sense, the simplest
Hamiltonian context. After Poincaré the theory of
area-preserving maps became, in itself, a very
reach and interesting field of Dynamical Systems
leading to very deep and important results due to
Herman, Yoccoz, Aubry, Mather, etc.; for gener-
alities and references, see, e.g., Katok and
Hasselblatt (1995). [Page 34]

36 It is not necessary to assume thatK is real-
analytic, but it simplifies the exposition. In our
case, ‘ is related to the number s in (69). We recall
the definition of Hölder norms: If ‘ = ‘0 + m with

‘0 � ℤ+ and m � (0, 1), then fk kC‘≔ fk kC‘0 þ
sup aj j¼‘0

sup0< x�yj j<1
@af xð Þ�@af yð Þj j

x�yj jm ;C‘(ℝd) denotes

the Banach space of functions with finite C‘

norm. [Page 34]
37 To obtain these new estimates, one can

first replace y by
ffiffiffi
y

p
and then use the remark in the

note 21 with p= 1; clearly the constant s has to be
increased by one unit with respect to the constant
s appearing in (70). [Page 34]

38 For general references and discussions
about Lemma 2 and 3, see, Moser (1966) and
Zehnder (1975); an elementary detailed proof
can be found, also, in Chierchia (2003). [Page 34]

39 Proof of claim M The first step of the
induction consists in constructing F0 = f0: this
follows from Kolmogorov Theorem (i.e., Remark
7-(i) and Remark 11) with x = x1 = 1/2 (assume,
for simplicity, that Q is analytic on W1 and note
that ej j P1

�� ��
x1
� C ej j Pk kC0 by the first inequality

in (125)). Now, assume that (129) and (130) holds
together with Ci < 4C and @ Fi � idð Þk kaxiþ1

<ffiffiffi
2

p
� 1

� 	
for 0 � i � j (C0 = C and Ci are as

in (65) for, respectively, K0:= K and Ki). To
determine fj + 1, observe that, by (129), one has

Hj + 1 ∘ Fj + 1 = (Kj + 1 + ePj + 1) ∘ fj + 1 where
Pj: = (Pj + 1 � Pj) ∘ Fj, which is real-analytic on
W axjþ1

; thus we may apply Kolmogorov Theorem

toKj + 1 + ePj + 1 with x= axj + 1 and y= a; in fact,
by the second inequality in (125), Pjþ1

�� ��
axjþ1

�
Pjþ2 � Pjþ1
�� ��

xjþ2
� c Pk kC‘x‘jþ1 and the small-

ness condition (69) becomes ej jDx‘�s
jþ1 (with D≔

c�c Pk kC‘ 4Cð Þb2s=2), which is clearly satisfied for
|e|< D�1xa, for some a> 0. Thus, fj + 1 has been
determined and (notice that a2xj + 1 = xj + 1/2

= xj + 2) fjþ1 � id
�� ��

xjþ2
, @ kfjþ1 � id
� ����

xjþ2

�

ej jDxjþ1 . Let us now check the domain constraint
Fj: W axjþ1

! X xjþ1
. By the inductive assumptions

and the real-analyticity of Fj, one has that, for z�
W axjþ1

, ImFj zð Þ
�� �� ¼ Im Fj zð Þ � Fj Rezð Þ

� 	�� ��
� Fj zð Þ � Fj Rezð Þ
�� �� � @Fj

�� ��
axjþ1

Imzj j

� 1þ @ Fjþ1 � id
� 	�� ��

axjþ2

� �
axjþ1 <

ffiffiffi
2

p
axjþ1 ¼

xjþ1 so that Fj : W axjþ1
! X xjþ1

. The remaining

inductive assumptions in (130) with j replaced by
j + 1 are easily checked by arguments similar to
those used in the induction proof of ClaimC above.
[Page 35]

40 See, e.g., the Proposition at page 58 of
Chierchia (1986) with gj = fj � fj � 1. In fact, the
lemma applies to the Hamiltonians Hj and to the
symplectic map fj in (83) in Arnold’s scheme
with Wj in (82) and taking C ¼ C�≔
y0 ¼ limj!1yj oð Þ : o�B \ K�1

y Dk,t
� 	n o

and

yj(o): = yj is as in (83). [Page 41]
41 A formal e-power series quasi-periodic

trajectory, with rationally independent frequency
o, for a nearly integrable Hamiltonian H(y, x; e):
= K(y) + eP (y, x) is, by definition, a sequence of
functions {zk}: = ({vk}, {uk}), real-analytic on d

and such that Dozk ¼ J 2dpk ∇H
Pk�1

j¼0 ejzj
� �� �

where pk �ð Þ≔ 1
k! @

k
e �ð Þje¼0 ; compare Remark 1-

(ii) above. [Page 42]
42 In fact, Poincaré was not at all convinced

of the convergence of such series: see chap. XIII,
no 149, entitled “Divergence des séries de
M. Lindstedt,” of his book (Poincarè). [Page 42]

43 (71) guarantees that the map from y in the
(d � 1)-dimensional manifold {K = E} to the
(d � 1)-dimensional real projective space {o1:
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o2: � � �: od} � ℝℙd � 1 (where oi ¼ Kyi ) is a
diffeomorphism. For a detailed proof of the “iso-
energetic KAM Theorem,” see, e.g., Delshams
and Gutierrez (1996). [Page 43]

44 Actually, it is not known if such tori are
KAM tori in the sense of the definitions given
above! [Page 43]

45 The first example of a nearly integrable
system (with two parameters) exhibiting Arnold’s
diffusion (in a certain region of phase space) was
given by Arnold in 1964; a theory for “a priori
unstable systems” (i.e., the case in which the
integrable system carries also a partially hyper-
bolic structure) has been worked out in Chierchia
and Gallavotti (1994) and in recent years a lot of
literature has been devoted to study the “a priori
unstable” case and to try to attack the general
problem (see, e.g., Sect. 6.3.4 of Arnold et al.
(2006) for a discussion and further references).
Wemention that J. Mather has recently announced
a complete proof of the conjecture in a general
case Mather (2003). [Page 44]

46 Here, we mention briefly a different and
very elementary connection with classical mechan-
ics. To study the spectrum s(L) (L as above with a
quasi-periodic potential V(o1t, . . ., ont)) one looks
at the equation €q ¼ V otð Þ � lð Þq , which is the
q-flow of the Hamiltonian ft

HH ¼ H p,q,I ,’;lð Þ
≔ p2

2 þ l� V ’ð Þ½ 
 q22 where (p, q) � ℝ2 and (I, ’)
� ℝn � n (with respect to the standard form
dp ^ dq + dI ^ d’) and l is regarded as a param-
eter. Notice that _’ ¼ o so that ’ = ’0 + ot and
that the (p, q) decouples from the I-flow, which is,
then, trivially determined one the (p, q) flow is
known. Now, the action-angle variables (J, y)
for the harmonic oscillator p2

2 þ l q2

2 are given by
J ¼ r2=

ffiffiffi
l

p
and (r, y) are polar coordinates in the

p,
ffiffiffi
l

p
q

� �
-plane; in such variables, H takes the

form H ¼ o � I þ
ffiffiffi
l

p
J � V ’ð Þffiffi

l
p sin2y. Now, if, for

example V is small, this Hamiltonian is seen to be
a perturbation of (n + 1) harmonic oscillator with
frequencies o,

ffiffiffi
l

p� �
and it is remarkable that one

can provide a KAM scheme, which preserves the
linear-in-action structure of this Hamiltonian and
selects the (Cantor) set of values of the frequency
a ¼

ffiffiffi
l

p
for which the KAM scheme can be car-

ried out so as to conjugate H to a Hamiltonian of

the form o � I + aJ, proving the existence of
(generalized) quasi-periodic eigen-functions. For
more details along these lines, see Chierchia
(1986). [Page 44]

47 The value 10�50 is about the proton-Sun
mass ratio: the mass of the Sun is about
1.991 � 1030 Kg, while the mass of a proton is
about 1.672 � 10�21 Kg, so that (mass of a proton)/
(mass of the Sun) ’ 8.4 � 10�52. [Page 45]

48 “Computer-assisted proofs” are mathe-
matical proofs, which use the computers to give
rigorous upper and lower bounds on chains of
long calculations by means of the so-called “inter-
val arithmetic”; see, e.g., Appendix C of Celletti
and Chierchia (2007) and references therein.
[Page 45]

49 Simple examples of such orbits are equi-
libria and periodic orbits: in such cases there are
no small-divisor problems and existence was
already established by Poincaré by means of the
standard Implicit Function Theorem; see
Poincarè, Volume I, chapter III. [Page 36]

50 Typically, xmay indicate an initial datum
y0 and y the distance from such point or
(equivalently, if the system is nondegenerate in
the classical Kolmogorov sense) x ! o(x) might
be simply the identity, which amounts to consider
the unperturbed frequencies as parameter; the
approach followed here is that in Pöschel
(1996a), where, most interestingly, m is allowed
to be 1. [Page 36]

51 I.e., a map F: X ! X for which ∃
0 < a < 1 such that d(F(u), F(v)) � ad(u, v),
8u, v � X, d(�, �) denoting the metric on X; for
generalities on metric spaces, see, e.g., Kolmogo-
rov and Fomin (1999). [Page 51]

52 Fj = F ∘ � � � ∘ F j-times. In fact, let uj:=
Fj(u0) and notice that, for each j � 1 d(uj + 1, uj)
� ad(uj, uj � 1) � ajd(u1, u0) =: ajb, so that, for
each j,h � 1,d ujþh, uj

� 	
�
Ph�1

i¼0 d ujþi�1, ujþi

� 	
�
Ph�1

i¼0 ajþib � ajþ1b= 1� að Þ , showing that
{uj} is a Cauchy sequence. Uniqueness is obvi-
ous. [Page 51]
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