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Abstract. Properly degenerate nearly–integrable Hamiltonian systems with

two degrees of freedom such that the “intermediate system” depend explic-
itly upon the angle–variable conjugated to the non–degenerate action–variable

are considered and, in particular, model problems motivated by classical ex-

amples of Celestial Mechanics, are investigated. Under suitable “convexity”
assumptions on the intermediate Hamiltonian, it is proved that, in every en-

ergy surface, the action variables stay forever close to their initial values. In

“non convex” cases, stability holds up to a small set where, in principle, the de-
generate action–variable might (in exponentially long times) drift away from

its initial value by a quantity independent of the perturbation. Proofs are

based on a “blow up” (complex) analysis near separatrices, KAM techniques
and energy conservation arguments.

1. Introduction and results. As pointed out with particular emphasis by H.
Poincaré [8], one of the main problem in Dynamical Systems concerns the stability
of action variables in nearly–integrable Hamiltonian systems. Notwithstanding the
efforts of Poincaré himself and the great success of powerful, more modern tech-
niques such as averaging theory, KAM and Nekhoroshev theory (see [1] for general
information), the “action–stability” problem for general nearly–integrable Hamil-
tonian systems remains essentially open. By “action–stability problem” we mean
the following. Consider a (real–analytic) nearly–integrable, one–parameter family
of Hamiltonian functions H(I, ϕ; ε) = h(I) + εf(I, ϕ) where (I, ϕ) are standard
symplectic “action–angle” variables in a 2d–dimensional phase space (the angles ϕi
are defined modulus 2π) and ε is a small parameter. The problem is, then, to give
upper bounds on the quantity |I(t)− I0|, where (I(t), ϕ(t)) denotes the H–flow at
time t of the initial datum (I0, ϕ0), and “stability” means that supt |I(t)− I0| goes
to zero when ε goes to zero.

1991 Mathematics Subject Classification. 37C75, 70H08, 70K43, 70K45, 34D10, 34C29.
Key words and phrases. KAM theory, stability, nonlinear dynamics, Hamiltonian systems,

proper degeneracies, fast averaging, action-angle variables.

Supported by M.U.R.S.T. Variational Methods and Nonlinear Differential Equations.

233



234 L. BIASCO AND L. CHIERCHIA

V.I. Arnold, in 1963, in one of the fundamental paper on KAM theory [2], con-
jectured that the general feature of nearly–integrable Hamiltonian dynamics with
more than two degrees–of–freedom (i.e., with phase space of dimension greater than
four) is action–instability1. On the other hand, KAM theory yields, in general,
“metric” stability (i.e., stability for the majority of initial data) and this implies
“total stability” in systems with two degrees of freedom: in such a case, under
suitable non–degeneracy assumptions, the three–dimensional energy surfaces are
separated by a multitude of two–dimensional invariant KAM tori and trajectories
are trapped in–between these tori allowing only for a small (with ε) variation of
the action variables (for any time and for any initial data). The non–degeneracy
KAM assumption, at fixed energy, is that the (unperturbed) map between action
variables on fixed energy surface and the frequency map viewed in projective space
is a diffeomorphysm.

The main motivation for Poincaré to look up at the action–stability problem came
from Celestial Mechanics. Now, a typical feature in Celestial Mechanics is that
the unperturbed system is properly degenerate, i.e., the unperturbed Hamiltonian
function does not depend upon all action variables2. In such a case the above
mentioned non–degeneracy condition is obviously strongly violated. However, in
[2], Arnold proved the following result (compare also [1], Chapter 5, Section 3).
Consider a nearly–integrable (real–analytic) Hamiltonian system with two degrees
of freedom governed by

H(I, ϕ; ε) := H0(I; ε) + ε2H1(I, ϕ) := H00(I1) + εH01(I) + ε2H1(I, ϕ) , (1.1)

(I, ϕ) = (I1, I2, ϕ1, ϕ2) ∈ U × T2 (where U ⊂ R2 and T2 denotes the standard
two–dimensional torus R2/(2πZ2)). We say that the “perturbation removes the
degeneracy3” on the energy level H−1(E), if

∂H00

∂I1
(I) 6= 0 ,

∂2H01

∂I2
2

(I) 6= 0 , ∀I ∈ H−1
0 (E) . (1.2)

Theorem 1.1. ([2])If, in a (real–analytic) properly degenerate system with two
degrees of freedom, the perturbation removes the degeneracy (i.e., condition (1.2)
holds), then, for all ε small enough, total stability holds (i.e., for all initial data
on the given energy level, the values of the action–variables stay forever near their
initial values).

Remark 1. (i) If condition (1.2) is violated “instability channels” may appear as
suggested by the following example (which is a trivial modification of an example
due to N.N. Nekhoroshev [7]). Let

H00(I1) + εH01(I2) :=
I2
1

2
− ε

I2
2

2
, (1.3)

and notice that (the first inequality in) condition (1.2) is violated on each energy
level crossing the axis {I1 = 0} (in particular is violated at E = 0). Then, one

1Arnold calls it “topological instability” and the conjecture is the following: near an arbitrary

point in phase space there are trajectories along which the action variables undergo a displacement
of order one (i.e., independently of ε) in a finite (albeit exponentially long) time.

2This happens, for example, in three body problems or in the D’Alembert planetary model.
In Appendix A below the D’Alembert planetary model is discussed in detail.

3Or, more precisely, that “the intermediate term H01 removes the degeneracy”.
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can construct a sequence εj ↓ 0 and a sequence of perturbations H1,j(ϕ) with
sup

|Imϕi|≤1

|H1,j(ϕ)| uniformly bounded such that

Iε(t) := e−1/
√
ε
(
− ε2 t, ε3/2 t

)
, ϕε(t) := e−1/

√
ε
(
− ε2

t2

2
,−ε5/2 t2

2

)
, (1.4)

is a solution of the Hamilton equation associated to H00(I1)+εH01(I2)+ε2H1,j(ϕ)
when ε = εj . In fact, it is enough to take

εj :=
1
j2

, H1,j(ϕ) := e−j sin(ϕ1 − jϕ2) .

Notice that a displacement of order one of the action variables Iε(t) with re-
spect to their initial value Iε(0) = (0, 0) occurs in the exponentially long time
∼ exp(1/√εj)/ε2j .

(ii) Condition (1.2) is violated, at E = 0, also by the “convex” Hamiltonian
H0 := I21

2 + ε
I22
2 , (ε > 0). However, in such a case, H−1

0 (0) consists only of one
point and exploiting convexity (and using energy conservation arguments), it is
not difficult to show that, also on the energy level E = 0, total stability holds for
ε > 0 small enough. It is therefore clear that “convexity” (or, more in general,
“steepness”) should play a fundamental role in this business.

Properly degenerate systems with two degrees of freedom of the form (1.1), are, in
general, “more integrable” than non–degenerate systems, as A.I. Nejshtadt proved
in 1981:

Theorem 1.2. ([6]) Assume that a (real–analytic) properly degenerate system with
two degrees of freedom satisfies condition (1.2) together with ∂H01

∂I2
6= 0. Then the

measure of the set of unperturbed tori that disappear when ε > 0 is exponentially
small (i.e. O(exp(−const/ε) rather than O(

√
ε) as in general nondegenerate sys-

tems). Furthermore the deviation of a perturbed torus from the unperturbed one is
of O(ε) (rather than O(

√
ε)).

In this paper we take up the action–stability problem for properly degenerate
Hamiltonian system with two degrees of freedom allowing the intermediate system
H01 to depend also on the angle ϕ1. Thus, we shall consider real–analytic, properly–
degenerate systems with two degrees of freedom described by nearly–integrable,
real–analytic Hamiltonians given by

H(I, ϕ; ε) := H00(I1)+εH01(I, ϕ1)+εaH1(I, ϕ) , 0 < ε� 1 , a > 1 . (1.5)

The interest for such systems stems again from Celestial Mechanics. For exam-
ple, the “planetary D’Alembert model” describing the motion of a nearly spherical
planet subject to the gravitational attraction of a fixed star occupying a focus of
a Keplerian nearly circular ellipse along which the centre of mass of the planet
revolves, is governed,up to an exponentially small term, by a Hamiltonian of the
form

HD(I1, I2, ϕ1, ϕ2; ε, µ) :=
I2
1

2
+ ε
(
ĉ0(I1, I2) + d̂1(I1, I2) cosϕ1

)
+ εaG(I1, I2, ϕ1, ϕ2; ε, µ) , (1.6)

where: ε and µ ≤ εc (with c > 1/2) are perturbation parameters (related, respec-
tively, to the “oblateness” of the planet and to the eccentricity of the Keplerian or-
bit); a ∈ (3/2, 2]; ĉ0, d̂1 and G are given real–analytic functions uniformly bounded
in suitable analytic norms; see Appendix A for a full description of this model.
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Remark 2. (i) In the above D’Alembert model, the “intermediate” system is given
by H0 := I21

2 + εĉ0(I1, I2). It turns out that in physically interesting phase space
regions4 H0 is non convex. For this reason, below, we shall consider also non convex
models.

(ii) The planetary D’Alembert model motivated in [4] new investigations about
action–instability (“Arnold Diffusion”). For such studies, of course, exponentially
small terms cannot be disregarded. In relation with the (full) D’Alembert problem,
the results presented here go in the direction of giving action–stability bounds for
exponentially long times. Such bounds would not immediately follow from standard
Nekhoroshev techniques because of the strong degeneracies of the model5.

(iii) The dependence ofH01 upon the angle ϕ1 (that is, on the angle conjugated to
the non–degenerate action I1), besides being motivated by classical examples, is the
only significative angle–dependence one wants to take into account in connection
with the problems considered here. In general, in fact, a Hamiltonian function
of the form H00(I1) + εH01(I, ϕ2) + ε2H1(I, ϕ) will be trivially unstable as the
following example shows. Let H01 = I22

2 − (1 + cosϕ2) and H1 = 0. Then, one
has supt |I2(t) − I2(0)| = 2, for any ε > 0 and for any motion with (I2(0), ϕ2(0))
belonging to the (open) separatrix of the pendulumH01. Moreover, these hyperbolic
motions would be persistent under non–vanishing perturbations H1.

The Hamiltonian

H0(I, ϕ1; ε) := H00(I1) + εH01(I, ϕ1) , (1.7)

regarded as a one–degree–of–freedom system in the (I1, ϕ1) variables, is still in-
tegrable exhibiting, in general, the typical features of a one–degree–of–freedom
dimensional system (phase space regions foliated by invariant circles of possibly
different homotopy, stable/unstable equilibria, separatrices, etc.). A natural ap-
proach (which we shall, in fact, follow) is to introduce action–angle variables for
the one–degree–of–freedom Hamiltonian H0(I, ϕ1; ε) (regarding I2 as a dumb pa-
rameter) and then to apply KAM techniques trying to confine all motions among
KAM tori (as in the non–degenerate case). The problem with this approach is that
the action–angle variable for the (I1, ϕ1) system are singular in any neighbourhood
of the separatrix (and stable equilibria) and is exactly near separatrices where one
expects the motion to become “chaotic” and where, in principle, drift of order one
in the I2 variable is conceivable6 even in the two–degrees–of–freedom (properly de-
generate) case considered here. Therefore a careful analysis near these “singular
phase space regions” is needed and arguments different from KAM theory have to
be used to control the displacement of the action variable in such singular regions.
Clearly, as discussed in Remark 1, regions where the non–degeneracy assumption
fails need a separate discussion: in fact, in such zones (and in the non convex case),
we can not exclude a “possibly non–chaotic–drift” of the I2 action.

4Such regions correspond to unperturbed situations in which the spin axis of the planet is
nearly orthogonal to ecliptic plane (i.e., to the plane containing the Keplerian ellipse): this is the
observed situation for most planets in the Solar system.

5For other investigations on exponential (Nekhoroshev) stability in Celestial Mechanics we

refer, also, to [3].
6Better: “compatible with energy conservation”.
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To avoid “extra” technical difficulties, we shall consider, in this paper, model prob-
lems, namely, we shall let

H00 :=
I2
1

2
, H01 := H

(σ)
01 := σ

I2
2

2
− (1 + cosϕ1) , (1.8)

with σ equal either +1 or −1; the phase space will be taken to be MR0 := B2
R0
×T2

where B2
R0

denotes a ball of radius R0 around the origin.

Remark 3. These model problems are intended to capture the main features of
“general” properly degenerate systems with two degrees of freedom and, in partic-
ular, the features of the exponential approximation (1.6) to the D’Alembert Hamil-
tonian. This is the reason for considering both the convex and the non convex case
in (1.8), corresponding, respectively to σ = 1 and σ = −1 (compare, also, point (i)
of Remark 2).

We can now state our main results. Denote, as above, by (I(t), ϕ(t)) := φtH(I0, ϕ0)
the time t evolution of the initial data (I(0), ϕ(0)) := (I0, ϕ0) governed by the
Hamiltonian H. We shall prove the following

Theorem 1.3. Let H(σ)(I, ϕ; ε) := H(I, ϕ; ε) and MR0 be as in (1.5), (1.8). As-
sume a > 3/2 and choose

0 < R < R0 and 0 < b < min
{

1
4
,
a− 1

4
,
1
3

(
a− 3

2

) }
. (1.9)

Then, there exists ε0 > 0 such that, for all 0 < ε < ε0, the φtH–evolution (I(t), ϕ(t))
of an initial datum (I0, ϕ0) satisfies

|I(t)| < R0 , |I(t)− I0| < εb , ∀ t ∈ R , (1.10)

where, in the case σ = 1, (I0, ϕ0) is an arbitrary point in the phase space MR,
while, in the “non–convex” case σ = −1, (I0, ϕ0) belongs to MR\N∗, N∗ being an
open region whose measure does not exceed ε2/3.

This theorem will be a simple corollary of the following result, which describes the
distribution and density of KAM tori. Let Hp denote the pendulum Hamiltonian7

Hp := Hp(I1, ϕ1; ε) :=
I2
1

2
− ε(1 + cosϕ1) . (1.11)

Theorem 1.4. Let the hypotheses and choices of Theorem 1.3 hold and let M(σ)

:= MR\N (σ) where the sets N (σ) := N (σ)(ε, b) are defined by

N (1) :=
{

(I, ϕ) : |Hp| < ε1+2b or Hp < −2ε+ ε1+2b
}
∪
{

(I, ϕ) : |I2| < Rεb
}

N∗ :=
{

(I, ϕ) : c ε
2
3+ 4

3 b < Hp <
ε

2
3

c

}
,

N (−1) := N (1) ∪N∗ , (1.12)

0 < c < 1 being a suitable constant. Fix q such that

0 < q < a− 3
2
− 3b . (1.13)

7Hp is a standard mathematical pendulum having the stable equilibrium in (0, 0) with energy

−2ε, the unstable equilibrium in (0,±π) with energy 0 (hence the separatrix as well has energy
0).
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Then, there exists ε0 > 0 such that, for all 0 < ε < ε0, the following holds.
Apart from a small dense subset of measure O(exp(−1/εq)), the region M(σ), is
filled up by two–dimensional, real–analytic H(σ)–invariant tori; each of these tori
is O(exp(−1/εq))–close to an unperturbed torus {(I1, ϕ1) : Hp = E} × {(I2, ϕ2)
s.t. I2 =const} in M(σ). Furthermore, for any motion (I(t), ϕ(t)) in M(σ), the
displacement of I(t) from its initial value I0 is bounded, for all times t, by

√
ε.

Remark 4. (i) By simple energy–conservation argument one sees immediately that
|I1(t) − I1(0)| < const

√
ε for any motion (I(t), ϕ(t)) in MR; thus the “stability”

statement in (1.10) concerns actually only the I2 action variable.
(ii) The discarded region N (σ) is a (“elementary”) set small with ε. If we replace

N (σ) by a small set of order one (say, {(I1, ϕ1) : |Hp| < δ} × {(I2, ϕ2) : |I2| < δ}
for a fixed 0 < δ � 1), then the displacement of I(t) from its initial value I0 is
bounded by ε.

(iii) In the two–degrees–of–freedom case considered here, as mentioned above,
the 2-dimensional KAM tori constructed in Theorem 1.4 (which fill, up to an expo-
nentially small set, the region M(σ)) separate the three–dimensional energy levels.
Thus, the topological “trapping” argument may be applied leading to stability, for
all times, of the action variables inM(σ). Then, an elementary energy–conservation
argument implies action stability in MR or in MR\N∗ (according to whether σ = 1
or σ = −1).

(iv) In the case a = 2 one can take any 0 < b < 1/6 and q <
1
2
− 3b.

(v) Theorem 1.3 and Theorem 1.4 may be viewed as extensions, in the model
cases considered here, of, respectively, Theorem 1.1 and 1.2.

We close this introduction with a list of problems.
(1) Generalise Theorem 1.3 and 1.4 to the Hamiltonian HD (see Appendix A for

a full description of HD) and deduce exponential stability estimates for the
full D’Alembert planetary Hamiltonian.

(2) Find general conditions on H0 under which Theorems 1.3 and 1.4 hold.
(3) Extend the example in Remark 1 to ε–independent perturbations H1. Extend

the example in Remark 1 to H0 dependent also on ϕ1.
(4) The examples in (3) may indicate a possible route to O(1)–drift of action

variables, in properly degenerate systems, different from Arnold Diffusion.
The paper is organized as follows. In §2 we list the technical tools we need in
order to prove Theorems 1.3 and 1.4, namely: a quantitative, accurate discus-
sion of the real–analytic extension of action–angle variable for the pendulum with
particular care to singular regions; an “averaging” or “normal form” lemma (stan-
dard in Nekhoroshev theory); a quantitative iso–energetically KAM theorem. In
§3, the proofs of the Theorem 1.3 and 1.4 are given. In Appendix A we discuss
the D’Alembert planetary model and show how averaging theory may be used to
reduce it, up to an exponentially small term, to the form in (1.6). In Appendix
B the (lengthy but elementary) details for the construction of the real–analytic
action–angle variables for the pendulum are provided.
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2. Preliminaries. The construction of KAM tori inM(σ) is based on the following
three lemmata: the first lemma provides (real–analytic) action–angle variable for
the pendulum slightly away from the separatrix and the stable equilibrium; the
second lemma is a “normal form lemma”; the third lemma is a “iso–energetic”
KAM theorem. For general information about normal forms, KAM theory, etc, we
refer to, e.g., [1] and references therein.

In the following we shall use the following notations: if A ⊂ Rd and r > 0, we denote
by Ar the subset of points in Cd at distance less than r from A; Tds denotes the
complex set {z ∈ Cd : |Imzj | < s for all j} (thought of as a complex neighborhood
of Td). If f(I, ϕ) is a real analytic function on Ar × Tds we let ‖f‖r,s denote the
following norm8

‖f‖r,s :=
∑
k∈Zd

sup
I∈Ar

|f̂k(I)|e|k|s , (2.14)

f̂k(I) being the Fourier coefficients of the periodic function ϕ→ f(I, ϕ).

Lemma 2.1 (Real–analytic action–angle variables for the pendulum).
Let D0 := [−R0, R0], let E0 := Hp(R0, 0) = R2

0/2, let 0 < η < ε/32 and define

M+
p := M+

p (η, ε) :=
{

(I1, ϕ1) ∈ D0 × T : I1 > 0 , η < Hp(I1, ϕ1) < E0 − ε
}

M−
p := M−

p (η, ε) :=
{

(I1, ϕ1) ∈ D0 × T : −2ε+ η < Hp(I1, ϕ1) < −η
}
. (2.15)

Then, for all r∗ < R0/2 and s∗ positive, there exist positive numbers r0 and s0,
closed intervals D± ⊂ R, symplectic transformations φ± real–analytic on D± × T
and functions h± real–analytic on D± such that

φ± : (Î1, ϕ̂1) ∈ D±
r0 × Ts0 → φ±(Î1, ϕ̂1) ∈ D0

r∗ × Ts∗ , (2.16)

φ±(D± × T) = M±(η, ε) , (2.17)

Hp ◦ φ±(Î1, ϕ̂1) = h±(Î1) , ∀ (Î1, ϕ̂1) ∈ D±
r0 × Ts0 . (2.18)

The analyticity radii r0 and s0 may be taken to be

r0 := c r∗
η√
ε
, s0 := c s∗

1
ln(ε/η)

, (2.19)

where 0 < c < 1 is a suitable (universal) constant. Furthermore, the functions h±

satisfy, for all Î1 ∈ D±
r0 , the following bounds

η ≤ Re h+(Î1) ≤ E0 − ε , −2ε+ η ≤ Re h−(Î1) ≤ −η , (2.20)
dh±

dÎ1
(Î1) =

α±

π±1
, (2.21)

d2h±

dÎ2
1

(Î1) = ±β± π±2
(π±1 )3

, (2.22)

8 The specific choice of norm will play no role in the sequel; obviously if f is a real–analytic

function on Td
s , ‖f‖s stands for

∑
k∈Zd |f̂k|e|k|s, f̂k being the Fourier coefficients of f , while, if

f is a real–analytic function on Ar, then ‖f‖r = supI∈Ar
|f(I)|.
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where

π±1 := π±1 (Î1) :=
1√
ε

ln

(
1 +

√
ε

| Re h±(Î1)|

)
,

π±2 := π±2 (Î1) :=
1

| Re h±(Î1)|
1√

| Re h±(Î1)|+ ε
, (2.23)

α± := α±(Î1), β± := β±(Î1) are real–analytic functions such that

d1 ≤
Re (α±)
R0

, Re (β±) ≤ d2 ;
∣∣∣ Im(α±)

R0

∣∣∣, |Im(β±)| ≤ d0 (2.24)

for suitable (universal) constants 0 < d1 < d2 and 0 < d0 < d1/10. An identical
statement holds if, in the definition of M+

p , one replaces “I1 > 0” with9 “I1 < 0”.

The next two lemmata are typical statements from KAM theory (see [1] for gener-
alities). The first one is a “normal form lemma” common, also, in averaging theory.
The second one is an iso–energetic KAM theorem (i.e. a KAM theorem on fixed
energy levels).

The only (technical) difference in the statement of the normal form lemma is that
we have to allow different radii of analyticity in the action–variables (a fact that is
convenient for our application of the KAM theorem; see, also, point (ii) of Remark 6
below). For notational simplicity we state the normal form lemma for d = 2 (which
suffices for our applications).

Lemma 2.2 (Normal forms). Let D̂ and D̂′ be two subsets of R and consider a
Hamiltonian function H(Î , ϕ̂) := h(Î)+ f(Î , ϕ̂) real–analytic on Ŵr̂1,r̂2,ŝ := (D̂r̂1 ×
D̂′
r̂2

) × T2
ŝ for some r̂2 ≥ r̂1 > 0 and ŝ > 0. Assume that there exist K ≥ 6/ŝ and

α > 0 such that

|ω(Î) · k| ≥ α , ∀ k ∈ Z2 , 0 < |k| ≤ K , ∀ Î ∈ D̂r̂1 × D̂′
r̂2 , (2.25)

where ω(Î) := ∇h(Î). Assume also that10

‖f‖r̂1,r̂2,ŝ ≤
αr̂1
28K

. (2.26)

Then, there exist a real–analytic symplectic transformation

Φ : (J, ψ) ∈ Ŵr̂1/2,r̂2/2,ŝ/6 → Φ(J, ψ) ∈ Ŵr̂1,r̂2,ŝ

such that
H ◦ Φ(J, ψ) = h(J) + g(J) + f∗(J, ψ) (2.27)

with11

‖g − f0‖r̂1/2,r̂2/2 ≤
26K

αr̂1
(‖f‖r̂1,r̂2,ŝ)2 ≤

1
4
‖f‖r̂1,r̂2,ŝ ,

‖f∗‖r̂1/2,r̂2/2,ŝ/6 ≤ ‖f‖r̂1,r̂2,ŝ exp(−Kŝ/6) ,

‖Φ(J, ψ)− (J, ψ)‖r̂1/2,r̂2/2,ŝ/6 ≤ ĉ ‖f‖r̂1,r̂2,ŝ , (2.28)

9By symmetry, the interval D+ in the case I1 < 0 is just the opposite of the interval D+ in
the case I1 > 0.

10Adapt the norms in (2.14) and in the footnote 8 in the obvious way replacing Ar by D̂r1×D̂′
r2

(and replacing the subscript “r” in the norms by “r̂1, r̂2”).
11f0 is the zero–Fourier coefficient of f , i.e., the average of f(Î, ϕ̂) over T2.
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where ĉ > 0 is a suitable constant.

Let, as above, ω(J) denote the gradient ∇h(J), let h′′(J) denote the Hessian matrix
of h. We recall that a vector ω ∈ Rd is said to be (γ, τ)–Diophantine if

|ω · k| ≥ γ

|k|τ
, ∀ k ∈ Zd\{0} , (2.29)

for some γ > 0 and12 τ > 0.

Lemma 2.3 (Iso–energetic KAM theorem). Let D ⊂ Rd be a bounded domain and
consider a Hamiltonian H(J, ψ) := h(J)+f(J, ψ) real–analytic on the domain Wr,s

:= Dr × Tds for some r > 0 and s > 0. Assume that ‖h′′‖r > 0 and that the
(d+ 1)× (d+ 1) matrix

U :=
(
h′′(J) ω(J)
ω(J) 0

)
(2.30)

is invertible on Dr. Given E ∈ R (such that h−1(E) 6= ∅) and given

0 < γ < min
i,J∈D

|ωi(J)| and τ ≥ d− 1 , (2.31)

denote

D =
{
J ∈ D : h(J) = E and ω(J) is (γ, τ)−Diophantine

}
. (2.32)

Then, if ‖f‖r,s is small enough, for each J ∈ D, there exists a unique d–
dimensional, real–analytic, invariant torus T ⊂ H−1(E) which is a graph over
the angle ψ, which is close to the torus {J} × Td and on which the H–flow is an-
alytically conjugated to the translation θ → θ + ω(J)(1 + κ)t, κ being a small real
number. More precisely, let A, F and G be positive numbers such that

A ≥ ‖h′′‖r , F ≥ A ‖f‖r,s γ−2 , G ≥ max
{
A ‖U−1‖r , 1

}
, (2.33)

let 0 < s̄ < s and let

C := max
{

1 ,
γ (s− s̄)c1

c2A r | lnF |c3
}
, F̂ := C c4

1
(s− s̄)c5

Gc6F | lnF |c7 , (2.34)

where the ci > 1 are suitable constants depending only upon τ and d. If F̂ ≤ 1,
then, for each J ∈ D, there exists a unique invariant torus T ⊂ H−1(E) satisfying
the following properties:

(i) T =
{

(J (ψ), ψ) : ψ ∈ Td
}

with J real–analytic on Tds̄ and |J (ψ)−J | ≤ rF̂

for all ψ ∈ Tds̄;
(ii) there exist real–analytic functions on Tds̄, u, v and a smooth function κ :

Dr → C (real for real J) such that

max{r−1‖v − J‖s̄, ‖u‖s̄, |κ|} ≤ F̂ ;

the map θ ∈ Tds̄ →
(
v(θ), θ + u(θ)

)
is a real–analytic embedding whose real image

is the torus T : T =
{(
v(θ), θ + u(θ)

)
, θ ∈ Td

}
; on the torus T the H–flow, φt,

linearizes: denoting ω∗ :=
(
1 + κ(J)

)
ω(J), one has

φt
(
v(θ), θ + u(θ)

)
=
(
v(θ + ω∗t), θ + ω∗t+ u(θ + ω∗t)

)
;

12Necessarily τ ≥ d − 1 by a theorem of Liouville. Also, (2.29) (with |k| = 1) implies that
γ ≤ mini |ωi|.
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(iii) if τ > d− 1 and γ̂ :=
(
const.

‖h′‖dr
min
Dr

|detU |

)
γ, then

meas
(
H−1(E)\

{
tori satisfying (i) and (ii)

})
≤ γ̂ .

Remark 5. As mentioned above, in the case of two degrees–of–freedom (d = 2)
considered in this paper, the above KAM tori separate the three–dimensional energy
levels forming barriers for the motion; any two KAM tori (with equal energy) bound
an invariant region in corresponding energy level. More precisely, let [a1, b1] ×
[a2, b2] ⊂ D with ai < bi. Then, because of (2.31), we can take as coordinates for
the three–dimensional energy level H−1(E) either of the action variables13 plus the
angles ψ. Take first as coordinates (J1, ψ1, ψ2) and fix J̄1 ∈ [a1 + δ, a2 − δ] where
δ := 2 max{rF̂ , γ̂} (γ̂ measures the complement of the surviving KAM tori and rF̂
the maximal oscillation of the graph of each KAM torus). Then, by (i) and (iii) in
Lemma 2.3, it follows that there exist two tori T ′ and T ′′ so that supψ J ′

1 < J̄2 <

infψ J ′′
1 and 0 < infψ J ′′

1 − supψ J ′
1 ≤ O(δ). The same reasoning applies to J̄2.

Hence, if (J(t), ψ(t)) := φt(J̄ , ψ̄) (for any ψ̄) one has that supt |J(t)− J̄ | ≤ O(δ).

Remark 6. (On the proofs of the lemmata)
(i) The action–angle variables for the pendulum Hp(I1, ϕ1; ε) = I21

2 −ε(1+cosϕ1)

are produced by the generating function
∫
Γ(ε,E)

I1dϕ1, where Γ(ε, E) denotes the

positively oriented circle Hp
−1(E) (the homotopy of Γ(ε, E) depends on whether

E > 0 or −2ε < E < 0). The point is that we need a very detailed and quantitative
analysis for Γ very close to the separatrix (i.e. E close to 0) and for Γ close
to the stable equilibrium (i.e. E close to −2ε) regions where the action–angle
variables become singular; “very close” meaning, here, “at a distance of order εβ

with β > 1”. Therefore, in such “singular” regions, a careful “blow–up” analysis is
needed. Furthermore we also need to study the complex analytic continuation of
the action-angle variables since we want to apply a KAM theorem in real-analytic
class. To perform this blow–up in analytic class a certain amount of straightforward
(although rather lengthy) computations are needed: we provide details in Appendix
B.

We mention also that for our main purpose (i.e., total stability of action vari-
ables) it would be enough to apply a iso–energetic KAM theorem in smooth class
(since all we need is a topological “trapping argument”); however a quantitative
version of such a theorem (necessary for our task) is not available in literature and
providing the details for its proof would be certainly much longer (and far less
elementary) than the proof of Lemma 2.1.

(ii) Lemma 2.2, as mentioned above, is a standard “normal form lemma”; a
proof may be found, e.g., in [9], pag 192. Keeping track of different radii (going
into the proof in, e.g., [9]) is routine (notice that in the “smallness condition” (2.26)
there appears the smallest radius). We add only a technical comment: in [9] there
appears the condition r ≤ α/(constK); such a condition is needed to control the

13Furthermore, the map J1 → α1(J1) = ω1(J1, J0
2 (J1))/ω2(J1, J0

2 (J1)), where J0
2 is such that

h(J1, J0
2 (J1)) = E, is a diffeomorphysm:

dα1

dJ1
= −

detU

ω3
2

∣∣∣∣
(J1,J0

2 (J1))

;

(and a completely symmetric statement holds interchanging the indices 1 and 2).
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small divisor bounds on complex domains. Since we are assuming the small divisor
bounds directly on complex domains such a condition is not needed in our case.

(iii) Also Lemma 2.3 is by now rather standard. In fact it is easy, under an extra
“nondegeneracy condition” satisfied in our application14, to derive the iso–energetic
KAM theorem directly by the standard one by means of a standard Implicit Func-
tion Theorem. Alternatively, one can find a very detailed version, e.g., in [5]. For
these reasons we shall omit the proof of Lemma 2.3. In our application the exact
values of the constants ci are not needed; however we can prove Lemma 2.3 with
the following constants:

c1 = τ + 1 , c2 = 2 · 6τ+1 , c3 = c1 , c4 = d 210 ,

c5 = 2(τ + 1) , c6 = 2 , c7 = 2(τ + 1) .

Also, in our case, it will be C = 1.

3. Proofs of the Theorems. We first prove Theorem 1.4 (Theorem 1.3 will be a
simple corollary of it). Since most of the arguments are identical for both models
σ = 1 and σ = −1, we shall usually do not indicate explicitely the dependence
upon σ. The only point where the two models differ is in the estimates regarding
the iso–energetical non–degeneracy (see Lemma 3.1 below).

Proof of Theorem 1.4
The first step is to use Lemma 2.1 to put H0 in (1.7) into action–angle variables.
Let R be as in (1.9) and assume that H1 in (1.5) is analytic on Br1 ×Ts1 where B
denotes here B2

R0
(0), and 0 < r1 < R/2, s1 > 0. Since, in our case, Hp is an entire

function we can choose, in Lemma 2.1 the parameters

r∗ := r1 , s∗ := s1 . (3.35)

Let b and q be as in (1.9) and (respectively) (1.13), let

λ = 1 + 2b , (3.36)

and let q0 be a number such that

q < q0 < a− 3
2
− 3b . (3.37)

Notice that with such choices the following relations hold:

λ > 1 , 0 < b < λ− 1
2
, b+ λ+ q0 +

1
2
< a . (3.38)

We also set
η := ελ (3.39)

so that r0 and s0 in Lemma 2.1 become

r0 = c r1 ε
λ−1/2 , s0 =

c

λ− 1
1

ln ε−1
s1 . (3.40)

Let D0, D± and φ± be as in Lemma 2.1 and let

D := [−R1, R1] ⊂ D0 , R1 :=
R0 +R

2
. (3.41)

Now, define D±(σ) ⊂ R as follows:

D−(σ) := D− , D+(1) := D+ , D+(−1)× T := (φ+)−1(M+
∗ ) , (3.42)

14Namely, the invertibility of the Hessian h′′ onDr, which is the usual nondegeneracy condition
in the standard KAM theorem.
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where

M+
∗ := M+

∗ (η, ε) := M+
p \R∗ := M+

p \
{

(I1, ϕ1) : c ε
2
3+ 4

3 b ≤ Hp ≤
ε

2
3

c

}
, (3.43)

with a suitable small positive constant c to be fixed later. Denoting J = (J1, J2),
ψ = (ψ1, ψ2), Î = (Î1, Î2), ϕ̂ = (ϕ̂1, ϕ̂2), then, by Lemma 2.1, we have

φ̂± : (Î , ϕ̂) ∈ (D±(σ)r0 ×Dr1)× T2
s0 → (I, ϕ) ∈ Br1 × T2

s1 ,

where (I1, ϕ1) := φ±(Î1, ϕ̂1) , (I2, ϕ2) := (Î2, ϕ̂2) . (3.44)

In the symplectic coordinates (Î , ϕ̂) the Hamiltonian H in (1.5) takes the form

H±(Î , ϕ̂; ε) := H ◦ φ̂±(Î , ϕ̂) = h±(Î1) + εσ
Î2
2

2
+ εaH±

1 (Î , ϕ̂; ε) , (3.45)

where h± is as in Lemma 2.1 and H±
1 := H1 ◦ φ̂±; hence

‖H±
1 ‖r0,r1,s0 ≤ ‖H1‖r1,s1 . (3.46)

The second step is to apply the normal form lemma (Lemma 2.2), in a suitable
phase space region, to the Hamiltonian H±: in such a way we shall be able to
to put H± in a normal form of the type appearing in (2.27)–(2.28), to meet the
(stringent) KAM condition, F̂ ≤ 1, in the KAM theorem (Lemma 2.3) and to give
a “good” estimates on the measure of the KAM tori. We therefore set15

h(Î) := h±(Î1) + εσ
Î2
2

2
, f := εaH±

1 ,

r̂1 := r0 = cr1ε
λ− 1

2 , r̂2 :=
R1

10
εb , ŝ := s0 =

c

λ− 1
1

ln ε−1
s1 ,

D̂ := D±(σ) , D̂′ := {Î2 ∈ R : R1ε
b ≤ |Î2| ≤ R1} ,

Ŵr̂1,r̂2,ŝ :=
{
Î ∈ D±(σ)r̂1 × D̂′

r̂2

}
× T2

ŝ . (3.47)

Notice that the second relation in (3.38) implies that r̂1 � r̂2 for ε small. Define
also

K :=
1

εq0 ln ε−1
, (3.48)

where q0 is as in (3.38). Let us, now, estimate α in (2.25). Denote by ω±(Î) :=(
(h±)′(Î1), εσÎ2

)
. Then, for any k ∈ Z2\{0} with |k| ≤ K, by (2.20)–(2.24) and

the choice of η, we find

|ω±(Î) · k| ≥

 |(h±)′| − 2εR1K ≥ κ1R1

√
ε

ln ε−1
, if k1 6= 0 ,

R1

2
εb+1 , if k1 = 0 ,

(3.49)

for a suitable constant16 κ1 and provided ε > 0 is small enough . We can therefore
take

α :=
R1

2
ε1+b . (3.50)

We can now check (2.26). Since, by (3.46),

‖f‖r̂1,r̂2,ŝ := εa‖H±
1 ‖r̂1,r̂2,ŝ ≤ εa‖H1‖r1,s1 , (3.51)

15I2 = 0 is a singularity (resonance): we therefore have to stay a bit away from it.
16From here on, κi denote suitable constants depending, possibly, on λ, a, b, c, qi, s1 and r1.
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because of the choices of α, r̂1, ŝ and K (see (3.50), (3.40), we find (2.19), (3.39)
and (3.48)),

αr̂1
28K

=
c R1r1 ε

b+λ+q0+1/2 ln ε−1

29
. (3.52)

Thus, in view of the choice of the various parameters made in (3.38), (2.26) is
satisfied for ε > 0 small enough. Thus, by Lemma 2.2, there exist a real–analytic
symplectic transformation

Φ± : (J, ψ) ∈ Ŵr̂1/2,r̂2/2,ŝ/6 → Φ±(J, ψ) ∈ Ŵr̂1,r̂2,ŝ (3.53)

such that

H± ◦ Φ±(J, ψ) = h±(J1) + εσ
J2

2

2
+ g±(J) +H±

∗ (J, ψ) (3.54)

with (recall (2.28), (3.51), (3.48))

‖g± − εa(H±
1 )0‖r̂1/2,r̂2/2 ≤

1
4
εa ‖H1‖r1,s1 ,

‖H±
∗ ‖r̂1/2,r̂2/2,ŝ/6 ≤ ‖f‖r̂1,r̂2,ŝ exp(−Kŝ/6) ≤ ‖H1‖r1,s1 exp

(
−κ2

εq0(ln ε−1)2

)
,

‖Φ±(J, ψ)− (J, ψ)‖r̂1/2,r̂2/2,ŝ/6 ≤ ĉ εa ‖H1‖r1,s1 , (3.55)

for a suitable κ2 > 0 (and ε small enough). Thus, if we pick a q1 so that

q < q1 < q0 , (3.56)

we have that, for all ε > 0 small enough,

‖H±
∗ ‖r̂1/2,r̂2/2,ŝ/6 ≤ ‖H1‖r1,s1 exp

(
− 1
εq1

)
. (3.57)

Third step. In order to apply the KAM theorem (Lemma 2.3) we set:

h(J) = h±(J1) + εσ
J2

2

2
+ g±(J) := h±∗ (J) , f(J, ψ) = H±

∗ (J, ψ) ,

r = κ3 r1 ε
λ− 1

2 , s = κ3 s1
1

ln ε−1
, s̄ =

s

2
,

D = D±(σ)× D̂′ , Wr,s = Dr × T2
s , (3.58)

where κ3 is a suitable constant such that17

r ≤ r̂1
4
, s ≤ ŝ

6
.

Obviously the norm relative to the domain Wr,s will again be denoted ‖ · ‖r,s but
beware that the sup–norms in the action variables are taken on different domains
according to whether σ = 1 or σ = −1 (recall (3.42) and (3.43): in the case σ = −1
the set R∗ has to be discarded). The estimates on ‖(h±∗ )′′‖ and on18 ‖U−1‖ require

17Recall (3.53) and that r̂1 < r̂2. The factor 1/4 is included in order to bound derivatives of
g± (and hence of h′′) via Cauchy estimates. We recall the statement concerning Cauchy estimates

in our context: if g(J) is a function analytic on Dr ×D′
r′ then for any integers p1, p2 and for any

0 < c < 1 ∥∥∥ ∂p1+p2g

∂Jp1
1 ∂Jp2

2

∥∥∥
cr,cr′

≤ const. (p1!p2!)
‖g‖r,r′

rp1r′p2

1

(1− c)p1+p2
.

18Recall the definition of the matrix U in Lemma 2.3.
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some computations, which we collect in the following lemma. Recall that from
(3.36) and (1.9) there follows that b and λ satisfy

b <
1
4
, λ <

a+ 1
2

. (3.59)

Lemma 3.1. There exists19 C0 > 0 such that, for all ε > 0 small enough,

‖(h±∗ )′′‖r ≤
C0

ελ−1(ln ε−1)3
, ‖U−1‖r ≤

C0

ελ ln ε−1
, (3.60)

where ‖ · ‖r denotes the sup–norm on Dr defined in (3.58), (3.42), (3.43), (3.47).

Proof. First, we need estimates on the derivatives of g±. From (3.55) there follows
‖g±‖r̂1/2,r̂2/2 ≤ 5

4ε
a‖H1‖r1,s1 ; whence, by Cauchy estimates20 ,∥∥∥∂g±

∂J1

∥∥∥
r
≤ κ5

‖H1‖r1,s1
r1

εa−λ+ 1
2 ,

∥∥∥∂g±
∂J2

∥∥∥
r
≤ κ5

‖H1‖r1,s1
r1

εa−b ,∥∥∥∂2g±

∂J2
1

∥∥∥
r
≤ κ5

‖H1‖r1,s1
r21

εa−2λ+1 ,
∥∥∥∂2g±

∂J2
2

∥∥∥
r
≤ κ5

‖H1‖r1,s1
r21

εa−2b ,∥∥∥ ∂2g±

∂J1∂J2

∥∥∥
r
≤ κ5

‖H1‖r1,s1
r21

εa−λ−b+
1
2 , (3.61)

with a suitable constant κ5 > 0. By (3.38) and (3.59), one has

a− λ+
1
2
> 1 , a− b >

3
2
, a− 2λ+ 1 > 0 ,

a− 2b >
5
4
, a− λ− b+

1
2
> 1 . (3.62)

The symmetric matrix U has the form

U =

 u11 u12 u13

u12 u22 u23

u13 u23 0

 (3.63)

where (recall (3.58), (3.54) and (2.18))

u11 =
∂2h±∗
∂J2

1

= (h±)′′ +
∂2g±

∂J2
1

, u12 =
∂2h±∗
∂J1∂J2

=
∂2g±

∂J1∂J2
,

u13 =
∂h±∗
∂J1

=
∂h±

∂J1
+
∂g±

∂J1
, u22 =

∂2h±∗
∂J2

2

= εσ +
∂2g±

∂J2
2

,

u23 =
∂h±∗
∂J2

= εσJ2 +
∂g±

∂J2
. (3.64)

Since (recall the estimates in Lemma 2.1)

C1ε
λ−1 (ln ε−1)3 ≤ (π±1 )3

π±2
≤ C2 , C1 ≤ π±1 ≤ C2

ln ε−1

√
ε

,
C1√
ε
≤ π±2 ≤ C2

ελ+ 1
2
,

(3.65)

19From here on, Ci denote suitable constants depending, possibly, on λ, n, a, b, qi, E0, R1, r1
and ‖H1‖r1,s1 .

20It is exactly in order to get the estimates (3.61) that we kept track of the different complex
extension sizes in the variables J1 and J2.
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for suitable constants Ci > 0, by (3.61) and (3.62), we see that there exists a q̄1 > 0
such that, for all J2 ∈ D̂′

r, the following asymptotics hold21

u11 = ±β± π±2
(π±1 )3

(
1 +O(εq̄1)

)
, u12 = O(ε

1
2+q̄1) , u22 = εσ

(
1 +O(εq̄1)

)
,

u13 =
α±

π±1

(
1 +O(εq̄1)

)
, u23 = εσJ2

(
1 +O(εq̄1)

)
. (3.66)

From these relations there follows immediately that

‖(h∗)′′‖r ≤
C3

ελ−1(ln ε−1)3
. (3.67)

Let us, now, write the matrix U−1 as follows

U−1 =
1
δ

 u1 u2 u3 + u4

u2 1 u5 + u6

u3 + u4 u5 + u6 u7 + u8

 (3.68)

where

δ :=
u11

u2
13

u2
23 + u22 − 2

u12u23

u13
, u1 :=

(u23

u13

)2

,

u2 := −u23

u13
, u3 :=

u22

u13
, u4 := − u12u23

u2
13

, u5 :=
u11u23

u2
13

,

u6 := −u12

u13
, u7 :=

(u12

u13

)2

, u8 := − u11u22

u2
13

. (3.69)

Observe that from the above asymptotics (3.66) it follows

u11

u2
13

= ± β±

(α±)2
π±2

(
1 +O(εq̄2)

)
, (3.70)

for some q̄2 > 0; we also recall that

π±2 =
1

|E±|
√
ε+ |E±|

, E± := Re (h±(J1)) , (3.71)

where −2ε+ ελ ≤ E− ≤ −ελ, ελ ≤ E+ ≤ E0. Notice that, from (3.65) and (3.66),
it follows also that

sup
i,J∈Dr

|ui| ≤
C3

ελ−1 ln ε−1
. (3.72)

Thus, it remains to estimate 1/|δ|. From (3.69), (3.66) and (3.70), one sees that
there exist a complex number z := z1+iz2 with z1 > 0 and |z2| < z1/10 such that22

δ = ε
(
± zπ±2 ε ( Re J2)2 + σ +O(εq̄3)

)
,

Re δ = ε
(
± z1 π

±
2 ε ( Re J2)2 + σ +O(εq̄3)

)
(3.73)

for a suitable q̄3 > 0. Let us consider the two different signs separately. In the
“plus” case, we have to distinguish whether σ = 1 or σ = −1. When σ = 1, since
z1π

+
2 ε ( Re J2)2 > 0, one has

|δ| ≥ | Re δ| = ε
(
z1π

+
2 ε ( Re J2)2 + 1 +O(εq̄3)

)
≥ ε

2
(3.74)

21Obviously, x = O(εc) means that there exists a positive constant d such that, for all ε small
enough, |x| ≤ dεc.

22Use also that, for J2 ∈ D̂′
r, |ImJ2|/| Re J2| ≤ const. ελ− 1

2−b <
√
ε by (3.38).
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for ε > 0 small enough. Let now σ = −1 and notice that 23

π+
2 (E+) ≤ π+

2 (ε
2
3 /c) ≤ c

ε
, ∀ E+ ≥ ε

2
3

c
,

π+
2 (E+) ≥ π+

2 (cε
2
3+ 4

3 b) ≥ 1
2cε1+2b

, ∀ E+ ≤ cε
2
3+ 4

3 b . (3.75)

Choose

c :=
1
16

min
{
z1R

2
1 ,

1
z1R2

1

}
. (3.76)

Thus, in the region E+ ≥ ε2/3/c, one has

|δ| ≥ | Re δ| ≥ ε
(
1− 4z1cR2

1 +O(εq̄3)
)
≥ ε

2
;

in the region E+ ≤ cε
2
3+ 4

3 b, one has

|δ| ≥ | Re δ| ≥
(z1R2

1

8c
− 1 +O(εq̄3)

)
≥ ε

2
.

Let us turn now to the “minus” sign case and notice that ελ ≤ |E−| ≤ 2ε and
π−2 ≥ κ6/ε

3/2 with a suitable κ6 > 0. Hence (recalling (3.66) and the assumption
b < 1/4)

|δ| ≥ C4 π
−
2 ε2(1+b) − C5ε ≥ C4κ6ε

1
2+2b − C5ε ≥ C6 ε

1
2+2b , (3.77)

where C4, C5 and C6 are suitable positive constants. Thus, since 1
2 + 2b < 1, we

see that (in all cases)

|δ−1| ≤ C7

ε
, (3.78)

with a suitable C7 > 0. This bound together with (3.72) leads to the estimates on
‖U−1‖ given in (3.60), completing the proof of the lemma.
We proceed to estimating the parameters appearing in the statement of Lemma 2.3.
From (3.64), (3.66) and (2.23) there follows that∣∣∣∂h±∗

∂J1

∣∣∣ := |u13| ≥ C8

√
ε

ln ε−1
,∣∣∣∂h±∗

∂J2

∣∣∣ := |u23| ≥ C8ε
1+b , (3.79)

for a suitable C8 > 0 so that mini,J
∣∣∣∂h±∗∂Ji

∣∣∣ ≥ C8ε
1+b. We next choose γ � C8ε

1+b.

Since the norm of H±
∗ is exponentially small with ε, we can choose also γ exponen-

tially small with ε: we let, in fact, for a suitable γ0 > 0,

γ := γ0 exp
(
− 1
εq2

)
, with q < q2 < q1 . (3.80)

Therefore, in view of (3.57), (3.60) and (3.80), we can take24

A :=
C0

ελ−1(ln ε−1)3
, F := exp

(
− 1

2εq1

)
, G :=

C9

ε2λ−1 (ln ε−1)4
, (3.81)

23B y (3.71) π+
2 is a decreasing function of E+. Recall also (3.43), that c < 1 and that ε is

small.
24Recall the definitions of F and G given in (2.33).
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for a suitable C9 > 0. Next, we show that C in (2.34) is one in our case. By (3.58),
(3.60), (3.80) and (3.81), we see that (for a suitable C10 > 0)

γ(s− s̄)c1

c2A r | lnF |c3
= C10

εc3q1 exp
(
− 1

εq2

)
(ln ε−1)c1−2

;

which implies that C = 1 for ε small enough. Therefore, recalling the definition
(2.34) of F̂ , we can take, for a suitable C11 > 0 (see (3.81) and (3.58)) and for ε > 0
small enough,

F̂ ≤ C11 exp
(
− 1
εq2

)
, (3.82)

which obviously will be smaller than one for any ε > 0 small enough. Thus, under
conditions (3.38), (3.59) and (3.80), Lemma 2.3 can be applied to the Hamiltonian
(3.54) showing the existence of KAM tori in each energy level of Wr,s apart from a
small set of measure bounded by25 O(γ̂) ≤ O(exp(−1/εq)). Thus (recall Remark 5),
the motions starting in Wr,s have action variables O(exp(−1/q))–close to their
initial values for all times. In the original coordinates (I, ϕ), the measure of the
complementary of the KAM tori is again bounded by O(exp(−1/q)); the KAM tori
fill up the regionM(σ) with the exception of a set of measure O(exp(−1/q)). In view
of (3.55), the displacement of the KAM tori from the corresponding unperturbed
ones is O(εa) while the oscillation of the graph of the tori may be bounded by
O(
√
ε). Repeating the argument in Remark 5 we find that, denoting (I(t), ϕ(t))

the φt evolution of (I0, ϕ0) with26 (I0, ϕ0) ∈M(σ),

|I(t)− I0| < C12

√
ε , ∀ t , (3.83)

(provided ε > 0 is small enough).

This concludes the proof of Theorem 1.4.

Proof of Theorem 1.3

We proceed to show that Theorem 1.4 and energy conservation imply (1.10) in MR

when σ = 1 and in MR\N∗ when σ = −1 (recall the definition of N∗ in (1.12)).

In view of the oscillations of the KAM tori in the region M(σ) we shall consider
slightly smaller sets M̃(σ) ⊂M(σ). To define such sets we let Ñ∗ := N∗ and:

N̂∗ :=
{

(I, ϕ) : 2c ε
2
3+ 4

3 b < Hp <
ε

2
3

2c

}
,

Ñ (1) :=
{

(I, ϕ) : |Hp| < 2ε1+2b or Hp < −2ε+ 2ε1+2b
}
,

Ñ (2) :=
{

(I, ϕ) : |I2| < 2Rεb
}
,

M̃(1) := MR\(Ñ (1) ∪ Ñ (2)) , M̃(−1) := M̃(1)\Ñ∗ . (3.84)

Remark 7. Because of Theorem 1.4 (and, hence, because of the confinement due
to the presence of two–dimensional KAM tori in three–dimensional energy levels),
the smaller sets M̃(σ) have the property that

⋃
t∈R φ

t
σ(M̃(σ)) ⊂ M(σ) (where φtσ

denotes the H(σ)–flow). In particular, in the case σ = −1, a trajectory cannot cross

25Provided τ is choosen striclty larger than one; the constant γ̂ is defined in (iii) of Lemma 2.3

and, in view of Lemma 3.1, is related to γ by a power of ε.
26Recall that R < R1 < R0 and that ε will be small compared also to (R0 −R).
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the region N̂∗ (a fact that could also be checked directly by energy conservation
since 2

3 + 4
3b < 1).

Denote by z(t) := (I(t), ϕ(t)) the motion with initial data z0 := (I0, ϕ0) governed
by H(σ) in MR (if σ = 1) or MR\N∗ (if σ = −1). Let us consider the different
cases which may occur.

(i) If z0 ∈ M̃(σ) then, as remarked above, z(t) doest not leave M(σ) where (3.83)
(and hence (1.10)) holds.

(ii) If z(t) ∈ Ñ (1) for |t| < T for some T > 0, then, by energy conservation, (1.10)
holds27 for |t| < T .

(iii) If z(t) ∈ Ñ (2) for |t| < T then (1.10) (trivially) holds for |t| < T .

(iv) By (ii) and (iii) (1.10) holds until z(t) ∈ Ñ (1) ∪ Ñ (2). But if z(t) leaves
Ñ (1) ∪ Ñ (2) and enters the region M̃(σ), then, by (i), (1.10) holds again.

Appendix A. The Planetary D’Alembert Hamiltonian. In this appendix
we revisit briefly the Hamiltonian version of the planetary D’Alembert model as
presented in [4] and discuss a connection with the result presented in this paper.

In [4], Section 12, it is shown that the motion of a planet modelled by a rotational
ellipsoid with flatness ε > 0 whose center of mass revolves on a Keplerian ellipse of
eccentricity µ > 0, subject to the gravitational attraction of a fixed star occupying
one of the foci of the ellipse, is governed (in suitable units) by a Hamiltonian
function given by

Hε,µ(J, ψ) =
J2

1

2
+ J̄1J1 + ω(J3 − J2)

+ εF0(J1, J2, ψ1, ψ2) + εµF1(J1, J2, ψ1, ψ2, ψ3) , (A.1)

where:
• (J, ψ) ∈ A × T3 are standard symplectic coordinate; the domain A ⊂ R3 is

given by

A :=
{
|J1| < cε` , |J2 − J̄2| < d , J3 ∈ R

}
, (A.2)

with 0 ≤ ` < 1, 0 < cε` � d � 1, (J̄1, J̄2) fixed “reference data” (verifying
certain assumptions spelled out below);

• 2π/ω is the period of the Keplerian motion (“year of the planet”);
• the functions Fi are trigonometric polynomial given by

F0 =
∑
j∈Z
|j|≤2

cj cos(jψ1) + dj cos(jψ1 + 2ψ2)

F1 =
∑
j∈Z
|j|≤2

(−3)cj cos(jψ1 + ψ3) +
dj

2

{
cos(jψ1 + 2ψ2 + ψ3)− 7 cos(jψ1 + 2ψ2 − ψ3)

}

27In fact, calling Ep(t) = Hp(I1(t), ϕ1(t)), if z(t) ∈ Ñ (1) for |t| < T , then |Ep(t) − Ep(0)| ≤
O(ελ) for all |t| ≤ T (recall that λ = 1 + 2b and that a > λ). Thus, by energy conservation, there
follows that

I2(t)2 − I2(0)2

2
+
Ep(t)− Ep(0)

ε
= O(εa−1) ,

for all |t| < T . Therefore, I2(t)2 − I2(0)2 = O(ελ−1) and (1.10) follows.
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where cj and dj are functions of (J1, J2) listed in the following item;
• let

κ1 := κ1(J1) :=
L

J̄1 + J1
, κ2 := κ2(J1, J2) :=

J2

J̄1 + J1
,

ν1 := ν1(J1) :=
√

1− κ2
1 , ν2 := ν2(J1, J2) :=

√
1− κ2

2 ;

where L is a real parameter; the parameters J̄i, L, ε and the constants c and d are
assumed to satisfy

|J̄2|+ d+ cε` < |J̄1| , 0 < |L|+ cε` < |J̄1| , (A.3)

so that 0 < κi < 1 (and the νi’s are well defined). Then, the functions cj and dj
are defined by

c0(J1, J2) :=
1
4

(
2κ2

1ν
2
2 + ν2

1(1 + κ2
2)
)
, d0(J1, J2) := − ν2

2

4
(2κ2

1 − ν2
1) ,

c±1(J1, J2) :=
κ1κ2ν1ν2

2
, d±1(J1, J2) := ∓ (1± κ2)κ1ν1ν2

2
,

c±2(J1, J2) := − ν2
1ν

2
2

8
, d±2(J1, J2) := − ν2

1(1± κ2)2

8
. (A.4)

Remark 8. (i) We recall that, actually, the above model is a “first order µ–
truncation” of the full D’Alembert model, which in place of F0 + µF1 has a series∑
j≥0 µ

jFj with Fj trigonometric polynomials.
(ii) Since J3 appears only linearly with coefficient ω, the angle ψ3 corresponds

to time t and Hε,µ is actually a two–degrees–of–freedom Hamiltonian depending
explicitly on time in a periodic way (with period 2π/ω).

(iii) The physical interpretation of the action–variables J1, J2 and the parameter
L is the following. The action variable J̄1 + J1 is (in suitable units) the absolute
value of the angular momentum of the planet; the variable J2 is the absolute value of
the projection of the angular momentum of the planet onto the direction orthogonal
to the ecliptic plane (i.e., the plane containing the Keplerian ellipse) and L is the
absolute value of the projection of the angular momentum of the planet in the
direction of the polar axis of the planet (and is a constant of the motion).

(iv) Under our assumptions (i.e., that 0 < cε` � d � 1), the average over the
angle of Hε,0 is given by

J2
1

2
+ J̄1J1 + ω(J3 − J2) + ε

1
4

{
(2− ν̄2

1)− (2− 3ν̄2
1)
J2

2

J̄2
1

+O(d)
}
, (A.5)

where ν̄1 :=
√

1− (L/J̄1)2. By (iii) we see that ν̄1 � 1 corresponds to rotations of
the planet with spin axis nearly orthogonal to the ecliptic plane (a case common,
for example, in the Solar System). In such a case the average over the angle of
Hε,0 is not a convex function of the action variable J2. This lack of convexity (for
the “effective” Hamiltonian) is quite a common feature in Celestial Mechanics and
is exhibited, for example, also in three–body–problems. This is the reason why, in
our model problem, we considered also non convex cases (corresponding above to
σ = −1).

We proceed now to show how the D’Alembert model relates to the model (1.5)–(1.8)
investigated in this paper.
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We are interested (as in [4]) to “reference data” corresponding to day/year reso-
nances (as the one often observed in the Solar system). We let, therefore,

J̄1 = 2ω , (A.6)

corresponding to a 2:1 day/year–resonance. Then, the linear symplectic change of
variables Φ̂ : (Ĵ , ψ̂) → (J, ψ) given by

J = (Ĵ1, 2Ĵ1 + Ĵ2, Ĵ2 + Ĵ3) , ψ = (ψ̂1 − 2ψ̂2 + 2ψ̂3, ψ̂2 − ψ̂3, ψ̂3) , (A.7)

casts the Hamiltonian Hε,µ into the form Ĥε,µ(Ĵ , ψ̂) := Hε,µ ◦ Φ̂(Ĵ , ψ̂) with

Ĥε,µ(Ĵ , ψ̂) :=
Ĵ2

1

2
+ ωĴ3 + εF̂0(Ĵ1, Ĵ2, ψ̂) + εµF̂1(Ĵ1, Ĵ2, ψ̂) , (A.8)

where

F̂0(Ĵ1, Ĵ2, ψ̂) := F0(Ĵ1, 2Ĵ1 + Ĵ2, ψ̂1 − 2ψ̂2 + 2ψ̂3, ψ̂2 − ψ̂3) ,

F̂1(Ĵ1, Ĵ2, ψ̂) := F0(Ĵ1, 2Ĵ1 + Ĵ2, ψ̂1 − 2ψ̂2 + 2ψ̂3, ψ̂2 − ψ̂3, ψ̂3) . (A.9)

For 0 < ε � 1, the angle ψ̂3 (i.e., the time) is a “fast variable28” and we may
apply averaging theory (or normal form theory). We shall apply the “resonant
version” (in three degrees–of–freedom) of Lemma 2.2, which, for the sake of clarity
we reformulate29:

Lemma A.1. Let D̂ ⊂ R and D̂′ ⊂ R2 and consider a Hamiltonian H(Ĵ , ψ̂) :=
h(Ĵ) + f(Ĵ , ψ̂) real–analytic on Ŵr̂1,r̂2,ŝ := (D̂r̂1 × D̂′

r̂2
)× T3

ŝ for some r̂2 ≥ r̂1 > 0
and ŝ > 0. Assume that there exist K ≥ 6/ŝ and α > 0 such that

|ω(Ĵ) · k| ≥ α , ∀ k ∈ Z3 , |k| ≤ K , k3 6= 0 , ∀ Ĵ ∈ D̂r̂1 × D̂′
r̂2 , (A.10)

where ω(Ĵ) := ∇h(Ĵ). Assume also that

‖f‖r̂1,r̂2,ŝ ≤
αr̂1
28K

. (A.11)

Then, there exist a real–analytic symplectic transformation

Φ : (I, ϕ) ∈ Ŵr̂1/2,r̂2/2,ŝ/6 → Φ(I, ϕ) ∈ Ŵr̂1,r̂2,ŝ

such that
H ◦ Φ(I, ϕ) = h(I) + g(I, ϕ1, ϕ2) + f∗(I, ϕ) (A.12)

with

‖g − 1
2π

∫ 2π

0

fK(I, ϕ)dϕ3‖r̂1/2,r̂2/2,ŝ/6 ≤
26K

αr̂1
(‖f‖r̂1,r̂2,ŝ)2 ≤

1
4
‖f‖r̂1,r̂2,ŝ , (A.13)

‖f∗‖r̂1/2,r̂2/2,ŝ/6 ≤ ‖f‖r̂1,r̂2,ŝ exp(−Kŝ/6) ,

‖Φ(I, ϕ)− (I, ϕ)‖r̂1/2,r̂2/2,ŝ/6 ≤ ĉ ‖f‖r̂1,r̂2,ŝ ,

where fK(I, ϕ) :=
∑

|k|≤K f̂k(I) exp(ik · ϕ) and ĉ > 0 is a suitable constant.

28In fact, when ε = 0, (d/dt)ψ̂1 = O(ε`), (d/dt)ψ̂2 = 0 while (d/dt)ψ̂3 = ω.
29The proof is given in [9] and the same comments in the Remark 6–(ii) apply word–by–word

to the present situation.
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Let c = 10, 0 < ` < 1 and ε small (in particular ε` � d); let also J̄2 and L be so
that (A.3) is (abundantly) verified. If we choose also

r̂1 := ε` , r̂2 :=
d

10
, (A.14)

we see that the functions νi and κi (and hence the functions ci, di, F̂i) are analytic
and bounded, for any ŝ > 0 and any R̂ > 0, in the domain (D̂r̂1 × D̂′

r̂2
)×T3

ŝ where

D̂ := [−10ε`, 10ε`] , D̂′ := {Ĵ2 : |Ĵ2 − J̄2| ≤ 2d} × {|Ĵ3| ≤ R̂} .

We can now apply Lemma A.1 to the Hamiltonian Ĥε,µ(Ĵ , ψ̂) = H(Ĵ , ψ̂) with

h(Ĵ) :=
Ĵ2

1

2
+ ωĴ3 , f(Ĵ , ψ̂) := F̂0(Ĵ1, Ĵ2, ψ̂) + µF̂1(Ĵ1, Ĵ2, ψ̂) .

Under the above position, for 0 ≤ µ ≤ 1, we have that

‖f‖r̂1,r̂2,ŝ ≤ const ε .

Thus, letting α = ω/2 and K := ω/(4ε`), we see that (A.11) is satisfied for any
` < 1/2. Now, observe that

1
2π

∫ 2π

0

F̂0(Ĵ1, Ĵ2, ψ̂)dψ̂3 = ĉ0 + d̂1 cos ψ̂1 , (A.15)

where ĉ0 := ĉ0(Ĵ1, Ĵ2) and d̂1 := d̂1(Ĵ1, Ĵ2) are defined as

ĉ0(Ĵ1, Ĵ2) := c0(Ĵ1, 2Ĵ1 + Ĵ2) , d̂1(Ĵ1, Ĵ2) := d1(Ĵ1, 2Ĵ1 + Ĵ2) . (A.16)

Thus, by Lemma A.1 and (A.15), we find that Ĥε,µ ◦ Φ(I, ϕ) has the form

I2
1

2
+ ωI3 + ε

(
ĉ0(I1, I2) + d̂1(I1, I2) cosϕ1

)
+ g̃(I1, I2, ϕ1, ϕ2; ε, µ) + f∗(I1, I2, ϕ; ε, µ) , (A.17)

where (if g is as in the Lemma) g̃ := g−ε[ĉ0(I1, I2)+ d̂1(I1, I2) cosϕ1]. The function
f∗ is exponentially small,

‖f∗‖r̂1/2,r̂2/2,ŝ/6 ≤ ‖f‖r̂1,r̂2,ŝ exp(−Kŝ/6) ≤ const ε exp
(
− ωŝ

24
1
ε`

)
, (A.18)

and, in view of (A.13), the definition of g̃ and (A.15), the function g̃ satisfies the
bound

‖g̃‖r̂1/2,r̂2/2,ŝ/6 ≤ const (ε2(1−`) + εµ) . (A.19)

Thus, assuming |µ| ≤ εc with c > 1/2 and 0 < ` < 1/4, in the above region of phase
space, the D’Alembert Hamiltonian is described, up to the exponentially small term
in (A.18), by the Hamiltonian30

HD(I1, I2, ϕ1, ϕ2; ε, µ) =
I2
1

2
+ ε
(
ĉ0(I1, I2) + d̂1(I1, I2) cosϕ1

)
+ εaG(I1, I2, ϕ1, ϕ2; ε, µ) , (A.20)

where

a := min{ 2(1− `) , 1 + c } > 3
2
, G :=

g̃

εa
, ‖G‖r̂1/2,r̂2/2,ŝ/6 ≤ const . (A.21)

30If we disregard f∗ then ωI3 becomes a constant, which we may drop.



254 L. BIASCO AND L. CHIERCHIA

Remark 9. (i) The form of HD has been, for us, the main motivation to discuss
the dynamics of models described by (1.5)–(1.8).

(ii) The theory developed in this paper cannot be applied directly to HD be-
cause of the following two reasons: (a) The “intermediate Hamiltonian” ĉ0(I1, I2)+
d̂1(I1, I2) cosϕ1 has a more complicate dependence on the action variables than the
one considered in this paper and one would need to extend Lemma 2.1. (b) The
second (technical) reason is that the I1–domain of analyticity of HD is small with
ε, while in our model we assumed H1 analytic in a given (ε–independent) region.

(iii) While problem (a) needs further investigations, problem (b) may be easily
overcome. More precisely, the proofs of §3 work also if one allows r1 (i.e., the smaller
action radius of analyticity of the perturbation H1) to depend upon ε, say r1 =
const ε`, provided a > `+3/2. In fact, the crucial point where a dependence upon ε
of r1 comes in, is in the second step of the proof of Theorem 1.4 and, more precisely,
in checking the condition (2.26) for applicability of the normal form lemma 2.2. If
r1 = const ε`, for some ` > 0, we see, by (3.52), that we must have

a > `+ b+ λ+ q0 +
1
2

= `+
3
2

+ 3b+ q0 , (A.22)

which is equivalent to require (compare (1.9) and (1.13))

a > `+
3
2
, b <

1
3

(
a− 3

2
− `
)
, q <

(
a− 3

2
− `− 3b

)
. (A.23)

(iv) In the case of the D’Alembert reduced HamiltonianHD, we have a = 2(1−`),
so that (A.23) would be satisfied provided 0 < ` < 1/6. Of course, the argument in
(iii) is applicable to HD only if the qualitative dependence on ε of the analyticity
domain in the analogous of Lemma 2.1 remains the same.

Appendix B. Real–analytic action–angle variables. Here, we shall give a
complete proof of Lemma 2.1. For the purpose of this appendix we shall denote
the variables (I1, ϕ1) with (the standard pendulum coordinate names) (p, q) and
set E(p, q) := Hp(p, q; ε) := Hp(I1, ϕ1; ε). We shall also denote the action–angle
variables for E(p, q) by (P,Q) (which therefore coincide with the variables (Î1, ϕ̂1)
of Lemma 2.1).

We shall use the following notation: if A,B are two strictly positive functions we
shall say A ∼ B if there exist positive constants c+, c− so that c−A ≤ B ≤ c+A
pointwise. For example,

√
A+B −

√
A =

B
√
A+B +

√
A
∼ B√

A+B
. (B.1)

Obviously, “∼” is transitive. Also, if A, B and C are strictly positive, then A ∼ B
implies A + C ∼ B + C. Let x = x1 + ix2 be a complex number (with xi ∈ R).
Since31 x2

1+x2
2 ∼ (|x1|+x2)2, from (B.1) it follows immediately the following trivial

lemma

31(|x1|+ x2)2/2 ≤ x2
1 + x2

2 ≤ (|x1|+ x2)2.
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Lemma B.1. If x1 ≥ 0, then
√
x1 ± ix2 = w1 ± iw2; if x1 < 0 then

√
x1 ± ix2 =

w2 ± iw1 where

w1 =
1√
2

√
x1 +

√
x2

1 + x2
2 ∼ (x2

1 + x2
2)

1/4 ∼
√
|x1|+ x2 (B.2)

w2 =
1√
2

√
−x1 +

√
x2

1 + x2
2 ∼

x2

(x2
1 + x2

2)1/4
∼ x2√

|x1|+ x2

(B.3)

If x1 ≥ 0 then (x1 ± ix2)−1/2 = y1 ∓ iy2; if x1 < 0 then (x1 ± ix2)−1/2 = y2 ∓ iy1
where

y1 =

√
x1 +

√
x2

1 + x2
2√

2
√
x2

1 + x2
2

∼ 1√
|x1|+ x2

, y2 =

√
−x1 +

√
x2

1 + x2
2√

2
√
x2

1 + x2
2

∼ x2

(|x1|+ x2)3/2

(B.4)
If x1 ≥ 0 then (x1 ± ix2)−3/2 = z1 ∓ iz2; if x1 < 0 then (x1 ± ix2)−3/2 = −z2 ∓ iz1
where z1 = y1(y2

1 − 3y2
2), z2 = y2(3y2

1 − y2
2) and y1, y2 are as above. Furthermore,

if y1 ≥ 2y2 then y2
1 − 3y2

2 ∼ y2
1, 3y2

1 − y2
2 ∼ y2

1 and

z1 ∼
1

(|x1|+ x2)3/2
, z2 ∼

x2

(|x1|+ x2)5/2
(B.5)

We divide the proof of Lemma 2.1 in several steps considering, in particular,
separately positive and negative pendulum energy E = E(p, q). In the following we
shall consider energies E = E1 + iE2 ∈ C such that

|E2| ≤ c̃|E1| (B.6)

for a suitable 0 < c̃ < 1.

First step: action variable (positive energy). In such a case, as well known,
the action variable for E(p, q) is given by

P+(E) =
√

2
π

∫ π

0

√
E + ε(1 + cosψ) dψ (B.7)

and, denoting by with a dot the derivative with respect to E, we have

Ṗ+(E) =
√

2
2π

∫ π

0

1√
E + ε(1 + cosψ)

dψ , (B.8)

P̈+(E) = −
√

2
4π

∫ π

0

1
(E + ε(1 + cosψ))3/2

dψ

and, in general,

dn+1

dhn+1
P+(E) = (−1)n

√
2

2π
(2n− 1)!!

2n

∫ π

0

1
(E + ε(1 + cosψ))n+1/2

dψ .

Notice that the above functions, viewed as functions of E2 at E1 fixed, have even
real part and odd imaginary part. Thus in the following we may consider only the
case E2 ≥ 0.

Setting E + ε(1 + cosψ) := E1 + ε(1 + cosψ) + iE2 := x1(ψ) + ix2 with x1(ψ) =
E1 + ε(1 + cosψ) and x2 = E2, we get (notice that x1(ψ) ≥ E1 > E2 = x2)
x1(ψ)+x2 ∼ x1(ψ). Thus, P+(E) = P+

1 (E)+iP+
2 (E) , Ṗ+(E) = Ṗ+

1 (E)+iṖ+
2 (E) ,

P̈+(E) = P̈+
1 (E) + iP̈+

2 (E) .
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From (B.2) it follows

P+
1 ∼

∫ π

0

√
x1(ψ) dψ ∼

∫ π/4

0

√
x1(ψ) dψ ∼

∫ π/4

0

√
E1 + ε dψ ∼

√
E1 + ε .

Since, for ψ ∈ (0, π), it is x1(ψ) = E1 + ε(1 + cosψ) ∼ E1 + ε(π − ψ) (making in
the integrals the change of variable y = (π − ψ)

√
ε/E1), from (B.4) we get32

Ṗ+
1 (E) ∼

∫ π

0

dψ√
x1(ψ)

∼
∫ π

0

dψ√
E1 + ε(π − ψ)2

=
1√
ε

∫ π
√

ε
E1

0

dy√
1 + y2

=
1√
ε

arcsinh
(
π

√
ε

E1

)
∼ 1√

ε
ln
(

1 +
√

ε

E1

)
Similarly,

P+
2 (E) ∼

∫ π

0

dψ√
x1(ψ)

∼ E2√
ε

ln
(

1 +
√

ε

E1

)
.

From (B.4) it follows that

−P̈+
1 (E) ∼

∫ π

0

dψ

(x1(ψ))3/2
∼
∫ π

0

dψ

(E1 + ε(π − ψ)2)3/2

=
1

E1
√
ε

∫ π
√

ε
E1

0

dy

(1 + y2)3/2
=

π

E
3/2
1

√
1 + π2ε/E1

∼ 1
E1

√
E1 + ε

and

−Ṗ+
2 (E) ∼ E2

∫ π

0

dψ

(x1(ψ))3/2
∼ E2

E1

√
E1 + ε

.

Thus, using (B.4), we find33

−P̈+
2 (E) ∼ E2

∫ π

0

dψ

(x1(ψ))5/2
∼ E2

∫ π

0

dψ

(E1 + ε(π − ψ)2)5/2

=
E2

E1
√
ε

∫ π
√

ε
E1

0

dy

(1 + y2)5/2
∼ E2

E2
1

√
E1 + ε

Summarizing the following estimates hold

P+
1 (E) ∼

√
E1 + ε , P+

2 (E) ∼ E2√
ε

ln
(

1 +
√

ε

E1

)
, (B.9)

Ṗ+
1 (E) ∼ 1√

ε
ln
(

1 +
√

ε

E1

)
, −Ṗ+

2 (E) ∼ E2

E1

√
E1 + ε

, (B.10)

−P̈+
1 (E) ∼ 1

E1

√
E1 + ε

, −P̈+
2 (E) ∼ E2

E2
1

√
E1 + ε

. (B.11)

Second step: action variable (negative energy). In this case the action
variable is given by

P−(E) =
2
√

2
π

∫ ψ0(E)

0

√
E + ε(1 + cosψ) dψ

32Use arcsinh (t) = ln(t+
√

1 + t2) ∼ ln(1 + t).
33In the last estimate we considered separately E1 ≤ ε (in which case

√
E1 + ε ∼

√
ε and∫ π

√
ε

E1
0

dy

(1+y2)5/2 ∼ 1) and E1 > ε (in which case
√
E1 + ε ∼

√
E1 and (1 + y2)−5/2 ∼ 1.
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where ψ0(E) is the first positive number such that E + ε(1 + cosψ0(E)) = 0.
Differentiating

Ṗ−(E) =
√

2
π

∫ ψ0(E)

0

1√
E + ε(1 + cosψ)

dψ .

Making the change of variable ψ = arccos(1− Ẽ/ε+ ξẼ/ε) where Ẽ := E + 2ε we
get

P−(E) =
2
√

2
π

∫ 1

0

Ẽ
√
ξ

√
1− ξ

√
Ẽξ − E

dξ ,

Ṗ−(E) =
√

2
π

∫ 1

0

1
√
ξ
√

1− ξ

√
Ẽξ − E

dξ . (B.12)

Thus,

P̈−(E) =
√

2
2π

∫ 1

0

√
1− ξ

√
ξ(Ẽξ − E)3/2

dξ (B.13)

and, in general,

dn+1

dhn+1
P−(E) =

√
2
π

(2n− 1)!!
2n

∫ 1

0

(1− ξ)n
√
ξ
√

1− ξ(Ẽξ − E)n+1/2
dξ.

As above, for symmetry reasons, we may consider only E2 ≥ 0. Observe that

Ẽξ−E = (−E1(1−ξ)+2εξ)−iE2(1−ξ) = (Ẽ1ξ−E1)−iE2(1−ξ) = x1(ξ)−ix2(ξ)

with x1(ξ) := Ẽ1ξ − E1 and x2(ξ) := E2(1 − ξ). When 0 ≤ ξ ≤ 1 it is34 x1(ξ) ≥
x2(ξ) ≥ 0. Let now y1(ξ), y2(ξ) be as in (B.4). Then

y1 ∼
1
√
x1

, y2 ∼
x2

x
3/2
1

(B.14)

so that y1 ≥ y2 provided c̃ is small enough. If z1(ξ), z2(ξ) are as in (B.5), then

z1 ∼
1

x
3/2
1

, z2 ∼
x2

x
5/2
1

. (B.15)

Obviously:
1√

Ẽξ − E
= y1 + iy2 ,

1
(Ẽξ − E)3/2

= z1 + iz2 . (B.16)

By (B.12) and (B.16) we see that35

P−1 (E) =
2
√

2
π

∫ 1

0

(Ẽ1y1 − E2y2)
√
ξ√

1− ξ
dξ ∼

∫ 1

0

Ẽ1

√
ξ

√
1− ξ

√
Ẽ1ξ − E1

dξ . (B.17)

Similarly, from (B.12), (B.16) and (B.14) we get:

P−2 (E) =
2
√

2
π

∫ 1

0

(Ẽ1y2 + E2y1)
√
ξ√

1− ξ
dξ

∼
∫ 1

0

Ẽ1E2

√
ξ
√

1− ξ

(Ẽ1ξ − E1)3/2
dξ +

∫ 1

0

E2

√
ξ

√
1− ξ

√
Ẽ1ξ − E1

dξ (B.18)

34The function x1(ξ)−x2(ξ) is increasing so that x1(ξ)−x2(ξ) ≥ x1(0)−x2(0) = −E1−E2 > 0.
35Use Ẽ1y1 − E2y2 ∼ Ẽ1y1.
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Finally, from (B.12), (B.13), (B.14), (B.15), (B.16), there follows

Ṗ−1 (E) ∼
∫ 1

0

1
√
ξ
√

1− ξ

√
Ẽ1ξ − E1

dξ , Ṗ−2 (E) ∼ E2

∫ 1

0

√
1− ξ

√
ξ(Ẽ1ξ − E1)3/2

dξ ,

P̈−2 (E) ∼
∫ 1

0

√
1− ξ

√
ξ(Ẽ1ξ − E1)3/2

dξ , P̈−2 (E) ∼
∫ 1

0

(1− ξ)3/2
√
ξ(Ẽ1ξ − E1)5/2

dξ. (B.19)

If −2ε < E1 < −ε (since, in such case, Ẽ1ξ − E1 ∼ ε, −E1 ∼ ε) we have

P−1 (E) ∼ Ẽ1√
ε
, P−2 (E) ∼ E2√

ε
,

Ṗ−1 (E) ∼ 1√
ε
, Ṗ−2 (E) ∼ E2

ε3/2
,

P̈−1 (E) ∼ 1
ε3/2

, P̈−2 (E) ∼ E2

ε5/2
. (B.20)

The case −ε < E1 < 0 (i.e. Ẽ1 ∼ ε) is a bit more complicate and it is convenient to
break up the integrals in (B.17) as

∫ 1

0
=
∫ 1/2

0
+
∫ 1

1/2
. The latter integrals are easier

to handle since if 1/2 ≤ ξ ≤ 1 then
√
ξ ∼ 1 and Ẽ1ξ − E1 ∼ ε and therefore the

estimates in (B.20) follow. As for the other integrals, since 0 ≤ ξ ≤ 1/2, one has
1 − ξ ∼ 1. Substituting t = Ẽ1

−E1
ξ (so that Ẽ1ξ − E1 = −E1(t + 1)) and denoting

a = −Ẽ1/2E1, in view of the estimates in (B.20) and of the estimates done in the
integrals over (1/2, 1), we obtain

P−1 (E) ∼ Ẽ1√
ε

+
−E1√
Ẽ1

∫ a

0

√
t√

t+ 1
dt ∼ Ẽ1√

ε
,

P−2 (E) ∼ E2√
ε

(
1 + ln

ε

−E1

)
,

Ṗ−1 (E) ∼ 1√
ε

+
1√
ε

∫ a

0

1√
t
√
t+ 1

dt ∼ 1√
ε

(
1 + ln

ε

−E1

)
,

Ṗ−2 (E) ∼ E2

ε3/2
+

E2

−E1
√
ε

∫ a

0

1√
t(t+ 1)3/2

dt ∼ E2

−E1
√
ε
,

P̈−1 (E) ∼ 1
ε3/2

+
1

−E1
√
ε

∫ a

0

1√
t(t+ 1)3/2

dt ∼ 1
ε3/2

+
1

−E1
√
ε
∼ 1
−E1

√
ε
,

P̈−2 (E) ∼ E2

ε5/2
+

E2

(−E1)2
√
ε

∫ a

0

1√
t(t+ 1)5/2

dt ∼ E2

(−E1)2
√
ε
.

Summarizing we find36

P−1 (E) ∼ Ẽ1√
ε
, P−2 (E) ∼ E2√

ε
ln
(

1 +
√

ε

|E1|

)
,

Ṗ−1 (E) ∼ 1√
ε

ln
(

1 +
√

ε

|E1|

)
, Ṗ−2 (E) ∼ E2

|E1|
√
ε
,

P̈−1 (E) ∼ 1
|E1|

√
ε
, P̈−2 (E) ∼ E2

E2
1

√
ε
. (B.21)

36Note that if x ∈ [1/2,∞) then 1 + lnx ∼ ln(1 +
√
x).
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Third step: Estimates on the action–analyticity radius. Let us define the
following energy sets:

E+ := {E = E1 + iE2 ∈ C, s.t.
η

2
< E1 < E0, |E2| < E∗2 (E1) }

E− := {E = E1 + iE2 ∈ C, s.t. − 2ε+
η

2
< E1 < −η

2
, |E2| < E∗2 (E1) }

where E0 := E(ρ, 0) and E∗2 (E1) := c̃η ln−1(1+
√
ε/|E1|) with 0 < c̃ < 1 a suitable

small constant to be fixed later. From these definitions and from the assumption
η < ε/32 it follows (B.6) for any E ∈ E±. Let us now define

D+ := (P+(η), P+(E0 − ε)) , D− := (P−(−2ε+ η), P−(−η)) .
We claim that P±(E±) ⊃ D±(σ)r. By symmetry reasons we keep considering only
E2 ≥ 0. Also we consider only the positive energy case since the other case is
completely analogous. By (B.9), there exists d1 > 0 such that:

P+
2 (E1 + iE∗2 (E1)) ≥ d1

E∗2 (E1)√
ε

ln
(

1 +
√

ε

|E1|

)
= d1c̃

η√
ε
≥ r

provided c ≤ d1c̃. Notice that, by definition, P+
1 (E1+iE2) is an increasing function

of E2. Thus, for any |E2| ≤ E∗2 (E0), we have P+
1 (E0+iE2) ≥ P+

1 (E0). From (B.10)
it follows that there exists d2 > 0 such that

P+
1 (E0)− P+

1 (E0 − ε) > d2

√
ε ln

(
1 +

√
ε

|E0|

)
≥ r

provided c is small enough. Similarly, for any |E2| ≤ E∗2 (η/2) we have that37

P+
1 (η/2 + iE2) ≤ P+

1 (η/2 + iE∗2 (η/2)) ≤ P+
1 (η/2 + E∗2 (η/2)) ≤ P+

1 (3η/4) .

We have proved that

P+
1 (η)− P+

1 (3η/4) >
d2η

4
√
ε

ln
(

1 +
√

ε

|E1|

)
≥ r

for c small enough.

Fourth step: angle variable (positive energy); estimate on analyticity
radius.
Let g(E,ψ) := E+ε(1+cosψ) and consider the set M+

p (E) := {q ∈ C s.t. g(E, q) /∈
(∞, 0]}. For any E ∈ E+, the functions

S(E, q) :=
√

2
∫ q

0

√
g(E,ψ) dψ ,

∂S

∂E
(E, q) , χ+(E, q) := (

∂P+

∂E
(E))−1 ∂S

∂E
(E, q)

(B.22)
are analytic on M+

p (E). Observe that q ∈ C/2πZ 7→ χ+(E, q) is, for any fixed E,
one–to–one. Also Q+(p, q) := χ+(E(p, q), q) is analytic and 2π-periodic. Let

Φ+(p, q) := (P+(E(p, q)), Q+(p, q)) .

Then Φ+ is a symplectic map from M+
p := {(p, q) s.t.p ∈ C+ ∪ {0}, E(p, q) ∈

E+} into C × C/2πZ. Since Φ+ is one–to–one, its inverse φ+ := (Φ+)−1 is well
defined and analytic. In fact, P+(E) is bijective and for any (P ∗, Q∗) there is a
unique E∗ such that P+(E∗) = P ∗ and, since χ+ is one–to–one, there is a unique
q∗ ∈ C/2πZ such that χ+(E∗, q∗) = Q∗. Finally, there is a unique p∗ ∈ C+ ∪ {0}
such that E∗ = E(p∗, q∗). Fix E. Observe that χ+(E, q) is 2π-periodic and that

37Use

√
x1 +

√
x2
1 + x2

2 ≤
√

2(x1 + x2) if x1, x2 ≤ 0, and that E∗2 (η/2) ≥ η/4 if c̃ is small.
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χ+(E, 0) = 0, χ+(E,±π) = ±π. Let us first consider the case E = E1 ∈ R.
In such a case38 χ+(E1, (−π, π)) = (−π, π), χ+(E1, (0,±i∞)) = (0,±is+(E1)),
χ+(E1, (±π,±π ± iψ0(E1))) = (±π,±π ± is+(E1)), where

s+(E1) :=
√

2(
dP+

dE
)−1

∫ ∞

0

dψ√
E1 + ε(1 + coshψ)

.

In fact, it is χ+(E1,M+
p (E1)) = Ts+(E1). Let, now, E = E1 + iE2 ∈ E+. In this

case,
χ+(E,Tσ ∩M+

p (E)) ⊇ Ts(E,σ)

where
s+(E, σ) := min

t∈(−π,π)
Imχ+(E, t+ iσ) ,

and, as in the case E = E1,

s+(E1, σ) = Imχ+(E1, iσ) :=
√

2(
dP+

dE
)−1

∫ σ

0

dψ√
E1 + ε(1 + coshψ)

.

It is easy to see that∫ σ

0

dψ√
E1 + ε(1 + coshψ)

∼
∫ σ

0

dψ√
Ẽ1 + εψ2

∼ 1√
ε

ln
(

1 +
√

ε

Ẽ1

σ

)
.

Thus, by (B.10), we get

s+(E1, σ) ∼
ln
(

1 +
√

ε
Ẽ1
σ

)
ln
(
1 +

√
ε
E1

) ,

which implies that, for any η/2 < E1 < E0 and for a suitable constant c > 0, it is

s+(E1, σ) ≥ 2c
σ

ln(ε/η)
.

In the general case, using the estimates on P+ and its derivatives, one has that if
E = E1 + iE2 ∈ E+ then s+(E, σ) ≥ 1

2s
+(E1, σ) ≥ c σ

ln(ε/η) =: s. This proves the
lemma for positive energies.

Fifth step: angle variable (negative energy). Consider the complex sets

M := {q ∈ C s.t. | Re q| < π} , M−
p (E) := {q ∈M s.t. g(E, q) /∈ (∞, 0]}.

For any E ∈ E− is defined, as in (B.22), the analytic function S(E, q). We want to
extend S on the whole setM. At this purpose, fix E ∈ E− and q ∈M\M−

p (E). We
shall then think the integral in (B.22) evaluated on a curve γ : [0, 1] →M satisfying
the following conditions: if t ∈ [0, 1),then γ(t) ∈M−

p (E), γ(0) = 0, γ(1) = q; there
exists t∗ such that, for t ∈ [t∗, 1), one has Img(E, γ(t)) < 0. Note that in this way
γ, which exist always, is a continuous on [0, 1]. We shall do the the same for the
integral representing ∂S

∂E (E, q). Let χ−(E, q) := (∂P
−

∂E (E))−1 ∂S
∂E (E, q) and observe

that q 7→ χ−(E, q) is one–to–one for any fixed E. Define, also,

Q−(p, q) :=

 χ−(E(p, q), q) if p ∈ C+

π − χ−(E(p, q), q) if p ∈ C−

38 If a, b ∈ C we denote (a, b) := {z := a + t(b − a), with t ∈ (0, 1)} and, in particular,

(a, a+ i∞) := {a+ it, with t ∈ (0,∞)}.
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while, for p = 0, (in which case q = ±ψ0(E)), we define Q−(0,±ψ0(E)) := ±π/2.
Finally, define39

W1(E) := {χ−(E, q), for q ∈M, q 6= ±ψ0(E)} , W2(E) := π −W2(E) .

Denoting, M−
p := {(p, q) ∈ C ×M s.t. E(p, q) ∈ E−}, we see that the mapping

Φ−(p, q) := (P−(E(p, q)), Q−(p, q)) defines a real–analytic symplectic map Φ− :
M−

p → C× C. The map Φ− is one–to–one40 and has an inverse φ− := (Φ−)−1. If
Q∗ 6= ±π/2, then Q∗ ∈ W1(E∗) (resp. Q∗ ∈ W2(E∗)) and hence p∗ ∈ C+ (resp.
p∗ ∈ C−). Moreover, since q 7→ χ−(E∗, q) is one–to–one, there exists a unique
q∗ such that χ−(E∗, q∗) = Q∗ (resp. π − χ−(E∗, q∗) = Q∗). Also p∗ is uniquely
determined since it verifies E∗ = (p∗)2− ε(1 + cos q∗). If, instead, Q∗ = ±π/2 then
(p∗, q∗) = (0,±ψ0(E∗)). Let us show that φ−1 is analytic. Consider first P0, (i.e.

E0) fixed and let us prove analyticity in Q. In41
◦
W 1 (E0) = {χ−(E0, q), with q ∈

M(E0) } and
◦
W 2 (E0) = {π−χ−(E0, q), with q ∈M(E0) } everything is analytic,

Let us check what happens on42∂W1(E0)∩ ∂W2(E0). Let us suppose (to fix ideas)
that Q0 ∈ W1(E0). Let Qn → Q0. Then we have to check that (pn, qn) :=
φ−1(P0, Qn) → φ−1(P0, Q0) =: (p0, q0). If Qn ∈ W1(E0), then, continuity in q0
comes from the definition of χ−. Also, since pn ∈ C+ and Img(E0, qn) < 0, we have
pn :=

√
2
√
g(E0, qn) →

√
2
√
g(E0, q0) =: p0. Let us turn now to the more delicate

case Qn ∈ W2(E0). We shall consider the real case, E0 ∈ R, since the complex
case is analogous but more clumsy because of the loss of symmetries. In this case
Re Q0 = ±π/2 and Imq0 = 0. The points qn are such that Qn = π − χ−(E0, qn)
and, by the symmetry of χ−, we have that43 χ−(E0, q̄n) = π − Q̄n ∈ W1(E0).
Since Q̄n → Q̄0 = π − Q0, one has that χ−(E0, q̄n) → Q0. If φ−1(E0, π − Q̄0) =
φ−1(E0, Q0), since π − Q̄n ∈ W1(E0) we see that q̄n → q0 and hence qn → q0 (as
Imq0 = 0). Observe, now, that g(E0, qn) = ¯g(E0, ¯n)q. Then, p0 :=

√
2
√
g(E0, q0),

while to determine the pn we have to choose the other branch of the square root,
namely44

pn := −
√

2
√
g(E0, qn) = −

√
2
√
g(E0, q̄n)

= −
√

2
√
g(E0, q̄n) → −

√
2
√
g(E0, q0) = −p̄0 = p0 .

The continuity for fixed Q0 and Pn → P0 is checked similarly.

Sixth step: angle variable (negative energy); estimate on analyticity
radius.
Fix E and observe that χ−(E, 0) = 0, χ−(E,±ψ0(E)) = ±π/2. Consider the case
E = E1 ∈ R. As in the positive energy case we find χ−(E1, (−ψ0(E1), ψ0(E1))) =
(−π/2, π/2) and χ−(E1, (0,±i∞)) = (0,±is−(E1)), where

s−(E1) :=
√

2(
dP−

dE
)−1

∫ ∞

0

dψ√
E1 + ε(1 + coshψ)

.

39Note that W1(E) ∩W2(E) = ∅.
40P−(E) is one–to–one and to any fixed (P ∗, Q∗) = Φ(p∗, q+) there corresponds a unique E∗

such that P−(E∗) = P ∗.

41
◦
W denotes, as usual, the interior of W ; ∂W denotes the boundary points ofW.

42It is enough to check that, if Q0 ∈ ∂W1(E0)∩ ∂W2(E0), then φ−1 is continuous in (P0, Q0).
43 q̄ denotes, as usual, the complex conjugated of q ∈ C.
44Recall that Re p0 = 0, since g(E0, q0) ∈ (−∞, 0).
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In fact, χ−(E1,M−
p (E1)) = { | Re q| < π/2 } = 1

2M. Let now, in general, E =
E1 + iE2 ∈ E−. Then,

χ−(E,Tσ ∩M−
p (E)) ⊇ Ts−(E,σ) ∩M−

p (E) ,

where
s−(E, σ) := min

t∈(−π,π)
Imχ−(E, t+ iσ).

As in the case E = E1 we have, as in the positive energy case,

s−(E1, σ) = Imχ−(E1, iσ) :=
√

2(
dP−

dE
)−1

∫ σ

0

dψ√
E1 + ε(1 + coshψ)

∼
√

2(
dP−

dE
)−1 1√

ε
ln
(

1 +
√

ε

Ẽ1

σ

)
.

Also, using (B.21), we find

s−(E1, σ) ∼
ln
(

1 +
√

ε
Ẽ1
σ

)
ln
(

1 +
√

ε
|E1|

) ,

which implies that there exists a constant c such that, for any E1 with 2ε+ η/2 <
E1 < −η/2, one has

s−(E1, σ) ≥ 2c
σ

ln(ε/η)
.

In the general case, by the estimates on P− and its derivatives, one finds that, if
E = E1 + iE2 ∈ E−, then

s−(E, σ) ≥ 1
2
s−(E1, σ) ≥ c

σ

ln(ε/η)
=: s .

The lemma is proved also in the negative energy case.
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