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ABSTRACT. A conjecture of Arnold, Kozlov and Neishtadt on the exponentially
small measure of the “non-torus” set in analytic systems with two degrees of
freedom is discussed.

1. Introduction and main result. In this paper we consider real-analytic,
nearly—integrable mechanical systems with two—degrees of freedom, namely, Hamil-
tonian systems governed by a Hamiltonian, in action—angle variables, of the form

1 Y2 + 3
H.(y,z):= §|y|2 +ef(x) =22

9 + ¢ f(ifl,l'g), (].)

with
y=(y1,92) eR?, 1z = (1,22) € T? := R?*/(277Z)?, f:T? >R

real-analytic, € a small non negative parameter. The phase space R? x T? is endowed
with the standard symplectic form dy; A dx1 + dys A dzs so that the Hamiltonian
flow induced by H.,

O, (Yo, m0) € R? x T? = (y(t), 2(t)) := &y (o, w0) € R? x T?
is the solution of standard Hamiltonian equations

Z) = _ast = _5f:n
{ i=0,H.=y+ef, ’ (4(0),2(0)) = (yo, o) -

Such equation are equivalent to the Lagrangian Newtonian equations on T? with
potential f, i.e.!,
. z(0) = zo
i=—cfs(z), { #(0) = yo
For € = 0, the system is integrable, the action variables y; and y9 are integrals of
the motions, and all trajectories are simply given by y(t) = yo and z(t) = xg + wt
where the frequency w coincides with the constant value yg. In particular the 2—tori
{yo} x T? are all left invariant by the Hamiltonian flow and whenever the ratio of
the frequencies is an irrational number, such tori are spanned densely by any orbit.
As well known, according to classical KAM theory “most” integrable tori {yo} x
T?2 persist for small ¢ undergoing a small deformation and fill any bounded region
of the phase space up to a set of measure at most /¢ (as ¢ — 0); these tori — which
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1 As standard, dot denotes the derivative with respect to “time” ¢t and dy = (dy,,0y,) and
0z = (0z,, 0z, ) denote the gradients with respect to the variables y and x.
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are sometimes called primary tori — are Lagrangian graphs over T? and the motion
is analytically conjugated to a translation by a Diophantine frequency? w on T?;
(see, [2] for general information).

This bound on the measure of the complement of primary tori is sharp as it
follows immediately by considering the trivial example

oo Yty

+ecoszy , (2)
which governs the mechanics of a simple pendulum with small gravity coupled
with a free rotator. Indeed, this is an integrable system having different topologies
for e = 0 and € > 0, and for € > 0 the measure of primary tori in any region
{lyil < R} x T? with /£ < R/2, is given by (47R)?(1 — 5./2).

Of course, if one takes into account all invariant tori, i.e., primary and secondary
tori (namely, the invariant tori that arise by effect of the perturbation and that in
this trivial example correspond to the (yi,x1)-librational orbits of the pendulum
with initial data inside the separatrix {%y% + ecosxy = €}), one has that the phase
space of this integrable system is filled by invariant Lagrangian tori, up to a set of
measure zero.

For general systems one does not expect to have a full set of invariant tori (see,
also, [12]), however, Arnold, Kozlov and Neishtadt, in Remark 6.17 of [2], write:

It is natural to expect that in a generic (analytic) system with two degrees of
freedom and with frequencies that do not vanish simultaneously the total measure
of the “non—torus” set corresponding to all the resonances is exponentially small.
However, this has not been proved.

Indeed, we can prove the following result.
For s > 0, denote

T2 := {z = (z1,22) € C*| |Imz;| < s}/(2nZ?), (3)

and let B2 be the Banach space of real-analytic functions on T? having zero average
and finite /*°—Fourier norm?:

B2 = {f = Y fee™ | Iflls i= sup | fulelh® <0} . (4)
rez2 kez2
k-0 k#0

Theorem A. Let s > 0. There exists a set Py < Bi, containing an open and dense
set, such that the following holds.

Fiz 0 <r < R, let D := {y € R?|r < |y| < R} and consider the mechanical
Hamiltonian system with phase space D x T? and Hamiltonian H. as in (1) with
potential f belonging to Ps. Then, there exists €y, a > 0 small enough such that,
whenever 0 < € < gg, the Liouville measure of the complementary of ¢§Va —invariant
tori in the phase region D is smaller than R? exp(— const /g%).

2“Diophantine” means that there exists a, 7 > 0 such that |w - k| = |w1k1 + w2ka| = o/|k|™ for
any non vanishing integer vector k.
3In this paper z - y denotes the inner product xi1y1 + x2y2, |z| the Euclidean norm

A/2? + 23 and |z|, the 1-norm |z1| + |z2|; fi denotes the Fourier coefficient of order k, i.e.,
(2#)72‘[ flz)e * dg.
T2
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Remark 1.1. (i) Notice that in the mechanical case the frequencies w; := 0,, Hy =
y; vanish simultaneously only at y = 0: this accounts for the annular shape of the
action domain D considered in the above theorem.

(ii) The exponent a is computed in [7], where a detailed proof of the Theorem A
will appear.

(iii) The exponentially smallness of the “non torus set” (i.e., of the complementary
of (bfq;invariant tori) in two degrees of freedom is due to the fact that, in regions
where the frequencies do not vanish simultaneously (the origin, in the mechanical
case) there do not appear double resonances (compare Lemma 3.1 below).

(iv) In three or more degrees of freedom, multiple resonances instead are unavoidable
and the exponential bound is in general no more valid. What one can prove is the
following

Theorem ([3, 4].) Consider a real-analytic nearly—integrable mechanical system
with potential f, namely, a Hamiltonian system with real-analytic Hamiltonian

Ha(y,0) = 5 302 +ef(a)
i=1

(y,x) € R™ x T™ being standard action—angle variables. For “general non-degene-
rate” potentials f’s there exists €9,a > 0 such that, if 0 < € < gqg, then the Liouuville
measure of the complementary of (bﬁis —invariant tori is smaller than ¢|loge|®.

The class of “general non—degenerate” potentials is the natural extension to
higher dimension of the class Py defined in Sect. 2 below. Also this theorem is
in agreement (up to the logarithmic correction) with a conjecture by Arnold, Ko-
zlov and Neishtadt®.

In the rest of the paper, we shall define Py and sketch the proof of Theorem A.

2. The generic set Ps. Fix once and for all s > 0.
In this section we define the generic set of potentials P;.
Denote by G? the “generators” of one-dimensional maximal lattices in Z2, i.e.,

912 = {k = (/4317]62) € Z2 : kl > 0 and ng(k’hkg) = 1} U {(0, 1)} . (5)

Then, the list of one-dimensional maximal lattices in Z? is given by the sets Zk
with k € G? (explaining the name given to G?).

Given a function f € B2 and given k € G7, we can project f, in Fourier space, on

the lattice generated by k € G obtaining a function of the “angle” kyx1 + kows, as

follows y
5 e )
JEL
where § — F¥(0) is a real-analytic function on T defined by
FRO) = > fine’. (6)
jez
0
One can, then, decompose (in a unique way) the potential f as sum of “one dimen-
sional” functions of the angles x - k, as k € G:

fl@) =) fee®™ = > FHx-k). (7)
kez2 kegf

412, Remark 6.18, p. 285]: “It is natural to expect that in a generic system with three or more
degrees of freedom the measure of the “non—torus” set has order €”.
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The functions F* will play a fundamental role in the forthcoming analysis.

Definition 2.1. Let 0 < § < 1 and let
1 1 1

Ko(0) := ¢ max {1, T3 log 5}, (8)
where ¢ > 1 is a suitable universal constant. Denote by Ps(d) the set of functions
in B2 such that, for all k € G with |k|, > K, (), one has:
(P1) |fu| = o]k|72 eIl
while, for all k € G with |k|, < K,(d), one has:
(P2) min (|0F*(0)] +[05F"(9)]) > 0;

€
(P3) F’“(Ql) #* Fk(GZ), V 0 <6; <6y <27 such that 89F’“(01) = aaFk(ag) =0.
Then, P, := U Ps(9).
6>0

Remark 2.1. (i) It is easy to produce functions in Ps(d). Consider, for example,
the function
Fl@) =26 Y [k 2e " cos(k - x) . (9)
keG?
Such function has Fourier coeflicients
b= Slk|2e~ Ikl if +k e GF
0, otherwise
and Fourier projections
F¥(0) = 6|k|2e %1% cos 6 .
As it is plain, f € Py(4).
(ii) The functions in P are general in several ways.
For example, from Proposition 3.1 of [6], it follows easily that:
(a) P, contains an open and dense set in B2.

(b) Ps is a prevalent set”.
(¢) The (weighted) Fourier map

j : f € B? — {fkelk‘ls}keg% € Eoo(g%)

yields a natural isomorphisms between functions in B2 and bounded sequences
of complex numbers supported on G2.

Denote by By the closed ball of radius one in B2 and by B the Borellians
in Bl.

On B one can introduce a natural (product) probability measure, as fol-
lows. Consider, first, the probability measure given by the normalised Lebes-
gue—product measure on the unit closed ball of £*(G?), namely, the unique
probability measure 1 on the Borellians of {z € (*(G?)||z|,, < 1} such that,
given Lebesgue measurable sets Ay in the unit complex disk Dy := {w € C :
|w| < 1} with Ay # Dy only for finitely many k, one has

u( H Ak> = n %meaS(Ak)

keg? {keG2: Ay #D1}

5Recall that a Borel set P of a Banach space X is called prevalent if there exists a compactly
supported probability measure v on the Borellians of X such that v(z + P) = 1 for all z € X;
compare, e.g., [10], [11].
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where “meas” denotes the Lebesgue measure on the unit complex disk D;.
Then, the isometry j induces a probability measure pus on the Borellians B
and one has that

P, nBieB, and us(PsnBp)=1.

(d) Assumption (P3) is made in order to simplify (the quite technical and intri-
cate) proofs but it is possible to obtain the main result also without such
assumption.

Assumption (P2) was used in [13] (see also [14]).

3. Sketch of the proof of Theorem A. Let f € Py (Definition 2.1), ie., f €
Ps(6) for some ¢ > 0, which will henceforth be fixed.

In what follows, we denote by ¢ various (possibly different) constants, which may
depend upon s, J§, r and R.

3.1. Small divisors and geometry of resonances. Let @« > 0 and K € N: «
will measure the small divisors appearing and K will be a Fourier cut—off. Later
on these parameters will be suitably chosen as functions of € (see (11) below). In
terms of these two parameters we shall describe the geometry of resonances.

Define

e D ={yeD ||y kl=a, VkeG?, |kl; <K};

« DY ={yeD ||y k|l <a}, for ke G?

. Dl — U Dl,k;

keG2, k|1 <K
« For k € R?\ {0}, denote by m : R? — (k) := {tk | t € R} the orthogonal
projection onto the 1-dimensional vector space containing k, i.e.,

y-k
LA
|k[?
and by 7r,i- the orthogonal projection onto (k)*, the vector space orthogonal
to k. Notice, that since we are in two space dimensions, (k)* is the one-
dimensional vector space containing (ko, —k1), so that:

L y-k y1k2 —y2k1
oy — - —k1). 1
Y Yy |k‘2 k |k‘2 (k27 kl) ( O)

TRY =

Remark 3.1. (i) Recall that for the model at hand, frequencies w = 0,H, and
actions y coincide.

(ii) In the language of [16], D is a (a, K )-completely non resonant set, while D'*
is an a—neighbourhood of an exact resonance y - k = 0 with k € G} and |k|, < K;
compare also Appendix A.1l.

(iii) Obviously, by the definitions given, it follows immediately that
D=D"uD'.

(iv) For general “geometry of resonances” in the context of nearly—integrable Hamil-
tonian systems, see, e.g., [15], [16] and, more recently, [9]. For a geometry of reso-
nances specific for two—frequencies systems, see [8], [1] and [13].

Lemma 3.1. Let a < /32K, k € G with |k| < K. Let, also, { € Z?\ kZ with
|¢| < 8K. Then,
ly-f>——. ¥yeD".
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Proof. By (10) and the definition of D*,
Lol . |y - k| _ae T
|ﬂi:y‘//‘y| |k‘ >Tr |k| = 27
and, observing that kol — k1le € Z\ {0} (since £ ¢ kZ),

imie] = koly —kils] _ 1

A
Thus, (using again that (k)* is one-dimensional),
ly -t = |my Tl ey - € > |y ml] = |y -4
r |£] T
> |miyl Imicll = iyl 1) = 5o —a 12 e
2|k| k|~ A4lk|
From now on we fix:
r

= — K:=¢° 11
T RK ° (11)

where 0 < a < 1/6 will be chosen later small enough.

3.2. Averaging and normal forms. In this section we construct suitable normal
forms in the sets D° and D'*. The main tool is Proposition 4.1 of [6], which, for
convenience of the reader, is reported in Appendix A.1.

To describe the normal forms, we need to introduce proper norms.

Given a domain D < R? and r > 0, we denote by D, the complex neighbourhood

D, := {ye(C2||y—y0|<r, for some yg € D} ;

for a real-analytic function f: T — C or f: D, x T} — C, we let, respectively,

es = sup sup |£(y)[elhe (12)
JEZ™ yeD,

I£]ls = sup |£5lelhe ]
jezn
where f;,f;(y) denote Fourier coefficients.
For a given sublattice A < Z?, we denote by pa the Fourier-projection on A:
paf = ) fue™?.

keA

3.2.1. Normal form on the non-resonant set D°. Set
ro = /2K .

then
ly -kl =>a/2, VyeD? VO < k| < K.

0 7
From Proposition A.1 it follows that, for € small enough, there exists a symplectic
change of variables

o : DSO/2 X Ti(l—Z/K) - DSO x T%, (13)
such that®
2
Howy =" cp) s G =0, (14)
where {-) = poy(-) denotes the average with respect to the angles x, and:
eK? _
sup g° = ()l < e [ lopsagymye < €K (15)

/2

6 fo corresponds to fix in Proposition A.1.
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3.2.2. Normal forms on simply-non-resonant sets DV*. Fix k € 01 i and let
o
T O32k|K

Tk (16)

then
r
m .
By Proposition A.1, with (a, K) replaced by (ﬁ,SK), we see that, for £ small
enough, there exists a symplectic change of variables

yeDMF ., LeZP\KZ, [{|<8K = |y (=

Uy Dyl < T - DUF X TE, s, = s(1—1/K) (17)
such that”
2
Heowy = W cGhy) + <Gy k) + o) (18)
where
<Gk(y7 )> =0 ; pszk =0 ) (19)
and®
sup [GEW)], 1G¥ = F¥lhy o, < CelkPE?, 1]y 00 < 267 4K02
T‘;C/Z
(20)

Remark 3.2. The function G*(y, #) will be called the effective potential since,
disregarding the small remainder f*, it governs the (integrable) Hamiltonian evo-
lution at simple resonances.

3.3. Exponential density of primary tori in D° x T2. In this brief section
we show how the exponential density of primary tori in the region D° x T? is an
immediate consequence of the KAM Theorem, if one chooses suitably the parameter
K as a function of ¢.

Indeed, we can apply the KAM Theorem A.l to the Hamiltonian in (14) with
h(y) = |y|*/2 + £¢°(y): in this case hy, = [+ O() and the perturbation £f° has
norm bounded by (see (15)) e~ %%/3. Therefore, recalling (11), where we chose
K = 1/, one sees that the KAM condition (45) is met for ¢ small enough and
that, by (47), the relative measure of Diophantine primary tori in DY x T? is at
least

1 — exp (-6;>. (21)

3.4. The typical effective potential at simple resonances. In the neighbour-
hoods D'* of simple resonances, after the averaging of § 3.2.2, the strategy is to
put the integrable Hamiltonian®

lyl?

h = 5 +5G§(y) +5Gk(y,k-x)

into action—angle variables, to check Kolmogorov’s non—degeneracy and then to
apply the KAM Theorem A.1.

To do this one has, first, to understand the topological structure associated to
the effective potentials G* for |k|, < K.

7fk corresponds to fxx in Proposition A.1.

8Beware that F* and G* are functions of one angle variable, while f* depends on two angle
variables.

9Integrable, since it depends only on the angle Q = k -z € T?.
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Remark 3.3. (i) In the case'” |k|, < K,(J), the topology of the phase space of
the effective integrable Hamiltonian can be quite arbitrary, as long as it is non—
degenerate, in the sense that the critical points of 6 — G*(y, #) are non-degenerate
and at different energy levels (compare (P2), (P3) above).

(ii) On the other hand, for |k|, > K,(J), all effective potentials G* have the same
topological features of a pendulum, as we shall briefly describe.

We stress that, while the case in (i) concerns a fixed (i.e., e-independent) number
of modes, the case K,(d) < |k|, < K concerns a number of modes, which goes to
infinity when e goes to zero. It is therefore essential to have unform control of the
case K,(9) < |[k], < K.

(iii) From now on, to simplify the exposition, we shall consider only the case of
simple resonances with K,(6) < |k|, < K.

The case 0 < |k|, < K,(d), is similar but more complicated and we omit the

details in the present sketch of proof.

Thus, from now on, we fix k € G2 with K,() < |k|, < K.

3.4.1. Uniform pendulum-like structure of the effective Hamiltonian (|k|, > K(9)).
Because of the fast decay of Fourier modes due to analyticity, F* (recall (6)) has
the form:

FH0) = (fre + fore ) + O(e 1) = 2| fi] cos(6 + 8;) + O(e”*Fh?),

for a suitable 6y, € [0, 27). Recalling (P1), we can factor |fi|, getting
Fk ) = 2|fk|<cos(9 +0k) + O(|k|f67|k|15)> .

In fact, these identities hold in a strong norm (e.g., in | - ||y with b > 1; compare

(12)).
Then, by (20) and (P1), one has'':
1 k k Lokl ok k 472
|fk| HG - F Hm-,/2,2 <c € | hHG -F H’I‘k/Q,S*\kh < C|k|1K €.

| fl

Hence, recalling (18), and using again (P1), one gets

2
H. oW, = % +eGE(y) + 2|fk|5<cos(k z+ 0"+ GF(y, k) + fk(y,x)) (22)

with

|G 0 < cKSe=im, [ a0 < ePH2 (23)
Recalling that in (11) we assumed a < 1/6, we get
n=0(E"%) «1. (24)

3.4.2. Rescaling. For the upcoming analysis it is convenient to make the rescaling'?

y— Ay, where X := /2| fi|e (25)

followed by a time-rescaling obtained by dividing the Hamiltonian by \? = 2|fy|e,
so as to obtain the Hamiltonian

Hy, := hi,(y) + (cos(k -z + %) + GF(\y, k- z) + " (\y,2)) , (26)

10Recall (8) for the definition of Ko ().

1 Notice that: if 0 <s' < s and (f) =0, then |f|y < e =%|f|s.
121n the following, for ease of notation, we shall sometimes drop the dependence on k, which
has been fixed.
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where

() o= B+ S GhO) (27)

3.4.3. The fast angle Q2 = k- x. By Bezout’s Lemma we can find k= (ki ko) € Z?
with |k|e < |k|s such that B B
k1ky — koka = 1.

Am (’;i @ |
Applying the canonical transformation
Uy:(P,Q) v~ (y,z), y:=ATP, r:=AT'Q
and noting that k- x = Q2 we get
HyoW s = hy(ATP)+ (cos(Qa+0™) + GF(NATP, Q2) +£¥ (N ATP, A71Q)) . (28)
The aim of this transformation is that, now, the effective potential
cos(Qz + 0%)) + GF(A AT P, Qy)

depends only on one angle, i.e. Q5.

Let

Remark 3.4. The norms of A and A~! is proportional to |k|y, and therefore the
angle analiticity domain becomes ']IE JeK

3.4.4. Decoupling the kinetic energy. However, this has the unpleasant cost that the
main part of the quadratic part in P (the “kinetic energy”) %\ATPF is no longer
diagonal. In order to diagonalise it one can consider the symplectic map

Uy :(pg)— (PQ), P:=Up, Q:=U""gq, (29)

1 0
U= (L 1)

Indeed, using such a map, since ATU = [rj-k, k], one finds

where

1 1 - 1
§|ATUP\2 = §|771§k7|2p§ + 5“‘42}?;

However, Uy does not yield a diffeomorphism on T? as, in general, ‘%’2 € Q is not
integer and, therefore, ~
k-k
= + —
Qi=aq BE a2
is not well defined for g» € T'. Nevertheless, applying ¥ to the “effective Hamil-
tonian”

hi(ATP) + (cos(gz + ™)) + GF(A AT P, ¢o))

we get

SRR+ SRR+ W) + (cos(a + 60 + Vipa),  (30)
where 1

W (p) = 2|fk|G’8(>\ATUp), V(p,q2) := G*(AATUp, g2)
satisfy

sup oWl <n,  Vie2<n, (31)

k
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with!3:

1 _ _ Tk
D* .= — U 1(4A~HTpL* =—>1 32
\ (A7) ; Tei= oy ] (32)

for € small enough (recall (11), (16) and (25)).

3.4.5. Action—angle variables. Since the “effective Hamiltonian” in (30) does not
depend on the angle ¢1, the action p; is an integral of motion and plays the role
of a parameter. Then, disregarding the dynamically irrelevant term %|7rf€-h|2p%, we
study the “pendulum-like Hamiltonian”

1
Hpena(p2s q2;p1) i= §\k|2p§ +Wi(p) + (COS(qQ + 0% + V(p, CD)) :

Hpeng is a one dimensional Hamiltonian depending on the parameter p; and, there-
fore, it is integrable introducing suitable action angle variable.

The separatrix divides the phase of Hpeng into three (p;—dependent) open re-
gions: D,, above the separatrix, D_, below the separatrix, and Dy, inside the
separatrix (excluding the elliptic equilibrium), which will contain the (projection
of) the secondary tori, i.e., those Lagrangian tori, which are not graphs over the
angles.

Next, we construct, in each region, action—angle variables (pa,q2) through p;-
dependent symplectic transformations

p2 = p5 (T2, p2;p1), a2 = 45 (12, 02:p1) » (33)

with o = +, — or 0, such that, in the new variable Hpcnq reads

Hpcnd(pgan;pl) =: Ea(plaIQ) (34)
(which is integrable). Note that the maps in (33) can be easily completed into
symplectic transformations
7o (L1, Lo, o1, 02) = (p1, P2, 41, G2)

fixing p1 = I7.
It is important to remark that, even though Uy (defined in (29)) is not well
defined on the angles, the composition

Uy oWl 0wyt

is instead well defined.
On the other hand, in the region Dy, in view of the different topology, it is
actually enough to consider the symplectic transformation

0
\IIU O\I’aa,

which is well defined.
In the variables (I, ¢) the Hamiltonian takes the form

hk(‘[) + fk([,@) 3
where
hy(I) := %|7r,jl’c|2112 +E°(I), £, =0(exp(—5Ks/2)). (35)

13The fact that we can choose /4 |k| as new analyticity radius follows by (25) and estimating
the operatorial norms of the matrices A and U as |A| < 2|k| and |U]| < 2.
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3.4.6. Kolmogorov’s non—degeneracy. In order to apply the KAM Theorem A.1 to
such Hamiltonian, we need to show that hj twists, namely, that the determinant of
its Hessian is bounded away from zero.

Remark 3.5. Notice that, recalling (31), for n = 0, E?(I)|,—o reduces to the pen-
dulum (in action variables) and the twist can be checked by direct computations
As far as one stays away from the separatrix, one can still check the twist pertur-
batively. However, we need estimates in regions which are exponentially (in 1/¢)
close to the separatrix and this regime is no longer perturbative, as we are going to
explain.

Indeed, denoting by z the distance in energy from the separatrix, it can be shown
that, asymptotically as 77, z — 0, one has (up to multiplicative |log z|*~corrections)

st > (R 00) O
= %+@ (36)

with ¢; = |mrk|2co # 0, and, since 2 can be much smaller than 7, we see that the
evaluation in (36) turns into a singular perturbation problem, and hence cannot be
handled by usual perturbation techniques.

To overcome this problem, we consider the inverse of the function I, — E =
E°(I1,15), parameterised by I7: let us call it I§(z; 1), where z := E — Ey, Ey =
Ey(I) being the energy of the separatrix.

Now, one can prove that

I (2 1) = ¢7 (2 11) + X7 (25 1) zlog 2,

with ¢7 and x? analytic in z near the origin.

By using analyticity arguments, we can then show that:

For any 6 > 0 small enough, up to a region 8—bounded away from separatrices
and of measure of order 0* for some 0 < ¢; < 1, the following estimates hold
uniformly in |k| < K:

1
|07y < R | det 07hy| > 6 . (37)

3.5. Exponential density of primary and secondary tori in D' x T2. In
the region where (37) holds, we can apply the KAM Theorem A.l with d = 6,
M =1/6, p = 6% o = O(exp(—5Ks/2)), recall (35), diamD < K/cA, r = 0/cK
and' s = 1/cK. Then e < e=°%5/2/§% and the KAM condition in (45) is satisfied
choosing

0 = exp(—ca/c?), (38)
for a suitable ¢z small enough and e small enough. Since C in (48) is bounded,
for £ small enough, by 1/A260%2 < e&5/623 (recall (25)), then the measure of the
complement of invariant tori is bounded, recalling (47), by

Cexp(—5Ks/4) < 0 ?*exp(—5Ks/4) < exp(—Ks/4) <0,
for € small enough. In conclusion, the measure of the complement of invariant tori

is bounded by 26. Recalling (32) we have that in the starting domain D** x T2 the

14Recall Remark 3.4.
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measure of the complement of invariant tori is bounded by
1
—K2)\%0.
c
Then, in the whole region D' x T? the measure of the complement of invariant tori
is bounded by
1 1
—K*\?%0 < —,K459 <0
c c
for € small enough.

This last estimate, recalling the definition (38), together with the estimates of
§ 3.3, concludes the proof of Theorem A.

Appendix A. Normal forms and KAM.

A.1. A normal form lemma. The following normal form lemma is proven in [6,
Proposition 4.1]. Before stating it we need some definitions.

e For functions f: D, x T — C we set

fp.rs = 1flrs := sup 37 |fu(w)lelhe. (39)
yeD,. keZmn
The norms | - ||,,s and |- |, s are not equivalent, however the following relation
holds
[£llrs <Uflrs < (coth™(0/2) = D[ flrs+0 (40)
< /o) flrsso

e Given an integrable Hamiltonian h(y), positive numbers a, K and a lattice
A < Z™, a (real or complex) domain U is (o, K) non-resonant modulo A
(with respect to h) if

W) -kl >a, YyeU,VkeZ'\A, |k, <K . (41)

e Given f(y,z) = Y1epn fu(y)e™® and a sublattice A of Z", we denote by pa
the projection on the Fourier coefficients in A, namely

paf = . fr(y)e™ ™.
keA
and by pf; its “orthogonal” operator (projection on the Fourier modes in
Z"\ A):
paf = ), frly)e®.
k¢A
Proposition A.1 ([6]). Let r,s,a >0, K e N, K > 2, D € R", and let A be a
lattice of Z™. Let
H(y,x) = h(y) + f(y, v)
be real-analytic on D, x T? with|f],,s < 0. Assume that D, is (a,K )-non-resonant
modulo A and that s
20K
Doi= T fl < 1.
ars
Then, there exists a real-analytic symplectic change of variables
U:(y,2")e Dy, xT;, — (y,x)e D x T, with re:=r/2, s,:=s(1-1/K)

satisfying

*

9
T, max |z; — | < —

!
— < - s
v =yl < 57x 1o 16K2°
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and such that
HoW=h+f+f, f:=psf+Tgpif (42)
with 1 3
If*ln,s* < ?ﬂ*lflr,s ) ITK pj\_f*ln,s* < (ﬂ*/g)Ke?Iflr,s .
Moreover, re-writing (42) as
HoU =h+g+ fux where pag =9, DPafa=0,

one has

1 —(K—-2)5
|g - PAfIr*,s* < Eﬂ*lflr,s ) If**ln,s/2 < 2e (K-2) Iflr,sa

5 := min f10 i
= > gﬂ* .

Remark A.1. The main point of Proposition A.1 concerns the analyticity domain
in the angular variables of the renormalised Hamiltonian, which is close to optimal.
Indeed, the Fourier coefficients of the new Hamiltonian are shown to decay at the
exact same exponential rate as the Fourier coefficients of the original Hamiltonian,
at least up to order K, and this fact plays a crucial role in our analysis.

A.2. A KAM theorem.

Theorem A.1. Let r,s > 0, n = 2, D € R"” be a bounded set and H(y,x) =
h(y) + f(y,x) be a real-analytic Hamiltonian on D, x T, such that

s

where

M := sup |hpp| < +0, d :=inf | det hp,| > 0, go:= sup |f|] <+o.
D, D D, xT™
(43)
Let also
- 4 (44)
o= Mn ’

and fitT>n—1.
Then, there exists positive constants ¢ < 1 depending only on n and T such that,

if
€= 1\222 Scud st (45)
then the following holds. Define
Mr . 9 1 \fer
o= 7M537+6\£’ 7= utr, r€:=g—# . (46)

Then, there exists a positive measure set T, € Dz x T™ formed by “primary” Kol-
mogorov’s tori; more precisely, for any point (p,q) € Ta, &% (p,q) covers densely
an H-invariant, analytic, Lagrangian torus, with H—flow analytically conjugated
to a linear flow with (o, T)-Diophantine frequencies w = hy(po), for a suitable
po € D; each of such tori is a graph over T" r.—close to the unperturbed trivial
graph {(p,0) = (po,0)| 0 € T"}.

Finally, the Lebesgue outer measure of (D x T™)\ Ty, is bounded by:

meas ((D x T")\ 7o) < Cv/e (47)
with

) 1
C := (max {/fr, diam D})n P
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Remark A.2. (i) Theorem A.1 is an immediate consequence of Theorem 1 in [5]
(actually, it is just a slightly simplified version of it).

(ii) Notice that p < 1: in fact, since the eigenvalues of hy, are bounded in absolute
value by |hpp|| <M, one has that d < supp, | det hy,| < M.

(iii) The main point of Theorem A.l is to have a quantitative smallness condition
with explicit dependence on the domain D: This is important for our application,
since domains (after rescalings and changes of variables) may become very large.
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