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ON THE WEAK LIMIT OF RAPIDLY
OSCILLATING WAVES

L. CHIERCHIA, N. ERCOLANI, AND D. MCLAUGHLIN

I. Introduction. Conservative, dispersive waves form, and propagate, as
packets of rapidly oscillating wavetrains. The mathematical description of this
physical process is rather complete for linear waves, but is still in its infancy for
nonlinear waves. One mathematical formulation of this problem [1] is as follows:
Given a rapidly oscillating nonlinear wave U(x, t), (i) characterize and (ii) derive
evolution equations for the weak limit of U (as the wavelengths of the oscillations
vanish).

Near-integrable waves [2-6] provide interesting and rich examples for the
study of the propagation of rapid, nonlinear waves. One formal approach [7-9] is
to construct an asymptotic representation of the wave U(x, t), from which one
explicitly calculates both the weak limit and the evolution equations that it
satisfies. In the near-integrable framework [8], this approach yields a local (in
space x and time t) representation of the wave in the form

U (x, t) w,, r(x, t), to(x, t)) + O(e), (I.1)

where for each r, to the function Wv(O) is a real-valued function on the N-toms
TN =_ IqN/2qrZ N,

WN(" I, 60): TN --
The N-vectors 0, r, to are real-valued functions of x and related by

0

0

---0i toi, i= 1,2,..., N. (1.2)

Equations (1.2) imply that

0 0
--I .Oi 1,2,..., N. (I.3a)
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One must then derive [8] N additional equations of the form

0 a
=-:-,,,

Ot wi ax--( w) i= 1 2 N. (I.3b)

Equations (I.3a, b) are the desired evolution equations.
A first step toward converting this formal construction into a rigorous mathe-

matical derivation is to assume that U is of form (I.1), and then to establish that

weak-lim U(x, t) (x, t),
e$O

(x,t) =-
1

(2.)v f.ruU(O; (x, t), w(x, t)) dO. (I.4)

In section II of this paper we prove a version of (1.4) under suitable assumptions.
We remark that in the simple phase case (N 1), this result is classical;

however, for the general case (N > 1), a "nonresonance condition" about the
is required. In our principal applications (see [9], section IV and appendix A) we
have viewed modulating wavetrains as evolving in on a (formal) space of
functions of x. Therefore the theorem we formulate below is independent of t
except insofar as the local nonresonance condition is or is not satisfied at a given
t. As we explain in section III, we believe that the nonresonance condition
formulated in this paper is basically optimal.
One fascinating feature in the propagation of rapidly oscillating, integrable,

nonlinear waves is that the number of phases N can change in space and time
[3, 8, 2]. In section III of this paper we discuss connections between the break-
down of the nonresonance condition and curves in the x-t plane across which the
number N of phases changes.

II. An averaging theorem.

Definition. A curve : x R --. x(x) R" is said to be locally nonresonant if
any finite interval of R can be decomposed in a countable union of disjoint
intervals I, so that x is C on the interior of I, and for any v ZV\ (0} the
function

has at most a finite number of zeros.

Now, let

(0, x) Tv X R --* W(O, x)
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be a C function such that for any finite interval I

eZv
(II.1)

where the circumflex denotes Fourier coefficients:

1

fx W(O, x)e-i’o dOW(x) =- (2,,1"

THEOREM. If O(X) is a curve in TN with O’(x) (d/dx)O r(x) locally
nonresonant, then

e(x) ) (2,)" f,w(o, x) ao =- Wo(x).

That is, for any smooth function d? with compact support,

lira fW ,x q(x) dx I,o(X)q(x ) dx. (II.2)
eO 8

Proof.
Step 1.

We divide the proof into four steps.

Proving (11.2) is dearly equivalent to showing that

lim fzw(+o

O(x)
e

ax f,o(X)ax
for any finite (closed) interval I. Furthermore, because of the nonresonancy
assumption, we can assume that on I, x v has at most a finite number of zeros
for v e Z\ (0}.

Step 2. Now we expand in Fourier series. Because of (II.1), for any rl > 0
there exists a positive integer M such that (denoting vl E=lvl)

Ivl>M

Therefore, because of the arbitrariness of 1, the theorem will follow from

lim IW,,(x)e’("()/) dx 0
e,l,O i

(II.3)

for any , with 0 < vl < M.



762 CHIERCHIA, ERCOLANI, AND MCLAUGHLIN

Step 3. Let (x) be any C function on a closed interval I with ’(x) 4: 0,
and let f be continuous on I. Then

lira fei(+()lOf(x ) d O.

This follows immediately from the Riemann-Lebesgue lemma if one notices that
the integral above can be written as

where x() denotes the inverse function of h(x).

Step 4. Let v be fixed as above, i.e., 0 < I1 M. Then by step 1 there is at
most a finite number of zeros of x ! ---, r(x) v. Denote them x < 2 <
< 2m. Because of (II.1), for any a > 0 there exists a p > 0 such that (denoting lp
the set I c U’_l(2j p, 2j + p)) one has

So to prove (3), it is enough to show that

lira f ff’,(x) e i((’" ())1o O.

But this is immediate from step 3, since I\ Ip is a finite union of intervals over
which 0’- v is bounded away from 0.

III. Comments on the nonresonance condition. An obvious example of locally
nonresonant curves is given by certain piecewise constant functions

,(x)

where (I,),N is a partition of R in finite intervals, X denotes characteristic
functions, and r. are rationally independent vectors in R. Another elementary
class of nonresonant curves can be built up by patching together real analytic
curves r t") having functionally independent components. In this case x-,

r(")(x) v will locally have a finite number of zeros for any real vector v. More
abstractly, it would not be difficult to show that our condition is, in a suitable
sense, generic.

It is also easy to understand what happens in case of resonance. Two types of
phenomena can occur: the weak limit may not exist at all (this is trivially seen to
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be the case for constant 0(x)), or the limit may differ from the simple average.
For example, let O(x) be the canonical projection (from Iqv to Tv) of a straight
line x ox, with 0 ZV\ (0}. Then, from the preceding section, one con-
cludes that

O(x) )weak-tim W -----, x E l.(x),
o e ,, nz

where ro {gZV: g.ro=0}.
The zero dispersion limit for solutions of the KdV equation was shown to exist

as a weak limit in [3]. This work indicates that the weak limit may be char-
acterized in terms of a hierarchy of equations indexed by N. When N 1, these
are Whitham’s equations; for N > 1 they are described in [5]. These equations
are hyperbolic and can be written in Riemann invariant form

Xit(x, t) Si(h i, X),i(x, t) O, i= 1,...,2N + 1. (III.)

It is natural to attempt to represent the weak limit as the limit of N-phase
waves [1, 8], as indicated in (1.4). There will be curves in the x-t plane across
which the number of phases, N, changes. If one solves for t t(x) implicitly
from hi(x, t) constant, for some i, then inserting t(x) into (1.4) reduces the
equation to the form (11.2). Along curves of discontinuity for N(x, t), the
nonresonance condition will be violated. However, it seems reasonable that for
nice initial data this condition is violated only along curves where N(x, t)
changes. If such is the case, then the Riemann invariant trajectories are locally
nonresonant curves. This would at least make the problem of characterizing the
weak limit in terms of N-phase limits well posed, i.e., (1.4) would be uniformly
valid in the x-t plane.
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