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Preface

DYNAMICS REPORTED reporis on recent developments in dynamical systems.

Dynamical systems of course originated from ordinary differential equations. Today,
dynamical systems cover a much larger area, including dynamical processes described
by functional and integral equations, by partial and stochastic differential equations,
clc. Dynamical systems have involved remarkably in rccent years. A wealth of new
phenomena, new idcas and new techniques are proving to be of considerable interest to
scientists in rather different fields. It is not surprising that thousands of publications on
the theory itself and on its various applications are appearing

DYNAMICS REPORTED presents carefully writlen articles on major subjecis in dy-
namical systems and their applications, addressed not only to specialists but also to a
broader range of readers including graduate students. Topics are advanced, while detailed
exposition of ideas, restriction lo typical results — rather than the mast general ones —
and, last but not least, lucid proofs help to gain the utmos! degree of clarity.

It is hoped, that DYNAMICS REPORTED will be useful for those entering the field
and will stimulate an exchange of ideas among those working in dynamical sysiems
Summer 1991 Christopher K.R.T Jones
Urs Kirchgraber
Hans-Otto Walther

Managing Editors
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A Constructive Theory of Lagrangian Tori and
Computer-assisted Applications
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1. Introduction

Perturbative techniques are among the most powerful tools in the theory of conserva-
tive dynamical systems. Besides giving finite time predictions (something well known
to the astronomers of the eighteenth century), perturbation methods may be used to es-
tablish the existence of regular motions. H. Poincaré used thoroughly such methods in
his investigation in Celestial Mechanics [Po], obtaining, e.g., his celebrated results on
periodic orbits for Hamiltonian systems. A more recent success of perturbation ideas
is the so called “"KAM (Kolmogorov [Ko]-Amold [A1]-Moser [Mol]) theory", which
ensures, under suitable smoothness assumptions, the survival under a small perturbation
of “most” of the invariant maximal tori which foliate the phase-space of “integrable”
conservative systems (see [B] for review and exhaustive references and [ChG] for recent
developments).

One of the main themes we shall discuss here is how small the size of the perturbation
has to be for the tori to persist.

The interest in such a problem is not only motivated by practical purposes (trying to
apply KAM theory to concrete situations), but also by purely abstract questions.

Let F, be one of the tori surviving the effect of a perturbation “of size” u. On T,
the mation is regular and past and future are known; in low dimension (d < 2) such tori
constitute obstructions for the dynamics and confine the motions in regions where exact
predictions may be impossible; even in high dimensions motions starting nearby 7, will
remain close to it for extremely long time.

Here are three basic questions which we shall try to answer:

(a) Is it possible to give explicit approximations of 7, keeping track of approximation
errors?

(b) Can one hope to deal with sizes of parameter values coming from actual observations?

(c) Experiments (see, e.g., the discussion in [Mo5]) and some theoretical results ([Ma],
[AL], [MKP]) suggest that 7, breaks down as g is increased. Do the perturbation
techniques contain the elements for explaining the break-down of the invariant tori?

In this paper we shall discuss a general theory (in the real analytic setting), which fol-
lows recent developments in KAM theory ([Mod], [SZ], [CC2]), concerning constructive
existence results for Lagrangian tori. This theory, based on a Lagrangian formalism, has
the advantage of freeing the older formalism from infinitely many changes of variables
and instead deals directly with the tori equations in a spirit close to the “hard implicit
function theorems” 2 la Nash-Moser (see [B] for review and references therein and in
particular [Mod], [Z] and [Ha]). The method is highly quantitative and we shall work out
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all the estimates in full detail, keeping explicit track of the different quantities involved.
We shall then apply the methods to various situations including the spin-orbit resonance
problem of Celestial Mechanics.

In these applications we shall make use of computer-assisted calculations (see [L] for
general informations). The need for machines comes in, e.g., for the accurate evaluation
of the norm of approximate solutions, which are the starting point for the Newton iteration
leading to the construction of true solutions.

In the final section we briefly discuss the theory of invariant curves for area-preserving
(symplectic) diffeomorphisms of the cylinder, using a “direct” approach developed in
[CC2]. [CC3), [CC4] (see also [LR] for different techniques).

The range of applicability of the method covers parameter values of concrete interest
and, in three-dimensional models, is shown to be within 70% “from optimal” (the first
results in this direction, inspired by (G1], were obtained in [CC1] and [CFP]) while in
symplectic map models we have been able to reach 86% of optimal [CC4].

Question (c) above is by far the most difficult to attack and we shall content ourselves
by pointing out a direction ([BC], [BCCF]) which connects the disappearance of the tori
with complex singularities in the space of the p-parameter. .

The theoretical part of this paper is partly new, while most of the applications are
selected from various papers of the authors.

The purpouse of our exposition is ambitiously twofold: we provide (with the help of
numerous appendices) complete details so that non-specialists or graduate students could
acquire a working knowledge of the main ideas and techniques in KAM theory; but, in
so doing, we tried to mantain the exposition concise so that researchers active in the field
can find elements of novelties before getting bored.

Acknowledgment. It is a pleasure to thank U. Kirchgraber for giving us the opportunity
of attempling to achieve the just mentioned project,

2. Quasi-Periodic Solutions and Invariant Tori for
Lagrangian Systems: Algebraic Structure

In .lhjs and in the following paragraph we consider the equation for maximal invariant
tor and show how to solve it by means of a Newton-KAM method provided a “good
enough' non-degenerate approximare solution is given.

2.1. Setup and Definitions

Let £(y, x,1) be a real-analytic function of (y, x,1) € ¥ x T+, where ¥ is an open
set in R and T9*! is the standard (d + 1)-dimensional torus with periods 27r: TIH! =
R+ /27 Z)4+); in other words ¥ is a real-analytic function of 2d 4 | variables, 27-
periodic in xy, ..., x4, 1. The Euler-Lagrange equations for the motions 1 — x(1) =
(xy (1), ..., x4(0)) associated to £ (see [A2] for generalities) are given by

d :
o L&, x0) = B (@0, (2.1)
where £, = 3,% and £, = 3,2 denote the gradients of &£ with respect 1o y and x.

An important class of solutions of (2.1) is given by quasi-periodic solutions:
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Definition 2.1. A solution x(1) = (xj (1), ... xg(0) of (2.1) is said 10 be quasi-periodic
with frequencies w €Y C RY if w is rationally independent with I (i.e. w-n+4+m =20
for some n € 74, m € Z impliesn =0, m = 0) and if there exists a periodic function
twice differentiable u: (0,1) € T**! — u(0.0) € RY, such that

() = wt + wilw, 0, (mod 27) . (2.2)

Remark 2.2. If & does not depend explicitely on the time t one would replace, in
the above definition, “@ rationally independent with 1" with “w rationally independent”
(ie. w-n=0=>n=0) and u(@, 1) with u(#).

Remark 2.3. If & is independent of (x, ). ie. & = 2(y), ¥ is said to be integrable:
the Euler-Lagrange equations are trivial and all solutions are of the form x(1) = xp + !,
w = ip. Thus, up to a set of Lebesgue measure zero of initial data (= ((xg. Xp) : ¥o IS
rationally dependent]) all solutions of integrable Lagrangians are quasi-periodic.

To any quasi-periodic solution there is naturally associated a family of solutions
parametrized by (d + 1) phase. (8,7) € T4+, In fact, since (w, 1) is rationally in-
dependent the flow (wr, 1) is dense on T4+!; therefore it is easy to check that (2.2) is
solution of (2.1) if and only if

O+ wit —7)+ul@+wlt—7). 1 -7 (2.3)

is a solution for any (@, 7) € T4+ This, in tum, is equivalent 10 require that u(@, 1) is
solution of the following second arder degenerate nonlinear system of partial differential
equations on T/+!:

D.‘_E}.l(m-ﬁ-Dn, @+u, 1) = EP.,J(m+Du, o=t 0. ii=lle (2.4)
where D = D, denotes derivative along (w, 1):
D=Dy=w: 054+ 0 . Du = (Duy, ...Dug) ,
d
du;  Oug (2.5)
Duj = — = .
;i ; wj a0, I &

As an example, consider a planar mechanical system, made up by two interacting particles
of masses m;, constrained on concentric circles of radii ri, whose cenler moves on a
(coplanar) circle of radius p with angular velocity A(1) = A(r +2m), the interaction being
ruled by a potential energy depending on the squared distance of the two particles. Up
1o an additive time-dependent function (which does not contribute to the Euler-Lagrange
equation) the Lagrangian of this system is given by

2
1 :
Ly y2. 51 X2.0 = 3 E mj [r.zhz + 2riyipA cos(x; — A)] +

(2.6)
— V(cos(x; — x2)) .

where V is related to the true putential energy U by ViH) = U{r"; + r% — 2ryr2€). For
such a system. a quasi-periodic solution with frequencies (w), wa), x(1) = wl + ufewr),
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satisfies the system (i=1,2):
m,-r,? [Dzu; + %A cos(f; + u; — A)] =
= — miripA? sin(6; -+ u; — A) (2.7
+ {-—l)i"V'(cus(BI — Oy 4 uy — u;))sin{f}] — O+ uy —u)

where u; = uj(8y, 02, 1) and Du; = w) dp, Ui + wydg, ki + Opu;.

Remark 2.4. Equation (2.4), and its variational formulation, has been introduced by
Percival ([Pe]).

Quasi-periodic solutions span invariant tori: to be more precise we need a definition:
denote by 1 the (d x d) identity matrix and let (ug)ij = gg'_-, then
¥

D:ﬁl:i!.lull 2.5. We shall say that a quasi-periodic solution is non-degenerate ifv(@,.n e
T ¥+

det(3+ug) # 0. (2.8)

If x(1) is a non-degenerate quasi-periodic solution, the map (0,1) — (8 +u(@,0), 1)
yields a non-contractible embedding of T4+! into itself; in other words, non-degenerate

quasi-periodic solutions correspond to homotopically non trivial invariant tori of maximal
dimension d + | run by a linear flow.

2.2. Approximate Solutions and Newton Scheme

Let us begin by setting up the notations. We shall think of vectors as of column vectors
identifying m-vectors with m x | matrices. If [ is a vector function, [ : R™ — R", the
derivative of f is the n x m matrix 8, f = %é = [, with entries (f1)ij = g;& ( so that
f;igzg f(x + e0) = fro). With these conventions the gradient of a scalar function has

to be interpreted as a row vector, introducing a funny transpose in our basic equation
(2.4) which we rewrile as

€w) = DL (w+Du,6+u, 1) — Ll (@+Dub+u = 0. (2.9)

Definition 2.6. A real-analytic function v(8, 1) on T4t is called a non-degenerate ap-
proximate solution of (2.9) (in short approximate solution) if

(i) there exists a (2d + 1)-neighbourhood (v-dependent) N C ¥ x T9+! of the set

{(y. x,0) = (+Dv.0+v,0] 6,0 eTH},
such that, on it, the matrix £,y is positive definite:

Py >0, YyxneN: (2.10)
(i) for each fixed f the map 6 — 6+ v(f, 1) is non-singular i.e.:
a ;
detl+vp) £0, YO0 T (o)== . @.11)

a0,
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To an approximate solution we will always associate an error-function & = £(6.1) by
setting

£(8, 1) = $(v) = DL (w + Dv. 0+ v.1) — L1 (@ + Dv, 8+ v,1) . (2.12)

Now, the basic idea is, roughly speaking, 1o try to solve (2.9) by linearizing the operator
€ at v and finding a better approximation v’ such that as in Newton schemes

w=1v—u~O(e) . & =€) ~0UeP) . (2.13)

in suitable norms to be defined below. Iterating this procedure one may Iry to get a
solution of the form v+ ) wj.

Under suitable number-theoretical assumptions on the frequencies w, we shall see that
this strategy is successfull provided one starts with an approximate solution for which
the error term is “small” enough.

An important example is the following. Let & be a nearly integrable Lagrangian, ie.

Ly, x, 1) = Lol(y) + p)(y. 2. 1), D<pxl (2.14)
and assume that the hessian matrix of & is positive definite:
# %Ly
dy= 0 -
y=u a)'iB_Vj]) (2.15)

then v = 0 is an approximate solution (N will be a neighbourhood of the torus [w] xT4H!)
with error function proportional to u:

e0,1) = p[oay:t:; (@, 0. 1) — 3;8, (w, 6, r)] . (2.16)
Remark 2.7. The construction we p ¢sent here works for a somewhat more general class
of approximate solutions satisfying

det{ (1+v9)" £,y (3 +u)} £0, dctj[[l +ugl” Lyy [1 +ugl} £0. 217
™
in place of (2.10), the argument of £yy = &% being (@ + Dv, 0 + v. 1) (see [SZ]).

The matrix appearing in (2.17) is an important quantity and it deserves a name:

Definition 2.8. For a given non-degenerate upproximate solution v we shall call the
matrix

T=9,=[1 +uv,]" Lyylw+Dv,6+v.0) [T +vp) (2.18)

the twist matrix of v

By our non-degeneracy assumption
T =9@0n >0, @neT. (2.19)

Because of the frequent occurence of the map (0,1) € T+ 5 (w+ Dv, 8+ v,.1) €
R4 x T9+!, we shall give to it a name too:
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Definition 2.9. Given a non-degenerate approximate solution v the map

0.1 e T = $(0,1) = du(0, 1) = (w+ D@, 1), 8+ v(d,1), 1)

will be called the v-embedding map.

2.3. The Linearized Equation

Let v be an approximate solution of (2.9) [see Definition 2.6] and let £(4, ) be the
associated error function defined in (2.12). We want to find a (vector-) function w(@, r)
such that

Evt+w)=¢, (2.20)

with & quadratic in g: the exact meaning of “quadratic” will be clear in the next paragraph
where the quantitative analysis is carried out. However, intuitively speaking. it means
that if & is replaced by ue (1 € R), then £’ should have the form u?e’.

Linearizing (2.12) at v one finds

Eo+w) =€v)+EWw+q = e+E(Vw+gqg . (2.21)

where g [defined by the first equality in (2.21)] is quadratic in w and €(v) is the second
order linear-differential operator:

(1) = D[L,,D + Lys| ~L1yD — L . ie.
, (2.22)
E(vg = D[Eﬂ_\.,.Dg 4+ Ey,g] —2EyyDg—HLyyp . Vg T+ g ,
where
i A
oy = gome A Hy= e (2.23)

all derivatives (with respect to x, y) being evaluated mt (y, x, 1) = ¢, (8, 1) = (w+Dv, 0+
v, 1). The explicit expression for g is:

q1 ED[&?I oy — EKI oy —EyyodyDw—Ly 0 dJ‘.w]

” = (2.24)
= [Ee; oy _EEI o ¢y “I-tfx}' opyDw—Lrr0 ¢'uw] '
where ¢y = dyiu.
Thus, the linear equation to be solved is
EWw+e = q (2.25)

for some (real-analytic) function g quadratic in £ (or, what is the same, in w) and in this
way we would have

4

Evtw) = q+qg = € . (2.26)
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Remarks 2.10. ‘

() A first sight, equation (2.25) does not look very promising, the operator €’ being a
non-constant coefficient, degenerate second order operator on TéH,

(i) It is important to introduce the “extra ermor” g; in fact the equation Ew+e=0,
in general, does net admit any solution.

The most delicate part of the whole method is the reduction of (2.25) to a constant
coefficient equation “explicitly” solvable.

2.4. Solution of the Linearized Equation
Taking the @-gradient of (2.12) brings in naturally the operator €'(v): denoting by Al the
(invertible) matrix 3+ vy (see (2,11)) one finds
ea=CWM, M=T+vg, (2.27)
where as usual [£p]i; = %‘j. This suggests (o look for w in the form
w= Mz (2.28)
for some vector-function z = z(6. 1) to be determined. Thus

Cw+e = EW(M)+£
= (€' (VM)z + Ly, DMDz + D(£y, MDz)
+(£y: — P WMDz 4 £
=gz + £y, WDz 4 D(Eyy MDz)
Th (-(-f_u - Exy)MDZ T+ £
= g1+ L, DMDz 4 D(Lyy MDz) + £}, MDz + € ,

(2.29)

where the superscript A denotes the antisymmetric part of a matrix [BA=8-B"]and
q1 = Egl (2.30)

is guadratic in £, w. Cmech
Some more algebra is needed: denoting by si the antisymmetric part of M3y =

MT (L] (w + Du, 8+ v, 1)):
= (ML) = MTapL] — (BT M .
= MTLy DM+ MT Ly M — DMTLyy M — MTLy M

and recalling the definition of twist matrix 7 (cfr. (2.18)) we see that (2.29) can be
rewrillen as:

EWw+e = ga+ M7 [D(smz} + sﬂ)z] +€. (2.32)

where M~7 = (M)~ _
To proceed, we have to bring in u key element: the operator D = w - dp -+ 3; acting on
the space of real-analytic functions of (#,1) T4+ is invertible on its range provided
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the (d + 1)-vector (w, 1) satisfies the “Diophantine condition";
lw-n+m| > # . YneZN\0), meZ, (2.33)

for some y, 7 > 0.

Assumption 2.11. We assume that the vector w entering in (2.9) through D = w- 85+ 9,
is a Diophantine vecior, i.e. satisfies (2.33).

Remark 2.12.

(/) Because of the rational independence of (w, 1) the range of D consists of functions
with vanishing average on T9+!,
(if) We shall assume that in (2.33) it is:

V543
7
T = d is implied by a classical theorem by Liouville; the second inequality is assumed
for simplicity (y = (+/5 + 3)/2 is the diophantine constant for the golden mean w =
wy = (5 - 1)/2). In the case > d almost all (in the sense of Lebesgue measure) w's
in R¥ are Diophantine.
(i) In the time independent case one would just suppress m in (2.33) and assume that
T=d—1; for7 > d— | one has a set of full measure.

72d and y>

(2.34)

Using Fourier expansions we see immediately that the unique solution with zera average
of

Dg = h(8,n) , h= Z ki i B ) (2.35)
(n,m)z0

for a given analytic function h with zero average is given by

;'" m iln-@4+mi) =1
= _fnm = D 'n 2.36
s= ) w-h+m) (236
(n.m)#0

and in general all solutions of (2.35) are given by c+D~'h for a constant ¢. Analyticity of
h implies that the Fourier coefficients decay exponentially fast in |n| 4 |m| and, therefore,
by (2.36) D'k is also analytic (and real-analytic if so is g). On the other hand, there
exist Liouville vectors @ which can be approximated by rational vectors arbitrarily fast
[eg. Fw: 0 < |w-n + m| < exp [exp — (|nl + |m])] ¥(n.m) # 0]; for such vectors
the expansion (in (2.36)) may not make sense and we sce that the assumption (2.33) is
essential,

There is one more step in order to describe explicitly the solution of the linearized
equation and it consists in recognizing that o is given by the formula

A = D_I(.M.r.‘:y)" - (2.37)
showing that the term {Dz is quadratic in £, w so that

€Wu+e = AT [DID+ M e] 492405 .

(2.38)
qa=MTD7 N M ep)” Dz .
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The proof of (2.37) is given in Appendix 1; notice however that (2.37) implies in
particular that the entries of 54 and of (M7 eg)? are functions with zero average:

dfdt
@=0. We-cgy=0. w=[ .S e
Now, since

/ MT e dodr = f (G2 —.‘f,)JI.{]T

- -f[:.e,.nm+:f.mr = —f[aafﬂ]r= 0,

we see that by our assumption on v [see (i), (if), Definition 2.6] and on w [Assump-
tion 2.11], the equation

(2.40)

DIDz) = —-Me, T=M%M. (2.41)
can be solved and admits the general solution
e =07 T ! o - D' lTe)| }ey (2.42)
with
o=@ @D WMTey) . (2.43)
so that (cfr. (2.32))
Evw+e = g2+q1 = q. (2.44)

Notice that the choice of the “integration constant” cq is enforced by the fact that (Dz) =
0, while ¢; is arbitrary. We normalize w = Alz by requiring that

()= M)=0 & ¢ =—(M0o{T ' [-D"'We)h). @45
We collect the resuls of this section in the following
Proposition 2.13. Let w satisfy Assumption 2.11, let v be a (non-degenerate) approximate
solution of the equation (2.9) and let £(0,1) be the associated error function: € = €(v)
(see (2.12)). If we set w = Mz = (1 + vp)z with z defined in (2.42), (2.43), (2.45) (see

(2.41) for the definition of T ), then w(8, 1) is a real-analytic function with zero average
and seiting v' = v+ w, one has

€0) = g1 +qa+q3 = €, (2.46)
with
1 =Bv+w) - —ECWw., qa=gz. q=M)"' D! [(Mfe,,)"] Dz.

(2.47)
€'(v) being defined in (2.22).
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3. Quasi-Periodic Solutions and Invariant Tori for Lagrangian
Systems: Quantitative Analysis

Here we introduce the scale of function spaces necessary to carry out the quantitative
analysis and prove the main estimates.

3.1. Spaces of Analytic Functions and Norms

The linearized operator €' (see (2.22)) involves the degenerate vector field D = w -
dp + @, and, as we already noticed, in order for the inverse D~ 1o make sense in
general the rationally independent vector (w, 1) has to satisfy suitable number-theoretical
requirements (see Assumption 2.11). However, even in such a case, the fact that it may
happen that |w - n; + mj| = O(IH_I;F) for suituble sequences ((n;, m;)], shows that D=4
is less differentiable than h [not of course in the direction (w, 1) where D™'h gains
differentiability].

This problem is as old as the modern foundation of mechanics ([A2] and references
therein) and is known as the small divisors problem. It was only with Carl Siegel [S] in
1942 (in the simpler context of linearization of complex maps around a fixed point) and
later with Kolmogorov, Amold and Moser, that it was possible to overcome lechnically
this problem for the first time (see also Eliasson [El] for a remarkable proof avoiding the
Newton method and [Herl], [Her2] for “non local™ methods).

The basic technical idea of KAM theory is the following (see [Mol], [Mo2], [Z], [B].
[G1], [G2] for other introductive discussions). One picks a monotone Family of Banach
spaces of periodic functions on T*+!

Be c B if £ <E. (a.1)

where the real parameter £ measures the regulanty of the functions, so that if (h) =0
and h € By, then

D™ hg < Klhle (3.2)

for a suitable constant K depending on €. The unboundness of D' reflects in K 1 oo as
&+ £. In a Newton scheme like the one described in the preceding section, the constant
K, which will necessarily appear in estimating the new error &', will be compared with
|e|* and one hopes that this square will under iteration eventually beat the divergence
due to K.

Let us begin the concrete work.

Denote by ¢ the Banuch space of real-amalytic (periodic) functions on T4+ which
admits an analytic continuation to a domain containing the complex neighbourhood

Ag = {(a. N eCH : Imo) <& [Imi] < .f}
and let | - |¢ denote the sup norm on A;:

|hlg = Sup |h(@. 0] . (3.3)
It | <& |lmi<§
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Let ¢ denote the space of real-analytic vector valued functions u : Ag — C* with the
norm

d d
'|u]£ = Z: I"ilf = z sup lujil . (3.4)
=1

i=1 84

Remark 3.1. It will be important for us to consider functional equations containing one
or more parameters y belonging to some compact subset P of C™, eg. P = [n €
C. |ul < o) for some pg > 0. In such a case, the above “supy,” will be replaced
by “supy,x®” and the uniformity in the estimates will yield, as byproduct, regular (e.g.
analytic) dependence upon the parameter(s) u € . However, since the set P will not
change in our iterations we shall ofien denote indifferently

sup |-} = 1-lg = 1-leo - (3.5)
By xP

The norm of matrix/tensor-valueu functions will then be defined by the standard operator
norm: if

M: B T o L) = L€, C) = (d x d — matrices] , (3.6)

then we set

lel=1

d
[Mlg = sup | ‘clg (c e c!, le] = Z leid (3.7
i=l
(Mcisa €4 valued function in A and therefore the | - ¢ is defined in (3.4) above) and
in general by induction if

T : 8 — LY, L, ... L. C),CD,..) = LP(C%) (3.8)

o SO

ptimes

then, for ¢ € C4, Tc e LP~'(C?) and we set

d
e = sup el (ceChicl=) leil) - (3.9)
lel=1 =1
For example if u: A; — C?, uy Ay — L(CYy and
d d o
ugle = sup |ugclg = sup z | z —cjl¢
lel=1 =1y =1 %)
3 (3.10)
¢ duj
= sup sup | —cjl
|:-|=:iz=; A ;3‘91 :
or if ¢ is a map of A; into the domain of £(y, x, 1) then
d d
|Lyyodle = sup D sup | D Lygy 0@ bjcrl - (3.11)
ll=Ibl=) =y A =1
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3.2. Analytic Tools

The basic technical tools go back to Cauchy and give the possibility of estimating the
derivative of a holomorphic function in a domain {} by the supremum of the function in
a bigger domain {1’ divided by the distance between the boundaries. In formulae:

Lemma 3.2. Let h be an analytic map from 0 x @ — C, where §) is a (smooth) domain
in C4 and ® c C* a space of parameters. Then for any subdomain Q' c £ with
dist(f)', 30) = & > 0 and for any multi index m = (my, .... my) € N® one has

Im|

sup |[a™h| = sup | 7| < m! §iml sup |A| (3.12)
sl ax® 07) 025" Nx%

(Im| =m; + et mg)-

Let h be an analytic map h : {} x P — LP(C?) for some pe N (LO(Cdy = C*); then,
vl € Zy, &h e LPHI(C?) and

sup |&h < 1157 sup (Al (3.13)
=P Nx®
The proof of this simple lemma, which is based on Cauchy's integral formula, is given
in Appendix 2. A consequence of this lemma is that if h:Ap— C9, then

1Bphlg—s < 187" [hlg ; (3.14)
notice that in the last inequality it would not be necessary to reduce the domain of 1,
which is simply playing the role of a parameter.
Similar statements hold also for the operator D~'.

Lemma 3.3. Ler h = h(8, 1; ) be a real-analytic map of Ag x P into ¥, where ¥ is
either C, or C4 or LP(C?) and let | > 1. Then (| - |g. o = supa, xa | - )

ID~'dhhle_sp < o1(26) lhlgo (3.15)
where
Dot Inl' 2 —pamiemn]d
aip) = [2 DN e ', @ie

(n,m)eZ4*1\(0,0)

d d

(Inll = (X 1ni1)"2, Inl = X Inil). The same estimate holds for I = 0 provided h has
i=1 =1 L

vanishing mean value over T4 If (w, 1) verifies Assumption 2.11 then

ap) < Kys ™0 | k=200 T+ D+ 1), (3.17)

I" being Euler's gamma function.
The proof is given in Appendix 3. Notice that if (w, 1) satisfies (2.33) it is very easy
to check (3.15) with o replaced by Ky&~"+*4), For example, in the case [ = 0 and

% = C, recalling that the Fourier coefficients, h, m), of an analytic function h decay
exponentially:

Ihimmy] < € OmHHmDE e (3.18)
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one finds immediately (hppy = (h) = 0):

hin.m) iln-04+mt
R i S 5 )
| Z i{w - n+m) 3 le-s

(n.m)#£0

gy Y InlTerEellniimie=s)

{rm)£0 (3.19)
= }'|h|{ z |”|fc—5i|ﬂi+|mli

(nm.m)#0
K?Ul|gt5_h+m i

ID~"hlg-5

IA

[ A

for some positive constant K depending on 7, d.

The fact that 7+ d in (3.19) can be actually replaced by 7 is a quite remarkable fact
due to Riissmann ([R1], [R2], [R3]) (sce also Appendix 3).
‘ There is also another reason for leaving the explicit expression of ) in (3.16) and
is related to our compuler-assisted technique: in trying to establish “sharp” numerical
bounds there will be delicated points where we shall estimate o “accurately™ with the

aid of the computer rather than using the simple (and necessarily “non sharp") bound in
(3.17).

3.3. Norm-Parameters

Let us go back to (2.9) amd assume that a non degenerate solution v is given (see
Definition 2.6). In this section we introduce several positive numbers controlling the
n%rrr:s of the relevant objects. We need to define the following complex domains of
C?*1 (recall that A; = ((0.1) € C4! 2 |Im(0)] < £, |Im(1)] < €))

opé

Pl =[x eC” V| y=w+Du@0.1), x=0+u(0,1), (6,1) € Ag)
, (3.20)
and for any p = (p;.p3) € IRi (= [(w )| =3 |wj] + 1)

i=1

B = ((rx.0)= o+, 20+ x1.10) | (¥ Xo. 1) € D, yy] < Dy, Ixy] < pa) .

- (3.21)
Now, because of Definition 2.6 and the analyticity of £ we can assume that there exist
£, a > 0 such that

(i) ‘.‘_.l'!f"_“ < analyticity domain of X

(if) sup ',',';_J| < DO

e (3.22)

(iit) sup|(I +vg) | =sup|M~'| < oo.
Ag A
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We then set (| - [¢ = supy, | - | and notice that af ¢ ‘Ebﬁ)

|Lyylae <L . 15y lae < L.

1+ vle= Mg <M, M <M,

[T+ vglg = [Mlg < Mg < (3.23)
Iullf E s .

lele = 1B()lg < E.

We need more norms relative to the derivatives of £ (in the following formula | - | is
short for | - |g¢)

max[ QIIEE:_}'}'L nl-(ﬂx:yl- !'(-exxxl ] = LJ '

max (0 Lyyyl, ULyyel, 1Lyaal | @ < LY,

max (0 Lyypyl, W1Lyyysl. OLyynyle ULyyrel, ULyeryl [Lyoesl 1 2 < La

max[n'zl-(ﬂy)fyll- ni-(fyyxll- I-(gyxxri |0l < L; . (where |- | = | 'I';"bf} . 24

. (3.24)

The various powers of 11 = |(w, 1)| have been introduced for later convenience. It might
appear somewhat strange that for a quadratic scheme for an equation involving the first
derivative of &£, we introduce the fourth derivatives, but, as we shall see, these “extra”
derivatives allow us to avoid one more loss in the analyticity domain, which is a very
costly operation from the point of view of accurate bounds.
Finally, we will also denote by s;(p). p > 0. an upper bound on @i(p) {cfr. (3.16)) and
for simplicity we assume that p — 5;(p) is decreasing:

ai(p) < si(p) (p — si(p) decreasing) . (3.25)

We end up this section noticing the following simple relations among the above param-
elers:

IL=>1, M=>1, M=>1. (3.26)

The first inequality is obvious; in fact:

1= 1] = |%yy L5 lge < LL. (3.27)
Next:
M= Mg = MT1g > | Mg = Mo ; (3.28)
then, if e; denotes the d-vector (1,0, e 0T (legl = 1),
Me; = e+ (Bov))" . (3.29)

Therefore if (fg, tp) is a critical point of the periodic function vy (@, 1) then
M (Bp.10) €y = € . MT@.0e =e. (3.30)

Thus, from (3.28) and (3.30) it follows immediately the second and third inequalities of
(3.26).
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3.4. Bounds on the Solution of the Linearized Equation

Here we shall provide bounds on I.wlg_s and |wylg—s, where w is the solution of the
linearized equation (2.44) and & is (at the moment) an arbitrary number such that

D<éd=<é. (3.31)
Since
|wle—s = [Mzlg—s < |Mlglzle < Mlzlg (3.32)
and, by (3.13) applied to A : Ap — L(CY),
lwolg—s = | Moz + Mzplg_s < M@ zlg—s + lzalg-s) - (3.33)

we see that we have to estimate |z]g_g and |zplg—5.

Remark 3.4. Obviously, once a bound on |z|;_5 is established one could immediately
estimate |zgp|¢_5 in, say, § — 26 by using Cauchy estimates. However, with some more
work, it is possible to estimate zp directly in Ag_s. Restricting the domain of analyticity
(or, better, the domain where it is possible to estimate the sup-norms) is a very costly
operation from the point of view of “optimal bounds™, and it is, therefore, important to
avoid unnecessary analylicity losses,

Let us begin by estimating the constants ¢y and ¢ appearing in the definition of z (cfr.
(2.42), (2.43), (2.45)). We need some properties of the twist matrix J (8, r) for (8, 1) real
[recall that |- [p = supl |, by = (w+ Du(@, 1), 0+ v(@, 1), 1))

Lemma3.5. Let T = M2y M = MTE yyo Dy M be the rwist matrix of a non degenerate
approximate solution v and let M, M, L, L denote upper bounds on (respectively) | Mg,
M g 1L yylapes 1L5,) |pe: then

(VML <|Tlp <191 < ML
(i) ML < 1T Yo <197 ) <ML

A s _ dodi
@I o= (1= f : W)
'l'\-l-ol

The proof of this simple lemma is given in Appendix 4. From this lemma it follows
immediately that

leol < (MM (L) [0~ (MT &)l (3.34)
and from (3.15) (used here with =0 and & = £) it follows

lcal < MMM (LL) s(26)E . (3.35)
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The estimate of ¢ is analogous. Using twice (3.15) (with § = £/2 each time) one
obtains:
leil < M D™ ((MTLyy M)~ [co — D™ (M7 NN
< Msp() 1M7Ly M) o — D™ (M O)lg 2

< Mso(€) (M Ly, M) g2 (leol + 1D (MT )l g2) (3.36)
2 2 2 50(2€)
< (MM)2sg(€)* EL [l+(MM} LE {5)]

The estimate of izt;,,; proceeds along the same lines, using (3.15) twice (with & replaced
here by 6/2 twice):

[2le—5 < 50(8) |(MTLyy d)~" (co — D~ MTE))lg—572 + Iy
< s0(8) (M7 Lyy M)~ g (ol + 1D~ (M7 E)lg—5/2) + lul
< 5g(8)|(MTLyy M) ¢ (leo] + s0(8) M Elg) + |y
50(2€)
5p(8) (3.37)
50(26) }
u(f)

< ELso(8)2(MM)M {1 + (MM)* LT ===

spl€)

M (J{)(a)

= EL M (MM) s5(8)* b
=ELaM™! ,

) [l + (MM)? LT 2028

where last identities define the parameters a and b. Also the estimate of zg is similar as
long as one uses (3.15) twice but the first term with [ = | (and 8 replaced by §/2):

0 A -
Izﬂlf—d == 1-33 D I{(J“.T.T}-y.ﬂ.} ! [Cu -D I{ATE}] }I£_5
< 51 (BMT Ly, M)~ g Ucol + 1D (M7 E)lg—5/2)

0020)1 (Ct)

< ELMM 50(8)s5, (8) {1 + (MM LL
so(8)

= EL M (MM) 50(8)s5(8) b, .

where the last identity defines the parameter b,
Finally, by (3.32) and (3.33) we find:

|wlg-s < ELa , a=sy(8)° (MM)*b ,
5p(2€) so(£)y2 —5p(2€) (3.39)
b=1+ (MMPALLY M i
(MM)* e (mm) [1+(MM okl >
and
e 5 b
lwol_s < ELa(57 + _2.25;'5")
5(26) (3.40)

by=1+ (MM Y L A L
\ 7 50(8)
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3.5. Bounds on the New Error Term

At this point all the machinery is set up and we are ready lo estimate the new error term
£ = €(v) (cfr. Proposition 2.13) and to check that

IE’lf' = IE“I|£_5 < KEEz . (3.41)

for a suitable constant K depending on £, § and on the norm-parameters introduced in
§3.3. The purpouse of this section (and relative appendices where all details are carried
out) is to provide an explicit and accurate expression for the constant K.

It is fairly clear and straightforward how to proceed; however the care (apparently
quite excessive) we shall put in determining K is justified by (i) the need for complete
explicitness (expecially in view of concrete applications) and (ii) the need of keeping
track of the quantitative roles all the different parameters play in the scheme so as, e.g.,
to avoid dangerous (from the point of view of accuracy) approximations.

Of course in order to get a manageable theorem we shall need to do several semplifications
at the expense of accuracy; but one of the points of the present work (and of [CC1],
[CC2). [CC3], [CC4), [CFP], [CG)) is that the stringent smallness requirement of such
a theorem can be mitigated by a previous iterative application of the set of accurate
estimates we are working out here. We will come back on this crucial point in the next
section.

After these premises we formulate (without shame) the main result of this section.

Proposition 3.6, Let & = €(v') = q) + 92 + q3 as in (2.46), (2.47) of Proposition 2.13;
let 0 <8 < Eand let M, M, L, L, E, si(p) (i =0, 1), Ly, Ly, L3, Ly be as in (3.23),
(3.24), (3.25) of §3.3. Then (3.41), i.e.

|€le < KLE?, §=¢(-8, (3.42)
holds with

5! s
xsa{7+-(c+n L[L3+L4{S+ M)(1+87") + ELas Ly

(Grps GO,

o 2 5 11(5]bl
+4Ly aL(c+ 1)8 (4+ +4s(5}b)

AWt 2
+ xa 45 Mso(8) S } :

where _
xa=10 d=1
yi=1 d=12,
a= (Mﬁ)zso(a)zb 4 by=1+ (MM)ILL 50({266))
sol€) 2,+ S0(26) Ly i
b_b|+M(n(§) [1++ MADLL (f}] Fwripet
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I 7 Y ’ 50(28)
d = (MM)’s0(28)b) . by=1+ (MM)*LL %0@0) °
= H 8 a-‘.‘
"= (MM)sg(8)by . g = 1+——+ :.(5) 37 (3.43)

Proof: The easiest term to treat is gz: by (3.37) one sees that

lqale = lEazle < leale lle < lelglzle 87" < Ezzfi' (3.44)
with
a = (MM)so(d)b, by =1+MMLL $0(26)
s0(8)
and
Jolt) 2,7 %0(26)
b 1+ (MM)2LL =2
b= |+M’( m) [+( pLEs

Next, recalling the definiton of ' (Proposition 2.13) and of ¢y, ¢}, we see that

laile < ID[] 0 by — L] 0 by — Ly 0 duDw —Lyr o ]l
*fro‘ﬁu _-‘E; oty — xy‘)‘i'qu -fxxo‘f-’vwlf (3.45)
= 1Dge + 1a{"lg

where ql ! and q{ ) have been here defined (in the obvious way). Then using the integral
formula for the n::mamder of Taylor's formula (at the second order) and recalling the
definition of L, one finds

1
|qt|n|f' S 5['!5813’)'( Ilei +2|-‘Il.|_\'|{' leg'lpwlf' o Ig.uxif' thi]

|Dw|f l{ (3.46)
Sl i + 2jw 1; -Hw!,g]
where |£.]g is short for |£. o ¢yl p. We need therefore a bound on Dw:
Dw = DiMz) = (DAM)z + MDz. (3.47)
First of all abserve, in general, that if f: 8 € R™ — R4 and a € R™, then
(a-3g)f = dof @ = |(a-3)fl < lalldaf], (3.48)
so that by Lemma 3.2 one finds -
IDMlg < Q57'M . (3.49)
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Recalling (3.37) one obtains
el = (M7 Sy, M)~ [co — D~ (4T e)] e
< 'L [icol + 50(28) ME]
< ML [M-‘Hzfﬁu(zgm + .;n{zfswg] (3.50)
= ELMM® s50(28)b)

t~I
EJRLS

= E

where we have introduced the constants

n(2€)

f= (MM so(28)b, ., b= M)’LL ]
a=( ) sp(28)h) 1 + (MM)“LL 50(29) (3.51)
Thus, form (3.47), (3.49), (3.50):
\Dwlg < N6~ “La+ELd = ELa (n.s—l + “_)
T a (3.52)
= ELaflec.
where
— a_l i .
& ¥ afl

And finally,

L ol iy 2 Lakas
g\ < T1 [E’L’nzf2 + 2B ale + EZL’;B] = T"E’L‘a‘ (c+1?. (3.53)

To estimate Dqliﬂ we could treat qtl"] similarly to qi” and then use Lemma 3.2 to

estimate Dq%" ). but this would lead to an extra loss in the domain of analyticity in @,
which we want to avoid. Instead we compute explicitly Dq‘l-" ) and calling here
[ = flw+Dv,84+v,1) = .‘f}-{w—i—Du. f+uv, 1), f+ = f(w+Duv+Dw, O4v+w, 1)
(3.54)
we find
IDg g = D[+ — 1 — fyDw— faulle
=|w-(ft - f - [yDw — f,w)+ﬂ,(f+ — f— fyDw— [ w)|g
<3 = f— [0 — frw) wlg +13(f" = f— fyDw = frw)lg
= Al + AI .
(3.55)

And by the integral formula for the remninder of Taylor's expansion one has:

Ay =13g(f* = f— fyDw — [w) wlg

1
=|39{j0 (1 —ﬁ)[fnymDm-i-f)‘,Dm w4 feyw D|u+f,,ww]dﬁ} wlg

(3.56)
and

1
Ay = Iﬂ;{-{} (1—58) [f_‘,_‘-DmDm + fyxDw w+ foywbDw+ f“ww] dﬁ}l; ,
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where the derivatives of f are evaluated at (w+ Dv + BDw, 8+ v+ Bw, t). Performing
the @ and 1 derivatives one sees that A; involves, besides derivatives of &£ and quantities
already controlled, also Dwyg, w;, Dw;. To estimate Dwy observe that

Dwg = D(Mzg+ Mgz) = (DM)zg+ M Dzg + (DMg)z + MpDz 3.57)

and
| EZG"
M

|Dzglgy < 267'IDzlg_y = 257 a” = (MM)s0(8)b,

Therefore, from the inequality
d
DMy < D&M, Q=) w+l.
=1

one has

\Dwglg < QELS™ [a”.rl 6) + 24" +45 " a+ a'] — 4EL5 %agl

with
sa° & a" &a"
=14 4250 —+-—-
g 1+4a+45|( )a +3
Analogously one obtains
Tz (5=t 4 2UR 8y
luyilg < ELa (5 e %00 b ) -

|Dwlg < 4ELS %ag) .

With a bit of patience one will now obtain proposition Proposition 3.6 above: see Ap-
pendix 5 for complete details. O

4. KAM Algorithm

In the preceeding two sections we saw how, starting from a given approximate solution,
one can construct a new approximation leading to a new error term which is quadratically
smaller than the original one. If the new approximation is non-degenerate (in the sense of
definition Definition 2.6) one can iterate. This procedure will lead to an algorithm that,
given a set of positive numbers (= the norm-paramelers relative to a given approximate
solution), produces a new ser of positive numbers (= the norm-paramelers relative to the
new approximate solution).

Eventhough the estimates we established look complicated (because we avoided ar-
bitrary approximations), any computer will have little trouble in performing the iteration
for us (of course a control of the errors introduced by the machine is needed: sce §8).

If the norm of the error term converges to zero (in a suitable way), the solution we are
after will be constructed. Of course, in order to establish the convergence of the scheme
in a finite number of steps we still need a theorem: such a theorem will be discussed in
§5.
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4.1. A Self-Contained Description of the KAM Algorithm

Given an initial non-degenerate approximate solution v = v'?, let £ = £ and & be as
in (3.22). Fix now a sequence &; of positive numbers and let

Zaj < &y, Ejpi=¢&j—8). (4.1)
i=0

TM ll}is level the choice of the “analyticity-loss-sequence” [6,] is rather arbitrary; however
it might already be clear that asymptotically it will have to satisfy certain requirements
(we shall come back on this point, see §6).

Let j = 0 and let

Nj = (Mj, Mj, S}, Ej, pj=(prj.p2j)s Lj. Lj, Laj. Laj, Ly Lyl (4.2)
be the set of suwe numben controlling the no:ms of v on Ag and of £ on 9 .ﬂf" li.e.,
M > 1400l = 1401 B 2 1+ g, 5 > > v, Ej > |<s(u'~’”}|;
L;j > 1€yl ,, |J3,,,|,, Lj>|¥ ,l 1,. the remaining parameters being as in (3.24)
with |- | rcplm:cd by |-|_ g_‘ ]. The r.-sumnlcs of §3 can be encoded in the following rule
defining N4, in terms ol’ .N

) - 51(8;) by
Mjy = M;+E;La (5J| 1(8; l)

50(8,) b,
t 5 (8;) .
R (1 -9, ETa; (57" + 243 )) it fwd <1
00 if Jwy); =1
- L (8j) by
Sy =854 By (67! 4 2L224
j+! J J i) ( I ‘Utﬁ;) b})

Ejpi=K;E5L,  with
5‘." ai - 4
Kj= aj {MLJ + _'(rj +1)? L[L] + Ly(Sj + M1 + 87" + 3:EJ-x_aJJEi;%'.4

b 518 b
gl =L 1o =y !
(3‘+4+4s{,(a!) b,) L]

- = 5)) b
+4L, Tajlc; +1)672 (g + 2 + 5 18)) by
3 Laj(c; + 1) (3; 2 T3 56) b!)

—tEF %)
+Xd'48j Mj.l’u[ﬁj) a—; } A

o = 8;) by
Pl j+l = Pj jLaj ( i +-Tu{5j] b})
P2j+1 = p2j+ EjLa; ,
(4.3)
where 5,(8) are upper bounds on o(8) (cfr. (3.16), (3.25)) and yg4. aj. bj, ¢, g; are
as in (3.43) with 5, M, M.... replaced by 8;, M ;. M ...
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The definitions of M j; 1, Sj4 and E ;4 come immediately from from Ut = U4y
and from (3.42) (obviously here v plays the role of v, £V of g, etc.). One easily obtains
M4 observing that
MUY = (D 4wt = WD) A+ WD) )
< [ (= 1)~ g
Finally, one has py j+) = Py + Oy |f: and py j41 = paj + (wg,. Now, if MH.I <
o0, the function vV = yU) 4 W' (again w'? here plays the role of w of §2-§3) is a

non-degenerate approximate solution and iteration is possible.
Clearly the problem is now to give criteria for the convergence of

j-1
o= 04 z w'? (4.4)
i=0

to the solution u(@, 1) we are after. Here, we establish a criterium which however is not
practical (involving the check of infinitely many conditions) and we postpone to the next
sections a complete discussion.

o0
Proposition 4.1. Let p > 2, £0o = € — ) 8; > 0 and recall the definition of a (see
=0
(3.22)). Then, if :

M; <0 (Y20,

(=] o
Yopysfa, Y pydl <00,
=1 j=1

j=1
then the KAM algorithm converges, i.e., v/ = v 4+ 5w converges in the CP-narm
i=0
on Ag 1o a solution u of (2.4).

After realizing that py; is a bound on |m§”|j. that py; < py; and that (by Lemma 3.2)

i-1 i1 j-1

J -~ i
Elagw"]ih < Z m lwmlf. < Z 81 r |w“l{.

i=0 =0 i=0

the above stalement becomes obvious.

5. A KAM Theorem

Here we prove a theorem which provides a “simple” quantitative criterion for the exis-
tence (and local uniqueness) of a solution of (2.4) close to an approximate solution v.
The theorem is formulated in a way that makes it possible to apply it to approximate so-
lutions obtained via the KAM algorithm of §4 (in which case v below would correspond
to vy if the KAM algorithm has been applied N times, M 10 My, etc.).
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Theorem 5.1. Let w satisfy Assumption 2.11 and let v be a real-analytic approximate
solution of (2.4). Let r = 1/67* and let M, M, L, T, 5. Ly, Ly, Ly, L}, E, be as in §3.3,

(3.23), (3.24): the norms relative to &£ in (3.24) are || = ||y . let Ky be asin (3.17),
assume (for simplicity) 0 < € < |; finally define s
K = 16647 . MA(MM)*(LD)* (S + MK | KJay* ¢4 73 2177 (5.1)

where A = max (LL;, LLy, LLy, LLy, 1) and y, T are the diophantine constants of @
(see (2.33)). If

KEL < 1, (5.2)

then (2.4) has a unique real-analytic solution u with (u) = (v) admitting an analytic
extension to Agpa, such that 1 - ug is invertible on ﬂ'§ and

[ — U[i < KEL 3% . (5.3)
KEL
|Hg — Ugli < ES? . (54)

Local uniqueness holds in the following sense. If u and u' are two non-degenerate solu-
tions in Ag with vanishing mean-value ((i) = (u') = 0) and if the parameters M, M,...
in the definition of the above constant K are, here, defined replacing v with u, then

VK |u— W'le <1 — u=u (inAg) . (5.5)

If X depends analyrically on parameters p. € P (P being a compact subset of C") and
the above norms (M, M, eic.) are defined replacing Ag by Ay x P, then the solution u
is analyric also in p € P and (5.3), (5.4) hold on Ag x P.

Proof: Let v'? = v, £9 = £ and, for j > 0, let

¢ £ £
§i=3+37m - bj=&i—€m =37 (5.6)
and (cfr. Lemma 3.3 ):

08) =Koy8™ ",  Ko=2"TT@r+ 1),

51(8) = Kyys~ 7t | Ky=2"""T@r+3).
We claim that if (5.2) holds, then we can construct via Pr_npositjnn 2.13 a sequence of
non-degenerate approximate solutions v') = U= 4 U= for all j > | (this means
that we can apply iteratively for j > 1 Proposition 2.13 with v = U=y = wl=D)
=% and v =_|,-U]_ =D M=MYD =1+ uf,”). cic.). Moreover if Vj, V;,
Wi W, ‘rlf');j. M, M;. E; denote bounds mb%hc corresponding norms [ie.V;> ]uullﬁ,
Vig 2 lvgle, Wiz wPlg, Wiy > Jwile, My > | M0, My > (MU, ],
then M; < oo for all j and the following estimates are true for every j:

(KEL)Y (5.8);

(5.7

E,L

1A

A

i
1
E : k
I*=n Dw[ )lt" = ril . r ﬁ (5.9)1
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j
S Wesr (5.10);
k=0
Mj<2M (5.11);
M;<2M (5.12);
Sj+M; <25+2M . (5.13);

Observe that (5.9) and (5.10) show the consistency of the choice of the domain E’}}fr_”.
which can be kept fixed during the iteration. .
To check the claim, observe first, that from the recursive definition of V;, Vi, M;, M,
S, it is:

i
Vil =V+I W
i=0

J
Viip=Vi+ ZWN
i=0

I
Mj =M+ ZWH
i=0

- s i
M-(1-M YW if Yw;<l
My = i=0 =0
i+l

Jj
i=0

|

J
Sj+l =5+ ZW" .
i=0

We now want to prove (5.8).....(5.13) by induction on j: j = 0 is obvious. Assume the
claim true for 0....,j: we want to prove it for j+ 1. Let A = max(LL3, LL}, LLy, LLY, 1);
it is not difficult (just a bit tedious) to check that for i < j:

Eis1L < (EL)Boyo
Wi < Ei_I_ﬁm'j (5.14)
Wii < EiLByy'
Dw| < ELByys' 0
with
Bo = 8-208°M*(MM)}(LL)*(S + MK Kgay*287e=473 yo = 24713
By = 13- M(MM)'LL k3224 +H g 2r | yy = 2%
By = 165- M(MM)'LL K Koy? 2V ¢ 7!, vy = 2%
B3 = 130- M(MM)*LL K3y*2¥7 &1 yy = 234

(see Appendix 6 for details).
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Next: (5.12); is equivalent to

j=1
2M Zwli = 0l
i=0

(5.15);

and this condition implies (5.1 1);. In view of these comments, to prove the claim we

have to show that

E;L <(KELYY ., K= Poyo.

j
|Zﬂwmlﬁ < rfl, r EL .
i:n

Proof of (5.16):

J
Ejnl < (BT Boye’ < (ED*" [[(Bove’™»*
i=0

24l

and, since

one obtains:

T < [ETa T 55
sl < [ETRy' ™7 3o' 73T Pt

< (Efﬁnm)lm ;

41 2'“'_ (Erﬂu.’n)'y“

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

P,
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Proof of (5.17):

i J J
1Y Dw®l, <Y 1w, < B30 Y EL v

i=0

i=0 i=0
J J

B - 2 .Yii B 1
) ] (EL (=) <« —0 (=)

Buyo g Pave Y0 Boyo g 24

168 ., _ 1

0, =i

“1Bove. — "=

where (5.2) and % < r have been used.

Proof of (5.18):

J J
S wa<p ) ELn'
k=0 i=0

Proof of (5.19):
=1

i=0

Bi iu{fﬁ ]3'(1'.]*' . & Zj:[i)‘

Boyo ‘= A Bovo >
< 328,

MBorve

J=1
IMY Wy <2M B, > ElLy)
=0

i1

= e I |
2MB; Y2 By = L
(EL y(—=) « —— {=)
. Boyo ;zn Foro {?u Bovo ; ’
32?32 -
1
“ 15Bovo

Proof of (5.20): since

J—=1 i=!
Si+Mj<S+> "+ M+ jwpl
i=0 i=0

we have to show that

i-1 i1
Ziw:ml + leaml < S+M.
i=0 e

From w'® = APz, one has w” = Mz + 2/ M, and

: ELa; —  51(8) by
|'|JJE“| 25‘_13,' ;vf + Eila; 1 '}-L :

i Sg{tsi] bi -

85
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hence

-l -1 )

Yol 1+ Y e <

i=0 i=0

L o P et il 3 by
EiLai8"S; e 51(8i) byi
EZ_M(_:_*-;UE'IL“E&'I (|+2($| St )

o) b
i=0 so(6;) b;
i1
- A [S4+M 51(8;) by;
T4 : b 1§
2 Y Blali’ |53 *+ 5 S 5]
< §4+M.

The inductive argument is complete and (5.8) = (5.13) hold for all j.
From the above estimates it now follows that

J=I
- 328, - = & :
(7] 11} A = L=
W —ulg, < |Zr:J wlg, < St KEL < KEL o (5.21)
=
and
-1 -
, : 168 —  KEL
Yl 0 EREL = == (5.22)
IV ”"'—'g ole, < 5pove 1252

This shows that the series v+ Y ..g w'? converges uniformly in the complex compact
domain Ag_ = Agp in the C'-norm to a (real-)analytic function #= v+ 3 .50 w?,
which by (5.21) and (5.22) sati fies (5.3) and (5.4). Obviously, by construction, u will
satisly (2.4) and by (5.12)

1+ uwp) g2 = j'ingu 1+ g <M < 2M (5.23)

showing that u is a non-degenerate solution of (2.4),
The condition

ELByvo < 1
is equivalent to KEL < 1 if one sets:
K = Boyo = 16642 - MAMM)B (LIS + MK Kjay* g4 22127

We sketch now the proof of local uniqueness. Let u, v’ be two non-degenerate solutions
of (2.4) with (u) = (u') = 0, real-analytic in some &g (£ < 1) and let w=u' —u and
set 7 = |wlg.

Let M, M....be bounds on [+ ugdle (X4 1g) ™! |¢w.-and let &, &; be as in (5.6). Since
u and u’ are both solutions we see that

0=%") = 8w + € (Ww+q , ie. €(wmw+q, =0, (5.24)

where gy is as in (2.24) with v, v' replaced by, respectively, u. u+ w = u'. Now, q,
can be estimated on Ag, _s,/2 by (cfr. (3.46), (3.48) ) [30 - Liin? 7] here we are
disregarding that many terms in (2.24) actually cancel. On the other hand one can check
that setting z = M ~'w. one has (cfr. (2.32) and note that in the present case g; = 0,
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A =0)
€ (ww=MT[DEID)], (5.25)
where, of course, the twist-matrix J is defined as in (2.18) with u replacing v. Thus:
we=—M D‘I{E'T"[D"(.qul)+cl]}+.uc; . (5.26)

with ¢; defined so that the term in curly brackets has vanishing mean-value and ¢; so
vaat {w) = 0 (recall that u, ¥’ have vanishing mean-value and that (M) = 1):

a=@) NI W), =MD {T' DT Mg + e} -
(5.27)
But then one can check that w can be estimated on Ag, by (compare with (3.39)):

lwlg, < lg1lgLa . (5.28)

where a is defined in (3.39) with § = £ and & = §p. Thus we see that the size of
w in Ag, is quadratically smaller than its size in Ag,. Now, iterating such argument,
mimicking the estimates in this section, one can easily check that

lulg, < (Kn‘i)ﬂ . (5.29)

which shows that, if (5.2) holds, then |w|g = 0, so that, by analyticity we can conclude
that w = (u' —u) =0 in Ag.

Finally, the last statement in Theorem 5.1 on the dependence on parameters g is obvious
by the uniformity of the bounds. 0O

6. Application of the KAM Algorithm to Problems with Parameters

In this section we shall describe how one may apply the machinery of §2-§5 in an
efficient way to problems with parameters.

6.1. Convergent Power-Series (Lindstedt-Poincaré-Moser Series)

In many physical problems one deals with a one-parameter family of Lagrangians

L(y, x, 1; p) such that for & = 0 an explicit solution ug(8.t) of (2.4) is known. For
example if

E = Z50) + L0y, x,10)

is a nearly-integrable Lagrangian, ug = 0 is the trivial solution of (2.4) with u = 0 and

any w. If we assume that £ depends analytically on s € P, where @ is some compact

domain in C containing x = 0 and if all the sup-norms | - |. of §2-§5 are replaced

by s;pl il e = s;psup |€(0; u)| satisfies (5.2) then by the uniformity of all the
A

limits, we can conclude that u = u(8, 1; u) will be real-analytic in A; x %; therefore
the solution u admits a convergent power series expansion in the comp,e.r parameter jt.
For example in the case of nearly-integrable Lagrangians, as already noted, we can take
v =0 (which clearly is non-degencrate) so that £ = u; = £, (w, 0, 1); now if we 1ake
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9P = [peC, |ul < ppl one sees that
E = po ¥yl .
Therefore if

Mo < (K |1 1g I)_l X 6.1)

we can conclude by Theorem 5.1 the existence of ul(f, 1; ) real-analytic on Agpy x (u €
C : |u| <yl and pg close to 0.

The problem of the convergence of such series in u is as old as Celestial Mechanics
and was considered by Lindstedt (see also [A2] for more informations). Poincaré longly
studied this problem, which he _unsidered as one of the central problems in Celestial
Mechanics, but did not arrive to any conclusion (actually he thought quite unlikely the
convergence of such series but did not exclude it). It was only with the use of KAM
techniques that it was possible to answer positively the question. In particular J. Moser
devoted a beautiful paper setting completely such a problem ([Mo3]; for different “direct”
proofs see [EkI] and [ChF2]).

As one can see from (6.1) the smallness requirement dictated by a fout-court application
of the KAM theorem gives a radius of convergence absurdely small and cenainly of little
practical interest. Instead one can proceed as follows.

6.2. Improving the Lower Bound on the Radius of Convergence

First step. Compute as many as you can (and if you are not Gauss or Delaunay you may
want 1o use a computer) Taylor-Fourier coefficients of the expansion

u(@. rp) = Zlq(ﬂ,r} #.t = z E Ugn eﬂ"'a*"'"],uk.

k=1 k21 (nomyezd+!

Notice that expanding in u the tori equation and equating the k' coefficient in g will
yield a linear equation for iy of the form:

D ug(0,1) = D(.1) ,

where @ is a function (with viu + ng mean value on T4+') depending upon uy, ..., y_,
and of the derivatives of @,,d,,.J., ,—q (explicit formulae and a self-contained proof of
(hy) = 0 15 given in §7.1 below).

Second step. Lel

v = uﬂl) = Z: Z gy ef(n-ﬂ+ml')p.t (6.2)
k<ky |in.m)| =Ny

(ko and N depending on your computational ability). Make a guess ug for the true
radius of convergence (eventually using numerical methods to get a hint). Fix a £ so that
®,(Ag) is contained in the holomorphic domain of & and evaluate the starting parameters
for the KAM algorithm, i.e. evaliate

M = sup sup |14 vy M = sup sup |(D+ T It elc. ,
lul=p B¢ Il <pa Ag
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making sure that M < oo (otherwise reduce the value of g and/or £). This step may also
involve computer-aided calculations.

Third step. Fix N (a good starting choice may be 10 < N < 20), fix §p,....5x so that
N

£— Y 8; > 0 and apply recursively the KAM algorithm, ie. compute N;, 0 < j < N
i=0 s

provided, of course, M; < oo ¥j. In spite of the complications of the formulae involved,

the application of the KAM algorithm is trivial from the computational point of view,

apart from the evaluation of 5;(8;) (= upper bound on o(5;), see (3.17)). Clearly

it is possible by using truncations of o;(8) ta give an upper bound estimate 5;(8) as

close as one wishes to the actual value; however such an operation is in general quite

time-consuming.

Fourth step. If ]':fj < o0 Y0 < j < N, plug the values My, My, Ey, éy = £, L,
L. etc., in the formula for K (see (5.1)) of the KAM theorem. If KEy L < | we can
apply the theorem and conclude the existence of a true solution u, (KEy L)-cluse to the
approximant v, Otherwise go back to the second step and vary the parametcrs pg, £,
N, 8p,....6x (typically one would reduce gy, etc.).

Let us be a bit more formal. Fixed the starting approximation v (e.g. as in (6.2)) the
above procedure can be viewed as a finite algorithm

AN(P{I:{- 6[)- wary 'SN)' v
where Ay = 1 if KEy L < |, Ay = 0 otherwise. What we are after is

uy = sup (po: Anl(po:i €. 8p, ....8x) =1 for some £, &y, .... ] (6.3)

and since it is fairly clear that py is increasing with N, one wants to get a good approx-
imation of

Hoo = HKAM = Sip BN -

Experience teaches us that ¥ = 20 is usually a good approximation of co; however

approximating py is a difficult nonlinear programing problem which we believe is inter-

esting by itself ([ChF]). Notice that in principle (i.e. if we can compute v for any kg and

Nj, if we can estimate efficiently the norms relative to v, etc.), sup oo = pa. Where
ku Ny

Pa = i:;f {radius of convergence of Z“i."‘ll ; (6.4)
k=1

It is therefore a pure (and highly non-trivial) computational problem to give accurate
lower bounds on pg.

There is however a much deeper theoretical problem beyond this approach. Namely, let

pe = suplp : 3 a solution u(@, £, z2) of (2.4) which is C(TY*! x [0, p)) NCH(TH)) .

(6.5)
What is the relation between py and p.? There is experimental evidence that in simple
models (e.g. the so-called standard map) it is p, = p, (see [BC]): however in general
this will not be the case ([BCCF]). An obvious weaker and more realistic approach would



90 Alessandra Celletti and Luigi Chierchia

be to replace p, above with
pr = sup(p>0:13 real — anulj;rlic extension of u(@, 1, p) 10 T+ x [0, p)} . (6.6)

Of course, in this case, one would have to replace the above computation of v with
other methods taking into account the possibility of -analyticity domains different from
circles.

Note that, obviously pa < pr < pc.

One may also think of solving the equation at given fixed p, simplifying, therefore,
significantly the first step above, which is by far the most time-consuming; this approach
(which has been pursued in [LR]) however yields no informations on the u-dependence
of the solution and in particular cannot be used to give lower estimates on the above
critical parameters p..

7. Power Series Expansions and Estimate of the Error Term

As already noted if one considers a one-parameter family of analytic Lagrangians, such
that for ;2 = 0 a solution ug is known, it follows that there exists for w sufficiently
small an analytic solution u(8, 1; p) of the Eu ler-Lagrange equation. This solution can be
expanded in power series of the perturbing parameter g. An approximate solution of the
Euler-Lagrange equation can be obtained truncating the power series. The approximate
solution will satisfy the Euler-Lagrange equation up to an error (erm. An indicativn of
estimating this error is provided in the last part of this paragraph.

7.1. Power Series Expansions

Let us consider, for simplicity, a special class of nearly integrable Lagrangians (cfr.
[CC2]) given by
1 i _\3
y.un = 5 3 5 + V0, .1

i=1
where y € R and (x, 1) € TY*!. For this Lagrangian, equation (2.4) takes the form
Dlu = pV(0+4ur1), (1.2)

where V; = (gjl}, Ba'f_.;)' As mentioned in §6. if @ is Diophantine a non-degenerate
solution u exists and is analytic in the parameter p in a small neighbourhood of the
origin; therefore one can expand u in power series as

og
wo,n = 5 w@nu' . (7.3)
=1

We proceed now to describe a method for finding a recursive relation among the coeffi-
cients ug. Let f(8,1) = V(8,1 and expand f(8.1) in Fouricr series as

e = Y, Jom et (7.4)
[rom)eZI 1 (0]

A Constructive Theory of Lagrangian Tori and Computer-assisted Applications 91

Following an idea that we learned in [Her3] (cfr. also [Go)), we define for any (n, m) €
Z4+! with (n, m) # 0 the complex-analytic functions bi""") (8, 1) as the coefficients of
the series expansion in powers of g of ¢/("(@+u+m0;

oo

eitn-(8+u}+mr) = Zbin.mlw f)ﬂ-‘ ) (1.5)
k=0

Diffcrentiating (7.5) with respect to u one has;
o0
in-u cl’ll'r'(0+|.r)-i-ir|l'l = Zkbiﬂ’mﬂkql -
k=1

namely

oo 0O oo
,-,,.Zz huhbin.m}#h-—l#k x Ekbi"'"“ uk=!
k=1

or

oo 0o o0
i Z(nz hu,,b‘;:;"‘)y*" = 5 k™ it (1.6)
k=1

=l h=1
A comparison between terms of the same order in u in the equality (7.6) shows that
b((]n.m] = 8i[n-ﬂ+ml]

bg"'m) = :

k
(n.m) (7.7)
I”'gh“hbiﬂ—r = ]

Therefore, by (7.2)
Dy = z f{,. s £ (@-+u)-+mi)
(n.m)EZI1\ (0]
and by (7.5)
2
Doy = z Jtnay Bt (7.8)
(n.m)eZ41\ (0]

'I‘I‘}is equation makes sense provided that the right hand side has mean average zero over
T4+! Actually, we already know that this fact is true, since we proved in §6 that if o

is small enough then ¥ ;¥ is an absolutely convergent series for |u| < pg. However,
k=1

for completeness we shall give now a purely algebraic check of the vanishing of the
r.h.s. of (7.8). Let us denote by [-]x the k-th coefficient of the u-power series expansioi:

oo
if g=Y gu' then [gh = &
k=1
From equation (7.2) we can rewrite (7.8) as

Dy = [pVe(0+ w0y -
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Proposition 7.1. Let ug = constant and let k > 1. Assume that there exist wy, ..., uj_,
such that for every 0 <1 < k — 1 one has

-1

Dl = [pVie@+ Y uip' D) . (1.9)
=1
Then
k-1 _
[ Vi@ + w0 doar = o. (1.10)
Ta+i i=1
Prool: Notice that for k = 1, ug = const. does satisfy (7.9).

Now, for any function G = G(x,1),

fﬂg[G(& +u, n]dd =0= jﬂ +ug) Go(8 + u, 1)df .
T T
Let G(x, 1) = uV (x.1): then

f(]l-’rug) MmV (0 +u, nNdé = 0
T

and since [+] is a linear operator, forany [ = 0

[_/(1 +ug) uV(8+u ndd; = 0
™

(7.11)
= [ (WVelidf + ] (ugV <110 .
™ ™

Now by (7.9) and recalling that ug is independent of @, one sees that

[ tsavawaoar= 5 [ o v do

Jri=t

T“*' Yoy b Bej=i—) fpEnl
k k-1
:Z f (t)o D""uk_j = Z / (uj)a Dlu;,_‘;
1=l TV i=l Td+1
| k-1
=53 f {(u,)g DYup_j + (wx—j)o Du; }dods .
i=1 T+l
Finally, integrating by parts three times one finds
f (ujdp D?'Iq._J dédr = — f Dzuj (ux—j)o dbdt
Tt e+l

(notice that in this identity we have to integrate over f too). Therefore

[[#ugV,];‘ dfdr = 0
T
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and integrating (7.11) over ¢, one obtains (7.10). O

Thus one can invert the operator DY in (7.8) to get

wu =D N fam BT (7.12)
(n,m)eZ41\ (0]

which defines uy ((1y) = 0), in terms of the preceding functions ug,..., u;_. Notice that
it is not legitimate to interchange the order of the summation and of D=2 as the functions
b:"‘m) may not have vanishing mean-value.

7.2. Truncated Series as Initial Approximations and
the Majorant Method

We choose now, as initial approximate solution of (7.2) a truncation of the u-expansion
of 1 and discuss the estimates on the associated error function.
Thus, if [y}, I = | (g = 0 as (w;) = 0), are the functions defined in the previous
paragraph, we set

In

vO@,0 =5 we.nu (7.13)

=l
for a suitable Iy € Z,. Notice that if V is a nii;onumc!ric polynomial, then so are the
uy and the computation of v'%) reduces to a finite number of steps. In general, one can
introduce truncations in Fourier space according to the desidered accuracy.

Recalling from §3.3 the definition of the norm-parnmeters, we see thal in the present

case [(7.1)], L=L =1, L'3 = Ly = L} = 0: the vector p can be replaced by p, (as

no geometry in the y-variables comes really in). Thus, the only parameters we have to

evaluate are Sg, Mg, M. Eg, which are upper bounds on the norms of v,[m. 1+ u;m.

(1 - u[em)" €0 (where £ =€) in the domain Ay x P = Agx [peC: |u| <

Uol; we also need to evaluate the parameter Ly > g [V oo (0 4 0™, 1)y sothat A =
e ]

max{Lj, 1). The estimate of v,[m can be obtained using

o
1300 e < Y 10ttty . | -lepw = sup I-].
.f=l A,xf:!‘

and analogously for v Then My and M, can be estimated respectively by 1 +]u:}[]]1£,p.n
and (1 — (v 1¢..)", provided

(0}
IU‘J |£,_,q{| =

We also set
Iy

Vo= 3 lurle sy = 1071,
=1

and

p= gy = E VT “Eﬁ_ﬁj
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and we take L3 > polVixxla,-
It remains to estimate the error-term €@, Let f(8, 1) = V.(@, 1); by (7.9)
£ — p2y® _ i r(0 4+ 0@, 1)
In

=ZDzn; wh—pfio+ v 1
=1

In
. He 10 (7.14)
2 ZDZW p.l G Z Fesmd gl @+ +mr)
1=} (n.m)z0
I 00
=Y Dup— Y Fm Y dyer 008"
I= (n.m)F0 h=1

where the functions d;r"""’[ﬁ. 1) are defined as the coefficients of the power series ex-
pansion

ei(n-(ﬂi—v'mHmr) — Zd:ln.mltg")#h " (7.15)
h=0

Therefore, one has:

£%e.1n = [iu‘(f)zm— Z f:n.m}d}ffﬂ)]
I=|

(n,m)#0
> (7.16)
= [P’ Z f{n.ml Z#fdin,m)]
(n.m#£0 I=ly

= Hip+Rig = R,

since F;, = 0 because of the definition (7.13) of p@_ (If V is not a trigonometric
polynomial one can replace |Fy,| with an arbitrarily small positive number.)

To estimate |R;,| we shall make use of an old technique, which we shall refer to as the
majorant method. Such a technique, used c.g. by C. L. Siegel in [S], consists, roughly
speaking, in comparing the supremum of an analytic function with the value of another
analytic function with positive coefficients. More precisely:

Lemma 7.2. Let v (8. 1) and d"™ (0. 1) be as in (7.13) and (7.15) respectively. For
any € > 0 define the sequence !a,"‘“) (£)1, 0<l<ly by

a*™ = (Inl + |m)é

(n.m)

(7.17)
a >n-w0,0lg. L<1<ly

and for 1 > 0 let 8™ be defined by the identity

'n o0
exp (Z a}"-"",;') =) st (7.18)
=0

=0
Then one has

1™ @, 0l < 8"™ (7.19)
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and for any pg > 0,

o0 i'n fu-l
1> d"™ @, 0k g < exp (2 a}"""’u{,) -2 8" (7.20)
I=ly 1=0 =0

where, as above, | - |£.m = SUPA, x(|ul<pol*

Proof: As in the discussion on the b's (cfr. (7.5) = (7.7)). it is easy to check that di“'"']
and 8{™™ verify the recursive relations

dlt_,n.mlw )= IEi(a'rva‘H—.-m)

min{l,lo)

dy"™ (8, r)=%"‘ S hup@.0d™" 121,
h=I|

B — oUnlHmil¢
min(l,lg) 7.21)
s = : Y, hasapmt . bz 1. :
! h=1
We prove (7.19) by induction on {. For [ =0,
|d[()"-'"}(5‘ ')l( < elini+HmhE — 33"-”‘} :

Let now | > 1 and assume (7.19) for 0 < h < [ — 1; by (7.17) and the inductive
hypotheses one has:

| min(l.lo)
|d}“"""(ear.:},|€_m,5T ST b ineun(8, 0leld 0,0l
=1
| min(l.lp)
(n.m) glnim) __ o{num)
<y Y ey ey =8 .
h=1

Inequality (7.20) now follows from (7.19) and the definition of the a;'s in (7.18). O

Therefore the estimate of the error term (7.16) on the domain Ag x (i € C : |ul < pel
is given by
Ia—1

Io
€Ol < 0 5 inml {orp (za;*'»mm:,)-za:ﬂ'mm:,}. 72
=0

(n.m)#£0 =0
where a}"‘m) and 5:"‘") are given in (7.17), (7.21).

The strategy outlined in this section was carried out in [CC2] and led to existence
estimates (for the standard map and a forced pendulum) that are away from the experi-
mentally observed “break-down values™ by (respectively) a factor ~ 0.55 and 0.67.

However a serious computational hindrance is hidden in this approach. In fact, in order
to carry out the above steps one needs to rigorously control the computational errors
introduced by mechanical calculations. To do this one may use the so-called interval
arithmetic (see §8 below for a more detailed discussion), which consists, basically, in
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trapping the resull of a computation performed by a computer in an interval whose end-
points are representable by the machine and which is sure to contain the actual result of
the given computation. Now, the computation of the w;'s contains a lot of division by
“*small divisors” (w - n 4+ m) which have the effect of spreading very quickly the size of
the intervals controlling the uy's.

To avoid such a problem one would have to turn to “arbitrary™ accuracy computations,
which are, obviously, very time-consuming (see [CC3] for more informations on this
phenomenon).

A different approach is the following.

7.3. Numerical Initial Approximations

A quite different approach is to compute numerically (i.e. without caring about errors)
the functions u; by means of (7.12) and (7.7) and define the initial approximation as

Iy
V@@ = Y we.0n, ey,
=1
where the ii;’s are the result, given by a computer, of the implementation of (7.12) and
(7.7). With this choice of v'?), one has

In
Fo=Y ' (D= 3 Fom df2).
1=l

(n.m)7£0

which, eventhough will not vanish anymore, can be estimated with a finite number of
operations. The estimate of Ry, is obtained, instead, applying directly Lemma 7.2, with
u; replaced by .

The advantage of this approach is that interval arithmetic is not used directly to control
small divisors.

This strategy has been implemented in [CC4] on various models and yields indeed sen-
sibly better results; for example, the existence of the “golden-mean™ invariant curve for
the standard map is established for values of the parameter away by a factor 1.16 from
optimal (see also §10).

8. Computer Assisted Methods

In order to apply the method outlined in the preceding sections, one may have to perform
lengthy but straightforward calculations (e.g. to calculate a “good™ initial approximation
together with the associated norms), in which case the use of computers may be helpful.
In this section we briefly discuss the so-called interval arithmetic, the implementation of
which allows to take care of rounding-off and propagation errors introduced by computers.

8.1. Representable Numbers and Intervals

A computer can represent exactly a finite set of numbers, which we shall call here the
set of representable numbers N (of course N depends on the particular computer we
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are considering). Such numbers are encoded by strings of “bits", i.e., 0's or 1's. For
example, if x = 37" €;27/, (¢; = 0 or 1) is the binary expansion of the rational
number x € [0, 1), one can identify x with [ey, ..., ey]. To represent other rational
numbers in R, the computer uses extra bits in a symbolic way (see next section for a
discussion of how VAXes handle that). Now, to deal with real numbers without making
approximations one can try to trap them within the “smallest” possible interval whose
end-points are in 2. In this way, operations among numbers are replaced (in a quite
straightforward way) by operations among intervals.

Before going into more details, let us discuss how computers perform “elementary’”
operations (i.e., additions, subtractions, multiplications and divisions).

In general, the result of an elementary operation between representable numbers is not
a representable number and therefore the computer will, in general, approximate such a
result. For some computers (like VAXes) the approximation rule is the following. Let us
call rounding bir the first bit lost in the truncation of the theoretical result. Then:

(i) if the rounding bit is 0, the rounded result is equal to the chopped number;

(ii) if the rounding bit is 1, the chopped result is increased by one bit.

It is therefore clear that by modifying suitably certain bits one can find intervals of
representable numbers which contain the theoretical result.

8.2. Intervals on VAXes

As an example, let us consider a VAX. The procedure to create upper and lower bounds
on the result of an elementary operation depends on the structure of data one is working
with, Therefore we start by illustrating the different kind of precisions available on a
VAX (see [Vax]).

Real numbers are represented in “floating point” notation by a sign, an exponent and
a fraction. The size of the floating point data may be of 32, 64, 128 bits. Correspondingly
one distinguishes between F-floating (i.e. simple precision), D or G-floating (i.e. double
precision) and H-floating (i.e. quadruple precision). The difference between D and G-
floating is that G-floating reserves more space to the exponent (allowing numbers in
the range of ~ 0.56 - 1073% 1o ~ 0.9 - 10°%¥) with consequent loss of precision of the
fraction. In our computations we use G-floating data which we are going to describe in
full detail. A G-floating datum is composed by 64 bits (i.e. a set of 0's and 1's), labelled
from 0 to 63. The first bit denotes the sign of the number; bits 1 to I1 correspond to
the exponent (one bit is reserved for the sign of the exponent), while the remaining
52 bits individuate the fraction. The precision of a G-floating number is approximately
of 15 decimal digits. Moreover, there are two extra hidden guard bits which guarantee
the result of an elementary operation “up to 1/2 of the last significant bit” (see [Vax],
appendix H; the quoted sentence is related to the approximation rule discussed above
and roughly speaking it means that the bit before the last one is always correct, while
the last one is used to get “the closest guess” to the true result and therefore may not
coincide with the corresponding bit of the theoretical outcome).

With this representation of real numbers, it can be shown that the upper and lower
bounds on the result of an elementary operation are obtained, respectively, by increasing
or decreasing by one bit the last bit of the mantissa, taking eventually care of the
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propagation of the carry. (The Fortran procedures to create upper and lower bounds of
a real number are described in Appendix 7 ).

8.3. Interval Operations

We end this section by discussing in more detail interval operations.
Let © denote one of the four elementary operations and, for a, b € 9, let {a © b) be the
result produced by a VAX: let Up(a). Down(a) be the representable number obtained by,

respectively, increasing or decreasing the last significant bit (taking care of the possible
carry). Then it is clear that:

a®b. (a®b) € (Down({a @ b)), Up({a © b))). a,be@ .

Now, consider first additions. If @ € (a_.ay) and b € (b_, by) where a, b € R and
ay, by € R, then, as above,

a+ b e (Down({a— + ! _)), Up(lay + by))) = (a—,a4) + (b, by) |

which serves as definition of addition (and subtraction)} between intervals.
The multiplication is slightly more complicated and several subcases must be consid-

ered in order to properly define (a—. ay) * (b_, by) = (c—. c4), (as. by, cx € AN). In
computer-like language:

{i): Let a_ = 0.

If b_ > 0 then (c_,cq) = (Dov.n{a_ =b_), Uplay * by )k

if by < 0then (c-, c4) = (Down(ay # b_), Upla_ * by)).

Finally, if b_ < 0 and by > 0, then (c—. c4) = (Down(ay + b_), Uplas * by)).

(ii): Let ay < 0.

If b— > 0 then (c—, c4+) = (Down{a_ = by ). Uplay * b_)):

if by <0 then (c_, c4) = (Down(ay * by), Upla— = b_)).

Finally, if b_ < 0 and by > 0, then (c_. c4) = (Down(a— * by), Upla— = b_)).

(iii): Let a— < 0 and a4 > 0.

If b_ > 0 then (c—, c4+) = (Down{a_ = by), Up{as * by)):

if by <0 then (c—, cy) = (Down(ay * b_). Up{a_ + b_)).

Finally, if 5_ < 0 and b4 > 0, then

(c—, c4) = (min|Down{a— * by), Down{ay +b_), |, max|Up{a— =b_), Up(ay +by)) .

The division is treated in an analogous way.
Elementary transcendental functions (exponentials. logarithms, trigonometric functions,
etc.) may be approximated by a finite sequence of elementary operations using Taylor ex-

pansions and simple inequalities to truncate the expansion at a certain (arbitrarly defined)
order; for example:

N=l p N-l g N

RS B e u 2
RGN ER, Flexslk,

n=0 n=
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9. Applications: Three-Dimensional Phase Space Systems

Here and in the following section 10, we bricfly illustrate the computer-assisted appli-
cation of the above theory to a few concrete models. Some of the results presented here
are new (compare end of §9.1), while most of them were obtained in preceding works
of the authors: see [CC1], [CC2], [CC3], [CC4], [C1], [C2], to which we refer also for
complete details.

9.1. A Forced Pendulum

One of the simplest non-integrable conservative system is a periodically forced classical
pendulum described by the one-dimensional, time-dependent Lagrangian

)l]'
Ly, x, 1) = = i cosx+cos(x—~l)] - (9.1)

where y € R and (x,1) € T2.

This model, which is the central object of the renormalization theory of Escande and
Doveil ([ED], [Es]) can also be viewed as describing the motion of a particle with
charge u, in the field of a potential of two longitudinal (electrostatic) waves.

Here, we apply the method presented in the previous sections to (9.1) in order to construct
the “golden-mean torus” T (wg) = T( 3=1) for values of the non-linearity parameter u
of the same order of magnitude of the expected “break-down’ threshold (see below for
definitions and for an experimental recipe to compute such a threshold).

The interest in the stability properties of this particular torus comes from various
considerations: the main being that the golden-mean wg, which satisfies (2.33) with
y = (+/5S+3)/2 and 7 = 1 (cfr. Appendix B), is, in a suitable sense, the “most ir-
rational” number in (0, 1) and one expects this fact to show up in the p-power series,
which involves the small divisors (wgn+m). Of course, this is a rather naive observation
that might lead to the belief that the wg-torus is always the most stable, while (cfr. §10)
there are examples pointing in different directions.

Mumerical methods for determining the critical value p. (see §6.2) have been developed
in [Gr], [C], [ED]. The remarkable method developed by J. Greene in [Gr] is based
on the following idea. Let [p;/q;] be the sequence of rational approximants to the
irrational number w (see Appendix 8 for more informations) and let #(p;/q;) denote
a periodic orbit with period g; and rotation number p;/q;. Greene conjectures that the
disappearance of the torus 9 () is related to a sudden change, from stability to instability.
of the periodic orbits P(p;/q;), which, as j — co, approximates the torus T (w). This
criterion applied to the forced pendulum (9.1) indicates that pc(wg) is = 0.027.

Now a brief history. Our first attempt ([CC1],[CFP]) to obtain stability estimates for
T u(wg) in the above model was based on refining Amold's version of the KAM
theorem ([Al], see also [G1]). This strategy allowed us to establish existence for
0 < u < 675107, a value which was later increased up 10 1.42 - 10~ in [CG].
However, this approach, which, as is well known, is based on a sequence of canonical

(symplectic) transformations, presents an intrinsic difficulty related to the geometry of

the domain where the the canonical transformations are defined. In fact, in order to con-
trol the resonances (i.e., phase points where the frequencies are rationally dependent).
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such domains have to be taken smaller and smaller as the iteration is carried out and
to obtain sharp quantitative results one is led to the difficult analysis of the domain of
holomorphy of each canonical transformation.

This problem is bypassed by considering directly the parametric equation for the tori as
discussed in the present work. The first implementation of this new strategy was carried
out in [CC2] where the Euler-Lagrange equation

D — 7 [sin(B + u) 4 sin(f +u — t)] (9.2)

is solved using as initial approximation the finite power series

lo
V@00 = Y w@.nu' . 9.3)
=1

the u;'s being the Taylor coefficients of the (convergent) expansion around p = 0 of the
solution (see §7.2).

Since, for |¢| < pq (cfr. §6.2), @ 5 4 oas lp — oo, we shall get better initial
approximation by taking I large. However the number of Fourier coefficients of u;
grows rapidly with the order /: u; has 4 Fourier coefficients, 1o has 120 coefficients and
ugp has 3720 coefficients. Therefore, computer-time limitations (if nothing else) forces to

stop at relatively small orders. In [CC2] we computed the functions uy using the general
formula

[T
Dzlq_'_' = Z: al;lf H %’]‘ . (94)
=1

heX;

where 3, = [h € N - hy+2ha+ .. 41hy = I}, with £ = sin +sin(0—1). Such a general
formula presents, however, serious combinatorial problems as | gets large. Using (9.4)
(and about two hours of CPU on a VAX 8600) we_computed. using interval arithmetic,
(9.3) for Iy = 24 and proved the existence of T(¥3=L) for |u| < 0.015.

In |[CC3), using formulae (7.7) and (7.12), which reduce considerably the combinatorics
problems, we could compute (with about the same computer time) (9.3) with I = 40.
At this order the existence of the golden-mean torus can be established (as above, via a
KAM algorithm very similar to the one presented in the present work) for |u| < 0.018.
Finally, using the strategy described in §7.3, we computed numerically (i.e. without
interval arithmetic) vy up to order Iy = 60 and establish the existence of the golden
mean torus for [z] < 0.019. This result, which is new and to our present knowledge is
the best rigorous result in a hamiltonian setting, is in agreement of the 70% with the
numerical guess provided by Greene's method.

To obtain this existence result we solve the Euler-Lagrange equation (9.2) using the
initial approximate solution ul? = )::“ it; ! where the functions it(8, 1) are numerically
compured using the recursive formulae of §7, namely

b:)ﬂ.ﬂl) o= el‘[l‘!ﬂ+ mt)

2 f
(mom) _ ! = o (n.m)
bf =7 n -hz_;huhb.,i:' S i |
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and
= I 2P 0 =00y o =1y (=11
W = _ZED [.*.v,_1 b+ b — by ]

{which are easily recognized as (7.12) with f(x, 1) = sin(x) 4 sin{x —1)).

The computation of the functions @i has been performed on a VAX 6000; the computer
time necessary 1o evaluate the function ugg was about 24 minutes.

Then, following the (quite straightforward) steps of §6.2, we obtained the following

Theorem 9.1. Let w = %—_I, and let £ = 0.08, p = 0.019. Then equation (9.2) admits a
locally unique real-analytic solution w(0, 1; p1) with (1) =0 on T2, analytic in Mg x (e €
C : |u| < p). Moreover, one can construct a polynomial approximation v(f, 1; p) =
60

> (e, 0!, where i are trigonometric polynomials, satisfying
I=1

lu—vlg,p < 02526, |ug — volg p < 0.3824

where | - |¢p = SUP‘;"“_,[‘_:‘;I .

9.2, Spin-Orbit Coupling in Celestial Mechanics

We discuss now an example drown from Celestial Mechanics, which has been investigated
in [C1], [C2], |CF] using the methods developped in [CC2].

One of the most astonishing phenomena in the mechanics of our solar system is that
all the evolved satellites of the solar system always point the same face toward the host
planet, as in the Moon-Earth case. The only exception to this rule is the Mercury-Sun
system, as radar observations have shown that the period of revolution of Mercury around
the Sun is % of the period of rotation about its spin-axis.

Exact commensurabilities between the period of rotation and the period of revolution go
under the name of spin-orbit resonances ([GP], [He], [W]). More precisely, for an oblate
satellite § orbiting around a central body P one has a p © ¢ resonance (forany p,g € Z,)
when the motion of S is periodic and the ratio between the periods of revolution and
rotation of the satellite is E; we shall denote by @(p/q) the set of all such orbits.

A natural question is whether the motion of satellites observed in spin-orbit resonance is
stable or not,

Following [C1], [C2], [CF], we shall use the theory of invariant surfaces to give a positive
answer to such a question under suitable simplifying assumptions.

Let us start by introducing the model we want o study.

Let S be a triaxial homogeneous ellipsoidal satellite with principal moments of inertia

A < B < C subject to the gravitational attraction of a {fixed) central planet P and assume

that:

i) the orbit of the center of mass of § around the central body P is a fixed Keplerian
ellipse;

ii) the spin-axis of § coincides with its shortest physicol axis and is perpendicular to the
orbit plane:

iii) all the dissipative forces as well as perturbations due to other bodies are negligible

(and therefore ignored).
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Then, the equations of motion can be derived from the standard Euler’s equations for a
rigid body ([D]). Normalizing the period of revolution to 27, one obtains
= 3
i+ % B—Ci (g) s =2/ = 0, (9.5)

where a is the semimajor axis of the Keplerian ellipse, » the orbital “radius” (i.e. the
distance between the centers of mass of S and P), [ the true anomaly (i.e. the angle
between the planet-satellite direction and the periapsis line) and x is the angle between
the longest axis of the ellispoid and the periapsis line.
From assumptic. i) and the theory of the two-body problem, it follows that the quantities
r and f are perivdic functions of the time, r(1 4 2m) = r(1n). f(r +27) = f(r). and that
they are analytic functions of the orbital eccentricity e. Therefore expanding the second
term of (9.5) in series, one obtains:

¥+ S v(™, ¢) sin2 =0 9.6)

¥4 ou Z (5. €) sin(2x mr) = 0, (9.

m#Q,m=—na

where p = %%‘-’3 and the coefficients V(5. e) are analytic functions of the eccentricity
&

V(g e) = elm=2 Z akcu i

k>0
for suitable a; € R.
In writing (9.5) (or equivalently (9.6)) we have ignored the dissipative forces acting on
the system. The major dissipative contribution is originated by the intemal non-rigidity
of the satellite and goes under the name of “tidal torque”.
Having ignored such a force allow us to ignore all the quantities which are of comparable
size. This leads us to consider equations of the form:

Nz

E4p Yy W(—;l,e) sin@s—mt) = 0, Ny NyEZ, 9.7)
rrr#ﬂ.m=.~|

where W({'r. ¢) are truncations, to a suitable order in the eccentricity, of the coefficients
V(F . e): of course, such truncations will depend upon the specific model at hand, on the
physical values of u, e and on the size of the observed tidal torque.

Under the above simplifications, we can investigate the stability of the system using the
following argument,

The phase space I associated 10 (9.7)

¥ = ((y.x.0: y=i€R, (x,0) €T

has dimension three. Therefore bidimensional invariant surfaces & (w) divide the phase
space into invariant compartments, with the property that any orbit starting in one of these
regions would remain forever in it. Now, one can show that, in the parameter regions we
shall consider below, the Poincaré map (y, x) = ¢*7(y, x) | ¢'(y. x) = solution at time
1 starting at x(0) = x, x(0) = y] is a smooth “monatone twist map™: (3x'/dy) > 0 (see
[Mo5], [MK] for general informatians). Invariant tori for (9.7) correspond to invariant
circles for ¢*™ and the Poincaré rotation number for such a circle coincide with the
frequency w associated to the invariant torus. It is not difficult to show (see, e.g., [Herl])
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that if (zi}i=1,...q- 2 = (i, Xi), is periodic orbit with rotation number p/q and if %
is an invariant circle with rotation number > (resp. <) p/q. then 'y, lies above (resp.
below) {zi}, i.e., [ N (x = x;} > (resp. <) yj-
We make use of this property to trap a periodic orbit %(£), associated to the p : g
resonance, between invariant surfaces J(w;) and T (wy), W’iﬁ'l W) < g < wj. Obviously
one is interested in taking w; as close as possible to p/q.
Therefore we select the two sequences of irrational frequencies
“(p/4) 1 i) - P 1
Py Ay =q+k+w3

2_ , keZ k22

q

(wy = 3%‘—1). which approach £ from below and. respectively, above and satisfy the
diophantine condition (Assumption 2.11) with the constant y = yx = g (k + wg).

Let us consider now the Moon-Earth system (Moon = §, Earth = P) and let us look
at the synchronous resonance %(1/1). which human kind has been observing for quite a
while.

According to our simplifications, we are led to study the Lagrangian

3
Ly.x,1) = f— + u [{—%-l— %) cos(2x —1)

2
1 5.4 13, 7 1234
+{—2— 42 + 32=} cos(2x — 21) + (4¢ ) e’) cos(2x — 31)
17 5 115 4 B45 5 32525 ¢
O Gt Ty — iihien (e vt =
+{4e lze)cos(x 4I}+{96€ 1536.?}005(21 51)
533 , 228347 ¢
St et = ey eas ks 2x —
+ 32‘ cos(2x — 61) + 7680 e’ cos(2x—Tr) ],

(9-8)
where the physical value of the perturbing parameter u = 3874 is 3.45-107* and that of
the eccentricity e is 0.0549. Using the techiques of §1 < §9 (with the choice in §7.2) one
can construct the surfaces 5’(1‘:' ) and W(Ai”) for k = 2,3, ....35 and from the above
discussion it then follows that the motion of the Moon, as ruled by the approximate
Lagrangian (9.8). will be forever trapped in the region enclosed by 5'{[";'5’) and 5’(&“‘),

35
which, in tumns, is shown to be a subset of [(y. x,1) : (x,0) € T? ,0.97 <y < 1.03].

Let us now consider the system Mercury-Sun, which is complicated by the fact that its
cceentricity is relatively large: e = 0.2056. Therefore we have to retain a larger number
of terms in (9.7); in particular we consider the lagrangian function

»

20 = 3

+

RS

3
Z W(%. e)cos(2x — mt) . {9.9)
m#0,m=—11

We are still able to conclude the stability of the 3:2 resonance, in which Mercury is
actually observed for the astronomical value of the ;x:nurbing parameter, i.e. = 1.5 -
10~*. The tori closest to the periodic orbits in @(3) are those with rotation numbers
I“?}m and A%‘m; the outcoming trapping region is contained in [(y.x.0) @ (x.1) €
T=,1.48 <y < 1.52}).
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10. Applications: Symplectic Maps

In this section we briefly discuss how the KAM techniques of §1 + §8 can be adapted
to deal with symplectic diffecomorphisms of plane regions.

Eventhough there is a tight connection (via Poincaré maps) between symplectic dif-
feomorphisms and Hamiltonian flows (cfr. [Do], [Mo6), [SZ]), it is interesting and often
useful. to have direct formalisms and methods. The direct method discussed below was
introduced in [CC2]; see also [CC4].

10.1. Formalism

Here we shall consider a special class of symplectic (area-preserving) twist diffeomor-
phisms of the cylinder ¢ = R x §', (§' = T! = R/27Z), namely:

F:ily.x)€%r— (. )=+ flx).x+y+ f(x) €€, (=0, (10.1)

where [ is a real-analytic function on 5! (i.e.. a real-analytic function on R with period
27r) with vanishing mean-value. As above, we shall also consider one-parameter familics
obtained by replacing f with uf.

The word “twist™ in the definition of the present model refers to the following property.
If we look at the universal covering, R2, of the cylinder and consider a lift F of F (for
example, replace, in (10.1), € with R2), then F maps vertical lines {x = xp} into
graphs of increasing functions of the x-variable; analytically: (8x'/dy) > 0. In our case,
(ax'fay) = L.

The problem is to study the behaviour of the orbits (yn, xa) = F"(yg. xg), where F"
denotes F composed with itsel” n times.

The observation that, for (10.1), ¥ = x' — x, allows to eliminate the y-variable:
(¥n, Xn) is an F-orbit if and on’ if the sequence |xn) satisfies

X 1 —&%kp+ Xp—i = flxa) 3 (10.2)

obviously, given a solution |x,, +f (10.2) the associated F-orbit is simply (x, —x,_. Xa)-
Analogously to Definition 2.1 we give the following

Definition 10.1. A solution (x,) of (10.2) is called quasi-periodic with frequency w € R,
if w/2 is irrational and if there exisis a continuous periodic function u: 8 € § S
u(0) € R, such that

Xy = wn + ulwn), (mod 27) . (10.3)

and, analogously to Definition 2.5:

Definition 10.2. We shall say that a quasi-periodic solution is non-degenerate ifve e§ 1

(14ug) # 0. (10.4)

As for flows, non-degenerate quasi-periodic solutions correspond to invariant surfaces,
which, in the present case, are invariant circles: the map

fes — (w+1:(6)—u(8—w},8+u(0)) (10.5)
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vields a non-contractible embedding of §' into €.

To require that u(@) is a non-degenerate quasi-periodic solution of (10.2) with fre-
quency w is equivalent to require that u satisfies the following non-linear finite-difference
equation:

Du=fO+u@), (+up#0). (10.6)
where D, here, denotes the symmetrized finite-difference operator with step w
Du Eu(o+§}—uw— ;) =ut () —u" (O . (10.7)

The abuse of language in denoting with the same symbol different objects will be forgiven
in view of the complete analogy of the present situation with the Lagrangian case.

10.2. The Newton Scheme, the Linearized Equation, etc.

The strategy of §2 can be carried out in this context and it is actually simpler because
of the dimension and of the pecularity of the maps we are considering.

First notice that, since for any periodic function g the §'-average of Dg vanishes, in
dealing with the equation

Dg=h (10.8)
one has to require that (k) = 0, and in such a case, the unique solution with vanishing
mean-value of (10.8) is given by:

- i’ﬂ inf = 7, in@ 0.9
g=D"'h= Z —_— e, . h= Y. ke, (10.9)
neZ.n#0 208in (ﬂ-f) neZ.n#0

and we see the reason for the irrationality of w/27 in Definition 10.1.
However, nw/2 will come arbitrarily close 1o 0,  (mod 277) and we need a Diophan-
tine asumption; from now on we chall assume that w satisfies, for some y, 7 = 1,

| —‘in +m |= -—l— : VneZ\|0) ,¥YmeZ. (10.10)
i ylnl”
Let us now introduce the function spaces. Let A} = [# e C: |Im#B| < £) and denote

by | - |¢ the sup norm over n}. Besides Lemma 3.2, which will be used with d = 1.
we need the analogous of Lemma 3.3. For | = 0 we let 5(8) be an upper bound on the
small-divisor series
[ i (et < ) (10.11)
et sin % =i ’

Then:

Lemma 10.3. Let h be a real-analytic function on 6; x @, (P being a compact set of
C)and let | = . Then (| - g = supﬁ;xy[- 1)

\D~'dhhlg_sp < 51(25) e - (10.12)

The same estimate holds for | =0 provided h has vanishing mean value over S'.
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An explicit estimate of 5;(p) for w's satisfying (10.10) is given in Appendix 9.
Let us now discuss the Newron scheme. As above, we shall call v a non-degenerate
approximate solution of (10.6) any real-analytic periodic function such that 1 + vg 0,
and we shall associate lo it its error function €(v) = £(0), given by
Ew)=e(0) =D v— f(B+). (10.13)
With the proficiency acquired in the more complicate case of §2, §3, the reader will have
no trouble in checking the following Proposition (cfr. Proposition 2.13):

Proposition 10.4. Let w satisfy (10.10). let v be a (non-degenerate) approximate solution
aof equation (10.6) and let £(8) be the associated error-funciion. Let

M=1+vg. (10.14)
Then {Me) = 0 and if we set:

wEJ{{D"[(M*ﬂ')"(-r}*'ws)+c.)]+cz} . (10.15)
with
oy = WATHY (=D (M)
(MM (10.16)
¢y = (MD™' (M M) (=D (Me) + c))])
and V' = v+ w, then (w) =0 and

BW) =€ =g M 'w— [0+ V) — [(O+v) — [0 + v)w) (10.17)

The estimates leading to the KAM algorithm and to the existence KAM theorem
for the present situation, can be obtained, at this point, in a completely straightforward

way; however, for completeness and convenience of the reader we shall collect the main
estimates in Appendix 10.

10.3. Results

The above methods, together with the strategy outlined in §7.3, have been used in [CC4],

to study the stability of various invariant circles for the following one-parameter families
of twist maps:

F:(nx)e@r— (¥, x) =+ puf(x), x+y+uf(x) €6, (10.18)
with
(M) f=sinx, (standard map) ,
o _ e (10.19)
) f_-sm.r+ﬁsm( b 3 1
The rotation numbers considered are:
5-1 545
;,—’E\/_ . E‘E-E \/_+ : ﬂE—J—i (10.20)
T 2 2w 10 27 2

Now, let I, (wyg), respectively ["ﬂ(wk}. be the invanant circles for (M), resp. (M").
The stability results are summarized in the following 1able:
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Curve Iy P N (7

Tulwy) 190 0.838 6 5.07-1077
Tu(w;) 190 0.77 5 5.15-107°
Tulws) 160 0.76 5 5.15-1073
(@) 60 04 7 5.03-107°
() 60 0.39 7 5.03-107°

where /g is the order of the polynomial initial guess (cfr. §7.3)v= Z:L (0!, p and
& measure the size of the analyticity domain of the solution u: u(6; u) is real-analytic on
ﬂ'{x i € C: |u| < p), finally N denotes the number of times the KAM algorithm has
been used before applying the KAM theorem.

These results should be compared with the experimental prediction given by Greene'’s
method discussed above;

Curve Greene's threshold

Fulw)) 0.9716

[ ulawy) 0.9044 — 0.9045

[ ulwsy) 0.908 — 0.909

I, (w)) 0.6013 — 0.6014
ulen) 0.7213 — 0.7214

Hence, our theoretical results are in an agreement ranging within 86% <+ 54 % . The
reason for the more sensible discrepancy for the map (M) seems to be related to the
distribution of the u singularities (6 almost everywhere in § !y of the solution u. In
particular there are numerical evidences that p.—dumain'of analyticity of the solutions u
for the maps (M) and (M’) (for the given rotation numbers) has (for almost every @) a
natural boundary.

For the map (M"), it seems that d, > d;, if d,;; denotes the distance from the origin
with the first real/purely immaginary singularity: see [BC], [BCCF].

Appendix 1: Proof of (2.37)

We prove in this appendix the formula (2.37) of §2, i.e.
A = D' (MTep)? , (10.21)
where o is defined in (2.31) as
A = (M aL))t
and the superscript A denotes the antisymmetric part of a matrix, namely

D' (Meg)? = D '(MTeg) — DM (eh M)

=p-! [M"e, - s{,u] . (10.22)

Taking the gradient with respect to 6 of the definition (2.12) of the error function

£0.0) = DS (w+Dv, 0+ v,0) — L] (@+ Dv, 0+ v, 1), (10.23)
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one has

g0 = DIL,y DM+ Ly M) — Lo DM — Lo M . (10.24)
Multiplying (10.24) by A" and taking the antisymmetric part, one has:
M eg—ep M =M DLy DM+ Ly ] — M L5 DM
—DIDMT Ly, + MT L )M + DMT Ly M
= DIMT Ly, DM + MT Ly M) — DIDMT Ly M+ MTE M)
Finally, recalling the definition of s
o= (ML = MT2pE] — (95£]) M
= MTE,, DM+ MT Ly M - DMTL M — MT LM, (1023)

one obtains

Meg—egM = Dst . O

Appendix 2: Proof of Lemmma 3.2

In this appendix we prove the Lemma 3.2 of §3.2.

!.eml;:la: Let h be an analytic map from 1 x P — C, where (1 is a (smooth) domain
in C 'and P c C* a space of parameters; then for any subdomain Q' C £ with
dist(€)', 80)) = 8 > 0 and for any multi index m = (my, ... my) € N9 one has

almlh
sup [97h] = sup |——r| < m! 8™ sup |k -
n'=? 0 x® BZT'.A.B nxgpl | (10.26)

(Im| = my + ... + my). Moreover, if h is an analytic map, h : { x P — LP(CY) for
some p € N (L9CY) = CY), then VI € T4, 3Lh € LP*N(C?) and

su, tobn < 115! sup ] . (10.27)
nxP

Proof: Consider first a holomorphic function hg : £ x P — C. Then, Cauchy's integral
formula implies

" hg
su —_— =
n'xgrl az)" 313'“1
— m! ho(y, ey £a)
= o) G d dy.dial (102g)
WGr—21l=b.lfu—zol=8  [] (Lx —2a)™+!
k=1

< m! &M sup kgl .
fix2
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Now, if h : ) x @ — LP(C¥) for some p € N. then (10.28) implies

sup ID‘zhl = sup sup |ﬂ‘:h cy...cql
x® leyl==lal=1 (FxP
< sup sup ( |8k leyl...lerl )
ley|=-=lel=1 N'xP
< sup (u 5~ sup [h] |c||...1q|)
lejl==lal=1 Ox®
= g sup [h| . O
Nx%»

Appendix 3: Proof of Lemma 3.3

This appendix is devoted to the proof of the Lemma 33 of §3.2.

Lemma: Let h = h(8, 1; 1) be a real-analytic map of Ag % 9P into I, where I is either
C, or C? or LP(C?) and let 1 > 1. Then

D Vdhhle_sa < 01(25) [hg . (10.29)
where
”""’ 2 — n m "t
orlp) = [2*'“ Y e I+ “] : (10.30)

(n.m)EZ4+1\(0.0)

{In]l = (2 (i) 2, n| = z |n;1). Mareaver the same estimuate holds for | = 0 provided

=1
h has vanishing mean m!ue over T+ If (w, 1) verifies Assumption 2.11 then

oip) < Kiys ™, Ky =240 TR+ + 1),

I" being Euler's gamma function.

Proof: We prove first (10.29) fora holumurphu. function g : Agx®P — C with vanishing
mean value, Denote by | - [lg.» the L -norm

2 dbdr
ol e = sup su ] |hpt@ +ia, t + ib)|" —— -
hollz @ up ol 0 [ By
iMef T+t
Then, for any ¥ = (¥}, ..., v4) € [=1. 14, A € (=1, 1}. one has
sup 3 A0 G P < kol (10.31)

| 4

(n.m)

To prove (10.31), let £ < £ and consider the function

Wy = hot0—ivE .t —iAg') .

By Cauchy's theorem we have:

& _ JElnemd)
"oy = ¢ B
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Then, Parsevalls ideniity. yiclds The solution g of the equation Dg = h is given by

s iV, dbdr A gin@-mi)
”TD.., ]1 e!t (ewtmd) _ f |h | < |lh B B (r.m) :
Z (n.m) 0 (27 }n‘+l < 0"59 g=D"h= Z i(n-w-+m)
Ti+1 {n.m)eT4+'\(0.0)
Taking the supremum over £ < £ one obtains (10.31). From the maximum principle, therefore
Schwarz inequality, Assumption 2.11 and (10.3 d ': 7 i
eq) y pt and ( 1), it follows (dropping the index 0) of 2(6.1) = Z n; hinm) gltmtmt)
=] - nl : O 3 zM\(}mm-m-l-m
|8, D7 a9 = | Y g e MmO} Rom g S

(n.m) 0 et From the incquality (see [R3] p.180, formula (9.4)),

n’

] T d+1342
= sup sup I Y T RS Y. lhml® S < 20 nR g (10.34)
P (i A)E[—1, 1 ’ (@ -n-+m)

(rnom)#£0 neZ! meZ
i ' . il .
< sup Z lh(ﬂ ol (Z g2n p+ma,§) 172 = d(nl+im) ;] (10.32) the term aglg(e‘ t) can be estimated using Schwarz’s inequality as
@ lw-n+ m| nl
(n.m}#0 N -
1 ) e ohe@.01< Y | = w+mhl"‘m) citn0tmi)|
< a(26) sup ( AT Z |hmm|1 E f1t:v|-:-+:-mnf) ol
(n.m) A f
' g—Btinl+imi) E(lnl+ml)
< h w) | €
< 0126) lhligo < ou26) Ihlgg . [Ejl,, e th,
nm
nl
2 -5
Now, let h: Ag x P — C? and | = 0. Then, by (10.32) Cs \[z P, my |2 €2E0InIHmD Z |m| (Im]+[m1)
(n.m) (n.m)
D g5 = T 1D
ey - D Wleso < 24 | V@) < 2% 1 V@),
< ap(26) Z: lhilg» = o0(26) |hige . where W(8) = 3. |£L_m|l e~ 28(nlHim) [ e s estimate W(8) as follows.
i (m,m)
If 1 > 1, then for ¢; € CY,....c; € C¥, pes I
n; o= 28k 2 =28k
- _ 1y V() < i _pew (T 1?) ket
|a{g D™ hlg_s9 = r-'||=lsup1c|—l ID™" 84h cy...cflg—s9 g IHH;Miﬂ n-w-m Fee (InI+Iml—t n- w+m
< sup 13 D~ hlg_s. ley). eyl Finally defining by =0. by = 3. |5251% one has
lerl=1.lel=1 D<|n|+|m|<k
= sup a1(28) |hlgw leyl.lel o = -
leyl=1 . le=1 q’(a) = Z (bl _— bl—[)kv E—Hk - E kﬂbteﬁzﬁl - Z(k + I]?.l'b*e—ufk"-l]
= 7(28) |hlg o - k=1 k=1 k=1
, ; 00 21 ,-26k
Finally, if h : A{ x P - LJ"(C“‘). applying again (10.32) one has < (l _'8—25) 2d+3 z k DI '
~1 =
|a$ D hlf—ﬁ_? = sup D I ai;h CleeCl If—ﬁ_ﬂ' : . 0
Wiiel-itisl where in the last inequality we used by = ¥~ |7 l? < . where
< o(268) [h|g o - 0<|n]+|m]<k J
Now we want to show that if (w, 1) verifies Assumption 2.11 then By = 0‘:1"1'!_1&12“‘* [m - @+ m|
(T4 o —————— = _
7). = Kb, Ki=2"0 TaG+ D+ ., (10.33) (see the proof in [R2]. [R4] suitably adapted to be valid with the actual choice of the
where I" is the Euler's gamma function. Assume for @ the diophantine condition norms). Since ! |
e -n+m~" < yn" . D> min (——)=

O<inf+iml<k yln[T ykT
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or g- < yk7, it follows
o
\1}(6] = {I _e—zﬁ} 21’!’4—]?2 Z leZr 8—25* '

k=1
Let us estimate the sum as follows. Let s = 27 and 8 = 285:

o 20 skl

= dx
E :k‘e Ak } :[ 1 e-ﬂ: _BEE
k=1 = 7k 8 k=¥

B 00 k4| B o0 ekl
=1z > e Prgr < |_ﬁ_ﬂ > e By
= 1k €7 =t
ﬁ—l oo .~ ﬂ—l =
Sl—e‘ﬂfu _\e-d_\zl__r_ﬂ](.r-l-l).
Therefore,
W(8) < 2d+—)—(27+!!1y15—121+2.‘1 r{2(1'+ )+ 1
and finally

135,800, 0] < 230y p g 5~ T@EFDH+D) . O

Appendix 4: Proof of Lemma 3.5

This appendix is devoted to the proof of the Lemma 3.5 of §3.4,

Lemma: Letr T = MTE:‘.'_,_,.J{ be the twist matrix of a non degenerate approximate solution

vand let M, M, L, L denote upper bounds on (respectively) | Mg, | & [Eyylape
165, lge- Then '

) ML < |Tg < 1) < ML

(i) ML~ < |79 < 1T, <ML

e didi

D T i = 1T (f) f [2#),,“) .
THH

Proof:

(i) By |T| =TT 1T~ = |F|~" (since | = |TT"| < |T|IT"]) and the positivity
of the matrix T one has:

19| < M?L

and

(]
|

1T < 1T 1 < (@) T <

g|

or

| > ML
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—T

(ii) The inequality [ar=!| < M"L has been proven in (i). Moreover, |7| < M2L
implies

AT (e ik A

(iii) F >0 (ie. T > 0and T inventible) implies [(T—") 7' < |F].
F > 0 follows from the E}luwing four general facts:
(@) A=A* (withA*=4") = A<|A]|;
(b)aeRy, A>0, A<a = |A|=<a;
()aeRy, A20, A>a = A'<a';
(d) ALB>0, [A,B]=AB—-BA=0 = AB=0.

Proof of (a), (b), (c), (d):
(a) (Ax, x) < |Ax]lx| < |Allx? = (1A} x. 2)
() A=A = |A|= sup{Ax,x) <a

=l

(c) (Ax, x} > alx, x) & (A2, A2y > alx, x) ; setling A2 ¢ = y one has
a3 2 (A7 y, A7y = (A7 g )
(dy [A.B]=0 = [A, [(B)] =0 V¥f continuous; thus,
(ABx, x) = (AB'2B'2x, xy = (B2 AB'?x. x) = (AB'Px, B2 ) 2 0.
By (a) || — 9 > 0 and since |T| — T commutes with g=!, while by (d) (17| —

FyF- > 0ie. |T)T" = 1and by averaging I < |T((T ') or. by (c). G < 13);
finally (b) yields T > 0. O

Appendix 5: Proof of Proposition 3.6

In this appendix we provide the details of the proof of Proposition 3.6 of §3.5. In panticular
we want to bound the error function

'
E

il

q+aq2+q1.

where g1, q2. g3 have been defined in (2.47).
From (3.45) we have
lle < 141" le + 10"le -

The term Iqtlnle' can be bounded as in (3.53) by
Ly 32 3 2
lgile < 5 ELatte+ b
Now let

f = f(w+Dv, 8+v,1) = L] (w+Dv. 0+v,1) 7t = flw+Du+Dw, 8+v+w, 1),
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as in (3.54); then from (3.55)

1Dl = ID[f+ Sy —f,m]|£.
= |w-d(f* = [ = [yDw = faw) + 8T = [ — [yDw— [xw)lg
< [0/~ [ = [yDw — fxw) wlg +18(* = [ = [yDw = [sw)lg

=A 1+ 4,
(10.35)
where
Ay =18p(f* = [ = fyDw— frw) wlg
i
=|83{/ (1 -8 [f”.Dwa + [y Dw w+ fyywDw + f,,ww]dﬂ} wlg
0
(10.36)
and

1
Ay = ]ﬂ;{[a (1—p8) [fn.DmDm + fyeDw w4+ fywDw + f“ww] dﬁ}lf'

(notice that the derivatives of f are evaluated at (w + Dv 4+ BDw, 8+ v+ Bw, ).

Let us start with the estimate of A;. By (10.36) we have:

A< {L' =B [1£y0] (DM + BIDwaD + 1751 141+ BlugD) | IDwP
+ 21y 1 Dwgl|Dw] +2(1fyay] IDM] + BIDwg])
+1fyerl M1+ Blwah)] ol
+21fysl (Dwllwl +1 wllwal) + 1 cay] (DA + BIDwal)
1 xaal (04 Bluoah) |l + 21l lwallwl }dB} 1o
< {5 [Fym DM+ M1 fyyal || DU 4113y 1DuADw] + (1l 1DM
+ 1 yael ] [l 1 Dw + 1 ol [l D] + (gD
45 [l IDA 41 ] 1 4+ 1 el ol ool
+ 2 (175911l + 1 yyallwal | 10w + 5 [1F sl 1Dwil + 1 yerllwol | i D

1
+ 2 1 xayl1Dwol + 1 cust gl i} ol
Finally, denoting by

A3
Aq

Il

max lﬂzlff,'”-}-l. ﬂl.tf_,.‘”]. l-ff_.-ull .
max 1n3|-t£y‘\’_\'y‘- nllmyy}u\"t nzuf'.‘r.n'l- ﬂ]ff_..-_‘.nL n'—fﬂ_\'nﬂ- 1:{-')'“1” .
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one has:

. .
A < {ZET e+ 1 [0+67M + 3ELas g+ 3 +

o 5
+ANET a6 (g 4+ +

Analogously

6 8 5(8) b

4 50(8) b

& 51(8) by

e )+ ol

let us estimate the second term A, as follows:

I
aa < [ 0= [/l D1+ BIDwD + Lyl i + Bluih)] 1w’

4 21f 351 1D 1Dw] +2[1fyey] (D] + BlDw)

+ f ysal (vl + Blug)] Dwlwf

+20fyel [1Dwilll + 1Dwllu|+{1f 5yl (Dul + BlDw)
1 xaxl (el + Bluoeh| 1wl 4+ 21f ) Tl

1 yyel 1Dw + 21yl lwliDuw] 4+ | faxal Tl? }dB

=

L [Fsml1Dud + Ul | 1wl + 115yl 1 D D

[ yes Dl + 1 yaallul] oltDrol + Lf o 1wl Dl + 1D
3 [ eap 11+ 1l 4 f el

4 2 [Pl + 1 ppalll 1D

45 [1Fyepl1Dwi] + 1 fyaal ] 1D

+ 2 [\ aaliDuel + el

1 1
+ ilfyyullﬂwlz + | f yurl lwl| Dw| + -ilfmllwiz :

We recall that if § is an upper bound on |v|¢ ;. then

Denoting by

- 51 by
lwilg < ELa (5 t %@ b) ’
|Dwlg < ELacfl
|w1£- = ELa ,

|Dulg < S67'Q2,
|Dwilg < 4EL6 2agf) .

L:; = max{nzl_(fj-”-,l, ﬂ|5€)'yu|. |-(£j'xxf| b

)
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one has
A‘ 2 4 2 ) 5 I](ﬁ} b]
< I 5 Ys 5
Ay < FET@c+ 1) [(1+ hs + 3ELas Mg+ 3 +4;(a;b’]
. 5 85 (8)b
272252 g, 0y I
FANET S (g4 5+ ”b)(+1)
Ly e
it aé'lslfa’{c +1)2.
Therefore
zfzal q 4 _—
A+ Ay < (c+1)? {ml +65 S+ Mm+—a.,n£f.as-2-
& 8 5(8) b P L A |
f+3+7 (s)b)+L_|}+4AﬂELaﬁ (c+1).
5 8% 5(8) by
( +4+-isn(5)b)'
Let now
Ly = max(1A3) , Ly = max(f2Ay) ;
then one has
172 2 " . 4 g - &
lale < e+ 1) [Ly+ LaQ1 +87)(S+ M)+ Lo ELa (g4 3

5 51(8) by
4 50(5} b

B)sr| e e+ 0 (84 3+ 5 £ 3158: s

The term |g3|¢ can be bounded as in (3.44) by

5
lg2lg = E 2T M5
Finally, from
D 5 ELd'
l|f< = M
one finds

losle < IMT) ™" - 1D~ (MT g9 — £ M) - Dzl
< 4E'T o' "Msy(8) .
Collecting the above estimates, one has:

— (& = 4
lelgs = E?La {—+5(c+ 1L [L;-&- Lo(S +M)(1 +67') + SELas *Ly-

( §+5 :1(6)b|
Ry T30 b

t+ Xd -45—1?50(5} — } ,
a

S)es] st ates v (o4 G+ T237)
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where
{Xd=ﬂ d=1

xa=1 d=2,
a = (MP)2so(8)%h . = 1+ (MADALL ’“‘(f}’ ,
s50() — 50(26) el
= LL ) R
pmbinH (Ju(a}) L+ (MM)* (f}] eEV Y T
’ v ' ’ — 50(2£)
d = (MM)Y2s28)b) . b =1+ (MM)LL @)
== 5a H 5(1”
a’ = (MM so(®by . g=1+ 4—2 + = s,(a; +3=.0

Appendix 6: Proof of (5.14)

In this appendix we want to prove the inequalities (5.14) of §5, i.e.

EiL < (L) Bovo'
W = E:‘Eﬁl?li (10.37)
Wy < ElLByy
1Dw?| < ELBsyyy' O
with
By = 8- 2082 MM (LD (S + MIK KAy 28T e~ 72 | ¥ = 28
gy = 13- MMMALL K32 e, y = 2%
B, = 165-M(MM)'LL K Koy 2" 67", y = 224
gy = 130-M(MH)4LZ K%yl:«lrf—h—l , yi = 22r+l .

where A = max(LLy, LL;, LLy, LLY, 1).
Let us start to estimate w(. To this end we need an upper bound on the two quantities
a; and b, where
ai = (MM s0(8)b;
and

spléi)
0l(6i)

byi= 1+ (MM LL ——

)1 [1—1—[MM) LL

sol2€;)
08

From the definition of M;, M; we easily obtain

biEbu-l-M.'( —s0(2€i) ]

ﬂ(f;

M; M; < IMM ;
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moreover, from the estimates:

so26) _ & 1o 1
lo, ‘25.’ <@V <%
sol€i)\2 _ 2 1
(.I'g(ﬁ,')) -( } = 16
so(€i)s0(26i) _ Biae Lo
T Y {g,’ <(x)

one has (notice that here we need to indicate the subscript i):

b = 1+(M.-HJ)ZLI(M) + M; (M)z [1 +(MiMi) LL;U::((Z?J)

sold;) 59(6;)
o I ]
2 a4 g Ia2r 2 |
< 1+ MMLL ()" +2M (3) [l + (M) LLZT]
and therefore
a; = (M;M)?s50(8:° b,

2142

<9 (MID KA ) {l +9(MMALL (%)* +2M(%]2’

i+ (MM)‘LL]}

<9 (MM)'K}y? 287 +2rigar {l + :LL+ Z,M (‘ + g”‘)}
<26 MMM (LT)KEy? 2472372
Finally, we obtain
W =ELa; < ELB 7' .
with
By =13 MMM LEKGy? 2747, 5 =27,

. i . by K 1 v
Next we estimate wy". Since '61,‘ < [ and 1".1 < 7 one has:

Wi < EiLa; (al.—l +-’l(5;})

5o(6:)

e L= : = 2:+1 K 2;+3
B 44-2_ Tadralrip—12r -2 2 il

EiL - 26M(MM)* K3y 27 22" ¢ (LL)( ’ +K f )
Fl I()S{MM] Mxtxoylzdr!{ 2[27+|]|§—2r—

IA

1A

namely,
Wiy < EL Brd' .
with

By = 165- M(MM) K Kgy* 27¢ ¥V LL, 5y =27+,
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From ;f < * we have:

. — = _ a’
Dw?| < ELalc; = EiLaQ (8‘|+Z£%)
< EiL- 130MMM)*(LD)K3y? 2¥7 2227 ¢ 710
= ELQ By’ .
with
By = 130 MMM (LD K3y 274, gy =2

We finally come to the estimate of Ej . First we can bound a; from below as

lail =9 (MM)?K3y* (z—i;)h {1+ %(MH)?LI
+ i:f (1+ —(M?Z)’LL)}

> 1322 2% 2 (MM): .
Therefore g; is bounded from above and below as

1322 . 22T e (MM < lai] < 26- 222V KA (LT M(MM)!

119

Before proceding we need also the following estimates, which can be easily obtained

from the definition of the various quantities:

EL 9t . a _ s5p(26) b

& K
a 30(5)2 b

a
— - — e
a

., B ,
Koy Ko

and

bl N f T 1

Y > 2, 7= 1. Kp>11-277.

| -

Moreover from the definition of Kg and K (see (3.17)) we find

r@r +3)

_ ko _
Kijts rer+1)

% Var+2@r+ 1), K >3k, .
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Therefore, denoting by A; an upper bound on the norm of ag; and by A = Appendix 7: Up and Down of Real Numbers
max(LLy. LLY, LLy, LL}, 1), we obtain

Upper and lower bounds on the result of elementary operations can be obtained increasing
or decreasing by one bit the last bit of the mantissa, with an eventual propagation of the

o 57 4aMis' 1 5, bl 2
Eipy < EFTAM {2+ = 4 2 (o7 PGl 1)

AiM; Aj 2 so(8))% biQ carry.
iy Y e n2( B 87 51(8)) by In the Fortran function listed below it is shown how to obtai bound I
L4 (8 + M1+ 8 + ELAST (2 4 i+ = 1) 4 A s Al piL e e Sl s iR
[ (5; i)l i) ol (4 +eity 50(57) b;) ] numbers in G-floating representation.

The real number r, represented by 64-bits, is initially decomposed in 4 bytes (each
one of 8 bits) labelled kp(1), ..., kp(4) by the Fortran “EQUIVALENCE" statement.
Degenerate cases (i.e. bytes of all 0's or 1's) are treated properly.

251 4 50280 by 8 . 82 51(8) by

+a 572 (s 4 0028 By 5  Bsa)by ,

- ( it 50{5;)2 b,—ﬂ i I)(4 + 4 S{)(ﬁ‘] bi +gl)}
2I'+2 4Hi2i+2

<EITAlA {

1322 22 M (MM ))* T B2 )
13 £ £y

+387 (1 o + )

£

[§ + s+ M + 55 + o7 BT (G + 1 + 25

2 4 Ko 4K

L, K
0

+ 3

261322/3  201322/3  2/3 20 4
1 4 1

-[2+2(1+Z)+§EILAf57'(—+l+i}]

163 16
+4(1 + 21—0 + %)(ﬁﬁ 1+ 5’;)}
< E’TA’A i—;ar’(s+ M) [% + %E.-Eaja;'}
< EXL- 26* M2 (MBYE(LL)X(S + MK KgAy* 28r2trig—4r—32306
: [1—295E + %E,-T.A;«Sr'].

Defining
Bo = 8- 208 MA MMM LD)XS + MK KAy* 287643 yo =200,

one has:

_ 2
EL < (ELﬂu')’fl)
Bova'
and by the hypothesis
Ezﬂuyu < l.
one has
= 1
Eil « ——— .
; Boye't!
Therefore,

Einy < 2087 BMAMMDS(LI) (S + MK KAy 28720+ ig—4r=3 (E2TL)
<EL Boyo' - O

(14 5= 4 )

Double precision function Up(r)

integer*2 kp(4)
real*8 rx
equivalence (x.kp(1))
=0

if (x.g1.0.) then

if (kp(4).eq.32767) then
kp(4)=-32768

Up=x

return

endil

kp(d)=kp(4)+1

if (kp(4).ne.0) then
Up=x

Teturn

en'il

if 1kp(3).q.32767) then
kp(3)=-32768

Up=x

return

endif
kp(3)=kp(3)+1

il (kp(3).ne.0) then
Up=x

return

endif

if (kp(2).eq,32767) then
kp(2)=-32768

Up=x

return

endil

kp(2)=kp(2)+1

il (kp(2).ne.0) then
Up=x

return

endil
kp(1)=kp(1)+1
Up=x

return

else if (x.1.0)) then
il (kp(4).eq.-32768) then
kp(4)=32767
Up=x

return

endif
kp(d)=kp(4)-1

il (kp(4).ne.-1) then
Up=x

relurn

endifl

il (kp(3).eq.-32768) then
kp(3)=32767
Up=x

relurn

endif
kp(3)=kp(3)-1

il (kp(3).ne-1) then
Up:x

return

endifl

il (kp(2).eq.-32768) then
kp(2)=32767
Up=x

return

endif
kp(2)=kp(2)-1

if (kp(2).ne.-1) then
Up='x

relurn

endif
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kp(1)=kp(1)-1 Up=x
Up=x ) return
return endif

else end

The lower bound of a number s is obtained simply using the function Up as

Down = —Up(—3) .

Appendix 8: Computation of the Diophantine Constant

In this appendix we prove that the golden mean

Vi-1
w = mg = 2
satisfies the diophantine inequality
|
|w — £| 2 —3. Vp.gel, q#0, (10.38)
q Yq
with a constant
3 5
= +2J_ . (10.39)

Let us review some properties of continued fractions (see [Kh]).
Let w be a positive irational number and let [ag;ayp, aj, ...], ay € N, its continued
[raction expansion, namely

w=a + —:
let

G = |agiay, ..., af] , rp = lagiaggeq, .. .
Then, the following relations hold (see [Kh]):

Pk = Pi—109x +Pr-2 . Gk = qr—10g+qy—3 .

forany k > 1, where p_; =1,9_; =0, pg=aq, g0 =1;
Pr—-19k-2 — Pi-29k-1 = (—D* ¥k>1: 2% A w CRERL (10.40)
42 GIk4|
1 | P — =,
. S T i e APEATPER (10.41)
qk(qe + qis1) gk GGkt Tkqk—1 + g2

Lemma 1: Let d: [l,00) — |1, 00) be a continuous non decreasing function. Then
from the inequality
1

lwgy — pgl =2 ——— Yk=>0.
Y= e
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it follows

1
g = pl 2 . Vg#0.

Proof: If £ = P{ for some k then there is nothing to prove. Hence, assume that a ek L
¥k > 0. Then three vases are possible:

(i —-:—pg=an.
a 9

i 2> 2L
q q1

(:‘mfeu.

where [} = (f;:—:—:- E‘-l} for k odd and I; = (P‘—‘l-. %:—'-) for k even.

In case (i):

P Po 1 | 1
lwg —pl = lw— =| > |0 —ag| = | — —| > - > 5
g g . q0 — ®(qo) () ~ B(g)
In case (ii):
1 1 1
=By — & gl —=—
q q 1q qq1 q1 aj

since |w — ag| < a—l. one has

1 1

lwg — pl > |w — pol = lwgn — pol = Dlqo) - d)(q) )

In case (iii), by (10.40):

5 = = 1
EE_PRIPI:H_PI:II{IE_FHI = =g >qx-
q9k—1 9 Gik-1 9k Fi) Tk qe-1 ki1
Again by (10.40),

" 1
Pis Bktl B = |wg — pl = — ,

[ — =
q Te+1 q 99 k+1 Gr+41

but, by (10.41) it is |wgy — pi| < ﬁ and since ¢ > g3 Lemma 1 follows. O

Lemma 2: Forall k>0
e, 1

9 owq}

with ap = ryy + 1;?1'
Proof: By (10.41) and (10.40)

gx_] = (ke1Pet Py Prp 1

qx ek + -1 @ ae(rieiqe +qi—1)
1 | 1

a2 (g +A=t)  gtoy

lw —
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By Lemma 1 one has to check (10.38) for (p.q) = (pi.qs) and by Lemma 2 we
can take y = supoy. Since

k=0
5=
V3 ‘=[u;1.[.|,“.]§[0;1°°|.
2
one finds
Thy) = ‘/§+l (szﬂ}
2
Finally, from
=t ., oy, B ) kD)
qu 91 qk+|

(10.38) and (10.39) follow. Notice that one may have better estimates using the identity

- lag:ag_y, -nay] Yk>1.0
k-1

Appendix 9: Small-Divisor Series for Symplectic Maps

In this appendix we provide an upper bound, 5(5), on the small-divisor series,

oo}

!
n
IZ(W}Z PR =y (10.42)

n=1|

arising in the theory of symplectic maps (cfr. §10).
We shall prove that, for any integers N, [ > 0, the sum in (10.42) is bounded by:

N—1 |
5(8) = IZ(_;_",W Rty g2, NeN. (10.43)
=y !\u'l.“z-
with
V) _ iy TC S 242 —bn .
5" =(l=e }T Zn g (10.44)

(for N = 0, the first sum in (10.43) is absent). For I =0, | one can bound b’}N’ with:

12

c 1

s < "—4—(1 —e Py ele =D 24 N + Da+ Na?]
i 3

22
() m-C
S

1A

(L") e%e—"‘”‘”;ls- (24 + (24N + 36)a + (12N + 24N + 14)a?

+ (N3 4 6N% + 4N + Da® + Na'] .
(10.45)
where a0 = 8(1 + w),
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Proof: Letb, = 3 —-I!-,—gm o for n > N and by_; = 0; then, since b, — b, =
N=k<n 1%

l .
W
pr= ey T3y it follows that
oo

I
E : 4 = U —bn
= T )29 bn — n-e (b, "bn—]J:
= sinGy)

Me

=
Il
=

o0
n2le 0 b, — Z(uﬂ)”e‘“" e b, <

Il
M2

n=N n=N
oo
< (I —t"ﬁl ZHZIE—Mlb" <
n=N
7
= 01 =) - Z 22 —dn
n=N

where in the last inequality we used Riissmann’s estimate (cfr [R2]):

i = A

N<k<n sin 7)) Ig&fndﬂlglﬁ;k‘_“ ¥
= 2
== n- .
Now using that for any k > 0
o0 kL=
' ! &
Z!l‘.f—ﬁn = {—I)l %s"i' |r n_}ﬁ
n:~ [ —
and the estimate
e 8 |
—o3F <3 Y=u,

one obtains the claim. O

Appendix 10: KAM Statements for Symplectic Maps

Here we formulate the KAM algorithm and theorem for symplectic maps (see §10). The
proofs are easily obtained by mimicking the arguments leading 1o §4 and §5 (and makes
a good exercise); alternatively we refer the (tired) reader 1o |CC4] and |CC2].

KAM Algorithm for the Maps in (10.1)

The notations are as in §10; the style as in §4. Let v = v be a non-degenerate approxi-
mate solution of (10.6), let e(8) = £'9(4) be the associated error-function (see (10.13));
let v, £ be real-analytic in A} (or possibly in Al x %) and let {5;] be a sequence of pos-
itive numbers such that 3°75,8; < §p=¢. Let o) g be the functions constructed
by iteratively applying Lemma 10.3, provided, of course, one has the needed control on
(1+ I.IU_”)_[,

We define, now. the norm-parameters and the KAM algorithm. Let Gf =x =
0+ulf) |0 € ﬁé] and ‘Ej‘ri =lxr=x+19 liheE o ¥ €C, |yl =p)Lletj=0
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and let
Nj = IMj. M. Vj. Vi, Ej. pj. Fzj) (10.46)

be the set of pmuwc numhcrs conlm]lmg the norms of v') on AL and of f on E'hf,,, ie.,
Mj > 11+, =11 +vgl, M jz 10+ W Mg Vi = 0D, Vi 2 051,
Ej > |£{UU’)|‘ . I-IJ > |f,,|m; = |flj | Then, if .s,(c‘i ) is an upper bound on
the small-divisor scrics (see Appehdix 9), the above norm-parameter can be defined as
follows:

e - 2(2E))
iy = [M;MJ-S{I{‘SJ}) “+(M1'Mj} W
where §g=~€and (for j> 1) §; =€) —6;_
W} = E} ﬁj
and
|j g JI{";Ji)
Wi, = E; —_—
i i (M.r 4 spldj)

Then one can take

j
Mjg = Mg + 3 Wy,

= By J
Mi-(=M; Wi~ it x W< 1

= e i=0
M}'-H. = i=0 lj
(o u] il zwuz I
i=0
J
Vigr = Vo+ ) Wi,
i=0
i
Vigsn = Vio+y_ Wi
i=0
and
a0
< ajFajsny | 9
Ejyi = (E)) aj (22241,
¢ £ 2 M;
where
FUY = sup | fal =0 =YW
2 = lrP Sl Po =\, P41 = i
a :

LI

Finally, the smallness condition (i.e., the analog of (5.1) in Theorem 5.1 ), which has
been used in [CC4] 10 obtain the results discussed in §10 (for rotation numbers with
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T=1) is:
154 - 100 SMA MM e R E< (10.47)

where Fa = max({1, F3) , Fy = supgg [fxsl. 7 = 17674,
Actually, the condition (10.47), which was deduced in [CC2] and used in [CC4),
could be slightly improved using the techiques presented in this work.
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