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Introduction

Kolmogorov—Arnol’d-Moser (KAM theory deals
with the construction of quasiperiodic trajectories
in nearly integrable Hamiltonian systems and it was
motivated by classical problems in celestial
mechanics such as the n-body problem. Notwith-
standing the formidable bulk of results, ideas and
techniques produced by the founders of the modern
theory of dynamical systems, most notably by
H Poincaré and G D Birkhoff, the fundamental
question about the persistence under small perrurba-
tions of invariant tori of an integrable Hamiltonian
system remained completely open until 1954. In that
vear, A N Kolmogorov stated what is now usually
referred to as the KAM theorem (in the real-analytic
setting) and gave a precise outline of its proof,
presenting a strikingly new and powerful method to
overcome the so-called small-divisor problem (reso-
nances in Hamiltonian dynamics produce, in the
perturbation series, divisors which may become
arbitrarily small, making convergence argument
extremely delicate). Subsequently, KAM theory has
been extended and applied to a large variety of
different problems, including infinite-dimensional
dynamical systems and partial differential equartions
with Hamiltonian structure. However, establishing
the existence of quasiperiodic motions in the n-body
problem turned out to be a longer story, which only
very recently has reached a satisfactory level; the
point being that the #-body problems present strong
degencracies, which violate the main hypotheses of
the KAM theorem.

This article gives an account of the ideas and
results concerning the construction of quasiperiodic

solutions in the planetary n-body problem. The
synopsis of the article is the following.

The next section gives the analytical description of
the planetary (1 + n)-body problem. '

In the subsection “Kolmogorov’s theorem and the
RPC3BP (1954}, original version of the KAM
theorem is recalled, giving an outline of its proof
and showing its implications for the simplest many-
body case, namely, the restricted, planar, and
circular three-body problem.

In the section “Arnol’d’s theorem,” the existence
of a positive measure set of initial data in phase
space giving rise to quasiperiodic motions near
coplanar and nearly circular unperturbed Keplerian
trajectories is presented. The rest of the section is
devoted to the proof of Arnol’d’s theorem tollowing
the historical developments: Arnol’d’s proof (1963a)
for the planar three-body case is presented, the
extension to the spatial three-body case due to
Laskar and Robutel (1995) is discussed, and Her-
man’s proof - in the form given by Féjoz in 2004 —
of the general spatial (1 + #)-case is presented.

In the section “Lower dimensional tori,” a brief
discussion of the construction of lower-dimensional
elliptic tori bifurcating from the Keplerian unper-
turbed motions is given (these results have been
established in the early 2000s).

Finally, the problem of taking into account real
astronomical parameter values is considered and a
recent result on an application of (computer-
assisted) KAM techniques to the solar subsystem
formed by Sun, Jupiter, and the asteroid Victoria is
briefly mentioned.

The Planetary (1 + n)-Body Problem

The evolution of (1 + #)-body systems (assimilated
to point masses) interacting only through gravita-
tional attraction is governed by Newton’s equations.
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If #'! € R? denotes the position of the ith body in a
given reference frame and if m; denotes its mass,
then Newton’s equations read

u
= — E 7’7’[,?‘

gl — 7

duJ

Here the gravitational constant is taken to be equal
to 1 (which amounts to rescale the time ¢).
Equations [1] are equivalent to the standard
Hamilton’s equations corresponding to the Hamil-
tonian function
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where (UY 2} are standard symplectic variables
and the pha:c space is the “collisionless domain”
M= (U 4 e R} ! £ 4 0 <i#j<n) the
symplectic form is the standard one: Y., dUMW A
da) =37, dL'“' /\duk;i | denotes the standard
Euclidean norm. lntroduung the symplectic coordi-

nate change (U, u#) = ¢nu(R,7),
u® =AUy =0 = 1)
dre: 4 UO =RO Z" Ryl =R (3]
€ i=1 ) S
(i=1,...,n)

one sces that the IHamiltonian Hyg = Hew © Ohel
does not depend upon #” (recall that a local
diffeomorphism is called symplectic if it preserves
the symplectic form). This means that R' (= toral
linear momentum) is a global integral of motion.
Without loss of generality, one can restrict attention
to the invariant manifold Mp:= (R =0} (invar-
iance of eqn [1] by changes of inertial reference
frames).

In the “planetary” case, one assumes that one of
the bodies, say 7= 0 (the Sun), has mass much larger
than that of the other bodies (this accounts for the
index “hel,” which stands for “heliocentric”). To
make the perturbative character of the problem
transparent, one may introduce the following rescal-
ings. Let

- . R Ao
m; = ey, XW = =T, xM = o
em) my
(i=1,...n) 4]

and rescale time by a factor amg""3 {which amounts
to dividing the new Hamiltonian by such a
factor); then, the flow of the Hamiltonian Hy. on
My is eqlllva.lent to the flow of the Hamiltonian

(X1 % e R?: 1

# x'} with respect to the standard

on the phase space M:=
and 0 # x'¥ 5

<isn

symplectic form Y77_ dX" A dx'¥); the mass para-

meters are defined as

Mi=1+e—, pi 1= —— =—— |6

mq My + £M;
The following observations can be made:

1. The Hamiltonian

n X(i] |2

0N 1M,
let T 2_14 244 _|_xﬁf|—

is integrable and represents the sum of » two-

body systems formed by the Sun and the ith

planet (disregarding the interaction with the
other planets).

The transformation ¢y in eqn [3] preserves

the toral angular momentum C:= Y/, UYx

#'', which is a vector-valued mtegrql for

Hpew. Thus, the three components, Cg, of

Ci= 3711 X% x x® (which is proportional to

C and is termed the “total angular momen-

tum”}, are integrals for Hy.. The integrals C

do not commute: if {-,-} denotes the standard

Poisson bracket, then (C;, C;} =C;s (and, cycli-

cally, {Cy, C3}=C1,(C5,C1) = Cy). Nevertheless,

one can form two (indegendent commuting
integrals, for example, and Cs. This shows
that the (spatial) (1 +n)—body problem has

(3n — 2) degrees of freedom.

3. An important special case is the planar (1 +#)-
body problem. In such a case, one assumes that
all the “single” angular momenra C#:= X" x x!!
are parallel. In this case, the motion takes place
on a fixed plane orthogonal to C and (up to a
rotation of the reference frame) one can take, as
symplectic variables, X', x € R?. The Hamilto-
nian Hy, governing the dynamics of the planar
(1 4 n)-body problem is, then, given on the right-
hand side of eqn [S] with X%/, x! € R*. Notice
that the planar (1 + #)-body problem has 2#
degrees of freedom.

4. For a deeper understanding of the perturbation
theory of the planetary many-body problem, it is
necessary to find “good” sets of symplectic
coordinates, which the founders of celestial

I~
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mechanics {most notably, Jacobi, Delaunay, and
Poincaré] have done. In particular, Delaunay
introduced an analytic set of symplectic “action-
angle” variables. Recall the Delaunay variables
for the two-body “reduced Hamiltonian”

G

Let [k, ka2, k3} be a standard orthonormal basis
in the x-configuration space; let the angular
momentum C=X x x be nonparallel to k3 and
let the energy F ="Hg., < 0. In such a case, x{¢)
describes an ellipse lying in the plane orthogonal
to C, with focus in the origin and fixed symmetry
axes. Let a be the semimajor axis of the ellipse
spanned by x;1 (the inclination) be the angle
between k3 and C;G=|Cl;©=G cos 1=C - ky;

L _m\/y ¢ be the mean anomaly of x (:= 27r
times the normalized area spanned by x mea-
sured from the perthelion P, which is the point
of the ellipse closest to the origin); @ be the
angle between &y and N:= k3 x C {:= oriented
“node”}; and g be the argument of the perihelion

(:=the angle between N and (O,P)). Then
(letting T:= R/(2x7.))

(L,G,©)e {L>0} x{G=>06 =0} .

(6, g0)eT B

are conjugate symplectic coordinates and if @p,
1s the correqpondmo symplectic map, then
Hkep © dpa = — (1P M2)/(2L2).

Note that the Delaunay variables become
singular when C is vertical (the node is no more
defined) and in the circular limit (the perihelion
is not unique). In these cases different variables
have to be used.

- @Dei((Li: Gi: @i.]: M‘: &is ;)).
Hyie expressed in the Delaunay
{(Lis Gi ©4), (€5, i, 0i): 1 < i <

Then
variables
n} becomes

HO ol 0 NSEME
Del 7 =/ tpel Del *— 7 [ ]

Hpa = 3
Del 2[,;'

i=1

Note that the number of action xaridblcs on
which the integrable Hamiltonian ’H | depends
1s strictly less than the number of deorees of
freedom. This “proper degeneracy,” as we shall
see in next sections, brings in an essential
difficulty one has to face in the perturbative
approach to the many-body problem. Tn fact, this
featurc of the many-body problem is common to
scveral other problems of celestial mechanics.

Maximal KAM Tori
Kolmogorov’s Theorem and the RPC3BP (1954)

Kolmogorov’s invariant tori theorem deals wich
the persistence, in nearly integrable Hamiltonian
systems, of Lagrangian (maximal} tori, which, in
general, foliate the integrable limit. Kolmogorov
(1954) stated his theorem and gave a precise
outline of the proof. Let us briefly recall this
milestone of the
systems.

[et M= B¢ x T (B being a d-dimensional ball
in RY centered at the origin} be endowed with the
standard symplectic form dy A dx:= 5 dy, Adx;
(y € BY, x € T9). A Hamiltonian function N on M
having a Lagrangian invariant d-torus of energy E
on which the N-flow is conjugated to the linear
dense translation x — x +wt, w € R0Y can be
put in the form

modern theory of dynamical

N:=FE+w y+ Q(y x)

/ =~

(as  usual, Ia-| =y -y, wey = Zle WiVis
and J = d‘“ . 0“ J; in such a case, the Hamiltonian
N is saxd [ b(, in Kolmogorm normal torm The
vector w is called the “frequency vector” of the
invariant torus (y =0} x T% The Hamiltonian N is
said to be nondegenerate if
det{82Q(0,-)} £ 0 [10]
where the brackets denote average over T¢ and o2
the Hessian with respect to the y-variables. '
We recall that a vector we R? is said to be
“Diophantine” if there exist k >0 and 7 >d — 1
such that

wok| > -, Wke 79\ (0} 11]
k|

The set D¢ of all Diophantine vectors in R is a set of
full Lebesgue measure. We also recall that Hamilto-
nian trajectory is called quasiperiodic with (rationally
independent) frequency w 6 R? if it is conjugate to
the linear translation § € T¢ -0 + wt < TY.

Theorem (Kolmogorov 1954) Consider a one-
parameter family of real-analytic Hamiltonian func-
tions H, := N + =P where N is in Kolmogorov normal
form (as in eqn (9]) and ¢ € R. Assume that w is
Diophantine and that N is nondegenerate. Then,
there exists £g > () and for any |g| < 2y, a real-analytic
symplectic transformation ¢.: M — M putting H. in

Kolmogorov  normal  form, H.o¢.=N., with
N::=E. +w-y + Q.(y,x"). Furthermore, |[.. — E|,

¢ —id||, and ||Qc — Ol are small with =
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In other words, the Lagrangian unperturbed torus
Toy:={y=0} x T persists under small perturbation
and is smoothly deformed into the H:-invariant
torus 7. := ¢{ly =0} x ‘T); the dynamics on such
torus, for all |g] < 2o, consists of dense quasiperiodic
trajectories.  Note that the H.-flow on 7.
is analytically conjugated by ¢. to the translation
o — ' +wt with the same frequency vector of N,
while the energy of 7., namely E-, is in general
different from the energy E of Tyq.

Kolmogorov's proof is based on an iterative
{Newton) scheme. The map ¢. 1s obtained
as limy, oM e -0, where the @4’s are
(z-dependent) symplectic transformarions  of M
successively closer to the identity. It is enough
to describe the construction of ¢ A s
then obtained by replacing H. with H. o ¢!t
and so on. The map ¢'! is z-close to the identity
and it s by gy, x):=y x+
e(b-x + s{x) +y-alx)), where s and a are (resp.
scalar- and vector-valued) real-analytic functions
on T¢ with zero average and b & 24, this means
that the symplectic map H Uy, %) — (y,x) 18
implicitly given by the relations y=3d,g and
x' = dyg. It is easy to see that there exists a unique
g of the above form such that for a suitable g9 > 0,

generated

H o6V =Ey +w-y + O1(y,x) +2°Py

Vel < g0 (12

with 82 01(0,x") =0, forany o € N4 and || < 1; here,
Ey, Oy, and Py depend on £ and, for a suitable ¢; > 0
and for |z| < €0, |E — E1| € 112, 11Q — Oille < cilel,
and [Pyl = c1-

Notice that the symplectic transformation ¢!’ is
actually the composition of two “elementary” transfo-
mations: ' = (p'f] o ¢y where oy, Xy — (&)
is the symplectic lift of the T4 diffeomorphism given
by x=£+:zalf) (e, (,'Dg” is the symplectic map
generated by ¥ - €-+ey - alfh, while d)?l]"' 2 (n, £) —
(y,x) is the angle-dependent action translation gener-
ated by n-x +e(b-x +s(x}); q’)g“ acts in the “angle
direction” and straightens out the flow up to order
O(=2), while ¢\ acts in the “action direction” and is
needed to keep the frequency of the torus fixed.

Since H. o ¢, =: N + 2Py is again a perturbation
of a nondegenerate Kolmogorov normal form (with
same frequency vector w), one can repeat the
construction by obtaining a new Hamiltonian of
the form N + =*P,. Iterating, after k steps, one gets
a Hamiltonian N + £2P,. Carrying out the
(straightforward but lengthy) cstimates, onc can
check that |Pgllee € £ ¢, for a suitable constant
¢ 1 independent of k (the fast growth of the
constant ¢, is due to the presence of the small

divisors appearing in the explicit construction of the
symplectic transformations @), Thus, it is clear that
taking o small enough the iterative procedure
converges (superexponentially fast) vyielding the
thesis of the above theorem.

6. While the statement of the invariant tori theorem
and the outline of the proof are very clearly
explained in Kolmogorov (1954), Kolmogorov
did not fill out the details nor gave any estimates.
Some vears later, Arnol’d {1963a) published a
detailed proof, which, however, did not follow
Kolmogorov’s idea. In the same year, J K Moser
published his invariant curve theorem (for areca-
preserving twist diffeomorphisms of the annulus)
in smooth setting. The bulk of techniques and
theorems stemmed out from these works s
normally referred to as KAM theory; for reviews,
see Arnol’d (1988) or Bost (1984-85). A very
complete version of the “KAM theorem” both in
the real-analytic and in the smooth case {with
oprimal smoothness assumptions) is given In
Salamon {2004); the proof of the real-analytic
part is based on Kolmogorov’s scheme. The
KAM theory of M Herman, used in his approach
to the planetary problem, is based on the abstract
functional theoretical approach of R Hamilton
(which, in turn, is a development of Nash—-Moser
implicit function theorem; see Bost 1984-835) for
references); it is interesting, however, to note that
the heart of Herman's KAM method is based on
the above-mentioned Kolmogorov’s transforma-
tion ¢!t (compare Féjoz (2002)).
In the nearly integrable case, one considers a one-
parameter family of Hamiltonians Ho(I) + eH (1, x)
with (I,x) e M:= U X T4 standard symplectic
action-angle variables, U being an open subset of
R<. When £=0, the phase space M is foliated
by Ho-invariant tori {lg} x T, on which the flow
is given by x — x+ OyHallo)z. If Iy s
such that w:=08,Hollp)} is Diophantine and if
det ('33 Hy(Iy) # 0, then from Kolmogorov’s theorem
it follows that the torus {Ig} X T¢ persists under
perturbation. In  fact, introduce the symplectic
variables (y, x) with y=I—1p and let Niy)=
Holly +y), which by Taylor’s formula can be
written as Ho(lp) +w -y + Qfy) with Ofy) quad-
ratic in y and c"')itQ(()) = 83)7Hu(f(]_\l invertible. One can
then apply Kolmogorov’s theorem with Py{y,x):=
Hiy (I + y,x).

Notice that Kolmogorov’s nondegeneracy con-
dition det &*Ho(lo) # 0 simply means that the
trequency map

-l

[cBYcU—w():=8,Hol) [13]
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is a local diffeomorphism (B¢ being a ball
around I).

8. The symplectic structure implies that if # denotes
the number of degrees of freedom (i.e., half of the
dimension of the phase space) and d is the
number of independent frequencies of a quasi-
periodic motion, then d < u; if d=n, the quasi-
periodic motion is called maximal. Kolmogorov’s
theorem gives sufficient conditions in order to get
maximal quasiperiodic solutions. In fact, Kolmo-
gorov’s nondegeneracy condition is an open
condition and the set of Diophantine vectors is
a set of full Lebesgue measure. Thus, in general,
Kolmogorov’s theorem yields a positive invariant
measure set spanned by maximal quasiperiodic
trajectories.

As mentioned above, the planetary many-body
models are properly degenerate and violate
Kolmogorov’s nondegeneracy conditions and,
hence, Kolmogorov’s theorem — clearly motivated
by celestial mechanics — cannot be applied.

There is, however, an important case to which a
slight variation of Kolmogorov’s theorem can be
applied (Kolmogorov did not mention this in 1954).
The case referred to here is the simplest nontrivial
three-body problem, namely, the restricted, planar,
and circular three-body problem {RPC3BP for short).
This model, largely investigated by Poincaré, deals
with an asteroid of “zero mass” moving on the plane
containing the trajectory of two unperturbed major
bodies (say, Sun and Jupiter) revolving on a Keplerian
circle. The mathematical model for the restricted
three-body problem is obrained by taking n=2 and
setting 712 =0 in eqn [1]: the equations for the two
major bodies (i=0,1) decouple from the equation
for the asteroid (i=2) and form an integrable two-
body system; the problem then consists in studying
the evolution of the asteroid #!*(t) in the given
gravitational field of the primaries. In the circular
and planar cases, the motion of the two primaries is
assumed to be circular and the motion of the
asteroid is assumed to take place on the plane
containing the motion of the two primaries; in fact
(to avoid collisions), one considers either inner or
outer (with respect to the circle described by the
relative motion of the primaries) asteroid motions.
To describe the Hamiltonian M., governing the
motion of the RCP3BP problem, introduce planar
Delaunay variables ((L,G),(4,8)) for the asteroid
(better, for the reduced heliocentric Sun-asteroid
system). Such variables, which are closely related to
the above (spatial) Delaunay variables, have the
following physical interpretation: G is proportional
to the absolute value of the angular momentum of

the asteroid, I. is proportional to the square root of
the semimajor axis of the instantaneous Sun—
asteroid ellipse, ¢ is the mean anomaly of the
asteroid, while g the argument of the perihelion.
Then, in suitably normalized units, the Hamiltonian
governing the RPC3BP is given by
1

=37

+eHy (L, G, 0 g ) [14]

G

where g:= ¢ — 7,7 € T being the longitude of Jupi-
ter; the vanables ({L, G}, (£, g)) are symplectic coordi-
nates (with respect to the standard symplectic form);
the normalizations have been chosen so that the
relative motion of the primary bodies is 27 periodic
and their distance is 1; the parameter = is {essentially)
the ratio berween the masses of the primaries; the
perturbation H; is the function x'hx!! — 1/]x/% —
x'!'| expressed in the above variables, x'2 being the
heliocentric coordinate of the asteroid and x!'' that of
the planet (Jupiter): such a function is real-analytic on
[0<G<L)xT? and for small ¢ {for complete
details, see, e.g., Celletti and Chierchia {2003)).
The integrable limit

Hiep :=Heeple_o = —1/(2L%) = G

has vanishing Hessian and, hence, violates
Kolmogorov’s  nondegeneracy  condition  {as
described in item (7} above). However, there is
another nondegeneracy condition which leads to a
simple variation of Kolmogorov’s theorem, as
explained briefly below.

Kolmogorov’s nondegeneracy condition det” Hy
{Ip) # 0 allows one to fix d-parameters, namely': the
d-components of the (Diophantine) frequency vector
w=0yHq(ly). Instead of fixing such parameters, one
may fix the energy E=Hy(l;) together with the
direction {sw:s € R} of the frequency vector: for
example, in a neighborhood where w; # 0, one can
tix E and w;/w, for 1 < i < d — 1. Notice also that if
w is Diophantine, then so is sw for any s # 0 (with
same 7 and rescaled x}. Now, it is easy to check that
the map [ € HyY(E)— (w;/wy, ... ywg_1/wyg) is (at
fixed energy E) a local diffeomorphism if and only if
the (d + 1) x {d + 1) martrix

())2, Hy E)y Hy
f)y Hy 0

evaluated at I is invertible (here the vector d,Hp in
the upper right corner has to be interpreted as a
column while the vector d,Hp in the lower left
corner has to be interpreted as a row). Such
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“jso-energetic nondegeneracy” condition, rephrased
in terms of Kolmogorov’s normal forms, becomes

det("‘f’;Q((—)-"?'f' 6) £0 15]
T w .

Kolmogorov’s theorem can be casily adapted to the
fixed energy case. Assuming that w is Diophantine
and that N is isoenergetically nondegenerate, the
same conclusion as in Kolmogorov’s theorem holds
with Noi= E +w. -y + Q.ly,x'), where w.=a.w
and ja. — 1| is small with &.

In the RCP3BP case, the isoenergetic nondegene-
racy is met, since

2 (0} A0
det 97 gy Heep Aoy Hee 3
¢ Y (oY —_ —
L.y Hic 0 L

Therefore, one can conclude that on each negative
energy level, the RCP3BP admits a positive measure
set of phase points, whose time evolution lies on two-
dimensional invariant tori (on which the flow is
analytically conjugate to linear translation by a
Diophantine vector}, provided the mass ratio of the
primary bodies is small enough; such persistent tori
are a slight deformation of the unperturbed “Kepler-
ian” tori corresponding to the asteroid and the Sun
revolving on a Keplerian ellipse on the plane where
the Sun and the major planet describe a circular orbit.

In fact, one can say more. The phase space for the
RCP3BP is four dimensional, the energy levels are
three dimensional, and Kolmogorov’s invariant tori
are two dimensional. Thus, a Kolmogorov torus
scparates the energy level, on which it lies, into two
invariant components, and two Kolmogorov’s torl
form the boundary of a compact invariant region so
that any motion starting in such region will never
leave it. Thus, the RCP3BP is “totally stable™ in a
neighborhood of any phase point of negative energy, if
the mass ratio of the primary bodies is small enough,
the asteroid stays forever on a nearly Keplerian ellipse
with nearly fixed orbital elements L and G.

Arnol’d’s Theorem

Consider again the planetary (1 + n)-body problem
governed by the Hamiltonian Hp, in eqn [5]. In the
integrable ‘approxima[i()n, governed by the Hamil-
tonian H‘[SE', the # planets describe Keplerian ellipses
focused on the Sun. Arnol’d (1963b) has stated the
following theorem.

Theorem (Arnol’d 1963b) Let =0 be small
enough. Then, there exists a bounded, H-invariant
set Fle) © M of positive Lebesgue measure corre-
sponding to planetary motions with bounded
relative distances; F(0) corresponds to Keplerian

ellipses with small eccentricities and small relative
inclinations.

This theorem represents a major achievement in
celestial mechanics solving more than tri-Centennial
mathematical problem. Arnol’d {1963b) gave a
complete proof of this result only in the planar
three-body case and gave some indications of how to
extend his approach to the general  situation.
However, to give a full proof of Arnol’d’s theorem
in the general case turned out to be more than a
technical problem and new ideas were needed: the
complete proof {due, essentially, to M Herman) has
been given only in 2004.

In the following subscctions, we briefly review
the history and the ideas related to the proof of
Arnol’d’s theorem. As for credits: the proof of Arnol’d’s
theorem in the planar 3BP case is due to Arnol’d himself
{Arnol’d 1963b}; the spatial 3BP case is due to Laskar
and Robutel {1995) and Robutel (1995); the general
case is due to Herman (1998) and Feéjoz (2004). The
exposition we have given does not always follow the
original references.

The planar three-body problem Recall the Hamil-
tonian Hpin of the planar (1 + n)-body problem
given in item (3) of the section “The planetary
(1 +n)-body problem.” A convenient set of sym-
plectic variables for nearly circular motions are the
“planar Poincaré variables.” To describe such vari-
ables, consider a single, planar two-body system
with Hamiltonian

1x1? V] 2

XE My e R 0£xeR

2u |x| )
(with respect to dX A dx) 16]

and introduce — as done before formula [14] for
H'EL - planar Delaunay variables ((L, G, (£, g))
(here, g = & = argument of the perihelion). To remove
the singularity of the Delaunay variables near zero
eccentricities, ~ Poincar¢ introduced  variables
(A, ), (A, €)) defined by the following formulas:

A=L H=L-G
A=F+g, h=-g
- (17]
V2Hcosh =1
V2Hsinh = ¢

As Poincaré showed, such variables are symplectic and
analytic in a neighborhaod of {0,~a) x T x (0,0};
notice that the symplectic map ((A,7), (A, €)) — (X, x)
depends on the parameters p, M, and £. In Poincaré
variables, the two-body Hamiltonian in egn [16]
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K= (ufmp) '.3 /M. Now,
A7), LA f. N (_Xl:;':.a

—5/(2A%), with
re-insert the index i, let ¢;:
My and ¢{A, 7, A, & =(d1(AL 1, AL ), Oul'_-"\m
Ths Ay E) ). Then, the Hamiltonian for the planar
(1 + n)-body problem takes the form

becomes

Hoin © @ = HolA) = =H1 (A, A 1, €)

3.
. g i 1
Hy:= — . Ky (— — s
! 2 Z ‘ My 1\/1,‘ L€ ]
Hy = ,mepl ,Hprlm
<& I C |
where the so-called “complementary part” H{™"

and the “principal part” H{™ of the perturbation
are, respectively; the functions

Z X XU and

1<izj<n

fhifhi 1
SRR EETT]
mi i) — x|

[19]

1<i<j<n

expressed in Poincaré variables.

The scheme of proof of Arnol’d’s theorem in the
planar, three-body case (one star, =2 planets) is as
follows. The Hamiltonian is given by eqn [13] with
n=2; the phase space is eight dimensional (four
degrees of freedom). This system, as mentioned several
times, is properly degenerate and Kolmogorov's
theorem cannot be applied directly; furthermore, a
full (four-dimensional) set of action variables needs
to be identified.

A first observation is that, in the planetary model,
there are “fast variables” (the A’s describing the
revolutions of the planets) and “secular variables”
(the 17s and &s describing the variations of position
and shape of the instantancuous Keplerian ellipses).
By averaging theory (see, e.g., Arnol’d (1998)), one
can “neglect,” in nonresonant regions, the fast-angle
dependence up to high order in z obtaining an
effective Hamiltonian, which, up to O(s?), is given
by the “secular” Hamiltonian

Hsec = HO("\:) + C}_Z1 (A, 1, E)

;'L' ,‘C\ == H B
( 'r’ J / ! (_:li)

“Nonresonant region” means, here, an open A-set
where Oy Ho -k # 0 for k€ Z*, |ki| + lky) < K and
for a suitable K > 1.

In order to analyze the secular Hamiltonian, we
shall beriefly consider H; as a function of the
symplectic variables 1 and &, regarding the
actions” A; as paramerers.

For symmetry reasons, H; is even in (n, &) and the
point (1, €) =(0,0) is an ellipric equilibrium for ;:
the eigenvalues of the matrix S@fn,g,’Hl(A, 0, 0),
S being the standard symplectic matrix, are purely

“slow

imaginary numbers | £1Q, £1;). The real numbers
[} are symplectic invariants of the secular Hamil-
tonian and are usually called first {or linear) Birkh-
off invariants. In a neighborhood of an elliptic
equilibrium, one can use Birkhoff’s normal form
theory (see, e.g., Siegel (1971)): if the linear
invariants (£, ) are nonresonant up to order 7
(le., if Q-k:i=Qk; +Qky #0 for any k€ 7*
such that |kj| + |ka! <7), then one can find a
symplectic transformation ¢g;. so that

7) + E‘

Hiogpie = F(J1.JuiA) o, Ji = 21]
where F is a polynomial of degree [r/2] of the form
Oy + Q0+ (1/2)M] - ]+ o, M =M(A} being a
{2 x 2) matrix (and o, /) — 0 as |J| — 0). Arnol’d,
using computations performed by Le Verrier,
checked the nonresonance condition up to order
r=6 in the asymprotic regime a;/a; — 0 (where a;
denote the semimajor axes of approximate Kepler-
ian ellipses of the two planets); these compurations
represent one of the most delicate parts of the paper.

Thus, combining averaging theory and Birkhoff
normal form theory, one can construct a symplec-
tic change of variables defined on an open
subset of the phase space (avoiding some linear
resonances) (A, A, n,&) — (A, N, ],¢), where n;+
i§; = \/2];exp (i), casting the three-body Hamil-
tonian into the form

Ho(A') +2(QUAY - J+IM(A)] - T)
+ 2 F (N + Epf:z(x'\", N, T9)
= Ho(N J;2) + 2 F2 (A, X ], @) [22]

J
for a suitable prefixed order p > 3; notice that the
nonresonance condition needed to apply averaging
theory is not particularly hard to check since it
involves the unperturbed and completely explicit
Kepler Hamiltonian Hy. The idea is now to consider
P F, as a perturbation of the completely integrable
Hamiltonian Hp and to apply Kolmogorov’s theo-
rem. Finally, one can check the Kolmogorov’s
nondegenearcy condition, which since

det d,\ f,Hg(\’ J';e) = e*((det Hfy) det M + O(e))

amounts to check the invertibility of the matrix M.
Such a condition is also checked in Arnol’d {1963b)
with the aid of Le Verrier's tables and in the
asymptotic regime a;/a; — 0.

The spatial three-body problem In order ro exrend
the previous argument to the spatial case, Arnol'd
suggested connecting the planar and spatial case
through a limiting prouedure. Such strategy presents
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analytical problems {the symplectic variables for the
spatial case become singular in the planar limit),
which have not been overcome. [However, the
particular structure of the three-body case allows
one to derive a four-degree-of-freedom Hamiltonian,
to which the proof of the planar case can be easily
adapted. The procedure described below is based on
the classical Jacobi’s reduction of the nodes.

First, we inroduce a convenient set of symplectic
variables. Let, for i=1,2,((L;, G, O, (¥, g0
denote the Delaunay variables introduced in items
{5) and (6} above: these are the Delaunay variables
associated to the two-body system, Sun-ith planet.
Then, as Poincaré showed, the variables {{Af, A7),
(U:; ETL (ei: 61”; WhCI‘C

AT =L
A=ty

)
o

77: = \/‘2_(14' —_AG;').COS 8i
5: R 2LL; - Gz) SiIlg,'

are symplectic and analytic near circular, non-
coplanar motions; for a detailed discussion of these
and other sets of interesting classical variables, see,
for example, Biasco et al. (2003) and references
therein; the asterisk is introduced to avoid confusion
with a closely related but different set of Poincaré
variables (see below). Let us denote by

Hipp = HOUAY +eH YA A 7, €, 0,0)

the Hamiltonian equation [8] (with 7 =2) expressed
in  terms  of the  symplectic  variables
(A" X*), (0", €70, (0,0)), A" = (A1, A}), etc. Recalling
the physical meaning of the Delaunay variables, one
realizes that ©; 4+ ©, is the vertical component,
C3;=C-k;, of the total argument C=C" 4 CI?/,
where C¥ denotes the angular momentum of the ith
planct with respect to the origin of an inertial
heliocentric frame {ky, k>, k3). This suggests that the
symplectic variables can be introduced:

(A, A ", &0 ) = p(A N0, &,0,6)
with (Wy, W, 1, 1;) 1= (01,01 + O, 0, — 62, 0,).
Let
iy = Happ 06"

denote the Hamiltonian of the spatial three-body
problem in these symplectic variables. Since the
Poisson bracket of W, =©; +©; and H3,  vanishes
{C3 being an integral for the H_}hp-fYO\V), the
conjugate angle v is cyclic for #5, that is,

Mipp = Hipp (A7, A7, €7, Uy, T2, 90)

Now {because the total angular momentum C
is preserved), one may restrict attention to the
ten-dimensional invariant {and symplectic} submani-
fold M,e. defined by fixing the total angular
momentum to be vertical. Such submanifold is
easily described in terms of Delaunay variables; in
fact, C- k1 =0=C- k3 is equivalent to
2 2 2 b .
th —0 == and G]i—-07=G;—-0; [24
Thus, M

o 1= O Mg 1s given by

M. = {t.'i-‘l =7, U = U (A7, € ‘I’Z)}

2

Hi) - (A3 — Hy)

Since M, is invariant for the ftlow ¢! of

Hipo>%1(t) = m and ¢ = 0 for motions starting on
.i’\/(':,er, which implics that (0¢|7‘(_§bp)|',w;“=(). This
fact allows one to introduce, for fixed values of the
vertical angular momentum ¥, = ¢ # 0, the follow-

ing reduced Hamiltonian
He g (A" A", €7)

= H}hp("‘\*t /\*.\ Tf.\'\t,*-. \'[71(.,-\*377“,5*; C\)s ¢, "rr)

on the eight-dimensional phase space M .4 := {A! > 0,
Ae T2, (n*,€) € BY} endowed with the standard
symplectic form dA* A dA* 4+ dn* A dé* (B being a
ball around the origin in R?Y). In fact, the (standard]
Hamilton’s equations for 7, are immediately recog-
nized to be a subsystem of the full (standard)
Hamilton’s equations for Hsy,, when the imtal data
are restricted on M and the constant value of ¥, is
chosen to be ¢. More precisely, if the Hamiltonian flow
of H{,4 on M4 is denoted by ¢, then

&, (z U1 (A", €5 ¢), ¢, v
= (o) B emua(n)  129)

where we have used the shorthand notations:
T =(AA, £ E Mpegs Wa () =Ty 0@l (2"); (2] =
T,f')g:—_fg B.szf,,bp(qp'i(z"),\Tlufs),c,w)ds. At this poin,
the scheme used for the planar case may be easily
adapted to the present situation. The nondegeneracy
conditions have been checked in Robutel {1995) where
indications, based on a computer program, have been
given for the validity of the theorem in a wider set of
initial data.

Notice that the dimension of the reduced phase
space of the spatial case i1s 8, which is also the
dimension of the phase space of the planar case.
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Therefore, also the Lagrangian tori obtained with
this procedure have the same dimension of the tori
obtained in the planar case (i.e., four).

The general case Consider the general case follow-
ing the strategy of M Herman as presented by Féjoz
{2004), to which the reader is referred for complete
proofs and further references.

The symplectic variables used in Féjoz (2004), to
cope with the spatial planetary (1 + n)-body prob-
lem (Sun and » planets), are closely related to the
variables defined in eqn [23]. For 1 <i<n, let
((Li, Giy ©4), (4, g, 6:)) denote the Delaunay variables
associated with the two-body system, Sun-ith
planet Then (as shown by Poincaré) the variables

(A Ay (i &)y (P55 qi)), where Ay =Ly N =0 + g + 6,
and

ni = v 2(Li = Gy) cos(g; + 6;)

¢ = —/2(Li — Gy)sinlg; + 6;)
[26]
[),' = 2(6, — (‘),J cos 6;‘
gi = —/2(G; — — ©,)sin#;
are symplectic and analytic near circular, non-

coplanar motions (see, e.g., Biasco et al. (2003}). Let

Happ = HOA) + eHO (A A E,p.q)  27)

denote the Hamiltonian (eqn [8]) expressed in terms
of the Poincaré symplectic variables ((A,\), (7, £),
(p!q)): (\L)'--s* )) etc.

As the number of the planets increases, the
degeneracies become stronger and stronger. Further-
more, a clean reduction, such as the reduction of the
nodes, Is no more avallable if n>2. To overcome
these problems Herman proposed a new approach,
which is described below.

Instead of Kolmogorov’s nondegeneracy assump-
tion — which says that the frequency map [13]
I—w(l) is a local diffeomorphism - one may
consider weaker nondegeneracy conditions. In
particular, in Féjoz (2004), one considers non-
planar trequemv maps. A smooth curve uc A —
wiu) € RY, where A is an open nonempty interval,
is cal ed* nonplanar atug € A if all the u-derivatives
up to order (d — 1) at uy, wlug), w'(ug), . .., w4V {ug)
are linearly independent in R? a smooth
map u€ACR —wu) < Rd,p <d, is called
nonplanar at u#p € A if there exists a smooth
curve @ : A — A such that wo ¢ is nonplanar at #, €
A with ¢(tg) =us. A S Pyartli has proved (see, e.g.,
[éjoz (2004)) that if the mapu € A € R? — w(u) € RY
is nonplanar ar g, then there exists a neighborhood

B C A of uy and a subset C < B of full Lebesgue
measure (i.e., meas(C)=meas(B)) such that wiu} is
Diophantine for any # £ C. The nonplanarity condi-
tion is weaker than Kolmogorov’s nondegencracy
conditions; for example, the map

14 3
w([‘ 0r(——[[7+f1[3 [.L)
\

/

. (11) + 21115 + I;,I]‘,Il,'l}

violates both Kolmogorov’s nondegeneracy and the
isoenergetic nondegeneracy conditions but is non-
planar at any point of the form (I;,0,0,0), since
w(l1,0,0,0) = !’ 17 ,I1,1) 1s a nonplanar curve (at
any point).

As in the three-body case, the frequency map is

that associated with the averaged secular
o
Hamiltonian
( (1)
beL '_ HIJ ] Hl |

HY (A, €. p.q):=

cy dA [28]
1)
‘/H (27)"

£=p=g=0
A is regarded as a parameter). It is a
remarkably well-known fact that the quadrauu part
of H'" does not contain “mixed terms,” namely,

which has an elliptic equilibrium at 5=
(as above,

’HUJ 7 V’Hﬂ T (C)Ph'\ - ~|“ Qpln f ) E + Qspl. b P
Q;pr q-9—+ ()4) rlgl

where the function 'HB] "and the symmetric matrices
Qpin and Qg depend upon A while O4 denotes
terms of order 4 in (1, &, p, g). The eigenvalues of the
matrices Qp, and Qg are the first Birkhoff
invariants of H'" (with respect to the symplectic
variables (7n,&p,q)). Let oy,...,0, and <,...,5
denote, respectively, the eigenvalues of Opln and
Qspes then the frequency map for the (1 + n)-body
problem will be defined as (recall eqn [18])

A — (£,2Q) 30]

\

(X . ) 31
(o,

(\01,.‘.,0,,),@1,... VSl

Herman pointed out, however, that the frequencies
o and ¢ satisfy two independent linear relations,
namely (up to renumbering the indices),

with

Q=

n

> o+ =0 [32)

=1

'S_nZO:

which clearly prevents the frequency map to be
nonplanar; the second relation in eqn [32] is usually
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called “Herman resonance” {while the first relation
is a well-known consequence of rotation invariance).

The degeneracy due to rotation invariance may
be easily taken care of by considering {as in the
three-body case) the (61 — 2)-dimensional invariant
symplectic manifold M., defined by taking the
total angular momentum C to be vertical, that is,
C-k;=0=C"ky. But, when n > 2, Jacobi's reduc-
tion of the nodes is no more available and to get rid
of the second degeneracy (Herman’s resonance), the
authors bring in a nice trick, originally due — once
more! — to Poincaré. In place of considering H.,p,,
restricted on M., Féjoz considers the modified
Hamiltonian

,Hf,},p = ’Hnbp + écl)‘

C_; = C k_} = |(J| [33]

where § € R is an extra artificial parameter. By an
analyticity argument, it is then possible to prove that
the (rescaled) frequency map

3n—1

(A:é‘l - ("';‘ua'l:"‘:g'hglf" . sgvn—l:] €

is nonplanar on an open dense set of full measure
and this is enough to find a positive measure sct of
Lagrangian maximal (37 — 1)-dimensional invariant
tori for 'Hihp; but, since H?}l)p and ‘H,p,, commure, a
classical Lagrangian intersection argument allows
one to conclude that such tori are invariant also for
Hupp yielding the complete proof of Arnol’d’s
theorem in the general case. Notice that this
argument yields (37 — 1)-dimensional tori, which in
the three-body case means five dimensional. Instead,
the tori found in the section “The spatial three-body
problem™ are four dimensional. The point is that
in the reduced phase space, the motion of the
nodeline — denoted as #;(¢) in eqn [25] = does not
appear.

We conclude this discussion by mentioning that
the KAM theory used in Féjoz {2004} is a modern
and clegant function-theoretic reformulation of the
classical theory and is based on a C* local inversion
theorem (F Sergeraert and R Hamilton) on “tame”
Frechet spaces (which, in turn, is related to the
Nash—-Moser implicit function theorem; see Bost
(1984-85)).

Lower Dimensional Tori

The maximal tori for the many-body problems
described above are found near the elliptic equilibria
given by the decoupled Keplerian motions. It is
natural to ask what happens of such elliptic
equilibria when the interaction among planets is
taken into account. Even though no complete
answer has yet been given to such a question, it

appears that, in general, the Keplerian elliptic
equilibria  “bifurcate” into elliptic n-dimensional
tori. This section presents a short and nontechnical
account of the existing results on the martter {the
general theory of lower-dimensional tori 1s, mainly,
due to J K Moser and S M Graff for the hyperbolic
case and V K Melnikov, I Eliasson, and S B Kuksin
for the technically more difficult elliptic case; for
references, see, e.g., Chierchia et al. (2004)).

The normal form of a Hamiltonian admitting an
n-dimensional elliptic invariant torus 7 of energy E,
proper frequencies & € R”, and “normal frequen-
cies” 2 € R? in a 2d-dimensional phase space with
d=n+p is given by

P+ &

o I
j=1

Here the symplectic form is given by dy A dx+
dn A dé,ye R, x e T, (n,6) € R¥;7 is then given
by T:={y=0] x {p=£=0}. Under suitable assump-
tions, a set of such tori persists under the effect of a
small enough perturbation P(y,x,n,€). Clearly, the
union of the persistent tori (if # < d) forms a set of
zero measure in phase space; however, in general,
n-parameter families persist.

In the many-body case considered in this article,
the proper frequencies are the Keplerian frequencies
given by the map A —w(A) (eqn [31]}, which is a
local diffeomorphism of R". The normal frequencies
Q, instead, are proportional to £ and are the first
Birkhoff invariants around the elliptic equilibria as
discussed above. Under these circumstances, the main
nondegeneracy hypothesis needed to establish the
persistence of the Keplerian #-dimensional elliptic tori
boils down to the so-called Melnilkov condition:

QAFOFQ—-Q;, YiFi

(%)

5]

Such condition has been checked for the planar
three-body case in Féoz (2002), for the spatial
three-body case in Biasco et al. (2003) and for the
planar n-body case in Biasco et al. (2004). The
general spatial case is still open: in fact, while it is
possible to establish lower-dimensional elliptic tor
for the modified Hamiltonian ’Hﬁbp in [33], it is not
clear how to conclude the existence of elliptic tori
for the actual Hamiltonian H,,, since the argument
used above works only for Lagrangian (maximal)
tori; on the other hand, the direct asymptotics
techniques used in Biasco et al. (2003) do not
extend easily to the general spatial case.

Clearly, the lower-dimensional tori described in
this section are not the only ones that arise in
n-body dynamics. For more lower-dimensional tori
in the planar three-body case, see Féjoz (2002).
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Physical Applications

The above results show that, in principle, there may
exist “stable planetary systems” exhibiting quasiper-
iodic motions around coplanar, circular Keplerian
trajectories — in the Newtonian many-body approx-
imation - provided the masses of the planets are
much smaller than the mass of the central star.

A quite different question is: in the Newtonian
many-body approximation, is the solar system or,
more in generally, a solar subsystem stable?

Clearly, even a precise mathematical reformula-
tion of such a question might be difficult. However,
it might be desirable to develop a mathematical
theory for important physical models, taking into
account observed paramerer values.

As a very preliminary step in this direction, consider
one of the results of Celletti and Chierchia (see Celletti
and Chierchia (2003), and references therein).

In Cellerti and Chierchia (2003), the (isolated)
subsystem formed by the Sun, Jupiter, and asteroid
Victoria (one of the main objects in the Asteroidal
belt) is considered. Such a system is modeled by an
order-10 Fourier truncation of the RPC3BP, whose
Hamiltonian has been described in the secrion
“Kolmogorov’s theorem and the RPC3BP (1954).”
The Sun-Jupiter motion is therefore approximated by
a circular one, the asteroid Victoria is considered
massless, and the motions of the three bodies are
assumed to be coplanar; the remaining orbital
parameters {Jupiter/Sun mass ratio, which is approx-
imately 1/1000; eccentricity and semimajor axis of the
osculating Sun-Victoria ellipse; and “energy™ of the
system] are taken to be the actually observed values.
For such a system, it is proved that there exists an
invariant region, on the observed fixed energy level,
bounded by two maximal two-dimensional Kolmo-
gorov torl, trapping the observed orbital parameters of
the osculating Sun—Victoria ellipse.

As mentioned above, the proof of this result is
computer assisted: a long series of algebraic compu-
tations and estimates is performed on computers,
keeping a rigorous track of the numerical errors
introduced by the machines.
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