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Abstract. We provide a short, simple proof of the existence of Hamiltonian trajectories
arbitrarily close to a given chain of heteroclinic orbits connecting ``codimension-one, KAM,
whiskered tori''.
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1 Introduction

``Arnold di¨usion'', i.e., order-one drift of action variables in general nearly-
integrable Hamiltonian systems (with more than two degrees of freedom), takes place
near long chains of heteroclinic orbits connecting lower-dimensional, invariant,
whiskered tori. For a general theory of Arnold di¨usion for perturbations of ``a-
priori unstable'' nearly-integrable Hamiltonian systems, see [2] (roughly speaking,
``a-priori unstable'' nearly-integrable Hamiltonian systems are perturbations of
integrable Hamiltonian systems which possess a one-dimensional separatrix).

This note is devoted to give a short (albeit complete) proof of the existence of
drifting (or ``shadowing'') orbits along a given (transverse) heteroclinic chain of co-

dimension-one invariant whiskered KAM tori. Here, ``codimension-one'' means
�l ÿ 1�-dimensional, if l is the number of degrees of freedom (with l > 2); ``whis-
kered'' means (as in [1]) that the �l ÿ 1�-dimensional tori possess two asymptotic l-
dimensional invariant manifolds (phase points on such manifolds evolve approaching
or leaving at an exponential rate the associated tori); ``KAM'' means that the tori
together with their whiskers are constructed by a Kolmogorov-Arnold-Moser tech-
nique (see [2], § 5 and also [5]). Such KAM technique, in particular, yields a very
strong normal form, which describes exactly the motion of a �l � 1�-dimensional
neighbourhood of the torus: this normal form is at the basis of the construction of the
shadowing orbits presented here (as well as in § 8 of [2]). Finally ``heteroclinic chain''
stands for an ordered set of orbits belonging simultaneously to the departing whisker
of one torus and to the approaching whisker of the successive torus in the chain; the
word ``transverse'' means that the approaching and departing whiskers intersect



transversally (often the ``approaching/departing whiskers'' are also called ``stable/
unstable whiskers'').

The existence problem for chains of whiskered tori is not addressed in this note: we
simply mention that the existence of such chains is established, in the context of a-
priori unstable nearly-integrable Hamiltonian systems (under suitable ``regularity''
assumptions), in [2], where, in particular, the ``gap bridging problem'' has been
overcome for the ®rst time. The ``gap bridging problem'' is the problem of connecting
whiskered tori which are separated by the gaps appearing in KAM constructions; the
``gap bridging mechanism'' introduced in [2] is based on a quantitative comparison
between the size of the gaps and the size of the ``homoclinic splittings'' (a measure of
the transversality of the intersection of the approaching and departing whiskers of a
same whiskered torus) in certain region of phase space having suitable ``non-
resonance properties'' (see Lemma 3 of § 7 and § 8 in [2]). Here we simply assume to
have a heteroclinic chain (see item (i) in § 2 below), while the main conclusions of the
KAM analysis worked out in § 5 of [2] are summarized in item (ii) and (iii) of § 2
below. Such items may be regarded as a set of three axioms, which are nontrivially
veri®ed in cases considered in [2]: items (ii) and (iii) are proven in § 5 of [2] under
rather general assumptions, which include, possibly time-dependent, a-priori unstable
systems (but may be also applied to a-priori stable systems as discussed in § 11 of [2]
in the paragraph containing formula (11.4)); item (i) is proven for ``general'' a-priori
unstable systems (perturbed by a trigonometric polynomial in the angle-variables),
see § 7 and § 8 up to the paragraph containing formula (8.9) of [2]. With this approach
we hope to provide a conceptually clear distinction between the (much more di½cult)
problem of constructing KAM heteroclinic chains and the problem of constructing
shadowing orbits along them.

The proof presented here follows the scheme given in [2] and corrects a minor error
in § 8 of [2] (see [3]). In [2] certain parameters (measuring the expansion rates in the
``hyperbolic variables'' and in the ``quasi-periodic variables'') are taken to be di¨erent
and this, in general, might not be possible (or needs at least a justi®cation). If one
takes such parameters equal, the proof in § 8 of [2] goes through word-by-word. Such
a proof is rather intricate mainly because it attempts to ®nd ``reasonable bounds'' on
di¨usion times, i.e., on the times needed by shadowing orbits to go from one end of
the chain to the other end. In fact, the proof presented here would lead to time esti-
mates that are even worse than the exponential estimates claimed in [2] (here ``expo-
nential'' means ``exponential in an inverse power of the perturbation parameter'' and
``even worse'' refers to a chain of exponentials).

The proof discussed here presents also the following two di¨erences with that of
[2]: 1) the construction of the shadowing orbits here is based on special curves para-
meterized by the ``hyperbolic variables'' and this has the advantage of stressing the
role played by the hyperbolic variables in the Hamiltonian context and of making
(possibly) more clear a comparison with standard (but technically quite di¨erent)
tools of hyperbolic dynamics such as, for example, the so-called ``lambda lemma''; 2)
the hypotheses made here are slightly more general than what is used in § 8 of [2] (in
particular, the whiskers here are not assumed to be ``graphs over the angles'' as it
happens in the applications discussed in [2]; compare, also, Lemma 2 below).
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In view of the considerable interest devoted to Arnold di¨usion, we feel it worth-
while to produce a short, self-contained andÐwe believeÐconceptually clear proof
of the existence of orbits shadowing a given chain of whiskered tori.

Finally, here we do not address at all the interesting problem of ®nding ``good
bounds'' on di¨usion times also because (probably due to the full constructiveness of
our arguments) the time estimates, which would follow from the below analysis,
would be quite unsatisfactory. In this respect, we solely mention that the method of
[2] and of the present paper can be improved so as to give much more reasonable
estimates: see [4], where a complete theory (i.e. construction of heteroclinic chains,
construction of shadowing orbits and explicit estimates on di¨usion times) is worked
out in the case of ``isochronous systems''. ``Isochronous systems'' are systems having
®xed quasi-periodic frequencies and may be also viewed as quasi-periodic-in-time
perturbations of a pendulum (we remark, however, that isochronous systems are
``gapless systems'', a fact, that not only makes possible to avoid completely the above
mentioned ``gap bridging problem'' but also renders shadowing of transition chains
easier).

Next section contains precise de®nitions and a complete proof of the construction
of shadowing orbits. An easy technical consequence (Lemma 1) of a suitable trans-
versality assumptions is included for completeness in the appendix1.

2 Construction of shadowing orbits

Let f t denote the ¯ow at time t generated by a (real-analytic) Hamiltonian H on a
®xed energy level SE 1 fH � Eg contained in the phase space V � T l endowed with
standard canonical ``action-angle variables''; here V is some bounded domain in R l

and T l denotes the standard ¯at l-dimensional torus. We assume that, in SE , there

exist a ``transverse, heteroclinic chain of whiskered, codimension-one KAM tori '', i.e.,
there exist �l ÿ 1�-dimensional (di¨erent) tori T1; . . . ;TN such that each torus Ti

is invariant (for f t) and is included into two invariant l-dimensional manifolds
(``whiskers'') W s

i and2 W u
i on which the motions are asymptotic to it and,

furthermore:

(i) For 1U i UN ÿ 1;W u
i intersects W s

i�1 transversally in SE at a point3 zi.

(ii) The dynamics in a neighbourhood Ui of the torus Ti is described by standard
``KAM normal'' coordinates4 �~A 0;~c; p; q� A R lÿ1 � T lÿ1 �R�R: there exists

1 In the rest of this note we do quite a large use of footnotes: such footnotes contains no es-
sential arguments, may be skipped and are intended as side comments or reminders.
2 The superscripts s and u stand for ``stable'' and ``unstable''.
3 We recall that if S is a di¨erentiable manifold and if M and N are two submanifolds of S one
says that M intersects transversally N in S at a point p A M XN if TpM � TpN � TpS (``Tp''
denoting, here, ``tangent space at p of '').
4 The notations we use here follow quite closely those of [2]: in [2] the canonical variables on
the phase space V � T l are denoted �~A; I ;~a; j� and the ``KAM normal'' coordinates �~A 0; ~c; p;
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r; r̂ > 0, a canonical change of variables C, and (real-analytic) functions of one
variable ~A

0
i ; ~oi; gi, with j~A 0i �J� ÿ ~A

0
i �0�j < r for every jJj < r̂2, satisfying the

following properties:

�2:1�

C : Ûi 1 fj~A 0 ÿ ~A
0
i �0�j < r;~c A T lÿ1; jpj < r̂; jqj < r̂g ! Ui

H � C�~A 0i �pq�; ~c; p; q�1E; E~c A T lÿ1; jpj < r̂; jqj < r̂;

qp�H � C��~A 0i �0�;~c; 0; r̂=2�0 0; E~c A T lÿ1;

and, for p; q; t satisfying jpeÿgi�pq�tj < r̂; jqegi�pq�tj < r̂,

�2:2� f t � C�~A 0i �pq�;~c; p; q�� � C�~A 0i �pq�;~c� ~oi�pq�t; peÿgi�pq�t; qegi�pq�t�:

The dependence of ~oi upon the variable J � pq is scalar: ~oi�J� � ti�J�~o0
i and

the functions ti and gi are uniformly bounded and bounded away from zero; the
constant vectors ~o0

i are rationally independent5.

(iii) The torus Ti in the above KAM coordinates is given by

Ti � C�f�~A 0i �0�;~c; 0; 0� : ~c A T lÿ1g�;

while, if we denote by

W s
i; loc � C�f�~A 0i �0�;~c; p; 0� : ~c A T lÿ1; jpj < r̂g�;

W u
i; loc � C�f�~A 0i �0�;~c; 0; q� : ~c A T lÿ1; jqj < r̂g�;

the ``local stable/unstable whiskers'', then

W s
i � 6

tU0

f t�W s
i; loc�; W u

i � 6
tV0

f t�W u
i; loc�:

q�; as in [2], the vector symbol ~ will be attached to quantities in R lÿ1 or in T lÿ1; f t and C are
denoted in [2], respectively, St and Cy (see, in particular, [2], page 33, ®fth paragraph: C is
the transformation generated by ~fy); ~oi and gi in (2.2) correspond, respectively, to �1�
g�J; si; m��~osi

and gsi
�1� g 0�pq; si; m�� in [2].

5 In fact the rotation vectors arising in the KAM construction of [2] satisfy standard diop-
hantine conditions. The condition in the third line of (2.1) is a nondegeneracy condition for
points on the unstable whisker; obviously (reversing time) the analogous condition for the
stable whisker would do as well. We also remark that there is nothing special about the section
fq � r̂=2g and the nondegeneracy condition might be replaced, e.g., by requiring that
qp�H � C��~A 0i �0�; ~c; 0; r 0�0 0; E~c A T lÿ1 for some 0 < r 0 < r̂.
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As mentioned in the introduction items (ii) and (iii) are the main content of the KAM
linearization proved, in the context of a-priori unstable nearly-integrable Hamil-
tonian systems, in § 5 of [2] (for the correspondence between symbols used here and
those used in [2] we refer to the footnote 4). Also, assumption (i) may be checked,
under general conditions, in the context of a-priori unstable nearly-integrable
Hamiltonian systems (see § 6o § 8 of [2]).

Note that the set of points f�~A 0i �pq�;~c; p; q�g form an �l � 1�-dimensional mani-
fold in the �2l ÿ 1�-dimensional energy manifold (if l � 3 this is a 4-dimensional
manifold in the 5 dimensional energy manifold). Hence the above item does not

describe all the motions near the torus, but only a small subset of them (which,
however, are in a way ``perfectly'' described).

We now consider an l-dimensional connected submanifold Ds
i of the stable whisker

W s
i�1 lying in Ui and containing a point wi in the transverse intersection between

W u
i and W s

i�1. Such a submanifold may be parameterized, in terms of normal
coordinates, as:

Ds
i 1C�f�~A �i �u�;~c�i �u�; p�i �u�; q�i �u��; u A U HR lg�;

where U is some l-ball of parameters and the starred letters denote smooth functions.
Without loss of generality, we can also write

wi � C�ŵi� with ŵi � �~A 0i �0�;~ci; 0; r̂=2� � �~A �i �0�;~c�i �0�; p�i �0�; q�i �0��;

(to get the q-value equal, for all i, to r̂=2, one can move wi with the ¯ow). We now
build a curve in Ds

i , passing through wi, parameterized by the hyperbolic variable p

and with q-coordinate ®xed. More precisely we have the following

Lemma 1. With the above assumptions and notations, there exist a suitable ~r > 0 and

a suitable (smooth) function ~ci�p� such that ~ci�0� � ~ci and the curve G i de®ned by

G i 1 fG i�p�1 �~A 0i �pr̂=2�; ~ci� p�; p; r̂=2�; jpj < ~rg satis®es

C�G i�JD s
i :

The proof of this statement is a simple consequence of the above hypotheses:
the transversality assumption implies that the map u! a�u�1 �~A �i �u�; q�i �u�� is
invertible near u � 0 and, if one de®nes v�p�1 aÿ1�~A 0i �pr̂=2�; r̂=2�, by energy con-

servations it is p�i �v�p�� � p so that the lemma follows by choosing ~ci�p�1
~c�i �v�p��. For completeness we include the details in appendix.

The ``local'' construction described in the next Proposition will lead at once to the
existence of shadowing orbits (and hence to Arnold di¨usion whenever the hetero-
clinic chain is long enough).

Proposition 1. Assume (i), (ii) and (iii) above and denote, for 1U iUN ÿ 1, by Ds
i a

connected l-submanifold of W s
i�1 contained in Ui and intersecting transversally W u

i; loc in

Hamiltonian trajectories 251



SE at wi A Ui. Given a neighbourhood Biÿ1 of some6 xiÿ1 A Ds
iÿ1 X �W u

iÿ1; loc�c one can

®nd xi A Ds
i X �W u

i; loc�c, a neighbourhood Bi of xi and a time Ti > 0 such that fÿTi Bi H
Biÿ1.

Proof. Since xiÿ1 A D s
iÿ1 HW s

i ; xiÿ1 will evolve, in a suitable time T �i > 0, into a point

x 0i A Ui having normal coordinates given by �~A 0i �0�;~w 0i ; r̂=2; 0� for a suitable~w 0i A T lÿ1.
Set B 0i 1 fT �i �Biÿ1�. We have to show that in D s

i X �W u
i; loc�c one can ®nd a point xi

and a time t�i > 0 such that fÿt �i �xi� A B 0i (from this the existence of Bi with the
desired properties follows at once). The point xi will be selected on the curve G i lying
in D s

i constructed in the above Lemma 1. Let B̂i be a small sphere of radius s > 0
(in normal coordinates) centered at Cÿ1�x 0i � and such that C�B̂i�HB 0i . By the
construction of G i and (2.2) one has, for p and t satisfying jpeÿgi�pr̂=2�tj < r̂ and
r̂egi� pr̂=2�t=2 < r̂,

�2:3� f t � C�G i�p�� � C�~A 0i �pr̂=2�; ~ci�p� � ~oi�pr̂=2�t; peÿgi�pr̂=2�t; r̂egi�pr̂=2�t=2�:

De®ne, for p > 0; ti�p� by setting pegi�pr̂=2�ti�p� � r̂=2 and notice that7 ti�pr̂=2�ti�p� !
y as p! 0. Since the ¯ow t! ~o0

i t is dense on T lÿ1, for any r0 > 0 we can ®nd
0 < p�i < r0 such that ~ci ÿ ~oi�p�i r̂=2�ti�p�i �1~ci ÿ ~o0

i ti�p�i r̂=2�ti�p�i � is arbitrarily

close to ~w 0i . Now, choose 0 < r0 < ~r be such that j~A 0i �pr̂=2� ÿ ~A
0
i �0�j < s and

j~ci�p� ÿ~cij < s=2 for jpj < r0 and let t0 > 0 be such that eÿgi�pr̂=2�tr̂=2 < s for all
t > t0 and jpj < r0. Then one can ®nd 0 < p�i < r0 so that ti�p�i � > t0 and j~ci ÿ
~oi� p�i r̂=2�ti�p�i � ÿ~w 0i j < s=2, which, in view of the above choices, implies that fÿti�p �i � �
C�G i�p�i �� A C�B̂i�HB 0i . r

We remark that in this proof it is essential that ~oi�pr̂=2� � ti�pr=2�~o0
i is parallel to a

®xed rationally independent vector ~o0
i as stated in the last lines of item (ii) at the

beginning of the section: a less careful normal form could give a rotation vector
which changes with p also its direction taking, in particular, resonant values for a
dense set of values of p in the interval of variation of p and the above argument
would not work any more.

Since fÿt is a di¨eomorphism (and therefore preserves transversality), one can take
as Ds

iÿ1 the image under fÿT (for a suitable T > 0) of a connected component of W s
i

in a neighbourhood of ziÿ1 (compare assumption (i)). An iteration of Proposition 1
leads then immediately to the following

Corollary. With the same assumptions made in Proposition 1, there exist a positive T �

and a positive measure set of initial data in an arbitrary neighbourhood of T1 whose

fT � -image is contained into an arbitrary neighbourhood of TN .

6 The superscript c denotes complementary set.
7 Recall the de®nitions of and the assumptions on gi and ti given in (ii).
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Often, in applications, the whiskers appear naturally as graphs over the angles. In
such a case transversality takes a simple form:

Lemma 2. Let Ds
i HUi be a submanifold of W s

i�1 which may be expressed as a graph

over �~c; q�, i.e., there exist functions ~Ai�~c; q� and pi�~c; q� de®ned (for suitable

d > 0; ~ci A T lÿ1; 0 < jqij < r̂ÿ d) for j~cÿ~cij < d and jqÿ qij < d such that

�2:4�
D s

i � C�f�~Ai�~c; q�; ~c; pi�~c; q�; q� : j~cÿ~cij < d; jqÿ qij < dg�;
~Ai�~ci; qi� � ~A

0
i �0�; pi�~ci; qi� � 0:

Then D s
i intersects transversally W u

i; loc in SE at a point wi 1C�~Ai�~ci; qi�;~ci;
pi�~ci; qi�; qi� if and only if

�2:5� det
q~Ai

q~c
�~ci; qi�0 0:

The proof of this statement is elementary (going along the lines of the proof of
Lemma 1 given in the appendix) and is omitted.

Formula (2.5) gives a simple criterion that can be rather easily tested by making
use of the theories of the homoclinic splitting.
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A Proof of Lemma 1

From the transversality (in the energy level) between Ds
i and W u

i at wi we have

�A:1� 2l ÿ 1 � rank

qu
~A
�
i �0� 0 0

qu
~c�i �0� I 0

qu p�i �0� 0 0

quq�i �0� 0 1

0BBBBB@

1CCCCCA � rank

qu
~A
�
i �0� 0

qu p�i �0� 0

quq�i �0� 1

0BB@
1CCA� l ÿ 1

where I denotes here the �l ÿ 1� � �l ÿ 1� identity matrix. By energy conservation
�D s

i HSE and second line of (2.1))

�A:2� H � C�~A �i �u�;~c�i �u�; p�i �u�; q�i �u�� � E � H � C�~Ai�0�;~c; 0; q�

so that, di¨erentiating with respect to u the ®rst equality and with respect to ~c and q

the second one, one obtains
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�A:3� qu p�i �0� �~a � qu
~A
�
i �0�

with8~a1ÿ q~A 0 �H � C��ŵi�=qp�H � C��ŵi�.
Furthermore, since wi A W u

i XW s
i�1 the trajectory w�t�1 f t�wi� is a heteroclinic

orbit belonging to W u
i XW s

i�1 for all times. In particular (since w�t� A W u
i ) w�t� �

C�~A 0i �0�;~ch
i �t�; 0; qh

i �t�� for suitable functions ~ch
i ; q

h
i �t� while (since w�t� lies, at least

for small jtj, in D s
i HW s

i�1) there exists a (smooth) function u�t� such that u�0� �
0 and w�t� � C � �~A �i �u�t��; ~c�i �u�t��; p�i �u�t��; q�i �u�t���. Thus ~A

�
i �u�t�� � ~A

0
i �0�;

p�i �u�t�� � 0 and q�i �u�t�� � qh
i �t� (for jtj small enough). Di¨erentiating with respect

to t the relations ~A
�
i �u�t�� � ~A

0
i �0� and q�i �u�t�� � qh

i �t� one sees that

�A:4� qu
~A
�
i �0�

quq�i �0�

 !
a �

0

1

 !
;

with a1 _u�0�=qp�H � C��ŵi�. So, from (A.1), (A.3), (A.4) it follows that

l � rank

qu
~A
�
i �0� 0

qu p�i �0� 0

quq�i �0� 1

0BB@
1CCA � rank

qu
~A
�
i �0� 0

quq�i �0� 1

 !
� rank

qu
~A
�
i �0�

quq�i �0�

 !

thus the matrix qu�~A �i ; q�i �
��
u�0

is nonsingular. By the Inverse Function Theorem,
there exists a function v�p� such that v�0� � 0 and, for small p (say jpj < ~r),

�A:5� ~A
�
i �v�p�� � ~A

0
i �pr̂=2�; q�i �v�p�� � r̂=2:

Now, de®ne ~ci�p�1~c�i �v�p�� and observe that, from (A.2) evaluated at u � v�p�
and from the second line in (2.1) evaluated at q � r̂=2;~c � ~c�i �v�p��, there follows

H � C�~A �i �v�p��;~c�i �v�p��; p�i �v�p��; q�i �v�p���

� H � C�~A 0i �pr̂=2�; ~c�i �v�p��; p�i �v�p��; r̂=2��

� E � H � C�~A 0i �pr̂=2�;~c�i �v�p��; p; r̂=2�;

which implies9 that p�i �v�p�� � p.
So

Ds
i KCf�~A �i �v�p��;~c�i �v�p��; p�i �v�p��; q�i �v�p���; jpj < ~rg � C�G i�: r

8 Recall that, since ŵi � �~A 0i �0�; ~ci; 0; r̂=2�, (ii) implies that qp�H � C��ŵi�0 0.
9 Use (A.5) and recall again that qp�H � C��ŵi�0 0.
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