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Abstract

Moser's C*-version of Kolmogorov's theorem on the persistence of maximal quasi-periodic
solutions for nearly-integrable Hamiltonian system is extended to the persistenog-ofaximal
quasi-periodic solutions corresponding to lower-dimensiosiptic tori of any dimensionn
between one and the number of degrees of freedom. The theorem is proved for Hamiltonian
functions of classCt for any ¢ > 6rn + 5 and the quasi-periodic solutions are proved to be of
classCP? for any p with 2 < p < p, for a suitablep. = p«(n, £) > 2 (which tends to infinity
when ¢ — 00).
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1. Introduction and results

1.1. Moser's main contribution to the so-called KAM theory was to extend
Kolmogorov's invariant-tori-theorenfi9] to smooth category. Kolmogorov's celebrated
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theorem deals, as well known, with the persistence under small, real-analytic pertur-
bations of maximal quasi-periodic solutions (associated to maximal invariant tori) for
nearly-integrable Hamiltonian systems. The basic technical tool exploited by Moser
in his extension was closely related to ideas of N§EF| and consisted in using a
Newton (quadratic) iteration method, re-inserting at each step enough regularity into
the problem so as to beat (together with the so-called “small divisor problem”, already
overcome by Kolmogorov and Arnold) the loss of regularity due to the inversion of
certain (non-elliptic) differential operators. In the original work of Mogg4], which

was dealing with twist area-preserving maps (corresponding to the Hamiltonian system
case in “one and a half” degrees of freedom), the perturbation was assumed to be
(333, The regularity assumption (in the twist map case) was later brought down to five
by Rissmannj22]; for the Hamiltonian case we refer {@6,29] and, especiallyj19],

where Kolmogorov’s theorem is proved under the hypothesis that the perturbatitn is
with ¢ > 2d, d being the number of degrees of freedom. We recall also that Herman
[8] gave a counterexample in the twist map case With 3—¢, ¢ > 0 (corresponding

to £ = 4 — ¢ in the Hamiltonian case with two degrees of freedom).

1.2. Right after KAM theory for maximal tori was established, it appeared clear that
an important direction of further investigations was that of the existendevedr di-
mensional quasi-periodic solutionsorresponding to lower dimensional invariant tori,
i.e., tori of dimensiot n < d (as aboved stands for the number of degrees of free-
dom). In 1965 Melnikov stated a precise result concerning the persisterstabié (or
“elliptic”) lower-dimensional tori in[13]; the hypotheses of such result are, now, com-
monly referred to as “Melnikov conditions”. However, a proof of Melnikov's theorem
was given only later by Mose€[15] for the casen = d — 1 and, in the general case,
by Eliasson in[6] and, independently, by KuksifiLO]; see also[20]. The unstable

(or *hyperbolic”) case (i.e., the case for which the lower dimensional tori are linearly
unstable and lie in the intersection of stable and unstable Lagrangian manifolds) is
simpler? and a complete perturbation theory was worked oufli5,7,29] Various
technical progresses have been recently performed in,[21g2,28,27,25] Incidentally

we mention that lower dimensional quasi-periodic solutions are particularly relevant in
connection with extensions to PDE’s; see, €[§,11,12,21,3]and references therein.

1.3.All the above mentioned results concerning the extension of Kolmogorov's theorem
to lower dimensional torideal only with the real-analytic casdt is the purpose of

this paper to extend Moser's theorem to lower dimensional quasi-periodic solutions
proving, under suitable generic assumptions, the persistence and the regularity of lower
n-dimensionaklliptic tori (corresponding to lower dimensional quasi-periodic solutions)
for Ct perturbations of nearly-integrable systems wits 61 + 5.

1Equilibria and periodic orbits, corresponding, respectivelynte 0 and 1, are the simplest examples;
in such cases there are no small-divisor problems and existence was already established by Poincaré by
means of the standard Implicit Function Theorem: §&& Volume |, Chapter IlI]

20n a technical level: the normal frequencies to the torus do not resonate with the inner (or “proper”)
frequencies associated to the quasi-periodic motion.
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Before stating in a more precise way our results, let us mention that it was already
remarked by Graff if [7] that combining “soft” tools of invariant manifold theory
(based on the standard Implicit Function Theorem) and KAM theory for maximal tori
one can conclude that lower dimensional unstable tori persist under small perturbations
(but regularity of the continued manifolds may be, in general, quite low). As well
known, however, such “partially hyperbolic techniques” do not carry over to the elliptic
situation.

1.4. We proceed, now, to formulate the main result proved in this paper. Consider a
(smooth) Hamiltonian system witkH-m degrees of freedom, governed by a Hamiltonian
function of the form

H(x,y,u,v; &) :==N(y,u,v; &) + P(x, y,u,v; &), (1.1)

where(x, y) € T" xR” and (u, v) € R?" are pairs of standard symplectic coordindtes
and ¢ is a real parameter running over a compact Bet R" of positive Lebesgue
measuré ; N is in “normal (integrable) form”:

n 1 m
N=e@+) 0@y +35) 2O +v), (1.2)

j=1 j=1

P is a small perturbation. The motions generatedNoglecouple in a Kronecker flow
x € T" —» x+w(&)r times the motion ofn (decoupled) harmonic oscillators with char-
acteristic frequencieQ; (&) (sometimes referred to amrmal frequencigs in particular,
the n-parameter family (parameterized &Yy of n dimensional tori

& =T"x{y=0x{u=v=0}, ¢ell,

are linearly stable (elliptic) invariant tori of dimension n carrying quasi-periodic mo-
tions with frequencyw(é) € R”.

3Compare pointb of the introduction in[7, p. 6] Graff's remark has been recently re-considered by
Huang, D. and Liu, Z.:On the persistence of lower dimensional invariant hyperbolic tori for smooth
Hamiltonian systemsNonlinearity, 13 (2000) 189-202.

4Hence the equation of motion ar¢ = Hy, y = —Hy, u = Hy, v = —H,, where Hy =
(Hyy, ..., Hy,), etc,; T" := R"/(2nZ").

5Typically, ¢ may indicate an initial datumyg andy the distance from such point or (equivalently, if
the system is non-degenerate in the classical Kolmogorov sense)o(&) might be simply the identity,
which amounts to consider the unperturbed frequencies as parameter.
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Theorem 1.1. Let¢ > 6n+5 and let H in(1.1) be C* in a neighborhood offi” x {y =
0} x {u = v = 0} and (uniformly) Lipschitz continuous ifi ¢ € I1. Assume that

Q&) >0, Q) #Q;(0), Viell, Vi#j. (1.3)

Assumealso, that £ € IT — w(&) € R" is a Lipschitz homeomorphism &f onto its
image and thaf

measgé € I1 : (w(8), k) + (2(), 1) =0} =0,
YV keZ"\{0}, VIeZ™ : || <2 (1.4)

Then if the gradient of B together with its Lipschitz semi-norm ify is small enough
there exists a sell, C I1 of positive Lebesgue measure and a family of n-dimensional
linearly stable H-invariant tori7”(¢) parameterized byand Lipschitz continuous )jn

¢ € Ily. The tori T"(¢) are CP-smooth for any2 < p < p, for a suitable p, =
p«(n,£) > 2. On T"(¢) the H-flow is C”-conjugated to the Kronecker flow —

X + w0 (&)t Where wo is a Lipschitz homeomorphysm di,, close tow; for all

¢ e My, wxo(&) is a “Diophantine vectdt

1.5. Let us collect, here, a few remarks on the above statements.

1.5.1. Conditions (.3)—(1.4) are a generalized versig21] of Melnikov's conditions
and represent a rather weak independence requirement betwesd 2 (obviously
satisfied if, for exampleQ is independent of). Notice that, ifw and Q are C1, (1.4
is satisfied whenevér (taking o as independent variable)

0wl ) £k, YkeZ'\[0}, YieZ™ : |l|<2 (1.5)

in which case the level seflsy : (k, w) + (I, 2(&(w))) = 0} are (n — 1)-dimensional
C1 hypersurfaces (and hence of vanishimgimensional measure).

1.5.2. Condition (.3) requires the normal frequencies to be bounded away from zero
and to be “simple”. Recently, in the KAM method of28], the simplicity of the

124
Suplg(iz - s;(c )]
=<

supremum being taken over afl# & in IT (and usually, we shall not indicate explicitly the domdih
in the notations since it will be clear from context).

"Here, “meas” denotes Lebesgue measlre) denotes the standard inner product; for integer vectors
I =(q,..., Im), Il = ; |l;|. Obviously, w = (w1,..., wy) and Q = (Q1, ..., Q,); later, however,Q
will also be identified with the diagonal matrix digdy, ..., Q).

8Actua||y, it is sufficient to require .5 for a finite number of vectork; compare 2.89 below.

6A function g is uniformly Lipschitz continuous onlI if |g|Lip = is finite, the
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normal frequencies has been relaxed allowing[4h to establish the existence (and
the linear stability) of quasi-periodic solutions for the one-dimensional wave equation
with periodic boundary conditions. It is conceivable (but not obvious) that methods
taken from[28] might lead to remove the second condition Ih3.

1.5.3. The tori T"(¢) are aCP?-embedding of the standard flattorus T" into the

2(n + m)-dimensional phase space. In fact, the embedding/sclose to the identity
for any 2< p < p,. The numberp, may be taken as follows. Pick

6n+5<tl, <t (1.6)
and letd € (0, 1/3) be such that

1+0> ¢ -2
1-30 -2

1.7)
Then (compare2.67) below),

2 0
ps =2+all —2), with a:=

= 3o (1.8)

In particular, if P is C*>, so are the toriT”"(¢) and the associated quasi-periodic
solutions.

1.5.4.The invariant toriT" (¢), ¢ € I, correspond taon-maximal quasi-periodic so-

lutions with n rationally independent uniformly Diophantine frequencig€ss, . . ., ®oon
satisfying
g Yoo ¢
{0 (C), k)| = e Vk e Z"\{0}, V ¢ € I, (1.9)
where
4, —11
T .= *6 >n—1 (110)

andy,, is a suitable (small enough) positive number. In fact, a slightly stronger Dio-
phantine property holds, sinc&.9) holds also replacingweo (&), k) with (s (&), k)44,
where/ := A(¢) denotes T"(£)-normal frequencies” or differences of such normal fre-
quencies.

1.5.5. A detailed and quantitative version of Theordnl is given in Propositior2.1
(convergence of the KAM iteration) and in Propositi2r2 (measure estimates difi,,)
below.
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1.5.6. The “smoothing technique” we shall use is due to Jackson, Moser and Zehnder
(compare[26]) and it is rather different from the original strategy introduced by Nash
and used by Moser in the context of dynamical systems. The Jackson—Moser—Zehnder
technique is based on approximating tié perturbationP by real-analytic functions
on smaller and smaller complex neighborhoods, solving linearized (analytic) equation
to a better and better degree (keeping careful quantitative track of the procedure) and
recovering in the limit a smooth (at lea€® in our case) solution.

We point out that we do not use directly an analytic theorem (as done, for instance,
in [26]), nor an analytic theorem can be immediately extracted from our approach.

1.5.7. The assumptiort > 6n + 5 is certainlynot optimal It would be interesting to
find the optimal value: for example, is it true that Theoré&rh holds provided? > 2n
(as in the maximal case)?

1.5.8. Part of the proof relies on analytic tools elaborated2d] and we, therefore,
follow quite closely the notations introduced [&1]. Another reason for using notations
borrowed from[21] is that it might facilitate the extension of our results to infinite

(m = o0) dimension. However, we restrain to do so here since we believe that such an
extension makes sense only if applied to a real infinite dimensional problem, such as,
for example, some “relevant” nonlinear PDE.

1.6. The (normal) form {.2) of the integrable piec&\ is rather standard in the present
context (compare, e.g[21,27). However, we mention briefly how more classical
situations may be included in the present formulation. As an example, consider a
Hamiltonian

h(p,1,q, p;e)=ho(l,q, p)+chi(p,1,q, p;e),

where (¢, I) and (g, p) are pairs of standard symplectic coordinates wjthe T",

I € B1(0) c R" and(q, p) in a small neighborhood of the origin R?”. Assume that
ho € C**3 and thathy € C*. Fix a point/, sayl = 0, and assume thay, p) = (0, 0)

is a linearly stable equilibrium foKg, p) — ho(0, g, p). If such an equilibrium is
non-degenerate (i.e., if the Hessian matﬁl(%é,p)ho(o, 0, 0) is invertible), then, up to
a symplectic change of coordinates, we may assume (thgt) = (0,0) is a non-
degenerate, stable equilibrium fég, p) — ho(Z, g, p) for any I € B,(0) for some

0 < p < 1. Assume, also, that the eigenvaluesjp,fa(zq,p)ho(o, 0,0), (J,, := standard
(2m x 2m)-symplectic matrix), are purely imaginary (‘“linear stability”) asinpleand
are given by+iQ; with Q; > 0 andj = 1,...,m. Finally, assume that also the

Hessian matrixi)fho(o, 0, 0) is invertible; this assumption corresponds to the classical
KAM non-degeneracy condition. Then, expandibgin a neighborhood ofé, 0, 0) :=

(I, 0,0), (up to order two iny = I — ¢ and three in(q, p) for ¢ € B,/2) and using

a classical result of Weierstrass on the diagonalization of quadratic symplectic forms,
one can find a symplecti@m x 2m) matrix S(¢) such that, in the symplectic variables
(x,y) = (p, [ =&), (u,v) = S(&(q, p), the Hamiltonianig+ ¢h1 takes the form1.1)
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whereN is as in (L.2) with & := Ig, e := ho(&,0,0), w = 0;ho(¢, 0,0), Q;(0) = Q
Furthermore, the perturbatioR := ho + ¢h1 — N is C* and satisfies

P =0(yl?) + 0(yll, v)) + O, v)[®) + O(e). (1.11)
We shall, therefore, considét on a real domain of the form
xeT", |yl<r? vl <r), &ell:=Byp,0)

for a small enough & r < p/2. Notice that, because of the simplicity of the eigenval-
ues, the dependence ©f; upon ¢ (possibly reducing) is of classC**1; furthermore,

the hypothesis or@fko implies thatw(¢) is a diffeomorphysm. From Theorefnl (or,
more precisely, from its quantitative version given in Propositidrisand 2.2 below),

it follows that if one chooses := ¢3 and ¢ is small enoughthen generically for
any ¢ in a Cantor subset oB,,> of densityO(1 — &%), (for some0 < « < 1), the
unperturbed n-dimensional toy = 0 = u = v, x € T" may be continued inta@?
h-invariant tori; compare Remar2.2 below.

1.7. The arguments on which the proof of Theordm is based are, as often happens
in KAM theory, rather technical and somewhat involved. Therefore, we close this
introduction with a “guide to the proof” of Theoret1 (divided into four parts). The
actual complete proof is given in Secti@

1.7.1. Smoothing and analytic approximants (Sections 2.1 and 2.2)

First, by standard real analytic tools we extend the perturbation funBtiorR2(+m)
Then, we fix (see, also, 1.7.2 below) a sequence of fast decreasing numbgrd
(v > 1) and, using the approximation theory of Jackson, Moser and Zehnder (Lemma
2.1), we construct a sequence of real-analytic functi®fY such that the following
holds.

(i) PV is real-analytic on the complex strify,, of width ¢, aroundR2"+m,

(i) The P"'s satisfy the bounds: syp |V(P") — PO~ Y)| < ¢ |P|ceat”T; compare
Lemma2.1 In this section, &’ denotes (different) constants depending onlyrpn
¢ and ..

(iii) The first approximantP® is “small” with the perturbatiorP:

VPO, <clPlce VP, (1.12)

where: || - ||,.s is a suitable weighted norm on complex functions, whilg, is
a corresponding weighted norm on real functichthe domain where the complex

91n Section 2 the norm || - s is denoted| - [l p(s); also, in place of the notatiofV f1|, below
(following [21]) we use the notation X ¢||. Furthermore, in Sectio2 the norm|- |, is denoted| - |p,

(see 2.61) and @.62).
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functions are considered is of the form

D(r,s) = {(x,y,u,v) € C2ntm) . Imx| <, |y| < P2, lu| <r, |v] <r}, (1.13)

while the domain where the real functions are considered is the projection of

D(r,s) on RZntm): the positive numbersy, s1 and o1 (“the initial analyticity

radii”) are chosen so as to meet.12. The weighted norms are discussed in
Section 2.2, in such section we also introduce—as it is costumary in studying
Hamiltonian equilibria—symplectic complex variablésand z linearly related to
the variablesu andv. Estimate {.12) is discussed particularly ir2(71) and @.63.

1.7.2. The KAM scheme (Section 2.3)
This is the heart of the proof. The idea—as in all KAM methods—consists in a

super-convergent (sometimes: Newton or quadratic) iterative procedure apt to reduce,

at each step of the scheme, the size of the perturbing function by a fixed powér

of the size of the perturbing function at the preceding step; this is done in order to beat
the loss of smoothness and the divergences introduced by the small divisors arising in
the inversion of non-elliptic differential operators. The scheme we need in our specific

problem is non-standard and, from a technical point of view, represent the most novel
part of the proof. For these reasons we give, now, a rather detailed description of such

scheme.
We want to construct, inductively, real-analytic symplectic transformatigns > 1,
so that

(N+PM)od, = Nyy1+ Py, (1.14)
where the sequence ¥,’s is in “normal form”,
n 1 m
No(y w038 1= en(@) + 3 0ni @y + 5 - (O + ), (1.15)
j=1 j=1

while the sequence of real-analytic functio®®’s are perturbations of smaller and
smaller size:

IV Pusallryyg,sen ~ VP (1.16)

the numberk = x(¢, £,) can be taken to be =1+ 0, 0 € (0, 1/3) being defined in

(1.7). The parametet appearing in 1.15 will vary in smaller and smaller compact
setsIl, (of relatively large Lebesgue measure)

o0
H3H13~--HVDHV+13--~HOO:ﬂHV.
v=1
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The smallness assumption on the siz¢oP|,, and, hence (by1(12), of [|[VPD |, s,

will allow to turn on the iteration procedure.
The symplectic mapp, will be seeked of the form

@y =®y_10¢,=¢d0---0d,.
Thus, by induction (forv > 2), (1.14), takes the form
(Ny+ P, + (PY — PU™ D)o@y 1) 0 ¢, = Nyj1 + Pt (1.17)
Recalling (ii) in 1.7.1 above, by choosing
oy ~ VP,
with a small positiveg > 0 (taking also into account the relatioh.16 and that¢ is
large enough), one sees that the tgff(P") — PO~D)|| can be bounded byV P, |.
Whence, Eq.1.14 may be rewritten as
(Ny+ P)) o, = Nyi1+ Pry1, (1.18)
with
Pl:=P 4+ (P —P" Voo, ;. (1.19)
Thus, |[VP)|| ~ |IVP,|| and (.18 fits now in more standard KAM approaches. In
fact, the techniques used in, e.f21], allow to equip this scheme with the necessary
estimates.

We remark that in order for this approach to work, the ndgphas to verify suitable
compatibility relations with respect to the analyticity domains (compare the inductive
relation (.17). More precisely, ifD, := D(ry, s,) denotes the analyticity domain of
P,, one has to show that

¢,:Dyt1—> Dy, Vv=>1), @_1:D,—As;, (Vv>2). (1.20)
Relation (.20 is checked in Sectio2.4; compare 2.40.

The linearized equation associated 101@ is thoroughly discussed in Secti¢h3.
This is the place wheremall divisorsarise. Such small divisors have the form

(0y(), k) + (2,(D), 1), (1.21)
where the Fourier/Taylor indices and | verify the constraints

(k1) € Zg, == {(k, 1) e Z"""\{0}, |kl < K,, |I| =2}, (1.22)
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for a suitable “cut-off”K, 1 oo. The limitation onl comes from the fact that, choosing
the neighborhood of thg, u andv origin as in (.13, one may consider only lower
order terms iny and (u, v); “lower order terms” meaning, here, terms up to order 1 in
y and up to order 2 inu, v). The limitation onk is reminiscent of the Fourier “cut-
off” introduced originally by Arnold[1]; the difference being that, while in Arnold’s
proof one can take the cut-off, to be proportional to the logarithm of the inverse
of the size of the perturbatiofiP,|, here we have to take it to be proportional to a
(small) inverse power of the size of the perturbatja® ||, making the treatment of the
convergence of the algorithm more delicate.

1.7.3. Iteration and convergence of the KAM scheme (Sections 2.4 and 2.5)

Once the iterative step is set up, it has to be equipped with estimates. This technical
part, carried out in Sectio.4, is, however, rather straightforward and follows quite
closely the corresponding part jA1]. Some care has to be devoted to the choice of all
the free parameters involved in the iteration so as to make the algorithm convergent:
this is done in Sectio.5; see, in particular,2.53.

Once all the above has been established, the thesis of Thehfefapart for the
statement concerning the measurdbf which is discussed in the 1.7.4) follows easily.

In fact, from the definition ofP" it follows that P(" tends toP in, say, theCt~1-
norm. Furthermore, the sequence of diffeomorphysms- @,(x, 0,0, 0; &) is easily
seen to converge id?-norm (for 2< p < p,) to a C? diffeomorphysmx — (x; &),
which is Lipschitz continuous id. Therefore, from 1.14), from the (fast) convergence
of N, to

1 n
Noo = €0o(&) + (000(8), 3) + 5 3 Qoo (O W5 +v7) (1.23)
j=1

(and from the fact that the size of the analyticity radii measurihg goes to zero
much slower than the size ¢fP,||), it follows that

(& =y (T"¢), fellx (1.24)

is an invariant torus forNV + P. On such a torus, the flow i€7-conjugated to the
Kronecker flowx — x 4+ wst, W being a Diophantine vector with Diophantine
constantsy,, > 0 andt = (¢, — 11)/6. Finally, in view of (.23, the tori T"(¢) are
linearly stable. Detailed, quantitative results obtained by iterating the KAM scheme are
collected in Propositior2.1.

1.7.4.Measure estimates and multiplicity of the solutions (Section 2.6)
The setll, is iteratively defined as the subset Of,_; where the small divisors
(1.21) obey a Diophantine condition of the type

[y (©), k) + (Qu(), 1) > —2—, V¥ (k,]) € Zg,, YEell,, (1.25)
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wherevy, is a decreasing sequence bounded away from zera and —1 is defined in
(1.10. The non-degeneracy assumptionscrand @ (i.e., the assumption thab is a
Lipschitz homeomorphysm together with.8)) will guarantee that the sdi, is non-
empty, and, in fact, of positive Lebesgue measure. Finally, the fnapl.c — ®oo (&)

is easily seen to be a Lipschitz homeomorphism so that, in particular, to différent
correspond different tori”(¢). Theorem1.1, at this point, is completely proven. A
detailed formulation of the measure estimates is given in Propositian

2. Proof of Theorem 1.1
2.1. Analytic approximants (smoothing)
We start by recalling a well known and fundamental approximation result.

Lemma 2.1 (Jackson, Moser, Zehnderet f € C?(RX) for somep > 0 with finite
C? norm'® over RX. Let ¢ be a radiatsymmetric C* function having as support
the closure of the unit ball centered at the origimhere ¢ is completely flat and takes
value 1; let K = <?) be its Fourier transform and for alb > 0 define

falr)i= Ko f0 =07 [ K(*=2) 0.
Rk g

Then there exist a constant > 1 depending only on p and k such that the following
holds. For anys > 0, the function f,(x) is a reatanalytic function onC* such that
if A’; denotes the klimensional complex strip of widtt

A/f, ={x eCk: [Imx;| <o,V j},
then for all o € N¥ such that|x| < p, one hag!

P £ (Rex)
Bl

(ilm x)ﬁ <c |flep a1

sup o fo(x) = Y

k
XGA(I ‘mf[’_m‘
and for all 0 <s < g,

sup |0 fo — 8" fsl < ¢l flcr aP 1.
xeAI;

104t p is not integer, theC? norm |f|cp denotes theClP] norm of f plus the (p — [p])-Hélder norm
of the derivatives of ordefp] ([p] denoting, as usual, the integer part pf
5a<1+---+1kf

11« A% oo
Jf meansm.
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Moreover the Hélder norms off, satisfy forall 0<¢g <p <r,

[ flcr

fo = fles <c Ifler 6774, foler < =<2
o' =P

The functionf; preserves periodicityi.e., if f is T-periodic in any of its variablex;,
so is f;). Finally, if f depends on some parametére II C R" and if the Lipschitz
seminorm of f and its xderivatives are uniformly bounded tp)ﬂ“p then all the above

) ct’
estimates hold with - | replaced by - |“P.

Remark 2.1. (i) As pointed out in[26], Lemmaz2.1yields easily the following classical
bounds, valid for any? 0<r < p < g¢:

1L <c IFAILT 1118 (convexity estimates
|fgler < ¢ (I flcrlgleo + 1 flcolgler).

(ii) The proof of this lemma (including the statement on dependence upon parameters)
consists in a direct check (based on standard tools from calculus and complex analysis);
for details seq26] and references therein.

In order to apply the lemma so as to construct a sequg¢Rée} of real-analytic
approximants of the perturbatidd we first extend P t&R2"+™ (recall thatP needs
only be defined in a neighborhood @t x {y = 0} x {u = v = 0}): it is clear that
if P is defined onT" x Bg, 4, := T" x {|y| < d1} x {lu| < d2, [v| < do}, then one
can easily construct g¢-extensionPey; of P [T%x Buy j2.4/2 ONMO R2(+m) - (maintaining
periodicity in the firstn variables and sharing the same propertie® afith respect to
the parameter), and so that®

|Pext|CZ(R2(n+m)) S a |P|CK(T”><B{11J,'2)’

wherea is a suitable positive constant depending only/oand d;.

Notational Remark 2.1. From now on we shall replace P by such an extensiBgs,
which, with abuse of notationwe shall again denote .PAlsg, A2"+™ will henceforth
be denoted simply,.

Now, given a decreasing sequence (to be fixed latgr) 0, v > 1, we define the
real-analytic approximanP as!*

PO = Py = Koy, % P.

12CIearIy, in the first inequality the constact depends orv, p, ¢, while in the second inequality the
constantc depend only onp.

131n fact, one can takePext = Y- P, y being a function ofy, u,v having value 1 onBy, 2 4,/2 and
vanishing outsideBy; 4,

14Recall the notation in Lemm&.1 The (irrelevant) presence of the factor 2 will be explained in
Section2.2
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2.2. Complex variables and weighted norms
To treat the linearized equation associated 1dl®, it is convenient to introduce

complex variables in a neighborhood of = v = 0. Consider the following linear
change of variabldgu, v) € C¥" — (z,7) € C2":

Z=—j§(u+iv), Zz—ji(u—iv)
and its inverse map’
1( +32) v 1 (z—2)
u = — . = — _— .
2T V2. °

This map is not symplectic; however the Poisson bracket, the symplectic form and
Hamilton equations transform in a simple way: if (as abo¢e)y) and (u,v) are
couple of conjugate symplectic variables andf ibnd g are functions of(x, y, u, v)

then, with the obvious meaning of the symbdfs,

{f.g} =1{f. g}x,y,u,v ={f, g}x,y +{f, gluv
= {fi gy — [, 8oz =1 {1 8) -

The symplectic formix Ady + du A dv readsdx Ady —idz A dz and the Hamiltonian
vector field

Xy =y —fes Jos —fu)
is transformed intd’

X7i=(fy. —fo.—ifzifo).
In the variables(x, y, z,z) the functionN takes the form

N =e+ (&), y)+(Q0©) z,2),

15Beware that, as standard in this contextdoes not denote the complex conjugatezpfather,z and
7z denote a set of /2 independent variables. Of course, whenand v are restricted to the real space
then, indeedz and z are complex conjugate. This change of variables is standard, for example, in the
theory of Birkhoff normal forms.

U ghey =X fj8y; = frj8x;0 €t fx.y.2.0) = f(x,y, HE+2. %(z—a), etc.

171n other words, the Hamilton equation fgf(x, y, u,v) are equivalent to the “Hamilton equation” for
fgvenbyi=/y, ., y=—fi. I=-ifz. z=if.
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where we identify the vectof = (2, ..., 2,) with the diagonal matrix
diagQ1, ..., Q)

still denotedQ. The Poisson bracket betweah and an analytic function

f(x’ v, Z, 7) = Z fkqa(y)ei(k,x)zng

kez"
g.qeNm

is given by

(N == Y (0.0 + (2.7 - 0)) frgg (e 2977,

kezn
q.geN™

Let us now fix the norms we shall work with. 16" we shall use maximum norm:

if a € CN, |a| :== max |a;|; for Fourier indicesk € Z" or Taylor indicesk € NV, |k|
denotes, as usua},, |k;|. As norms on matrices we take the standard operator norm
(with respect to the above maximum norms). Followifaj], Hamiltonian functions
will be measured by the followingveighted sup-normFor r,s > 0, let D(r,s) be
defined as in 1.13 with u, v replaced, byz, 7 and let

fel | 1Sl LS
IX7ll =104 =5+ =24 =5, X ey = SUPIIX Il

D(r.s)

The Lipschitz semi-norm with respect to the parametet IT (or in subsets ofll,
which will be clear from context) is defined analogousfy:

Li . 1 . 1 . 1 .
X 1P = 1P+ r—2|fx|“p + ;|fz|“p + ;IleL'p,

Li Li
1X £ 11 sy 7= SUP 11X £
D(r,s)

Notational Remark 2.2. The notation“a < constb” means“there exists a constant
¢ depending only on,n¢ and ¢, such thata < ¢b” (obviously in such estimatethe
constants s will be in general different one from anothgrThe notation|| - ||* stands
for either || - || or || - ||5P.

Since

Imz], Imz| <oy, = |Imul, [Imv| <+/20,,

18Recall footnote 6.
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we see that the functions

2+7 2—7,
v ve)

PY(x,y,2,7 & = PV (x, ¥

are analytic and bounded aky, . In fact, for any|«| < ¢, one finds immediately

sup|d* PY|* < const sugd® P |*.
Aﬂv AZJv

From Lemma2.1 it follows that the differenceP”) — pO—D satisfies

sup| P — POD| < 21| p e 64,
A2g,

which yields

sup|d*(PY) — PO~V)[* < constP[%, ol ', ¥ |ol <.

v
ay

Notational Remark 2.3. The KAM algorithm described in Steépof Sectionl.7 will
be described in terms of theéx, y, z,7z) variables but for ease of notation we shall
drop systematically the tilde from functigngector fields and Poisson brackekeeping
in mind the actual meaning just discusséa the convergence argumeritowevey we
will have to resume théx, y, u, v) variables(since the original perturbation function
P is only defined for real argumentdMVe shall not come back on thigathematically
trivial point, hoping that the notation will cause no confusion

2.3. KAM step and the linearized homological equation

As discussed in 1.7, we shall iteratively look for a real-analytic symplectic transfor-
mation

D, =Dy,_10¢p,=¢10---009,
such that, forv > 1,
(N +P™) o ®, = Nyi1+ Pyia, (2.1)

with N,41 in normal form (as in 1.15) and P,+1 “smaller” than P,.
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Let
Py := P :=pPY (2.2)

and assume that, for> 1, P, and P, have vector fields real-analytic and bounded in
a domain

D, := D(ry, sy) C Ag, (2.3)
for suitable numbers (to be specified later)
O<ry<sy <oy <1 (2.4)

We notice (compare also 1.7) that, for= 2, in view of the form of®,, Eq. 2.1) can
be rewritten as

(N, + P‘f) o, = Nyt1+ Pyt1, (2.5)
with
Pl:=P+ PV — P Dyop, 4.

Following [21], we, now, describe how to solv®.p). For ease of notation, we shall
drop, in this section, the index and replace the indexv*+ 1" by the index “".
Therefore,N, P, P, ¢, r,... stand forN,, Py, P;, ¢,, ry... while Ny, Py, P\, ¢_,
4, ... stand forNyy1, Pyya, Pyiq, @ygns Fvtds oo -

The symplectic magh(= ¢,) will be taken to be the time-one map of a Hamiltonian
flow X’ associated to a Hamiltonian functidh (with [|[X¢[ ~ [ Xp|| ~ [ Xpl). In
such a case, the left-hand side @t takes the form:

(N4 PYoXL =N+ ({N,F}+P)+ 02, (2.6)

where 02 denotes (loosely) terms of order twokn Therefore, the “linearized equation”
to be solved forF has the form

{N,F}+ P =N + 0, 2.7)

where N denotes a term in “normal form#® (i.e., having the same form of). Since
one is interested in solving2(7) in a small neighborhood ofy = 0,z =7 = 0}, one

19CIearIy, the equatioN, F}+ P = O might not have a solution since, in general, will not belong
to the range of the operatdw, -}.
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can truncate the Taylor expansion Bf up to order one in y and up to order two in
(z,7). Also, in order to control the small divisors (for a “large” set of parameter), as
in [1], one can truncate the Fourier expansion up to oKleThus the equation to be
solved becomes:

(N, F}+R=N, (2.8)
where
R= Y Pge%yz0z0 (2.9)
2|/\‘-l*<-‘lz-;—(?|§2

(recall that the Fourier—Taylor coefficients &f are Lipschitz-continuous functions of
£). Thus,R is a second degree polynomial {n,7) (and first degree polynomial iy)
having the form:

R:=R°+ R'+ R?:= RO, y) + R*(x,2,2) + R°(x,z,2), (2.10)
where (without indicating explicitly the Lipschitz continuous dependence upon

RO := ROO(x) + (R%%x),y) ,  RY:= (R¥®(x), 2) + (R%(x), ),
R? := (R®°(x)z, 2) + (R (x)z,Z) + (R%(%)Z, 7). (2.11)

We notice (for later reference) that from such definitions there follows
P'=R+0(y) + 0zl Iy) + 0z, (2.12)
so that
RO = P'(x,0,0,0), R%=4,P'(x,0,0,0),
R =0.P'(x,0,0,0), R% =0:P'(x,0,0,0),

1
RO — Eafzp/(x,o, 0,0, R =0,0:P'(x,0,0,0),

1
RO = Ea§1o’(x, 0,0,0). (2.13)

The projection ofR onto the kernel of N, -} (sometimes referred to as the “mean value
of R”) is given by

[Rl = ) Pygey'297% = Poooo+ D, Phiooy' + Y Pongg2?Z!
[7+1g1=1 [7]=1 lg|=1
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R+ (RE™ y) + (R'z2.2)

~

e+ (@, y) + (Qz.7).

(2.14)
Therefore,[R] is in normal formand we can set
N :=[R]. (2.15)
At this point, recalling Section 2.2, we can easily sol2e8):
P Y YO [ I P A Y — L, — (2.16)
aijrgi<2 (w, k) + (2,9 —q)
(*k.g—q)#(0.0)
Obviously, F is real for real argument
Having thus defined®R, N andF, one can rewrite4.6) as
(N+P)oXt=N 4P, (2.17)
with
Ny := N+N, (2.18)

1
= fo{(l—t)N—i—tR, F}o X% dt + (P' —R) o X*%.

2.4. lteration and recursive estimates

In this section, we describe the estimates associated to one step of the KAM iteration
described above.

We start by discussing estimates associated to the solétios= F given in .16
(we re-insert the dependence upon the iteration sjep

Assume the Diophantine conditi¢h.25 and assume that

oy [P+ 12,[P < My, o YR < L, (2.19)

for some positive numbersg,, M, such thatL,M, > 1 (the Lipschitz semi-norms
are taken, respectively, off, and onw,(I1,)). Then, by classical KAM estimating
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techniques—mainly based on Cauchy estim&tesone finds the following bounds; for
details, compare with Section 2 and, in particular with Lemmas 1 and [213f

IXF 5, Dy = CONSUXRIE D, s, (2.20)

B,
1 XE i, Dev2s) < ConSty_‘”XRV”rv, D(ry.59)
y

Lip st Lip M
IXENL D2,y = CO”Sty_(”XRv”rv, D(rys) T y—”Xvalrv, D(rv,m),
) v

V

where, changing slightly notation with respect [@1] and using Rissmann’s subtle
arguments to give optimal estimates of small divisor series [8824)),

|k|? _
By, i=7,? e-2ksy < consts, ™,
W L e @ =

(k,hez+m\ (o}
=2

T1:=2t+ L (2.21)
As in [21], we observe that, setting
Lip

07 =0+ A0 1

the second and the third inequality i2.20 are equivalent to the inequality

A BS\‘ )
”XF\,”r‘,, D(ry/2,sy) =< ConStV_”XRV”;‘,, D(ry,sy)° v O =< A <

V v

Thus, in view of 2.21), (2.20 may me rewritten more compactly as

”va\‘”;k‘ D(ry,sy) = ConSt”XRv”jv, D(ry.5y)° (2.22)

2 A
IXEI, Dej2s = CONSE—or X, Dorss) (2.23)

Yy Sy

for any 0< A <7v,/M,.

20 Cauchy estimates give a bound of derivatives of an analytic function on complex domains in terms
of the maximum norm of the function in larger domains:fifis analytic on a domainD c C¥, then
supp_, 10" f] < a! ol supp | /1, where D_s denotes the set of-inner points ofD (i.e., those points
x for which a ball of centerx and radiuso is contained inD). For a generalized version, see, e.g.,
Lemma A4, p. 147, off21].
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To carry on the KAM stepve shall make inductive hypotheses that will be checked
in the next sectionwhere the convergence of the KAM algorithm is discussed.
We assume thaP, and P, are such that

Ey

”XP‘ ”r‘ D(ry,sy) + ”XP\ ”r\ D(ry,sy) < = 2 (224)
v Lip ))vs\ 77;
IXpllry, DGys) + Ellxﬂfllh, Dirsy =8 = T : (2.25)
where
2:=11+2, (2.26)

co > 1 is a suitable constant depending only on n ahd(throught), 0 < 5, < 1/16

will be a small numbe(to be fixed latex. The role ofn, will be that of rescaling the

y and z, z-neighborhood of the origin so that terms of order twoyior three in(z, )

may be “disregarded”(compare witR.60 below). In the following estimates we shall

make repeated use of Cauchy estimates on smaller domains that we shall denotes here,

for short, D} := D(27/r,,277s,), j = 1,2, 3, 4. Indeed,we shall take

s ry

Syr1 < 1—::5, Fvgl = Nyry < I Oyl = 28y41. (2.27)

Estimates on the symplectic transformation := X1 Observing that the gradient
of R, (appearing in the definition of the norm afg,) is deflned in terms of derivatives
of P, one gets (by Cauctit)

”XR\'||;'~<\,, D} = COHS'[||XP‘/:||;',<‘” D(ry,sy)" (2'28)

Recalling @.23, we find

1 J
P X pll7, D(ry.sy)" (2.29)

2
”XF"”rv, p? < consty
yov

Then, by .29 and by assumption2(24),

1Xpll,, pr < constsZn?. (2.30)

2lRecall .10, (2.1) and @.13. Then, |R, | < |P, !yl on D(ry.5,). Next, R, x is the second order
in (z,7z) truncation ofP/V and the estimates o®(r,, s,/2) follows from Cauchy estimates ofx, z)-
coefficients. Notice that, in fact, there is no need for such estimates of reducingdbmmain.
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Thus, X}, : DZ — D} for all -1 <t <1 and, by a standard ODE reséf, we get
IX%, —idl,, pe < consts2y2. (2.31)

To estimate the derivatives ofr,, we recall that, because of the particular structure
of F,, thex-component ofXr, is independent o, u, v, while the (z, z)-components
are independent of. Thus, by Cauchy estimates (and recalling thak s, < 1), we
get

10X £, | p2 < consts; M| X, |, pi. (2.32)

By the above cited standard ODE resuR,30 and .32 we obtain

Lip
D3

2

b¢ v|g? = X} —id|,5 < consts7n?. (2.33)

Moreover, by Cauchy estimates, for ami <t <1 and forp =1, 2,

Lip

Pyt
|a XFV'D:,‘ ’

|6”(X}V —id)[}a < constyf_”nz. (2.34)

Assuming
2 1
constyy < 3 (2.35)

(a fact which shall be verified in next section?.34) implies that the Jacobian matrix

of Xi., 0X'. , is invertible and close to the identif?

[(0X},) "t — I|ps < constsyf, V—1<i<1 (2.36)

22| e, essentially Gronwall lemma, which, to fit our purposes may be reformulated as follews/
be an open domain in a real Banach space E with ndrmni, IT a subset of another real Banach space
and X : V x IT - E a parameter-dependent vector field on Which is 1 on V and Lipschitz onll.
Let ¢' be its flow Suppose there is a subdomalh ¢ V such that¢’ : U x IT — V for —1<r<1.
Then

. Li Li
" —idlly < IXlv. 161" < exp(1OX 1) IX1Iy°

for —1 <t <1, where all norms are understood to be taken also o¥Er Notice that||¢’ — id\|'i,ip =
||gb’|\|l‘j'p. For a (standard) proof, sg@l, p. 147]

23yUse Neumann identitt =1 — 1 = % - A)/ valid for any matrixA such that|7 — A| <1, (- |
being any operator norm).
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Also, from such relation,2.34 and @.35, one obtains the following bound on the
Lipschitz semi-norm:

Lip

10X}~ e

< (1 — consts,n?)~2(1 + consts,n?) < 2. (2.37)

As already observed above (aft@30), ¢ := X;. : D — Dj and, therefore (compare

(1.20 and @.27),

¢y : Dyp1 — Dy. (2.38)

We, now, make the following inductive assumpti@which shall be easily verified in
the next section):

0By [, , < 2. (2.39)

From this assumption it follows immediately that
Dy(D(rys1, sv+1)) C Aa‘.+1, (240)

completing the proof of {.20). In fact, suppose that = ®,(¢) with ¢ € D(ry41, sy+1)-
Since @, is real for real argument? we have

[IMw| = [Im®,(Q)] = [Im ®y(g) — Im P\ (Reg)| < [P, () — Pv(Reg)|

IA

10Dy D(ry 11,5040 IMC] < 2[Img].

Estimates orw,t1, £2,+1: Recalling .15, (2.14 and .13, by Cauchy estimates,
one finds

Ak 2 * *
lev]”™ = constril| X py Il per,.s,) = CONSUX prIIS per,.

sv)?

|y |* < ConSt”v”XPJ||:‘.,D(rv,s‘,) =< ConSt”XP‘{”Z,,D(r‘,

(2.41)

\5y)?

3 * *
1€2,]" < consti X pylI;:, pery.s,)-

24, is composition of¢,’'s = X%‘_’s and F, is real for real argument (recal2(16 and the remark
after it).
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Definition of IT,,1 and small divisor estimatefkecall that onlI, the small divisor
bound (.25 holds anddefine

Mya:=1\ )  RLGY, (2.42)
(k,hezn+m\(0}
|11=2, |k|>Ky
where
R} (7)) = {é eI, : [ou(&). k) + (). 1) < H”“W}. (2.43)

For a givenk,;1 > K, (to be specified later), let,., be such that®

8‘,Kf,_tll
Pysr <7y [ 1 - constE—£L ) (2.44)
v

Then, for ¢ € 1,41 the small divisor bound1.25 with v replaced by(v + 1) holds
by (1.29), the definition ofI1,.1, (2.41) and @.44), for all (k,) € Z"*™\{0} such that
/| <2 and|k| < K,4+1, one has

(wv1+1(S), k) + (42(O), D]

Oy, k ﬁv,l
z|<wv(é),k>+(£2v(§),l>|<1_|<w )+ I >I>

ey, k)| + [(€y, D)

v

ey KITE
L 1— COI"ISt‘—H_l
1+ |k|* Py

> Tt (2.45)
1t k[°

Estimates onP,; and P‘f+1: Recall the definition of the new “perturbation function”
Py11 given in 2.18. Let us first discuss the terP, — R,) o ¢, and, in particular,
the norm of the “tail’ Q, := P, — R, on a domain slightly larger tha®, 1, namely,
D(ry/2, 4sy41) (recall 2.27). First observe thap, has the form

0, := P, — R,

) Li
25By (2.24), ¢, is an upper bound on @IXP‘,H,‘., Dirvsy) + 311X P, Hr:f) D(,m.s‘v))_
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B , I.q=3 Z ’ i(k,x) g9
= Y Pyl 4 Pluagg® 2"
o F1=2 |k|>K
[1+1g+q1> 2ll|+lg+71<2

= 04 02 (2.46)

Taking into account the dependence ignof the norm| - ||, one sees easily thft
”XQ%”;;Vr‘,’ D(rv’411\‘s‘,) S Consm\}”XP\v”::,’ D(ry,sy)* (2'47)

The estimate forQ§ brings in the dependence updf, (as in[1]) and one finds

1 Xp, Iy g~ (Kvsn)/4
2 vy, D(ry,sy)
|5QV|Z‘,”, D(ry/2.4n,5,) = CONSE > — . (2.48)
n\z sV
Thus, assuming
c1 _
Kz = log(,sv) "2, (2.49)
Vv
with a suitablecy := c1(n), from (2.47) and Q.48 there follows
||XP‘{7RV||:;‘,VV, D(rv/2.41,5) = COI’ISW‘,HXP‘{H;,) D(ry.50)" (2.50)

Now, it is a general fact that, for any functiofisand g and for any symplectic map
¢, the following relations hold?”

Xifo)=[X5. Xgl:=Jf"Xe—Jg" X7y,

Xpop = 0" Xy = (0) *Xf 0 . (2.51)

At this point one has all the ingredients to estim@t€p, . |,,.,,p,,,, arriving to the
following bound holding for any® 0 < 1 <y,/M,

1 .,
1Xpoall: ) by < const(y1—22<||xp‘,||i;,)2 + mllXp‘,llfv> . (2.52)

Sy Yy

2 2-il+lg+3)) 2-il+lg+g))
®10x P, 1gg| < 1Xprllr,. DGrvs) T <2Xp,lr, D@rys) v :

273 denotes the standard symplectic matrix afid the Hessian off.
28For full details, see[21, pp. 130-132]
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2.5. Convergence

In this section, we iterate the KAM algorithm presented above and show its conver-
gence. Let us introduce the followingcursive parameteror v > 1. Let 1< k < 2,
0 < g < 1 be suitable constants (to be chosen later)¢det= c2(n, ¢, £,) be a positive
large enough constarf Then, for some O< &1 < 1 andr; > e (to be specified
later), we set

My =MQ@—27"%Y, L,=L@-27"%Y), 4 = %(1 42,

_cogy 4 ._ 9y o eyt
8V+l 1/3 ] JV — 8\17 Sy = ?7 1/]\/ - Wv
Vv v
KV
rvs1 =11y, K :=c2log 81_1, K, =K—. (2.53)

gy

Observe that:

M:=My <M, 12M, L:=0Ly<L,12L,

Y
1>y =727 7x = > (2.54)

Notational Remark 2.4. In this section the constant will denote suitable constants
depending on nk, g, £ and £,.
We shall need some simple relations among the above parameters:

Lemma 2.2. For anyv > 1

-1
LAt s

&y = A ) o '})al ) (2.55)

with ap := ﬁ > 1 andcz := (2% c2)*1. Furthermore if g1 is small enoughi.e,

if, for a suitablecs > c3,

&1 K 1
— <1, = maxjas, , , 2.56
C4ya2 < az {al 30— 1)2 1—q12} (2.56)

291n particular, one can takep = 16c where c denotes here the largest among all constants “const”
appearing in the preceding sections.
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then for any v > 1,

T . (2.57)
164 2v+1
Proof. From Q.53 and @.54), it follows that

1
23 ¢p

y

Ey41 =

Iterating such relation one get2.55 with c3 := (2% cz)ﬁ. As for (2.57), observe
that from definitions 2.53 there follows

v

Y
spr=canev=cy | [[nj e ra=]]n |
j=1 j=1
hence
1 n
Fy4+1 = Ey+1 -~ (258)
cy €1

and the first relation in2.57) is seen to be equivalent to

1

v—1 —1
1 rp i\~
N ,
€1
1

which, since(%)m > g1, follows from .55 and @.56). From .55, choosingca
big enough (and since, > ﬁ), there follows

Kk—1
Eytl £
LIS _ v, v
Ey 3
v
1 g
(o7}
S|\l— =3 @ =—x- O
164=D 7 36=D 164

Next proposition is a detailed version of the main Theorkemapart from the claim
concerning the measure @f.,, which shall be discussed in the next section. To state
such proposition we need some definitions. Giyeand M we introduce two numbers,
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p and 6, measuring the regularity and certain geometric properties of the perturbation
P. Let f > 0 be such that

g g L
max{L - 1Plec o7 IPIP) < B (2.59)

Now, let
Ay = {oc: o) = 1 and |0* P| o # o},
AP {oc: ol = 1 and 0" P|LH + 0},
let, then,o > 0 be such that
. - : o o Lip
5= inf { mfxeAl |0aP|C0 mfoceAl |0 P|Co

) ‘ - . (2.60)
SURCEAl |aaP|C° SUReA, |a%P||&I([)J}

Finally, let Ry := 2r1 and

Dpg, := {(x, y, U, v) € R2(n+m) . ly| < R%, lu| < R1, |v] < Rl} (2.61)
and define®
£0 = 1 Xp Ik Dg, + — 1 Xp 5P 80:= X plpg, + = |Xp|5P (2.62)
[ P RlsDRl M P RlvDRl’ 0.-— P DRl M P DR]_. .

Proposition 2.1. Let ¢ > ¢, > 6n + 5; let 1 := (£, — 11)/6 and 12 := (¢, — 2)/3. Let
0:=0(¢, ¢,) > 0 be defined by the relatich

1+02 ¢ -2
1-30  €,—2

and define

1-30
q = , K:=1+0.
72

Let®? w1 =, Q1:=Q, L1 :=L, My := M, y, :=y. Assume(2.19 for v = 1, let
II11 such that(1.25 holds forv = 1. There exist a constants > ¢4 > 1, depending

30Recall the definitions given in Section 2.2 and repldeé-, s) with the real set Dg, .
3lwhence, 0 € (0, 3).
32Beware, instead, thafly = IT and P # Py, K1 # K.
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on n ¢ and ¢, and constants, C> > 1, depending upon ,n¢, ¢,, (LM), y,  and
0, such that if

1/ 2+1)
e1:=cs5 feo, Cieo=<1l C2 80/ K

<rn<l, (2.63)
then the following holds. LeM,, Ly, 7,, &y, ry, sy, 0y, K, be as in(2.53 with 1
and ry as in (2.63; let D, be as in(2.3); let P be as i3 Section2.2; let P; be
as in (2.2). Then for v > 1, one can iteratively constructas described in Sectio®.3,
a sequence of real-analytic symplectic transformatigns(and @, := ¢y 0--- 0 ¢,)
satisfying(1.20, and a sequence of functions,, P,, P, real-analytic onD, satisfying
(2.5). The functions indexed by are Lipschitz continuous i€ € II,, where II, is
iteratively defined in2.42). The following conditions hold for ar} v:

loy|YP 4 1Q, 5P < M, oy YHP < Ly,

Ty

Ey

y
1Xp 0, 0.+ 3 X150 b, = 5 (2.64)

Py Li 2y,552n2
1Xplr, o, + 37 IXpRD b, <oy < T (2.65)

as well as conditiong2.4), (2.27), (2.39, (2.39, (2.44 and (2.49. Furthermore e,
(e1 := 0), wy and @, converge(super-exponentially fastto functionse,,, W and
Q2+, which are Lipschitz continuous oA, := NII, and obey the bounds

|a)oo||‘ij + |QOO|Lip <2M, |a)ool|Lip <2L. (2.66)
For any
2<p<pii=24all -2 = (2.67)
< < = e —— .
% a , a ( 3 2.67

the diffeomorhysmsc € T" — @,(x,0,0,0; ) converge inCP-norm to a CP-
diffeomorphysmy/(x; £), which is Lipschitz continuous if € Ily. In fact for a
suitablecg > 1:

Px—p 2(!1+9)

2 .
W &) —xler < 2 6 "0,V Ee o WP < et (2.68)

73 )3

33Recall the Notational Remark 2.3.
34Recall .24.
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Finally, the tori 7" (&) defined in(1.24) are invariant tori for N + P and, on such torj
the flow isC?-conjugated to the Kronecker flow— x 4+ woot Wherew, verifies the
Diophantine relation

Y
{000 (8), k) + (R00(E), )| = 203 WD
V (k1) € Z"TM\{0}, |I| <2, V ¢&elly. (2.69)

Proof. As a first step, let us check that the relation betwégnand r1 in (2.63),
namely

1
Cr 2 O <y (2.70)

implies that3°
X5 X5 5P 271
I Pl”rl, D1 T M”Xplan Dy =< é1. ( . )

Notice that, by the definition of norms and complex variables in Section 2.2, it follows
that

”XFJ_HFL D1 = 2”XP1||R1,D(R1,S1)a (272)

so that, in the following argument, we may use directly the y, u, v) variables.
Introduce, also, for the purpose of this check, the short-hand notaftigh’ to denote
either “/ - |” or “(y/M)| - |“P” and observe that from the definitions 6f((2.60) and
&0 ((2.62), it follows that

5 80 < |0"Plto, Vo€ Al (2.73)
Observe, also, that, if
g =1
Cr>const—, ¢ :=q({—-1):=31+0"—
5% -2

(for a suitable const), then, since (as it easy to check)

Gg—1 1

25~ 2++

35 Only for the purpose of this check we re-introduce tildas to distinguish between functidns afz, 7)
and functions of(x, y, u, v); recall the Notational Remark 2.3.
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Eq. 2.70 yields

consl% égfl < rfé. (2.74)

Thus, taking into account the weight of the notm |z, appearing in the definition
of &g, recalling the definitions oty = eZ, £1, ¢, (2.74 and @.73, we find, for all
o€ Ag,

N
-1 ._ g 7 )
a7t = &7 = constp?sd < constp? 26
n
< constég d < constd” P|%. (2.75)

Now, if { := (x,y,u,v) € Ay, by Lemma2.1, the definition of § in (2.59, the
convexity estimates in Remark 2.1 arl 15 we find, for anya € Az1:

PR
Z ( eC) C)/g

10" PLO)|® < |0"PL() — 7

IBl<t—1

4o
+ Z ﬂ(lm&j)ﬁ

B

Ifl<t—-1

-1
— o
cﬁafiL Tie E |0" Plem af'
m=0

IA

-1 1

cﬁa§_1+constz <|8“P|'Co) e (|6 Pl%. 1)Tla’1”

m=0

IA

-1 £—=1-—m

constﬁZ(|6°‘P|'€0> ooy

m=0

IA

constﬁz <|6 P|Co) E (l& P|CO)%l

constp |0 P2

IA

IA

From this relation, .72 and the definition ok, we find immediately®
X5 llr, D1 < constfieg 1= ée1. (2.76)

36From the definition ofPy it follows that if |0"P|% =0, for somes, then z;1|so|8°‘P1|’£al =0.
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Recall (compare sentence befo@53) that we have to check thag > ¢f or, equiv-
_1
alently, e1r; © < 1: in fact, from the definition of; and from @.63, there follows

" s 241 a2t
—7 = constf —— = cons 0 <1
r; r 3 ri
1 1
provided
1

P
Cy > const 2« .

To proceed, it is convenient to reformulate the smallness conditierg < 1, on &g
(which will not appear any more in the sequel) in termssof It is easily seen that

C1e0 < 1 implies tha®’
g1 (logeyhH2+D
1 (loge; ™) -1

c7 B (LM)
7%
2 3k-1
- Bl 2.77
as maX{az, 30 D) (2.77)

!

for a suitablec7 > ¢s. Notice that 2.77), in turn, implies 2.56. Next, the inequality

72,2
Ysn
g <21
o

is equivalent to
272 gtr—2(K— 272
gCO 8% qT2—2(k—1) — gCO ‘9:(L) <1,
'VS 'y3
which follows from the smallness conditio.77) (and the fact thaiz > 2/(30)). Thus
(2.24 and Q.25 are satisfied fon = 1 and the KAM iterative procedure, discussed

in the previous sections, can be turned on.

_ _ 1
37 For example, one can takg, > C1, whereCy > constesf* 7 LY and the constanty > exp(2(t+1)

solves logCy = (Cl/él)%(r +1).
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We shall, now, proceed to check all iterative conditions claimed in the thesis of the
proposition.

(2.4): First notice that 2.4) (the only nontrivial part of which is, < s,) for v=1
holds becaus& > 1 > ¢; to check 2.4) for v > 1 use R.58.

(2.27) and @.39: sy+1 < s,/16 is equivalent tae, 1 < &,/16, which is implied by
(2.57). Also, from the definition ofe,+1, 1, and @.57) it follows that

1
"3
o ))v 8\J+l 1

, < —
T o & 2+1 ¢

(2.78)

which implies @.27) and Q.35 because of the definition af,.
(2.39 is consequence &f (2.34 and @.79:

10@yIp,y1 = [(0p10¢pp0:--0¢y) (Opp0 g0 -0¢y) - (0¢)ID,

v

vV
1
= 1_[ (1+COHSB‘]‘71§) < 1_[ <1+ W) <2
j=1 j=1
Similarly one obtaing®

|52‘pv|Dv+1 = Z(az¢j0¢j+1°"'°¢v)(a¢j+1°¢j+2°"'O(f’v) - (0¢y)

j=1

Xn(a¢i°¢i+1°"'°¢v)
i#j

Dyi1

< 4v. (2.79)
Now, assume, by induction up thb=v—1, that|6q5j|35’+l <l+o;j:=2- 2—1, (which,
for j =1 is certainly true, in view ofZ.34), since ®; := ¢4). Then (shortening, here,
“const” with “c”, using again 2.34), the smallness ofj,, (2.78 and @.79),

0@y, &) = 39, (, O
& ¢
_ 10Py-1(¢ &), €N, (-, &) = 0Py_1(¢,(, ), O, (-, O
1€~ ¢

3BRecall that¢, = X} and @.34, one sees thaldg,|p,,, <
39Use that from 2.34 with p = 2 there follows that|62<1>j|D,.+1 < consm?.

1+ consts, ;2.
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< |6¢\’71(¢v(" é/)5 i/) - 6(15‘_1((]5‘,(', 5/)’ é)'
B 1€ = ¢
|a(pv—1(¢v(" é/)s é) - 6¢l‘—l(¢v('s f)v Cf)'
+ / 14
1€ =<l
|a¢v('7 f/) - a(pv('v é)|
1&" = ¢
< (Lt o)A+ esy) +10°@y 1] 1,17 10,1 + 2 syn?

<@A4+oa_1A+ csmg) + 4vc2s§n\2, 1+ csm%) + chvng

106, (-, &)

106, -, N

+10®y-1(d, (-, ), O

S l+0(v,

last inequality follows easily by the smallness ipf.

(1.20: recall from Sectior2.5 that 2.38 holds because of2(35 and that 2.40 is
consequence of2(39 (and recall also thatl(20 is (2.38 plus 2.40).

(2.49: Sincey;—tl =1- 35, (2.44 is implied by

COI’]S'[—SVKE-?:11 < !
Yy 2l

which is seen to hold because of the definitionkgf (2.59), the fact that +q(t+1)x >
1/2 (recall the definition ofy and x in LemmaZ2.1) and @.77).

(2.49 follows from the definition ofK,, the fact thate,41 > & > ¢f and the
explicit definition of K (used only herg K = ¢2 log 31_1.

Second inequality in2.69: Using the definitions ofs,, #, and the fact that -
gt2 — 2Kk = 0, one sees that the claim follows from

&y
T < 1,

’)}3

const

which in turn (using 2.55 and the fact thatiz > 3—19) is implied by @.77).

(2.64 for v > 1 is proven by induction: Assume it holds up to Then observing
that M1 — My = M/2", using the bounds2(41), the fact that]| X ; ||rL‘prv < Mg, /7,
(see R.69) and the fact thatiz > (3x — 1)/(k(x — 1)), the first of @.64 is seen to
follow from (2.77). To check the second inequality i2.64), observe that

L vV

L |bp < LA
= 1— Ly|oy|HUP — 1—constLyM,e,/y,

|y 74l

Thus, the claim follows from the smallness assumpti@v?) (it is only here that
the presence of the terfL. M) in (2.77) is used, sinceaz > 3k — 1)/(k(x — 1)) >
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ai +% = (2x — 1)/(x(x — 1)). We turn to the third relation in2(65. By (2.52 and
using the fact that 2 g2 — 2(x — 1) = k one sees that the claim follows from the
definition of &y41.

First inequality in .65 (for v > 2): For the purpose of this check call

P, =PV — PO o, 4.

In view of the already verified boun®64), the claim is implied by

7y Li £
1X5,ln.p, + 3 - IXBltp, < 5 (2.80)
,

Observe, as above, that, by definition of Hamiltonian vector field and of our weighted

norms, | Xp I} p = rv—2 |6}A>v|>;)v. Now, by .39 and Section 2.2, (on the proper
domains),

0P, < |0(P" — P'™V)| |0, _1| < const| P|cca"1. (2.81)

To bound the Lipschitz part, first observe that, by the chain rule,083(, the fact
thatg + x > 1 and @.77),

|®,[HP = |By_1(h,, O < [0®y_1| |y |-P + [Dy_q|-P

< |®y_1|"P 4 consts2n?

v—1 v—1
< |®1]"P + const ) " sZp? < const) _ sZy?
j=2 j=1
< consts2“t < gy, (2.82)

Now, by the chain rule,2.39, Section 2.2,Z.82, (on the proper domains),

|0P,[5P = |a(P" — P'7V) . 0, _q|HP

(ap® = POD)) o 0 s| ™ 100,y

IA

+ (6P = PUD)) 0 @,y 00, 4P

IA

const(|P|Cmfj| + (a(p(w _ P(v—l))) o (pV71|LiP>
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IA

const<|P|Cm 1+10 2(pM — po-Dy |‘I)v—1|Lip>

+ 6(}3(\’) _ p("*l))||-ip

IA

const((IPlce + [P0t "L + [Plceat—Fer) (2.83)

Putting together2.81) and @.83, and using 2.77), the first inequality in 2.57), the
relation ¥ ; < ¢, and the fact that“-2 — 2x = (14 0) > 1, one gets

-2

0' Ey

1 1+6 v

1X5,1Ir.p, + ”Xp II,‘ p, = (Be]) 5= <& < 5
\,

which is 2.80.

The convergence 8P ¢,, w, and Q, t0 eq, ws and Q is, at this point, proved,
as well as the bound66), which follows at once fromZ.64).

First estimate in Z.69:

Write &, = ¢4 + Z;ZZ(d)j — @;_1) and introduce, here, the short-hand nota-
tion #%(x; &) := ®;(x,0,0,0; &) and ¢>9(x; §) = ¢;(x,0,0,0; ) so thaty(x; &) =
limy— o @8(x; ). Notice that, for|lmx| <s;, by (2.39 and @.31), one has

1B, 1($9(x; ) — B9 _1(x; O < sup [0®; 1| [$I(x) — x| < consta?r.

[Im x|<s;

Then, for anyx € T" and ¢ € I, for anyo € N* with |« < p, by Cauchy estimates,
by the definitions ofs;, 1;, g and*! «, we have

0% ((x: &) —x)}

0 ($a0x: & = x)| +

& (¢j71(¢‘}(x; ) — )y (x: 5)) ‘

j=2

00
const

- Constz 2y < o0 Z 42~ p)+2x—D)
yS j=1

__const > 20+9(2—p) _ Const 20 2==p _ const 20 pe=p
2 €j Z 2 &1
Y3 =1 j=1 V3

40 Opserve that, obey the same bound @, so that its convergence follows from the above discussion;
in any caseex, has no dynamical relevance.

HNote: a(t - 2) = 2t = 2, 20 +q(2— p) = 202=F.
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For the bound on the Lipschitz semi-norm just take the limit 2089. Finally, the
Diophantine relation2.69 is obtained as the limiting case of.p5). O

2.6. Measure estimates (multiplicity of solutions)

In this section,assuming the notations and hypotheses of ProposBidnwe shall
prove and make quantitative the claims in Theorérh concerning the measure of
I, hence establishing multiplicity results for the lower-dimensional quasi-periodic
solutions found in Propositio.1

Following [21], we note that ifk| is large, then the discarted “resonant s&f;(y,)
defined in £.43 is small:*?

Lemma 2.3. If |k| > Ko := 16LM, then for any v > 1 and any|/| < 2,

measR})(7,)) < ) := constLM)" ﬁ (diamIT)" 1. (2.84)

|k|r+l’

This lemma is essentially Lemma 5, p. 136,[21], to which we refer for the simple
proof.43

Proposition 2.2. Assume that; satisfies also

e1(LM)* <1, a:=max i1 (2.85)
! ’ - 0 gr—n+1) '
and that
O<y< fglilp{lQi(f)l, 1€ (&) — Q; (O} (2.86)
i#]
Then
meadl,, > meadly — constlzl (LM diamIT)" 1, (2.87)

42Recall thatt > n — 1.

43Just for completeness we sketch here an alternative argumgnand Q, are Lipschitz in¢ and

in fact w, is a Lipschitz diffeomorphysm. Thus, such function have derivatived. fnand the standard
formula for the change of variables in integrations holds. Using= w,(¢) as independent variable,
up to a suitable k-dependent rotationve see that it is enough to estimate sets of the fdime
wy(Il,) : o1+ gr(w)| < yk/|k|f+1} where g, is a Lipschitz function that because of the assumption
on |k| is smaller than, say, 1/2. Now, make a further change of variables seﬂ’}pg: w1 + gr(w),

<u/2 = wy,...,), = Wy, etc.
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where the seflly := I1p(y) is defined as

y
1+ |kI*

o ::{|(w(5),k>+(9(5),l>lz v 0 < |k| < Ko, IZISZ}-

Furthermore

Ii% meagI1\Ilp(y)) = 0, (2.88)
7

showing thatmeadlI,, > O providedy is small enough. Finallyif « and Q are C1(IT)
and if (taking » as independent variabf¢)

. _ 0(Q, 1)
o 1 :
K= otz (|k| T ow D >0
WeSky
Sk :={w e o) : {(w,k)+ (Q(w),l) =0}. (2.89)
then
meas(I1\I1o(y)) < constML (LM diamIT)" 1. (2.90)
1

Remark 2.2. Recall point 1.6 in Section 1 and especiallyll) and letr := r;. Notlce
that, in such a casecg ~ ’1 +e& andeg ~ry + £ Thus, choosing :=r1 := as we

see thatg ~ g1 ~ ¢3 and that hypothese2.63 and @.85H are satisfied and the claim
in 1.6 follows; “genericity” refers to conditionsl(3)—(1.4).

Proof. Notice that by definition ofK, in (2.53 and .85, there follows thatK, >
K1 > Ko := 16(LM). Thus, by Lemma2.3 and the definition ofll,,1,

measil, 1) > measil,) — Y measR};(y,)

[11<2

|k|>Ky
> measll,) —consti Y |k|7*H
K=Ky
> measll,) — CO”SMW.
T

44 e., Q) is, by definition, Q(&(w)) where w — E(w) is the C1 inverse function ofé — w(&).
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Iterating this relation, using the definition &f, and @.85, we get

measll, 1) > meagIl1) — constisg(f_"ﬂ)

v

measll) — const% (LM diamIT)" 1,

which implies

A

]"4 (LM diamIT)"~2. (2.91)

measll,,) > measgll1) — const

From .86 it follows that

Iy = Ilo U Raw
KoT/\‘k\gKl

and we see, again by Lemn2a3, that
measll1) > measlly) — consti(LM) ™1,

which, together with Z.91), implies @.87).
The claim in .89 follows immediately from the compactness &f, assumption
(1.4 and the “monotonicity” of the set®;,(y) in y (i.e., R}, () C R,(Y) if y <').
The claim in @.90 follows easily by noting that2.89 implies that Sy are C?
hyper-surfaces ino(IT) and observing thay is a lower bound on the norm of the
gradient of the functionw, k) + (Q(w), I). O
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