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Abstract

Moser’s C�-version of Kolmogorov’s theorem on the persistence of maximal quasi-periodic
solutions for nearly-integrable Hamiltonian system is extended to the persistence ofnon-maximal
quasi-periodic solutions corresponding to lower-dimensionalelliptic tori of any dimensionn
between one and the number of degrees of freedom. The theorem is proved for Hamiltonian
functions of classC� for any �> 6n+ 5 and the quasi-periodic solutions are proved to be of
classCp for any p with 2<p<p∗ for a suitablep∗ = p∗(n, �)> 2 (which tends to infinity
when �→∞).
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1. Introduction and results

1.1. Moser’s main contribution to the so-called KAM theory was to extend
Kolmogorov’s invariant-tori-theorem[9] to smooth category. Kolmogorov’s celebrated
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theorem deals, as well known, with the persistence under small, real-analytic pertur-
bations of maximal quasi-periodic solutions (associated to maximal invariant tori) for
nearly-integrable Hamiltonian systems. The basic technical tool exploited by Moser
in his extension was closely related to ideas of Nash[17] and consisted in using a
Newton (quadratic) iteration method, re-inserting at each step enough regularity into
the problem so as to beat (together with the so-called “small divisor problem”, already
overcome by Kolmogorov and Arnold) the loss of regularity due to the inversion of
certain (non-elliptic) differential operators. In the original work of Moser[14], which
was dealing with twist area-preserving maps (corresponding to the Hamiltonian system
case in “one and a half” degrees of freedom), the perturbation was assumed to be
C333. The regularity assumption (in the twist map case) was later brought down to five
by Rüssmann[22]; for the Hamiltonian case we refer to[16,29], and, especially,[19],
where Kolmogorov’s theorem is proved under the hypothesis that the perturbation isC�

with � > 2d, d being the number of degrees of freedom. We recall also that Herman
[8] gave a counterexample in the twist map case with� = 3− ε, ε > 0 (corresponding
to � = 4− ε in the Hamiltonian case with two degrees of freedom).

1.2. Right after KAM theory for maximal tori was established, it appeared clear that
an important direction of further investigations was that of the existence oflower di-
mensional quasi-periodic solutionscorresponding to lower dimensional invariant tori,
i.e., tori of dimension1 n < d (as above,d stands for the number of degrees of free-
dom). In 1965 Melnikov stated a precise result concerning the persistence ofstable(or
“elliptic”) lower-dimensional tori in[13]; the hypotheses of such result are, now, com-
monly referred to as “Melnikov conditions”. However, a proof of Melnikov’s theorem
was given only later by Moser[15] for the casen = d − 1 and, in the general case,
by Eliasson in[6] and, independently, by Kuksin[10]; see also[20]. The unstable
(or “hyperbolic”) case (i.e., the case for which the lower dimensional tori are linearly
unstable and lie in the intersection of stable and unstable Lagrangian manifolds) is
simpler2 and a complete perturbation theory was worked out in[15,7,29]. Various
technical progresses have been recently performed in, e.g.,[21,2,28,27,25]. Incidentally
we mention that lower dimensional quasi-periodic solutions are particularly relevant in
connection with extensions to PDE’s; see, e.g.,[5,11,12,21,3]and references therein.

1.3.All the above mentioned results concerning the extension of Kolmogorov’s theorem
to lower dimensional torideal only with the real-analytic case. It is the purpose of
this paper to extend Moser’s theorem to lower dimensional quasi-periodic solutions
proving, under suitable generic assumptions, the persistence and the regularity of lower
n-dimensionalelliptic tori (corresponding to lower dimensional quasi-periodic solutions)
for C� perturbations of nearly-integrable systems with� > 6n+ 5.

1 Equilibria and periodic orbits, corresponding, respectively, ton = 0 and 1, are the simplest examples;
in such cases there are no small-divisor problems and existence was already established by Poincaré by
means of the standard Implicit Function Theorem: see[18, Volume I, Chapter III].

2 On a technical level: the normal frequencies to the torus do not resonate with the inner (or “proper”)
frequencies associated to the quasi-periodic motion.
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Before stating in a more precise way our results, let us mention that it was already
remarked by Graff in3 [7] that combining “soft” tools of invariant manifold theory
(based on the standard Implicit Function Theorem) and KAM theory for maximal tori
one can conclude that lower dimensional unstable tori persist under small perturbations
(but regularity of the continued manifolds may be, in general, quite low). As well
known, however, such “partially hyperbolic techniques” do not carry over to the elliptic
situation.

1.4. We proceed, now, to formulate the main result proved in this paper. Consider a
(smooth) Hamiltonian system withn+m degrees of freedom, governed by a Hamiltonian
function of the form

H(x, y, u, v; �) := N(y, u, v; �)+ P(x, y, u, v; �), (1.1)

where(x, y) ∈ Tn×Rn and(u, v) ∈ R2m are pairs of standard symplectic coordinates4

and � is a real parameter running over a compact set� ⊂ Rn of positive Lebesgue
measure5 ; N is in “normal (integrable) form”:

N = e(�)+
n∑

j=1

�j (�)yj + 1

2

m∑
j=1

�j (�)(u2
j + v2

j ), (1.2)

P is a small perturbation. The motions generated byN decouple in a Kronecker flow
x ∈ Tn → x+�(�)t times the motion ofm (decoupled) harmonic oscillators with char-
acteristic frequencies�j (�) (sometimes referred to asnormal frequencies); in particular,
the n-parameter family (parameterized by�) of n dimensional tori

T n
0 (�) := Tn × {y = 0} × {u = v = 0}, � ∈ �,

are linearly stable(elliptic) invariant tori of dimension n carrying quasi-periodic mo-
tions with frequency�(�) ∈ Rn.

3 Compare pointb of the introduction in[7, p. 6]. Graff’s remark has been recently re-considered by
Huang, D. and Liu, Z.:On the persistence of lower dimensional invariant hyperbolic tori for smooth
Hamiltonian systems, Nonlinearity, 13 (2000) 189–202.

4 Hence the equation of motion arėx = Hy , ẏ = −Hx , u̇ = Hv , v̇ = −Hu, where Hy :=
(Hy1, . . . , Hyn ), etc.; Tn := Rn/(2�Zn).

5 Typically, � may indicate an initial datumy0 and y the distance from such point or (equivalently, if
the system is non-degenerate in the classical Kolmogorov sense)�→ �(�) might be simply the identity,
which amounts to consider the unperturbed frequencies as parameter.
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Theorem 1.1. Let � > 6n+5 and let H in (1.1) beC� in a neighborhood ofTn×{y =
0} × {u = v = 0} and (uniformly) Lipschitz continuous in6 � ∈ �. Assume that

�i (�) > 0, �i (�) �= �j (�), ∀� ∈ �, ∀ i �= j. (1.3)

Assume, also, that � ∈ � → �(�) ∈ Rn is a Lipschitz homeomorphism of� onto its
image and that7

meas{� ∈ � : 〈�(�), k〉 + 〈�(�), l〉 = 0} = 0,

∀ k ∈ Zn\{0}, ∀ l ∈ Zm : |l| ≤ 2. (1.4)

Then, if the gradient of P, together with its Lipschitz semi-norm in�, is small enough,
there exists a set�∞ ⊂ � of positive Lebesgue measure and a family of n-dimensional
linearly stable H-invariant toriT n(�) parameterized by(and Lipschitz continuous in)
� ∈ �∞. The tori T n(�) are Cp-smooth for any2 < p < p∗ for a suitablep∗ =
p∗(n, �) > 2. On T n(�) the H-flow isCp-conjugated to the Kronecker flowx →
x + �∞(�)t where �∞ is a Lipschitz homeomorphysm on�∞ close to�; for all
� ∈ �∞, �∞(�) is a “Diophantine vector”.

1.5. Let us collect, here, a few remarks on the above statements.

1.5.1. Conditions (1.3)–(1.4) are a generalized version[21] of Melnikov’s conditions
and represent a rather weak independence requirement between� and � (obviously
satisfied if, for example,� is independent of�). Notice that, if� and � areC1, (1.4)
is satisfied whenever8 (taking � as independent variable)

��〈�, l〉 �= k, ∀ k ∈ Zn\{0}, ∀ l ∈ Zm : |l| ≤ 2, (1.5)

in which case the level sets{� : 〈k,�〉 + 〈l,�(�(�))〉 = 0} are (n − 1)-dimensional
C1 hypersurfaces (and hence of vanishingn-dimensional measure).

1.5.2. Condition (1.3) requires the normal frequencies to be bounded away from zero
and to be “simple”. Recently, in the KAM method of[28], the simplicity of the

6 A function g is uniformly Lipschitz continuous on� if |g|Lip := sup
|g(�)− g(�′)|
|�− �′| is finite, the

supremum being taken over all� �= �′ in � (and usually, we shall not indicate explicitly the domain�
in the notations since it will be clear from context).

7 Here, “meas” denotes Lebesgue measure;〈·, ·〉 denotes the standard inner product; for integer vectors
l = (l1, . . . , lm), |l| = ∑

i |li |. Obviously, � = (�1, . . . ,�n) and � = (�1, . . . ,�n); later, however,�
will also be identified with the diagonal matrix diag(�1, . . . ,�n).

8 Actually, it is sufficient to require (1.5) for a finite number of vectorsk; compare (2.89) below.
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normal frequencies has been relaxed allowing, in[4], to establish the existence (and
the linear stability) of quasi-periodic solutions for the one-dimensional wave equation
with periodic boundary conditions. It is conceivable (but not obvious) that methods
taken from[28] might lead to remove the second condition in (1.3).

1.5.3. The tori T n(�) are a Cp-embedding of the standard flatn-torus Tn into the
2(n+m)-dimensional phase space. In fact, the embedding isCp-close to the identity
for any 2< p < p∗. The numberp∗ may be taken as follows. Pick

6n+ 5 < �∗ < � (1.6)

and let� ∈ (0, 1/3) be such that

(1+ �)2

1− 3�
= � − 2

�∗ − 2
. (1.7)

Then (compare (2.67) below),

p∗ := 2+ a(�− 2), with a := 2

3

�
(1+ �)2 . (1.8)

In particular, if P is C∞, so are the toriT n(�) and the associated quasi-periodic
solutions.

1.5.4.The invariant toriT n(�), � ∈ �∞, correspond tonon-maximal quasi-periodic so-
lutionswith n rationally independent uniformly Diophantine frequencies�∞1, . . . ,�∞n

satisfying

|〈�∞(�), k〉| ≥ �∞
1+ |k|� , ∀k ∈ Zn\{0}, ∀ � ∈ �∞, (1.9)

where

� := �∗ − 11

6
> n− 1 (1.10)

and �∞ is a suitable (small enough) positive number. In fact, a slightly stronger Dio-
phantine property holds, since (1.9) holds also replacing〈�∞(�), k〉 with 〈�∞(�), k〉+	,
where	 := 	(�) denotes “T n(�)-normal frequencies” or differences of such normal fre-
quencies.

1.5.5. A detailed and quantitative version of Theorem1.1 is given in Proposition2.1
(convergence of the KAM iteration) and in Proposition2.2 (measure estimates on�∞)
below.
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1.5.6. The “smoothing technique” we shall use is due to Jackson, Moser and Zehnder
(compare[26]) and it is rather different from the original strategy introduced by Nash
and used by Moser in the context of dynamical systems. The Jackson–Moser–Zehnder
technique is based on approximating theC� perturbationP by real-analytic functions
on smaller and smaller complex neighborhoods, solving linearized (analytic) equation
to a better and better degree (keeping careful quantitative track of the procedure) and
recovering in the limit a smooth (at leastC2 in our case) solution.

We point out that we do not use directly an analytic theorem (as done, for instance,
in [26]), nor an analytic theorem can be immediately extracted from our approach.

1.5.7. The assumption� > 6n + 5 is certainlynot optimal. It would be interesting to
find the optimal value: for example, is it true that Theorem1.1 holds provided� > 2n
(as in the maximal case)?

1.5.8. Part of the proof relies on analytic tools elaborated in[21] and we, therefore,
follow quite closely the notations introduced in[21]. Another reason for using notations
borrowed from[21] is that it might facilitate the extension of our results to infinite
(m = ∞) dimension. However, we restrain to do so here since we believe that such an
extension makes sense only if applied to a real infinite dimensional problem, such as,
for example, some “relevant” nonlinear PDE.

1.6. The (normal) form (1.2) of the integrable pieceN is rather standard in the present
context (compare, e.g.,[21,27]). However, we mention briefly how more classical
situations may be included in the present formulation. As an example, consider a
Hamiltonian

h(
, I, q, p; ε) = h0(I, q, p)+ εh1(
, I, q, p; ε),

where (
, I ) and (q, p) are pairs of standard symplectic coordinates with
 ∈ Tn,
I ∈ B1(0) ⊂ Rn and (q, p) in a small neighborhood of the origin inR2m. Assume that
h0 ∈ C�+3 and thath1 ∈ C�. Fix a point Ī , say Ī = 0, and assume that(q, p) = (0, 0)
is a linearly stable equilibrium for(q, p) → h0(0, q, p). If such an equilibrium is
non-degenerate (i.e., if the Hessian matrix�2

(q,p)h0(0, 0, 0) is invertible), then, up to
a symplectic change of coordinates, we may assume that(q, p) = (0, 0) is a non-
degenerate, stable equilibrium for(q, p) → h0(I, q, p) for any I ∈ B�(0) for some

0 < � < 1. Assume, also, that the eigenvalues ofJm�2
(q,p)h0(0, 0, 0), (Jm := standard

(2m×2m)-symplectic matrix), are purely imaginary (“linear stability”) andsimpleand
are given by±i�j with �j > 0 and j = 1, . . . , m. Finally, assume that also the

Hessian matrix�2
I h0(0, 0, 0) is invertible; this assumption corresponds to the classical

KAM non-degeneracy condition. Then, expandingh0 in a neighborhood of(�, 0, 0) :=
(I0, 0, 0), (up to order two iny = I − � and three in(q, p) for � ∈ B�/2) and using
a classical result of Weierstrass on the diagonalization of quadratic symplectic forms,
one can find a symplectic(2m×2m) matrix S(�) such that, in the symplectic variables
(x, y) := (
, I −�), (u, v) = S(�)(q, p), the Hamiltonianh0+εh1 takes the form (1.1)
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whereN is as in (1.2) with � := I0, e := h0(�, 0, 0), � := �I h0(�, 0, 0), �j (0) = �j .
Furthermore, the perturbationP := h0 + εh1−N is C� and satisfies

P = O(|y|2)+O(|y||(u, v)|)+O(|(u, v)|3)+O(ε). (1.11)

We shall, therefore, considerP on a real domain of the form

{x ∈ Tn, |y| < r2, |(u, v)| < r}, � ∈ � := B�/2(0)

for a small enough 0< r < �/2. Notice that, because of the simplicity of the eigenval-
ues, the dependence of�j upon� (possibly reducing�) is of classC�+1; furthermore,

the hypothesis on�2
I h0 implies that�(�) is a diffeomorphysm. From Theorem1.1 (or,

more precisely, from its quantitative version given in Propositions2.1 and 2.2 below),

it follows that if one choosesr := ε
1
3 and ε is small enough, then, generically, for

any � in a Cantor subset ofB�/2 of densityO(1− ε�), (for some0 < � < 1), the
unperturbed n-dimensional toriy = 0 = u = v, x ∈ Tn may be continued intoCp

h-invariant tori; compare Remark2.2 below.

1.7. The arguments on which the proof of Theorem1.1 is based are, as often happens
in KAM theory, rather technical and somewhat involved. Therefore, we close this
introduction with a “guide to the proof” of Theorem1.1 (divided into four parts). The
actual complete proof is given in Section2.

1.7.1.Smoothing and analytic approximants (Sections 2.1 and 2.2)
First, by standard real analytic tools we extend the perturbation functionP to R2(n+m).

Then, we fix (see, also, 1.7.2 below) a sequence of fast decreasing numbers
� ↓ 0
(� ≥ 1) and, using the approximation theory of Jackson, Moser and Zehnder (Lemma
2.1), we construct a sequence of real-analytic functionP (�) such that the following
holds.
(i) P (�) is real-analytic on the complex strip�
� of width 
� aroundR2(n+m).

(ii) The P (�)’s satisfy the bounds: sup�
�
|∇(P (�) − P (�−1))| ≤ c |P |C�
�−1

�−1; compare
Lemma2.1. In this section, “c” denotes (different) constants depending only onn,
� and �∗.

(iii) The first approximantP (1) is “small” with the perturbationP:

‖∇P (1)‖r1,s1 ≤ c|P |C� |∇P |r1, (1.12)

where: ‖ · ‖r,s is a suitable weighted norm on complex functions, while| · |r is
a corresponding weighted norm on real functions;9 the domain where the complex

9 In Section 2 the norm ‖ · ‖r,s is denoted‖ · ‖r,D(r,s); also, in place of the notation‖∇f ‖, below
(following [21]) we use the notation‖Xf ‖. Furthermore, in Section2 the norm | · |r is denoted| · |Dr

(see (2.61) and (2.62)).
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functions are considered is of the form

D(r, s) = {(x, y, u, v) ∈ C2(n+m) : |Im x| < s, |y| < r2, |u| < r, |v| < r}, (1.13)

while the domain where the real functions are considered is the projection of
D(r, s) on R2(n+m); the positive numbersr1, s1 and 
1 (“the initial analyticity
radii”) are chosen so as to meet (1.12). The weighted norms are discussed in
Section 2.2; in such section we also introduce—as it is costumary in studying
Hamiltonian equilibria—symplectic complex variablesz̄ and z linearly related to
the variablesu andv. Estimate (1.12) is discussed particularly in (2.71) and (2.63).

1.7.2.The KAM scheme (Section 2.3)
This is the heart of the proof. The idea—as in all KAM methods—consists in a

super-convergent (sometimes: Newton or quadratic) iterative procedure apt to reduce,
at each step of the scheme, the size of the perturbing function by a fixed power� > 1
of the size of the perturbing function at the preceding step; this is done in order to beat
the loss of smoothness and the divergences introduced by the small divisors arising in
the inversion of non-elliptic differential operators. The scheme we need in our specific
problem is non-standard and, from a technical point of view, represent the most novel
part of the proof. For these reasons we give, now, a rather detailed description of such
scheme.

We want to construct, inductively, real-analytic symplectic transformations��, � ≥ 1,
so that

(N + P (�)) ◦ �� = N�+1+ P�+1, (1.14)

where the sequence ofN�’s is in “normal form”,

N�(y, u, v; �) := e�(�)+
n∑

j=1

��j (�)yj + 1

2

m∑
j=1

��j (�)(u2
j + v2

j ), (1.15)

while the sequence of real-analytic functionsP�’s are perturbations of smaller and
smaller size:

‖∇P�+1‖r�+1,s�+1 ∼ ‖∇P�‖�r�,s� , (1.16)

the number� = �(�, �∗) can be taken to be� = 1+ �, � ∈ (0, 1/3) being defined in
(1.7). The parameter� appearing in (1.15) will vary in smaller and smaller compact
sets�� (of relatively large Lebesgue measure)

� ⊃ �1 ⊃ · · ·�� ⊃ ��+1 ⊃ · · ·�∞ =
∞⋂

�=1

��.
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The smallness assumption on the size of|∇P |r1 and, hence (by (1.12)), of ‖∇P (1)‖r1,s1

will allow to turn on the iteration procedure.
The symplectic map�� will be seeked of the form

�� = ��−1 ◦ �� = �1 ◦ · · · ◦ ��.

Thus, by induction (for� ≥ 2), (1.14), takes the form

(N� + P� + (P (�) − P (�−1)) ◦ ��−1) ◦ �� = N�+1+ P�+1. (1.17)

Recalling (ii) in 1.7.1 above, by choosing


� ∼ ‖∇P�‖q,

with a small positiveq > 0 (taking also into account the relation (1.16) and that� is
large enough), one sees that the term‖∇(P (�) − P (�−1))‖ can be bounded by‖∇P�‖.
Whence, Eq. (1.14) may be rewritten as

(N� + P ′�) ◦ �� = N�+1+ P�+1, (1.18)

with

P ′� := P� + (P (�) − P (�−1)) ◦ ��−1 . (1.19)

Thus, ‖∇P ′�‖ ∼ ‖∇P�‖ and (1.18) fits now in more standard KAM approaches. In
fact, the techniques used in, e.g.,[21], allow to equip this scheme with the necessary
estimates.

We remark that in order for this approach to work, the map�� has to verify suitable
compatibility relations with respect to the analyticity domains (compare the inductive
relation (1.17)). More precisely, ifD� := D(r�, s�) denotes the analyticity domain of
P�, one has to show that

�� : D�+1 → D�, (∀ � ≥ 1), ��−1 : D� → �
� , (∀ � ≥ 2). (1.20)

Relation (1.20) is checked in Section2.4; compare (2.40).
The linearized equation associated to (1.18) is thoroughly discussed in Section2.3.

This is the place wheresmall divisorsarise. Such small divisors have the form

〈��(�), k〉 + 〈��(�), l〉, (1.21)

where the Fourier/Taylor indicesk and l verify the constraints

(k, l) ∈ ZK� :=
{
(k, l) ∈ Zn+m\{0}, |k| ≤ K�, |l| ≤ 2

}
, (1.22)
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for a suitable “cut-off”K� ↑ ∞. The limitation onl comes from the fact that, choosing
the neighborhood of they, u and v origin as in (1.13), one may consider only lower
order terms iny and (u, v); “lower order terms” meaning, here, terms up to order 1 in
y and up to order 2 in(u, v). The limitation onk is reminiscent of the Fourier “cut-
off” introduced originally by Arnold[1]; the difference being that, while in Arnold’s
proof one can take the cut-offK� to be proportional to the logarithm of the inverse
of the size of the perturbation‖P�‖, here we have to take it to be proportional to a
(small) inverse power of the size of the perturbation‖P�‖, making the treatment of the
convergence of the algorithm more delicate.

1.7.3. Iteration and convergence of the KAM scheme (Sections 2.4 and 2.5)
Once the iterative step is set up, it has to be equipped with estimates. This technical

part, carried out in Section2.4, is, however, rather straightforward and follows quite
closely the corresponding part in[21]. Some care has to be devoted to the choice of all
the free parameters involved in the iteration so as to make the algorithm convergent:
this is done in Section2.5; see, in particular, (2.53).

Once all the above has been established, the thesis of Theorem1.1 (apart for the
statement concerning the measure of�∞ which is discussed in the 1.7.4) follows easily.
In fact, from the definition ofP (�) it follows that P (�) tends toP in, say, theC�−1-
norm. Furthermore, the sequence of diffeomorphysmsx → ��(x, 0, 0, 0; �) is easily
seen to converge inCp-norm (for 2< p < p∗) to a Cp diffeomorphysmx → �(x; �),
which is Lipschitz continuous in�. Therefore, from (1.14), from the (fast) convergence
of N� to

N∞ = e∞(�)+ 〈�∞(�), y〉 + 1

2

n∑
j=1

�∞j (�)(u2
j + v2

j ) (1.23)

(and from the fact that the size of the analyticity radii measuringD� goes to zero
much slower than the size of‖P�‖), it follows that

T n(�) := �
(
Tn; �) , � ∈ �∞ (1.24)

is an invariant torus forN + P . On such a torus, the flow isCp-conjugated to the
Kronecker flow x → x + �∞t , �∞ being a Diophantine vector with Diophantine
constants�∞ > 0 and � = (�∗ − 11)/6. Finally, in view of (1.23), the tori T n(�) are
linearly stable. Detailed, quantitative results obtained by iterating the KAM scheme are
collected in Proposition2.1.

1.7.4.Measure estimates and multiplicity of the solutions (Section 2.6)
The set�� is iteratively defined as the subset of��−1 where the small divisors

(1.21) obey a Diophantine condition of the type

|〈��(�), k〉 + 〈��(�), l〉| ≥ ��

1+ |k|� , ∀ (k, l) ∈ ZK� , ∀� ∈ ��, (1.25)
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where�� is a decreasing sequence bounded away from zero and� > n−1 is defined in
(1.10). The non-degeneracy assumptions on� and � (i.e., the assumption that� is a
Lipschitz homeomorphysm together with (1.3)) will guarantee that the set�∞ is non-
empty, and, in fact, of positive Lebesgue measure. Finally, the map� ∈ �∞ → �∞(�)
is easily seen to be a Lipschitz homeomorphism so that, in particular, to different�
correspond different toriT n(�). Theorem1.1, at this point, is completely proven. A
detailed formulation of the measure estimates is given in Proposition2.2.

2. Proof of Theorem 1.1

2.1. Analytic approximants (smoothing)

We start by recalling a well known and fundamental approximation result.

Lemma 2.1 (Jackson, Moser, Zehnder).Let f ∈ Cp(Rk) for somep > 0 with finite
Cp norm10 over Rk. Let � be a radial-symmetric, C∞ function, having as support
the closure of the unit ball centered at the origin, where� is completely flat and takes
value 1; let K = �̂ be its Fourier transform and for all
 > 0 define

f
(x) := K
 ∗ f (x) = 
−n

∫
Rk

K
(x − y




)
f (y) dy.

Then, there exist a constantc ≥ 1 depending only on p and k such that the following
holds. For any
 > 0, the functionf
(x) is a real-analytic function onCk such that,
if �k


 denotes the k-dimensional complex strip of width


�k

 := {x ∈ Ck : |Im xj | ≤ 
,∀ j},

then, for all � ∈ Nk such that|�| ≤ p, one has11

sup
x∈�k




∣∣∣��
f
(x)−

∑
|�|≤p−|�|

��+�
f (Rex)

�! (i Im x)�
∣∣∣ ≤ c |f |Cp 
p−|�|

and, for all 0 ≤ s ≤ 
,

sup
x∈�k

s

|��
f
 − ��

fs | ≤ c|f |Cp 
p−|�|.

10 If p is not integer, theCp norm |f |Cp denotes theC[p] norm of f plus the (p− [p])-Hölder norm
of the derivatives of order[p] ([p] denoting, as usual, the integer part ofp).

11 “��
f ” means

��1+···+�k f

�x�1
1 · · · �x�k

k

.
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Moreover, the Hölder norms off
 satisfy, for all 0 ≤ q ≤ p ≤ r,

|f
 − f |Cq ≤ c |f |Cp 
p−q , |f
|Cr ≤ c
|f |Cp


r−p
.

The functionf
 preserves periodicity(i.e., if f is T-periodic in any of its variablexj ,
so is f
). Finally, if f depends on some parameter� ∈ � ⊂ Rn and if the Lipschitz
semi-norm of f and its x-derivatives are uniformly bounded by|f |Lip

C� , then all the above

estimates hold with| · | replaced by| · |Lip.

Remark 2.1. (i) As pointed out in[26], Lemma2.1 yields easily the following classical
bounds, valid for any12 0 ≤ r ≤ p ≤ q:

|f |q−r
Cp ≤ c |f |q−p

Cr |f |p−r
Cq (convexity estimates),

|fg|Cp ≤ c (|f |Cp |g|C0 + |f |C0|g|Cp).

(ii) The proof of this lemma (including the statement on dependence upon parameters)
consists in a direct check (based on standard tools from calculus and complex analysis);
for details see[26] and references therein.

In order to apply the lemma so as to construct a sequence{P (�)} of real-analytic
approximants of the perturbationP we first extend P toR2(n+m) (recall thatP needs
only be defined in a neighborhood ofTn × {y = 0} × {u = v = 0}): it is clear that
if P is defined onTn × Bd1,d2 := Tn × {|y| < d1} × {|u| < d2, |v| < d2}, then one
can easily construct aC�-extensionPext of P |Tn×Bd1/2,d2/2 onto R2(n+m), (maintaining
periodicity in the firstn variables and sharing the same properties ofP with respect to
the parameter�), and so that13

|Pext|C�(R2(n+m)) ≤ a |P |C�(Tn×Bd1,d2)
,

wherea is a suitable positive constant depending only on� and di .

Notational Remark 2.1. From now on, we shall replace P by such an extensionPext,
which, with abuse of notation, we shall again denote P. Also, �2(n+m)


 will henceforth
be denoted simply�
.

Now, given a decreasing sequence (to be fixed later)
� ↓ 0, � ≥ 1, we define the
real-analytic approximantP (�) as14

P (�) := P2
� := K2
� ∗ P.

12 Clearly, in the first inequality the constantc depends onr, p, q, while in the second inequality the
constantc depend only onp.

13 In fact, one can takePext = � · P , � being a function ofy, u, v having value 1 onBd1/2,d2/2 and
vanishing outsideBd1,d2.

14 Recall the notation in Lemma2.1. The (irrelevant) presence of the factor 2 will be explained in
Section 2.2.
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2.2. Complex variables and weighted norms

To treat the linearized equation associated to (1.18), it is convenient to introduce
complex variables in a neighborhood ofu = v = 0. Consider the following linear
change of variable(u, v) ∈ C2m → (z, z) ∈ C2m:

z = 1√
2
(u+ iv), z = 1√

2
(u− iv)

and its inverse map15

u = 1√
2
(z+ z) , v = 1

i
√

2
(z− z).

This map is not symplectic; however the Poisson bracket, the symplectic form and
Hamilton equations transform in a simple way: if (as above)(x, y) and (u, v) are
couple of conjugate symplectic variables and iff and g are functions of(x, y, u, v)
then, with the obvious meaning of the symbols,16

{f, g} := {f, g}x,y,u,v = {f, g}x,y + {f, g}u,v
= {f, g}x,y − i{f̃ , g̃}z,z =: {f, g}̃ .

The symplectic formdx ∧ dy+ du∧ dv readsdx ∧ dy− idz∧ dz and the Hamiltonian
vector field

Xf := (fy,−fx, fv,−fu)

is transformed into17

X̃f̃ := (f̃y,−f̃x,−if̃z, if̃z).

In the variables(x, y, z, z) the functionN takes the form

Ñ = e + 〈�(�), y〉 + 〈�(�) z, z〉,
15 Beware that, as standard in this context,z does not denote the complex conjugate ofz; rather, z and

z denote a set of 2m independent variables. Of course, whenu and v are restricted to the real space
then, indeed,z and z are complex conjugate. This change of variables is standard, for example, in the
theory of Birkhoff normal forms.

16 {f, g}x,y =∑
j fxj gyj − fyj gxj , etc.; f̃ (x, y, z, z) = f

(
x, y, 1√

2
(z+ z), 1

i
√

2
(z− z)

)
, etc.

17 In other words, the Hamilton equation forf (x, y, u, v) are equivalent to the “Hamilton equation” for
f̃ given by ẋ = f̃y , ẏ = −f̃x , ż = −if̃z , ż = if̃z.
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where we identify the vector� = (�1, . . . ,�m) with the diagonal matrix

diag(�1, . . . ,�m)

still denoted�. The Poisson bracket betweeñN and an analytic function

f (x, y, z, z) =
∑
k∈Zn

q,q∈Nm

fkqq(y)e
i〈k,x〉zqzq

is given by

{Ñ, f }̃ = −i
∑
k∈Zn

q,q∈Nm

(
〈�, k〉 + 〈�, q − q〉

)
fkqq(y)e

i〈k,x〉zqzq .

Let us now fix the norms we shall work with. InCN we shall use maximum norm:
if a ∈ CN , |a| := maxi |ai |; for Fourier indicesk ∈ ZN or Taylor indicesk ∈ NN , |k|
denotes, as usual,

∑
i |ki |. As norms on matrices we take the standard operator norm

(with respect to the above maximum norms). Following[21], Hamiltonian functions
will be measured by the followingweighted sup-norm. For r, s > 0, let D(r, s) be
defined as in (1.13) with u, v replaced, byz, z and let

‖Xf ‖r := |fy | + |fx |
r2 + |fz|

r
+ |fz|

r
, ‖Xf ‖r,D(r,s) := sup

D(r,s)

‖Xf ‖r .

The Lipschitz semi-norm with respect to the parameter� ∈ � (or in subsets of�,
which will be clear from context) is defined analogously:18

‖Xf ‖Lip
r := |fy |Lip + 1

r2 |fx |Lip + 1

r
|fz|Lip + 1

r
|fz|Lip,

‖Xf ‖Lip
r, D(r,s) := sup

D(r,s)

‖Xf ‖Lip
r .

Notational Remark 2.2. The notation“a ≤ const b” means“ there exists a constant
c depending only on n, � and �∗ such thata ≤ cb” (obviously in such estimates, the
constants c’s will be, in general, different one from another). The notation‖ · ‖∗ stands
for either ‖ · ‖ or ‖ · ‖Lip.

Since

|Im z|, |Im z| ≤ 
� )⇒ |Im u|, |Im v| ≤ √2
�,

18 Recall footnote 6.
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we see that the functions

P̃ (�)(x, y, z, z; �) := P (�)
(
x, y,

z+ z√
2

,
z− z

i
√

2
; �
)

are analytic and bounded on�
� . In fact, for any|�| ≤ �, one finds immediately

sup
�
�

|��
P̃ (�)|∗ ≤ const sup

�2
�

|��
P (�)|∗.

From Lemma2.1 it follows that the differenceP (�) − P (�−1) satisfies

sup
�2
�

|P (�) − P (�−1)| ≤ 2�+1c|P |C� 
�
�−1,

which yields

sup
�
�

|��
(P̃ (�) − P̃ (�−1))|∗ ≤ const|P |∗

C� 
�−|�|
�−1 , ∀ |�| ≤ �.

Notational Remark 2.3. The KAM algorithm described in Step2 of Section1.7 will
be described in terms of the(x, y, z, z) variables but for ease of notation we shall
drop systematically the tilde from functions, vector fields and Poisson brackets, keeping
in mind the actual meaning just discussed. In the convergence argument, however, we
will have to resume the(x, y, u, v) variables (since the original perturbation function
P is only defined for real arguments). We shall not come back on this(mathematically)
trivial point, hoping that the notation will cause no confusion.

2.3. KAM step and the linearized homological equation

As discussed in 1.7, we shall iteratively look for a real-analytic symplectic transfor-
mation

�� := ��−1 ◦ �� = �1 ◦ · · · ◦ ��

such that, for� ≥ 1,

(N + P (�)) ◦ �� = N�+1+ P�+1, (2.1)

with N�+1 in normal form (as in (1.15)) and P�+1 “smaller” thanP�.
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Let

P1 := P ′1 := P̃ (1) (2.2)

and assume that, for� ≥ 1, P� and P ′� have vector fields real-analytic and bounded in
a domain

D� := D(r�, s�) ⊂ �
� (2.3)

for suitable numbers (to be specified later)

0 < r� < s� < 
� < 1. (2.4)

We notice (compare also 1.7) that, for� ≥ 2, in view of the form of��, Eq. (2.1) can
be rewritten as

(N� + P ′�) ◦ �� = N�+1+ P�+1, (2.5)

with

P ′� := P� + (P (�) − P (�−1)) ◦ ��−1.

Following [21], we, now, describe how to solve (2.5). For ease of notation, we shall
drop, in this section, the index� and replace the index “� + 1” by the index “+”.
Therefore,N, P, P ′, �, r, . . . stand forN�, P�, P ′�, ��, r� . . . while N+, P+, P ′+, �+,
r+, . . . stand forN�+1, P�+1, P ′�+1, ��+1, r�+1, . . . .

The symplectic map�(= ��) will be taken to be the time-one map of a Hamiltonian
flow Xt

F associated to a Hamiltonian functionF (with ‖XF ‖ ∼ ‖XP ‖ ∼ ‖XP ′ ‖). In
such a case, the left-hand side of (2.5) takes the form:

(N + P ′) ◦X1
F = N + ({N,F } + P ′)+O2, (2.6)

whereO2 denotes (loosely) terms of order two inF. Therefore, the “linearized equation”
to be solved forF has the form

{N,F } + P ′ = N̂ +O2, (2.7)

whereN̂ denotes a term in “normal form”19 (i.e., having the same form ofN). Since
one is interested in solving (2.7) in a small neighborhood of{y = 0, z = z = 0}, one

19 Clearly, the equation{N,F }+P = O2 might not have a solution sinceP, in general, will not belong
to the range of the operator{N, ·}.
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can truncate the Taylor expansion ofP ′ up to order one in y and up to order two in
(z, z). Also, in order to control the small divisors (for a “large” set of parameter), as
in [1], one can truncate the Fourier expansion up to orderK. Thus the equation to be
solved becomes:

{N, F } + R = N̂, (2.8)

where

R =
∑

2|l|+|q+q|≤2
|k|≤K

P ′klqqei〈k,x〉ylzqzq (2.9)

(recall that the Fourier–Taylor coefficients ofP ′ are Lipschitz-continuous functions of
�). Thus,R is a second degree polynomial in(z, z) (and first degree polynomial iny)
having the form:

R := R0 + R1+ R2 := R0(x, y)+ R1(x, z, z)+ R2(x, z, z), (2.10)

where (without indicating explicitly the Lipschitz continuous dependence upon�)

R0 := R000(x)+ 〈R001(x), y〉 , R1 := 〈R10(x), z〉 + 〈R01(x), z〉,
R2 := 〈R20(x)z, z〉 + 〈R11(x)z, z〉 + 〈R02(x)z, z〉. (2.11)

We notice (for later reference) that from such definitions there follows

P ′ = R +O(|y|2)+O(|z| |y|)+O(|z|3), (2.12)

so that

R000= P ′(x, 0, 0, 0), R001= �yP
′(x, 0, 0, 0),

R10 = �zP
′(x, 0, 0, 0), R01 = �zP

′(x, 0, 0, 0),

R20 = 1

2
�2
zP

′(x, 0, 0, 0), R11 = �z�zP
′(x, 0, 0, 0),

R02 = 1

2
�2
zP

′(x, 0, 0, 0). (2.13)

The projection ofR onto the kernel of{N, ·} (sometimes referred to as the “mean value
of R”) is given by

[R] =
∑

|l|+|q|≤1

P ′0lqqylzqzq = P ′0000+
∑
|l|=1

P ′0l00y
l +

∑
|q|=1

P ′00qqz
qzq
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= R000
0 + 〈R001

0 , y〉 + 〈R11
0 z, z〉

:= ê + 〈�̂, y〉 + 〈�̂z, z〉. (2.14)

Therefore,[R] is in normal formand we can set

N̂ := [R]. (2.15)

At this point, recalling Section 2.2, we can easily solve (2.8):

F =
∑

2|l|+|q+q|≤2
|k|≤K

(k,q−q)�=(0,0)

Fklqqei〈k,x〉ylzqzq, Fklqq := −iRklqq

〈�, k〉 + 〈�, q − q〉 . (2.16)

Obviously,F is real for real argument.
Having thus definedR, N̂ andF, one can rewrite (2.6) as

(N + P ′) ◦X1
F = N+ + P+, (2.17)

with

N+ := N + N̂, (2.18)

P+ :=
∫ 1

0
{(1− t)N̂ + tR, F } ◦Xt

F dt + (P ′ − R) ◦X1
F .

2.4. Iteration and recursive estimates

In this section, we describe the estimates associated to one step of the KAM iteration
described above.

We start by discussing estimates associated to the solutionF� := F given in (2.16)
(we re-insert the dependence upon the iteration step�).
Assume the Diophantine condition(1.25) and assume that

|��|Lip + |��|Lip ≤ M�, |�−1
� |Lip ≤ L� (2.19)

for some positive numbersL�,M� such thatL�M� ≥ 1 (the Lipschitz semi-norms
are taken, respectively, on�� and on ��(��)). Then, by classical KAM estimating
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techniques—mainly based on Cauchy estimates20 —one finds the following bounds; for
details, compare with Section 2 and, in particular with Lemmas 1 and 2 of[21]:

‖XN̂�
‖∗r�, D(r�,s�)

≤ const‖XR�‖∗r�, D(r�,s�)
, (2.20)

‖XF�‖r�, D(r�/2,s�) ≤ const
Bs�

��
‖XR�‖r�, D(r�,s�),

‖XF�‖Lip
r�, D(r�/2,s�)

≤ const
Bs�

��

(
‖XR�‖Lip

r�, D(r�,s�)
+ M

��
‖XR�‖r�, D(r�,s�)

)
,

where, changing slightly notation with respect to[21] and using Rüssmann’s subtle
arguments to give optimal estimates of small divisor series (see[23,24]),

Bs� := ��
2

√√√√√ ∑
(k,l)∈Zn+m\{0}

|l|≤2

|k|2
|〈��, k〉 + 〈��, l〉|4 e−2|k|s� ≤ consts�

−�1,

�1 := 2�+ 1. (2.21)

As in [21], we observe that, setting

‖ · ‖	r := ‖ · ‖r + 	‖ · ‖Lip
r ,

the second and the third inequality in (2.20) are equivalent to the inequality

‖XF�‖	r�, D(r�/2,s�) ≤ const
Bs�

��
‖XR�‖	r�, D(r�,s�)

, ∀ 0 ≤ 	 ≤ ��

M�
.

Thus, in view of (2.21), (2.20) may me rewritten more compactly as

‖XN̂�
‖∗r�, D(r�,s�)

≤ const‖XR�‖∗r�, D(r�,s�)
, (2.22)

‖XF�‖	r�, D(r�/2,s�) ≤ const
1

�� s��1
‖XR�‖	r�, D(r�,s�)

(2.23)

for any 0≤ 	 ≤ ��/M�.

20 Cauchy estimates give a bound of derivatives of an analytic function on complex domains in terms
of the maximum norm of the function in larger domains: iff is analytic on a domainD ⊂ Ck , then
supD−�

|��
f | ≤ �! �−|�| supD |f |, where D−� denotes the set of�-inner points ofD (i.e., those points

x for which a ball of centerx and radius� is contained inD). For a generalized version, see, e.g.,
Lemma A4, p. 147, of[21].
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To carry on the KAM stepwe shall make inductive hypotheses that will be checked
in the next section, where the convergence of the KAM algorithm is discussed.
We assume thatP� and P ′� are such that

‖XP�‖r�, D(r�,s�) +
��

M�
‖XP�‖Lip

r�, D(r�,s�)
≤ ε�

2
, (2.24)

‖XP ′�‖r�, D(r�,s�) +
��

M�
‖XP ′�‖Lip

r�, D(r�,s�)
≤ ε� ≤ ��s�

�2�2
�

c0
, (2.25)

where

�2 := �1+ 2, (2.26)

c0 > 1 is a suitable constant depending only on n and�∗ (through �), 0 < �� < 1/16
will be a small number(to be fixed later). The role of�� will be that of rescaling the
y and z, z-neighborhood of the origin so that terms of order two iny or three in(z, z)

may be “disregarded”(compare with (2.50) below). In the following estimates we shall
make repeated use of Cauchy estimates on smaller domains that we shall denotes here,
for short,Dj

� := D(2−j r�, 2−j s�), j = 1, 2, 3, 4. Indeed,we shall take

s�+1 ≤ s�

16
, r�+1 := ��r� <

r�

16
, 
�+1 = 2s�+1. (2.27)

Estimates on the symplectic transformation�� := X1
F�

: Observing that the gradient
of R� (appearing in the definition of the norm ofXR� ) is defined in terms of derivatives
of P ′�, one gets (by Cauchy21 )

‖XR�‖∗r�, D1
�
≤ const‖XP ′�‖∗r�, D(r�,s�)

. (2.28)

Recalling (2.23), we find

‖XF�‖	r�, D1
�
≤ const

1

��s�
�1
‖XP ′�‖	r�, D(r�,s�)

. (2.29)

Then, by (2.29) and by assumption (2.24),

‖XF�‖r�, D1
�
≤ consts2

� �
2
� . (2.30)

21 Recall (2.10), (2.11) and (2.13). Then, |R�,y | ≤ |P ′�,y | on D(r�, s�). Next, R�,x is the second order
in (z, z) truncation of P ′�,x - and the estimates onD(r�, s�/2) follows from Cauchy estimates on(z, z)-
coefficients. Notice that, in fact, there is no need for such estimates of reducing thex-domain.
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Thus,Xt
F�
: D2

� → D1
� for all −1≤ t ≤ 1 and, by a standard ODE result,22 we get

‖Xt
F�
− id‖r�, D2

�
≤ consts2

� �
2
� . (2.31)

To estimate the derivatives ofXF� , we recall that, because of the particular structure
of F�, the x-component ofXF� is independent ofy, u, v, while the(z, z)-components
are independent ofy. Thus, by Cauchy estimates (and recalling thatr� < s� < 1), we
get

|�XF� |D2
�
≤ consts−1

� ‖XF�‖r�,D1
�
. (2.32)

By the above cited standard ODE result, (2.30) and (2.32) we obtain

|Xt
F�
|Lip
D3

�
= |Xt

F�
− id|Lip

D3
�
≤ consts2

� �
2
� . (2.33)

Moreover, by Cauchy estimates, for any−1≤ t ≤ 1 and forp = 1, 2,

|�p
Xt

F�
|Lip
D4

�
, |�p

(Xt
F�
− id)|∗

D4
�
≤ consts2−p

� �2. (2.34)

Assuming

const�2
� <

1

8
(2.35)

(a fact which shall be verified in next section), (2.34) implies that the Jacobian matrix
of Xt

F�
, �Xt

F�
, is invertible and close to the identity:23

|(�Xt
F�

)−1− I |D4
�
≤ consts��2

�, ∀ − 1≤ t ≤ 1. (2.36)

22 I.e., essentially Gronwall lemma, which, to fit our purposes may be reformulated as follows:Let V
be an open domain in a real Banach space E with norm‖ · ‖, � a subset of another real Banach space,
and X : V ×� → E a parameter-dependent vector field on V, which is C1 on V and Lipschitz on�.
Let �t be its flow. Suppose there is a subdomainU ⊂ V such that�t : U ×� → V for −1 ≤ t ≤ 1.
Then

‖�t − id‖U ≤ ‖X‖V , ‖�t‖Lip
U
≤ exp(‖�X‖V )‖X‖Lip

V

for −1 ≤ t ≤ 1, where all norms are understood to be taken also over�. Notice that ‖�t − id‖Lip
U
=

‖�t‖Lip
U

. For a (standard) proof, see[21, p. 147]
23 Use Neumann identityA−1− I =∑∞

j=1(I −A)j valid for any matrixA such that|I −A| < 1, (| · |
being any operator norm).
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Also, from such relation, (2.34) and (2.35), one obtains the following bound on the
Lipschitz semi-norm:

|(�Xt
F�

)−1|Lip
D4

�
≤ (1− consts��2

�)
−2(1+ consts��2

�) ≤ 2. (2.37)

As already observed above (after (2.30)), � := X1
F�
: D2

� → D1
� and, therefore (compare

(1.20) and (2.27)),

�� : D�+1 → D�. (2.38)

We, now,make the following inductive assumption(which shall be easily verified in
the next section):

|���|∗D�+1
≤ 2. (2.39)

From this assumption it follows immediately that

��(D(r�+1, s�+1)) ⊂ �
�+1, (2.40)

completing the proof of (1.20). In fact, suppose thatw = ��(�) with � ∈ D(r�+1, s�+1).
Since�� is real for real argument,24 we have

|Im w| = |Im ��(�)| = |Im ��(�)− Im ��(Re�)| ≤ |��(�)− ��(Re�)|

≤ |���|D(r�+1,s�+1) |Im �| ≤ 2|Im �|.

Estimates on��+1, ��+1: Recalling (2.15), (2.14) and (2.13), by Cauchy estimates,
one finds

|ê�|∗ ≤ constr2
� ‖XP ′�‖∗r�,D(r�,s�)

≤ const‖XP ′�‖∗r�,D(r�,s�)
,

|�̂�|∗ ≤ constr�‖XP ′�‖∗r�,D(r�,s�)
≤ const‖XP ′�‖∗r�,D(r�,s�)

, (2.41)

|�̂�|∗ ≤ const‖XP ′�‖∗r�,D(r�,s�)
.

24�� is composition of��’s = X1
F�

’s and F� is real for real argument (recall (2.16) and the remark
after it).
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Definition of��+1 and small divisor estimates: Recall that on�� the small divisor
bound (1.25) holds anddefine

��+1 := ��\
⋃

(k,l)∈Zn+m\{0}
|l|≤2, |k|>K�

R�
kl(��), (2.42)

where

R�
kl(��) :=

{
� ∈ �� : |〈��(�), k〉 + 〈��(�), l〉| < ��

1+ |k|�
}
. (2.43)

For a givenK�+1 > K� (to be specified later), let��+1 be such that25

��+1 ≤ ��

(
1− const

ε�K
�+1
�+1

��

)
. (2.44)

Then, for � ∈ ��+1 the small divisor bound(1.25) with � replaced by(� + 1) holds:
by (1.25), the definition of��+1, (2.41) and (2.44), for all (k, l) ∈ Zn+m\{0} such that
|l| ≤ 2 and |k| ≤ K�+1, one has

|〈��+1(�), k〉 + 〈��+1(�), l〉|

≥ |〈��(�), k〉 + 〈��(�), l〉|
(

1− |〈�̂�, k〉| + |〈�̂�, l〉|
|〈��, k〉| + |〈��, l〉|

)

≥ ��

1+ |k|�
(

1− const
ε�K

�+1
�+1

��

)

≥ ��+1

1+ |k|� . (2.45)

Estimates onP�+1 andP ′�+1: Recall the definition of the new “perturbation function”
P�+1 given in (2.18). Let us first discuss the term(P ′� − R�) ◦ �� and, in particular,
the norm of the “tail”Q� := P ′� − R� on a domain slightly larger thanD�+1, namely,
D(r�/2, 4s�+1) (recall (2.27)). First observe thatQ� has the form

Q� := P ′� − R�

25 By (2.24), ε� is an upper bound on 2
(
‖XP�‖r�, D(r�,s�) + ��

M�
‖XP�‖Lip

r�, D(r�,s�)

)
.



78 L. Chierchia, D. Qian / J. Differential Equations 206 (2004) 55–93

=
∑

2|l|+|q+q|>2

P ′
�,lqq

(x)ylzqzq +
∑
|k|>K

2|l|+|q+q|≤2

P ′
�,klqq

ei〈k,x〉ylzqzq

=: Q1
� +Q2

� . (2.46)

Taking into account the dependence onr� of the norm‖ · ‖r� , one sees easily that26

‖XQ1
�
‖∗��r�, D(r�,4��s�)

≤ const��‖XP�‖∗r�, D(r�,s�)
. (2.47)

The estimate forQ2
� brings in the dependence uponK� (as in [1]) and one finds

|�Q2
�|∗��r�, D(r�/2,4��s�)

≤ const
‖XP�‖∗r�, D(r�,s�)

�2
�

e−(K�s�)/4

sn�
. (2.48)

Thus,assuming

K� ≥ c1

s�
log(��s�)

−1, (2.49)

with a suitablec1 := c1(n), from (2.47) and (2.48) there follows

‖XP ′�−R�‖∗��r�, D(r�/2,4��s�)
≤ const��‖XP ′�‖∗r�, D(r�,s�)

. (2.50)

Now, it is a general fact that, for any functionsf and g and for any symplectic map
�, the following relations hold:27

X{f,g} = [Xf ,Xg] := Jf ′′Xg − Jg′′Xf ,

Xf ◦� = �∗Xf := (��)−1Xf ◦ �. (2.51)

At this point one has all the ingredients to estimate‖XP�+1‖r�+1,D�+1, arriving to the
following bound holding for any28 0 ≤ 	 ≤ ��/M�

‖XP�+1‖	r�+1,D�+1
≤ const

(
1

��s
�2
� �2

�
(‖XP�‖	r�)2+ ��‖XP�‖	r�

)
. (2.52)

26 |�xP�,lqq | ≤ ‖XP ′� ‖r�, D(r�,s�) r
2−(2|l|+|q+q|)
� ≤ 2‖XP�‖r�, D(r�,s�) r

2−(2|l|+|q+q|)
� .

27J denotes the standard symplectic matrix andf ′′ the Hessian off.
28 For full details, see[21, pp. 130–132].
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2.5. Convergence

In this section, we iterate the KAM algorithm presented above and show its conver-
gence. Let us introduce the followingrecursive parametersfor � ≥ 1. Let 1< � < 2,
0 < q < 1 be suitable constants (to be chosen later); letc2 := c2(n, �, �∗) be a positive
large enough constant.29 Then, for some 0< ε1 + 1 and r1 ≥ ε�

1 (to be specified
later), we set

M� := M(2− 2−�+1), L� := L(2− 2−�+1), �� :=
�
2
(1+ 2−�+1),

ε�+1 := c2ε
�
�

�1/3
�

, 
� := ε
q
� , s� := 
�

2
, �� :=

ε�−1
�

�1/3
�

,

r�+1 := ��r�, K := c2 logε−1
1 , K� := K

��


�
. (2.53)

Observe that:

M := M1 ≤ M� ↑ 2M, L := L1 ≤ L� ↑ 2L,

1 > � := �1 ≥ �� ↓ �∞ :=
�
2
. (2.54)

Notational Remark 2.4. In this section the constantci will denote suitable constants

depending on n, �, q, � and �∗.

We shall need some simple relations among the above parameters:

Lemma 2.2. For any � ≥ 1

ε� ≤ (Aε1)
��−1

A
, A := c3

�a1
, (2.55)

with a1 := 1
(�−1) > 1 and c3 := (2

1
3 c2)

1
�−1 . Furthermore, if ε1 is small enough, i.e.,

if, for a suitablec4 ≥ c3,

c4
ε1

�a2
< 1, a2 := max

{
a1,

�
3(�− 1)2 ,

1

1− q�2

}
, (2.56)

29 In particular, one can takec2 = 16c where c denotes here the largest among all constants “const”
appearing in the preceding sections.
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then, for any � ≥ 1,

r� ≥ ε�
� ,

ε�+1

ε�
<

1

16
1
q 2�+1

. (2.57)

Proof. From (2.53) and (2.54), it follows that

ε�+1 ≤ 2
1
3 c2

�
ε�
� .

Iterating such relation one gets (2.55) with c3 := (2
1
3 c2)

1
�−1 . As for (2.57), observe

that from definitions (2.53) there follows

ε�+1 = c2��ε� = c�
2

 �∏
j=1

�j

 ε1, r�+1 =
 �∏

j=1

�j

 r1,

hence

r�+1 = ε�+1
1

c�
2

r1

ε1
(2.58)

and the first relation in (2.57) is seen to be equivalent to

ε� c
�−1
�−1
2 ≤

(
r1

ε1

) 1
�−1

,

which, since
(

r1
ε1

) 1
�−1 ≥ ε1, follows from (2.55) and (2.56). From (2.55), choosingc4

big enough (and sincea2 > 1
3(�−1) ), there follows

2�+1ε�+1

ε�
= 2�+1c2

ε�−1
�

�
1
3
�

≤
(

1

16
1

q(�−1)

c4

�
1

3(�−1)

ε1

)�−1

≤ 1

16
1
q

. �

Next proposition is a detailed version of the main Theorem1.1 apart from the claim
concerning the measure of�∞, which shall be discussed in the next section. To state
such proposition we need some definitions. Given� andM we introduce two numbers,
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� and �, measuring the regularity and certain geometric properties of the perturbation
P. Let � > 0 be such that

max
{

1,
�
M

, |P |C�,
�
M
|P |Lip

C�

}
≤ �. (2.59)

Now, let

A1 :=
{
� : |�| = 1 and |��

P |C0 �= 0
}
,

A
Lip
1 :=

{
� : |�| = 1 and |��

P |Lip
C0 �= 0

}
,

let, then,� > 0 be such that

� := inf

{
inf �∈A1 |��

P |C0

sup�∈A1
|��

P |C0

,
inf �∈A1 |��

P |Lip
C0

sup�∈A1
|��

P |Lip
C0

}
. (2.60)

Finally, let R1 := 2r1 and

DR1 :=
{
(x, y, u, v) ∈ R2(n+m) : |y| < R2

1, |u| < R1, |v| < R1

}
(2.61)

and define30

ε0 := ‖XP ‖R1,DR1
+ �

M
‖XP ‖Lip

R1,DR1
, ε̂0 := |XP |DR1

+ �
M
|XP |Lip

DR1
. (2.62)

Proposition 2.1. Let � > �∗ > 6n+ 5; let � := (�∗ − 11)/6 and �2 := (�∗ − 2)/3. Let
� := �(�, �∗) > 0 be defined by the relation31

(1+ �)2

1− 3�
= � − 2

�∗ − 2

and define

q := 1− 3�
�2

, � := 1+ �.

Let32 �1 := �, �1 := �, L1 := L, M1 := M, �1 := �. Assume(2.19) for � = 1, let
�1 such that(1.25) holds for � = 1. There exist a constantc5 > c4 > 1, depending

30 Recall the definitions given in Section 2.2 and replaceD(r, s) with the real set DR1.
31 Whence,� ∈ (0, 1

3).
32 Beware, instead, that�1 �= � and P �= P1, K1 �= K.



82 L. Chierchia, D. Qian / J. Differential Equations 206 (2004) 55–93

on n, � and �∗ and constantsC1, C2 > 1, depending upon n, �, �∗, (LM), �, � and
�, such that, if

ε1 := c5 � ε0, C1 ε0 ≤ 1, C2 ε̂
1/(2+ 1

� )

0 ≤ r1 ≤ 1, (2.63)

then the following holds. LetM�, L�, ��, ε�, r�, s�, 
�, K� be as in (2.53) with ε1
and r1 as in (2.63); let D� be as in(2.3); let P (�) be as in33 Section2.2; let P1 be
as in (2.2). Then, for � ≥ 1, one can iteratively construct, as described in Section2.3,
a sequence of real-analytic symplectic transformations�� (and �� := �1 ◦ · · · ◦ ��)
satisfying(1.20), and a sequence of functionsN�, P�, P ′� real-analytic onD� satisfying
(2.5). The functions indexed by� are Lipschitz continuous in� ∈ ��, where�� is
iteratively defined in(2.42). The following conditions hold for any34 �:

|��|Lip + |��|Lip ≤ M�, |�−1
� |Lip ≤ L�,

‖XP�‖r�, D� +
��

M�
‖XP�‖Lip

r�, D�
≤ ε�

2
, (2.64)

‖XP ′�‖r�, D� +
��

M �
‖XP ′�‖Lip

r�, D�
≤ ε� ≤ 2��s

�2
� �2

�

c0
, (2.65)

as well as conditions(2.4), (2.27), (2.35), (2.39), (2.44) and (2.49). Furthermore, e�
(e1 := 0), �� and �� converge(super-exponentially fast) to functionse∞, �∞ and
�∞, which are Lipschitz continuous on�∞ := ∩�� and obey the bounds

|�∞|Lip + |�∞|Lip ≤ 2M, |�−1∞ |Lip ≤ 2L. (2.66)

For any

2 < p < p∗ := 2+ a(�− 2), a := 2

3

�
(1+ �)2 , (2.67)

the diffeomorhysmsx ∈ Tn → ��(x, 0, 0, 0; �) converge inCp-norm to a Cp-
diffeomorphysm�(x; �), which is Lipschitz continuous in� ∈ �∞. In fact, for a
suitablec6 > 1:

|�(x; �)− x|Cp ≤ c6

�
2
3

ε
2� p∗−p

p∗−2
1 , ∀ � ∈ �∞; |�|Lip ≤ c2

ε
2(q+�)
1

�
2
3

. (2.68)

33 Recall the Notational Remark 2.3.
34 Recall (2.24).
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Finally, the tori T n(�) defined in(1.24) are invariant tori forN+P and, on such tori,
the flow isCp-conjugated to the Kronecker flowx → x +�∞t where�∞ verifies the
Diophantine relation

|〈�∞(�), k〉 + 〈�∞(�), l〉| ≥ �
2(1+ |k|�) ,

∀ (k, l) ∈ Zn+m\{0}, |l| ≤ 2, ∀ � ∈ �∞. (2.69)

Proof. As a first step, let us check that the relation betweenε̂0 and r1 in (2.63),
namely

C2 ε̂
1/(2+ 1

� )

0 ≤ r1 (2.70)

implies that:35

‖XP̃1
‖r1, D1 +

�
M
‖XP̃1

‖Lip
r1, D1

≤ ε1. (2.71)

Notice that, by the definition of norms and complex variables in Section 2.2, it follows
that

‖XP̃1
‖r1, D1 ≤ 2‖XP1‖R1,D(R1,s1), (2.72)

so that, in the following argument, we may use directly the(x, y, u, v) variables.
Introduce, also, for the purpose of this check, the short-hand notation “| · |•” to denote
either “| · |” or “ (�/M)| · |Lip” and observe that from the definitions of� ((2.60)) and
ε̂0 ((2.62)), it follows that

� ε̂0 ≤ |��
P |•

C0, ∀ � ∈ A1. (2.73)

Observe, also, that, if

C2 ≥ const
�

1
2

�
1

2q̄

, q̄ := q(�− 1) := 3(1+ �)2�− 1

�− 2

(for a suitable const), then, since (as it easy to check)

q̄ − 1

2q̄
>

1

2+ 1
�

,

35 Only for the purpose of this check we re-introduce tildas to distinguish between functions of(x, y, z, z)

and functions of(x, y, u, v); recall the Notational Remark 2.3.
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Eq. (2.70) yields

const
�q̄

�
ε̂
q̄−1
0 ≤ r

2q̄
1 . (2.74)

Thus, taking into account the weight of the norm‖ · ‖R1 appearing in the definition
of ε0, recalling the definitions of
1 = ε

q
1, ε1, q̄, (2.74) and (2.73), we find, for all

� ∈ A1,


�−1
1 := ε

q̄
1 = const�q̄ ε

q̄
0 ≤ const�q̄ ε̂

q̄
0

r
2q̄
1

≤ constε̂0 � ≤ const|��
P |•

C0. (2.75)

Now, if � := (x, y, u, v) ∈ �
1, by Lemma 2.1, the definition of � in (2.59), the
convexity estimates in Remark 2.1 and (2.75) we find, for any� ∈ A1:

|��
P1(�)|• ≤

∣∣∣∣∣∣��
P1(�)−

∑
|�|≤�−1

��+�
P(Re�)
�! (i Im �)�

∣∣∣∣∣∣
•

+
∣∣∣∣∣∣
∑

|�|≤�−1

��+�
P(Re�)
�! (i Im �)�

∣∣∣∣∣∣
•

≤ c�
�−1
1 + c

�−1∑
m=0

|��
P |•Cm 
m

1

≤ c�
�−1
1 + const

�−1∑
m=0

(
|��

P |•
C0

) �−1−m
�−1

(
|��

P |•
C�−1

) m
�−1


m
1

≤ const�
�−1∑
m=0

(
|��

P |•
C0

) �−1−m
�−1


m
1

≤ const�
�−1∑
m=0

(
|��

P |•
C0

) �−1−m
�−1

(
|��

P |•
C0

) m
�−1

≤ const� |��
P |•

C0.

From this relation, (2.72) and the definition ofε1, we find immediately36

‖XP̃1
‖r1, D1 ≤ const�ε0 := ε1. (2.76)

36 From the definition ofP1 it follows that if |��
P |∗

C0 = 0, for some�, then also|��
P1|∗�
1

= 0.
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Recall (compare sentence before (2.53)) that we have to check thatr1 ≥ ε�
1 or, equiv-

alently, ε1r
− 1

�
1 ≤ 1: in fact, from the definition ofε1 and from (2.63), there follows

ε1

r
1
�

1

:= const�
ε̂0

r
2+ 1

�
1

= const
�

1
2+ 1

� ε̂

1
2+ 1

�
0

r1
≤ 1

provided

C2 ≥ const �
1

2+ 1
� .

To proceed, it is convenient to reformulate the smallness condition,C1ε0 ≤ 1, on ε0
(which will not appear any more in the sequel) in terms ofε1. It is easily seen that
C1ε0 ≤ 1 implies that37

c7 �
1
� (LM)

ε1 (logε−1
1 )2(�+1)

�a3
< 1,

a3 := max

{
a2,

2

3�
,

3�− 1

�(�− 1)

}
(2.77)

for a suitablec7 > c5. Notice that (2.77), in turn, implies (2.56). Next, the inequality

ε1 ≤ �s�2
1 �2

1

c0

is equivalent to

2�2c0

�
2
3

ε
1−q�2−2(�−1)
1 := 2�2c0

�
2
3

ε�
1 ≤ 1,

which follows from the smallness condition (2.77) (and the fact thata3 ≥ 2/(3�)). Thus
(2.24) and (2.25) are satisfied for� = 1 and the KAM iterative procedure, discussed
in the previous sections, can be turned on.

37 For example, one can takeC1 > C̄1, whereC̄1 > constc5�
1+ 1

� LM
�a3 and the constantC1 ≥ exp(2(�+1))

solves logC1 = (C1/C̄1)
1
2 (�+ 1).
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We shall, now, proceed to check all iterative conditions claimed in the thesis of the
proposition.

(2.4): First notice that (2.4) (the only nontrivial part of which isr� < s�) for � = 1
holds because� > 1 > q; to check (2.4) for � > 1 use (2.58).

(2.27) and (2.35): s�+1 ≤ s�/16 is equivalent toε�+1 ≤ ε�/16, which is implied by
(2.57). Also, from the definition ofε�+1, �� and (2.57) it follows that

�� =
�

1
3
�

c2

ε�+1

ε�
<

1

2�+1 c2
, (2.78)

which implies (2.27) and (2.35) because of the definition ofc2.
(2.39) is consequence of38 (2.34) and (2.78):

|���|D�+1 = |(��1 ◦ �2 ◦ · · · ◦ ��) (��2 ◦ �3 ◦ · · · ◦ ��) · · · (���)|D�+1

≤
�∏

j=1

(1+ constsj�2
j ) <

�∏
j=1

(
1+ 1

2j+1

)
< 2.

Similarly one obtains39

|�2��|D�+1 =
∣∣∣∣∣∣

�∑
j=1

(�2�j ◦ �j+1 ◦ · · · ◦ ��)(��j+1 ◦ �j+2 ◦ · · · ◦ ��) · · · (���)

×
∏
i �=j

(��i ◦ �i+1 ◦ · · · ◦ ��)

∣∣∣∣∣∣
D�+1

≤ 4�. (2.79)

Now, assume, by induction up toj = �−1, that |��j |Lip
Dj+1

≤ 1+ �j := 2− 1
2j (which,

for j = 1 is certainly true, in view of (2.34), since�1 := �1). Then (shortening, here,
“const” with “c”, using again (2.34), the smallness of��, (2.78) and (2.79)),

|���(·, �′)− ���(·, �)|
|�′ − �|

= |���−1(��(·, �′), �′)���(·, �′)− ���−1(��(·, �), �)���(·, �)|
|�− �′|

38 Recall that�� = X1
F�

and (2.34), one sees that|���|D�+1 ≤ 1+ consts��2
� .

39 Use that from (2.34) with p = 2 there follows that|�2�j |Dj+1 ≤ const�2
j

.
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≤ |���−1(��(·, �′), �′)− ���−1(��(·, �′), �)|
|�′ − �| |���(·, �′)|

+ |���−1(��(·, �′), �)− ���−1(��(·, �), �)|
|�′ − �| |���(·, �′)|

+ |���−1(��(·, �), �)|
|���(·, �′)− ���(·, �)|

|�′ − �|
≤ (1+ ��−1)(1+ cs��2

�)+ |�2��−1| |��|Lip |���| + 2c s��2
�

≤ (1+ ��−1)(1+ cs��2
�)+ 4�c2s2

� �
2
� (1+ cs��2

�)+ 2cs��2
�

≤ 1+ ��,

last inequality follows easily by the smallness of��.
(1.20): recall from Section2.5 that (2.38) holds because of (2.35) and that (2.40) is

consequence of (2.39) (and recall also that (1.20) is (2.38) plus (2.40)).
(2.44): Since

��+1
��
= 1− 1

2+2� , (2.44) is implied by

const
ε�K

�+1
�+1

��
≤ 1

2�+1 ,

which is seen to hold because of the definition ofK�, (2.55), the fact that 1−q(�+1)� >

1/2 (recall the definition ofq and � in Lemma 2.1) and (2.77).
(2.49) follows from the definition ofK�, the fact thatε�+1 ≥ ε�

� ≥ ε��

1 and the
explicit definition ofK (used only here), K = c2 log ε−1

1 .
Second inequality in (2.65): Using the definitions ofs�, �� and the fact that 1−

q�2− 2� = �, one sees that the claim follows from

const
ε�

�
1
3

< 1,

which in turn (using (2.55) and the fact thata3 ≥ 1
3� ) is implied by (2.77).

(2.64) for � > 1 is proven by induction: Assume it holds up to�. Then observing
that M�+1−M� = M/2�, using the bounds (2.41), the fact that‖XP ′�‖Lip

r�,D�
≤ M�ε�/��

(see (2.65)) and the fact thata3 ≥ (3� − 1)/(�(� − 1)), the first of (2.64) is seen to
follow from (2.77). To check the second inequality in (2.64), observe that

|�−1
�+1|Lip ≤ L�

1− L�|�̂�|Lip ≤
L�

1− constL�M�ε�/��
.

Thus, the claim follows from the smallness assumption (2.77) (it is only here that
the presence of the term(LM) in (2.77) is used), sincea3 ≥ (3� − 1)/(�(� − 1)) >
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a1 + 1
� = (2� − 1)/(�(� − 1)). We turn to the third relation in (2.65). By (2.52) and

using the fact that 2− q�2 − 2(� − 1) = � one sees that the claim follows from the
definition of ε�+1.

First inequality in (2.65) (for � ≥ 2): For the purpose of this check call

P̂� := (P (�) − P (�−1)) ◦ ��−1.

In view of the already verified bound (2.64), the claim is implied by

‖XP̂�
‖r�,D� +

��

M�
‖XP̂�

‖Lip
r�,D�

≤ ε�

2
. (2.80)

Observe, as above, that, by definition of Hamiltonian vector field and of our weighted
norms, ‖XP̂�

‖∗r�,D�
≤ r−2

� |�P̂�|∗D�
. Now, by (2.39) and Section 2.2, (on the proper

domains),

|�P̂�| ≤ |�(P � − P �−1))| |���−1| ≤ const|P |C�
�−1
�−1. (2.81)

To bound the Lipschitz part, first observe that, by the chain rule, by (2.33), the fact
that q + � > 1 and (2.77),

|��|Lip = |��−1(��, �)|Lip ≤ |���−1| |��|Lip + |��−1|Lip

≤ |��−1|Lip + consts2
� �

2
�

≤ |�1|Lip + const
�−1∑
j=2

s2
� �

2
� ≤ const

�−1∑
j=1

s2
� �

2
�

≤ constε2(q+�)
1 ≤ ε1. (2.82)

Now, by the chain rule, (2.39), Section 2.2, (2.82), (on the proper domains),

|�P̂�|Lip = |�(P � − P �−1)) · ���−1|Lip

≤
∣∣∣(�(P (�) − P (�−1))

)
◦ ��−1

∣∣∣Lip |���−1|

+
∣∣∣(�(P (�) − P (�−1))

)
◦ ��−1

∣∣∣ |���−1|Lip

≤ const
(
|P |C�
�−1

�−1| + |
(
�(P (�) − P (�−1))

)
◦ ��−1|Lip

)
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≤ const
(
|P |C�
�−1

�−1 + |�2
(P (�) − P (�−1))| |��−1|Lip

)
+ �(P (�) − P (�−1))|Lip

≤ const
(
(|P |C� + |P |Lip

C� )

�−1
�−1 + |P |C�
�−2

�−1ε1

)
. (2.83)

Putting together (2.81) and (2.83), and using (2.77), the first inequality in (2.57), the
relation ε�

�−1 ≤ ε� and the fact thatq(�−2)
� − 2� = (1+ �) > 1, one gets

‖XP̂�
‖r�,D� +

��

M�
‖XP̂�

‖Lip
r�,D�

≤ (�εq1)

�−2

�−1

r2
�
≤ ε1+�

� <
ε�

2
,

which is (2.80).
The convergence of40 e�, �� and �� to e∞, �∞ and �∞ is, at this point, proved,

as well as the bounds (2.66), which follows at once from (2.64).
First estimate in (2.68):
Write �� = �1 +

∑�
j=2(�j − �j−1) and introduce, here, the short-hand nota-

tion �0
j (x; �) := �j (x, 0, 0, 0; �) and �0

j (x; �) := �j (x, 0, 0, 0; �) so that�(x; �) =
lim�→∞�0

�(x; �). Notice that, for|Im x| ≤ sj , by (2.39) and (2.31), one has

|�j−1(�
0
j (x; �))− �0

j−1(x; �)| ≤ sup
|Im x|≤sj

|��j−1| |�0
j (x)− x| ≤ const
2

j�
2
j .

Then, for anyx ∈ Tn and� ∈ �∞, for any � ∈ Nn with |�| ≤ p, by Cauchy estimates,
by the definitions ofsj , �j , q and41 �, we have∣∣∣��

x

(
�(x; �)− x

)∣∣∣
≤
∣∣∣��

x

(
�1(x; �)− x

)∣∣∣+ ∞∑
j=2

∣∣∣��
x

(
�j−1(�

0
j (x; �))− �0

j−1(x; �)
)∣∣∣

≤ const
∞∑
j=1

s
2−|�|
j �2

j ≤
const

�
2
3

∞∑
j=1

ε
q(2−p)+2(�−1)
j

= const

�
2
3

∞∑
j=1

ε
2�+q(2−p)
j = const

�
2
3

∞∑
j=1

ε
2� p∗−p

p∗−2
j ≤ const

�
2
3

ε
2� p∗−p

p∗−2
1 .

40 Observe thate� obey the same bound of̂�� so that its convergence follows from the above discussion;
in any casee∞ has no dynamical relevance.

41 Note: a(�− 2) = 2�2
�

1−3� = 2 �
q , 2�+ q(2− p) = 2�p∗−p

p−2 .
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For the bound on the Lipschitz semi-norm just take the limit in (2.82). Finally, the
Diophantine relation (2.69) is obtained as the limiting case of (1.25). �

2.6. Measure estimates (multiplicity of solutions)

In this section,assuming the notations and hypotheses of Proposition2.1, we shall
prove and make quantitative the claims in Theorem1.1 concerning the measure of
�∞, hence establishing multiplicity results for the lower-dimensional quasi-periodic
solutions found in Proposition2.1.

Following [21], we note that if|k| is large, then the discarted “resonant set”R�
kl(��)

defined in (2.43) is small:42

Lemma 2.3. If |k| ≥ K0 := 16LM, then, for any � ≥ 1 and any|l| ≤ 2,

meas(R�
kl(��)) ≤

	
|k|�+1 , 	 := const(LM)n

�
M

(diam�)n−1. (2.84)

This lemma is essentially Lemma 5, p. 136, in[21], to which we refer for the simple
proof.43

Proposition 2.2. Assume thatε1 satisfies also

ε1(LM)a < 1, a := max

{
1

�
,

1

q(�− n+ 1)

}
(2.85)

and that

0 < � < min
�∈�
i �=j

{|�i (�)|, |�i (�)− �j (�)|}. (2.86)

Then,

meas�∞ ≥ meas�0 − const
�
M

(LM diam�)n−1, (2.87)

42 Recall that� > n− 1.
43 Just for completeness we sketch here an alternative argument:�� and �� are Lipschitz in � and

in fact �� is a Lipschitz diffeomorphysm. Thus, such function have derivatives inL1 and the standard
formula for the change of variables in integrations holds. Using� = ��(�) as independent variable,
up to a suitable k-dependent rotation, we see that it is enough to estimate sets of the form{� ∈
��(��) : |�1 + gk(�)| < �k/|k|�+1} where gk is a Lipschitz function that because of the assumption
on |k| is smaller than, say, 1/2. Now, make a further change of variables setting�′1 = �1 + gk(�),
�′2 = �2,…,�′n = �n, etc.
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where the set�0 := �0(�) is defined as

�0 :=
{
|〈�(�), k〉 + 〈�(�), l〉| ≥ �

1+ |k|� , ∀ 0 < |k| ≤ K0, |l| ≤ 2

}
.

Furthermore,

lim
�↓0

meas(�\�0(�)) = 0, (2.88)

showing thatmeas�∞ > 0 provided� is small enough. Finally, if � and� are C1(�)

and if (taking � as independent variable44 )

� := min
0<|k|≤K0,|l|≤2

�∈Skl

(
|k|−1

∣∣∣∣k + �〈�, l〉
��

∣∣∣∣) > 0,

Skl := {� ∈ �(�) : 〈�, k〉 + 〈�(�), l〉 = 0} . (2.89)

then

meas(�\�0(�)) ≤ const
�

M�
(LM diam�)n−1 . (2.90)

Remark 2.2. Recall point 1.6 in Section 1 and especially (1.11) and letr := r1. Notice

that, in such a case,̂ε0 ∼ r3
1 + ε and ε0 ∼ r1 + ε

r1
. Thus, choosingr := r1 := ε

1
3 , we

see thatε0 ∼ ε1 ∼ ε
1
3 and that hypotheses (2.63) and (2.85) are satisfied and the claim

in 1.6 follows; “genericity” refers to conditions (1.3)–(1.4).

Proof. Notice that by definition ofK� in (2.53) and (2.85), there follows thatK� ≥
K1 > K0 := 16(LM). Thus, by Lemma2.3 and the definition of��+1,

meas(��+1) ≥ meas(��)−
∑
|l|≤2
|k|>K�

meas(R�
kl(��))

≥ meas(��)− const	
∑
|k|>K�

|k|−�+1

≥ meas(��)− const	
1

K�−n+1
�

.

44 I.e., �(�) is, by definition, �(�(�)) where �→ �(�) is the C1 inverse function of�→ �(�).
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Iterating this relation, using the definition ofK� and (2.85), we get

meas(��+1) ≥ meas(�1)− const	εq(�−n+1)
1

≥ meas(�1)− const
�
M

(LM diam�)n−1,

which implies

meas(�∞) ≥ meas(�1)− const
�
M

(LM diam�)n−1. (2.91)

From (2.86) it follows that

�1 = �0

∖ ⋃
K0<|k|≤K1|l|≤2

R1
kl(�)

and we see, again by Lemma2.3, that

meas(�1) ≥ meas(�0)− const	(LM)−1,

which, together with (2.91), implies (2.87).
The claim in (2.88) follows immediately from the compactness of�, assumption

(1.4) and the “monotonicity” of the setsR�
kl(�) in � (i.e., R�

kl(�) ⊂ R�
kl(�

′) if � < �′).
The claim in (2.90) follows easily by noting that (2.89) implies that Skl are C1

hyper-surfaces in�(�) and observing that� is a lower bound on the norm of the
gradient of the function〈�, k〉 + 〈�(�), l〉. �
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