
J. Differential Equations 246 (2009) 4345–4370
Contents lists available at ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Low-order resonances in weakly dissipative
spin–orbit models ✩

Luca Biasco ∗, Luigi Chierchia

Dipartimento di Matematica, Università “Roma Tre”, Largo S.L. Murialdo 1, I-00146 Roma, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 August 2008
Available online 17 December 2008

MSC:
34C25
34D10
34D45
34K13
70F15
70F40

Keywords:
Periodic attractors
Celestial mechanics
Spin–orbit problem
Nearly Hamiltonian systems
Dissipative systems

Second-order differential equations with small nonlinearity and
weak dissipation, such as the spin–orbit model of celestial mechan-
ics, are considered. Explicit conditions for the coexistence of
periodic orbits and estimates on the measure of the basins of
attraction of stable periodic orbits are discussed.

© 2008 Elsevier Inc. All rights reserved.

Contents

1. Introduction and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4346
2. Periodic orbits and spin–orbit resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4350

2.1. Functional equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4350
2.2. Green operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4350
2.3. Lyapunov–Schmidt decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4351
2.4. Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4352

2.4.1. The range equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4352

✩ Partially supported by the Italian MIUR project “Metodi variazionali e equazioni differenziali nonlineari.”

* Corresponding author.
E-mail addresses: biasco@mat.uniroma3.it (L. Biasco), luigi@mat.uniroma3.it (L. Chierchia).
0022-0396/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2008.11.008

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jde
mailto:biasco@mat.uniroma3.it
mailto:luigi@mat.uniroma3.it
http://dx.doi.org/10.1016/j.jde.2008.11.008


4346 L. Biasco, L. Chierchia / J. Differential Equations 246 (2009) 4345–4370
2.4.2. The bifurcation equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4353
2.5. The bifurcation equation for the spin–orbit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4355

3. Local basins of attractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4359
3.1. Proof of Lemma 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4364

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4366
Appendix A. The Newtonian spin–orbit potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4366
Appendix B. Comparison with the numerical results of [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4368
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4369

1. Introduction and results

In this paper we consider second-order differential equations of the following type

ẍ + η̄(ẋ − ν̄) + ε̄ fx(x, t) = 0, (1)

where f is a smooth 2π -periodic both in x ∈ R and in t ∈ R; x = x(t) and dot denotes time derivative;
η̄, ν̄ and ε̄ are nonnegative parameters.

This equation models, for η̄ and ε̄ small, a nearly-integrable, weakly-dissipative system: for η̄ = 0 the
equation is conservative, being the Euler–Lagrange equation of the nearly-integrable Lagrangian

Lε(ẋ, x, t) := 1

2
ẋ2 − ε̄ f (x, t),

and the associated dynamical system exhibits the reach dynamics of nearly-integrable Lagrangian
systems (periodic orbits of any period, KAM tori, Aubry–Mather sets, etc.; see [2] for general informa-
tion); on the other hand, for ε̄ = 0 and η̄ > 0 the equation is dissipative and all solutions are of the
form

x(t) = x0 + ν̄t + 1 − exp(−η̄t)

η̄
(v0 − ν̄),

and tend exponentially fast to the global attractor {ẋ = ν̄}.
Given two coprime positive integers p and q, it is particularly interesting to study the existence,

stability and basins of attraction of “periodic orbits of type (p,q)” (or “(p,q)-periodic orbits”), i.e.,
solutions t ∈ R → xpq(t) = x(t) ∈ R of (1) satisfying

x(t + T ) = x(t) + 2π p, ∀t, (2)

with T := 2πq.

Remark 1.1. (i) Since the “potential” f in (1) is 2π -periodic in x and t , the (extended) phase space
for Eq. (1) may be taken to be

M := {((x, t), y
) ∈ T

2 × R
}
,

where T
2 is the standard 2-torus R

2/(2πZ
2), so that an orbit satisfying (2) describes, projected

on M, a periodic trajectory with period T = 2πq and winding (or rotation) number

ω = lim
s→∞

1
x(t + s) = p

.

s q
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(ii) A solution of type (p,q) can be written as

xpq(t) = ξ + p

q
t + u

(
t

q

)
, 〈u〉 = 0, (3)

where ξ ∈ R, u is 2π -periodic and1

〈u〉 := 1

2π

2π∫
0

u(s)ds = 0.

The main motivation for studying Eq. (1) and its (p,q)-periodic orbits, comes from celestial me-
chanics. In fact, Eq. (1) describes, in a suitable simplified model, the rotations of a satellite whose
center of mass revolves on a fixed Keplerian orbit of eccentricity e ∈ [0,1) and is subject to the grav-
itational attraction of a major body sitting on one of the foci of the ellipse.

For such a model, (p,q)-periodic orbits correspond to p : q spin–orbit resonances, i.e., to periodic
motions where the satellite turns on its spin axis exactly p times while doing q revolutions around
its star/planet.2

The simplifying physical assumptions and the meaning of the quantities appearing in Eq. (1) are
the following (for precise definitions we refer to Section 2.5 and to Appendix A; for general informa-
tion on spin–orbit resonances, see, e.g., [5,6,8,10–12,15] and [7]):

• the satellite is modeled by a nonsymmetric ellipsoid subject to the gravitational attraction of a
pointmass star sitting on a focus of the Keplerian ellipse (“restricted model”);

• we assume that the satellite has fixed vertical spin axis coinciding with the shortest physical axis
(“no obliquity”);

• the dissipation is modeled by a linear dependence upon the angular velocity (and it is meant to
reflect the internal non-rigidity of the planet taking into account a time lag introduced by tides);

• the parameters η̄ and ν̄ are real-analytic functions of e while ε̄ is a measure of the oblateness
of the satellite (Section 2.5); in typical examples in the Solar system (such as Moon–Earth or
Mercury–Sun) ε̄ ∼ 10−4 and η̄ ∼ 10−8;

• the “Newtonian potential” f has the Fourier representation

f (x, t) = f (x, t;e) =
∑
j∈Z

j 
=0

α j cos(2x − jt), (4)

where α j are suitable real-analytic (nontrivial) functions of e; see Section 2.5 and Appendix A for
the analytic description.

We can now state our main results.

1 Indeed, from (2) it follows that x̃(t) := xpq(t) − p
q t is 2πq-periodic, and ξ is easily recognized as the limt→∞ 1

t

∫ t
0 x̃(s)ds.

2 In the Solar system there are, including our Moon, 23 moon’s observed in a 1 : 1 spin–orbit resonance and one planet
(Mercury) observed in 3 : 2 spin–orbit resonance.
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Theorem 1.2. Let p and q be positive coprime integers with q = 1, 2 or 4 and fix 0 < κ < 1. Then, there exist
ε̄0 > 0 and η̄0 > 0 such that for any 0 < ε̄ � ε̄0 and 0 � η̄ � η̄0 , the spin–orbit problem modeled by Eqs. (1),
(4) has periodic solutions xpq of type (p,q), provided

∣∣∣∣ν̄ − p

q

∣∣∣∣<
⎧⎪⎪⎨
⎪⎪⎩

2κ ε̄
η̄ |α2p| if q = 1,

2κ ε̄
η̄ |αp| if q = 2,

16κ ε̄2

η̄ |∑ j∈Z, j 
=0,p
αp− jα j

(p−2 j)2 | if q = 4.

(5)

Furthermore, representing the solution xpq as in (3), one has that u depends smoothly on ε̄ and |u| � c|ε̄| for
a suitable (ε̄-independent) constant c > 0.

The second result deals with the basins of attraction of stable (p,q)-orbits for low q.

Theorem 1.3. Let xpq be a (p,q)-periodic orbit of (1) as in Theorem 1.2 with q = 1,2. Assume that

θ0 := 1

2π

2π∫
0

fxx(ξ + pt,qt)dt > 0. (6)

There exist 0 < ε̄∗ � ε̄0 and 0 < η̄∗ � η̄0 and constants 0 < c̄1 � c̄2 such that if 0 < ε̄ � ε̄∗ , 0 � η̄ � η̄∗ and

η̄2 < ε̄ min{θ0,1}, (7)

then any solution x(t) with initial conditions sufficiently close to the initial conditions of xpq tends exponen-
tially fast to xpq(t); more precisely, if x(t) is a solution of (1) with

√
ε̄
∣∣x(0) − xpq(0)

∣∣+ ∣∣ẋ(0) − ẋpq(0)
∣∣� c̄1η̄ (8)

then

√
ε̄
∣∣x(t) − xpq(t)

∣∣+ ∣∣ẋ(t) − ẋpq(t)
∣∣� c̄2η̄e−η̄t/2, ∀t � 0. (9)

Let us make a few comments.

(i) Coexistence of low-period spin–orbit resonances.3

Condition (5) yields a quantitative relation between the various quantities entering (1) and the
integers (p,q) characterizing the periodic orbit. As it is evident, condition (5) may be satisfied by
several couples (p,q) provided the dissipation η̄ is smaller than the nonlinearity ε̄. For example,
considering the astronomical parameters of the Mercury–Sun spin–orbit model (i.e., e � 0.2056,
ε̄ = 10−4 and η̄ � ε̄2) one can show that (p,q)-periodic orbits with (p,q) = (1,1), (5,4), (3,2),
(2,1), (5,2) and (3,1) coexist; compare Appendix B. Furthermore, from Theorem 1.3 it follows
that, for q = 1,2, there are stable periodic orbits with a basin of attraction bounded below by
η̄/ε̄.

(ii) Quasi-periodic attractors.4

It can be shown [6] that (1) (with f real-analytic) admits, uniformly in η̄ ∈ [0,1], also quasi-
periodic solutions (attractors) x(t) = ωt + U (ωt, t), with U (θ, t) analytic on T

2 and ω Diophantine,

3 For model problems exhibiting many coexisting periodic attractors with low periods, see [9].
4 For general information on dissipative quasi-periodic attractors (nonuniform in the dissipation parameter) and their bifur-

cation analysis, see [3].
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provided ε̄ is small enough and the driving frequencies ν̄ is “finely tuned” with ω, i.e., it satisfies
the compatibility condition ν̄ = ω(1 + 〈U 2

θ 〉). At contrast with the coexistence of (p,q)-periodic
orbits (and with the conservative case), such quasi-periodic attractors, when they exist, are
unique.

(iii) On the Mercury–Sun model.
In [7] the spin–orbit problem (1), (4) has been numerically investigated with the scope of finding
stable resonances together with their basins of attraction. For several astronomically parameter
values, the occurrence of periodic and quasi-periodic attractors has been studied by a Monte
Carlo method on the initial conditions; the percentage of initial data, which evolve towards an
attractor has been computed and interpreted as a “basin-of-attraction measure,” providing, in
particular, a possible dynamical-system interpretation of the observed capture in the 3 : 2 spin–
orbit resonance of Mercury. Some of the results in [7] are reported in Appendix B and compared
with the theoretical predictions based upon Theorem 1.2 showing an excellent agreement.

(iv) On the proof of Theorem 1.2.
The proof of Theorem 1.2 (performed at the end of Section 2) is based upon a Lyapunov–Schmidt
decomposition5 of the functional equation satisfied by u in (3). Such functional equation can be
written in the form

Lu = Φξ (u),

where L is the linear operator ∂2
t + η̄∂t and Φξ is a nonlinear operator parameterized by the

phase ξ ∈ [0,2π ] (compare Section 2.1). The operator L has (on suitable function spaces) kernel
formed by the constants and range formed by periodic functions with zero average; splitting
accordingly the function spaces, one is led to consider the “range equation” and the “kernel (or
bifurcation) equation.” The range equation is easily solved, for ε̄ small, by standard contraction
mapping arguments, while the bifurcation equation reduces to an equation on R for the unknown
parameter ξ . Actually, in the spin–orbit problem, the most delicate step consists in solving the
bifurcation equation, which, in general is degenerate and requires higher-order analysis. In this
paper, for simplicity and for the relevance in the Mercury–Sun model, we discuss only the q = 1,2
case (corresponding to the nondegenerate case) and the q = 4 case (the first degenerate case).

(v) On the proof of Theorem 1.3.
The idea of the proof of Theorem 1.3 (performed in Section 3) is the following. Given a stable
(p,q)-periodic orbit xpq(t) = ξ + pt/q + u(t/q), for which condition (6) holds, one studies solu-
tions x(t) = xpq(t) + w(t) with |w(0)| + |ẇ(0)| small. Setting z(t) := e−αt w(t), with α = η̄q/2,
one sees that z satisfies

Lz = ε̄eαt Q
(
e−αt z

)
,

where L is a Hill’s operator of the form ∂2
t + V ε̄,η̄(t) with V ε̄,η̄ 2π -periodic (and depending

on xpq), while Q is a quadratic operator (i.e. |Q (v)| � const · |v|2). By standard Floquet theory
one can show that L is invertible, provided (7) holds and ε̄ > 0 is small. However, V ε̄,η̄(t) → 0
when ε̄ → 0 and the Hill’s operator L degenerates. So we have to perform a further analysis to
estimate the blow-up of L−1 for ε̄ > 0 close to zero (see Remark 3.3 and Lemma 3.4). Finally
simple a priori bounds show that (8) implies (9).

(vi) Developments.
Let us indicate a few possible developments and open problems.
• Extending the approach presented here, give lower bounds on the basins of attraction of the

quasi-periodic attractors found in [6]. At this respect, let us remark that, numerically, the basins
of attraction of quasi-periodic solutions appear to be much larger than those of periodic solu-
tions (compare [7]).

5 For a systematic usage of the Lyapunov–Schmidt decomposition in functional differential equations, see [1] and references
therein; for an earlier related approach to the study of periodic solutions in the Kepler problem, see [14].
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• Provide explicit conditions for the existence of (p,q)-periodic orbits for any q, showing, in
particular, that one recovers, for η̄ → 0, all the (p,q)-periodic solutions of the conservative
case.

• Discuss lower bounds on the basins of attraction for any q.
• Prove (or disprove) that for q = 1,2, the basin of attraction of a (p,q)-periodic orbit is actually

“large.”
• Discuss more general models (nonrestricted, nonplanar, obliquity, more general dissipa-

tions, . . . ).

2. Periodic orbits and spin–orbit resonances

2.1. Functional equation

Let p and q be positive coprime integers, then xpq(t) = ξ + pt/q + u(t/q) is a (p,q)-periodic orbit
of (1) if and only if u satisfies

u′′(t/q) + η̄q
(
u′(t/q) + p − ν̄q

)+ ε̄q2 fx
(
ξ + pt/q + u(t/q), t

)= 0. (10)

Setting

η := qη̄, ν := qν̄ − p, ε := q2ε̄, (11)

and replacing t with qt , (10) becomes

u′′(t) + η
(
u′(t) − ν

)+ ε fx
(
ξ + pt + u(t),qt

)= 0. (12)

We can rewrite Eq. (12) as follows. Let

{
Lu = Lηu := u′′ + ηu′,[
Φξ (u)

]
(t) := [Φξ (u;ην,ε, p,q)

]
(t) := ην − ε fx

(
ξ + pt + u(t),qt

)
.

(13)

Then, (12) is equivalent to

Lu = Φξ (u). (14)

Remark 2.1. (i) In Eq. (14), η,ν, ε, p,q are parameters, while the unknowns are the (2π -periodic with
zero average) function u and the “phase” ξ .

(ii) The nonlinear operator Φξ is 2π -periodic in ξ , therefore, from now on we shall consider
ξ ∈ [0,2π ].

(iii) The kernel and the range of the linear operator L are, roughly speaking, the constants and the
zero average functions, respectively.

2.2. Green operator

The linear operator L defined in (13) is invertible on the space of periodic functions with zero
average; here we describe its inverse operator G = L−1.

Let Ck
per be the Banach space of Ck(R) functions 2π -periodic endowed with the Ck-norm,6 let

Ck
per,0 be the closed subspace of Ck

per formed by functions with vanishing average over [0,2π ], and
denote

B := C0
per,0.

6 ‖v‖Ck :=∑0� j�k sup |D j v|.
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Fix η0 > 0. Let η ∈ [0, η0] and, for g ∈ B, define the linear “Green operator” G = Gη by7

(Gη g)(t) := xη + yη
1 − e−ηt

η
+

t∫
0

e−ητ

τ∫
0

eηs g(s)ds dτ (15)

= xη + yη
1 − e−ηt

η
+

t∫
0

1 − eη(s−t)

η
g(s)ds, (16)

with

xη := −yη
e−2πη − 1 + 2πη

2πη2
− 1

2πη2

2π∫
0

(
eη(s−2π) − 1 − η(s − 2π)

)
g(s)ds, (17)

yη := 1

e−2πη − 1

2π∫
0

(
1 − eη(s−2π)

)
g(s)ds = 1

e2πη − 1

2π∫
0

eηs g(s)ds. (18)

The operator G is a bounded linear isomorphism with inverse L; more precisely:

Lemma 2.2. Gη maps B = C0
per,0 onto C2

per,0; for any g ∈ C0
per,0 , u := Gη g satisfies Lηu = u′′ +

ηu′ = g. Furthermore, there exists a constant κ0 = κ0(η0) > 0 such that ‖u‖C2 � κ0‖g‖C0 , i.e., ‖Gη‖ :=
‖G‖L(B,C2

per,0) � κ0 , for all η � η0 .

The proof is elementary and is left to the reader.8

Remark 2.3. (i) The Green operator G has a very simple expression in Fourier series:

Gη

[∑
n 
=0

gneint
]

:=
∑
n 
=0

gn

n2 − iηn
eint . (19)

(ii) Solutions of (14) are recognized as fixed points of the operator Gη ◦ Φξ :

u = Gη ◦ Φξ (u), (20)

where ξ appear as a parameter.

2.3. Lyapunov–Schmidt decomposition

To solve Eq. (20), we shall perform a Lyapunov–Schmidt decomposition (compare Remark 2.1(iii)).
For p and q (positive coprime integers) and ξ ∈ [0,2π ], let

Φ̂ξ := Φ̂ξ (·; p,q) : C0
per → B = C0

per,0, (21)

where

7 The formulas for η = 0 have to be intended as the limit for η → 0.
8 The vanishing of the average of g together with the definition of yη guarantees that Gη g ∈ C2 and is periodic; the definition

of xη implies that 〈Gη g〉 = 0.
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[
Φ̂ξ (v)

]
(t) := 1

ε

[
Φξ (v) − 〈Φξ (v)

〉]
= − fx

(
ξ + pt + v(t),qt

)+ φv(ξ), (22)

with

φv(ξ) = φv(ξ ;ε, p,q) := 1

2π

2π∫
0

fx
(
ξ + pt + v(t; ξ),qt

)
dt. (23)

Then, Eq. (20) can be splitted into a “range equation”

u = εGη ◦ Φ̂ξ (u) (24)

(where u = u(·; ξ)) and a “kernel (or bifurcation) equation”

φu(ξ) = ην

ε
⇐⇒ 〈

Φξ

(
u(·; ξ)

)〉= 0. (25)

Remark 2.4. (i) If (u, ξ) ∈ B × [0,2π ] solves (24), (25), then, by Lemma 2.2, xpq(t) defined in (3)
solves (1).

(ii) ∀ξ ∈ [0,2π ], Φ̂ξ ∈ C1(B,B); moreover, ∀(u, ξ) ∈ B × [0,2π ],
∥∥Φ̂ξ (u)

∥∥
C0 � 2 sup

T2
| fx| � 2‖ f ‖C2 , ‖DuΦ̂ξ‖L(B,B) � 2 sup

T2
| fxx| � 2‖ f ‖C2 . (26)

The usual way to proceed to solve (24), (25) is the following:

1. for any ξ ∈ [0,2π ], find u = u(·; ξ) = u(·; ξ, ε) solving (24);
2. insert u = u(·, ξ) into the kernel equation (25) and determine ξ ∈ [0,2π ] so that (25) holds.

2.4. Perturbation theory

2.4.1. The range equation
For ε small the range equation is easily solved by standard contraction arguments.
Fix ξ ∈ [0,2π ], 0 < κ1 � 1 and let

{
Bκ1 := {v ∈ B: ‖v‖C0 � κ1

}
,

ϕ : v ∈ Bκ1 → ϕ(v) := εGη

(
Φ̂ξ (v)

)
.

(27)

As above η0 > 0 is fixed and 0 � η � η0.

Proposition 2.5. Let

κ2 := 2κ0‖ f ‖C2 , ε0 := κ1

2κ2
. (28)

Then, for |ε| � ε0 , the map ϕ in (27) maps Bκ1 into itself and is a contraction with Lipschitz constant |ε|κ2 �
ε0κ2 � 1/2:

∥∥ϕ(v) − ϕ(w)
∥∥

0 � |ε|κ2‖v − w‖C0 , ∀v, w ∈ Bκ1 . (29)
C
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Therefore, for every ξ ∈ [0,2π ], there exists a unique u := u(·; ξ) ∈ Bκ1 such that ϕ(u) = u. Furthermore,
u has the following representation:

u =
∞∑

k=1

ũk, with ‖ũk‖C0 �
(|ε|κ2

)k; (30)

in particular, for any |ε| � ε0 , one has

‖u‖C0 �
∞∑

k=1

‖ũk‖C0 � |ε|κ2

1 − |ε|κ2
� 2κ2|ε|. (31)

Proof. From Lemma 2.2 and (26) there follows at once that ϕ maps Bκ1 into itself and contracts as
in (29). Thus, from the contraction principle it follows that

v j := ϕ j(0) := ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
j times

(0) (32)

converges uniformly to the unique fixed point u. Furthermore, ‖v j − v j−1‖C0 � (|ε|κ2)
j , so that, set-

ting ũk := vk − vk−1, one obtains (30), which, in turn, implies immediately (31). �
Remark 2.6. (i) The solution u depends on the various parameters in a regular way: for example, if f
is C∞ then also u is C∞ in all its variables t, ε, ξ,η.

(ii) If f is real-analytic (as it is the case in the spin–orbit problem) also the fixed point u(·; ξ)

is real-analytic and from Proposition 2.5 and Cauchy integral formula for analytic function, it follows
that u =∑k�1 εkuk(t; ξ) (with uk independent of ε) and that uk satisfies ‖uk‖ � 2κ2ε

−k
0 , provided

the above sup-norms are taken on suitable complex domains.

2.4.2. The bifurcation equation
From now on f will be assumed to be sufficiently smooth so that, by Proposition 2.5 and Re-

mark 2.6, functions depend smoothly on ε; in particular, the solution u of the range equation (24)
has the form

u(t) = u(t; ξ, ε) = εu1(t; ξ) + ε2u2(t; ξ) + · · · , (33)

with

u1 := GηΦ̂ξ (0) = −Gη

(
fx(ξ + pt,qt) − 1

2π

2π∫
0

fx(ξ + pt,qt)dt

)
. (34)

Therefore, φu(ξ ;ε) in (23) can be written as

φ(ξ ;ε) := φu(ξ ;ε) = φ(0)(ξ) + εφ̃(1)(ξ, ε)

= φ(0)(ξ) + εφ(1)(ξ) + ε2φ̃(2)(ξ, ε), (35)

with



4354 L. Biasco, L. Chierchia / J. Differential Equations 246 (2009) 4345–4370
φ(0)(ξ) = φ(0)(ξ ; p,q) := 1

2π

2π∫
0

fx(ξ + pt,qt)dt, (36)

φ(1)(ξ) = φ(1)(ξ ; p,q) := 1

2π

2π∫
0

fxx(ξ + pt,qt)u1 dt (37)

and

sup
|ε|�ε0

ξ∈[0,2π ]

∣∣φ̃(i)
∣∣� Mi (38)

for suitable Mi > 0. We note that φ(0)(ξ) has zero average, being the derivative of a periodic function;
therefore if φ(0)(ξ) is constant, it must be identically zero.

The following alternative holds:

(i) ξ → φ(0)(ξ) is not identically zero (“nondegenerate case”), i.e.,

φ
(0)
− := min

ξ∈[0,2π ]φ
(0)(ξ) < max

ξ∈[0,2π ]φ
(0)(ξ) =: φ(0)

+ . (39)

(ii) ξ → φ(0)(ξ) is identically zero (“degenerate case”).

(i) In the nondegenerate case, fix

0 < δ <
(
φ

(0)
+ − φ

(0)
−
)
/2.

Then, if

|ε| � ε1 := min{ε0, δ/M1} (40)

one has that the range of φ contains the interval [φ(0)
− + δ,φ

(0)
+ − δ]. Thus, (by continuity of φ) for all

ην

ε
∈ [φ(0)

− + δ,φ
(0)
+ − δ

]
(41)

there exists ξ ∈ [0,2π ] solving the bifurcation equation.
(ii) In the degenerate case further assumptions, in general, are needed. For example, assume that

φ(1)(ξ) is not identically constant:

φ
(1)
− := min

ξ∈[0,2π ]φ
(1)(ξ) < max

ξ∈[0,2π ]φ
(1)(ξ) =: φ(1)

+ . (42)

As above, fix

0 < δ <
(
φ

(1)
+ − φ

(1)
−
)
/2,

and let

|ε| � ε2 := min{ε0, δ/M2}. (43)
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Then, one has that the range of φ contains the interval [ε(φ
(1)
− + δ), ε(φ

(1)
+ − δ)] so that for all

ην

ε
∈ [ε(φ(1)

− + δ
)
, ε
(
φ

(1)
+ − δ

)]
(44)

there exists ξ ∈ [0,2π ] solving the bifurcation equation.
We have proven the following

Proposition 2.7. Let ε0 and u (for |ε| � ε0) be as in Proposition 2.5; write φ(ξ ;ε) = φu(ξ ;ε, p,q) (defined
in (23)) in the form (35)–(38).

(i) Assume (39) and let |ε| � ε1 with ε1 as in (40). Then, there exists ξ ∈ [0,2π ] solving the bifurcation
equation (25) provided (41) holds.

(ii) Assume ξ → φ(0)(ξ) is identically zero and that (42) holds; let |ε| � ε2 with ε2 as in (43). Then, there
exists ξ ∈ [0,2π ] solving the bifurcation equation (25) provided (44) holds.

In either case, for the above ε, ξ , η and ν , the couple (u, ξ) solves (24)–(25), so that xpq(t) defined in (3)
solves (1).

Explicit examples of nondegenerate and degenerate situations will be discussed in the next section.

2.5. The bifurcation equation for the spin–orbit model

As briefly mentioned in Section 1, the (planar) dissipative spin–orbit system is governed by Eq. (1)
with parameters η̄, ν̄ , ε̄ and the potential f defined as follows:

⎧⎪⎪⎨
⎪⎪⎩

η̄ = KΩe, ν̄ = ν̄e, ε̄ = 3

2

B − A

C
,

f = f (x, t;e) := − 1

2ρe(t)3
cos
(
2x − 2fe(t)

)
,

(45)

where

• K � 0 is a physical constant depending on the internal (non-rigid) structure of the satellite;
• Ωe > 0, Ne > 0 and ν̄e > 1 are known functions of the eccentricity e ∈ [0,1) and are given by

Ωe :=
(

1 + 3e2 + 3

8
e4
)

1

(1 − e2)9/2
, (46)

Ne :=
(

1 + 15

2
e2 + 45

8
e4 + 5

16
e6
)

1

(1 − e2)6
,

ν̄e := Ne

Ωe
= 1 + 6e2 + 3

8
e4 + O

(
e6); (47)

• 0 < A < B < C are the principal moments of inertia of the satellite;
• ρe(t) and fe(t) are, respectively, the (normalized) orbital radius and the true anomaly of the

Keplerian motion, which (with suitable normalizations) are 2π -periodic function of time t . To
describe ρe and fe, let u = ue(t) (“eccentric anomaly”) be the 2π -periodic function obtained by
inverting

t = u − e sin u, (“Kepler’s equation”); (48)

then
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ρe(t) = 1 − e cos ue(t),

fe(t) = 2 arctan

(√
1 + e

1 − e
tan

ue(t)

2

)
. (49)

In fact, the potential f has a very particular Fourier expansion: it can be shown that (4) holds
with

α j = α j(e) := 1

2π

2π∫
0

cos(2f̃e − ju + e j sin u)

ρ̃2
e

du; (50)

for details see Appendix A.
To discuss the bifurcation equation for the spin–orbit problem, one needs to study the derivatives

of the spin–orbit potential evaluated along the unperturbed periodic orbit t → (ξ + pt,qt). We collect
a few elementary facts in the following

Lemma 2.8. For k ∈ N let

f (k)(ξ, t) = f (k)(ξ, t; p,q,e) := ∂k f

∂xk
(ξ + pt,qt) =:

∑
n∈Z

f (k)
n (ξ)eint; (51)

let, also,

m j = m j(p,q) := 2p − jq, J0 := { j ∈ Z: j 
= 0, m j = 0}, (52)

and denote by Fq the set of Fourier modes9 of f (k) . Then:

(i) f (2h) = (−4)h f (0) , f (2h+1) = (−4)h f (1) .

(ii)

{
m j 
= mk, ∀ j 
= k;
m j = −mk ⇔ q = 1,2 or 4, k = 4p

q − j.

(iii) 〈 f (1)(ξ, ·)〉 = −2 sin(2ξ)
∑

j∈ J0
α j .

(iv) Fq = {m j: j ∈ Z} if q = 1,2 or 4; Fq = {±m j: j ∈ Z \ {0}} if q 
= 1,2,4.
(v) If q = 4, then m j = −mp− j and

f (k)(ξ, t) =
∑
j∈Z

c(k)
j eim jt (53)

with

c(0)
j :=

⎧⎪⎨
⎪⎩

1
2 αpe−i2ξ ,
1
2 αpei2ξ ,
1
2 (α jei2ξ + αp− je−i2ξ ),

c(1)
j :=

⎧⎪⎨
⎪⎩

−iαpe−i2ξ if j = 0,

iαpei2ξ if j = p,

i(α jei2ξ − αp− je−i2ξ ) if j 
= 0, p.

(54)

Proof. (i) and (ii) follow immediately from the definitions in (4) and (52).

9 I.e., the set of integers n ∈ Z such that f (k)
n 
= 0.
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(iii) From (51) and (4) one has that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (0)(ξ, t) = 1

2

∑
j 
=0

(
α je

i2ξ eim jt + α je
−i2ξ e−im jt

)
,

f (1)(ξ, t) = i
∑
j 
=0

(
α je

i2ξ eim jt − α je
−i2ξ e−im jt

) (55)

so that (iii) follows immediately after integrating f (1) with respect to t .
(iv) follows from (ii) and (55).
(v) From (ii) one has that, since q = 4, m j−p = −m j . Hence, from Eq. (55) there follows10

f (0)(ξ, t) = 1

2

∑
j 
=0

(
α je

i2ξ eim jt + α je
−i2ξ e−im jt

)

= 1

2

∑
j 
=0

α je
i2ξ eim jt + 1

2

∑
j 
=p

αp− je
−i2ξ eim jt

=
∑
j∈Z

c(0)
j eim jt ,

and analogously for f (1) . �
If q = 1 or q = 2 the spin–orbit problem is nondegenerate in the sense of Section 2.4.2. In fact:

Proposition 2.9. The spin–orbit model is nondegenerate if and only if q = 1 or q = 2. Indeed, denoting
φ(0)(ξ) = φ(0)(ξ ; p,q), one has:

φ(0)(ξ ; p,q) =
{−2α2p sin(2ξ) if q = 1,

−2αp sin(2ξ) if q = 2,

0, ∀q � 3.

(56)

Proof. By definition, φ(0)(ξ ; p,q) = 〈 f (1)(ξ, ·)〉; thus, the claim follows from (iii) of Lemma 2.8 by
noticing that m j = 0 if and only if j = (2p)/q so that (since p and q are coprime)

J0 =
{ {2p} if q = 1,

{p} if q = 2,

∅ if q � 3,

(57)

from which (56) follows at once. �
Next result tells us when φ(1) is nonconstant.

Proposition 2.10. Let q � 3. Then ξ → φ(1)(ξ) = φ(1)(ξ ; p,q) is nonconstant if and only if q = 4, in which
case

φ(1)(ξ ; p,4) = ηa0 − 4 sin(4ξ)
∑

j∈Z

j 
=0,p

αp− jα j

4(p − 2 j)2 + η2
, (58)

10 In the second equality change the summation index j → j − p and use that m j−p = −m j ; for the third equality consider
separately the cases j = 0, j = p and j 
= 0, p.
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where

a0 := 2

p

α2
p

4p2 + η2
−
∑

j 
=0,p

α2
j − α2

p− j

(p − 2 j)(4(p − 2 j)2 + η2)
. (59)

Proof. Since q � 3, by (57), 〈 f (1)(ξ, ·)〉 = 0. Hence by (37), (33), (i) of Lemma 2.8 and (19) one has
that

φ(1)(ξ) = 〈 f (2)u1
〉= 4

〈
f (0)Gη f (1)

〉= 4
∑

0
=n∈Z

f (0)
−n f (1)

n

n2 − iηn
. (60)

Now, if q 
= 4, by (iv) of Lemma 2.8, Fq = {±m j: j 
= 0} and (55) represents the Fourier expansion
of f (k) . Thus,

φ(1)(ξ) = 4
∑
j 
=0

( f (0)
−m j

f (1)
m j

m2
j − iηm j

+ f (0)
m j

f (1)
−m j

m2
j + iηm j

)
= −4η

∑
j 
=0

α2
j

m3
j + η2m j

, (61)

proving that ξ → φ(1)(ξ) is constant for 4 
= q � 3.
Fix now q = 4. Then, by (60), point (v) of Lemma 2.8, one finds11

φ(1)(ξ) = 4
∑
j,k∈Z

c(0)

k c(1)
j

m2
j − iηm j

〈
ei(mk+m j)t

〉

= 4
∑

j

c(0)
p− jc

(1)
j

m2
j − iηm j

= 4
∑

j

Re

( c(0)
p− jc

(1)
j

m2
j − iηm j

)
.

Then, considering separately the cases j = 0, j = p and j 
= 0, p, one finds easily (58) and (59). �
Thanks to Propositions 2.7, 2.9 and 2.10 (recall (11)), we are now ready for the

Proof of Theorem 1.2. Define

βpq :=

⎧⎪⎨
⎪⎩

−2α2p if q = 1,

−2αp if q = 2,∑
j∈Z, j 
=0,p

αp− jα j

(p−2 j)2 if q = 4.

(62)

Then, for q = 1 and q = 2, the thesis follows at once by the definition of βpq , (56) and Proposition 2.7,
if one chooses δ < (1 − κ)|βpq| in (41).

In the case q = 4, define

β̃ := φ(1)(ξ ; p,4) − βp4

11 Recall, in particular (54) and notice also that c(k)
j = c(k)

p− j .
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and observe that, by (58), there exists c > 0 such that |β̃| � c|η̄| for |η̄| < η̄0. Then, again the thesis
follows from Proposition 2.7, by choosing, in (44), δ < (1 − κ)|βpq|/2 and letting η̄0 be so small that
cη̄0 < δ. �

In [7] the above dissipative spin–orbit problem is investigated from the numerical point of view,
with the purpose of detecting stable periodic orbits (“resonances”) together with their basins of at-
traction; a numerical evaluation of the normalized size of the basins of attraction, for different values
of the dissipation parameter, is then related to mechanism of “capture in resonance” in our Solar sys-
tem. The above Theorem 1.2 gives a theoretical prediction for periodic orbits to coexist (according to
whether condition (5) is satisfied or not): in Appendix B we compare the above theoretical predictions
with the experimental numerical results of [7], finding a rather striking agreement.

3. Local basins of attractions

In the previous section we have found 2πq-periodic solutions xpq(t) of (1) of the form (3) with u
2π -periodic, 〈u〉 = 0 and |u| � c|ε| for |ε| � ε0 (compare also Theorem 1.2).

In this section we discuss the basin of attraction of stable periodic orbit, giving an estimate on the
size of initial data which approach (exponentially fast) the periodic orbit.

For simplicity, we consider only the nondegenerate case and assume that ξ satisfies (6), i.e.,

θ0 = ∂ξφ
(0)(ξ ; p,q)t > 0

(so that the periodic orbit is elliptic). In the spin–orbit case, by Proposition 2.9,

θ0 =
{−4α2p cos(2ξ) if q = 1,

−4αp cos(2ξ) if q = 2,

and nondegenerate minima are in ξ = 0,π if α j > 0 or in ξ = π/2,3π/2 if α j < 0.
Therefore, we look at the behavior of solutions

x(t) = xpq(t) + w̃(t) (63)

of (1) with

∣∣x(0) − xpq(0)
∣∣+ q

∣∣ẋ(0) − ẋpq(0)
∣∣= ∣∣w̃(0)

∣∣+ q
∣∣ ˙̃w(0)

∣∣
small. Clearly, w̃(t) exists ∀t ∈ R and satisfies the differential equation

¨̃w + η̄ ˙̃w + ε̄ fx(x + w̃, t) − ε̄ fx(x, t) = 0.

Setting

w(t) := w̃(qt)

and replacing, as above, t with qt , we see that w satisfies

w ′′ + ηw ′ + ε fx(x̄ + w,qt) − ε fx(x̄,qt) = 0,

with η, ε defined in (11) and x̄ defined to be

x̄(t) := ξ + pt + u(t).
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To clarify the forthcoming analysis, let us give the following definitions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Q (w)

)
(t) := fx

(
x̄(t) + w(t),qt

)− fx
(
x̄(t),qt

)− fxx
(
x̄(t),qt

)
w(t),

θ = θ(ε) := 1

2π

2π∫
0

fxx
(
x̄(t),qt

)
dt

ε→0−→ θ0,

γ (t) := fxx
(
x̄(t),qt

)− θ,

α := η/2,

z(t) := eαt w(t),

Lz := z′′ + ((εθ − α2
)+ εγ (t)

)
z.

(64)

From such definitions there follows immediately that w and z satisfy the following differential equa-
tions {

w ′′ + ηw ′ + ε
(
θ + γ (t)

)
w + ε

(
Q (w)

)
(t) = 0,

Lz = −εeαt Q
(
e−αt z

)
.

(65)

Remark 3.1. (i) Q is a “quadratic operator,” i.e., there exists a constant c1 (depending only on f ) such
that

∣∣(Q (w)
)
(t)
∣∣� c1

∣∣w(t)
∣∣2, ∀t ∈ R. (66)

(ii) The function γ is 2π -periodic and 〈γ 〉 = 0.
(iii) The homogeneous equation associated to the nonlinear equation for z in (65) is

Lz = 0, (67)

which (in view of the preceding point (ii)) is a Hill’s equation.
Now, if c(t) and s(t) denote the (“fundamental”) solutions of (67) with initial data

c(0) = 1 = s′(0), c′(0) = 0 = s(0), (68)

as well known from classical Floquet theory, if the solutions ρ = ρ± of the characteristic equation

ρ2 − [c(2π) + s′(2π)
]
ρ + 1 = 0 (69)

are distinct, then Eq. (67) has two independent solutions of the form

z±(t) = e±iλt P±(t), (70)

where λ is such that e±iλ = ρ± and P± are 2π -periodic functions; see, e.g., Floquet’s theorem in [13, p. 4].
(iv) The inverse of the operator L is given by

(
G[h])(t) := s(t)

t∫
0

c(τ )h(τ )dt − c(t)

t∫
0

s(τ )h(τ )dt, (71)

i.e., x = G[h] is the unique solution of Lx = h with initial data x(0) = 0 = x′(0). Thus, the solution of
the equation Lz = h, z(0) = z0, z′(0) = v0 is given by z = zhom + G[h], where zhom is the solution of
the homogeneous equation Lzhom = 0 and initial data z0, v0.
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Indeed, in the case of the Hill’s operator (65), ρ+ 
= ρ− , provided certain smallness conditions are
satisfied. Let, in fact, suppose that η is so small that

η2

4
=: α2 <

1

4
εθ0 (72)

(which holds by (7)) and ε is so small that

1

2
θ0 � θ = θ(ε) � 2θ0, (73)

and let

2εθ0 � εθ � ω2 := εθ − α2 � 1

2
εθ � 1

4
εθ0, ω ≈ √

ε. (74)

Let also

g(t) := εω−2γ (t), (75)

so that g is 2π -periodic, 〈g〉 = 0, |g(t)| � 4|γ (t)|/θ0 ∀t ∈ R, and rewrite the operator L in (64) as

Lz = z′′ + ω2(1 + g(t)
)
z. (76)

Then, the following result holds:

Lemma 3.2. For ω > 0 small enough there exists 0 < δ = 1 − 2π2ω2 − O (ω4) < 1 such that the solutions
of the characteristic equation (69) associated to (67) are given by ρ± = δ ± i

√
1 − δ2 and, hence, are distinct.

Thus λ in (70) is real, λ = 2πω + O (ω3) and all solutions of (67) are bounded together with their derivatives.
Finally δ and λ smoothly depend on ω2 and ω respectively.

Proof. Let us first rewrite (67) as a system: define

T :=
(

0 1
0 0

)
, B(t) :=

(
0 0

−1 − g(t) 0

)
, A(t) := T + ω2 B(t).

Then, (67) is equivalent to the system

u′ = Au, with u :=
(

z

z′

)
. (77)

The fundamental solution of12 (77) is given by

U =
(

c s

c′ s′
)

with c and s solutions of (67) with initial data as in (68). Now expand U = U (t;ω2) (with t ∈ [0,2π ])
in power of ω2:

U
(
t;ω2)= U0(t) + U1(t)ω

2 + O
(
ω4).

12 I.e., the two-by-two matrix U (t) satisfying Cauchy problem U ′ = AU , U (0) = Id = identity matrix.
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Then, U0 solves

U ′
0 = T U0, U0(0) = Id,

i.e.,

U0(t) = eT t =
(

1 t
0 1

)
,

and U1 solves

U ′
1 = T U1 + BU0, U1(0) = 0,

i.e. (by the formula of “variation of constants”)

U1(t) = eT t

t∫
0

e−T s B(s)eT s ds =
(

1 t
0 1

) t∫
0

(
s + sg(s) s2 + s2 g(s)
−1 − g(s) −s − sg(s)

)
ds.

Thus, since 〈g〉 = 0,

U1(2π) =
(

1 2π
0 1

)(
a b

−2π −a

)
=
(

a − 4π2 b − 2πa
−2π −a

)

for suitable a,b ∈ R. In conclusion,

c(2π) + s′(2π) = Tr U (2π)

= Tr U0(2π) + ω2 Tr U1(2π) + O
(
ω4)

= 2 − 4π2ω2 + O
(
ω4)=: 2δ,

so that, if ω is small enough, then 0 < δ < 1 and the solutions of Eq. (69) are given by ρ± = δ ±
i
√

1 − δ2. Finally λ in (70) satisfies cosλ = δ, sin λ = √
1 − δ2, then it is real and has the asymptotic

behavior stated in the thesis. �
Remark 3.3. When ε = 0 (so that, by (72), η = α = 0) the Hill’s operator L degenerates becoming ∂tt .
The solutions of the characteristic equation (69) coincide ρ+ = ρ− = 1 and the corresponding solu-
tions of the homogeneous equation ∂tt z = 0 are not more bounded for t � 0.

The following lemma, whose proof is postponed in Section 3.1, describes the behavior of the fun-
damental solutions of the homogeneous equation (67) when ε approaches zero. We will use it in (84)
to estimate the inverse G of L.

Lemma 3.4. There exists c2 � 1 such that, for ε small enough, the fundamental solutions c and s of (67)–(68)
satisfy

∣∣c(t)∣∣,√ε
∣∣s(t)∣∣, ∣∣c′(t)∣∣/√ε,

∣∣s′(t)
∣∣� c2, ∀t � 0. (78)
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Let, now, z(t) be solution of (65) and let

a := z(0), b := z′(0), zhom(t) := ac(t) + bs(t), v := z − zhom. (79)

Then, by point (iv) of Remark 3.1, since Lz = Lv , v is seen to satisfy13

v = −εG
[
eαt Q

(
e−αt zhom + e−αt v

)]
. (80)

The main technical estimate is contained in the following lemma, which states that if the initial
data of z(t) are small enough, then v and its derivatives are small for all times.

Lemma 3.5. Let c3 := 1/(32c1c2
3) and c4 := 1/(16c1c2

2). If
√

ε|a|, |b| � c3α then

√
ε
∣∣v(t)

∣∣+ ∣∣v ′(t)
∣∣< c4α, ∀t � 0. (81)

Proof. By contradiction, let us suppose that there exists t̄ > 0 such that (81) holds for every 0 � t < t̄
but

√
ε
∣∣v(t̄)

∣∣+ ∣∣v ′(t)
∣∣= c4α. (82)

By hypothesis (78) and (79) ∣∣zhom(t)
∣∣� c4α/

√
ε, ∀t � 0.

By (66)

∣∣Q (e−αt zhom(t) + e−αt v(t)
)∣∣� c1e−2αt(∣∣zhom(t)

∣∣+ ∣∣v(t)
∣∣)2 � 4c1c4

2e−2αt α
2

ε
, ∀0 � t � t̄. (83)

By (78), (71) and (83) one has

√
ε
∣∣(G[h])(t)∣∣, ∣∣∣∣ d

dt

(
G[h])(t)∣∣∣∣� 2c2

2

t∫
0

∣∣h(τ )
∣∣dτ , ∀t � 0. (84)

By (82), (80) and (84)

c4α = √
ε
∣∣v(t̄)

∣∣+ ∣∣v ′(t̄)
∣∣

� 4c2
2ε

t̄∫
0

eατ
∣∣Q (e−ατ zhom(τ ) + e−ατ v(τ )

)∣∣dτ

� 16c1c2
2c4

2α2

t̄∫
0

e−ατ dτ

= c4α
2

t̄∫
0

e−ατ dτ

< c4α,

which is a contradiction. �
13 Note that, from (79), v(0) = v ′(0) = 0.
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We can proceed with the

Proof of Theorem 1.3. By (78), (79) and (81) we have that if

√
ε
∣∣z(0)

∣∣, ∣∣z′(0)
∣∣� c3α

then

√
ε
∣∣zhom(t)

∣∣+ ∣∣z′
hom(t)

∣∣� 2αc4, ∀t � 0,

so that, by Lemma 3.5,

√
ε
∣∣z(t)∣∣+ ∣∣z′(t)

∣∣� 3c4α, ∀t � 0.

Next, by (64) we get z(0) = w(0) and z′(0) = αw(0) + w ′(0), so that, assuming

√
ε
∣∣w(0)

∣∣, ∣∣w ′(0)
∣∣� c3α/2

one gets

√
ε
∣∣z(0)

∣∣, ∣∣z′(0)
∣∣� c3α,

provided α �
√

ε/2, namely (recall (11)) η̄ �
√

ε/q = √
ε̄, which holds by (7). Since, by (64)

√
ε
∣∣w(t)

∣∣+ ∣∣w ′(t)
∣∣� 2e−αt(√ε

∣∣z(t)∣∣+ ∣∣z′(t)
∣∣)� 6c4αe−αt, (85)

and since w(t/q) = w̃(t) and q ˙̃w(t) = w ′(t/q) we see that (85) (with t replaced by t/q) implies (9)
finishing the proof, choosing c̄1 = c3/2 and c̄2 = 6c4. �
3.1. Proof of Lemma 3.4

Note that ζ±(t) = e±iλt P±(t) solves (67) if and only if P± solves

P̈± ± i2λṖ± + λ2G P± = 0, (Eq±)

where G(t;λ) := λ−2ω2(1 + g) − 1 smoothly depends on the parameter λ; note that here we are
thinking ω as a smooth function of λ, inverting the expression λ = 2πω+ O (ω3) found in Lemma 3.2.
Note that by (74)

λ ≈ ω ≈ √
ε. (86)

Lemma 3.6. Let 0 < |λ| < 1/2. If P+ satisfies (Eq+) with Dirichlet boundary condition

P+(0) = P+(2π) = 1, (87)

then ζ+(t) := eiλt P+(t) and14 ζ−(t) := e−iλt P+(t) are two independent solutions of (67).

14 We denote by ζ the complex conjugated of ζ ∈ C.



L. Biasco, L. Chierchia / J. Differential Equations 246 (2009) 4345–4370 4365
Proof. Note that P+ and P+ satisfy (Eq+) and (Eq−) respectively, and, therefore, ζ± satisfy (67). Now
we prove that ζ± are independent. Indeed, if by contradiction ζ− ≡ cζ+ for some c ∈ C, then P+(t) =
cei2λt P+(t), ∀t ∈ [0,2π ]. Then for t = 0 we get 1 = P+(0) = c and, for t = 2π , 1 = P+(2π) = ei4πλ,
namely 2λ ∈ Z, which is impossible since 0 < |λ| < 1/2. �
Lemma 3.7. Let 0 < |λ| < 1/2. Let z±(t) = e±iλt P±(t), with P± 2π -periodic, be two independent solutions
of (67). If P+ : [0,2π ] → C solves (Eq+) and (87), then P+ and P− := P+ can be extended on R to two
2π -periodic solutions of (Eq±).

Proof. Let ζ±(t) := e±iλt P±(t). Since ζ±(t) solve (67) for t ∈ [0,2π ], there exist c±,d± ∈ C such that

P+(t) = c+ P+(t) + c−e−i2λt P−(t), P−(t) = d+ei2λt P+(t) + d− P−(t). (88)

Evaluating (88) for t = 0,2π and since P±(0) = P±(2π), we get

C+ + C− = 1, D+ + D− = 1, C+ + C−e−i4πλ = 1, D+ei4πλ + D− = 1, (89)

where C± := c± P±(0) and D± := d± P±(0). By (89) we have

C−
(
e−i4πλ − 1

)= 0, D+
(
ei4πλ − 1

)= 0.

Since 0 < |λ| < 1/2, e±i4πλ − 1 
= 0 and

C− = c− P−(0) = 0 = d+ P+(0) = D+.

Since z± are independent solutions, P+(0) and P−(0) cannot be both zero and, therefore, c−d+ = 0.
If, e.g., c− = 0 by (88) we get P+ = c+ P+; so that P+ and P− = P+ can be extended on R to two
2π -periodic solutions of (Eq±). Analogously if d+ = 0. �

A solution P+ : [0,2π ] → C of (Eq+) and (87) can be constructed, for example, as a fixed point of
P+ = Ψ (P+) where

[
Ψ (P+;λ)

]
(t) := 1 + λv0t − i2λ

t∫
0

(P+ − 1) − λ2

t∫
0

s∫
0

G P+ dξ dσ ,

v0(P+;λ) := i

π

2π∫
0

(P+ − 1) + λ

2π

2π∫
0

s∫
0

G P+ dξ dσ .

The map Ψ (P+;λ) smoothly depends on λ and will be a contraction for λ small enough (e.g. in
the space C1([0,2π ])). Then also the fixed point P+(t) = P+(t;λ) smoothly depends on λ and it is
simple to see that

P+(t;λ) = 1 + O
(
λ2), Ṗ+(t;λ) = O

(
λ2). (90)

By Lemma 3.2 λ is real. For λ small enough, by Floquet Theory (recall point (iii) of Remark 3.1)
and Lemma 3.7 we can extend P+ and P− := P+ on R to two 2π -periodic solutions of (Eq±). By
Lemma 3.6 ζ+(t) := eiλt P+(t) and ζ−(t) := e−iλt P−(t) are two independent solutions of (67).

The fundamental solutions c, s of (67) defined in (68) write

c(t) = c+ζ+(t) + c−ζ−(t), s(t) = s+ζ+(t) + s−ζ−(t), (91)
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for suitable c±, s± ∈ C. By (68) and (90) we get

c+ = 1

2
+ O (λ), c− = 1

2
+ O (λ), s+ = 1

i2λ
+ O (1), s+ = − 1

i2λ
+ O (1)

and by (91)

c(t;λ) = cos(λt) + O (λ), s(t;λ) = sin(λt)

λ
+ O (1). (92)

Then the estimates in (78) follow by (86).
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Appendix A. The Newtonian spin–orbit potential

In this appendix we discuss some classical facts about the spin–orbit potential f (x, t;e) defined in
(45)–(49), which are not so easy to find in the literature; see, however, A. Cayley [4].

(i) The first step in the definition of the potential f is the inversion of Kepler’s equation (48). From
standard contraction mapping arguments, it follows immediately, that, there exists a unique smooth
function

(t,e) ∈ R × [0,1) → Ue(t) ∈ R

such that, for any e ∈ [0,1), t → t + eUe(t) is the inverse function of the function u → u − e sin u, i.e.,
Ue verifies

Ue(t) = sin
(
t + eUe(t)

)
, ∀(t,e) ∈ R × [0,1).

Furthermore, Ue is 2π -periodic and odd in15 t.
In fact, Ue is real-analytic in (t,e), and, for t real, the smallest radius of convergence in e (which
depends on t) is r∗ = 0.6627434 . . . ; compare [16, §284].

(ii) From point (i), it follows immediately that the true anomaly fe(t) defined in (49) has the form

fe(t) = t + ef̌e(t)

with t → f̌e(t) 2π -periodic and odd in t (and with the same regularity properties of Ue).
(iii) From the above symmetry properties it follows that

G(t) = Ge(t) := exp(2ife(t))

ρe(t)3
=
∑
j∈Z

G j exp(i jt), with G j = G j(e) ∈ R.

Proof. By (i) and (ii) above, t → fe(t) is odd while t → ρe(t) = 1 − e cos ue(t) is even. Thus, for
t ∈ R, G(−t) = G(t) so that, by Fourier expansion,

15 This claim follows immediately since the map v → sin(t +ev) is a contraction with Lipschitz constant e from X := {v : R →
R continuous,2π-periodic and odd} into itself endowed with the sup-norm.
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∑
j∈Z

G j exp(−i jt) = G(−t) = G(t) =
∑
j∈Z

G j exp(−i jt),

showing that G j = G j . �
(iv) f (x, t;e) =∑ j∈Z

α j cos(2x − jt) with α j = G j ∈ R.

Proof. From the definition of f in (45)–(49), the definition of g in the preceding point and the
oddness of fe(t), it follows that

f (x, t) = Re
exp(i2(x − fe(t)))

ρe(t)3
= Re

exp(i2x)exp(fe(−t))

ρe(t)3

= Re
(
exp(i2x)G(−t)

)
= Re

(
exp(i2x)

∑
j∈Z

G j exp(−i jt)

)

= Re

(∑
j∈Z

G j exp
(
i(2x − jt)

))

=
∑
j∈Z

G j cos(2x − jt),

proving (iv). �
(v) α j = α j(e) = 1

2π

∫ 2π
0

cos(2f̃e− ju+e j sin u)

ρ̃2
e

du where

⎧⎨
⎩ f̃e = f̃e(u) := 2 arctan

(
ce tan

u

2

)
, ce :=

√
1 + e

1 − e
,

ρ̃e = ρ̃e(u) := 1 − e cos u.

Proof. By the parity properties of fe(t) and ρe(t), t → ρ−3
e sin(2fe − jt) is odd, hence

α j = G j := 1

2π

2π∫
0

G(t)exp(−i jt)dt

= 1

2π

π∫
−π

(
cos(2fe(t) − jt)

ρ3
e (t)

+ i
sin(2fe(t) − jt)

ρ3
e (t)

)
dt

= 1

2π

2π∫
0

cos(2fe(t) − jt)

ρ3
e (t)

dt. (A.1)

From Kepler’s equation (48), it follows that

u′
e(t) = 1

ρe(t)

so that, changing variable of integration from t to u = ue in (A.1) one gets16 (v). �
16 By (48), t = u − e sin u.
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(vi) α0(e) = 0.

Proof. From elementary trigonometry and the definition of ce, it follows that

cos(2f̃e) = 3e2 − 4e cos u + (2 − e2) cos(2u)

2(1 − e cos u)2
;

thus, changing variable of integration setting t = tan(u/2), after some algebra, one gets

α0 = 1

2π

2π∫
0

cos(2f̃e)du = 1

2π

π∫
−π

3e2 − 4e cos u + (2 − e2) cos(2u)

2(1 − e cos u)2
du

= (1 + a2
e)

2

2

∞∫
∞

(
1 + t2)a4

e − 6a2
et2 + t4

(a2
e + t2)4

dt,

where ae := 1/ce = √
(1 − e)/(1 + e) ∈ (0,1].

By residues, this latter integral vanishes. �
(vii) Points (iv), (v) and (vi) prove Eqs. (4)–(50).

Appendix B. Comparison with the numerical results of [7]

In [7] the spin–orbit problem described in Section 2.5 has been numerically investigated with
the scope of finding stable periodic orbits (resonances) together with their basins of attraction. In
synthesis, for several astronomically relevant parameter values, the occurrence of periodic and quasi-
periodic attractors has been studied by a Monte Carlo method on the initial conditions; the percentage
of initial data, which evolve towards an attractor has been computed and interpreted as a “basin-
of-attraction measure,” providing, in particular, a possible dynamical-system interpretation of the
observed capture in the 3 : 2 spin–orbit resonance of Mercury, which is the only planet or satellite of
the Solar system observed in such a state.

In particular, in [7], for the value of eccentricity e ∼ 0.2056 (which corresponds to observed ec-
centricity of the orbit of Mercury around the Sun), for17 ε̄ = 10−3 and for various value of the
dissipation18 K ranging from 10−3 up to K = 5 · 10−6, the results reported in Table 1 have been
obtained.

Now, by Theorem 1.2, in order to have a periodic orbit of type p/q condition (5) has to be satisfied.
Since κ is an arbitrary number smaller than one, for the purpose of the following (approximate)
computation, we shall take κ = 1. Thus, we define

T (p,q, K ) :=
⎧⎨
⎩

ε̄
η̄ |βpq| − |ν̄(e) − p

q | if q = 1,2,

ε̄2

η̄ 16|βpq| − |ν̄(e) − p
q | if q = 4,

(B.1)

so that T (p,q, K ) > 0 means that conditions (5) (with κ = 1) is satisfied while T (p,q, K ) < 0 means
that conditions (5) is not satisfied.

A (straightforward) numerical evaluation of T (p,q, K ) yields the results reported in Table 2.

17 Actually, the physical values fro the Sun–Mercury spin–orbit model are: e = 0.2056, ε̄ ∼ 10−4 and K ∼ 10−8 but such values
would lead to computations beyond the actual possibilities of computers.
18 Recall that dissipation constant K is related to η̄ by the equation η̄ = KΩe; compare (45).
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Table 1
Numerical results from [7]: on the top of the columns (starting from the second column) the type p/q of the 2πq-periodic orbit
is indicated and, below such value, the percentage of initial data corresponding to orbits approaching the p/q-orbit is reported;
each row corresponds to the dissipation value reported on the first column and the “complementary percentage”a correspond
to a seemingly quasi-periodic attractor with “irrational” frequency 1.256 . . . .

K 1/1 5/4 3/2 2/1 5/2 3/1

10−3 2% – 5.7% – – –
5 · 10−4 3.9% 1% 7.6% – – –
10−4 4.4% 6% 10.9% 1.8% – –
5 · 10−5 4.4% 7.7% 11.6% 3% 0.6% –
10−5 4.7% 8.4% 12.6% 2.9% 1.1% 0.5%
5 · 10−6 4.7% 6.8% 13.3% 2.7% 0.6% 0.3%

a I.e., 100 minus the sum of values in each row (i.e., 92.3% in the first row, 87.5% in the second, etc.).

Table 2
Numerical evaluation of T (p,q, K ) defined in (B.1). In the first row (starting from the second column) it is indicated the couple
(p,q) and below each couple, the value T (p,q, K ) is reported corresponding to the value of the dissipation constant K reported
in the first column.

K (1,1) (5,4) (3,2) (2,1) (5,2) (3,1)

10−3 1.05 0.0058 0.7 −0.27 −1.0 −1.67
5 · 10−4 2.35 0.017 1.65 0.19 −0.84 −1.59
10−4 12.81 0.11 9.24 3.92 0.75 −1.01
5 · 10−5 25.88 0.22 18.74 8.60 2.75 −0.28
10−5 130.46 1.16 94.69 45.99 18.76 5.55
5 · 10−6 261.17 2.33 189.62 92.72 38.77 12.86

Thus, one sees that there is an almost complete agreement between the numerical experiments of
[7] reported in Table 1 and the (numerical) evaluation of condition (5) (corresponding to a positive
value of T if (5) is satisfied and to a negative value of T otherwise); the only exception are given
by (p,q, K ) = (5,4,10−3), (p,q, K ) = (2,1,5 · 10−4) and (p,q, K ) = (3,1,5 · 10−5) where the periodic
orbits are “found” theoretically but not by numerical experiments (notice also in these three cases the
values of T is smaller than 1).
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