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1. INTRODUCTION

A natural approach to qualitative theory of nonlinear partial differential
equations “with a Hamiltonian structure” is to regard such PDE’s as
infinite dimensional conservative dynamical systems and to try to extend,
whenever possible, results and methods from the well developed finite
dimensional theory.

One of the basic results in finite dimensions is the existence, under
suitable assumptions, of maximal quasi-periodic solutions (see [A] and
references therein). These are solutions, which, up to a change of coor-
dinates, are described by a linear flow: ¢ — wt, with @ € R”, N = number of
degrees of freedom =4 dimension of the phase space (associated to the
Hamiltonian system under consideration).

Some generalizations to infinite dimensions of the existence of quasi-
periodic solutions have been studied by several authors; see, e.g., [FSW,
VB, Wa2, P, Ku, CW]. All these papers make use of quite stringent
“smallness assumptions” (a drawback already present in finite dimensions).

In this paper we study the following infinite dimensional “second order
Hamiltonian” system of equations on T~ (T = R/2nZ),

%i=filx), i€z xeT¥=7. (1.1)

where 7 is equipped with the weak topology and f is a (uniformly)
Lipschitz map from J to a suitable Banach space; the Hamiltonian struc-
ture comes from f being a generalized gradient (see below).

For such systems we will construct uncountably many almost-periodic
solutions under suitably analyticity assumptions on f but without requiring
any smallness condition. Such solutions will have the form

tox(t)={x(t)} e pen  with x,(0)= [t + u;([0])], (1.2)

where [ -] denotes the standard projection of R onto T, u is a smooth
function, and weR?" is a “Diophantine sequence” [ie. 3y>0 and a
isomorphism, i, from Z, onto Z“ such that, VN> 1, |[X7_ w,n,]17'<
yS_ In )Y, withm, eZ, Y7 |n,|>0]. Note that, as a consequence of
a classical number theoretical theorem by Liouville, {w;| = ¢ as |i| — oo.

For the construction of quasi-periodic solutions for the finite dimen-
sional situation, namely,

Y=V (x), xeTV (1.3)

we refer the reader to [A] (and references therein), [M1, M2, SZ, CC1,
CC2, and especially CZ].

505/116/1-12
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Our interest in a qualitative analysis of (1.1) has been motivated mainly
by: (i) regular motions for nearly integrable PDE’s with a Hamiltonian
structure; (ii) discrete approximations of, say, nonlinear wave equations in
R¢ (e.g., Sine-Gordon); (iii) many particle systems interacting via conser-
vative forces.

(1) Important examples of nonlinear PDE’s, such as the Korteweg—
de Vries equation and the nonlinear Schrodinger equation, fall in the class
of (infinite dimensional) integrable Hamiltonian systems (see, e.g., [AN]
and references therein). An integrable aspect of these equations (with
suitable boundary conditions) may be described, up to a change of coor-
dinates, by a linear flow ¢t — (w, ¢, ..., w1, ...) € T™, where the “frequencies”
w, ” 0 as i— oo (typically w,~ Ci* with k>1). Recently, [Ku], the
existence, for perturbation of the above models, of special solutions
described by a finite number of frequencies ¢ — (w't, .., w'yt) has been
established. The problem of the persistence (under small perturbations) of
solutions with infinitely many frequencies is open.

The model we study is not directly related to the above models but it
might be regarded as a model problem mimicking some of the basic features
coming into play: Hamiltonian structure, “compactness” of the configura-
tion space, regularity, “frequency growth.” We point out, however, that in
our model the frequencies associated to the constructed almost-periodic
solutions grow very rapidly as |i| — oo: Such a fast growth is related to the
Diophantine property and it is conceivable that relaxing this property one
could establish, for (1.1), the existence of almost-periodic solutions having
frequencies growing at “more interesting” rates (such as the polynomial
rate mentioned above).

(i1} It has been well known since Lagrange that the d~dimensional
wave equation can be derived as (a suitable) limit, as ¢ — 0, of harmonic
oscillators vibrating orthogonally to a lattice Z¢= {ne, ne Z} (see, e.g.,
[G]). Such a limit is not affected by replacing the harmonic potential
(X, 01— x)%2, ieZ?, by —cos(x,,,—x,;). For example, the so-called
Sine-Gordon equation on (a domain of) R

w,, = Aw + sin w, w=w(é 1), EeRY teR (1.4)

is obtained (in the small amplitude regime) as limit as ¢ - 0 of

#=¢ ? Y sin(x,—x,)+sinx, ieZ¢ (1.5)
1y l=1

if one sets, for £ RY, E=1ig, (ie Z9), and w(¢, 1) = x,(¢).
The finite approximation (1.5) is, for any fixed ¢>0, an example of
system (1.1) treatable with our techniques.



SECOND ORDER HAMILTONIAN EQUATIONS 175

We do not discuss here boundary conditions [and hence a proper
formulation of a problem associated to (1.4)].

(iii) Models of many particles interacting via conservative forces
provide natural concrete examples of systems (1.1). More precisely, one can
regard (1.1) as describing a system of infinitely many coupled rotators (ie.,
particles ideally constrained to move on “circles”) centered on the site
ie Z“ and interacting (“coupled”) via the “forces” f;; “conservative” means
that such forces are, in a suitable sense (see below), gradients of
“potentials.”

An example generalizing (1.5) is the following. Fix L>1 and consider,
for je Z“, a collection of functions g, depending on sites of the lattice within
(Euclidean) distance L from j; in formulae:

g=g,x*), xP={xicnuy,  BiL)=t{kilk—jI<L}.  (16)

We assume that the “localized potentials” g; are real-analytic functions
from T'#"Y" » R and that, for some positive M:

sup g, (x| < M. (1.7)
joxtbre TBL
Then we set
fi= é..8j (1.8)
bi- il <L

The system (1.1) with such f; is called a finite range system of infinitely
many coupled rotators (see also [Wal] and [VB]). Example (1.5) is
obtained by let§ing

d

g=¢ Y cos(x;,,, —X;)—cosx;, (1.9)
h=1

where ¢, =(1,0, .., 0), ..., e, =(0,..,0, 1).
An example, with 4=1, of “long range interaction” is given by (1.1)
with:

fi=cosx; Y a; [ (1+a,,sinx, ) Y la;) < 0. (1.10)

jed k%0 jeZ

We remark that to the above examples one could associate the formal
Hamiltonians

2
: Vi
Hshon(_v»x)zz 7""2 g; (111)
i i
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for (1.1) and (1.8), and

2
Vi .
Hiong(3: )= 2 5= [T+ acsin x;,.0) (112)
R

7

for (1.1) and (1.10); in fact, we can immediately check that the
Jormal Hamilton equations (associated to the formal symplectic form
> iczady; A dx;) yield (1.1). Rather than trying to give a precise meaning to
such formal objects, we shall use the notion of generalized gradients, which
shall allow us to treat directly the differential equations (1.1). Roughly
speaking, a generalized gradient is a vector field (i.e., a continuous map
from 7 to a suitable Banach space) such that when averaged (with respect
to the natural probability measure associated to J) over x; with j¢ I with
I a finite subset of Z¢, the function (of finite variables) thus obtained, is a
gradient of a periodic function.

The rest of the paper is organized as follows: In Section 2 we give a
precise notion of solutions of (1.1) for Lipschitz vector field (so that
existence and uniqueness for all time of the Cauchy problem trivially
follow); in Section3 we introduce the Hamiltonian structure via
generalized gradients; in Section 4 we define (maximal) almost-periodic
solutions and in Section 5 we define Diophantine sequences and prove their
abundance; Section 6 contains the statements of the main results; Section 7
is devoted to a finite dimensional “average theorem,” which allows us to
construct quasi-periodic solutions for a system over T"*! starting from a
quasi-periodic solution of a subsystem over T" obtained by averaging the
potential associated to the original (N + 1)-dimensional system: iterating
suitably one obtains the proof in infinite dimensions, which is spelled out
in Section 8. The average theorem of Section 7 is, in turn, based on tools
from perturbation theory (such as Kolmogorov-Arnold—-Moser theory,
Nash-Moser implicit function theorems, etc.): a short summary (with
complete proofs) of KAM theory is given in Appendix 2, while Appendix 1
contains a classical results concerning the full (Lebesgue) measure of
Diophantine vectors in RY.

2. SEcoND OrRDER ODE’s on T*

Denote by 7 the Cartesian product of infinitely many copies of the one
dimensional (flat) torus

T=® =T%,  T,=T=R2nZ (2.1)

iezd
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(d being a positive integer) and endow 7 with the standard weak topology
(see, e.g., [Ke]). Such topology is also induced by metrics: To any
summable positive sequence

w:Z%— (0, ) st. Y w,<w (w, >0 Vi), (2.2)
iezd
which we shall call a weight, we can associate a metric p, by setting,
Vx,ye 7 (x={xi},ca0 V=1{Viticzt» Xi» y:i€T),

pulx, y)= Z plx;, vi) w;, 23)

iez!
where p is the standard (flat) metricon T=T,:

o([a], [b]) = ing2 la—b+ 2nn|. 2.4)

Here a, be R and [ -] denote equivalence (mod 27) class.
We shall denote by 7, the pair (7, p..} and by #, the Banach space
formed by the sequences a € RZ having finite norm

lall,= Y, law;<o0. (25)

iezd

We can now give a precise meaning to second order ODE’s on 7,: Given
a continuous map f: 7, — @, consider the system

¥=fix), iez? (2.6)

where f,=mn,-f (n;: 7, — T, being the standard projection). A solution of
(2.6) is just a continuous map e R — x(t)e 7, with x,e C*(R), Vi, and
satisfying the system (2.6).

Remark 2.1. (i} In some sense the notion of solution we have just
introduced is a “weak notion.”

(it) Let f=0 and x(t1)= [wt] = {[w;1]},.z4- Then x(r) is a solution
for any we R?’ (not necessarily in #,). Note in particular that re R —
[e¢] €7, is continuous for any we R?". These facts are no longer true if
one considers stronger topologies; for example, if |w,] — 0 as |i| - oo,
[wt] is not continuous with respect to the uniform topology
[0 unitorm(X, ¥Y=sup, . 5« p(x;, ¥;)]1. Thus, our interest in solutions x(t) with
x,; “close” to w;r with {w,| = oo as [i| - o explains the choice of the com-
pact topology.

Global existence and uniqueness for the Cauchy problem associated to
(2.6}, with f Lipschitz, are an elementary application of standard contraction
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techniques (see [Pe]). We just stress that the “initial velocities” can be
taken to be completely arbitrary (and not necessarily in 4,.):

PrROPOSITION 2.2. Let f: 7, — B, be a Lipschitz map (ie., 3C>0 st
[L£(x) = fO)Il, < Cpodx, ¥), Vx, y € 7). Given any x° € 7, and any y° e R,
there exists a unique sofution, global in time, of the Cauchy problem

{-’\",-(t)=f}(~r(l))» iez!

X 0) =7, %,(0)= . (27)

The property of being Lipschitz depends of course on the metric, as shown
by example (1.10) of Section 1. In fact, consider two cases: (1) a,=b"",
b>1;(2) a,=(1+[jl”) "', p>1. Then, in case (1), fis Lipschitz if we take
w,=c¢ Y with any 1 <c<b, while in case (2) we can take w, =a,.

3. HAMILTONIAN STRUCTURE AND AVERAGES

In finite dimensions, the Hamiltonian (or Lagrangian) structure in
second order ODE's, ¥ = f(x), is expressed by the vector field f which is a
gradient, =3,V ; the Hamiltonian function is then H=1%— V(x) (and
the Lagrangian is L =1%?+ V(x); see [A] for generalities).

In infinite dimensions, one could require as well that f be a gradient of
a C(7,; R)-function. However, this attitude is much too restrictive as it
imposes strong decay properties (as |/| — oc) to the components f; of the
field and even the simple examples (1.8), (1.10) of the Introduction would
not fit in the picture. Indeed what one really needs is that fis a “local
gradient” (where “local” refers to localized portions of Z¢).

We shall therefore introduce the notion of generalized gradient (or
“g-gradient”), bringing in the local structure with the help of finite dimen-
sional projectors, which just average out the dependence upon variables x;
with i varying in the complementary of a finite subset of Z¢

To construct such operators, we introduce a probability measure on .7, :
Consider the g-algebra, #, generated by the “cylinders” (see, e.g., [Hal)

#=R AT, (3.1)
iel  j¢i

where 4, is an open subset of T, and I = Z¢ is a finite subset of Z¢: |I| < o
(1-| denoting here cardinality). Then there exists (see [Ha, Section 38]) a
unique (probability) measure u on # such that

w) =TT mi(4,), (3.2)

iel

where y, is the normalized “Lebesgue measure” on T,.
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Now, given any (not necessarily finite) subset  of Z¢, we can construct,
as above, a product measure p,;= @ ,_,dp, on ®, ., T, (endowed with the
topology induced by the metric p,=Y,_,p;). Then if J=1"=Z\I the
product measure du,® du, coincides with du and Fubini’s theorem holds.
Thus, to any bounded measurable function g on J we can naturally
associate a measurable function, g!’l, on ®,_, T, by setting (for
x,€&®,., T, du,-almost everywhere}:

g“]zfgdu,, J=7\I. (3.3)

If (1| <o, g1 is an honest measurable function on T, We can now
define g-gradients,

DerFINITION 3.1. A continuous function f: 7, — %, is a g-gradient if for
any finite /< Z¢ there exists a C'(T!"; R)-function, ¥‘/)(x), so that

S xy=0,VIx), Viel, VxeT! (34)

It is easy to check that the examples (1.8), (1.10} in Section ! are
g-gradients (see [Pe]).

We shall speak of second order Hamiltonian equations on J,, whenever
fin (2.6) is a g-gradient.

Let us conclude this section by introducing the (strong) regularity class
we shall work with.

DEfFINITION 3.2. A g-gradient [ is called uniformly weakly real-analytic
if there exists a real number ¢ > 0 such that for any finite set /< Z4, V(x)
is real-analytic on T'"! and can be analytically continued to the set
fzeCV:Imz,| <&}

Remark 3.3. (i) In fact we could deal with more general classes of
vector fields allowing the width of analyticity of ¥ to tend to zero as

|I| - o (the allowed rate of decay would then be dictated by the quan-
titative analysis carried out below).

(ii) Example (1.10) in Section 1 is uniformly weakly analytic and as
parameter ¢ one could take any positive number; example (1.8) is
uniformly weakly analytic for some (small enough) & > 0.

4. ALMOST-PERIODIC SOLUTIONS (DDEFINITIONS)

We start with the definition of maximal almost—periodic functions with
“rationally independent” frequency we R?",
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DEFINITION 4.1. A sequence we RZ’ is said to be rationally independent
if for any finite subset I of Z¢ and for any n,e Z

Y omn;#0 unless n,=0Viel (4.1)
iel
In other words, w is rationally independent if any finite vector '/’ =
{w;};c ;€ R is rationally independent.

DermNITION 4.2. A continuous real function ¢(7) is called almost-
periodic over 7, (with frequency ) if there exist a rationally independent
sequence we R?’ and a continuous function Q:7,.— R such that g(¢)=
QO([wt]). A solution x(¢) of (2.6) is called maximal almost-periodic if
x;(1)— [w;1] is, for all i, almost-periodic over .7, with frequency w.

Remark 4.3. (i) Recall [see Remark 2.1(i)] that r— [wt] is con-
tinuous Yo € RZ*
(ii) A function g almost-periodic over 7, is almost-periodic in the
sense of Bohr with frequency modulus given by

olg)= {re R:r=) wn,forsomelcZ% |l <o, ne Z} (4.2)
iel
(see [Kal).

(ii) The word “maximal” in the above definition refers to the
rationally independence of the frequency w. Indeed, one can consider quasi-
periodic solutions of (2.6): these are almost-periodic solutions with the
associated frequency modulus being generated by a fixed vector ¥’ e RY.
The existence of such solutions has been established in a somewhat
different context by [Wa2] and [Ku] (see also [P6)).

5. DIOPHANTINE SEQUENCES

Actually the almost-periodic solutions constructed below will have
frequencies w verifying much stronger numerical properties than just
being rationally independent: They will be Diophantine in the sense of the
following definition.

DEFINITION 5.1. A rationally independent sequence we RZ' is called
Diophantine if for any finite set /< Z¢, there exist constants y>0 and 1
(=11]) such that for any choice of n,e Z with ¥,_, [n,| >0 we have

Z wn;

iel

1
2'«

—_— 5.1
/(Ziel [n,1)° (>-1)
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It is well known that Diophantine vectors in R" form a set of full
Lebesgue measure (for completeness we reproduce this elementary result in
Appendix 1), but also in infinite dimensions Diophantine frequencies are
rather abundant. One can in fact construct many Diophantine sequences
with the help of the following Lemma (compare with Lemma 3 of [CZ]).

We recall that a vector w e R" is called (y, t)-Diophantine if

lw-nl >- YneZV\{0}, (5.2)

7 1"{13
N

where  -n denotes the standard scalar product in R" and || =3 | |1,

LeMMa 52. Let weR"Y be (y, N)-Diophantine; let Q be a positive
number satisfying

Q24N o) (mnEZ;@O (53)

i=1
and define the following subset of [£2, x0):

Ay=y(0, Q)= {az2Q o -n+ah| =Q/[2(n| + )V H'],
Vhe Z¥, VO£ heZ}. (5.4)

There exists a universal number K> 1 such that
([Q, )\ y) <Kol (5.5)

where [ denotes Lebesgue measure.

Remark 53. (i) Since by definition 2>2/y, [as |w|=|w, =7 ' by

(5.2)], (w, «) is (y, N+ 1)-Diophantine whenever x € .&/,.

(ii) From this, in particular, the above lemma tells us that given a
(y, N)-Diophantine vector o in R" (and almost all vectors in R" are
(7, N)-Diophantine for some y: see Appendix 1) we can pick « in
oy = [2, o) [whose complementary measure in [£2, oc) is of O(lw|)] so
that the vector (w, «) is (y, N+ 1)-Diophantine.

(iii) In the above statement and in its proof we could replace N with
any 7> N —1; however, to avoid introducing too many parameters we
consider only the case 1= N.

(iv) It is now easy to construct many Diophantine sequences. Fix
I,eZ% |I,l=N<o; pick a (y,, N)-Diophantine vector »'V'e RV (with
some 7,>0); and fix a one-to-one map, j,, from Z , onto Z“\I,. Now set
w,=0'™ Viel, and define o,, h>1, inductively as follows. Let
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Q, 54\/1/_\/ lo™] and choose w; in .oy ('), Q) so that, by the above
Lemma, o *"=(0"", w,) is (79, N+ 1)-Diophantine. Analogously,
given oMM =(0"™), ., w,)eRY*"  (y,, N+h)-Diophantine, we let
Q,=4 /N+h(jo™]+3}_ o)) and pick 0, €y, (@7, Q,). It
is clear that in this way one constructs many Diophantine sequences
satisfying (5.1) with y=y, and t=N+k where k=0 if /I<=/,, and
otherwise k =max{h: j,el}.

Proof of Lemma 5.2. For vectors in R™, we denote by | -|| the Euclidean
norm and by |:| the I-norm (sum of absolute values of components). Set
a=Q/2|w|), e=w/|w|, and let o, be the area of the unit-sphere
SY '={xeR":|x|=1}. Finally denote by n a generic vector in Z" and
by # a generic integer number and for a vector ye RY, let ¥ = (y,, ..., V'x)-
Now, first let N = 2; then

([£, ‘30)\\.,,%\,):[{0(29 Do -n+ahl < for some A %0}

2(In] + ()Y

w-n Q
< [Soaz2Q:{—
2. {“ 1 n +°“<2|h|(|n|+|h|)”*'}

n#F0 h#0
1 1
<20 ’El E Jox - (nfhy = Q72 W
1 1
A N T
20 hgl l I-{-reﬂ\?“’:lz«v\Zah N W—{Td%)—m
<20 hgl ;lz‘[".}'ER“:lnl;ahV/W; mw—lfi—lh—)‘—*_‘
= ’El %2(NHM JI}‘EN“‘VIJ*M%I: R Uil + H,‘:j"lll.+h)”H
Loy 127 dy |
Sk NS (1 @+ A= N
32 5
<2Qh§| %2(/\;) o 71J0 M(;Wdr
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where in the sum after the first inequality we have n#0 as Q> 2/y [see
Remark 5.3(i)]; in the fourth inequality we set By =x with B a unitary
matrix sending the vector (1,0, ..., 0) to e; in the sixth inequality we used

the assumption that 2 >4 o) \/N and we have taken:

N2
K529““2( ¥ h”z) sup {g—%t—‘} (5.6)

hz1

The case N =1 is just shorter. ||

6. MAIN RESULTS

THEOREM 6.1, Let f: .7, — A, be a uniformly weakly analytic g-gradient
(Definitions 3.1, 3.2). Then there exist uncountably many maximal almost-
periodic solutions of (2.6) (Definition 4.2) with Diophantine frequencies
(Definition 5.1).

This result is a simple corollary of the next more detailed theorem.
Recall that a non-degenerate (maximal ) quasi-periodic solution of
=V, (x), xeTWV (6.1)
with frequency w e R" is a solution of the form
x(Y={owt+u([wt])] (6.2)
for a suitable function u: TV — RV satisfying

det(ld 5 + uy(8)) #0, Yoe T, (6.3)

where Id is the identity (N x N )-matrix and (uy)u = 0g.uy, h k=1, .., N;
the word maximal refers to the maximal dimension of the frequency w.

Remark 6.2 (On quasi-periodic solutions). (i) To any quasi-periodic
solution with w rationally independent (ie., w-n=0 for some ne Z" =
n=0) one can associate an N-parameter family of solutions obtained by
“phase-translation™: for each 6 e T, x(1; 0) = [0 + wt + u([6 + wt])] is still
a solution (as the flow r — [w!] is dense in T%).

(i) From now on we shall often omit the projection [-] [see (1.2),
(2.4), and (1) of Remark 2.1] in the notation.

(i) Indeed, the above family corresponds to an invariant N-torus,
embedded in the phase-space R" x T", given by

TN={(y,x)eRYX T (y, x)=(0+ D, u(8), 0 +u(0)),0eT"}, (64)
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where D, =w-8,=3."_ w;d,,: the y-component is just the velocity vector
corresponding to the point x (as D,, corresponds to d/dt along the linear
flow 1 — 0 + wt). The non-degeneracy (6.3) of the solution (6.2) allows us
to see .7~ as a regular embedded torus in the ambient space RY x T*.

(iv) In view of the above observations it is clear that to find non-
degenerate quasi-periodic solutions of (6.1) is equivalent to finding solutions
of the following non-linear PDE on T":

D2u(0)=V (0 +u(0)),  min |det(Idy + u, | >0. (6.5)

el
(Just substitute (6.2) in (6.1) and use the rational independence of w to

replace wt with the generic point 8.) For investigations on {6.5) see [M2,
SZ, CC1, CC2, CZ].

THEOREM 6.3. Let f be as in Theorem 6.1 and assume that for some finite
Iy 74 the equation

.f“”:@vimV(O'(X(O')a X(O)ETNU’ NOE 'IO[ (66)

admits a (maximal) non-degenerate quasi-periodic solution with a (7, N,)-
Diophantine frequency vector w'™ e R™ [see (6.1)-(6.3) and (5.2)]. Then for
any ¢>0 there exist uncountably many maximal almost-periodic solutions,
x(1), of (2.6) with Diophantine frequencies »€R”" such that v, =w'" for
iely (lw;| = o0 as |il - o) and:

d’ o o
—[x;(H— x| <e  Jor iel,

oo ldi?
p=0.1 (67)
d”
fgg ;f—p[x,-(t)—w,l] <e¢ for ié¢l,.
p=01

The proof of the above theorems will be given in Section 8.

7. A (FINITE-DIMENSIONAL ) AVERAGE THEOREM

In this section we discuss a finite-dimensional problem, which may be of
some interest by itself, and whose solution will constitute the main step of
the proof of Theorem 6.3.

Roughly speaking the question is how to construct quasi-periodic solu-
tions for a (second order) Hamiltonian system on T™* ' if the existence of
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quasi-periodic solutions for a “subsystem” obtained from the original one
by averaging out some variables is known.

More precisely, let V: TY*' - R, (N> 1), be real-analytic and consider
the “Hamiltonian” equations:

=V (x), xeTN+i (7.1)

Also let V(x), xe T”, denote the “averaged potential”
_ 1 2=
P(x)=— j VX )dxy,,, X =(xnxy,)eT xT  (12)
2n 0

and consider the Hamiltonian equations in T" associated to ¥:
=V (x), xeTV (7.3)

Now assume that (7.3) admits a non-degenerate (maximal) quasi-periodic
solution

x =t +u(wt), weR", w: T > RY (7.4)

with o (y, N)-Diophantine and u real-analytic. The question is: Can one
find quasi-periodic solutions for (7.1) “close” (in some sense) to (7.4)?
The answer is positive provided the looked after quasi-periodic solutions
have frequencies w’' = (w, ) with a » |w| and suitable.
To formulate a precise and quantitative result, we need some notation.
Given N, M =1 and a function g: TY —» R* real-analytic on

4Y={0eC¥:|Im,| < i=1,., N} (73)

{this means that the components g,, for h=1, .., M, admit a holomorphic
extension to some open domain containing A’g’ 1 we set:

M

lgllay=ligh:= ). suplgul. (7.6)

h=1 a4}

Now let #?(C"), for pe N, be the space of linear maps from C" into
LrCY), (LUACY)=CY, LY CY)= L(CY)= (N x N)-matrices, ..). If
T: TV — #7(C") is real-analytic on 4} [this means that Ve, ., c,eC",
the function @ — (---((T¢,) c;) ---cx) is a real-analytic C¥-valued function
on 477 then we set (inductively):

N
1Ty =Tl = sup I Tel, (lc\sz jeul  for ce@”). (1.7)
ceCV h=1
jef=1
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Finally, observe that, without loss of generality, we can assume that u in
(7.4) has vanishing mean value over T™ (as we can replace u(8) with
c+u(c+0) with ¢ = — {u), (- denoting average over T%).

PROPOSITION 7.1. Let V:TV*' R be a real-analvtic function, let V be
as in (7.2) and assume that (1.3} admits a (maximal ) non-degenerate quasi-
periodic solution (7.4) with a (v, N)-Diophantine frequency vector w. Fix
O0<r<p<{, so that: (i) V is real-analytic on A} "', (ii) u is real-analytic
on AY, (ili) {0 +u(0):0e4) <47, and (iv):

dy+ épul, = U, Idy +&uu) ', =U<x. (7.8)
Finally fix 0<r' <r and let  be such that

Qzmax{4 /N |wl,y '8

FT=C(N+ )10 280V g Iogsg3(y — ) DN+ DFT(E gy !
i (7.9)

5
p= ax (L2100 Vg

p=123

where C>1 is a suitable universal constant. Then for any o€ ofy(w, 2)
[see (5.4)] there exists a (maximal) quasi-periodic solution of (7.1), x' =
W't +u'(w't), with o =(w, a) and u': TV ' 5> RY*! real-analytic on AX Y,
Furthermore {u'> =0 and.

3
O +u(0):0 ey Yot pr=pr—s
(0" +u(0):0' €Ay ca] p=pt g <o

max |82 — (u,0)]], <8(yR) 2 (7.10)
p=01

1D, (1~ (1, 0) ], < o(yR2) ',

, _ N
where D, =w'-0p =30 | w, 0y +ady, .

In the following we will not need the explicit (certainly not optimal)
"dependence upon N given in (7.9); nevertheless, we shall pay some atten-
tion to constants for the sake of concreteness and also because it may help
the reader to keep track of the various estimates.

The proof is based on a result a la Nash-Moser from KAM theory
which guarantees the existence of solutions of the equation (6.5) provided
the frequency vector @ is Diophantine and provided one can find a “good
enough approximate solution™:
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LemMma 7.2, Let: E<y<éy<l, V:TY - R be a real-analytic function
on A%, v: TV >R" be real-analytic on A7 and such that {0+ v(0):

€4’} c A”o, we RY be a (y, N)-Diophantine vector; finally let also

||IdA~'+Uﬁ”:E’7’ I(Idy + vy) ]”

il

N

TSE
B

it

P ID%— V. (0 +v)l =6 max L2105V s
p=1 2

(D=D,=w 0y). Fix 0< & <& There exists a universal constant B> 1
such that if

BN!* 2% O B(& — &) PV (& — &) e (7.12)

then there exists a function w: T — RY, real-analytic on A7, which is
solution of

D*u=V (0+u), lud=<{v). (7.13)
Furthermore the estimates

IMdy +ugle<2n, [(dy+uy) 'l <27
(7.14)
max {hegu—ov)le, y? ID(u—v)lls} < Ae

p=
¢=0,1.2

hold, where A = BN142%¥p 1008 B(& — &)~ 8N,

One can actually show that the above solution u is “locally” unique (see
[CC2]).

This lemma is a refinement of Lemma 6 of [CC1] (see also [M2, SZ,
CC21]); the main difference is that we need here to leave the width of the
domain of analyticity of the solution u as a free parameter (while in [CC1]
it was fixed to be half of ¢). Rather than indicating the (tiny but dense)
adjustments to the proof in [CC1] we present a complete (and short)
proof in Appendix 2.

Proof of Proposition 7.1.  We shall use Lemma 7.2 [with N, w replaced
by, respectively, N+ 1, "= (w, 2)]: We shall construct an approximate
solution v so that the “error function” e=D2.v — V. (8’ +v) has norm
bounded by O(1/2%) when o' =(w, a), ae.@(w, Q) with Q chosen so
large (7.9) that the condition (7.12) is satisfied.

We start by observing that the average over T¥*! of the vector-valued
function

WO)=V (0+uby,,) 0=(00y,)eT"<xT (715
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is zero; in fact (W, , > =0 because
j* 8o V(O+10y,,)d0y, =0 (7.16)
0

while the average of the first N component of W are given by
(X=(x,xy, )eT*xT and 0'=(0,0,,,)eT¥xT):

do’ - do
.[g N+l ax V(o t 0N+]) (27I)N+ = J“JN a'( V(G * u) (27’[)"’\?
, do
=L~Dw”(0) 2o (717)

Now, denoting, for a function G with (G > =0, D ?G the unique solution
with zero average of D’g =G, we set

W, o
n em -0, (718)

v(0) =D, W)= - 2 (@-ntah)

n'=(n hyez"
n' #0
where W, denote Fourier coefficients [and recall that ' = (w, 2) with a
fixed a € .9/ (w, 2)]. Note that, because u satisfies D2 u= V(6 + u), v can be
written in the form

Wn !

v= — A —
weZ¥nwo (@1 +ah)?

e 4 (1, 0) =7+ (1, 0) (7.19)

and therefore

e=D oV (0 +v)=V . (O0+uby, )— V. ((0+u,8y,,)+D). (7.20)

@

Next, we estimate &, v and e on AY*! for any r’ <7 < r. The hypothesis (iii)
of Proposition 7.1 and the analyticity assumptions yield:

W<V e leg= IW [ <MV ellge M (7.21)

Then, by (7.19), the definition of «7,, and (A2.3) we obtain (p=0, 1, ...):

”("?Z’ﬁ“isél “Zzus‘o Z |n/|2lN+|)+pe'~1n’l(rfr)
negNt!1

, Vol
<43A‘+4+n “ (Szum [2(N+ 1)+P]! (r_':) (3N+3+P). (722)
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Next we have to evaluate the norms #, 77 in the text of Lemma 7.2. It is easy
to check that:

ns U+ 18,10, A< U1 =0 |é,d),) (7.23)
Note also that, since

(0 +0:0ed¥  yaahs) (7.24)

o+ (el

we can take (in applying Lemma 7.2) the parameter &, =p + {|7],. Now,
choosing 7= (r +r')/2 we easily obtain, for p=0, 1, the bounds [recall the
definition of f in (7.9) and see (7.20)]

165.81,<8(;2)°%  e=y7llell, < BS(;2) 2 (7.25)
with
S=2NY QN3N Blr—r) ONFY, (7.26)

From & < (y2), [see (7.9)], it then follows that [recall that U, U > 1 while
¢o<1; and again p=0, 1]

) - _

leesl, < (v9)2<€02 £ p<2u, i<20 (7.27)
We are now in a position to apply Lemma 7.2 with E=rF=(r+r')/2,
Eo=p+IDl:<(p+E&)2, &=r', and N replaced by (N +1) and u by u":
using the above estimates [and bounding (2N + 3)! by a constant times
23¥(N 4 1)!1?] we see that the condition (7.12) in Lemma 7.2 is implied (for
a suitable C> B) by 8%(y22) ?< 1, which is verified because of our choice
of ©: In fact, by (7.14), (7.27), (7.25) it is

62
Ass—z—(vQ)“"‘(éo—p)E (9) ? (7.28)

and condition (7.12) reads just Ae(&,— p) ' < 1. Furthermore we see that

{0 +ui0ed? Y edlli W) [§pap=4)"" (7.29)
[recall (7. 14) (7.24), (7.25), and the definition of & in (7.10)], where we
used & < 82 (£~ p)/2=6/2; the fact that p’ <&, [see (7.10)] follows from
8yQ)- 2<_1 and from the first of (7.27). Now, for p=0, 1, using (7.14),
(7.28) and 8 < 9/2, we get

S b
105 ' — (u, OPI, = 105" —v+ D), < A6+(Q) o (7.30)

505:116/1-13
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Finally, mimicking the bounds (7.21)-(7.25), one obtains

”Dtu'ﬁnrgﬂl"i ! (73])

&l

7

thus, by (7.14), (7.30), and [see (7.9)] using 3(y2) '< 1, 6<6/2, the
bound on || D, (¢ — (u, 0))|| also follows easily. J

8. PrROOF OF EXISTENCE OF ALMOST-PERIODIC SOLUTIONS

Here we prove Theorem 6.3. Theorem 6.1 follows immediately from
Theorem 6.3 and from Corollary A2.4 (see Appendix 2).

Proof of Theorem 6.3. The idea is to use iteratively the results of
Section 7 to construct quasi-periodic solutions for larger and larger sub-
systems and to obtain, in the limit, almost periodic-solutions.

By hypothesis we are given a real-analytic quasi-periodic solution
y(ty= ot 4+ uP(w%t) of the subsystem

p=ViGp), o yeTY  Ny=|l, (8.1)

the frequency vector w'®’ being (7, Ny)-Diophantine.

Thus calling &, the analyticity parameter associated to the field f (see
Definition 3.2), we can assume that there exist 0 < r, < p, < &, so that u'®
is real-analytic on 4 and such that

(09 4 uO(B0); 00 e 4%} < AZ: 652)
[11d y, + g™ Ww=Uo,  (Idy, + dgoru'”) 1”,(, =U, < 0.

For concreteness we shall fix py = ¢£,,/2 (and take r, small enough; note that
&, is a fixed parameter which shall not change in the iteration).

In the following construction there is quite a bit of freedom (whence
comes the uncountability of the solutions) as the extra frequencies w;, i ¢ I,
will be arbitrarily chosen in sets of positive measure. There is also some
(less substantial) freedom in the order of “invading” Z¢. More precisely, fix
(arbitrarily) a one-to-one and onto map, keZ, — j, e Z“\I,, and set,
recursively, for k=1,

Li=1 19 Uk (8.3)
so that

L <l |L|=Ny+k=N, I ~Z¢ (8.4)
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We shall use the following notations. Denote by (x|, .., Xy,) coordinates
for ®,., T, and by x,, the coordinate associated to T,. Then set, for
k=0:

V) = V““, ’C(k’_(’fl, ..,,‘CM)ETN“
(8.5)
Be= max {17310V ™,,)
p=1 3

The (k+1)th step will consist in constructing non-degenerate quasi-
periodic solutions with ¥+ T+ » R™: 1 and frequency w* * 1 e RN+
of the form (™', o, ) with %, € oy (0, 2,) for suitable 2, » Q, _,

Note that the functions V%) are defined up to an additive constant
which we shall choose so that, for all k = 0:

V(kl:_‘_jln V'k*”d\’» EV“‘*”:TM—)R. (8.6)
27{ ¢ ks
Next, we fix the sequence r, measuring the analyticity domains of the u'*'’s

(recall that, in Proposition 7.1, »' is any number between zero and r): Also
here the choice is rather arbitrary as the only requirement is that
ro > r, >0. We shall take

1 oL 1 —1
rk_ro(l—yz > uE(ZZ }z_‘) R (8.7)

h=1 h=1

where v> 1 is a prefixed number (thus r, = ry/2).

Now, imagine that u®’, (k=0), is given together with w'*'e R, that
u'*" is real-analytic on 4%, that '*’is (y, N,)-Diophantine and denote N,
Upr Ui, pis 04,y 04, B the (obviously) corresponding objects (see Proposi-

tion 7.1; note that C, y, &, remain fixed in the construction). Finally, let, for

0<U<3\/'/7r [221:>1 4] ]2
kamax{ \/——1 6 (1+k)} (8.8)

and choose

9‘k6-9/;<5[-QkaQk'*'K'wk']n'd.m(wstk) (8.9)

(recall from (5.5) that </, has positive Lebesgue measure). From (8.8) it
follows that

Oy ( 3, >2 3 Ok n’
= —£) (&g —pe) < ——<0—. (8.10)
ké[) (,ygk)Z ké() }'Qk ¢ “ k=0 ’)'Qk 6
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Under the above positions, Proposition 7.1 guarantees the existence of a
non-degenerate quasi-periodic solution with w1 RVt TV (i
Proposition 7.1 we set u=u*, w=u**", r=r,, r'=r,,.,, etc.) and
Wy 51 = (W, 2, ); note in fact that the first of (8.10) implies that (recall that
po=2Eo/2):

Oy o
ph.spw(}gk) <G+ <o’ El 1«1\50’ Vk. (8.11)

Now, if we denote by L either the identity operator, dgu-n, [8% "=
(6,,..,0x, )1 oryD,, , then the bounds in (7.10) and (8.10) yield:

k
SULu @+ 3 L@ = @™, 00,

(7275
h=0
<L+ Y.
k20 /Ql«
2
<ILu®|,, +o s (8.12)

This bound implies, in particular, that, for any 4> 0,

lim sup [L[u™*% —(u'®), 0,..0)]=0 (8.13)

koo TNk
hnmes

(recall that lal =¥ 7_, la,| for ae RY). Thus we can define two functions,
u, Du, on 7, as the uniform limits of, respectively, u*’, D, u*": here Du
is just a symbol for a function and D must not be interpreted as a differen-
tial operator. The functions «, Du are continuous from 7, into %, for any
weight w. In fact, if 8, .7, converges (in the metric p,) to 0, and if &
denotes here either v or Du, letting w denote sup, w;, we see that

1
}—I‘ Z |171(9h)_ﬁi(9)! W, < Z [i;(0,)—i,(6)
iezZ¥

ie 74

< X 1ad0,) = a(0,)l + 3 1a(0,) —a"(0)]

iezd i€l

+ Y a6y —a9)l, (8.14)

iez7d
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a quantity that can be made as small as we please by taking, first, k large
enough [recall (8.13)] and, then, considering 4 large enough. Define also,
for each ie Z7 a function D%y, as:

D (8)= f,(0+u(6)), OeT,. (8.15)

As above D?u; is just a symbol for a new function; note that the functions
D?u, are continuous from 7, into R (but we do not consider the vector-
valued function {D%;},_,.). Finally define, for any 8¢ 7,

x(O)=x(1;0)=[0+ wr +u([0+wt])], (8.16)
where
', iel,
w;={ "' o 8.17
{a)jk:aln i=j ¢l ( )

From the above construction follow immediately the following facts:

d d? 2 .
E,\,(t)za),+ Du,([0+ wt]), Et—z,\,(t)zD u,([0+wt]); (8.18)

(i)
(ii) x(z; ) is a solution of (2.6); and (iii) denoting, for iel,, x\°(s;0) =
0, + 0@t + 10" + 1) [see (7.10), (8.12), (8.14)]:

i

ar . A0t 0 n’ el
fug ;l;;(x,-(t,e)—.’«.» (1;0)) <o iely
7= (8.19)
P 712 )
?:‘g E,;(xi(tie)_w,‘f)‘QO'—g, i¢l.
p=01

The proof of Theorem 6.3 is completed by taking o =min{6e/n’,
35 1

Remark 8.1. (i) The above estimates imply that (choosing v in (8.7)
close enough to 1) 2, > (ey) ™' k!°, for all k big enough (the exponent 9
comes from the fact that yQ, > 6,(1 + k)*/6 > 6,£~ ', from the 6th power of
the factorial in (7.9) and from the factor (r — ") " [HOVED+IT L prtivy T is
also easy to see that, for the examples (1.5) and (1.10) discussed in
Section 1, it holds the upper bound €, <(ey)~'b*k!® for a suitable
constant b (depending also on x'°(¢); see [Pe]); thus, in such examples

(ey) kP <w,,  <(ey) ' bk (8.20)
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for k large enough and for a suitable constant b (recall that £>0 is
arbitrary). As already noted, this fast growth is intimately related to the
property of w of being a Diophantine sequence; (obviously) 9 is far from
optimal.

(i1) The regularity properties of the almost-periodic solutions, x(r),
constructed above are much stronger than just being continuous and
having C?(R) components x,(¢) (such properties are best reflected by the
approximations via the real-analytic functions «'*’). Note, however, that
x,(t) is not C3.

APPENDIX 1. FULL MEASURE OF DIOPHANTINE VECTORS IN R

Let &, denote the set of vectors w in R" which are (7, 7)-Diophantine
[see (5.3)] for some 7 >0 and let / be Lebesgue measure.

ProrosiTioN Al L. (R 2,)=0 provided t > N — 1.
Proof. 1t is enough to check that &, .=/{w: |w| <R, w¢ %} has
Lebesgue measure zero for any R > 0. Now, if

Cg. {w lwll <R and I0#£neZ”: |w- n| <—— P } (Al.1)

(recall that | -| is the Euclidean norm in R™ while |-| is the sum of absolute
values), then &, .= =M., . and the claim follows from the estimate

>()

(Cr,)< Y l({w: ol € R, |w-n| <- llnlr})
j

n#0
b N Ol bqRN i
< 'RI <=2 , (A1.2)
weo V1Al nl ¥
where b,, b, are suitable (N, t-dependent) positive constants. ||
APPENDIX 2. A SHORT KAM THEORY
Here we want to prove in all details Lemma 7.2.
As usual, for vectors in C" (or R or Z") we denote by |-|| the
Euclidean norm and by |-] the 1-norm (sum of absolute values of com-

ponents); recall also the definition of norms of analytic functions given in
Section 7 [(7.5)-(7.7}].
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We start with a basic (elementary) tool (a “Cauchy estimate™):

LEMMA A2.1. Let g be an analytic function from @< C»—->C (0%
smooth). Then for any subdomain &' < & with é = dist(%', 02) > 0 and any
neN"Y, one has:

@(rrlg
G gy

o N

<lnfto~"lgl,. (A21)

lcZgl, =sup
e

If g is analytic from & into L(CY), peN, then for any qeZ,,
dlge PTYCY) and

lotegll, <q'é “ligl,. (A2.2)

The proof is a straightforward exercise based upon Cauchy’s integral
formula using the contour |{, —z,| =6, h=1,..,N (ze %' fixed and {e ¥
variable of integration. The exercise is carried out, ¢.g., in [CC2]).

As an application of Lemma A2.1 we prove a useful bound. If re (0, 1),
peN and NeZ,, one has:

4\PHN
INr)= Y, In|fe "M p! (;) . (A2.3)

nez®

Proof of (A2.3). For any r>0

r N
Nao(—_1)a” srlnl (1P AP f)i =(—-1V Q07 N
IV=(—1) 6'.,Ezz~( (—1) 5'(6'-1 =(=1)" 37 E(r)".

(A2.4)

Now, the function g(x)=(—1)" E(x)" is analytic and bounded in
B, (r)={xeC:|x—r|<r—s}, for any 0 <s<r. Applying Lemma A2.1
with &'=B,(r) (0<e<r-—s arbitrary), =B, (r) and noting that
WE|. = E(s)<1+2/s, one gets:

N ’ p! 2\
2p<’|axglla,,m<m<l+; . (A2.5)

Inequality (A2.3) follows by taking s=2r and using the arbitrariness
ofe. |

An immediate consequence of this bound is:
LEMMA A22. Let peN; N, MecZ, and consider a function g: T" —

LP(CM) with zero average and analytic on 47 for some {<1. Let we RY
be a (y, N)-Diophantine vector and denote by D ~'g the unique solution with
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zero average of the equation Df=g (D=Y)_, w,3d,). Then, for any
0<d <& one has:

1D gl s<y2*"N16 Vgl (A2.6)
Remark A2.4. RiiBmann [Rii] obtains (with a much more subtle
proof) N as an exponent of § ',

Proof.  Using the standard bound on the Fourier coefficients of analytic
functions, |g,| < |gll;e ", by definition of (7, N)-Diophantine and by
(A2.3) one sees that:

— 3 |n
_ En iz - )
1D gl 5= ‘ ——e" <lgl:
° ‘néo - n ;-0 ng() |0)n|
<yllelle X InlYe PPy gl 2NN | (A2T)

n#0

Lemma 7.2 has an immediate corollary, which has been used in deriving
Theorem 6.1 from Theorem 6.3:

CoOROLLARY A24. Let V be as in Lemuna 7.2 and let w, be a (y, N)-
Diophantine vector. There exists a 0 < py, <1 such that, for any 0 < u < pg,

2

the equation D u =1V (04 u), with w = w,/y, admits a solution.

Proof. First observe that, since u<1, w is (7, N)-Diophantine. Now,
take v= D’V (0)=p’D >V (0). Then, taking, say, &= £,/2 one has
lelle =D =V (O +0):= V. (0) = V(0 +0)], <cp’ (A2.8)
for a suitable ¢ (depending on w, and V). It is then obvious that (7.12) can
then be achieved by taking p small enough. |

The proof of Lemma 7.2 is based on a “Newton scheme” obtained by
iterating the construction of a new “approximate solution,” ', (given a
starting approximate solution v), producing a “quadratically smaller” error.
Such a Newton scheme is summarized in the following

LEMMA A25. Set .# =(Idy+v,), e=D?v—V (0+v) and let z be a
solution of

D(HTMHDz)= —.H7e, (A2.9)
where (-)7 denotes matrix transposition. Then, setting

w=.z, V=v+w, (A2.10)
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the equation

D' —V (0+v)=eyz+qg,+g,=¢ (A2.11)
holds, where
g =—V.O0+v+w)+ V. (0+0)+V (O+0)w
(A2.12)
g,=(#") ' oDz, A=MTDH—(DHT) M.

Furthermore the matrix-valued function .o satisfies
D/ = M"ey—e) M, (o> =0. (A2.13)

This is Lemma 1 of [CC1] (with f replaced here by — V; see also [M2,
SZ1); however, for completeness we sketch the proof.

Proof of Lemma A2.5. First, using the definition of e(8), one checks
that (A2.9) makes sense (i.c., that the right hand side has zero mean value
over TV). Then, (A2.11) follows easily from the definitions of ¢,, g, and
from

D~V (0+v)y=e, D2~V (0+v) M=¢,  (A2.14)

the first equation being the definition of ¢ and the second one being
obtained by taking the 0-gradient of the first equation. Finally equation
(A2.13) follows easily from the second equation in (A2.14) and from its
transposed; the vanishing of the average of .o/ is checked using the
definition of .« and integration by parts. ||

Remark A2.6. The general solution of (A29) depends upon an
arbitrary constant c € R”, which we shall fix by imposing {w)> =0 (com-
pare (2.6)~(2.8) of [CC1]).

Proof of Lemma 7.2. The idea is to estimate the objects in Lemma A2.5
and then to iterate the construction infinitely many times generating a
sequence of approximations, v;, (vo=v, t;=v+w,..): Under the “con-
vergence condition” (7.12), the “error function” at the jth step, e, = Dzuj—
V(8 +v,), will be quadratically smaller than the preceding error function
e, , so that [le; ~0 and v, converges to the solution w.

We start by performing estimates on w, v', ¢’ defined in Lemma A2.5 (but
keep in mind that the corresponding estimates at the jth step of the proce-
dure are basically identical, having replaced v with v;, e with ¢, and & with
&\ E to be suitably defined below).

In the following bounds 1< B,<B,< ---<B wil denote suitable
universal constants.
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Fix 0<d<¢ and let z be the unique solution of (A2.9) such that
{w) =0 (see the above Remark A2.6); then, using Lemmas A2.1 and A2.2,
one obtains, with suitable constants B,,

IDz{: 52 < B 2N *¥p’ity e
lzll; s<B2UYNIPS phite (A2.15)
Iwly s<B2VYNPS piite
(to check the powers of n and #, one needs to take into account the “con-
stants of integration” coming from solving Df =g with (g =0; compare
(2.7), (2.8) of [CC1]). Now, observe that (7.12) implies that |w]|,

&o— & so that ¢’ is analytic on 47 | and, using again Lemmas A2.1 and
A2.2, one obtains the bounds

flegzll: s< B,2PNN1P g Ve “(’7’7)4?
gl o<V eeelle, W15 5
<B ||V, 1“'224.‘\11\,!4 5 BNy 10582
“5{“: s<ID (,// (’r)""('{-f'//)“:
SB(,Z(’NN! 5 (2N + lin,}, 18
||(12”¢ s < B72|()NN!2 5 - (AN 4 l)n3ﬁ5,}y 282,

(A2.16)

where to bound ||./| we used Lemma A2.2 with J replaced by /2 (so as
to be able to bound subsequently |le,||). Thus, observing that § ', #, 7 are

=1, we get [see (7.11)]:
g=ptlleflls s < Bg2¥VNITS PVBy 't (A2.17)

On 47 ,; we can bound immediately, by Lemma A2.1, the derivatives of
w; hence we get:

max{”W":,w, Iwelle 251 < By 2NN 5 AN Dt (A2.18)

As already mentioned, we iterate now the above construction and relative
estimates, setting w,=v, v;=3_,w,, d=0,, and

¢ : N
Ei / lEg—zz()1:€+ 2,

P=0

(A2.19)

I

51 = 2j+2 *
(note that 50 = ¢ and that E,-\. &’; the choice of the “analyticity-loses™ ¢, is
rather arbitrary; however, the choice made here turns out to be particularly
simple and also good for “sharp estimates,” see [CC1]). We also set



SECOND ORDER HAMILTONIAN EQUATIONS 199

m=ldx+dorille, ;= H(Id,\,—}—@”v,)"][& and assume inductively that
</<)

j
"I,<2'7a ﬁ/<2’7a Z I1M‘i115,<é(>~€€>, (A2.20)
i1

the last inequality being necessary for the definition (and analyticity) of
€,, - By the (analogous of the) above estimates (where ¢ —¢;, & > ¢,
-0, n-on, -4, & —+gj, E—26— s,+1) we see that, semng

F=B 2N (E— &)~V 4'%34, G =28, (A2.21)

we obtain, for j < j,,

2

b1 =7 el =72 1D, = V(0 +0)l g, < FG's
/
<52/+1 1——[ (FG,,,)Q/
i=0
= [eF T2 IGTIEE D20 £ (gfGy (A2.22)

(note that both sums in the last line of the above formula converge to one
as j— ). Analogously,

' 224
, , . , . ! 2 _
mdx{““;ﬂ”g,,a,, Haa“nlng,”}<310212~N! (f—f,> ’75'7451

= FyGle, < (¢FG)?, (A2.23)

having used that F, < F, G, < G (and that » _,  27"=2",
Yo, (i=1)27'=(j+1)277). We check now the induction hypotheses
(A2.20) for j=j,+ 1. We find:

Jo o

1
rlm+l \’7+ Z ”60‘4 “g, ﬁj0+1<ﬁ<] _77 Z ||(?()H',-HE]) . (A224)

j=0 i=1

Thus (recalling that £, < 1), all we need to complete the check is
Y. (eFG) <&y — &, (A2.25)
j=0

which is easily seen to be implied, for a suitable B,, = 2B,,, by
By N 2UME &) "W 'Ot B(Ee—Co) " e < L. (A2.26)

This shows that the sequences é4v,=3"'_ 04w, (p=0,1) converge
uniformly on A: and, for p=0, v, converge to a functlon u, which satisfies
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(by construction) (7.13). Let us now estimate ||D”ul|.. First, note that
w;,, and ¢, are analytic and bounded on ¢;— 4, so that D*w,, |, which
isequal to V. (0 +uv,+w,,,)—V (0+v,)+¢,,, —e, can be bounded by

72 IDw;

L, < Bpf2VNI 6Nyt (A2.27)

&=

having used that 7, < 2n, ,< 27 and that B2 N2 5 *Yp’%, < 1. Then,
by Lemma A2.2, it follows that

IDW,llz 25, =7 ID7'D*w s, < B2 f2UVNI 6 7%, (A2.28)

~
/ S+l

The bounds (7.14) now follow easily. |
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