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Nonautonomous Hamiltonian systems of one degree of freedom close to integrable ones are
considered. Let € be a positive parameter measuring the strength of the perturbation and
denote by €, the critical value at which a given KAM (Kolmogorov—Arnold—Moser) torus
breaks down. A computer-assisted method that allows one to give rigorous lower bounds for ¢,
is presented. This method has been applied in Celletti-Falcolini-Porzio (to be published in
Ann. Inst. H. Poincaré) to the Escande and Doveil pendulum yielding a bound which is within
a factor 40.2 of the value indicated by numerical experiments.

I. INTRODUCTION

A problem that has been extensively investigated, both
in physics and mathematics, is the stability of invariant sur-
faces for perturbed integrable systems. '

Roughly speaking, most of the invariant surfaces for an
integrable system are preserved under perturbation if the
strength € of the perturbation is sufficiently small. But when
€ exceeds a certain critical value €, these smooth surfaces
disappear.

We are interested in analytical tools that allow one to
give rigorous and nevertheless realistic lower bounds for €,
in the case of Hamiltonian systems.

For relatively simple dynamical systems, such as holo-
morphic mappings of the plane (*“Siegel’s center problem”)
or some special examples of area preserving diffeomor-
phisms of an annulus, rather complete results are now avail-
able.>® To the best of our knowledge, the methods used in
obtaining these results have not been extended to Hamilto-
nian flows for which the only general tools rely on classical
perturbation theory and on KAM theory.'%'¢

For concreteness, and in view of an application we will
mention below, we will consider only nonautonomous Ham-
iltonian systems with one degree of freedom. We remark,
however, that our techniques extend easily to the general
higher-dimensional situation.

To be more precise, let us consider a Hamiltonian

HOEhO(A) +6fE)(A9¢st)r €>O)

which is a real analytic function defined on a complex do-
main of the form Dp (4,) XS}, where AR, £,>0,
R,>0, Dy (A,) is the complex disk

{AeC: |4 — Ag|<Ro},
and S} is the two-dimensional complex strip
{(¢,0)eC?: |Im g|<&o, [Im£[<Eo}-

We assume that the perturbation f;, has a period 27 both
in the “angular” variable ¢ and in the time variable ¢. In
other words, the phase space of our system is the product of a
real interval with the standard two-dimensional torus
T?=R%/2772

The integrable part 4, is assumed to be nondegenerate,
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i.e, for any 4eDy (4,),
d’h
h " — 0
° T da?
Finally the center 4, is assumed to be such that the frequen-
cy w=h/((A,) verifies the Diophantine condition

lov, +v,| ~'<C v, |7 (1

(4) #0.

for some C>0, 7>1, and every (v,v,) =veZ? with v, #0.
For € = 0 the torus $”(@) ={4,} X T? is invariant for 4,
and the flow is simply given by

S,

(AoBorts) — (Ao + Ohito + 1). 2)

From KAM theory one knows that, for ¢ sufficiently small,
there exists, in an e-neighborhood of ¥®(w), a (unique)
analytic torus ‘' (w) invariant for H, and on which the
flow is still given, in suitable coordinates, by (1). Numerical
experiments (see e.g., Refs. 17-20 as well as Refs. 1 and 2)
have shown that these KAM tori break down when, as men-
tioned above, € reaches a critical value €,. We remark that
the lower bounds obtained from standard KAM theory have
always turned out to be several order of magnitude away
from the numerical evidence.

In this paper we are concerned with the problem of ob-
taining “reasonable” (i.e., “in reasonable agreement with
numerical evidence”) rigorous lower bounds €. of €, soas to
insure the existence of KAM tori for € <¢. .

The method that we are going to present is based on the
scheme used by Arnold in his proof of the theorem on con-
servation, under perturbations, of quasiperiodic motions. '
We recall briefly this scheme.

One constructs a sequence of Hamiltonians H; of the
form

hi(A'5€) + (A" t"€), t' =t
defined in shrinking domains DR]_ (A,)xSéj. The centers
A4,€R are chosen so as to keep the frequencies fixed, i.e.,
hj’(Aj) = w. The Hamiltonian H;,,for j=0,1,.., is ob-
tained from H; with the aid of a real analytic canonical trans-
formation

C;: Dg

i+l

(4,1 )XSL  ~Dg (4,) XS2

close to the identity transformation. In order to construct C;,
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there are a certain number of smallness conditions (in the
literature usually referred to as “inductive hypotheses’)
that € has to satisfy. If € is small enough one can show that all
the inductive hypotheses are verified and that, in a suitable
sense, H; becomes, asj goes to infinity, closer to an integrable
Hamiltonian. From this one can conclude that the invariant
torus T'€ (w) is obtained as a limit of the composed transfor-
mations

Co'Cl' 'Cj_l({Aj}XTZ).

The inductive hypotheses consist of a set of estimates
needed to control all the quantities entering in the scheme
sketched above. These estimates involve also arbitrary
choices of various auxiliary parameters. It is natural to try to
obtain better stability estimates by varying these parameters.
It will turn out that, in our situation, the dependence of the
estimates on the auxiliary parameters is very simple so that,
in concrete applications, it will be easy to make good choices.
There is, however, a delicate choice that concerns the
amount of shrinking of the analyticity domain in the period-
ic variables ¢ and z. We will discuss this point in detail in
Appendix C below.

For the purpose of this introduction, let us denote by 7 ;
the set of specific conditions that will form our inductive
hypotheses at the jth perturbative step leading from H; to
H;, ,. In this context, the weakest condition that € has to
satisfy in order to insure the existence of the KAM tori
T (w) is

e<e, =sup {e>0: 7, aresatisfied for every
j=012,..}.

Of course, such a condition has little practical interest since
it involves checking an infinite number of estimates. So, we
will introduce, for any preassigned integer j;, a new set of
estimates _# ¥, which will imply all the ¢ for j> j,. Then,
for any j,,

ejn =sup {6> 0: /O’/n---,fj“ ,/;: are Satisﬁed}

will provide a concrete lower bound for €,. In fact, with our
choices, €, will form a strictly increasing sequence in jy, s0
that one obtains better lower bounds by taking larger values
of j,. Now, for j,~20 the number of elementary operations
(i.e., additions, multiplications,..., taking powers, exponen-
tials,...) needed in checking that € < ¢, is of the order of 10°-
10, Thus, in carrying out these estimates, one is naturally
led to the use of computers.

Our method has been applied in Ref. 21, in conjunction
with other rigorous numerical computations, in order to give
rigorous stability estimates in the following case. Let

Hy=A7?/2 + €(cos ¢ + cos (¢ — t)),

and consider the stability of the golden-mean torus, i.e., the
torus which for e=0 is given by {4,}XT? with
Ay=w=(1+5)/2. In Ref. 20, Escande and Doveil gave
numerical, as well as (nonrigorous) theoretical evidence in
order to show that this torus disappears for € =¢,
~1/29.41. In Ref. 21 it is proved that the golden-mean torus
exists and is analytic for € < €. =}, and comparing with the
experimental results one has
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€./€.<40.2.

In Ref. 21, it is also pointed out that the best result it was
possible to obtain by replacing the method of this paper with
the more standard KAM techniques gives a lower bound
€4n = 793 fOr which €, /€, <2458.

We conclude this introduction by remarking that the
role of computers in obtaining the bounds discussed above is
merely to perform lengthy operations with real numbers. By
now it is well known how to employ computers in the evalua-
tion of rigorous estimates using, for example, “interval anal-
ysis.” For more information on this point we refer the reader
to Refs. 22-24 and to the literature cited there.

The content of the rest of the paper is as follows. Section
II contains the inductive scheme, Sec. III the KAM
theorem, Sec. IV the inductive hypotheses / %, and Sec. V
rigorous numerical estimates; and Appendix A contains the
self-contained description of the KAM algorithm construct-
ed in this paper, Appendix B the implicit function theorems
and a transcedental inequality, and Appendix C the choice
of the analyticity-loss sequence {5, }.

Il. INDUCTIVE SCHEME

In this section, maintaining the notations and assump-
tions of Sec. I, we show how to construct the canonical trans-
formation C;.

Let us denote by F;, G;, and L; upper bounds on, re-
spectively, sup| f;|, sup|A /', and sup|k | ~', where the su-
premum is taken over the domains of definitions
Dg (4)) XS;EDI- XS 2,- and the bars denote the standard
norm of complex numbers.

The analyticity assumptions imply the following esti-
mates on the Fourier coeffiecients of f;:

l.}j",v (A)l<1;;e—'§]”v”9 V= (VI,VZ)EZZ, (3)
where for integer vectors v, ||v]|=|v,| + |v,|, and

1
(27)?

ROE f S(Agne= 9+ dg dr.

T
Another fundamental property of holomorphic functions,
which we will often use, is the following. If g is holomorphic
on a (smooth) domain D, then for any subdomain D'CD
one has

sup|g’| <sup|g| [dist(dD",0D)]". (4)
b’ D

This estimate follows easily from Cauchy’s integral formula
for g’ taking as contour of integration a circle of radius
dist(dD',dD) and center z,eD '
Now, following Arnold, we fill in the technical details
necessary to carry over the scheme sketched in Sec. 1.
Cutoff: Let us split the Fourier expansion of f; in the
following way:

S =Fo +10 + £,
where
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)=

_f.;"v (A )ei(v,¢ + ‘V:t)’

0<[[v[|<N,
(2).— A el(v‘¢+v21)
“vng L (4)
with N,, to be exactly determined later, such that
[P ~0(e).
Hamilton-Jacobi perturbative step: Following classical
perturbation theory'* we remove (formally) the perturba-

tion to order O(e? ') via the generating function
$,=4'¢ + €,(4 " 1€,

f (49
o<fli<n, —i[vih[(4") +v,]
In this case the new integrable part will be

By (A)V=h(4") + € fo(4").

Analyticity loss in the action variables and the (j+1 Jth
approximation to the invariant torus: To make rigorous the
formal step described above we have to take care of the small
divisors appearing in ®; and to do this we have to restrict the

analyticity domain in the new action variables. Let ¥ > 1 and
N, be such that

ei(vl¢ + vt}

d)jE

=1 —1/7)(CGN}*)7'<R,. (5)

From (5) it follows easily that for each 4 ‘eD Ri 4;) and
”V”<Nn Vlséoy

[vihj (A7) 4+ v TI<YC Inl” (6)

Using an elementary implicit function theorem
(Lemma 1 of Appendix B), we can determine the (j + 1)th
approximation to the w-torus: If, for some , > 1,

[3/(y, — D]EFLR; <1, (N

then there exists a unique 4; . 1 €8, _1)/y,1%, (4;) such that
hio (A )=hj(4;0)
+ Ty ) =hj4) =
moreover one has
4, —A;|<ne®F,L,R ;. (8)
The numbers ¥ and ¥, are the first “auxiliary parameters”
(Sec. I) which we introduce in order to have complete con-

trol of the quantities entering in the estimates.
Now, defining
R, =R}, —1€FLR;,
it follows from (8) and (5) that
Dy, (4, )CDRJ_,H (4,)CD,.

Dj +1=
In order to have complete control on R; , ;, we require

NEFLR ' < (1 — /y ) (I/1)(CGN!+T) 7!,

9)
1/y,=1- /7,
and obtain the bounds
(¥:CGN}*)TI<R; <(rCGN;* )™, (10)

with 7, =7,7,. Notice that (5) and (9) imply (7).
Control of grad ®; and analyticity loss in the periodic
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variables: In order to control the derivatives of ®; we have to
restrict the analyticity domain in the (¢,t)-variables. Let
5, <& andA4’eD, » (4,), (¢,t)eS§j_ 5,- Using (6) and the
estimates (3) andj(4) we obtain

aP; v
A ) | <yCE, B, e W=k 0,
o, v# (11)
8A’
“5,'|":|
<,1;yc1vj1zj—1(z [vile 4 3 2 )
v#0 v, #0 |V2|
+7’2C2E,GJ Z |,Vl|l+2‘re—51”"”
v#0
=k PCF,R; '+ k¥ C*F,G,, (12)
where A denotes a (strict) upper bound on
[(1—R;,,/R;)]~". Analogously one gets
a (4) —1 k(5) 2 13
3¢8A <k[YCFR; ;7 C°F;G; (13)

with

’ — 5
k}“’s/ljy 2 |V1| 1+7, ,IIVII’
v#0
kj(s) Eyz 2 |v1 | 2427, 5,-IIV|I'
v#0
The jth canonical transformation: At a fixed time ¢, the
canonical transformation generated by (I> is obtained by in-
verting the functions of mixed variables

AA+62

’(A ) i)
% 1), ¢ =¢ ¢

(14)
First of all we have to make sure that 4eD; if 4'€D; .
Using (8), (10), and (11) it is readily checked that this will
be achieved by requiring
(1:CGN !+~ + 1€ F,LR "'+ k{e*CF,<R,.
(15)
Notice that (15) implies (5), thus (15) and (9) imply (5)
and (7). Now, using (13) and (10), itis readily checked that
e (kPCF,R; '+ k> C*F,G))<1 (16)
implies the injectivity on D;,, of the first map in (14),
which can therefore be inverted in the form

AeD; ~A4 + €T ;(4,4,1) = 4 'eD,

1
where Dj denotes the image of D; , , under the direct map.
Moreover

sup |I~‘j | <sup

In order to invert the second map in (14) we have to allow
another analyticity loss in the angle variables (however, in
practical applications, this second analyticity loss will turn
out to be irrelevant with respect to the first one). Let 5 >0
be such that £, , =§; — 6, — 6 > 0. Then, using another
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elementary implicit function theorem (Lemma 2 of Appen-
dix B), we have that if

€ (k’CFR; ' + kP C?F,G)é; <1 (17)
the second map in (14) is inverted by

$eSL . —¢ + €A (4" =geS|
with

sup|A,; |<sup

6A
We can finally define the canonical transformation C; and its
inverse C;,

C: (A4,41)—(4"4.t) =4+ €T, (4,8,
¢+ €8, (4.9,0), 1),
C: (A" 1)~ (Ap1) =4+ €ET,;(4" ¢, 1),
¢ + €70, (441, 1),

with

A (4,0,1)=

L4401 =2 p 2, W0, t);
the domain of holomorphy in the new variables being D, | ,
and S2 g

Estimates on H,,;,: The new Hamiltonian

H, ,(A'¢te€) is given by

(+€2’¢)

+e2{f‘j(Al

» 9% ,¢,t) v 2
I

at
where &®; is evaluated at (4',4,f) with ¢=4¢’

+ eszj (4',¢',t) sothat f; , , (4',¢',t) will be defined by

j+ 1 ' ad) ’
o) v

I- L3P, -
t 64[’5” (A vy ) ~Jio 4 ')]

J “ J q)
+6_2 2 L",v(A +62 aa¢ )et(V.¢+v1)

o< i<y,
. . 9b.
+€—2f f,V(A’+€21 !)
||v||z>"1vjj ¢
e+ 6—21' aq)i .
Jt

Denoting by A, an  upper
[1-R"R;,, +€k"CFN]', a
computation yields

bound on
straightforward

sup | fj41(4".8.0)|<G;(CFk V) + k [CFIR ;!

D/+'XS§,+|

+Fe? ¥ e M (18)

Jj
I > N

where
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kO=2[k!"/(1—e""?].
At this point we choose N;. Let @ >0 be a new auxiliary
parameter and set
N,=67"[log Q; + 2log(k[” +1og Q) ],
where
Q0 =(akPECFG) ™, k[V=(k[VY/4B,57,
Bi=e %/(1—e™ %), k=(B, +1)8,.

With these definitions it is easy to see that (Lemma 3, Ap-
pendix B)

re” I sze_aj“vkac’vi(cﬂk}”)z (19)
provided
16e 4" (ak Me¥CF,G,)<1. (20)

Notice that since &, <1, k”<(1—e"")"' and
16e~*/" > ¢; hence (20) implies N, >8, !

Denoting by P; an upper bound on eC ’F,G, and using
(18), (19), and (10) we get the basic recurrence relation

[Pf, [oo + 7o/(CGR) ],
Po; +mN;27),  j>L,

=0,
p J

J+1 =
with
Gk¥/Gy, j=0,
G ¥k [0/G)y 1.
Next we indicate the necessary bounds on 4 7
<G, + €A FR [ *=G,, ,,
sup |A7| ~'<L;(1 —szﬂ,}LjF}Rj_z)—lELj+l,
provided
AL FR; <. (21)
As for the A ’s one can set
. [[1= CGRNL* 7', j=0,
j=[[1—7’|' N,_ /N7 g,
[1— (#CGRN;*")~' —k§PeCFR ~']~!, j=0,
[T =7 (N, /N TPk Py,NI*717Y, j>l.
lil. KAM THEOREM

We need now to fix the analyticity-loss sequences {5, }
and {§;}. First notice that we must have

G.
o= (L4 a) (k1) r,.s[

J

sup | A}

j =

;(6j+8,-)<§. (22)
Let § be an auxiliary parameter such that 0 <8 < £. Set
8,=6/2%", j>0,
. ek $PCFR ' + kPP, j=0,
jE[I’j(y3k(2)N1+f+ k), j»l,
and require the condition

36, <£—8. (23)
0

Then it is clear that (22) and (17) are automatically veri-
fied.
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Remark: In principle any sequence {8, } such that
8>0, ¥ &<& Y2 7logd '<w

is admissible. Our choice is related to the “quadratic” char-
acter of the inductive scheme that we are following. For a
fuller discussion, see Appendix C. As in Sec. I, let us denote
by # ; the inductive hypotheses (9), (15), (16), (20), (21),
and (23) and by € _ the number sup {e>0: s ; are verified
for every integer j = 0,1,2,...}.

KAM Theorem: If € < € then the map

(¢',1")eT?
SJ(¢t)=lim Cy -+ -C;_, (4;,¢',t)ERXT?
oo
yields an (analytic) embedding of T into the (generalized)
phase space of H, so that J(T?) is invariant for the flow S,
generated by H, and
S (') =J(¢ +ott+1t'). (24)
Proof of (24): Since C,,* * -+ *C;_, is a canonical trans-
formation, denoting by S the flow generated by H;, we
have
S, (J(¢'t"))=limS,(Cy -+ -C;_, (4;,4',t"))
J—
= lim CO' T 'Q~ 1(S,(j)(Aj,¢’,[’))
=lim Cy -+ -C;_,(4; + O(€’F,6, Y1,
¢ + ot + O(EF,G,6;7 ')t?
+O(EFR; Mt, t' +1)
=lmCy -+ -C;_, (44" + ott' +1)

=J(¢' +wt,t’ +1).
The step before the last identity follows from the inductive
hypotheses.

IV. THE INDUCTIVE HYPOTHESES 7}

Assume that the inductive hypotheses are satisfied for
0<j< jo» Jo> 1; we present now a method to control them
forj> j,. To do this we have to simplify the conditions at the
expense of stronger requirements.

Remark: This step, in standard KAM theory, is taken at
Jo =0 and is one of the reasons for the inaccuracy of stan-
dard estimates.

Let us start by imposing

(k,-‘l’l )2 Q.
k}” k (7)Qj 2 k (8)
M ( B
E( ];;7> ) k;—g,l[})j—l(aj—l + 7, N3 )LD,
J J=
J>Jo (25)
Since & {11 one sees that Q, is increasing in j so that (25)
implies easily
N, /N, <L, j>Jo (26)
Next we split condition (15) in two pieces: Let y, be a

new auxiliary parameter such that ¥, <7 '2'*7 and let
ys=(1 -y, 1. If we require
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Valy (1/2'7) +ij}”7’3N,!:LlTK1’ (27)
7’5Pj7’17’§LjGij_+1ZT< 1 (28)

it is clear that, by (26) and the choice of ¥, and ¥, (15) is
recovered. Moreover

A<A=Y/(Ya— 1), Aj<A'=vs/(ys—1).

Finally we strengthen (21) and to do this we introduce the
last auxiliary parameter. Let /> 1 and require

[1/(I—1)]P;(Ay;)*G, LN ¥ <. (29)
This is done so that, since G;L;>1, one gets
L, /LK<l, G, ,/G;<g=2-1/L (30)

At this point we need a simple upper bound on
N; (j>jo)- To do this we disregard “logarithmic correc-
tions”: Use o; + 7,N ] *[> (k") to get, for j>1,

i j -k
P, > P, WF, Wr=Vr(jo) =]l (kS ) .
1
31
Now use (31) to check
N <4 e 21 (32)
with
0 <Xj+ 1
=y, (P,)=2"""6""log [(ak;osij)l/ypjuwf ]"_l
+ (172~ ") log{k 7 ;
+ 2 log[ak %) H1/2P, ¥r] 7'}
Finally using (32) we obtain the estimate
PY? <P W, (33)

Jo+Ji % gy N
with
\PIE (a:/.u + TjnN}()tq )1/2’
W,=V,(0), o + 7, NP
j=1 k41
¥, =¥, [] [/,+« +Tj'o+k(4k)(k)l+r]m » J23,
3

and

o/ =g(1 +a)(k}”)2,

=gy Ak P (1—e” N2 j>jp

Notice that V¥, y;, and ¥; converge monotonically and

very rapidly as j1 o ; we will denote the corresponding limits
by ¥*, v, and ¥,

WEWE, yly, YT

We are now in a position to control easily all the induc-
tive hypotheses [(9), (27), (28), (16), (20), (29), (23),
and (25)} for j>j, + 1. Consider, for example, (9), which
can be rewritten as

[y./(1, — DIAP,GL(N,_ ,N)'* 7 <l.  (34)

Using (33), (30), and (32) one sees that, forj = j, + n and
n>2, (34) is implied by

Pj(ﬂ,‘,”tﬁ,,<1, (35)
where
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0= [vi/(y, — D% G L, EE e )T ] v

Now, it is not hard to see that 8 {1 1 and that the func-
tion n—0 "y, (n>2) has a unique maximum that will be
achieved for some value n = n¥. Therefore (9) will be im-
plied, for any j>j, + 2 , by

P 0‘:’ nfgl.

Jo 7 n¥

Completely analogous considerations apply to the rest
of the inductive hypotheses; for a complete and explicit list of
all the conditions entering in 7 ¥, see Appendix A.

V. RIGOROUS NUMERICAL ESTIMATES

The condition € <€ in the KAM theorem of Sec. II1
can now be replaced by the more practical condition € <¢; ,
where j, is any integer greater than 2 and, as in Sec. I,

€, =sup{e>0 £ 7 1)L are verified}.

From the preceding sections it follows that €, is a strict-
ly increasing function of j,, so that, in concrete applications,
one is interested in taking j, as large as possible. Already for
Jo greater than, say, 5, it will be readily realized that, in order
to check that e <¢; , the use of a computer becomes neces-
sary (in applications a reasonable choice might be j, ~ 30;
compare Ref. 21. In this case one can proceed as follows.

Let us denote by a the set of auxiliary parameters
{6,2,7,71,V4I[} and, to stress that the estimates depend on
the choice of @, let us replace €; by and €, (a). One can then
write a program that, for any choice of a, checks if a given
number € verifies or not the conditions 7, 7 ...~ .,/ +.
By “trial and error,” it will be easy to find a (close) lower
estimate, €, (a) of €; (). At this point, varying a, one can
“maximize” €, (a) so as to obtain the final result. Because
of the simple dependence of €, on a, this latter operation will
turn out to be rather straightforward.

Important remark: Our method, as well as all KAM
theorems, deals with very general situations and, a fortiori,
does not exploit the peculiarities of the system at hand; such
peculiarities might include the geometry of the phase space,
singularities in the action variables, special properties in
Fourier space, symmetries, etc. Thus, before applying our
method, one might use the more flexible finite-order pertur-
bation theory to conjugate the given Hamiltonian to a new
one with a smaller perturbation and which, in general, hav-
ing lost all its special properties, will be closer to a “generic”
Hamiltonian. For a detailed discussion and illustration of
these ideas we refer the reader to Ref. 21.
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APPENDIX A: SELF-CONTAINED DESCRIPTION OF THE
KAM ALGORITHM CONSTRUCTED IN THIS PAPER

Let
Hy(A.$,t,€) =ho(A4) + €y (A,8,1), (4,,8)eBg (Ay) XT?,
where

By (49)={AR: |4 — 4y|<R,}, T*=R*/272>
and 4,<R is such that w =4 | (A4,) satisfies

lov, +v,| TI<C vy |7

for any (v,,v,)€Z?, v,0 and for some C, 7> 0.
Assume that H; can be extended to a holomorphic func-
tion on

Dy X So=Dp,(4o) XS ¢,
={deC: |4 — 4,|<R,}
x{(z,,2,)eC% |Imz; | <éo i=1,2}
and denote by F, G, L, upper bounds on, respectively,

sup |fol,
D,XS,

sup|hg|, suplhg|".
0% S, D, D,
Finally, let j,>2 be a fixed integer.
1. KAM theorem (compare Secs. lil and iV)

If 7, (j=01,..,j,) and #* are the inductive hypoth-
eses described below and if e<e¢, =sup {e>0:
F 0 15/ ;, and F ¥ are verified} then there exists an
analytic torus € close to {4,} X T? invariant for the flow gen-
erated by H,,. On such a torus the flow is given (in suitable
coordinates) by

(@' )T’ (¢ + wt,t’ +1).

The rest of this appendix is devoted to the description of
the conditions # ; and, #*. These conditions are expressed
in terms of recursive objects. To introduce such objects we
start with the following.

2. Definition of the auxiliary parameters

Let 5’ Ay, Vs Vis Vas l, be such that 6<§0, CI)O, Y>> 1,
Yi>Lya<yr 2177, IS 1
Now, define

v.=(1-1/1""Y r=rv.

ys=(1— Uy, g=2-1/,

A=y, (ra— D74 Al=ys(ys— D7
Then, for j >0, we set

§=6/27"", s(p)=Y |v,[fe" ™ (p50),
'VEZZ

kiP=ys;(1+ 1), kP=9s(1+27),

k=92 +27), B=e %(1— e N,

k(=B + 1)5;,

k= (k) (4B,

Next we will introduce the recursive quantities 7;, 0,
N A Aj k(P k ),k 9, G, L, 0, 7;. These quantities will

be computable according to the following ‘“‘computational
sequence” (“*- -+ —»X - ¥ means “from the set of quantities
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X and the quantities known before the computation of X one
can compute the set of quantities ¥ ):

€,C,Fo,R,Go,Lo—
2 4 6 :
Po—’Qo—’No—’/lo—V{{)—’k(() ),k((, )’k(() ):GDL],—*Uoﬂ'o—’
2 4 6
Pl_’Ql_’Nl_’/ll’/ii_)kg )’kg )skg )’GZ:LZ"’UUTI_’
(2) 1, (4) 1, (6)
Pi—»Q >N, > A [ -k 2k 0k 9,6

j+ 10T =

3. Definition of the recursive quantities
We have
Py=€C*F,Gy, Qo=(ak{®P,)~",
No=6;'[log Q, + 2log(k§” +log Q5) ],
Ao=[1— (7,CGR, N§* ") "' — k{VeCFR '],
A5=[1— (CGRo N3 * D],
ké”sxlsr(so(r) +2 il e_:’"),
kO=A4750(1+7), kP =Ak V(1 — e 5) 72,
G, =Go+€A2FR;?), Li=Ly(1—€A3LFRsH7,
0,=(G/Gy) (1 +a) (k)% 1,=G, k/G,.
Forj>1 we set

!

[yi/(vi — D]7vs€FoLo R (CGN} T ) <1 (j=0),
vi/(ri — DIBPGL(N, \N)' ""<1 (1<j<jok

(7,CGy Nyt ) '+ yeFpLy Ry ' + k {VeCF,<R, (j=0),
LW /N T BBGLNY T+ yk [PEN; 2] <I

ek SPCFR '+ k$PP<l (j=0),
[73k (ONI T+ kPP < (1<j< o),
16e™“ ak PP<1  (1<j<jo),
eASLFR2 <1 (j=0),

(13 A4)’PGLN; <1 (1<j< o),

ji=1

~[P§ [oo + '7'0/(CG()R0)_l 1,
’ j>2,

Pl o+ N,
Q= (ak®P)~",
N;=8;"[log Q; + 2log(k[” +1log Q) ],

A= [1=ye /N T PR N ]
Aj=[l=y W /N 7]

0 —6n
kP=A1y (sj(r) +2 ) ¢ ),
n=1 h

k®=4lys(1+7), k©O=4kO(1—e D2,
G+1=G;[1+ (4,y:)BN; ™),

L =L[1— (4y:)° PN G L] 7,

0,=(G,, 1/G)(1 + @) (k")

7,=(G,, /G))ysk [

Remark: At the moment, some of the above quantities
may be ill defined but this will not be the case as soon as the
correspondent conditions #; are verified.

4. The inductive hypotheses ¢, (0</j<jp)

The following set of inequalities, (A1)~(AS5), consti-
tute the set of inductive hypotheses ,#; with j = 0,1,..., ji:

(A1)

(A2
(A3)
(A4)

(A5)

(A6)

J
kPeCFR G '+ kPP + 3, (kPN + k)P, <E— 6.
0 n 1 n n
1

[(A1)-(A6) correspond to, respectively, (9), (15), (16), (20), (21), and (23) of Secs. IT and III.]

5. The inductive hypotheses 7 *

In order to describe the set of conditions in 7 * we need the following definitions:
oj=g(1+a)k")? 7/=gr ik V(1 —e )72 j>j, Vr=]]. (k0. DV g’
1

X =257 og [ (ak (L, )T TR W] T 4 (12 Pyloglk ),y + 2" og[ak ), )P,

Jo+ Jo 70
n—1

V,=(0, + 7, N;TD'V2, ¥,=V,0],, +7]

Jo Jot T Jo—1 o

k2 ="y

Jo+n Jo+ 11

(), k& =4y, (1471,

0.0=[n/(ri = DB GL, @) @ "y D' 1Y, 0= vk (0, (4%,) (L =y 2+ ) 717,

- k,‘o’l,,.] 12"

0'('3)5[7,‘7,%?,56.[“ (Ig)n(4" n)2+2-r]1/2", 0;4)5[7/312}:—3—':(4" n)1+r+ k}:-:-n]vz": 05,5)5[16&](}08_3_”6

Jo™Jo
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-1,

+1N_1‘10+T)1/4! v,=v, Hk[o:l"o+k +T1'lo+k(4kl’k)l+r]l/2k+l, n>3,
)

’
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(6) — ()] (7) 2 (8) (8) n 1+7 172"
0n =[(kj0+n/kj0+n+l) (kj0+n+1/kjo+n)[o:;o+n +7:i’o+n(4 n) ]] ]

60 =[(1/(— D)(Ar»)G,

Now, denoting by W the limit of the ¥, ’s, one has that
Y, t¥ and 0’11 (i=1,2,..,8);

e e KO TOR s T SR 0 T

moreover the functions n -W,6 '’ (n>2) have a unique maximum achieved at some value n = n*.
The following set of inequalities, (A7)—(A14), constitutes the set of inductive hypotheses ¢ bt

(Al) with j=j,+1,

})jn \Iln’f‘e :l’:')< 1’

Ya¥2 'O Ly k) N L,
}?fu\png'e ;;‘)< 1,
7,17%7/5}31»+1Gju+1Lju+1N}D+2T<1’

PV 0‘;’<1,

Jo T n¥ n

(A3) with j=j,+1,
PW,6%9<1, n32,
(A4) with j=j,+ 1,
P¥,69<1, n>2,

(k77202 (k2176 (2) [Py (0, + 7N} D] <1
I)jo \ynte :I:;) < 1’
[1/(—=D1P, (¥A3)°G, 1L, N3,
PV ,‘0(7’

Ju n" ’

n>2,

n>2,

m=1

Remark: Because the convergence of ¥, and 8" to
their limits takes place at a very fast rate, it is clear that to
find explicitly the values #¥ in concrete applications is not a
difficult task.

APPENDIX B: IMPLICIT FUNCTION THEOREMS AND A
TRANSCENDENTAL INEQUALITY

Lemma I: LetI'be theinterval (x, — 7, x, + 7), letgbea
continuous function on 7, and let / be a differentiable func-
tion on I.

If (sup,|g|)-(sup;|h’| ") <r then there exists a
unique point x,€/ s.t.

h(x) +8(x;,) = h(xy).

Moreover |x, — xo| <(sup |g|)-(sup |2’ ™).

Proof: The map xe I-h ~'o(h(x,) — g(x))is a contrac-
tion from 7 into 1.

Lemma 2: Let g be a holomorphic map on S, and denote
by |- |, the sup norm on S,. If

max{ |g'|g’ |g|§5nl} <l
then the map 26S; —z + g(z) is one-to-one from S, onto
Sg _ s and the inverse map z'e S, _5—z'+ h(2')e S satis-
fies |A |, _s<|g|,.

Proof: Injectivity is plain from
Iz +g(2) ~ [z +8()|>[z—2|(1 — |g'|s), zzeS,.
To prove surjectivity let we S, _ ;. Then the map
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(A7)

(A8)

(A9)

(A10)

(All)

with j=jo,jo + 1,

(A12)

(A13)

ot 1 Kl " &
k PeCFR ;' + k$OP, + Z kPN 4+ kD)P + Z (PVY,, 0" + Z (P,
m=2

¥,00) " <E— 6. (Al4)

o
m=n¥

zeB={2eC :|z — w| <6} ->w — g(2)
is a contraction from B into itself.

Lemma 3: If €¢'a>16 then &*(x + xo) ~'>a for any
x>log a + 2log(x, +log a).

The proof is elementary and is omitted.

APPENDIX C: ON THE CHOICE OF THE ANALYTICITY-
LOSS SEQUENCE {5,)

The size of the perturbation f; , | at the (j + 1)th stage
is given inductively by P, , ; = P}(0; + ;N *]), N,_ be-
ing a logarithmic correction in P, _,. If we disregard such
logarithmic correction we get P, , , =P?o,.

Let us assume, for the moment, that £, < 1. Then 6«1
for each j and

0;=s56,", some s>0 and neZ,
so that

: J .
P2y PRSPt L
P \=Pjo;=P}s6 "=P} [1«Gs8c™m*
0

From this one deduces that the best (up to the above loga-
rithmic corrections) choice of {8 j} is the one that minimizes
the functional

oo
— 1/2%
I 6
0

over sequences satisfying 26, = &, Thisis an easy minimum
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problem that can be immediately solved using Lagrange
multipliers obtaining

6k — § 0/2k+ 1

Now, if £,>>1, one can replace the auxiliary parameters
« of Sec. V by o' ={et, /,608,...8; }, where ' and &,,...,5;
are new auxiliary parameters such that

£'=¢, —_’2'5, <l.

j=0
Then, forj >/ one can repeat the above argument and
set8;, ,,=&'/2 for k> 1.
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