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Several aspects of the general and constructive spectral theory of quasiperiodic Schrédinger
operators in one dimension are discussed. An explicit formula for the absolutely continuous
(a.c.) spectral densities that yields an immediate proof of the fact that the Kolmogorov—-
Arnold-Moser (KAM) spectrum constructed by Dinaburg, Sinai, and Riissmann [ Funkt.
Anal. Prilozen. 9, 8 (1975); Ann. Acad. Sci. 357, 90 (1980) ] is a subset of the a.c. spectrum is
provided. Some quasiperiodicity properties of the Deift-Simon a.c. eigenfunctions are proved,
namely, that the normalized phase of such eigenfunctions is a quasiperiodic distribution. In the

constructive part the Dinaburg—Sinai-Riissmann theory is extended to quasiperiodic
perturbations of periodic Schrédinger operators using a KAM Hamiltonian formalism based
on a new treatment of perturbations of harmonic oscillators. Particular attention is devoted to
the dependence upon the eigenvalue parameter and a complete control of KAM objects is

achieved using the notion of Whitney smoothness.

I. INTRODUCTION

Let L, be a quasiperiodic Schrodinger operator in one
dimension, !¢

d2
La EL(UG)E —d_x—2+ Vg (x),

v, (x)=WV(T,0), T,0=0+ wx,

where xeR, 8eT?=R"/27Z°, weR’ is a rationally indepen-
dent vector and ¥ is a real function defined on T In this
paper we discuss, from two points of view, the absolutely
continuous (a.c.) spectrum of L. First, continuing the anal-
ysisin Refs. 2, 3, and 7, we study some general problems such
as characterization almost everywhere (with respect to
Lebesgue measure on R and/or Haar measure on T¢) of the
a.c. eigenfunctions and of spectral densities. Then we turn to
the explicit construction of many (in the sense of Lebesgue
measure) quasiperiodic a.c. eigenfunctions for a special class
of potentials ». This second part should be regarded as a
refinement of the theory in Refs. 8 and S.

Our results in the general part are described by the fol-
lowing three theorems. Before describing them let us recall a
few definitions. The spectral class measure du’ is given by
one of the following mutually equivalent measures:

d/uez 3 a,duj, a,>0, 4,eCg,
- n

where 2a, < «, {#,} is an L >-dense set of C = functions
with compact support and du; denotes the standard spec-
tral measure of L, based upon ¢,. Now let du’ . be the a.c.
part of du® in the Jordan-Lebesgue decomposition. The es-
sential support S of duf . is uniquely determined (modulo
sets of zero Lebesgue measure) by the requirement that if
ACSis also a support for du? . then meas(S — 4) = 0. Fin-
ally, let £, (x,6,E) be the solution of

Lof=Ef (1.1)
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with Im E #0, feL*(R, ), R, =(0,0), R_=(— »,0).
Denoting by d /dE the Radon-Nicodym derivative with re-
spect to Lebesgue measure, by [g,h] the Wronskian
gh' —g'h=g(dh /dx) — (dg/dx)h and by (4, f) the L?
product fg ¢ (x)f(x)dx, we have the following theorem.
Theorem 1.1: For any ¢eC &, for a.c. (6,E)eT? XS,

oue. _ 1 (3 + (4, )]
dE  2mi 5 f1
where f(x,0,E) =lim,,, f (x,0,E + i€) and i[f, f] > 0.
Throughout this paper a fundamental role is played by
Bloch waves (or Floquet solutions). These are eigensolu-
tions of the form ¢ = ¢'#*y with SeR and y a quasiperiodic
function with basic frequencies w.
Theorem 1.2: Let JCR be a set of positive Lebesgue
measure and assume that for a.e. (6,E) in T X[/ there exists

a Bloch wave ¢. Then ICS, [¢,1] 50 and, for any ¢eC &,

Yhoe _ 1 |G+ |G
1271

14

dE 2r
(6,E) a.e. in T¢ X I.

In Ref. 3 Deift and Simon showed that, for a.e. (6,E) in
T¢ XS there exist eigensolutions g = /l**+ #™lp(x), with
[g.€] = — 2iand a being the Johnson~Moser rotation num-
ber,”!° such that r is an L? quasiperiodic function, i.c.,
r(x,6,E) = R(T.0) with R(-,E)eL?(T). However, no
quasiperiodicity properties were proved for the phase 8.

Now assume that o satisfies a Diophantine condition like

o=

2 1
Za)ivi ‘ P
=g clvl”

|‘V|EZ|W|

(any ve€Z¢ — 0, some ¢,7>0), (1.2)

and denote by

OE[CDGC“’(T”'): f‘b = 0}.
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Then Bis an (@) quasiperiodic distribution on 0in the sense
of the following theorem.

Theorem 1.3: There exists a distribution B on C = (T¢)
such that for any $<0,

(B,®) =lim L f B(.6.EY®(T,0)dy,
0

xteo X

(6,E) a.e. in T X S. (1.3)

Remark 1.4: Equation (1.3) determines B uniquely on
0. Taking ® = ™%, (1.3) shows that all the quasiperiodic
Fourier coefﬁments Lw1th v£0) of B are well defined and
are equal to B, e™®, B, = (B,e"°).

Remark 1.5: Theorems 1.1 and 1.2 can be trivially ex-
tended to the case of almost periodic Schrodinger operators.
Theorem 1.3 is false if w fails to satisfy any Diophantine
condition, i.e., if w is a “Liouville vector”’; compare Ref. 1.

The problem of characterizing the a.c. spectrum in
terms of genuine Bloch waves remains open but we will see
that it is closely related to the analysis of regularity proper-
ties of a nonlinear partial differential equation (PDE) on T?,
namely,

1

D? F=-}—7-3-+(V—E)F, F(@)>0 forae. 8, (1.4)

where

D, = Z(a

i=1
Equation (1.4) w111 be shown to be satisfied, for a.e. Ein S,
by R(,E) in the sense of distributions.

We pass now to the constructive part of the theory. The
operators that we shall consider are of the form
LO=L(wv+ew), v+ ew=V(ox)+ eW(wx,...0.%),
with ¥V, W real analytic on, respectively, T, T~ ' and € a posi-
tive number. The vector w is assumed to satisfy a generalized
Diophantine condition

@ v[>1/cQ(|v]), veZ®—0, c>0 (fixed), (1.5)

where Q(r)>#? ~! is a monotone function growing not too
fast as 7t o (see Ref. 9). Then, employing a Kolmogorov—
Armold-Moser (KAM) technique,’'~!*> we will construct,
for small ce/«, a subset E© of o(L ®)No(L ) and for
each EeE © a Bloch wave e*y(wx) with (a,w) rationally
independent and y (8) analytic on T“. The parameter « is a
function of E asymptotic toE and, for some a,b > 0 and for
any E, > 0, the set E'® satisfies

meas{{g(L?) — E®)N[E4 )}

<_a_( |v|log log Q.(|v|))
W THE, Qv .

(1.6)

The connection with the general part is then given by
Theorem 1.2 which yields immediately E‘® Co, . (L ©).

Before constructing such Bloch waves we will explain
that the existence of quasiperiodic eigenfunctions corre-
sponds to quasiperiodic Hamiltonian flows on (d + 1)-di-
mensional tori; see, also, Refs. 14 and 15. In general, to any
operator L, (u), u(x)=U(T,6,), we can associate the
(d + 1)-dimensional Hamiltonian
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H,(p,B.q,6; E)Y=p*/2 + "B+ (¢°/2)[E — U(6)],

where (p,B)eR?*! denote the generalized momenta and
(¢,8)€R X T denote the generalized coordinates. It is readi-
ly checked that the evolution equation for ¢ [ with initial data
g(0), p(0)=4'(0), 8(0)=4,] is nothing but the eigenvalue
equation L, g =Eq. What we will see is that, for
EcE'®, H,,, ., is canonically conjugate to a system of har-
monic oscillators with Hamiltonian a4, + 0,4, + -
+ wyA, in action-angle variables (4,0)eR, X RY X T¢* 1.
This fact, from one side, clarifies the use of KAM techniques
in the theory of quasiperiodic Schrédinger operators and, on
the other side, gives a rather natural interpretation of spec-
tral quantities such as a.c. eigenfunctions and the rotation
number in terms of Hamiltonian objects. Actually we believe
that the Hamiltonian H, 1is integrable whenever
Eeo, . (L(u)).

In our treatment of these matters we refine some aspects
of the Dinaburg-Sinai~Riissmann theory. For example, we
will see that KAM objects, such as rotation number and
Bloch waves constructed on E‘© are C = functions of EcE‘®
in the sense of Whitney.!®'® Exploiting this fact it will be
easy to give a self-contained and complete description of the
KAM spectrum E'© that was still missing in the literature.

Since the basic KAM techniques are by now well known
(see, e.g., Ref. 19), most of the proofs in this second part will
be outlined without going into detail.

The content of the rest of the paper is the following: Sec.
I1, proof of Theorem 1.1; Sec. III, Bloch waves; Sec. IV,
weak Bloch waves; Sec. V, periodic Schrodinger operators as
harmonic oscillators; Sec. VI, quasiperiodic perturbations;
Sec. VII, KAM Bloch waves; Sec. VIII, Whitney smooth-
ness; Sec. IX, structure of KAM spectra; Appendix A: on a
new condition in analytic KAM; Appendix B: Moser-Deift—
Simon inequality on KAM spectra.

Il. PROOF OF THEOREM 1.1
We need the following facts:

dlueﬁ,a.c.
dE

(a) =lig)1 Im(RE+ie¢’¢)’

Re=(L—-E)7,
for any ¢cC 7 and a.e. Ein S.
(b) Re (xp)=g(x3;E)
= X)W/ fe, /-], ImE #0,

for x>y and symmetrically forx <y (f, arethe eigenfunc-
tions introduced in Sec. I).

(c) f, (x,0,E) = const( f,(x,6,E)
th, (6.E)f,(x,6E)),
where f,, f, solve (1.1) with £,(0) =/} (0) =1, f;(0)
=/,(0) =0and 4 _ are, for every 6, the Herglotz functions
defined by lim,_ |  Ffi/f;. We recall that a function # is

Herglotz if it maps holomorphically the open upper half
plane C__ into itself. We will denote the boundary value of 4,
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existing a.e.on R, by the same symbol. For more information
see, e.g., Ref. 20.
(d) Fora.e. EinR,

— lim Ref h, (6.E + ie)db
Td

€10
=y(E) =y, (E/0)
= (highest) Lyapunov exponent for L, — E
and
S={E:y(E)=0}C{E:h,= —h_,Imh, >0}

Equation (a) is a simple consequence of Stone’s formula
(see, e.g., Ref. 21). Equations (b) and (c) are the main
results of Weyl’s limit-point theory (see Ref. 22). Equation
(d) is proved in Ref. 2.

Notice that, fora.e. E, f, (x,6,E + i€) converge, as €10,
uniformly on compact x sets. Also, fora.e. Ein S, (d) shows
that /. =7F_with [ f,,f_1= —2iIm k. These observa-
tions together with (a) and the evaluation

. - _—_]-.— — 2
Re ff¢<x>¢(y>¢(x>¢(y)dx »=Li@or

valid for any ¥eC(R) and ¢eC§ (R), make Theorem 1.1
plain.

ill. BLOCH WAVES

In this section we prove some elementary properties of
(genuine=smooth) Bloch waves and Theorem 1.2.

Lemma 3.1: (i) If ¢(x) = &'y (wx) is a Bloch wave
for L, — E then ¢(x,0) =e'#y(T,0) is a Bloch wave for
L,—E.

(ii) Let I be as in Theorem 1.2. Then ¥ can be written
(a.e. on I) in the form ¢**y(7T,0) with (a,w) rationally
independent.

(iii) If ¥ = e™**y(wx) is a Bloch wave (a,w) rationally
independent, then [1,1] 0 and min_, |#| > 0.

Proof: Since ¥ solves (1.1) with 6 = 0, y satisfies

D2y +2ipBD x+(E—-B*—Ny=0 (3.1

at @ = wx. But because {0 = wx: xeR} is dense in T¢, (3.1)
holds identically on T. In particular, it holds at § + wx and
(i) is proved. _

Property (ii) follows easily from (i) and the fact that
EeR-a(E)eR,, is an increasing function, constant only on
spectral gaps where it takes value in {w*v/2,v€Z%}; see Ref.
7.

If [¢,¥] =0 we would have y = ae~***¥, for some
aeC. But two quasiperiodic functions cannot be equal unless
they have the same basic frequencies; see, e.g., Ref. 23, Thus
[4,¥] #0. If || were not bounded away from 0, there would
exist x, 1 oo for which ¥(wx,) -0, but this would imply
[4,%] = 0, a contradiction. O

Proof of Theorem 1.2: From the above lemma [#,3] %0

(a.e.) on I. Thus the Lyapunov number vanishes a.e. on
and IC S by Kotani’s results [see (d), Sec. II]. Now fix E
(a.e.) in ] and let g be the Deift-Simon function described in
Sec. 1. Then, for a.e. 8 and all x,
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g(x,0) = ap(x,6) + byp(x,0)

for some complex numbers ¢,b depending on 6. Taking abso-
lute values one obtains

R*(T.0) + cly(T.0)?
— dGZiaxXZ( Tx 0) + 28 — 2iax/1—/2( Tx 0) ,

wherec = — (|a]? + |b |?) andd = 2ab. Now takey > Oand
veZ®. Multiply the above equation by (1/y)exp[ — 2i(z
+ ax) — iT, 6-v] and integrate it from O to y with respect
to x. Since R ? and |y|* belong to L '(T¢) we can use the
ergodic theorem to let yt o and conclude

0=de~%*(¢?%),, forall v, a.e. (£,0)eT¢+",

where (°), denote Fourier coefficients. This shows that
d =0, i.e., either a =0 or b = 0. Theorem 1.2 follows now
from Theorem 1.1. O

IV. WEAK BLOCH WAVES

Here we discuss the a.c. Deift-Simon eigenfunctions g
on S and prove Theorem 1.3. Henceforth we will often omit
the sentence (E,0) a.e. in S X T

Since [g.8] = — 2i, r(x) never vanishes and the nor-
malized phase 8 is a well-defined function from R—R. The
Schrodinger equation for g implies

r'=1/r + (v, — E)r, (4.1)

B' =1/ —a, (4.2)
with initial data r(0) = R(8), r(0)=D,R(8), and
B(0) = 0 (mod 27). [ The initial value for £ is explained by
the identification g(x,6,E) = R(8)f(x,0,E), cf. Ref. 3].
Deift and Simon in Ref. 3, extending to .S a formula by John-
son and Moser, proved

im (1o Lo

xteo X Jo r2 Td R 2

This, together with the Schrodinger equation for g, yields
easily the finiteness of

— x - ! -1
fim if g and T ST
X Jo X

Our next goal is to show that (4.1) and (4.3) imply R ~eL!
and that R is a distributional solution of (1.4). Let
0<PeC »(T?) and write ¢(x) = ¢(x,0) =P(T,6). Then
by the ergodic theorem, (4.4) and (4.1),

a. (4.3)

(4.4)

f RD24 = lim -
Td

Xt X

[ rao0ze1T,000
0
= lim L fx rg”
X Jo
= tim L 0p15 ~ 1783 + [ 78]
X o]

.1 (1
=lim— | {= - .
im . J;( + (v, E)r)qi
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Another application of the ergodic theorem to positive ran-
dom variables shows

.1 (4 ]
I _f_=f 2
1m.x o 7 pa R3
But then from (4.5) we conclude, a fortiori, that
—-=f(E V)R<I>+f RD:®<w. (46)
¢ R 3

In particular, by taking =1 we get

1
—=| (E-WNR.
L«*R’ J;d( &

Now we can repeat the computation in (4.5) with an arbi-
trary ®eC = (T?) and get back (4.6). This is the same as
saying the R is a weak solution of (1.4).

Next we turn to the proof of Theorem 1.3. Since w satis-
fies (1.2),

B(H)E z ._I'.(EI?) eiy-ﬂ

v£0 IV
isseen tobe adistributionon C © (T9). Infact,ift>74+d /2,

S 1B, (1 + vw)*
1 :

v#£0
1 (__.1_) 1
& lovP AR, (1 +vv)

A7) 255

shows that BeH _,(T¢). Now denote by D ;! the linear
operator

4.7

~

P, .
D;:®e0-D ;' 0=Y — %0,

ve£0 iV
Then by (4.3), the ergodic theorem, and (4.2) we have
(B,®) =(B,D, D;'®)
= —(D,B,D;'®)
= —(1/R*—a,D;'®)

S[CE

.1 (1 )—-———_,
—lim— [ (== —a) D T ®(T,0)d
lme;(Rz * (1,00dy

i

- _um_l_j B' Do TE(T,0)dy
X Jo
= —lim ~[gD, (T, ];
X
+1im—1~J BB(T,6)
X Jo

=1imif BB(T,6),
X Jo

in which the last equality holds because o is the rotation
number of g so that lim(1/x) B(x) =0. ]

To connect the existence of smooth Bloch waves with
regularity properties for (1.4), assume that V is of class
C = ('T“) and that R is a smooth solution of (1.4). Then, by
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the equation, min R >0 and 1/R 2 — a belongs to C = (T9).
Thus also B, as defined above, is 2 smooth function and we
can identify 8(x,0) with the quasiperiodic solution of (4.2)
B(T,0) — B(8). Unfortunately, regularity properties for
such nonlinear equations on tori are difficult to obtain by
general PDE methods. (See, however, Ref. 24.)

V. PERIODIC SCHRODINGER OPERATORS AS
HARMONIC OSCILLATORS

From now on we will be concerned with the construc-
tive part of the theory. In this section we look at periodic
Schrédinger operators L © from the Hamiltonian point of
view described in the Introductlon We show briefly that for
each E in the interior & of the spectrum o of L ©, the Hamil-
tonian H, of Sec. 1 is conjugated to a.d,+ w4,
(ApAd,)eR . X R, ay= rotation number for L ¥ — E. (We
learned about the integrability of H, in Ref. 15.) For more
details on this and the followmg sections see Ref. 25.

From Floquet theory®® one knows that, for each Eecr,
there exist two independent Bloch waves f;, f, of the form

So(x)=e""y(@x)

eio(2m/w) __f Qr/w)
=f(x) + ! L~ f,(x),
4 FoQu/o,) £
YoeC(T),
with
i - , sin{a,(27/ew,))
k=—[ fo, /ol =Imf{(0) = ——2—- 10
> [ for fol fo(0) T nlon
Now define
Q(0,,0,)=Re F,(6,,0,), P(8,0,)=ReDF,(6,9),),
where
FO(BO’GI) Eeiw" - (a"/“")g‘fo(al/w, ), (60,0] )ETZ,
ad a
D=
%36, T 36,

One recognizes easily that x — Fo (8, + agx,8, + @wx) is
an eigensolution for L(v, ) and that

d

—;;—Fo(eo + aox,0, + wx) = DF(0, + apx,0; + o,x).
Moreover, from
aQ i - i -
Rt U = e > = 03
390 ano 2[ff] z[ﬁ;fo] K>

it follows readily that the map

(7.B,80,0,)€R . X RX T (p,B,q,0,)
E(rp(eo,el),B,rQ(go,el),91)
is a diffeomorphism onto the phase space of H,, ie,

R¥*%xT — (O,R,0,T). Now we can construct a diffeomor-
phism

C: (p,B,g,0,) — (40,4,,60,0,)€R , XRXT?
by setting 4, = (r*/2)x,

aQ p ap)
A, =B ( )
=2+ 2 \96, Qael
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Straightforward computations will show first that
dpAdq + dBAdB, =dA,N\d6, + d4,\db,, so that C is
canonical, and then

(P*72) + 0B+ (§°/2)(E — V) = apd, + a,4,,

confirming what we claimed above.

Remark 5.1: Even for ¥ merely continuous, a,, f;, /3
and « are real analytic functions of E.*® Furthermore, «,
maps o(L ) onto [0, ), dao/dE >0 on & and, setting 9
={E}<ES< -}, ai=ay(E) = hw,/2 for some in-
teger 4. Now denoting by e,(a), aeR ., a#a?, the inverse
function of a,, one can easily show that, if p < w,/4, ¢, ad-
mits a holomorphic extension to

D(p; Ay)= U {aeC: |[a — a| <p},
€A,

with
AoEkgo[ag + P804 -rl
This will be of later use.

VI. QUASIPERIODIC PERTURBATIONS

Now let € > 0. Under the canonical transformation
(p,B),...B41,4,0,,...,6,)€R?+ 2 X T¢ — (0,R%0,T%) - (4,6)

= (A 44,00,01,.-,.8, ) EM =R, XR? X T4+ 1,
(AO’A 1’00’91 ) EC(P»B:Qael ) s Ai = Bh l>2

0
(CasinSec. V), the Hamiltonian H,,, ., (*;E), Eeo (L ),
takes the form

H, (A,6,E)=0"4 + eA,F(9)
with

V= (apw) . F()= — [Q 2(00:01 Y/ k] W(0,--.,0,).

In this section we describe an iterative scheme that will
allow us to integrate H, for special values of the parameter E
and small €. Henceforth, it will be more convenient to con-
sider H_ parametrized by the rotation number a,=a rather
than by the eigenvalue E. It will be only later that we shall
express our result directly in terms of eigenvalues. We start
by considering the jth order analog of H.. Let j>0 and, for
(A4,0)eM, let

HY(A4,8,0,6)=0" (a;e) 4 + ezleF W(8sa,e),

0V = (0§05 0n0y).

Assume that 0§’ and F ©, as functions of @, are holomorphic
in

D,=D(p;AV)= UU){aEC: la — ao|<p;}
ageAd

for some AY CR. Also, as a function of 8eR?* !, F© is re-
quired to have holomorphic extension to

S;=87+1(g)={0eC+ " [Im6,|<§;}, >0,
with

» = D<M,
IF L=, sup [FOI<M,

independently of €. Notice that because of the analyticity
assumptions on ¥V and W, H_{4,0;e,(a)), A, as in Remark
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5.1, satisfies the above hypothesis, thus we can set H @=H..
Now, let §; <§;/2 and let us define the main recursive ob-
Jects

Es)=1+ ; [v|Q(|v])e =™, s>0,
vezd+1_o
N,=2+'57"1oge™",
FQ (6)= j;‘-g) e,
|v] > N;
do§’

da

Pit1 Emin[(ZchQ(Nj)igj )—1, %] ,

§j+15§j—25j,

A Y+ ={geA?: |09 (@) v|>1/eQ(|v)),
veZd+1_Q, |VI<1V1'}!

D;,=D(p;, ;AYTD),

SJ‘+IESd+l(§j+1)-

Lemma 6.1 (Inductive Lemma): If acAY+?V and € is
small enough, i.e.,

K\£(8)6 ' eM,E2<1,
where K| is a universal constant, then the function

(4',0)eEM~4 "0 + €40, (8;a,€),
FY

¢jE —‘%—.—)—'e
o<y, — iy

(6.1)

iv-8

is the generating function of a surjective canonical transfor-
mation, (4,0)-(4',0') =(4'(4,0),6'(8)), that conju-
gates H V¥ (4,0) to

HU+VY(4'0"a,€)
=HY4(4",6",6(8"))

=0t g+ &7 A5 FU+D(0%a,),

where
09t V=(0 + EFP ),
. 3, FP6)
FU+D(g'(9)=—L(8)F (6 R .
@) é"90( ) (0) + =

Furthermore, acAY*V-w{’(@) and (B,a)eR4+!
XAUTD LFU+D(6:g) have holomorphic extensions to,
respectively, D; , , and S;, ; XD, , , with
”F(j+ 1)”§;+ B <K7_C(5j)5j“ d+1) cMJ?E
in which X, is a second universal constant.

Applying this Lemma infinitely many times one can in-
tegrate H, for acA‘>’=N;2 (AQ.

Theorem 6.2: Let {5;} be such that 22 , §, <£ /2, let
acA'™’ and let € verify
(K\/K,)er<1

with

7=KeM,, Y= ﬁ [£(8)8 @+ 1)]1/2/‘
ji=0

(6.2)

i+ 11

(6.3)
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Then the Hamiltonian H © is conjugate to
H(oo)Ea)(oo).A’

where 0¢*’ = (w{*’,w) satisfies

clog™ —al<— 3 (er)?,
K, /=%
(6.4)
1 , veZitl—0.
cQ(v))
The (surjective) canonical transformation conjugating
H© to H has the form

(A ”0,)GM_’(A’0)
=(S(8")A",0¢ + €A(84),01,....0 j)EM
with S'a (d + 1) X (d + 1) matrix of the form

|wt=>-v]>

(6.5)

i+e, 0 O - O
€S1 1 0 e 0
€S, o o0 - 1

Moreover, the vector s= (s,...,5; ) and A have holomor-
phic extensions to S+ (£, ), £, =6 — 232, 6, and

max{|s|l¢_.lAll¢, }<(Ki/K;)7.

Remark 6.3: Examples of {4} and Q such that ¥ < e
are displayed in Appendix A.

Remark 6.4: Perturbations of the Hamiltonian of the
form h(A4,0) =@ A were investigated in Refs. 27 and 28 us-
ing Moser’s idea of “modified systems.”?*

Remark 6.5: An easy corollary of Theorem 6.2 is that all
the eigensolutions of L ‘© for EeE‘® =a; ' (A'™!) are quasi-
periodic with basic frequencies (w§*’,w). Also, since all the
transformations involved in the process are close to the iden-
tity it is easy to see that w§™’ coincides with the rotation
number a.

Remark 6.6: From an elementary asymptotic analysis
(E>»1) of the periodic case, one realizes that

I@2|l/K~1/{E so that My~ ||W ||/VE .

Vil. KAM BLOCH WAVES

Even though we already obtained a complete descrip-
tion of the quasiperiodic eigenfunctions of L ‘* for EcE®@, it
is not immediate from the above analysis that such eigen-
functions are of the form ¢*y (wx). Since this representa-
tion is crucial in the application of Theorem 1.2, we proceed
now with a direct construction of Bloch waves for values of E
inaset E© Ca(L @), which a priori need not be identical to
E©.

The eigenvalue equation L ‘“’f = Ef is equivalent to the
first-order system

, 0 1 0 0
y_[V(Gl)—E o]y“W(ez”"’e")[l o]y’

0'=o,
with y = (/,). A fundamental matrix for (7.1) ate =0is
Jo 70]
Y=\, =, as in Sec. V).
£ 7ol o
By setting

(7.1)

2896 J. Math. Phys., Vol. 28, No. 12, December 1887

Y = Te%, TE[. Yol - do |
oo+ @1 X0 — Yo+ @ X0
ia 0
CE[ 0 ],
0 —iq

the system (7.1) becomes, under the change of variable
y=1Tz,

Z2=Cz+¢€Pz, 0'=w (7.2)
with
p (0r-60) [ —ilyo(B)*  —ix3(6))
2% i i|xol?

Notice that PeG,={GeG: tr §..G =0} where G denotes
the ring of matrix-valued functions on T of the form

_l h]

o=[f 4]
Theorem 7.1: If € satisfies the smallness condition
(KI/K2)€T<1, TEszcMo,

where K, and X, are suitable universal constants, then one
can construct a set E® Co(L?) and, for each EcE‘®, a
change of variables z = (I + eU)w, with UeG,, which trans-
forms (7.2) into the trivial system
ia 0
! = s 0 "= .
v 0o - ia] v @
Furthermore, U as a function of 6T admits a holomorphic
extension to S%&_), for a suitable £ >0, with
U]l <(K\/K,)T and a verifies

1

, veZ®—0, EeE®,
cQ(|v))

la — |o-v/2||>

sup |a — a,| <€7/c.
EEE(‘)

Remark 7.2: Above we used the same symbols for quan-
tities that are analogous, but not always identical, to the ones
appearing in Sec. VI.

The proof of this result is based on a scheme very similar
to the one described in Sec. VI: One removes infinitely many
times the order of the perturbation of systems like

, [iaj 0
=0 —ig
by the aid of a change of variable (1 4 e Ui(0))z; 1 =2z
The set E will be given by a; !(A‘=’) where
A =NAY, where as in Sec. V, A® is the positive half-line
minus suitable intervals of length 2p and

AV Y ={aeA?: |a;(a) — w-v/2|>1/cQ(|v)),
veZ?, 0<|v|<N;}

with N; denoting the jth cutoff in the Fourier expansion of
PO,

]zj+62iPU’zj, 0'=w (PYVeG),

Viil. WHITNEY SMOOTHNESS

In this section we study the E dependence of the KAM
limits. Following Ref. 16 we say that a function f ACR—R
belongs to C5, (A) if there exist, on A, functions f;, 0<k<n,
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fo=/, with the following property: For each x,c4 and € >0
there is a §> 0 s.t. if x,x’e{yeA: |y — x,| <8} then
nok S +k (x")

fix)— Y

o  h!

At interior points this definition coincides with the stan-
dard one but the next lemma shows how nontrivial C 5, (A)
functions can arise.

Lemma 8.1: Let ACR, r,10, and {g;} be a sequence of
holomorphic functions on D(r;,A) which are real on A. If

(x —x')" |<elx —x'|"~% (8.1)

217" < o,

then g=Zg; belongs to C'}, (A).
Proof: Since for any k<n

sup | £ <z! I"—g 2Tl ll, 7 < o0,
A | dx* dx* |2 v
we can define
d'g = d'g
dx* dx*

on 4. To check that the d “g/dx* are the Whitney derivatives
of g, let x, x'€A, let s=s(|x —x’|) be such that
r, . 1<|x —x'| <r,, and consider the splitting g = g'*! + g'*!
with g!=3'g,. The lemma follows now from g'leC ~
X (D(r,;A) NR), the inequality

dkg[ﬂ ) 3
2" A"
sup| = +| < ,-g; lllg,ll,,r,
and from lim, _ ;0 $(Jx — X'|) = 0. O

The KAM limits of Secs. VI and VII are exactly of the
above kind. For example,
o> =a+ 3 EFP(),
0

with 7> holomorphic on D( p;;A!*))} and one has the fol-

lowing theorem.
Theorem 8.2: If 2 and {8, } are such that

[1£6)"? < w, (8.2)
j=0
s~ 1
lim 282257 _ (8.3)
Jjtew
and
Z[eMopo“ +(en? S (er)z’N,n(Nj)] <1, (84
=0

then w{=’eC 5 (A=)
The proof follows easily after noticing that (8.4) yields

dog’ 2

_ 1' <=, (8.5)
Digy, A=y | da 3
so that
pi <AN;_ QUN;_)e. (8.6)

For more details see Ref. 25, Sec. 2.6.
Remark 8.3: Whitney smoothness is obviously pre-
served under composition with smooth functions. Thus
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06 (ao(E))
an— l(A(“’)).

Remark 8.4: While a condition analogous to (8.2) ap-
pears in the (analytic) KAM literature,® condition (8.3) is
new. This condition is necessary in order to be able to meet
the smallness condition (8.4) and, as we shall see, to give a
complete description of A‘=’. We also point out that (8.2)
and (8.3) are independent (see Appendix A).

(=a(E)) belongs to C3(E@) E®

IX. STRUCTURE OF KAM SPECTRA

The main theorem in Ref. 16 is that any function
geC 3, (A4), A closed, can be extended to a C"(R) function
which is real analytic on R — A; a simple corollary of this
and of the maximum principle imply
d*g
dx

d*g

| k<n.
b

sup <max
R A
Here we show how to use the above facts in order to give a
precise description of the KAM spectrum E©.
Denote by R the “resonant” set of a = a,(E) for which
we cannot apply the KAM scheme,

-]
R=A9? _A=U U RY,
=0 ez
0<lv|<Nj

where for 0 < |v|<N,,
RY={aeA?: |a;(a) —wv/2| <1/cQ(|v])}.

A condition analogous to (8.4) implies easily that the Whit-
ney extension of the a;’s satisfy

da; ‘ 2
sup[— — 1| <—.
Rp da 3
Thus defining

g, =a; (wv/2),
we see that

RO CIP={aeA”: |a —aq,,|<r}.
This completes the description of A‘*’ and hence, via the
smooth map a; ™', of E©.

Finally it is not difficult to show that?*

O19c{la—a,|<r}, r= 7 + log log 3Q(|v|)

i=o0 Qv
and a, ~w-v/2. These facts together with the asymptotic
evaluation ay(E) ~E yields (1.4).

r,=3/ceQ2(|v]),
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APPENDIX A: ON A NEW CONDITION IN ANALYTIC
KAM

Here we show that conditions (8.2) and (8.3) are inde-
pendent as announced in Remark 8.4. To do this we give two
examples.

(1) Let )(r) = r" for some m. Then

(8.2) @2%10g5j"1< o,

(8.3) &(1/%)log 6j“—>0(jToo).
(2) Let

_ exp(r/logr), r>e°,
&r = [Q(e"), 1<r<e’,
(8.2) &6 '/j7 is bounded;
(8.3) <6, /°-0(j1).

In the first example (8.2) is stronger than (8.3) but in
the second one the opposite occurs.

Notice that since Q(r)>r* "' (8.2) implies easily the
finiteness of .

APPENDIX B: MOSER-DEIFT-SIMON INEQUALITY ON
KAM SPECTRA

Deift-Simon,> extending an idea of Moser,*® showed
that, for general, almost periodic potentials,

2 _ 2 _
lim01(E+.€) a’(E 6)>1,
€10 2€
Here we want to discuss briefly the constructive version of

(B1) for L ©, namely, we sketch the proof of

d
E a } 1
Without loss of generality we can assume that ﬁ’o =0
and, to simplify the Hamiltonian formalism, we consider
V=0 in which case H.,p, =JVEA, + 0,4, + -+ + 0,4,

— (e/VE )A, sin 8, W(6,,...,6,). Then we have
a(E) =VE + eF + &F" + 0(e*)

with F9= — (sin” ,/VE ) W(6,,...,0,) and F" as in the
inductive Lemma 6.1. Here W, =0 implies F;, = 0. Now,
setting @ = (@,,...,@, ), a computation shows that

E ae in S. (B1)

EcE®, = Whitney derivative. (B2)

i;v(()l) =f aq’oF(o) + O(e)

;v(o) )
= —_ _|F9 4+ 0(e)
J‘(O<§<ND - iw(O)'
2
2 ;‘I +0(e),
2 pert-1 (1)
|| <No
so that
da _ aiE LA
dE 2 v, [(pa)*—4E]?
+——1—0(e3).
JVE
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The smallness of the parameter €7 confirms (B2).
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