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1. Introduction

Let us consider the following Hamiltonian:

H : Tn+1×Rn+1→R, H(x,X)= h(X)+ F(x,X),(∗)

whereTn+1= Rn+1

2πZn+1 is the(n+1)-dimensional torus;h is an analytic function andF is analytic
and of small norm;(x,X) are standard symplectic variables. Usually,H is referred to as a quasi-
integrable Hamiltonian since it is a small perturbation ofh(X) whose motions are very simple to
integrate. The aim of perturbation theory is to understand the orbit structure ofH , particularly
with regard to stability; for example one would like to provide bounds on|X(t)−X(0)| for t as
large as possible. In some problems of celestial mechanics, for instance, the variableX is related
to the length of the semiaxes of the ellipses on which the planets run and strong oscillations
of this variable could lead to collisions; in other models,X is related to the inclination of a
planet’s axis and determines which part of it receives the most light from the sun. Under certain
conditions onh, there are two well-known theorems dealing with the stability ofH , namely the
KAM and Nekhorocheff theorems. Grossly, the KAM theorem asserts that, except for a set of
small measure (of order‖F‖1/2) of initial conditions,X(t) remains for all timest in a ‖F‖1/2-
neighbourhood ofX(0). The Nekhorocheff theorem asserts that, for all initial conditions,X(t)

remains close toX(0) (to order‖F‖a ) for all times not exceeding expD/‖F‖b , wherea, b and
D are positive constants depending only onh and on the dimensionn.
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One would like to know whether these theorems are sharp; a simpler problem is to find
perturbationsF of arbitrarily small norm admitting orbits which satisfy, for someT > 0,∣∣X(T )−X(0)∣∣> c,(∗∗)

wherec is a positive constant independent ofF . There is a small class of analytic examples
where(∗∗) has been proven. The first example was given in [1]; since [10] (where a theory
showing the existence of diffusion in general “a-priori unstable systems” is presented1 several
generalizations have appeared; we quote, in particular, [13,14,5]. The aim of this paper is to
provide a variational method, based on Mather theory, apt to give bounds from above on the
“diffusion time”, i.e. the least time for which(∗∗) holds; in particular we consider the examples
given in the quoted references and prove upper bounds on the diffusion time for them.

We will consider the following five families of Hamiltonians:

H(Q,q, I,p)= 1

2
|I |2+ 1

2
p2+ (cos(q)− 1

)+ εf (Q,q),(CG)

(Q, I) ∈ Tn ×Rn, (q,p) ∈ T1×R1,

H(Q,q, I,p)= 〈ω, I 〉 + 1

2
p2+ (cos(q)− 1

)+ εf (Q,q),(G)

(Q, I) ∈ Tn ×Rn, (q,p) ∈ T1×R1,

H(Q,q, I,p)=√ηΩ1I1+ η I
2
1

2
+ η−1/2Ω2I2(GGM)

+ 1

2
p2+ (cos(q)− 1

)+ εf (Q1,Q2, q),

(Q1,Q2, I1, I2) ∈ T2×R2, (q,p) ∈ T1×R1, η > 0,

H(Q,q, I,p)= ε〈ω, I 〉 + 1

2
p2+ εd(cos(q)− 1

)+ εd ′f (Q,q),(B1)

(Q, I) ∈ Tn ×Rn, (q,p) ∈ T1×R1, 16 d 6 2, d ′ > 3+ d/2, ε > 0,

H(Q,q, I,p)= ε1

2
|I |2+ 1

2
p2+ εd(cos(q)− 1

)+ εd ′f (Q,q),(B2)

(Q, I) ∈ Tn ×Rn, (q,p) ∈ T1×R1, 16 d 6 2, d ′ > 3+ d/2, ε > 0,

where〈·, ·〉 and| · | denote respectively the standard inner product and norm inRn; f is a suitable
trigonometric polynomial; the authors above usually choose

f (Q,q)=
n∑
i=0

ai cos(Qi + q), ai 6= 0 ,∀i,
n∑
i=0

|ai |6 1.(1)

1 Roughly speaking, “a-priori unstable systems” are nearly-integrable Hamiltonian systems, the integrable part of
which carries separatrices. We remind that some flaws have been detected in [10] (see theErratumin [10]). Obviously we
are referring here to those parts of [10] known to be correct: in particular the general analysis for a-priori unstable systems,
i.e., §1 through §8 of [10] (in §8 there is a minor mistake concerning the quantitative treatment of the construction of
diffusing orbit: such mistake has been corrected, for example, in [11]).
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Since we want to use their perturbation results,f will satisfy (1) throughout the paper.
Some of the systems above represent simplified models of some Hamiltonians of celestial

mechanics; although none of them are in the form(∗) they are considered as a test ground for
perturbation theory; for a full account of their origin and properties we refer the reader to the
papers where these systems were introduced, [10,9,13,14] and [5]. We call(CG) the a priori
unstablesystem,(G) the isochronoussystem,(GGM) the three time scalessystem,(B1) the
linear degeneratesystem, and(B2) thequadratic degeneratesystem. We observe that for certain
values of the parametersd andd ′ (B1) and(B2) coincide after rescaling with(CG) and(G). We
note that(CG) includes [1] as a particular case; see also [3] and [4] for related results.

We note that these systems consist in rotators coupled with a pendulum. The variables of
the pendulum are the canonically conjugated coordinatesp andq . The variables of the rotators
are the canonically conjugated coordinatesI andQ, and we call them “actions” and “angles”,
respectively.

If ε = 0, the tori{I = const, q = p = 0} are preserved by the Hamiltonian flow; it is easy to
see that they have(n+ 1)-dimensional stable and unstable manifolds given by{I = const} times
the stable and unstable manifolds of the pendulum. Whenε 6= 0 these manifolds are perturbed
and the stable manifold of one torus can intersect the unstable manifold of another torus. The
proof of this can be very hard and much literature has been spawned by this problem; we will
use the results of [10,9,5,13], and [14] which show that, for anyf andε 6= 0 small, each of the
systems above has a family of invariant KAM tori of codimension 1,τ1, . . . , τN ; on eachτi the
flow is conjugated to a rotation of frequencyωi , with ωi satisfying a diophantine condition of
the type: ∣∣〈ωi, k〉∣∣> C

|k|Ξ ∀k ∈ Zn \ {0}.
The explicit value of the constantsC andΞ is stated in Proposition 1. Eachτi has an unstable
manifold (christened “whisker” in [1]) which, iff satisfies (1), intersects transversally the
stable manifold ofτi+1; τ1 andτN are at distance of order (at least) 1. Since the intersection
is transversal, an angle between the two manifolds can be defined; this is commonly known as
the “splitting” and its magnitude affects the timeT in (∗∗). An easy and general proof of the
existence of an orbit satisfying(∗∗) which covers the cases considered here is in [11]: the aim of
this paper is to obtain, using Mather theory, good bounds on the diffusion timeT . We remark that
in all these examples the splitting between stable and unstable manifold is known and that our
estimates on the “diffusion time”T arepolynomialin the splitting. As a side remark this shows
that the version of Nekhorocheff theorem given in [5] is optimal. Our result is the following
theorem, the proof of which is presented at the end of Section 1. Before stating it we note that the
idea of using Mather theory in this context goes back at least to Bolotin, whose aim in [6] was to
find homoclinics to a single invariant torus. Some of our Hamiltonians have also been considered
by Cresson ([12]) who, by a different method, obtains a diffusion time polynomial in the splitting.
We do not enter into further discussions on the literature: first, because it is enormous; second,
because it is already available in the very good survey [17].

THEOREM 1. – (i) LetH be as in(CG) and letf be as in(1). Then for someD > 0 and for
all ε 6= 0 small enough there are orbits ofH whose energy is bounded independently onε and
such that: ∣∣I (T )− I (0)∣∣> 1

D
, 0< T <

D

εC1+2Ξ+1
.

Here, as in the following,Ξ , D andC1 are positive constants, not depending onε; Ξ andC1
will be defined more precisely in Proposition1 below.
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(ii) LetH be as in(G) and letf be as in(1); let ω be such that:

∣∣〈ω,k〉∣∣> C

|k|Ξ , ∀k ∈ Zn \ {0}.

Then for someD > 0 and for allε 6= small enough there are orbits ofH whose energy is bounded
independently onε and such that:

∣∣I (T )− I (0)∣∣> 1

D
, 0< T <

D

ε2Ξ+1
.

(iii) LetH be as in(GGM) and letf be as in(1); let g,J,Ω1,Ω2> 0; then, for someD > 0,
for all η 6= 0 small enough and forε 6= satisfying|ε|6 ε0=O(η8) it is possible to find an orbit
ofH whose energy is bounded independently onε and such that:

∣∣I (T )− I (0)∣∣> 1

D
, 0< T <

Dε2

ηDΞe−D/
√
ε
.

(iv) LetH be as in(B1) or (B2) and letf be as in(1). Then for someD > 0 and for allε 6= 0
small enough there is an orbit ofH whose energy is bounded independently onε and satisfying

∣∣I (T )− I (0)∣∣> 1

D
, 0< T 6 D

εC1+(2Ξ+1)(2d ′−1−d/2) ,

whereΞ andC1 are positive constants defined in Proposition1 below.

We spend a few words on the proof, which is an almost immediate application of Mather
theory. Our first step is to recall (Proposition 1) all the results of the above-mentioned papers
regarding the conservation of the KAM tori, their “whiskers” and the “splitting”; we translate
these perturbative results in the language of the calculus of variations obtaining that some
homoclinic orbits to an invariant torus are nondegenerate minima of the action functional. The
diffusion orbit is built in Proposition 2 as a local minimum of the action: it is close to a homoclinic
to the first invariant torus on an interval[0, T1], to a homoclinic to the second torus on[T1, T2],
etc. This approach is similar to the one of Hadamard for the geodesic flow on manifolds of
negative curvature; it depends strongly on the fact the the global minima are nondegenerate. The
right notion of nondeneracy has been defined in [19]; in our case it boils down to the fact that the
Melnikoff function has a nondegenerate minimum. The main advantage of this approach is that,
once the statements about stable and unstable manifolds are translated into variational language,
the proof is a simple application of [19].

2. The variational setting

We will prove Theorem 1 by a straightforward application of Mather theory ([18,19]); no other
work is needed than the translation of [10,9,5,13] and [14] into variational terms.

Mather theory is formulated for the Euler–Lagrange flow (from now on the E–L flow) of a
Lagrangian; of our systems, only(CG) and(B2) are Lagrangian. To solve this problem, we will
introduce in(G), (GGM) and(B1) a small kinetic energy,12κ |I |2 and then we will letκ→ 0.
All our estimates will be uniform inκ and we will recover Theorem 1 by a limit argument.

We now introduce a family of Hamiltonians; its form is rather complicate because it is general
enough to include, together with its limiting cases,(CG), (G), (GGM), (B1) and(B2). We shall
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never need its precise expression; we will only need the facts about the invariant tori and their
stable and unstable manifolds proven in the papers mentioned above. Let us consider:

H(Q,q, I,p)(Ham)

= λ1〈ω1, I1〉 + κ1
1

2
|I1|2+ λ2〈ω2, I2〉 + κ2

1

2
|I2|2

+ 1

2
p2+ g2(cos(q)− 1

)+µf (Q1,Q2, q),

(Q1, I1) ∈ Tn1 ×Rn1, (Q2, I2) ∈ Tn2 ×Rn2, (q,p) ∈ T1×R1,

λ1, λ2 ∈ [0,+∞), n= n1+ n2, g, κ1, κ2,µ ∈ (0,1].

Sinceκ1, κ2> 0 the Lagrangian corresponding toH is:

L(Q,q, Q̇, q̇)= |Q̇1− λ1ω1|2
2κ1

+ |Q̇2− λ2ω2|2
2κ2

(Lag)

+ 1

2
q̇2+ g2(1− cos(q)

)−µf (Q1,Q2, q).

We recall that in the classical Legendre transform the correspondence between Hamiltonian and
Lagrangian variables is given by:

L : (Q1,Q2, I1, I2, q,p)→ (Q1,Q2, λ1ω1+ κ1I1, λ2ω2+ κ2I2, q,p).(2)

In the following,Nr(A) will denote ar-neighborhood of a setA⊂ Tn+1×Rn+1;Di will always
denote a constant greater than 1 and independent on the parameters appearing in (Ham). We will
consider the cover ofTn+1 given byTn ×R, where we do not quotient in theq variable. The next
Proposition collects the perturbative KAM results and translates them into variational terms. Its
essential point is that the local stable and unstable manifolds are graphs of exact 1-forms, dΦi,s
and dΦi,u; Φi,s andΦi,u represent the action functional of orbits lying on the stable and unstable
manifold respectively. The statement is slightly involved because we consider two copies of each
invariant torus, the one nearq = 0 with superscript “−” and the one nearq = 2π with superscript
“+”. For the convenience of the reader, we make a comparison between our notations and those
of [10] in the Appendix 1.

PROPOSITION 1. –LetH be as in(Ham), let f be as in(1) and let one of the following hold:
(CG) n= n1, n2= 0, λ2 andκ2 are absent,λ1= 0, g = 1, µ= ε > 0 is small andκ1= 1.
(G) n = n1, n2 = 0, λ2 and κ2 are absent,λ1 = 1, g = 1, µ = ε > 0 small andκ1 > 0

sufficiently small.
(GGM) n1= n2= 1, κ1= η, λ1=Ω1

√
η, λ2 =Ω2η

−1/2, g = 1, 0<µ= ε 6 ε0=O(η8); we
suppose thatη 6= 0 is small and fixed and thatκ2> 0 is sufficiently small.

(B1) n = n1, n2 = 0, λ2 andκ2 are absent,λ1 = ε > 0, g2 = εd , µ= εd ′ , with ε andκ1 > 0
sufficiently small.

(B2) n = n1, n2 = 0, λ2 and κ2 are absent,λ1 = 0, g2 = εd , µ = εd ′ , κ1 = ε, with ε > 0
sufficiently small.

Then the following holds:
(*1) There is a family ofn-dimensional tori,τ1, . . . , τN ⊂ Tn+1 × Rn+1, each of which is

invariant for the Hamiltonian flow ofH . Each of them has stable and unstable manifold, which
we denote byWs

i andWu
i respectively. All theτi are contained in the same energy surface
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{H = E}. Eachτi projects diffeomorphically oñτi ⊂ Tn+1. On the covering ofTn+1 given by
Tn×R eachτ̃i is the graph of a functionqi : Tn→R; theC1 norm ofqi tends to0 asε→ 0. In
particular, τ̃i dividesTn ×R in two connected components.

(*2) There arer > 0, ωi ∈ Rn and ηi > g/2 such that the flow ofH on the local stable
manifold inNr(τi) is given by:

ζ si
(
ψ0+ωit, y0e−ηi t

)
,

where

ζ si : Tn × [−r, r]→ Tn × [−r, r] ×Rn+1,

is a Lipschitz function whose Lipschitz constant is bounded byD1 for all i.
Analogously, the flow on the local unstable manifold ofτi is given by:

ζ ui
(
ψ0+ωit, y0eηi t

)
,

ζ ui : Tn × [−r, r]→ Tn × [−r, r] ×Rn+1

with ζ ui of Lipschitz constant at mostD1.
(*3) ∃C,Ξ > 0 such that

∣∣〈ωi, k〉∣∣> C

|k|Ξ ∀k ∈ Zn \ {0}, ∀i ∈ (1, . . . ,N).

(*4) Let us consider the covering ofTn+1×Rn+1 given byTn ×R× Rn+1 (i.e., we do not
quotient in theq variable); let us denote byτ−i the pre-image ofτi close toTn×{0}×Rn+1 and
by τ+i the pre-image close toTn × {2π} ×Rn+1. We are going to state that the local stable and
unstable manifolds ofτ±i are graphs of functions fromTn ×R to Rn+1 (this is also, for instance,
the situation of [1]). Since a Lagrangian submanifold which is a graph is the graph of a closed
1-form, we assert the following:

There area > 0, ci ∈ Rn+1 and two smooth real-valued functions,Φ−i,u andΦ+i,u, defined

respectively onTn×[−π−a,π+a] andTn×[π−a,3π+a] such that the graph ofci+∂xΦ±i,u
is contained in the unstable manifold ofτ±i and containsτ±i . The choice ofci is not unique, since
we can add to it(0, . . . ,0, χ) ∈ (Rn)⊥ and changeΦ±i,u so thatci + ∂xΦ±i,u remains the same.
The precise value ofci will be chosen in(*6.)

Analogously, there areΦ±i,s such that the graph ofci + ∂xΦ±i,s enjoys the same properties as
before but with respect to the stable manifold.

(*5) ∃x̄i ∈ Tn × {π} such that:

ci+1+ ∂xΦ+i+1,s(x̄i)= ci + ∂xΦ−i,u(x̄i)

and there areβ > 0, δ ∈ (0, a) such that:[
Φ−i,u(x)−Φ+i+1,s (x)+ 〈ci − ci+1, x〉

]− [Φ−i,u(x̄i)−Φ+i+1,s(x̄i)+ 〈ci − ci+1, x̄i〉
]
> 0

∀x ∈ Tn × {π}, ‖x − x̄i‖6 δ,
inf

{[
Φ−i,u(y)−Φ+i+1,s(y)+ 〈ci − ci+1, y〉

]− [Φ−i,u(x)−Φ+i+1,s(x)+ 〈ci − ci+1, x〉
]
:

‖y − x̄i‖ = δ,‖x − x̄i‖6 δ
2
, x, y ∈ Tn × {π}

}
> β.
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(*6) Let us callP the projection ofTn ×R × Rn+1 onto Tn+1×Rn+1; since P(τ+i ) =
P(τ−i ) = τi , also the projections of their stable and unstable manifolds coincide; thus we can
choose the additive constants inΦ±i,u and inΦ±i,s so that:

Φ−i,u
(
x − (0, . . . ,0,2π))=Φ+i,u(x), Φ−i,s

(
x − (0, . . . ,0,2π))=Φ+i,s (x).

Clearly, Φ±i,u and Φ±i,s depend on the choice ofci . For instance, ifci is changed toci +
(0, . . . ,0, χ) thenΦ±i,u is changed toΦ±i,u − χq ± πχ .

We assert that it is possible to chooseci in such a way that:

Γ̃i,u ≡
{
Φ−i,u(x)=Φ+i,u(x)

}
is a hypersurface contained inTn × (π,π + a] and

Γ̃i,s ≡
{
Φ−i,s (x)=Φ+i,s (x)

}
is a hypersurface contained inTn × [π − a,π). Moreover, bothΓ̃i,s and Γ̃i,u are graphs of
functions fromTn to R. We denote byΓ −i,s the bounded component ofTn ×R \ (Γ̃i,s ∪ τ̃−i ), by

Γ +i,s the bounded component ofTn×R\ (Γ̃i,s ∪ τ̃+i ). Analogously, we denote byΓ −i,u the bounded

component ofTn ×R \ (Γ̃i,u ∪ τ̃−i ), byΓ +i,s the bounded component ofTn ×R \ (Γ̃i,u ∪ τ̃+i ).
From now on,ci will be fixed in the above way; all the{ci} are bounded by a constant

independent on the parameters.
(*7) The functionsΦ±i,u and Φ±i,s are Lipschitz with Lipschitz constants bounded byD3.

Moreover,

sup
Tn×[−π−a,π+a]

∣∣∂QΦ−i,s ∣∣| + sup
Tn×[−π−a,π+a]

∣∣∂QΦ−i,u∣∣+ sup
Tn×[π−a,3π+a]

∣∣∂QΦ+i,s ∣∣
+ sup

Tn×[π−a,3π+a]

∣∣∂QΦ+i,u∣∣
tends to0 asε tends to0.

(*8) By points(*5) and (*4), there is an orbit(Qi(t), qi(t)) = xi(t) such thatxi(0) = x̄i ,
L−1(xi(t), ẋi(t)) tends toτi for t → −∞ and to τi+1 for t → +∞. We assert that this
convergence is uniform ini:

∃b > 0: L−1(xi(−b), ẋi(−b)) ∈Nr(τi), L−1(xi(b), ẋi(b)) ∈Nr(τi+1).

Moreover, in(CG), (G), (GGM), (B1), (B2), we have thatΞ , r andδ are independent on the
parameters and|cN − c1|> 1/D for someD > 0 independent on the parameters. In particular,
it is possible to fix anyΞ > n− 1.

The constantsg, β , b, C, N depend on the parameters in the following way:
(CG) g = 1, b is independent onε, C = C0ε

C1, with C0 and C1 positive and
independent onε, andβ > β0ε for someβ0 independent onε; moreover,N 6
D0/β .

(G) g = 1, b andC are independent onε andβ > β0ε for someβ0 independent onε;
moreover,N 6D0/β .

(GGM) g = 1, b is independent onε and η; for someΩ > 0, we haveC = Ωe−sη−1/2
,

β > ε2η−De−D/
√
η andN 6D4η

−1/2 exp(D4η
−1/2).
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(B1)–(B2) g2 = εd , C = C0ε
C1, with C0 andC1 positive and independent onε, b 6 e−d/2,

N 6D0/β , β >D0e2d ′−1−d/2.

Proof. –Properties (*1), (*2) and (*3) are a consequence of KAM Theorem for hyperbolic
tori: see, for instance [10,16,20]. In particular, in the case of(G) they are stated in paragraphs 2
and 3 of [13]; in the case of(GGM) they are part of formula 1.3 and Theorem 1.4 of [15]; in
the case of(B1) and(B2) they follow from [9] and [5]. We remark that we are not exactly in the
hypotheses of the above mentioned papers: for instance, [13] considers the Hamiltonian (G) with
κ1= 0. But in [16] it has been proven that, ifκ1> 0 is sufficiently small, then the thesis of [13]
continues to hold.

As we have already said, (*4) simply asserts that a certain portion ofWs
i andWu

i projects
diffeomorphically onTn; the theorems mentioned above imply that this is true in our cases.

In the light of (*4), the first formula of (*5) simply asserts that there is a heteroclinic
intersection between the unstable manifold ofτi and the stable manifold ofτi+1. The second
group of formulas of (*5) asserts that the intersection is transversal. The bulk of the papers
quoted above consists in proving that that these formulas hold if the Melnikoff function has a
nondegenerate minimum. We remark that in the above papers∂xx(Φ

−
i,u−Φ+i+1,s)(x̄i) is explicitly

calculated; from the explicit expression it follows that in the points of minimum we have
∂xx(Φ

−
i,u −Φ+i+1,s )(x̄i)> βId ; point (*5) follows from this and the Taylor formula. In the case

of (GGM) see also [15], which gives the estimate onβ and the number of toriN .
Before proving (*6), we recall what areΦ±u in the case of the separatrices of the simple

pendulum,L(q, q̇) = 1
2|q̇|2 + ε[1− cos(q)]. The reader should look at Fig. 1: forc = 0, Φ−u

is a kind of parabola with vertex inq = 0,Φ+u a kind of parabola with vertex inq = 2π ; the two
curves intersect inq = π ; these two functions depend onc as explained in (*6) and changing
c moves the point of intersection left or right. The samec moves the point of intersection of
Φ−s andΦ+s in the opposite direction; it is easy to see that, if we want the intersection of the
graphs ofΦ−s andΦ+s to lay on [π − a,π), then we must choosec in |c| 6 D̄g; indeed, if
|c|> D̄g the intersection disappears. The reason for choosingc in this way is that the point of
intersection will be a point of discontinuity for the functional we will minimize; thus we are
interested in keeping it offq = π , the Poincaré section on which we will work. When we couple
the pendulum to the rotators, these points of discontinuity become surfaces of discontinuity,
Γ̃i,s and Γ̃i,u, as shown in Fig. 2. We now prove (*6) in one case,(GGM), since the others
are similar. Let us consider(GGM) with ε = 0. In this caseWu

i is the product ofT2 with the
unstable manifold of the pendulum and (*6) follows by the considerations above. Indeed, we
considerΦ±i,u when the third component ofci is zero; if we chooseχ suitably in |χ | < D̄g,

thenΦ+i,u(Q1,Q2, q) − Φ−i,u(Q1,Q2, q) = 0 is the two-dimensional torus{q = π + 1
2a}; in

other words, if we chooseci with the third component equal toχ , Γ̃i,u = {q = π + 1
2a}. Since

∂q [Φ+i,u(Q1,Q2, q)−Φ−i,u(Q1,Q2, q)] 6= 0, the implicit function Theorem yields (*6) also when

|ε| 6 ε0 = O(η8). We also remark that it is easy to see that the first two components ofci are
bounded; from the argument above, it follows that theci are bounded.

As for (*7), we note that by (*4)ci+∂xΦ±i,u andci+∂xΦ±i,s are bounded by the sup of|(I,p)|
on the local stable and unstable manifolds, which are uniformly bounded in the case of(G), (B1)
and(B2). Since by (*6) theci are bounded, we have thatΦ±i,u andΦ±i,s are Lipschitz uniformly in

i. The second formula of (*6) is a consequence of the explicit form ofΦ±i,u andΦ±i,s ; for instance,
in the case of(GGM), these can be found at the beginning of Section 3 of [14]; there it is stated
that they satisfy (*7).

We note that (*8) simply asserts that it takes a timeb for the homoclinic to go fromπ to a
neighborhood of the invariant torus; this follows considering the motion along the pendulum.2
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Upstairs: graph ofΦ−i,u andΦ+i,u
for c= 0. The solid lines are the graph
of h∞0 (0, q).
Downstairs: The solid lines represent
the initial conditions
of the orbits realizingh∞0 (0, q).

Upstairs: graph ofΦ−i,u andΦ+i,u
for 0< c < D̄g. The solid lines are the graph
of h∞c (0, q).
Downstairs: The solid lines represent
the initial conditions
of the orbits realizingh∞c (0, q).

Fig. 1.

Fig. 2.



114 U. BESSI ET AL. / J. Math. Pures Appl. 80 (2001) 105–129

The proof of the following Proposition 2 is based on the variational argument of [18] and [19].

PROPOSITION 2. –Let the system satisfy(*1)–(*8) of Proposition1 above, letci ∈ Rn+1 be
as in Proposition1 and letc′i denote the firstn components ofci . Then there is an orbit satisfying∣∣H (q(t),Q(t),p(t), I (t))∣∣6M ∀t ∈ (0, T ),
(3) ∣∣I (T )− c′N ∣∣+ ∣∣I (0)− c′0∣∣→ 0 asε→ 0,

0< T 6 2N

(
b+max

(
D5 ·NΞ
CβΞ

,
D5

g
log

N

β

))
,(4)

whereD5 andM > 0 are constants not depending onε, η, κ1 andκ2.

This proposition will be proven in the next section.

Proof of Theorem 1. –Essentially, it suffices to insert the constants of Proposition 1 into the
thesis of Proposition 2. This does not yield immediately Theorem 1: for instance, in Proposition 1
we ask that the Hamiltonian(G) hasκ1> 0, while in case (i) of Theorem 1 we consider the same
Hamiltonian, but withκ1= 0. Since (3) and (4) are uniform inκ1, we can pass to the limit in the
following way. Forκ1 > 0 let us consider the orbit(Qκ1, qκ1, Iκ1,pκ1) given by Proposition 2;
by formula (3) its initial conditions are bounded uniformly inκ1; sinceT is bounded uniformly
in κ1 this implies that(Qκ1, qκ1, Iκ1,pκ1) is equicontinuous on[0, T ]. Thus we can pass to the
limit for κ1→ 0 and get the thesis. The other cases are treated similarly.2

3. Proof of Proposition 2

The proof consists in the variational argument of [19]; as explained in the introduction, the
diffusion orbits will be local minima of the action functional.

Let ci and E be as in Proposition 1; letS be a smooth function defined onTn+1, let
A.C.([0, T ],Tn+1) denote the curves absolutely continuous on[0, T ] with image inTn+1 and
let∇S(x)= ∂xS(x).

Forx, y ∈ Tn+1 we define:

hTci+∇S(x, y)

=min

{ T∫
0

[
L(Q,q, Q̇, q̇)− 〈ci +∇S, (Q̇, q̇)〉+ E]dt : (Q,q) ∈ A.C.([0, T ],Tn+1),

(
Q(0), q(0)

)= x, (Q(T ), q(T ))= y}.
The minimum above exists by a Theorem of Tonelli’s (see for instance [18]); it is a standard fact
that the set of the orbits realizinghTci+∇S(x, y) does not depend on the choice ofS; moreover

hTci+∇S(x, y)= hTci (x, y)+ S(x)− S(y).(5)

We also define:

h∞ci+∇S(x, y)= lim inf
T→∞ hTci+∇S(x, y)
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The orbits realizinghT0 (x, y) for increasingT are shown as dotted lines.

The orbit realizingh∞0 (x, y) has 0 in itsω-limit.

Fig. 3.

which can be considered as the least action of all orbits going fromx to y in infinite time; in [19]
it has been proven that it is finite; in our particular case, this is part of the proof of Lemma 1. In
the above formula, let us consider the orbits(QT , qT ) ∈ A.C.([0, T ],Tn+1) realizing the lim inf:
it has been proven in [18] that, up to a subsequence, they converge to an orbit(Q,q), defined on
[0,∞) and with(Q(0), q(0))= x. Such an orbit need not necessarily havey or x in its ω limit;
we will say however that it realizesh∞ci+∇S(x, y) (see Fig. 3 for the case of the pendulum). On the
other side by a translation in time we can choose(QT (−T ), qT (−T ))= x, (QT (0), qT (0))= y;
the orbits(QT , qt) will converge, up to a subsequence, to(Q,q) with (Q(0), q(0)) = y and
defined on(−∞,0].

Heuristically, the term−〈ci , (Q̇, q̇)〉 keeps track of the path of the orbit (on its projection on
ci , actually); we will see in Lemma 1 below that it forces the the orbits realizingh∞ci to have
asymptotic rotation numberωi . The role of the energyE is to keeph∞ci finite.

Let zi belong to τ̃i , the projection ofτi on Tn+1. The next Lemma shows that the orbits
realizingh∞ci (zi , x) andh∞ci (x, zi) lie on the unstable and on the stable manifolds respectively.
The reader can now see how the orbits realizingh∞ci (zi , x) depend on the choice ofci : for
instance, in the case of the pendulum, the initial conditions of the orbits realizingh∞c (0, x) are
the solid lines in Fig. 1. In the following,L denotes the Legendre transform (2),τ̃i is the torus
defined in point (*1) of Proposition 1 andΓ ±i,s is defined in (*6).

LEMMA 1. –Let zi ∈ τ̃i . Then: ifx ∈ Γ ±i,s , there is only one orbit realizingh∞ci (x, zi) and it is

the one with initial conditionL(x, ∂xΦ
±
i,s (x)+ ci); if x ∈ Γ ±i,u, there is only one orbit realizing

h∞ci (zi , x) and it is the one with initial conditionL(x, ∂xΦ
±
i,u(x)+ ci).

Also, the following holds:

−∂xh∞ci (x, zi)=
{
∂xΦ

−
i,s (x) if x ∈ Γ −i,s ,

∂xΦ
+
i,s (x) if x ∈ Γ +i,s .

(i)

∂xh
∞
ci
(zi, x)=

{
∂xΦ

−
i,u(x) if x ∈ Γ −i,u,

∂xΦ
+
i,u(x) if x ∈ Γ +i,u.

(ii)
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h∞ci (xi, zi)6 h
M
ci
(xi, zi) and h∞ci (zi, xi)6 h

M
ci
(zi, xi) for all M > 0.(iii)

h∞ci (x, y)+ h∞ci (y, z)= h∞ci (x, z) ∀x, y, z ∈ τ̃i .(iv)

Consequently,h∞ci (z, z)= 0.

Proof. –We begin to prove that, ifx ∈ Γ ±i,s , then there is a unique orbit(Q,q) which realizes

h∞ci (x, zi); at time 0 this orbit has initial conditionsL(x, ∂xΦ
−
i,s (x) + ci) if x ∈ Γ −i,s , and

L(x, ∂xΦ
+
i,s (x)+ ci) if x ∈ Γ +i,s . Since this orbit depends smoothly onx in Γ ±i,s , it is then easy to

differentiateh∞ci (x, zi) and get (i); (ii) is derived analogously.
Let us define:

φ(x)=
{
Φ−i,s (x) if x ∈ Γ −i,s ,
Φ+i,s (x) if x ∈ Γ +i,s .

We consider the following Lagrangian, discontinuous alongΓ̃i,s :

L̃(Q,q, Q̇, q̇)= L(Q,q, Q̇, q̇)− 〈∂xφ(Q,q), (Q̇, q̇)〉.
We now sketch a standard computation (see for instance [8] or [18]): if we fix(Q,q) and look for
the minimum ofL̃− 〈ci, (Q̇, q̇)〉 + E in the variables(Q̇, q̇) we obtain the following necessary
condition, which is also sufficient sincẽL is convex in(Q̇, q̇):

∂

∂(Q̇, q̇)
L(Q,q, Q̇, q̇)= ∂xφ(Q,q)+ ci.

Thus the minimum ofL̃ − 〈ci , (Q̇, q̇)〉 + E for (Q,q) fixed lies on the image ofL(Q,q,
∂xφi,s (Q,q) + ci) whereL is the Legendre transform defined in (2); we recall that〈ci +
∂xφ, (Q̇, q̇)〉 − L restricted to this set is simply the Hamiltonian in different coordinates; thus
if we want the minimum above to be constantly equal to 0, we need

H
(
Q,q, ∂xφ(Q,q)+ ci

)= E .
The last formula is true, since the energy is constant onWs

i ; vice versa, we see that̃L −
〈ci, (Q̇, q̇)〉+E is constantly equal to 0 on the graph ofL(Q,q, ∂xφ(Q,q)+ ci) and it is strictly
larger than 0 elsewhere. Thus if(Q̄(t), q̄(t)) is a ci -minimal orbit of L̃ with Q̄(0) = x ∈ Γ ±i,s
which accumulates onτi , it must satisfy(x, ˙̄Q(0), ˙̄q(0))= L(x, ∂xφi,s (x)+ ci): otherwise, the
integral ofL̃ would be positive. If we prove that, for these boundary values, this orbit minimize
also the integral ofL, we have done.

Let (Q,q) be any curve crossing̃Γi,s at the timest1< t2< · · ·< tk and let 0< t1 andtk < T .
Let us suppose that, forγ small enough,(Q(ti−γ ), q(ti−γ )) ∈ Γ −i,s and(Q(ti+γ ), q(ti+γ )) ∈
Γ +i,s ; to fix ideas, let us also suppose that(Q(0), q(0)) ∈ Γ −i,s and(Q(T ), q(T )) ∈ Γ +i,s . Then we
have that:

T∫
0

[
L̃− 〈ci, (Q̇, q̇)〉+ E]dt
=

T∫
0

[
L− 〈ci, (Q̇, q̇)〉− 〈∂xφ(Q,q), (Q̇, q̇)〉+ E]dt
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=
T∫

0

[
L− 〈ci, (Q̇, q̇)〉+ E]dt − k∑

i=1

[−Φ+i,s(Q(t+i ), q(t+i ))
+Φ−i,s

(
Q
(
t−i
)
, q
(
t−i
))]+Φ−i,s(Q(0), q(0))−Φ+i,s(Q(T ), q(T ))

=
T∫

0

[
L− 〈ci, (Q̇, q̇)〉+ E]dt +Φ−i,s(Q(0), q(0))−Φ+i,s(Q(T ), q(T )),

where the last equality is a consequence of the fact thatΦ+i,s |Γ̃i,s = Φ−i,s |Γ̃i,s by the definition of

Γ̃i,s . By a standard approximation argument, the above formula holds also if(Q,q) crossesΓ̃i,s
infinitely many times. The last formula implies that for allT > 0 hTci andhTci+∇φ are realized
by the same orbits, since the corresponding action functionals only differ by a function of the
boundary values; if(Q,q) accumulates onzi , lettingT →∞ we have the thesis.

We remark that from the same arguments it follows that, ifx ∈ Tn+1, then among all orbits
connectingzi to x in any timeT ∈ (0,+∞], the minimal action one lays on the stable manifold;
this proves (iii).

We note that this also implies thath∞ci (x, zi) is finite: for instance, letx ∈ Γ −i,s and let(Q,q)

be the orbit which at time 0 has initial conditionsL(x, ∂xΦ
−
i,s + ci). Then we have:

T∫
0

[
L− 〈ci, (Q̇, q̇)〉+ E]dt
=

T∫
0

[
L̃− 〈ci, (Q̇, q̇)〉+ E]dt +Φ−i,s(Q(0), q(0))−Φ−i,s(Q(T ), q(T ))

=Φ−i,s (Q(0), q(0))−Φ−i,s (Q(T ), q(T ))
which is bounded; passing to the limit asT →+∞we get thath∞ci (x, zi) is finite. SincehTci (x, y)
is Lipschitz inx andy uniformly for T > 1, alsoh∞ci is Lipschitz and being finite at one point by
the previous formula, it is finite everywhere.

To prove (iv), it suffices to note that, ifx, y, z ∈ τi , then

h∞ci (x, y)+ h∞ci (y, z)
= h∞

ci+∇Φ+i,s
(x, y)+ h∞

ci+∇Φ+i,s
(y, z)+Φ+i,s (x)−Φ+i,s (y)+Φ+i,s (y)−Φ+i,s (z)

=Φ+i,s (x)−Φ+i,s (z)= h∞ci (x, z),
where the first equality is a consequence of (5), the second of the fact thatL̃ is constantly equal
to zero onL−1(τi) and the third of (i). 2

We consider the covering ofTn+1 given by Tn × R; for eachx̄i of (*5) we single out a
point on its fiber,x̃i ∈ Tn × {π + 2iπ}. For i ∈ (1, . . . ,N − 1) we consider a smooth function
Si : Tn−1×R→R which vanishes outside{x: |x − x̃i|6 2δ} and such that:

∇Si(x)= ci+1− ci ∀x: |x − x̃i |6 δ.(6)

We set

c̄i (x)= ci +∇Si(x).



118 U. BESSI ET AL. / J. Math. Pures Appl. 80 (2001) 105–129

In Tn ×R we choose the representative ofτ̃i close toTn × 2iπ ; from this lift of τ̃i we choose a
pointzi . We fix T > 0 and define:

X = (Tn × {3π} ×R
)× (Tn × {5π} ×R

)× · · · × (Tn × {π + 2(N − 1)π
}×R

)
,

Y = {{(xi, ti)}N−1
i=1 ∈X: t1= 0, tN−1= T , ti+1> ti ∀i ∈ (1, . . . ,N − 2)

}
,

G
(
(x1, t1), . . . , (xN−1, tN−1)

)= h∞̄c1 (z1, x1)+ ht2−t1c̄2
(x1, x2)+ ht3−t2c̄3

(x2, x3)+ · · ·
+ htN−1−tN−2

c̄N−1
(xN−2, xN−1)+ h∞̄cN (xN−1, zN).

We set

B = (B(x̃1, δ)×R
)× (B(x̃2, δ)×R

)× · · · × (B(x̃N−1, δ)×R
)∩ Y,

B ′ = B(x̃1, δ)×B(x̃2, δ)× · · · ×B(x̃N−1, δ),

whereB(x̃i , δ) is the closed ball inTn × {π + 2iπ} centered iñxi and of radiusδ.
The next Lemma 2 explains the meaning of the functionalG; its proof is relegated to

Appendix 2.

LEMMA 2. –Let ((y1, t1), . . . , (yN−1, tN−1)) be a local minimum ofG in the interior ofB
and let (Q,q) be the function defined in the following way: on[−∞, t1] (Q,q) is the orbit
realizingh∞̄c1 (z1, y1) with (Q(t1), q(t1)) = y1; on [t1, t2] Q is the orbit realizinght2−t1c̄2

(y1, y2)

with (Q(t1), q(t1))= y1, (Q(t2), q(t2))= y2, etc.
Then(Q,q) solves the E–L equation on(t1, tN−1)= (0, T ) and satisfies the second formula

of (3) in Proposition2.

From the above lemma we gather that to prove Proposition 2 it suffices to prove thatG has a
minimum in the interior ofB for someT satisfying (4). This is what we show in the next lemma.

LEMMA 3. –There is

T 6 2N
(
b+max

(
D5 ·NΞ
CβΞ

,
D5

g
log

N

β

))
(13)

such thatG has a local minimum in the interior ofB.

Proof. –First of all we note thatG has a minimum inB because its sublevels are compact:
indeed, it is easy to see thatG(((x1, t1), . . . , (xN−1, tN−1)))→ ∞ if ti+1→ ti , t2→ 0 or
tN−2→ T .

Thus it suffices to prove that the minimum is in the interior ofB; to do this we will compare
G with a functionalF which has a strict minimum in the point((x̃1, t1), . . . , (x̃N−1, tN−1)). We
define:

F :Y →R,

F
(
(x1, t1), . . . , (xN−1, tN−1)

)= h∞̄c1 (z1, x1)+ h∞̄c2 (x1, z2)+ h∞̄c2 (z2, x2)+ h∞̄c3 (x2, z3)+ · · ·
+ h∞̄cN−1

(zN−1, xN−1)+ h∞̄cN (xN−1, zN),

where thezi are the same as in Lemma 1. Clearly,F does not depend on theti and, roughly, it
represents the action of a heteroclinic chain connectingτ1 to τ2 to τ3, all the way toτN . We now
note that, by Lemma 1, (5) and the definition ofc̄i ,

h∞̄ci (zi, xi)+ h∞̄ci+1
(xi, zi+1)= const+Φ−i,u(xi)−Φ+i+1,s(xi)− Si(xi)+ Si+1(xi).
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SinceSi+1 vanishes onB(x̃i , δ), by (6) we get:

h∞̄ci (zi, xi)+ h∞̄ci+1
(xi, zi+1)= const+Φ−i,u(xi)−Φ+i+1,s(xi)+ 〈ci − ci+1, xi〉.

By the last formula and (*5) we have that the points((x̃1, t1), . . . , (x̃N−1, tN−1)) are minima of
F in B for all choice oft1< t2< · · ·< tN ; moreover

inf
{
F
(
(y1, t1), . . . , (yN−1, tN−1)

)
:
(
(y1, t1), . . . , (yN−1, tN−1)

) ∈B,
(14)

(y1, . . . , yN−1) ∈ ∂B ′, t̃1< t̃2< · · ·< t̃N−1
}
> F

(
(x̃1, t̃1), . . . , (x̃N−1, t̃N−1)

)
β.

We now show that, for someT satisfying (13),G is so close toF that it has a minimum inside
B. Givenxi ∈ B(x̃i , δ), xi+1 ∈ B(x̃i+1, δ) andMs

i ,M
u
i > 0 we choose(Qs, qs) and(Qu, qu),

orbits ofL with initial conditions:(
Qs
(−Ms

i

)
, qs

(−Ms
i

)
, Q̇s

(−Ms
i

)
, q̇s

(−Ms
i

))= L(xi, ∂xΦ+i+1,s (xi)+ ci+1
)
,(

Qu
(
Mu
i

)
, qu

(
Mu
i

)
, Q̇u

(
Mu
i

)
, q̇u

(
Mu
i

))= L(xi+1, ∂xΦ
+
i+1,u(xi+1)+ ci+1

)
,

whereL denotes the Legendre transform, as in (2); in other words, these orbits lay one on
the stable, one on the unstable manifold ofτ+i+1. By Lemma 1,(Qs, qs) and (Qu, qu) realize
h∞̄ci+1

(xi, zi+1) andh∞̄ci+1
(zi+1, xi+1) respectively. We note that, sincexj ∈ Tn × (π + 2jπ) ∀j ,

bothΦ−i+1,s andΦ+i+1,u are defined because of (*4). We chooseMs
i andMu

i in the following
way: they are the smallest times such that

∣∣(Qs(0), qs(0))− zi+1
∣∣6 β

D3 ·N · 128
,

∣∣(Qu(0), qu(0))− zi+1
∣∣6 β

D3 ·N · 128
,(15)

whereD3 was introduced in (*7) and the distances are those induced onTn by its coverRn.
We now recall the estimate on the time of ergodization of the torus (see Theorem D of [7]):
if ω satisfies (*3) the smallestT for which {ωt}Tt=0 is a ε-net can be estimated from above by
D5/(Cε

Ξ), whereD5 is a constant, depending only on the dimensionn and on the Diophantine
exponentΞ . In symbols we have:

∀i, ∀ε > 0, ∀Q0 ∈ Tn ∃0<M <
D5

CεΞ
: |ωiM −Q0|6 ε.

Using this fact, (*2) and (*8) we see that there isD6> 0 such that

1<Ms
i ,M

u
i 6 b+max

(
D6 ·NΞ
CβΞ

,
D6

g
log

N

β

)
.(16)

In the last formula,b accounts for the time it takes to reach the neighborhood ofτi+1 where the
normal form (*2) holds; the second term in the max is due to the motion on the local stable or
unstable manifold.

We now specialize thexi in the following inductive way: we takex1 = x̃1; if xi is defined,
we takexi+1 ∈ B(x̃i+1,

D11δ
2N ) such thatQu(0)=Qs(0); this is possible since we have by (*1)

and (*7) that the map which sends the firstn coordinates ofxi into Qs(0) is bilipschitz with
Lipschitz constantD11 independent onMs

i . First of all, we note that it suffices to prove that the
map:Qu(−Mu

i )→Qu(−Mu
i + b) is Lipschitz, since after that time the dynamics is given by

(*1) and is surely Lipschitz. Let us consider the time-one map for the dynamics on the unstable
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manifold; from (*7) and the Hamilton equations, it follows that the map:Qu(0)→ Qu(−1)
is bilipschitz with Lipschitz constant 1+ εo(2). By Proposition 1b = o(1

ε
) and thus the map:

Qu(−Mu
i )→Qu(−Mu

i + b) is bilipschitz with Lipschitz constantD11.
By (*1), τ̃+i+1 is the graph of a Lipschitz function fromTn to R; thus we can findq0 near

2π(i + 1) such that(Qs(0), q0)= (Qu(0), q0) belongs toτ̃+i+1 on Tn+1 and, moreover, by (15),

∣∣qs(0)− q0
∣∣6 β

D3 ·N · 64
,

∣∣(Qs(0), q0
)− zi+1

∣∣6 β

D3 ·N · 64
.(17)

Let us now define:

q̄(t)=


q0+

(
qu
(

β

D3 ·N · 64

)
− q0

)
· t · D3 ·N · 64

β
, 06 t 6 β

D3 ·N · 64
,

qu(t), t > β

D3 ·N · 64
.

We get:

h
Mu
i

c̄i+1

((
Qu(0), q0

)
, xi+1

)
6

Mu
i∫

0

L(Qu, q̄, Q̇u, ˙̄q)dt

6
Mu
i∫

0

L(Qu, qu, Q̇u, q̇u)dt + β

D3 ·N · 32
(18)

= hM
u
i

c̄i+1

((
Qu(0), qu(0)

)
, xi+1

)+ β

D3 ·N · 32
,

where the first inequality is a consequence of the definition ofh
Mu
i

c̄i+1
and the second follows from

a standard calculation; the equality is a consequence of Lemma 1. Since in Lemma 1 it is proven
thath∞̄ci+1

(zi+1, zi+1)= 0, we have:∣∣h∞̄ci+1

(
zi+1,Q

u(0), qu(0)
)∣∣= ∣∣h∞̄ci+1

(
zi+1,Q

u(0), qu(0)
)− h∞̄ci+1

(zi+1, zi+1)
∣∣

(19)

= ∣∣Φ+i+1,u

(
Qu(0), qu(0)

)−Φ+i+1,u(zi+1)
∣∣6 β

N · 64
,

where the second equality is a consequence of Lemma 1, the inequality of (*7) and of (15). We
now recall that, if(Q,q) is c-minimal, then for allt1, t2> 0,

ht1+t2c

(
(Q,q)(0), (Q,q)(t1+ t2)

)= ht1c ((Q,q)(0), (Q,q)(t1))+ ht2c ((Q,q)(t1), (Q,q)(t2)).
Therefore, since(Qu, qu) is c̄i -minimal on(−∞,0] we have:

h∞̄ci+1
(zi+1, xi+1)= h∞̄ci+1

(
zi+1,

(
Qu(0), qu(0)

))+ hMu
i

c̄i+1

((
Qu(0), qu(0)

)
, xi+1

)
> hM

u
i

c̄i+1

((
Qu(0), qu(0)

)
, xi+1

)− β

N · 64

> hM
u
i

c̄i+1

((
Qu(0), q0

)
, xi+1

)− β

N · 16
,
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where the first inequality is a consequence of (19), the second of (18). Analogously, we get

h∞̄ci+1
(xi, zi+1)> h

Ms
i

c̄i+1

(
xi,
(
Qs(0), q0

))− β

N · 16
.

Since(Qs(0), q0)= (Qu(0), q0) we have:

h
Ms
i +Mu

i

c̄i+1
(xi, xi+1)6 h

Ms
i

c̄i+1

(
xi,
(
Qs(0), q0

))+ hMu
i

c̄i+1

((
Qu(0), q0

)
, xi+1

)
which from the last formula implies

h
Ms
i +Mu

i

c̄i+1
(xi, xi+1)6 h∞̄ci+1

(xi, zi+1)+ h∞̄ci+1
(zi+1, xi+1)+ β

N · 8.

The last formula implies that, setting

t̃1= 0, t̃i+1= t̃i +
(
Ms
i +Mu

i

)
, 16 i 6N − 2,

then

G
(
(x1, t̃1), . . . , (xN−1, t̃N−1)

)
6 F

(
(x1, t̃1), . . . , (xN−1, t̃N−1)

)+ β
8
.(20)

Let us now consider

(yi, yi+1) ∈ (Tn × π + 2iπ)× (Tn × π + 2(i + 1)π
)

and let us suppose that the orbit(Q,q) realizing hti+1−ti
c̄i+1

(yi, yi+1) crossesτ̃+i+1 at time t ∈
(ti, ti+1). Then

h
ti+1−ti
c̄i+1

(yi, yi+1)= ht−tic̄i+1

(
yi, (Q,q)(t)

)+ hti+1−t
c̄i+1

(
(Q,q)(t), yi+1

)
> h∞̄ci+1

(
yi, (Q,q)(t)

)+ h∞̄ci+1

(
(Q,q)(t), yi+1

)
= h∞̄ci+1

(
yi, (Q,q)(t)

)+ h∞̄ci+1

(
(Q,q)(t), zi+1

)+ h∞̄ci+1

(
zi+1, (Q,q)(t)

)
+ h∞̄ci+1

(
(Q,q)(t), yi+1

)
= h∞̄ci+1

(yi, zi+1)+ h∞̄ci+1
(zi+1, yi+1),(21)

where the inequality follows from (iii) of Lemma 1 and the second equality from the fact, shown
in Lemma 1, that:

0= h∞̄ci+1

(
(Q,q)(t), (Q,q)(t)

)= h∞̄ci+1

(
(Q,q)(t), zi+1

)+ h∞̄ci+1

(
zi+1, (Q,q)(t)

)
.

We have, by (20), that

inf
{
G
(
(y1, t1), . . . , (yN−1, tN−1)

)
:
(
(y1, t1), . . . , (yN−1, tN−1)

) ∈ B, (y1, . . . , yN−1) ∈ ∂B ′
}

> inf
{
F
(
(y1, t1), . . . , (yN−1, tN−1)

)
:
(
(y1, t1), . . . , (yN−1, tN−1)

) ∈B,
(y1, . . . , yN−1) ∈ ∂B ′

}
and by (13) that

inf
{
F
(
(y1, t1), . . . , (yN−1, tN−1)

)
:
(
(y1, t1), . . . , (yN−1, tN−1)

) ∈B, (y1, . . . , yN−1) ∈ ∂B ′
}

> F
(
(x̃1, t̃1), . . . , (x̃N−1, t̃N−1)

)+ β.
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Sincex1 ∈B(x̃i , D11δ
N
) and the Melnikoff function has a quadratic minimum in(x̃i , ti), we have:

F
(
(x̃1, t̃1), . . . , (x̃N−1, t̃N−1)

)+ β > F ((x̃1, t1), . . . , (x̃N−1, tN−1)
)+ β −N(D11δ

N

)2

and by (19)

F
(
(x̃1, t1), . . . , (x̃N−1, tN−1)

)+ β −N(D11δ

N

)2

>G
(
(x̃1, t1), . . . , (x̃N−1, tN−1)

)+ 7

8
β −N

(
D11δ

N

)2

.

If we put together all these inequalities and recall thatN ' 1/β we get:

inf
{
G
(
(y1, t1), . . . , (yN−1, tN−1)

)
:
(
(y1, t1), . . . , (yN−1, tN−1)

) ∈ B, (y1, . . . , yN−1) ∈ ∂B ′
}

>F
(
(x1, t̃1), . . . , (xN−1, t̃N−1)

)
which implies thatG has a local minimum in the interior ofB.

SinceT = t̃N−1, formula (4) now derives from the definition oft̃N−1 and (16).
The estimate onT follows from its definition and formula (15); we now prove the estimate

on the energy. We note thattN−1− t0 >N − 1 by (16) and the definition oftN−1− t0= T . By
the mean value theorem there is 0< top< T such thatq̇(top) = p(top) < 2π ; Lemma 2 of [2]
yields that|I (top)| 6 M̃ and thus|H(q(t),Q(t),p(t), I (i))| 6M with M independent on the
parameters; this yields the first formula of point (3) of Proposition 2.2

Appendix 1. Comparison with the notations of [10]

In Lemma 1 and 1′ of §5 of [10] the variables in the phase space, called here(Q, I, q,p), are
named(Eα, EA,ϕ, I). The perturbative parameter, that we denotedε here in(CG), was calledµ in
[10].

The toriτi in (*1) of our Proposition 1 correspond toTµ(s) of [10], wheres varies in the KAM
Cantor set, calledΣµ in [10].

The quantitiesωi andηi of (*2) correspond to(1+ γ )Eωs andgs(1+ γ ′), respectively, where
s ∈Σµ as above.

In the notations of formula (5.5) of [10], ourζ si (ψ,y) corresponds to

EA= EA′ + EΞ(ψ,y,0, s,µ), Eα =ψ + E1(ψ,y,0, s,µ)+ Eδ( EA′, y,0,µ),
I =R( EA′, y,0,µ)+Λ(ψ,y,0, s,µ) φ = S( EA′, y,0,µ)+Θ(ψ,y,0, s,µ),

with EA′ = EA′s(0,µ) corresponding to the firstn components ofci (the last component is
determined in (*6) of our Proposition 1).

Beware of the very different use of the symbols: as mentioned above, in [10]s belongs to the
KAM Cantor setΣµ, while here it just means “stable”.

Also, the KAM canonical transformation sending the variables(Eα, EA,ϕ, I) into the “normal”
coordinates(Eα′, EA′, q ′,p′) has naturally associated a generating function〈 EA′, Eα〉+ p′ϕ +Φ∗∞(Eα, EA′, ϕ,p′).
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Such aΦ∗∞ is not explicitly introduced in [10] and it is not the same as theΦ̃∞ introduced in §5 of
[10] after formula (5.66), since the last does not take into account the transformation of Lemma 0
of [10]. However, such aΦ?∞ essentially agree with theΦ±i,u introduced here in Proposition one,
in the sense that

Φ−i,u(Q,q)=Φ?∞
(
Q, EA′i , q,0

)+ χiq,
where EA′i is the action corresponding toτi , i.e.τi corresponds toTµ(si) in the notations of [10],
and EA′i = EA′si (0,µ), andχi above is chosen in order to fulfill (*6).

Appendix 2. Proof of Lemma 2

Clearly, (Q,q) satisfies the E–L equation on each(ti , ti+1) since on these intervals it
minimizes the action functional. It is somewhat more delicate to show that(Q,q) solves the
E–L equation also inti , 26 i 6 N − 2: the problem is that a small variation atti could bring
(Q,q) into an orbit on which we have no information (see Fig. 4). We begin to note that it suffices
to prove thatq̇(ti−) > 0 andq̇(ti+) > 0 for 26 i 6N − 2. Indeed, letm> 0 be such that:∣∣(Q(t), q(t))− x̃i∣∣< δ ∀t ∈ [ti −m, ti +m]
and let(Q̄, q̄) be a test function supported in[ti −m, ti +m]. Let us consider(Q,q)+ γ (Q̄, q̄);
by the implicit function theorem, ifγ is small enough, we can find a continuoust (γ ) such that
q(t (γ ))+ γ q̄(t (γ ))= q(ti) and thus(

Q
(
t (γ )

)+ γ Q̄(t (γ )), q(t (γ ))+ γ q̄(t (γ ))) ∈B(x̃i , δ).
Since((y1, t1), . . . , (yN−1, tN−1)) is a local minimum we have that, forγ small enough,

G((y1, t1), . . . , (yi, ti), . . . , (yN−1, tN−1))

6G
(
(y1, t1), . . . ,

(
(Q+ γ Q̄, q + γ q̄)(t (γ )), t (γ )), . . . , (yN−1, tN−1)

)
which implies that the action functional of(Q,q)+ γ (Q̄, q̄) is greater or equal than the action
functional of(Q,q); the usual argument now tells us that the E–L equation holds also inti .

This argument does not apply att1= 0 and attN−1= T since at these two points we are fixing
boththe times and the Poincaré sections,q = 3π andq = π + 2(N − 1)π respectively. In other
words, there are not enough variations forq and thusq̇ can be discontinuous at these two times.
But we can still varyQ by an arbitrary test function and thusQwill satisfy d

dt ∂Q̇L= ∂QL; in par-

ticular,Q̇ will be continuous att = 0 and att = T . Since on(−∞,0] (Q,q) realizesh∞̄c1 (z1, x1),

by Lemma 1(Q(0), q(0), I (0),p(0−))= L−1(Q(0), q(0), Q̇(0), q̇(0−)) stays on the unstable
manifold ofτ1 and(Q(T ), q(T ), I (T ),p(T+))= L−1(Q(T ), q(T ), Q̇(T ), q̇(T+)) stays on the
stable manifold ofτN . Thus, by (*7),|I (0)− c′1| and|I (T )− c′N | are small forε small, wherec′i
denotes the firstn coordinates ofci ; this yields the second formula of point (3) of Proposition 2.

Let us now prove thaṫq(ti−) > 0 for i ∈ (2, . . . ,N − 1); the proof forq̇(ti+) is analogous.
The only information we can use is the fact that(Q,q) minimizes the action; we will show by
contradiction that iḟq(ti−)≤ 0 then(Q,q) cannot minimize. We begin to prove the cases(CG),
(G), (GGM); to prove(B1) and(B2) it suffices to change the constants.

Let us suppose by contradiction thatq̇(ti−)6 0. We fix a constantσ > 0; in the following we
will require that it is sufficiently small; its choice does not depend onε andti − ti−1.
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A small variation ofq is represented as a dotted line.

We do not have any information on its action, since it does not pass throughB(x̃i , δ).

Fig. 4.

From the E–L equation we see that forε small enough this implies that:

∃t̂ ∈
[
ti − 1, ti − 1

2

]
such that q(t̂)> q(ti)− σ

which implies by direct computation that, forσ small enough,

ti∫
t̂

[
1

2
|q̇|2+ (1− cos(q)

)]
dt > θ,(7)

ti∫
ti−1

[
1

2
|q̇|2+ (1− cos(q)

)]
dt

×min

{ ti∫
ti−1

[
1

2
|q̇|2+ (1− cos(q)

)]
dt : q̄(ti−1)= q(ti−1), q̄(ti)= q(ti)

}
> θ(8)

for someθ > 0 independent onti − ti−1. Let α be half the action of the homoclinic of the
pendulum:

α =min

{ 0∫
−∞

1

2
|q̇|2+ (1− cos(q)

)
dt : q(−∞)= 0, q(0)= π

}
.
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A simple computation with the pendulum functional shows that we can chooseσ ∈ (0,
min( 1

64α,
θ
64)) andM > 4 such that

∀T >M, ∀q0=±σ,

min

{ T∫
0

1

2
|q̇|2+ (1− cos(q)

)
dt : q(0)= q0, q(T )= π

}
6 α + 2σ,(9)

∀T > 0 min

{ T∫
0

1

2
|q̇|2+ (1− cos(q)

)
dt : q(0)= q0, q(T )= π

}
> α − 2σ,(10)

∀T > 0 min

{ T∫
0

1

2
|q̇|2+ (1− cos(q)

)
dt : q(0)= σ,q(T )> π − σ,σ

(11)

6 q(t)6 2π − σ ∀t ∈ [0, T ]
}
> α − 6σ +D9T + D10

T
.

In the sequel,σ is fixed in the above way; we will feel free to increaseM. We note thatD10 is
independent on the choice ofσ , so we can assume 0< σ <D10/64.

We begin to consider the caseti − ti−1 6 2M. We denote bȳq(t) the orbit of the pendulum
satisfyingq̄(ti−1)= q(ti−1), q̄(ti)= q(ti). Then we have:

ti∫
ti−1

L(Q,q, Q̇, q̇)dt −
ti∫

ti−1

L(Q, q̄, Q̇, ˙̄q)dt

=
ti∫

ti−1

[
1

2
|q̇|2+ (1− cos(q)

)+ εf (Q,q)]dt

−
ti∫

ti−1

[
1

2
| ˙̄q|2+ (1− cos(q̄)

)+ εf (Q, q̄)]dt

>
ti∫

ti−1

[
1

2
|q̇|2+ (1− cos(q)

)]
dt −

ti∫
ti−1

[
1

2
| ˙̄q|2+ (1− cos(q̄)

)]
dt − 4εM,

where the inequality is a consequence of condition (1) in the introduction. By (8) we get that, for
ε small enough,

ti∫
ti−1

L(Q,q, Q̇, q̇)dt −
ti∫

ti−1

L(Q, q̄, Q̇, ˙̄q)dt > θ − 4εM > 0

contradicting the minimality of(Q,q) on (ti−1, ti).
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Let us now suppose thatti − ti−1 > 2M; let t ′ be the maximum time in(ti−1, ti) such that
q(t ′)= 2πi + σ . We divide again into two cases: if

∀t ∈ [t ′, ti ]: 2πi + σ 6 q(t) < 2π(i + 1)− σ

(the first inequality is automatic from the definition oft ′) then we define:

q̄(t)=
{
q(t), t ∈ [ti−1, t

′],
q̃(t), t ∈ [t ′, ti],

whereq̃ is the orbit of the pendulum with boundary conditionsq̃(t ′)= 2πi+ σ , q̃(ti )= q(ti). A
little computation yields

ti∫
ti−1

L(Q,q, Q̇, q̇)dt −
ti∫

ti−1

L(Q, q̄, Q̇, ˙̄q)dt

(12)

>
ti∫
t ′

[
1

2
|q̇|2+ (1− cos(q)

)]
dt −

ti∫
t ′

[
1

2
| ˙̄q|2+ (1− cos(q̄)

)]
dt − 4ε(ti − t ′).

We consider two subcases: ifti − t ′ >M we evaluate both functionals and we get:

ti∫
ti−1

L(Q,q, Q̇, q̇)dt −
ti∫

ti−1

L(Q, q̄, Q̇, ˙̄q)dt

> θ + α − 2σ +D9(t̂ − t ′)+ D10

t̂ − t ′ − (α+ 2σ)− 4ε(ti − t ′),

whereθ is the contribution ofq on [t̂ , ti ] due to formula (7), the next four terms come from (11),
the sixth term from (9) and the last is the contribution of the perturbation. Forε small enough,
the last formula contradicts the minimality of(Q,q).

In the other subcase,ti − t ′ 6M, we get from (8):

ti∫
t ′

[
1

2
|q̇|2+ (1− cos(q)

)]
dt −

ti∫
t ′

[
1

2
| ˙̄q|2+ (1− cos(q̄)

)]
dt > θ

which for ε small by (12) implies

ti∫
ti−1

L(Q,q, Q̇, q̇)dt −
ti∫

ti−1

L(Q, q̄, Q̇, ˙̄q)dt > 0,

a contradiction.
The other case is when

∃t̄ ∈ [t ′, ti]: q(t̄)= 2π(i + 1)− σ.
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We denote bȳt the maximumt with the above property and bỹt the minimum one. We divide
again into two subcases: ift̄ − t̃ > 4, we define

ψ =min

(
1,
t̃ − t ′

4

)
and

q̄(t)=



q(t), t ∈ [ti−1, t
′],

2πi − σ(t − t ′ −ψ) 1

ψ
, t ∈ [t ′, t ′ +ψ],

2πi, t ∈ [t ′ +ψ, t̃ −ψ],
2πi − σ(t − t̃ +ψ) 1

ψ
, t ∈ [t̃ −ψ, t̃],

q(t)− 2π, t ∈ [t̃ , t̄ −ψ],(
q(t̄ −ψ)− 2ψ

)(
1− t − t̄ +ψ

ψ

)
+ (2πi + σ) t − t̄ +ψ

ψ
, t ∈ [t̄ −ψ, t̄],

q̃(t), t ∈ [t̄ , ti],

whereq̃ is the orbit of the pendulum with boundary conditionsq̃(t̄ )= 2πi − σ , q̃(ti )= q(ti). It
follows easily with an argument like the one at the end of Proposition 1 thatq̇ is bounded by 1
on [t̃ , t̄] and consequently that˙̄q is bounded by 1 on[t̄ −ψ, t̄]. With a small computation we see
that

ti∫
ti−1

L(Q,q, Q̇, q̇)dt −
ti∫

ti−1

L(Q, q̄, Q̇, ˙̄q)dt

=
∫

[t ′,t̃]∪[t̄ ,ti ]

[
1

2
|q̇|2+ (1− cos(q)

)+ εf (Q,q)]dt

−
∫

[t ′,t̃−ψ]∪[t̄−ψ,ti ]

[
1

2
| ˙̄q|2+ (1− cos(q̄)

)+ εf (Q, q̄)]dt .

If ti − t̄ >M, we get:

ti∫
ti−1

L(Q,q, Q̇, q̇)dt −
ti∫

ti−1

L(Q, q̄, Q̇, ˙̄q)dt

> 3(α− 6σ)+D9(t̃ − t ′ + ti − t̄ )
+ D10

t̃ − t ′ +
D10

ti − t̄ − (α + 2σ)− 4σ
1

ψ
− 2ε(t̃ − t ′ + ti − t̄ ),

where the first four terms, due to (11), are the contribution ofq , which goes from 2πi to 2π(i+1)
and back to 2πi + π ; the next term is the pendulum action ofq̄ on [t̄ , ti] estimated by (9) since
ti − t̄ >M and the last term accounts for the perturbation. Forε small enough the last formula
contradicts the minimality of(Q,q).
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If ti − t̄ < M we see that, for the samēq defined above:

ti∫
t̄

[
1

2
|q̇|2+ (1− cos(q)

)]
dt −

ti∫
t̄

[
1

2
| ˙̄q|2+ (1− cos(q̄)

)]
dt > 0

since the boundary conditions are the same up to a reflection aroundπ . If in the above formula
we change correspondingly the estimate on the pendulum action ofq andq̄ on [t̄ , ti ], we get:

ti∫
ti−1

L(Q,q, Q̇, q̇)dt −
ti∫

ti−1

L(Q, q̄, Q̇, ˙̄q)dt

> 2(α − 2σ)+D9(t̃ − t ′)+ D10

t̃ − t ′ − 4σ
1

ψ
− 2ε(t̃ − t ′)− 2εM

which for ε small enough contradicts the minimality of(Q,q).
If t̄ − t̃ < 4, we define

q̄(t)=
{
q(t), t ∈ [ti−1, t

′],
q̃(t), t ∈ [t ′, ti],

where q̃ is the orbit of the pendulum with boundary conditionsq̃(t ′) = q(t ′) = 2πi + σ ,
q̃(ti)= q(ti)= 2πi + π .

We divide again in two subcases. Ifti − t̄ >M a small computation shows that:

ti∫
ti−1

L(Q,q, Q̇, q̇)dt −
ti∫

ti−1

L(Q, q̄, Q̇, ˙̄q)dt

>
ti∫
t ′

[
1

2
|q̇|2+ (1− cos(q)

)]
dt −

ti∫
t ′

[
1

2
| ˙̄q|2+ (1− cos(q̄)

)]
dt − 2ε(ti − t ′)

> 3(α− 2σ)+D9(ti − t ′ − 4)− (α + 2σ)− 2ε(ti − t ′),
where the first two terms are the contributions of the pendulum action ofq , due to (11), the third
is the pendulum action of̄q and the last accounts for the perturbation. Their sum is positive ifε

is small enough, contradicting minimality. Let nowti − t̄ < M; since on[t̄ , ti ] q covers the same
distance as̄q on [t ′, ti ], and sinceti − t̄ 6 ti − t ′, it is easy to see that:

ti∫
t̄

[
1

2
|q̇|2+ (1− cos(q)

)]
dt −

ti∫
t ′

[
1

2
| ˙̄q|2+ (1− cos(q̄)

)]
dt > 0

which implies by (11)

ti∫
t ′
L(Q,q, Q̇, q̇)dt −

ti∫
t ′
L(Q, q̄, Q̇, ˙̄q)dt > 2(α− 2σ)+D9(t̃ − t ′)− 2ε(t̃ − t ′ +M)> 0,

contradicting minimality.
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