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Summary. We consider the problem of the stability of action variables in properly
degenerate, nearly integrable Hamiltonian systems and prove, in particular, stability
results for systems with two degrees of freedom. An application of such results to
celestial mechanics is presented.

1. Introduction and Main Results

Consider the n-dimensional Hamiltonian system

ẏ = −∂H /∂x, ẋ = ∂H /∂y, H = H0(y) + εH1(x, y; ε), (1.1)

y ∈ D, x ∈ Tn = Rn/(2πZn),

where D ⊂ Rn is an open domain and ε is a small parameter. Variables y and x are
called respectively actions and angles. We denote by y(t) = y(t; y0, x0, ε), x(t) =
x(t; y0, x0, ε), the Hamiltonian flow of system (1.1) with initial data y(0) = y0, x(0) =
x0.

System (1.1) is called nearly integrable since, for ε = 0, it can be simply integrated:

ẏ = −∂H0/∂x = 0, ẋ = ∂H0/∂y. (1.2)

Then the phase spaceM := D × Tn is foliated by n-dimensional invariant tori

Tω0 := {y = y0, x ∈ Tn},
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on which the angles linearly evolve x(t) = ω0 t + x0, where ω0 := ∂H0/∂y|y=y0 , while
the actions remain constant: y(t) = y0. We are interested in knowing the behavior of
y(t; y0, x0, ε) for ε �= 0.

The problem of the (in)stability of action variables in nearly integrable Hamiltonian
systems consists in (dis)proving that, for any compact set K ⊂ D ,

∃ c(ε) > 0, c(ε) → 0 for ε → 0, s.t. sup
t∈R

|y(t; y0, x0, ε)− y0| ≤ c(ε), (1.3)

for any (y0, x0) ∈ K . Property (1.3) is often called total stability, in the sense that it
holds for all times.

1.1. Stability by KAM Theory for Nondegenerate Systems

The celebrated KAM Theorem assures the persistence of the majority1 of the perturbed
invariant tori for ε small, under suitable (general) hypotheses of nondegeneracy on the
integrable Hamiltonian H0.

As a byproduct, the majority of orbits are stable, in the sense that (1.3) holds for any
compact set in a “big” setMK (meaning that meas(M\MK ) is bounded by a quantity
of order

√
ε).

Denote by Dh the unperturbed energy level in the space of actions:

Dh = {y ∈ D: H0(y) = h}.

Let Pn−1 be the (n − 1)-dimensional projective space and pr: Rn \ {0} → Pn−1 the
natural projection. Consider the map 
: Dh → Pn−1, 
(y) = pr ◦ gradH0(y). Then the
system (1.1) is called isoenergetically nondegenerate at a point y ∈ Dh if the map 
 is
a local diffeomorphism in the vicinity of y.

According to KAM theory, for small ε, energy levels of an isoenergetically nondegen-
erate system (1.1) contain a large (in the measure sense) family of invariant n-dimensional
tori.

As is well known, for n = 2, isoenergetical nondegeneracy prevents the drift of y-
variables on trajectories, since the KAM tori are two-dimensional invariant hypersurfaces
on three-dimensional energy levels. Hence an isoenergetically nondegenerate system
with two degrees of freedom is stable (namely, (1.3) holds).

On the other hand, it is believed that general isoenergetically nondegenerate systems
exhibit O(1) drift in actions,2 whenever n > 2. Such drift is known as Arnold diffusion,
since Arnold showed its existence in a simple ad hoc model in [4] and conjectured3

its genericity in [3]: “the typical case in higher-dimensional problems is topological

1 Namely, the measure of the complement of the union of the persistent invariant tori does not exceed a quantity
of order

√
ε.

2 Namely, there exist a constant c > 0, an ε-depending family of initial data (yε0 , xε
0), and times Tε such that

|y(Tε; yε0 , xε
0 , ε) − yε0 | ≥ c.

3 The conjecture is stronger than the simple negation of (1.3) and even of the existence of a drift.



Stability of Nearly Integrable, Degenerate Hamiltonian Systems OF3

instability: through an arbitrarily small neighborhood of any point there pass phase
trajectories along which the actions drift away from their initial value by a quantity of
order one.”4

Genericity of the Arnold diffusion was announced in [18], [19].
Finally we observe that, according to the Nekhoroshev theory (see [20]), the average

velocity of such a drift is exponentially small in ε provided H0 satisfies suitable general
“steepness” conditions (see [20] or the recent preprint [21]).

1.2. Isoenergetically and Properly Degenerate Systems with Two Degrees of Freedom

From now on we shall consider nearly integrable Hamiltonian systems with two degrees
of freedom.

Suppose that system (1.1) is isoenergetically degenerate on a certain energy level.
In this case even for n = 2, drift of action variables is possible. Indeed, consider the
Nekhoroshev example (see [20]):

H = 1

2
(y2

1 − y2
2) − ε sin(x1 + x2). (1.4)

The system is isoenergetically degenerate on the unperturbed energy level D0. The
solution y1(t) = y2(t) = εt , x1(t) = εt2/2 = −x2(t), presents O(1) drift of actions
along D0 with velocity of order ε.

In Section 2 below, generalizing the Nekhoroshev example, we will describe a simple
“general” method apt to construct drifting orbits for isoenergetically degenerate systems
in two degrees of freedom.

Let us point out that the study of degenerate systems is not only a mathematical
question but might be of interest also from a physical point of view. In fact, a typical
feature in celestial mechanics is that the unperturbed system is properly degenerate, i.e.,
the unperturbed Hamiltonian H0 in (1.1) does not depend upon all action variables. In
such a case the isoenergetical nondegeneracy is obviously strongly violated.

Some important examples of properly degenerate models arising in Celestial Me-
chanics are the three-body problem (see, e.g., [17], [8]); the problem of fast rotations
of a symmetric rigid body (see [6], [7], [5]); and the D’Alembert planetary “spin/orbit”
model (see, e.g., [14], [12], [13]). The D’Alembert model will be taken up in Section 4
below and will, somehow, be used as a “guideline” for our investigations.

In general, properly degenerate systems are unstable, i.e., (1.3) does not hold. For
example, in the system governed by the Hamiltonian

H(y1, y2, x1, x2; ε) := H0(y1) + εH1, where H1 := y2
2

2
+ cos x2,

all trajectories with initial positions such that (y2, x2) �= (0, kπ) violate (1.3). Hence,
in order to have stability, one has to make suitable assumptions on the perturbation H1.
Such assumptions arise naturally in the celestial mechanical examples mentioned above.

4 See [1, pg. 189] from which the citation is taken.
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One requires that the perturbation H1 is of the form

H1(y1, y2, x1, x2; ε) := H01(y1, y2, x1) + O(εc), c > 0. (1.5)

Here and in the following, by O(εc), c > 0, we mean a function that, divided by εc, is
smooth (or analytic) in x and y and bounded in all its variables as ε → 0.

For example, in [11], total stability is proved for the “model problem”

H0 = y2
1

2
, H01 := ± y2

2

2
+ cos x1. (1.6)

In this paper, in order to prove stability results in two degrees of freedom, we will
assume the following stronger assumption on the intermediate term H01: We shall assume
that H01 is independent on the angle x1 and consider perturbations of the form

H1 := H01(y1, y2) + O(εc), c > 0. (1.7)

A first answer on the stability of systems governed by Hamiltonians of the form

H(y1, y2, x1, x2; ε) := H0(y1) + εH01(y) + O(ε2), (1.8)

was given by Arnold (see [3] and compare also [1], Chapter 5, Section 3).

Theorem [3]. Let H be as in (1.8) and assume that the perturbation removes the de-
generacy, in the sense that

∂H0

∂y1
�= 0,

∂2 H01

∂y2
2

�= 0. (1.9)

Then, for all ε small enough, total stability holds.

However a general function H0(y1) will have critical points (where (1.9) is violated)
and one may pose the question whether in the vicinity of a critical point ycr

1 of ∂H0/∂y1

drifting phenomena may occur or total stability holds.

1.3. Main Results: Stability Theorems for Properly Degenerate
Systems in Two Degrees of Freedom

Let D be an open bounded set in R2, let y ∈ D, x ∈ T2, ε ≥ 0, and consider a system
with Hamiltonian

H(y, x, ε) = H00(y1) + εH01(y) + εa Ha(y, x) + O(εa1), 1 < a < a1. (1.10)

We shall assume H to be smooth enough or real-analytic. In the following, by “(total)
stability” we mean that there exists a constant s > 0 such that (1.3) holds with c(ε) := εs .

Notation: from now on, prime denotes derivative with respect to y2.
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Theorem 1. Suppose that

(1) the critical points of H00 are nondegenerate,
(2) for all y0

1 fixed, y2 �→ H ′′
01(y0

1 , y2) is not identically zero on any open subset of
D ∩ ({y0

1} × R).

Then the following condition is sufficient for the stability of system (1.10): For any
critical point ycr

1 of H00 and for any constant h, the function H01(ycr
1 , y2) is not a

quadratic polynomial in y2 of the form

d(y2 − r)2 + h, d
∂2 H00

∂y2
1

(ycr
1 ) < 0, (1.11)

for some d, r ∈ R.

Unfortunately in our astronomical guide-problem (the D’Alemebert spin/orbit problem),
H01(ycr

1 , y2) is exactly of the form described in (1.11) and the previous theorem cannot
be applied. In such cases, one has to look at “higher order” nondegeneracy conditions
such as the ones described in the following:

Theorem 2. Suppose that a < 3/2 and hypotheses (1)–(2) of Theorem 2 hold, but, for
some critical point ycr

1 of H00, F(y2) := H01(ycr
1 , y2) is of the type described in (1.11),

namely,
F(y2) ≡ d(y2 − r)2 + h for some d, r, h ∈ R. (1.12)

Then stability nevertheless takes place, provided

Fa(y2) := 1

(2π)2

∫
T2

Ha(ycr
1 , y2, x) dx (1.13)

is not a quadratic polynomial having r as a root, namely,

Fa(y2) �≡ (uy2 + v)(y2 − r) for some u, v ∈ R. (1.14)

Let us conclude this introduction by loosely describing the application of the above
results to the D’Alembert problem.

The D’Alembert planetary model is a nearly integrable, properly degenerate, time-
dependent Hamiltonian system with two (and a half) degrees of freedom describing the
positions of a planet, modelled by a nearly spherical ellipsoid, whose center of mass
revolves on a Keplerian nearly circular ellipse around a fixed star (see [14], [12], [13]
and Section 4 below). In particular one is interested in studying the resulting motions
in phase region close to exact “spin/orbit” resonances, i.e., in regions corresponding to
unperturbed motions where the day of the planet is commensurable with the year (the
period of the Keplerian orbit of the center of mass)

Time is a “fast variable,” which can be averaged out up to exponentially small (in the
main perturbative parameter)5 terms. The two-degree-of-freedom (time-independent)
resulting Hamiltonian is usually called “the effective Hamiltonian.”

5 In the D’Alembert problem there are two perturbative parameters, namely, the oblateness ε of the planet and
the eccentricity µ of the Keplerian fixed orbit around which is revolving the center of mass of the ellipsoidal
planet. Usually one takes µ = εc for some prefixed c > 0. See Section 4 for more information.
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Theorem 3. For all but a finite number of spin/orbit resonances, the effective Hamil-
tonian of the D’Alembert planetary model is totally stable. Consequently, the action
variables of the full three-degree-of-freedom D’Alembert Hamiltonian are stable for an
exponentially long time.

More precise statements (and comparison with known results) are given in Section 4;
see, in particular, Theorems 8 and 9.

2. Instability in Degenerate Systems: Resonant Channels

Definition 2.1. Let H0 be isoenergetically degenerate at every point of a suitable con-
nected component Eh of Dh. Suppose that gradH0|Eh �= 0. Then Eh is called a channel.

Proposition 2.1. Every channel is a part of a straight line.

Proof. If ω := (ω1, ω2) := gradH0(y), the isoenergetic degeneracy implies that pr(ω)
is constant on Eh . Hence, the direction of gradH0 is the same on Eh .

Below, we shall always assume that channels correspond to the energy value h = 0.

Corollary 2.1. Let E := E0 be a channel. Then for some constant vector ω̃ ∈ R2 and
some function g(y) smooth in a neighborhood of E,

H0(y) = 〈ω̃, y〉
g(y)

. (2.1)

Definition 2.2. Let us consider a channel E. If for some integer j1, j2, with gcd(j1, j2)
= 1, we have pr(ω1, ω2) = (j1, j2) on E, we call E resonant.

Remark 2.1. In a properly degenerate system every channel is resonant.

Let E be a resonant channel of system (1.1). According to Proposition 2.1, there exists
I ⊂ E and suitable a, b ∈ D, λ > 0, m1,m2 ∈ Z2 with gcd(m1,m2) = 1, such that
a − b = λµ = λ(−m2,m1) and

I = {y ∈ R2: y = as + b(1 − s), s ∈ [0, 1]}. (2.2)

We construct the integer matrix

A =
(

m1 m2

n1 n2

)
, det A = 1, A−1 =

(
n2 −m2

−n1 m1

)
, (2.3)

and define the function

χ(η, ξ) = 1

2π

∫ 2π

0
H1

(
b + µη, AT

(
τ

ξ

))
dτ, ξ ∈ T1, η ∈ [0, λ].

We shall assume that the perturbation H1 satisfies the following condition:
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C1. There exists a constant h0 and a function φ: [0, λ] → T1 such that

χ(η, ξ)|ξ=φ(η) ≡ h0 and

∣∣∣∣∂χ∂ξ
∣∣∣∣
ξ=φ(η)

∣∣∣∣∣ ≥ const. > 0. (2.4)

Theorem 4. An isoenergetically degenerate system (1.1) admitting a resonant channel
is unstable for any perturbations H1 verifying C1. That is, for all ε sufficiently small,
there exists a solution (y(t), x(t)) of system (1.1) such that

|y(0) − b| < c1ε, |y(T ) − a| < c2ε, c3ε
−1 < |T | < c4ε

−1.

Remark 2.2. The time T is positive (respectively, negative) if in Condition C1 ∂χ

∂ξ
|ξ=φ(η)

> 0 (respectively, < 0).

From the previous Theorem and Remark 2.1 we have the following:

Corollary 2.2. A properly degenerate system (1.1) in two degrees of freedom is unstable
for any perturbations H1 verifying C1.

Consider as a trivial example the system with Hamiltonian (1.4). Then E = {y ∈
R2: y1 = y2 > 0} is a resonant channel. We take I satisfying (2.2) with a = α

(1
1

)
,

b = β
(1

1

)
, 0 < β < α. Then µ = (1, 1), λ = α − β. We can put A = (1 −1

0 1

)
. Then

χ(η, ξ) = − 1

2π

∫ 2π

0
sin ξ dτ = − sin ξ,

and condition C1 obviously holds.

Proof of Theorem 4. Without loss of generality, we assume that b = 0. Since the channel
E is resonant, H0 satisfies (2.1) with ω̃ = (m1,m2).

Consider the linear symplectic change of variables (y, x) → (Y, X),

Y = Ay, x = AT X.

In the new variables the interval I and the Hamiltonian (1.1) take the form

I = {Y1 = 0, Y2 ∈ [0, λ]},
H(Y, X; ε) = Y1/G(Y ) + εH1(A−1Y, AT X; ε), G(Y ) = g(A−1Y ).

We reduce the order on the energy level

H = εh0, (2.5)

where h0 is a suitable constant such that condition C1 holds. The solution of equation
(2.5) with respect to Y1 has the form

Y1 = εG(0, Y2)(h0 − H1(0,m1Y2, AT X; 0)) + O(ε2), (2.6)
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where m1 is defined as above. Now τ = X1 plays the role of the new time and εĤ =
−Y1(Y2, τ, X2; ε) of the new Hamiltonian. Since τ is the only fast variable in this system,
the dynamics on time interval τ ∼ ε−1 is determined with precision of order ε by the
averaged system, i.e., the system with Hamiltonian

εĤ 0 = −εG(0, Y2)(h0 − χ(Y2, X2));

see for example, [2]. Condition C1 implies that the averaged system has a solution that
goes along the curve {χ = h0} with velocity of order ε, and projection of this curve to
the line Y2 covers the interval [0, λ].

3. Proofs of the Stability Theorems

3.1. Technical Lemmata

We now state two classical results. The first one is a normal form theorem, the second
one a KAM theorem (such results are derived by Lemma 5.2 and Lemma 5.3 of [9],
respectively, while a detailed exposition on normal forms and KAM theory can be found
e.g. in [15]). Finally the third result is an ad hoc corollary of the previous two results
which will be useful to prove our stability results.

Theorem 5. Consider a real analytic HamiltonianH := H(y, x; t) := h(y)+ f (y, x; t)
defined for t ∈ T, x ∈ Ts := {x ∈ C s.t. |Im x | < s } and y ∈ I := [y−, y+], for
y− < y+, with analytic extension on Ir := {y ∈ C, s.t.∃ y∗ ∈ I, |y − y∗| < r},
for 0 < r, s ≤ 1. Let α := min{1/2, infy∈Ir |h′(y)|}. There exists a small constant c
(independent on r and α) such that, if for some K ≥ 1,

β := sup
y∈Ir , x∈Ts , t∈T

| f (y, x; t)| ≤ crα/K ,

then there exists a time-dependent analytic canonical transformation


: (ỹ, x̃; t) ∈ Ir /2 × Ts/6 × T −→ (y, x) ∈ Ir × Ts,

such that, in the new variables (ỹ, x̃), the new Hamiltonian is

H̃ := h(ỹ) + g(ỹ) + f̃ (ỹ, x̃; t),

with

sup
y∈Ir /2

|g(y)| ≤ 2β, sup
y∈Ir /2, x∈Ts/6, t∈T

| f̃ (y, x; t)| ≤ β exp(−cK ),

and

|y − ỹ| ≤ β/c.
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Theorem 6. Consider a Hamiltonian H defined as in the previous theorem. Assume
that δ := infy∈Ir |h′′(y)| > 0. Take 0 < γ < 1 and define

A := 1 + sup
y∈Ir

(|h′(y)|2 + |h′′(y)|),

F := Aγ−2 sup
y∈Ir , x∈Ts , t∈T

| f (y, x; t)|,

B := 1 + c1
γ

Ar | ln F |c2
,

F̂ := c3 B A2δ−2 F | ln F |c4 ,

γ̂ := c5 Aδ−1γ,

where ci are suitable constants. Suppose that F̂ ≤ 1, then, due to the preservation of
KAM tori, the evolution of y(t) remains bounded, namely,

|y(t) − y(0)| ≤ 2 max{r F̂, γ̂ }. (3.1)

Theorem 7. Consider a real analytic Hamiltonian H(y, x, t; ε) defined for y, x, t as
above and ε small. Suppose thatH has the form

H := εκ1 (h(y; ε) + εκ2 f (y, x, t; ε)) ,
for some κ1, κ2 > 0. Suppose that

r ≥ εσ1 , inf
y∈Ir

|h′(y)| ≥ εσ2 , inf
y∈Ir

|h′′(y)| ≥ εσ3 ,

for σ1 + σ2 < κ2, σ3 > 0. Then the action y is stable; namely, there exists a σ4 > 0
such that

|y(t) − y(0)| ≤ εσ4 , ∀ t ∈ R.

Proof. Since σ1+σ2 < κ2, we can apply Theorem 5, obtaining a O(εκ1+κ2) close-to-the-
identity canonical transformation after which the perturbation becomes exponentially
small (w.r.t. ε). Then we can apply Theorem 6 with γ small enough such that γ̂ =
O(εκ1+κ2), noting that condition F̂ ≤ 1 is surely verified for ε small enough since
the perturbation is exponentially small. Therefore stability follows by (3.1) with any
σ4 < κ1 + κ2 (and ε small enough).

3.2. Proof of Theorem 1

Let y0 be the initial condition for the variable y. We put

ω = ∂H00

∂y1
(y0

1).

We distinguish two cases: |ω| > Cε1/2 and |ω| ≤ Cε1/2. In the first case we reduce
the order on the energy level and, since the obtained system is non degenerate, we can
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directly apply KAM theory, namely Theorem 7, getting stability. The second case is more
complicated. After reducing the order on the energy level, we have that the new time of the
obtained (1+1/2)-degrees-of-freedom system is a fast angle, so we average with respect
to it. To get some “twist” condition for the averaged Hamiltonian, we have to construct
action–angle variables that integrate the one-dimensional system obtained neglecting
the time-dependent term. After this last change of variables, the twist condition follows
from the hypothesis (1.11) of Theorem 1 and, again by KAM theory, we get stability.

Case 1. |ω| > Cε1/2 with large constant C .
Putting

h = H(y0, x0, ε) = H00(y0
1) + εH01(y0) + O(εa),

we reduce the order on the energy level H = h. If C is large enough, we can find a
unique solution of the equation H(y, x, ε) = h with respect to y1, which has the form
y1 = y0

1 − χ(y2, x, ε), where

χ(y2, x, ε) := ω

(
g(y2; ε) + O

(
ε2

ω3
+ εa

ω2

))
. (3.2)

Indeed, the equation H = h can be written, dividing by ω2, in the form

− ϕ(χ) + ε

ω2
g̃(y2) + O

(
ε

ω2
χ + εa

ω2

)
= 0, (3.3)

where

ϕ(χ) := ϕ(χ; y0
1) := ω−2[H00(y0

1) − H00(y0
1 − χ)],

g̃(y2) := H01(y0
1 , y2) − H01(y0).

Let us denote by ξ → ϕ−1(ξ ; y0
1) the inverse function of ϕ in a neighborhood of zero

(such an inverse function exists since ∂χ(0; y0
1) = 1

ω
�= 0). Let us consider

ψ(ξ) := ψ(ξ ; y0
1) := 1

ω
ϕ−1(ξ ; y0

1).

We note that ψ can be extended to a smooth function even in y0
1 = ycr

1 (where ω = 0);
indeed, it results that ∂ξψ(0; ycr

1 ) = 1, ∂2
ξ 2ψ(0; ycr

1 ) = ∂2 H00(ycr
1 ), etc. By (3.3) we get

χ = ωψ

(
ε

ω2
g̃(y2) + O

(
ε

ω2
χ + εa

ω2

))
.

Since ψ(ξ) = ξ + O(ξ 2), it results that χ = O(ε/ω). Hence χ is of the form described
in (3.2) with

g(y2; ε) := ψ
( ε

ω2
g̃(y2)

)
. (3.4)

Let us define g(y2; ε) := ψ(ε g̃(y2)) and ε := ε/ω2. We have g(y2; ε) = g(y2; ε) and

g′(y2; ε) = g′(y2; ε) = ε∂ξψ(ε g̃(y2))g̃
′(y2)

= ε∂ξψ(ε g̃(y2))H ′
01(y0

1 , y2), (3.5)
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g′′(y2; ε) = g′′(y2; ε) = ε
[
ε∂2

ξ 2ψ(ε g̃(y2))
(
g̃′(y2)

)2 + ∂ξψ(ε g̃(y2))g̃
′′(y2)

]
= ε [εκ(y2, ε) + k(y2)] , (3.6)

where

k(y2) := H ′′
01(y0

1 , y2), (3.7)

κ(y2, ε) := ∂2
ξ 2ψ(ε g̃(y2))

(
H ′

01(y0
1 , y2)

)2 + ∂ξψ(ε g̃(y2)) − 1

ε
H ′′

01(y0
1 , y2);

note that κ is analytic also in ε = 0 since ∂ξψ(0) = 1.
Then on the energy level H = h the system is determined by the equations

dx2

dτ
= ∂χ

∂y2
,

dy2

dτ
= − ∂χ

∂x2
, τ = x1, χ = χ(y2, τ, x2, ε). (3.8)

The Hamiltonian χ can be regarded as a perturbation of

χ0(y2; ε) := ωg(y2; ε).
1A. First assume that |g′(y0

2 ; ε)| ≥ εεσ and |g′′(y0
2 ; ε)| ≥ εεσ with sufficiently small

σ > 0. Then the system (3.8) is nondegenerate. We can apply Theorem 7 with analyticity
radius r := const εσ , for a suitable const > 0 small, obtaining stability for y2(t) and,
hence, for y1(t).

1B. Now suppose that |g′(y0
2 ; ε)| or |g′′(y0

2 ; ε)| < εεσ . Fix σ̃ > 0 (small enough). If
|y2(t) − y0

2 | < 2εσ̃ for all t ∈ R, we get stability. Otherwise there exists t∗ ∈ R such
that |y2(t∗) − y0

2 | = 2εσ̃ , while |y2(t) − y0
2 | < 2εσ̃ ∀ |t | < |t∗|. Let y∗

2 := y2(t∗).
The idea is to use condition (2) of Theorem 1 in order to prove that, even if |g′(y0

2 ; ε)|
or |g′′(y0

2 ; ε)| can be small, nevertheless |g′(y∗
2 ; ε)| and |g′′(y∗

2 ; ε)| must be sufficiently
large (taking σ̃ small enough).

We need the following elementary lemma:

Lemma 3.1. Let k(y2), κ(y2, ε) be two analytic functions defined on some compact set
with k not identically zero. There exist ε̂, ŝ, ĉ, δ̂ > 0 such that, if |ε| ≤ ε̂ and 0 < δ ≤ δ̂,
then

|εκ(y2, ε) + k(y2)| ≤ δ

only for y2 belonging to a finite set of intervals whose length does not exceed ĉδŝ .

Due to condition (2) of Theorem 1, recalling (3.5)–(3.7) and applying the previous
Lemma, we have, for σ̃ small enough,6 that |g′(y∗; ε)|, |g′′(y∗; ε)| ≥ εεσ , and we reduce
the situation to the case 1A, with initial data y∗ (noting that |∂y1 H00(y∗

1 )| ≥ Cε1/2/2).
At the end of this case 1, we give a simple example in which we can explicitly evaluate

the function g in (3.2). Let us set H00(y1) := y2
1 /2. Thenω = y0

1 and the functionsϕ,ψ, g
take the simple form

ϕ(χ; y0
1) = χ

y0
1

− 1

2

(
χ

y0
1

)2

, ψ(ξ ; y0
1) = 1 −

√
1 − 2ξ,

6 Uniformly in the compact set in which we want to prove stability.
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g(y2; ε) = 1 −
√

1 − 2εg̃(y2)/ω2.

Case 2: |ω| < Cε1/2.
According to condition (1), we have y0

1 = ycr
1 + √

εy∗
1 , where ycr

1 is a critical point
of H00 and |y∗

1 | < C1 with sufficiently large constant C1.
2A. First, assume that |y∗

1 | > εσ , where σ > 0 is again a small constant. We put

w := ∂2 H00

∂y2
1

(ycr
1 ), λ := (y∗

1 )
2w,

Fa(y0
2) := 1

(2π)2

∫
T2

Ha(ycr
1 , y0

2 , x) dx,

F(y0
2) := H01(ycr

1 , y0
2), µ := Fa(y0

2) − Ha(ycr
1 , y0

2 , x0).

We note that w �= 0 since ycr
1 is nondegenerate. Below, without loss of generality, we

assume that

ycr
1 = 0, H00(0) = 0,

so that y0
1 = √

εy∗
1 . Consider the new action variables ỹ:

y1 = y0
1 + εa−1 ỹ1, y2 = y0

2 + εa−1 ỹ2. (3.9)

To reduce the order on the energy level H = εh with

εh = H(y0, x0, ε)

= H00(y0
1) + εF(y0

2) + εa Ha(0, y0
2 , x0) + O(ε3/2 + εa1), (3.10)

we solve the equation

H(y0
1 + εa−1 ỹ1, y0

2 + εa−1 ỹ2, x) = εh, (3.11)

with respect to ỹ1. Developing H00 around the critical point ycr
1 = 0, we get

H00(y0
1) = 1

2
w(y0

1)
2 + O((y0

1)
3) = 1

2
εw(y∗

1 )
2 + O(ε3/2).

Hence

εh = 1

2
εw(y∗

1 )
2 + εF(y0

2) + εa Ha(0, y0
2 , x0) + O(ε3/2 + εa1),

from which we obtain

λ = 2(h − F(y0
2) − εa−1 Ha(0, y0

2 , x0)) + O(ε1/2 + εa1−1). (3.12)

According to the definition of λ (and also using the fact that both w and λ are different
from 0), we get λw > 0. Multiplying (3.12) by w,

λw = 2(h − F(y0
2))w + O(εa−1 + ε1/2) > 0,

we finally obtain

(h − F(y0
2))w > 0. (3.13)
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Notation. From now on, given 0 < σ < α, we denote f = Oσ (ε
α) if f = O(εα−nσ )

for a suitable 0 ≤ n < α/σ . For example, we will write Oσ (ε) instead of O(ε1−σ ) or
O(ε1−2σ ), provided σ < 1/2.

Lemma 3.2. Equation (3.11) has a unique solution of the form

ỹ1 = −Y (ỹ2, x1, x2, ε), (3.14)

where

Y :=
√
ε

wy∗
1

(

0 + 
1 ỹ2 + εa−1
2 ỹ2

2 + ε2a−2
3 ỹ3
2 + Oσ (ε

3a−3 ỹ4
2)
)
.

The functions 
0,1,2,3 are as follows:


0(x, ε) = Ha(0, y0
2 , x) − Ha(0, y0

2 , x0) + Oσ (ε
1/2 + εa−1 + εa1−a), (3.15)


1(x, ε) = F ′(y0
2) + εa−1µ

λ
F ′(y0

2) + εa−1
(
H ′

a(0, y0
2 , x) + ϕ1(y0

2 , x)
)

+Oσ (ε
2a−2 + ε1/2 + εa1−1), (3.16)


2(x, ε) = 1

2
F ′′(y0

2) + 1

2λ
(F ′)2(y0

2)

+εa−1µ

2λ

(
F ′′(y0

2) + 3

λ
(F ′)2(y0

2)

)

+εa−1

(
1

2
H ′′

a (0, y0
2 , x) + 1

λ
F ′(y0

2)H ′
a(0, y0

2 , x) + ϕ2(y0
2 , x)

)

+Oσ (ε
2a−2 + εa−1/2 + ε1/2 + εa1−1), (3.17)


3(x, ε) = 1

6
F ′′′(y0

2) + 1

2λ2
F ′(y0

2)
̂ + Oσ (ε
a−1 + ε1/2). (3.18)

Here λ = λ(y0
2) satisfies (3.12), and the functions ϕ1 and ϕ2 have zero average in x since

ϕ1(y0
2 , x) := F ′(y0

2)

λ
ϕ0(y0

2 , x),

ϕ2(y0
2 , x) := 1

2λ

(
F ′′(y0

2) + 3

λ
(F ′(y0

2))
2

)
ϕ0(y0

2 , x),

ϕ0(y0
2 , x) := Ha(0, y0

2 , x) − Fa(y0
2).

Finally,


̂(y0
2) := 2(h − F(y0

2))F ′′(y0
2) + (F ′(y0

2))
2 (3.19)

= λF ′′(y0
2) + (F ′(y0

2))
2 + εa−12H1(0, y0

2 , x0)F ′′(y0
2) + Oσ (ε

1
2 + εa1−1).

Remark 3.1. Obviously, explicit terms in (3.16)–(3.17) of order εa−1 make sense only
if a < 3/2. Otherwise they are suppressed by the error terms.
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The proof of Lemma 3.2 (see Appendix) is based on a direct calculation.
The function

Y (ỹ2, τ, x2, ε), τ = x1,

can be regarded as the new Hamiltonian:

dx2

dτ
= ∂Y

∂ ỹ2
,

d ỹ2

dτ
= − ∂Y

∂x2
.

The angular variable τ is fast. Therefore we can perform averaging w.r.t. τ by a Oσ (
√
ε)-

close to the identity time-dependent canonical transformation (p, q, τ ) → (ỹ2, x2, τ )

with ỹ2 := p +
√
ε

y∗
1

ỹ∗
2 (p, q, τ, ε), x2 := q +

√
ε

y∗
1

x∗
2 (p, q, τ, ε). The above-mentioned

canonical transformation can be obtained by a composition of four different canonical
transformations. Let p0 := ỹ2, q0 := x2. The transformations

pj = pj (pj+1, qj+1, τ ), qj = qj (pj+1, qj+1, τ ) for j = 0, 1, 2, 3,

associated with the time-dependent generating functions

pj+1qj +
√
ε

y∗
1

Sj (pj+1, qj , τ, ε),

with

S0 := S∗
0 , S1 := p2S∗

1 , S2 := εa−1 p2
3 S∗

2 , S3 := ε2a−2 p3
4 S∗

3 ,

and

S∗
j := S∗

j (qj , τ ) := 1

w

∫ τ

0

[
1

2π

∫ 2π

0

j (q, ξ)dξ − 
j (q, s)

]
ds.

The transformations are implicitly given by the equations

pj = pj+1 +
√
ε

y∗
1

∂qj Sj (pj+1, qj , τ, ε), qj+1 = qj +
√
ε

y∗
1

∂pj+1 Sj (pj+1, qj , τ, ε) ;

notice that the transformed Hamiltonians contains the terms
√
ε

y∗
1
∂τ Sj , which are exactly

responsible for the cancellation of the fast oscillating terms. Finally, p := p4 and q := q4.

After this transformation, the new Hamiltonian is

Ỹ (p, q, τ, ε) :=
√
ε

wy∗
1

(φ0 + φ1 p + εa−1φ2 p2 + ε2a−2φ3 p3 + Oσ (ε
3a−3 p4)),

where

φj (q, ε) := 1

2π

∫ 2π

0

j (q, τ ) dτ + Oσ (

√
ε) for j = 0, 1, 2, 3. (3.20)

We note that, denoting

F̃a(y0
2 , q) := 1

2π

∫ 2π

0
Ha(0, y0

2 , τ, q) dτ, ϕ̃2(y0
2 , q) := 1

2π

∫ 2π

0
ϕ2(y0

2 , τ, q) dτ,
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we have, by (3.19),

φ1 = F ′ + Oσ (ε
a−1 + ε1/2), (3.21)

φ2 = 
̂

2λ
+ Oσ (ε

a−1 + ε1/2) (3.22)

= 
̂

2λ

+εa−1

2λ

(
−2Ha(0, y0

2 , x0)F ′′ + µF ′′ + 3
µ

λ
(F ′)2 + λF̃ ′′

a + 2F ′ F̃ ′
a + 2λϕ̃2

)
+Oσ (ε

2a−2 + εa−1/2 + ε1/2 + εa1−1)), (3.23)

φ3 = 1

6
F ′′′ + 1

2λ2
F ′
̂ + Oσ (ε

a−1 + ε1/2). (3.24)

Suppose now that7

|F ′(y0
2)| > εσ with sufficiently small σ > 0. (3.25)

We consider the one-dimensional system with energy

E := φ0(q) + φ1(q)p + εa−1φ2(q)p2 + ε2a−2φ3(q)p3, (3.26)

for which we want to introduce a new couple of action-angle variables P, Q such that,
after this canonical change of coordinates, the energy E is a function only of the new
action P , namely E = E(P). In order to define P , we express p as a function of E
and q:

p = p(E, q)

= E − φ0

φ1
− εa−1 (E − φ0)

2φ2

φ3
1

(3.27)

+ε2a−2

(
2(E − φ0)

3φ2
2

φ5
1

− (E − φ0)
3φ3

φ4
1

)
+ Oσ (ε

3a−3).

Let

S(E, q) :=
∫ q

0
p(E, q) dq.

We define

P(E) := 1

2π
S(E, 2π) = 1

2π

∫ 2π

0
p(E, q) dq. (3.28)

We observe that

P(E) = E − µ

F ′ + Oσ (ε
a−1 + ε1/2 + εa1−a). (3.29)

7 If |F ′(y0
2 )| ≤ εσ , slightly changing y0

2 , we can get (3.25) (arguing as in case 1B).
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Moreover we have

Ṗ(E) = 1

2π

∫ 2π

0
∂E p(E, q) dq (3.30)

= 1

2π

∫ 2π

0

[
1

φ1
− εa−1 2(E − φ0)φ2

φ3
1

(3.31)

+ ε2a−2

(
6(E − φ0)

2φ2
2

φ5
1

− 3(E − φ0)
2φ3

φ4
1

)
+ Oσ (ε

3a−3)

]
dq,

(3.32)

and

P̈(E) = 1

2π

∫ 2π

0

[
−εa−1 2φ2

φ3
1

+ 6(E − φ0)ε
2a−2

(
2φ2

2

φ5
1

− φ3

φ4
1

)
+ Oσ (ε

3a−3)

]
dq.

(3.33)
Thus we have that P(E) is invertible, and the new Hamiltonian is E(P)with E(P(E)) =
E , P(E(P)) = P with

E ′(P) = 1

Ṗ(E(p))
, (3.34)

E ′′(P) = −P̈(E(P))[E ′(P)]3. (3.35)

Since, by (3.30)

Ṗ(E) = 1

F ′ + Oσ (ε
a−1 + ε1/2),

from (3.34) we have

E ′(P) = F ′ + Oσ (ε
a−1ε1/2). (3.36)

Now we can define the new angle

Q(P, q) := ∂P S(E(P), q) = E ′(P)∂E S(E(P), q)

= E ′(P)

∫ q

0

1

φ1
+ Oσ (ε

a−1)

= (F ′ + Oσ (ε
a−1ε1/2))

∫ q

0

1

F ′ + Oσ (ε
a−1 + ε1/2)

= q + Oσ (ε
a−1 + ε1/2).

We now evaluate

− P̈(E)

εa−1
= 1

2π

∫ 2π

0

[
−2φ2

φ3
1

+ 6(E − φ0)ε
a−1

(
2φ2

2

φ5
1

− φ3

φ4
1

)
+ Oσ (ε

2a−2)

]
dq.

(3.37)
If 
̂ �= 0, we simply have

− P̈(E)

εa−1
= 1

λ(F ′)3

̂ + Oσ (ε

a−1 + ε1/2)
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and

E ′′(P) = εa−1

(

̂

λ
+ Oσ (ε

a−1 + ε1/2)

)
. (3.38)

We remark that the general solution of the equation 
̂ := 2(h − F)F ′′ + (F ′)2 = 0 is as
follows:8 F(y) = d(y −r)2 +h. Moreover by (3.13) we obtain dw < 0, namely, (1.11).

On the other hand, if F has the form F(y) = d(y − r)2 + h, which implies 
̂ ≡ 0
and F ′′′ ≡ 0, we have

2φ2

φ3
1

= 1

λ(F ′)3

(
−2Ha(0, y0

2 , x0)F ′′ + µF ′′ + 3µ(F ′)2/λ + λF̃a
′′ + 2F ′ F̃a

′)
+Oσ (ε

a−1 + ε1/2 + ε3/2−a + εa1−a),

φ2
2

φ5
1

= Oσ (ε
2a−2 + ε),

φ3

φ4
1

= Oσ (ε
a−1 + ε1/2).

Collecting the previous equalities, we have

− P̈(E)

ε2a−2
= −2Ha(0, y0

2 , x0)F ′′ + µF ′′ + 3µ(F ′)2/λ + λFa
′′ + 2F ′Fa

′

λ(F ′)3

+Oσ (ε
a−1 + ε1/2 + ε3/2−a + εa1−a),

from which (and also using (3.35) and (3.36)), we finally obtain

E ′′(P) = ε2a−2 1

λ

(
−2Ha(0, y0

2 , x0)F ′′ + µF ′′ + 3µ(F ′)2/λ + λFa
′′ + 2F ′Fa

′

+ Oσ (ε
a−1 + ε1/2 + ε3/2−a + εa1−a)

)
. (3.39)

Finally we note that, after the previous change of variables9 p = p(P, Q, ε), q =
q(P, Q, ε), the Hamiltonian Ỹ is transformed into

Ŷ (P, Q, τ, ε) :=
√
ε

wy∗
1

(E(P) + Oσ (ε
3a−3)). (3.40)

From Theorem 7, the condition 
̂ �≡ 0, which gives a twist term ∂2
P P Ŷ of order

εa−1/2, is sufficient for the stability of the original system on the energy level (3.10).
In fact the evolution of the variable P (and hence of E) remains bounded so that the
evolution of p (and, hence of ỹ2) remains bounded by O(ε−σ ) from (3.27); finally the
evolution of y2 is bounded by Oσ (ε

a−1) from (3.9). The case in which, for some ycr
1 ,

8 In fact, if G := F − h, the equation becomes 2GG ′′ = (G ′)2 ⇔ 2G ′′/G ′ = G ′/G ⇔ 2 ln G ′ = ln G + c1

⇔ G ′(G)−1/2 = c2 ⇔ √
G = c2 y + c3 ⇔ G = d(y − r)2.

9 This change is O(1) in the sense that ∂P p, ∂P q, ∂Q p, ∂Qq are quantities of order 0 in ε.
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F(y2) := H01(ycr
1 , y2) is of the type described in (1.11) is more delicate, since the twist

term is smaller. This case will be discussed in the next section.
2B. If |y∗

1 | < εσ , we change y0
2 by a quantity of order ∼ εσ1 , σ1 < σ /4. Then

H01(0, y0
2) will change at least by ∼ ε. The new y∗

1 , satisfying the energy condition
(3.10), will differ from the original one at least by ∼ ε4σ1 > 2εσ . Hence, arguing as in
case 1B, we reduced case 2B to 2A.

3.3. Proof of Theorem 2

From (1.12), namely 
̂ = 0 ⇔ (F ′)2 = −2(h − F)F ′′, we have

µF ′′ + 3µ

2(h − F)
(F ′)2 = −2µF ′′, (3.41)

while from (3.12), (3.41), and the definition of µ, we have

−2Ha(0, y0
2 , x0)F ′′+µF ′′+3µ(F ′)2/λ+λFa

′′+2F ′Fa
′ = �̂+Oσ (ε

a−1+ε1/2), (3.42)

where

�̂ := 2(−F ′′Fa + F ′F
′
a + (h − F)F

′′
a).

Finally from (3.39) and (3.42), we obtain

E ′′(P) = ε2a−2 1

λ

(
�̂ + Oσ (ε

a−1 + ε1/2 + ε3/2−a + εa1−a)
)
. (3.43)

If (1.12) holds, nondegeneracy of the system with Hamiltonian Ŷ appears in the order
ε2a−3/2, provided a < 3/2 and �̂ �≡ 0. It remains to note that (1.14) is a general solution
of the equation �̂ = 0 for F satisfying (1.12). In fact the equation becomes

−2d Fa(y2) + 2d(y2 − r)F
′
a(y2) − d(y2 − r)2 F

′′
a(y2) = 0,

which, after the substitution Fa(y2) =: α(y2)(y2 − r), is equivalent to α′′(y2) = 0,
which has the general solution α(y2) = uy2 + v.

4. An Application to Celestial Mechanics (After D’Alembert)

In this section we consider the Hamiltonian version of the D’Alembert model for the
planetary spin/orbit problem. The model may be described as follows (see [14], [10],
[12], [13] for more details).

Let a planet be modelled by a rotational ellipsoid slightly flattened along the symmetry
axis (called “north–south” direction); assume that the center of mass of such planet
revolves on a slightly eccentric Keplerian ellipse around a fixed star occupying one of
the foci of the ellipse: The planet is subject to the gravitational attraction of the star and
the problem is to study the relative position of the planet and, most notably, the time
evolution of its angular momentum.
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Such a model may be described using Hamiltonian formalism using action–angle
symplectic variables. The Hamiltonian system describing the D’Alembert model results
in a two-degrees-of-freedom system depending explicitly and periodically on time (the
period being the year of the planet); furthermore such a Hamiltonian system is nearly
integrable (with two small parameters—the flatness of the planet and the eccentricity of
the Keplerian ellipse) and properly degenerate.

As we said in the introduction, we are interested in studying the D’Alembert model
in the vicinity of a p : q spin/orbit resonance (p and q positive, coprime integers). For
simplicity we will omit in the following formulas the explicit dependence on p and q.

Thanks to a well-known result by Andoyer and Deprit (see, e.g., [1], [16]), the motions
of the D’Alembert model are governed, in suitable physical units, by the following
Hamiltonian function:10

Hε,µ(I, ϕ) := ( J̄1 + I1)
2

2
+ ω̄(I3 − I2) (4.1)

+ ε f0(I1, I2, ϕ1, ϕ2) + εµ f1(I1, I2, ϕ1, ϕ2, ϕ3;µ),
where

(a) J̄1 is a constant parameter, which may be interpreted as a “reference datum” in a
neighborhood of which the system will be studied;

(b) ε and µ are two small nonnegative parameters measuring, respectively, the flatness
of the planet and the eccentricity of the Keplerian orbit described by the center of
mass of the planet; moreover, we define a constant c > 0 such that

µ = εc; (4.2)

(c) (I, ϕ) := (I1, I2, I3, ϕ1, ϕ2, ϕ3) ∈ A × T3 are standard symplectic coordinates; the
domain A ⊂ R3 is given by

A := {|I1| < d, |I2 − J̄2| < d, I3 ∈ R}, (4.3)

where d is a suitable fixed (and small) positive number, while J̄2 is fixed “reference
datum” (verifying, together with J̄1, certain assumptions spelled out below);

(d) 2π /ω̄ is the period of the Keplerian motion (“year of the planet”);
(e) the function f0 is a trigonometric polynomial given by

f0 =
∑

j∈Z
| j |≤2

cj cos( jϕ1) + dj cos( jϕ1 + 2ϕ2), (4.4)

where cj and dj are functions of ( J̄1 + I1, I2) listed in the following item;
(f) let

κ1 := κ1(I1) := L

J̄1 + I1
, κ2 := κ2(I1, I2) := I2

J̄1 + I1
,

ν1 := ν1(I1) :=
√

1 − κ2
1 , ν2 := ν2(I1, I2) :=

√
1 − κ2

2 , (4.5)

10 See [14].
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where L is a real parameter; the parameters J̄i , L , and the constant d are assumed
to satisfy

L + d < J̄1, | J̄2| + 2d < J̄1; (4.6)

in this way, 0 < κi < 1 (and the νi ’s are well defined on the domain A). Then, the
functions cj and dj are defined by

c0(I1, I2) := 1

4

(
2κ2

1ν
2
2 + ν2

1(1 + κ2
2 )
)
,

d0(I1, I2) := −ν2
2

4
(2κ2

1 − ν2
1),

c±1(I1, I2) := κ1κ2ν1ν2

2
,

d±1(I1, I2) := ∓ (1 ± κ2)κ1ν1ν2

2
,

c±2(I1, I2) := −ν2
1ν

2
2

8
,

d±2(I1, I2) := −ν2
1(1 ± κ2)

2

8
; (4.7)

(g) the function f1 is a convergent series in µ of trigonometric polynomials (with in-
creasing degrees); f 0

1 := f1|µ=0 and f 1
1 := d f1/dµ|µ=0 are given by

f 0
1 =

∑
j∈Z
| j |≤2

(−3)cj cos( jϕ1 + ϕ3) (4.8)

+ dj

(
1

2
cos( jϕ1 + 2ϕ2 + ϕ3) − 7

2
cos( jϕ1 + 2ϕ2 − ϕ3)

)
,

f 1
1 =

∑
j∈Z
| j |≤2

cj

(
3

2
cos( jϕ1) + 9

2
cos( jϕ1 + 2ϕ3)

)
(4.9)

+ dj

(
17

2
cos( jϕ1 + 2ϕ2 − 2ϕ3) − 5

2
cos( jϕ1 + 2ϕ2)

)
.

Remark 4.1. (i) Since I3 appears only linearly with coefficient ω̄, the angle ϕ3 corre-
sponds to time t and Hε,µ is actually a two-degrees-of-freedom Hamiltonian depending
explicitly on time in a periodic way (with period 2π /ω̄).

(ii) For a physical interpretation of the action variables I1, I2, the parameter L , and
the angles ϕi , see [14], [12], [13].

We are interested in studying the above system in a neighborhood of a day/year (or
“spin/orbit”) resonance. Since the daily rotation is measured by the angle ϕ1 and since in
the unperturbed situation (ε = 0 and I1 = 0) ϕ1 = ϕ0

1 + J̄1t , we see that an approximate
day/year resonance corresponds to taking the “reference datum” J̄1 (which, in our units,
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coincides with the daily frequency) in a rational relation with the year frequency ω̄, i.e.,
J̄1 = p

q ω̄ with p and q coprime positive integers; we shall speak in such a case of a
“p : q spin/orbit–resonance.”

Setting

J̄1 := p

q
ω̄, ω := ω̄

q
, (4.10)

we see that the dynamics near a p : q spin/orbit resonance is described by the Hamil-
tonian

Hε,µ(I, ϕ) := I 2
1

2
+ ω(pI1 − q I2 + q I3) (4.11)

+ ε f0(I1, I2, ϕ1, ϕ2) + εµ f1(I1, I2, ϕ1, ϕ2, ϕ3;µ),

where we have omitted the constant term J̄ 2
1 /2.

Finally, to make the analysis perturbative, we shall take as the action-variable domain
an ε–dependent subset of A:

(h) the domain of definition A introduced in item (c) above will, from here on, be
replaced by its subset

Aε := {|I1| < rε , |I2 − J̄2| < r, I3 ∈ R
}
, (4.12)

where

0 <  <
1

2
, (4.13)

and r > 0. The parameters J̄i , L and the constant r are assumed to satisfy

L + 3rε < J̄1, | J̄2| + 3r(ε + 1) < J̄1, (4.14)

so that 0 < κi < 1 and the νi ’s are well defined on the domain A.

Let φ∗ be the following linear symplectic map:

φ∗(I ∗, ϕ∗) :=
(
(I ∗

1 , I ∗
2 ,−

p

q
I ∗
1 + I ∗

2 + 1

q
I ∗
3 ), (ϕ

∗
1 + pϕ∗

3 , ϕ
∗
2 − qϕ∗

3 , qϕ∗
3 )

)
. (4.15)

Then, φ∗ casts the Hamiltonian Hε,µ into the form11

H∗(I ∗, ϕ∗; ε, µ) := Hε,µ ◦ φ∗(I ∗, ϕ∗) (4.16)

= (I ∗
1 )

2

2
+ ωI ∗

3 + ε f ∗
0 + εµ f ∗

1 + εµ2 f ∗
2 + O(εµ3)

= (I ∗
1 )

2

2
+ ωI ∗

3 + ε f ∗
0 + ε1+c f ∗

1 ε
1+2c f ∗

2 + O(ε1+3c),

11 In the last equality we have also used the fact that µ = εc from (4.2).
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where c is defined in (4.2) and

f ∗
0 = f ∗

0 (I ∗
1 , I ∗

2 , ϕ
∗
1 , ϕ

∗
2 , ϕ

∗
3 ) := f0 ◦ φ∗,

f ∗
1 = f ∗

1 (I ∗
1 , I ∗

2 , ϕ
∗
1 , ϕ

∗
2 , ϕ

∗
3 ) := f 0

1 ◦ φ∗,

f ∗
2 = f ∗

2 (I ∗
1 , I ∗

2 , ϕ
∗
1 , ϕ

∗
2 , ϕ

∗
3 ) := f 1

1 ◦ φ∗,

namely,

f ∗
0 =

∑
j∈Z
| j |≤2

cj cos( jϕ∗
1 + j pϕ∗

3 ) (4.17)

+ dj cos
(

jϕ∗
1 + 2ϕ∗

2 + ( j p − 2q)ϕ∗
3

)
,

f ∗
1 =

∑
j∈Z
| j |≤2

(−3)cj cos
(

jϕ∗
1 + ( j p + q)ϕ∗

3

)
(4.18)

+ dj

2

[
cos

(
jϕ∗

1 + 2ϕ∗
2 + ( j p − q)ϕ∗

3

)
− 7 cos

(
jϕ∗

1 + 2ϕ∗
2 + ( j p − 3q)ϕ∗

3

)]
,

f ∗
2 =

∑
j∈Z
| j |≤2

cj

2

[
3 cos( jϕ∗

1 + j pϕ∗
3 ) + 9 cos

(
jϕ∗

1 + ( j p + 2q)ϕ∗
3

)]
(4.19)

+ dj

2

[
17 cos

(
jϕ∗

1 + 2ϕ∗
2 + ( j p − 4q)ϕ∗

3

)
− 5 cos

(
jϕ∗

1 + 2ϕ∗
2 + ( j p − 2q)ϕ∗

3

)]
.

Now, since ϕ∗
3 is a “fast angle,” by standard Normal Form Theory (see, for example,

[10], [12], [13]) we can find a final close-to-the-identity canonical change of variables
φ!(y, x) = (I ∗, ϕ∗) removing the dependence on the fast angle up to exponentially small
terms

H !(y, x; ε) := H∗ ◦ φ!(y, x)

= y2
1

2
+ ωy3 + ε f̄ ∗

0 (y1, y2, x1, x2) + ε1+c f̄ ∗
1 (y1, y2, x1, x2)

+ε1+2c f̄ ∗
2 (y1, y2, x1, x2) + εa′

g(y1, y2, x1, x2; ε) (4.20)

+O(ε exp(−const.ε− )), (4.21)

where g is a suitable analytic function, the “bar” denotes the average on the third angle,
and

a′ := min{2 −  , 1 + 3c}. (4.22)

Proposition 4.1. The motion of the planet in the D’Alembert model is governed, up
to an ε-exponentially small term, by the two-degrees-of-freedom properly degenerate
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“effective Hamiltonian”

Heff(y1, y2, x1, x2; ε) (4.23)

:= y2
1

2
+ ε f̄ ∗

0 (y, x) + ε1+c f̄ ∗
1 (y, x) + ε1+2c f̄ ∗

2 (y, x) + εa′
g(y, x; ε).

Hence, up to an ε-exponentially long time, the motion of the planet is well-described
by the properly degenerate two-degrees-of-freedom system (4.23). In fact the effective
Hamiltonian Heff is of the type (1.1) with

H0 = y2
1

2
and H1 = f̄ ∗

0 + εc f̄ ∗
1 + ε2c f̄ ∗

2 + εa′−1g. (4.24)

If we want that H1 has the same special structure as in (1.7), we have to exclude some
particular spin/orbit resonances. In fact, from (4.17), it is simple to see that, if (p, q) =
(1, 1),, (2, 1), the function f̄ ∗

0 really depends on the first angle (but not on the second
one), so that the perturbation H1 takes the same form as in (1.5)

H1 = H01(y, x1) + O(εc), where H01 := f̄ ∗
0 . (4.25)

On the other hand,

(p, q) �= (1, 1), (2, 1) $⇒ f̄ ∗
0 = c0(y1, y2), (4.26)

and, hence, we have, for (p, q) �= (1, 1), (2, 1),

H1 = H01(y) + O(εc), with H01 = c0(y1, y2), (4.27)

which is of the type described in (1.7). At this point we would apply the stability The-
orem 1 to the Hamiltonian Heff. Condition (1) is satisfied (recall (4.24)). On the other
hand, by the definition of c0 = H01 given in (4.7), it follows that condition (2) means
that, for any |y0

1 | < rε , the function

y2 �→ ( J̄1 + y0
1)

2 − 3L2

2( J̄1 + y0
1)

4

is not identically zero. Such a condition is satisfied if

J̄1 �=
√

3L

(taking ε small enough). Unfortunately we note that condition (1.11) could be violated.
Indeed, for y1 = ycr

1 = 0 (which is the only critical point of the unperturbed Hamiltonian
y2

1 /2), we have

H01(ycr
1 , y2) = d(y2 − r)2 + h, (4.28)

with

r := 0, d := 1

4 J̄ 2
1

(
1 − 3

L2

J̄ 2
1

)
, h := 1

4

(
1 + L2

J̄ 2
1

)
, (4.29)
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where L and J̄1 are defined in (4.6). Moreover, for12 J̄1 <
√

3L , we have d ≤ 0, so
that the inequality in (1.11) is also satisfied. Summarizing in order to prove the stability
of Heff, we can directly apply Theorem 1 only if J̄1 >

√
3L; otherwise we have to use

Theorem 2. Hence we suppose J̄1 <
√

3L and try to apply Theorem 2.
In order to do it, we could think of setting a := 1 + c, a1 := 1 + 2c, and Ha := f̄ ∗

1
to have in (4.23) the same structure as in (1.10). However if we evaluate f̄ ∗

1 , we obtain
(remembering that (p, q) �= (1, 1), (2, 1))

f̄ ∗
1 :=




−3c−2(y) cos(2x1) + 1
2 d2(y) cos(2x1 + 2x2) if (p, q) = (1, 2),

− 7
2 d1(y) cos(x1 + 2x2) if (p, q) = (3, 1),

− 7
2 d2(y) cos(2x1 + 2x2) if (p, q) = (3, 2),

0 otherwise.

Hence, when we evaluate Fa(y2) defined in (1.13) for Ha := f̄ ∗
1 , we obtain Fa(y2) = 0!

So, in order to use Theorem 2, we must require that f̄ ∗
1 = 0, and the degeneracy is

removed by the term f̄ ∗
2 . Hence we take (p, q) �= (1, 2), (3, 1), (3, 2) so that

Heff = y2
1

2
+ εc0(y) + ε1+2c f̄ ∗

2 (y, x) + O(εa′
), (4.30)

which has the form described in (1.10) with

H0 := y2
1

2
, H01 := c0(y), Ha := f̄ ∗

2 (y, x), a := 1 + 2c, a1 := a′.
(4.31)

Moreover, in order to have a < 3/2 (which is a hypothesis of Theorem 2), we assume

c <
1

4
. (4.32)

We have

f̄ ∗
2 :=




3
2 c0(y1, y2) + 17

2 d−1(y1, y2) cos(2x2 − x1) if (p, q) = (4, 1),

3
2 c0(y1, y2) otherwise.

Evaluating Fa(y2) defined in (1.13) for Ha := f̄ ∗
1 defined in (4.31) and for ycr

1 = 0, we
obtain

Fa(y2) = 3

2
c0(0, y2) = 3

2
dy2

2 + 3

2
h, (4.33)

12 This is the physically interesting case corresponding to the model in which the equatorial plane of the planet
is not too different from its ecliptic plane of revolution around the star.
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where d and h are defined in (4.29). Hence, in order to apply Theorem 2, we have to
verify condition (1.14), namely that r = 0 defined in (4.29) is not a root of Fa(y2). This
is true since, from (4.33), we have only to check that h �= 0, which follows from the
definition of h given in (4.29). Summarizing, even in the case J̄1 <

√
3L , we can prove

stability by Theorem 2, if we exclude the spin/orbit resonances (p, q) = (1, 2), (3, 1),
(3, 2) and we assume (4.32).

Theorem 8. Suppose that J̄1 �= √
3L, (p, q) �= (1, 1), (2, 1). Then the effective Hamil-

tonian of the D’Alembert model defined in (4.23) is stable if the following condition is
satisfied:

J̄1 >
√

3L or (p, q) �= (1, 2), (3, 1), (3, 2), c < 1/4. (4.34)

As a corollary of the previous Theorem and of formula (4.21), we can state the following
“Nekhoroshev-type” result:

Theorem 9. Suppose that J̄1 �= √
3L, (p, q) �= (1, 1), (2, 1), and that the following

condition is satisfied:

J̄1 >
√

3L or (p, q) �= (1, 2), (3, 1), (3, 2), c < 1/4. (4.35)

Then the action variables of the D’Alembert planetary Hamiltonian Hε,µ defined in (4.1)
are stable for an exponentially long time; namely, there exist constants c1, c2, c3 > 0
such that

|I (t) − I (0)| ≤ εc1 , ∀ |t | ≤ exp(c2ε
− ), (4.36)

where (I (t), ϕ(t)) denotes the Hε,µ-evolution of an initial datum (I (0), ϕ(0)) ∈ A ×T3.

Remark 4.2. We note that the previous result was already proved in [13] without any
assumption13 on the spin/orbit resonances or on anything else. However, in that gener-
ality, the so-called Nekhoroshev exponent in the formula corresponding to (4.36) was
lightly worse: a suitable γ0 < min { , c} instead of the present  .

Appendix

Proof of Lemma 3.2. For ỹ1, satisfying (3.14), equation (3.11) can be rewritten as fol-
lows:

" := H00(y0
1 + εa−1 ỹ1) − H00(y0

1)

= −ε(H01(y0
1 , y0

2 + εa−1 ỹ2) − H01(y0
1 , y0

2))

−ε(H01(y0
1 + εa−1 ỹ1, y0

2 + εa−1 ỹ2) − H01(y0
1 , y0

2 + εa−1 ỹ2))

−εa(Ha(0, y0
2 + εa−1 ỹ2, x) − Ha(0, y0

2 , x0))

13 Apart from J̄1 �= √
3L .
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−εa(Ha(y0
1 + εa−1 ỹ1, y0

2 + εa−1 ỹ2, x) − Ha(0, y0
2 + εa−1 ỹ2, x))

−εa(Ha(0, y0
2 , x0) − Ha(y0

1 , y0
2 , x0))

+εa1 H2(y0, x0, εa−1 ỹ, x, ε)

= −ε(H01(y0
1 , y0

2 + εa−1 ỹ2) − H01(y0
1 , y0

2))

−εa(Ha(0, y0
2 + εa−1 ỹ2, x) − Ha(0, y0

2 , x0))

−ε(H01(y0
1 + εa−1 ỹ1, y0

2 + εa−1 ỹ2) − H01(y0
1 , y0

2 + εa−1 ỹ2))

+εb H3(y0, x0, ỹ1, ε
a−1 ỹ2, x, ε), (5.1)

for some analytic functions H2, H3 and

b := min{2a − 1, a + 1/2, a1}.

We have, for

|εa−1 ỹ1| small enough, (5.2)

that

" = H00(y0
1 + εa−1 ỹ1) − H00(y0

1)

= εa−1/2w∗y∗
1 ỹ1 + w0

2
ε2a−2 ỹ2

1 + Oσ (ε
3a−3 ỹ3

1), (5.3)

w∗ = 1

y0
1

∂H00

∂y1
(y0

1) = w + Oσ (
√
ε),

w0 = ∂2 H00

∂y2
1

(y0
1) = w + Oσ (

√
ε).

Now we write Y in the form (3.14), and we want to determine 
j for j = 0, 1, 2, 3,
expanding (5.1) in powers of ỹ2. First we write

ỹ1 =: −
√
ε

wy∗
1

ŷ1,

with

ŷ1 := 
0 + 
1 ỹ2 + εa−1
2 ỹ2
2 + ε2a−2
3 ỹ3

2 + Oσ (ε
3a−3 ỹ4

2).

Hence, from (5.3), we have

" = −εa w∗
w

ŷ1 + ε2a−1 w0

2w2(y∗
1 )

2
ŷ2

1 + Oσ (ε
3a−3/2 ŷ3

1). (5.4)

Now we expand the two expressions for " given in (5.1) and (5.4) in the power of ỹ2. At
zero degree we have

−εaw∗
w


0 + Oσ (ε
2a−1) = −εa(Ha(0, y0

2 , x) − Ha(0, y0
2 , x0)) + Oσ (ε

a+1/2 + εb).
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This implies (3.15).
At first degree of ỹ2 we get

−εaw∗
w


1 + ε2a−1w0

w2(y∗
1 )

2

0
1 + O(ε3a−3/2−3σ )

= −εa H ′
01(y0

1 , y0
2) − ε2a−1 H ′

a(0, y0
2 , x) + O(εa+1/2−σ + εb+a−1)

= −εa F ′(y0
2) − ε2a−1 H ′

a(0, y0
2 , x) + O(εa+1/2−σ + εb+a−1),

using that H ′
01(y0

1 , y0
2) = F ′(y0

2) + O(
√
ε), from which we have(w∗

w
− εa−1 w0

wλ

0

)

1

= F ′(y0
2) + εa−1 H ′

a(0, y0
2 , x) + Oσ (ε

2a−3/2 + ε1/2 + εb−1).

From |λ| ≥ ε2σ we have

(w∗
w

− εa−1 w0

wλ

0

)−1
=
(

1 − εa−1 
0

λ
+ Oσ (

√
ε)

)−1

= 1 + εa−1 
0

λ
+ Oσ (

√
ε + ε2a−2),

from which we finally obtain


1 = F ′(y0
2) + εa−1 H ′

a(0, y0
2 , x) + εa−1

λ

0 F ′(y0

2) + Oσ (ε
2a−2 + ε1/2 + εb−1).

By definition of µ and ϕ0, we obtain


0 = µ + ϕ0(y0
2 , x) + Oσ (ε

1/2 + εa−1 + εa1−1), (5.5)

which implies (3.16).
At second degree of ỹ2 we get

−ε2a−1w∗
w


2 + ε2a−1w0

2w2(y∗
1 )

2
(
2

1 + 2εa−1
0
2) + Oσ (ε
3a−3/2)

= −1

2
ε2a−1 H ′′

01(y0
1 , y0

2) − 1

2
ε3a−2 H ′′

a (0, y0
2 , x) + Oσ (ε

2a−1/2 + εb+2a−2)

= −1

2
ε2a−1 F ′′(y0

2) − 1

2
ε3a−2 H ′′

a (0, y0
2 , x) + Oσ (ε

2a−1/2 + εb+2a−2),

from which we have

w∗
w


2 = w0

2wλ

2

1 + εa−1 w0

wλ

0
2 + 1

2
F ′′(y0

2) + εa−1 1

2
H ′′

a (0, y0
2 , x)

+Oσ (ε
a−1/2 + ε1/2 + εb−1),
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and (
1 − εa−1 1

λ

0

)

2 = 1

2λ

2

1 + 1

2
F ′′(y0

2) + εa−1 1

2
H ′′

a (0, y0
2 , x)

+Oσ (ε
a−1/2 + ε1/2 + εb−1).

Since (
1 − εa−1 1

λ

0

)−1

= 1 + εa−1 1

λ

0 + Oσ (ε

2a−2),

we have


2 = 1

2
F ′′(y0

2) + 1

2
εa−1 H ′′

a (0, y0
2 , x) + 1

2λ

2

1 + εa−1
0

2λ

(
F ′′(y0

2) + 1

λ

2

1

)

+Oσ (ε
2a−2 + εa−1/2 + ε1/2 + εb−1)

= 1

2
F ′′(y0

2) + 1

2
εa−1 H ′′

a (0, y0
2 , x) + 1

2λ
(F ′(y0

2))
2

+εa−1
0

2λ

(
F ′′(y0

2) + 3

λ
(F ′(y0

2))
2

)
+ εa−1 1

λ
F ′(y0

2)H ′
a(0, y0

2 , x)

+Oσ (ε
2a−2 + εa−1/2 + ε1/2 + εb−1)

and (3.17) follows from (5.5).
Finally at third degree of ỹ2 we have that

ε3a−2
(
−w∗

w

3 + w0

wλ

1
2

)
+ Oσ (ε

4a−3 + ε3a−3/2)

= ε3a−2

(
−
3 + 1

λ

1
2

)
+ Oσ (ε

4a−3 + ε3a−3/2)

is also equal to

−ε3a−2 1

6
H ′′′

01(y0
1 , y0

2) + Oσ (ε
4a−3) = −ε3a−2 1

6
F ′′′(y0

2) + Oσ (ε
4a−3 + ε3a−3/2),

so that


3 = 1

6
F ′′′ + 1

λ

1
2 + Oσ (ε

a−1 + ε1/2)

= 1

6
F ′′′ + 1

λ
F ′
2 + Oσ (ε

a−1 + ε1/2)

= 1

6
F ′′′ + 1

2λ2
F ′
̂ + Oσ (ε

a−1 + ε1/2),

where, in the last equation, we have used the fact that 
2 =
̂/(2λ)+Oσ (ε
a−1+ε1/2).
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