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OF THE HAMILTON-JACOBI EQUATION

Luigi Chierchia*

SOMMARIO. Si presenta un nuovo metodo che permette
di stabilire lesistenza di soluzioni globali dell'equazione
classica di HamiltonJacobi per Hamiltoniane H(y, x), perio-
dichein(x, ..., x,).

SUMMARY. A new method that allows to establish the
existence of global solutions of the classical Hamilton~Jacobi
equation for a Hamiltonian H( v, x ), periodic in (x] ..... x ),
is presented.

1. INTRODUCTION

The purpose of this paper is to describe a direct and
constructive procedure that allows to «solve», under suitable
assumptions, the classical equation of Hamilton-Jacobi
for a Hamiltonian H(y, x) periodic in x = ., xd).
The method presented here is particularly suited for compu-
ter-assisted implementation (for computer-assisted techniques
applied to mechanics see [6]).

Let us consider the phase space A = U x 9, U being
an open bounded set of R and T = IR/(27Z). endowed
with the standard symplectic form = £¢ dyi A dx,,

i=]
so that the Hamilton equations for A have the usual form

y=—0H X=0H,

where 9 denotes gradient [0, = (a/axl, .. ,,a/axd), ete.].

The Hamilton-Jacobi equation can be written in the form
H@ _¢(n, x),x) = h(n); oy

the unknowns being the «<newy Hamiltonian 4, which depends
on half of the variables, and the generating function ¢;
(of course, for (1) to make sense one has to require that
3_¢(n, x) E V).

Yere, «generating function» stands for a CY(RY x T¢)
function satisfying

3%¢

det 32 ¢ =det [ ] #0
(n.x)
‘ a”iax/ ij=1,..d

and such that the map (y, x) = ‘gd’(n, £) defined via the
relations

y=23,9, £=0_¢

n

yields a diffeomorphism of R? x TY into itself. Such a
diffeomorphism preserves the symplectic 2-form £ and
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therefore it preserves also the form of the Hamilton equa-
tions (see: [1, 13] for general informationsi. Thus. if there
exists a solution satisfying (1) forall x € T, the transfor-
med Hamilton equations become simply:

ﬁ:—ash =0, E:anh,

and one sees that the Hamiltonian A admits glubul quasi-
periodic solutions

(). x(1) = %d’(n, E+wr), w= anhmi

i

running over d-dimenstonal invariant rori
= €,n.6),§€TY.

However, it is well known ([19] see a&lso (3« that for

LX) =

general Hamiltonians there do nor exist s znerating
function satisfying (1) on some open set 1" « 7~ .72 excep-

tions being the so-called «integrable systers : Nenortheless,

from KAM theory ([15, 2, 16} see [4] 1or = sevew and
[13, 14] for an elementary exposition) it 7oil> s 113t when
H has the special form
H = Hy(3)+ eH, (v, x) )
with

3*H,
det 32 H_ = det #*0 (3)

yo0 oy.0y

TP T =1,..d
then, if € is small enough, one can construct Ju:s.-rzmadic
solutions of the Hamilton equations with prescrm-cl fre-

quencies  satisfying a Diophantine condition of iz . re

|w-n|= 4

1
wni =
t vinf

i=1

for some v, 7 > 0 and any n € z4 \ o) (such a vector
w will be called (v, 7)-Diophantine).

Now, quasi-periodic solutions are closely related to «point-
wise» solutions of (1). To be more precise, let us make
the following

DEFINITIOR: A triple (I, ¢, h) will be called a solution
(or T-solution) of (1) if U'is a closed subset of U, ¢ a gene-
rating function and h a C° (IRY) function such that (1)
holds identically for (n.x) €I x T¢

In other words. the f-derivatives of the new Hamilto-
nian Ho € vanishon I :Foranya € NY\{o)

o'l
autHo(gE Ho €. =0.

P E—— (n €.
vooaE L ogY ¢ )
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If the Hamiltonian is of the type (2) - (3) and € is small
enough it is possible to show that there exist ['solutions
of (1). T being a Cantor set of positive Lebesgue measure
(110, 18]). However the method of |10] and [18] (as well
as the original methods of [I5, 2, 16]) involves infinitely
many changes of variables and the existence of ¢ can be
established only in a rather involved way.

Instead, using a suitable Newton method, close in spirit
to that recently introduced by Moser in [17] (see also [22
and [6]), it is possible (under appropriate assumptions)
to construct directly solutions of (1). Roughly speaking,
by «digectly» 1 mean that, starting from an «approximate
solutiony of (1), one construct a series (whose first term
s the «approximate solution») converging to a true solu-
tion in the sense of the above definition.

Ihe smoothness of the solutions constructed here will
be proved in a completely elementary way by means of
well known tools from real analysis without any use of
generalized notions of differentiability (as the notion of
«Whitney differentiability », which is used in [10] and [1&]).

As of applications, I believe that it is possible to apply
the thcorem presented below to numerically constructed
approximate solutions in order to rigorously establish the
existence of actual solutions of (1) close to the numerical
approximations. Of course, in such a case. a rigorous con-
trol. over the approximations by means of the so-called
«interval-arithmetic» would be necessary (see [6] and re-
ferences thercin for more informations on this topic) For
example it should be possible to use the Newton scheme,
on whicli the theorem is based. in conjunction with computer
assisted  cstimations (cfr. [6]) to give effective stability
bounds for the restricted three body problem of celestial
mechanics. 1t would also be interesting to try to apply
the theorem below to the work in [7], where the |lamilton-
Jacobi equation is numerically solved for several non-nte-
grable systems.

The rest of the paper is organized as follows: In the next
scction the proper assumptions are made precise and the
I'heorem is stated. (The formulation of the Theorem is
divided in three parts: the first part contains the general
statement, the second is a detailed quantitative version
of sucli a statement and in the third part the solution is
described via recursive formulae). In Section 3 the method
of proof is quickly discussed and in Section 4 details are
worked out.

2. ASSUMPTIONS AND THEOREM

Let us now proceed to make the proper assumptions
and give a precise formulation of the main result in the
real-analyric-setting.

Let U, x T0 = /%0 be an open complex neighborhood
of M. Assume H € CYIRY x T%) and real-analytic and
bounded on /%0 (actually, under suitable growth assump-
tions on H, non-compact domains can also be treated; see
[1r]).

Let ¢ be a generating function such that x¢(n, £) [=inverse
of x - anqb(n, x)] is real-analytic on
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Y (DxZ = | {n'€ ¢ n'—n|<p}x[E€C!:|ImE|<s)

ner
for some p, s > 0; furthermore assume that, if

X =X (T.g,p)=x, (Y ) 2. =Y (DxX,

s o,
then ax¢(9r’p_s ) C U, with
5 =dist. (3U,. 0, (D N> 0 4)

«an » denoting. here, «boundary of U0 ».

Let /1 be a C°°(]R‘1) function, real-analytic on YP(F)‘
such that anh(F) is a set of uniformly (v, 7)-Diophantine
vectors and let e be the error function defined by

e(n, x) = II(D_\, . x)

il

hn). (
Finally assume that

2 -1 _ 2 .
” (3 (n,x)¢) ” Lps = sup ” (6( ¢) l” <oo
Dr.op.s

n,X)

and that

24y 1 = 2 I o
[ |, =sup 30 <o

Remark (On the choice of norins): Here we will not
compute explicitely the constants appearing in our set
of estimates. Therefore we shall not fix explicitely the
norms in finite dimensional spaces (of complex or integer
vectors, matrices, etc.) since all such norms are, for our
purpouses, equivalent. On the other hand, if one is interested
in the concrete (and effective) implementation of the method
presented here, a careful choice of all norms and parameters
is important: see [6].

Remark The quadruple (I', ¢, A, e) should be thought
of as an approximate solution, the smaller e is, the better
is the approximation. For example, in the case (2) - (3)
one can take ¢ =1n - x, as /1 any CT extension of IIo and
as I' the pre-image under the map n 2> w = anlz of a set
of vectors (v, r}Diophantine (because of (3) Bnh s inverti-
blc on U so that with a suitable choice of the Diophantine
constants, I' # 0). In this case the error function is simply
e(n.2) = ell, (0. x) = O (e),

THEOREM

Part [: Under the above assumptions, if is

¢ ” I".p,s
small enough, then there exist a closed set T'sx C U, a gene-

rating function ¢xand a C” function l 4 such that
(i) T x has the same cardinality as T and

(I = O @) su@y) <1 + Ol

with a suitable constant 0 < C < 1;
(ii) anlz*(l"*) = anlz(l");
(iii) (Tw, px hy)is a Dx-solution of (1).

Part 1. The statemients in Part | can be given the follow-
ing quantitative formulation. Let

) -
=y el e G EAO A,

. 27\ -
Gzl @, 18,0, 0
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C;=1+yosup| O H| |3, 0], s T, =@ ha ' ed k(D).
— 2 . 2 -1 2 -1
C4 =" a(n,x)(b”r‘,p,s mdx{" (a(n,x)d)) ”F,p,s’ " (a(n,x)¢) ”m}v

3.1DEA OF THE PROOF

This theorem is based on an iteration of a suitable Newton
algorithm. Before giving the details of the proof, I will

([ "l =supgayqgd | -|1and assume (for simplicity)
that s < | and p < 8. Then there exists a constant K,

depending only on d and 1, such that i ) . . . .
P g onty / quickly discuss the main points of such an algorithm.

2K*5_4(T+1)C%C2C3C4 e(loge™ )2+ D < | (6) Given an approximate solution (I, ¢, A, e) of (1) [ie.
given e by (5) with n varying in a suitable open neighbor-
then (i, ii, iii) above follow with hood of I'], one wants to construct a «better» approxima-
C=Ks~ 3+ ”C] C, C3 e(loge 1)2u+D) tion. As in the classical Newton scheme. the new approxima-
) tion will be required to reduce quadratically the magnitude
where K = K(d, 1) < K. Furthermore, the following estima- of the error. More precisely, we will require that the new
tes hold approximate solution (I, ¢', k', e’) satisfies, for n € I/,
max { sup inf [n —~n|,sup inf |n—n,|} < p'—¢ =y =0
n,&r, ner ner n.el“ .
e'=H@ ¢ x)—h' = O?)
< Ks™ 20+ DC C, eloge !ty +T, (7) X
3 h'{@"Yy=23_h).
sup| @7 <2p@am ! |y, (8) ! !
* To find ¢’ (and A') expand H(qb)". x) near ¢ (here and in
| (afn x) ou) ! .= 2| (B(Zn x)(p)" .. the following we shall use notations like ¢ _and 9 ¢ inter-
changeably ):
d
and ¥ a, b €N H(g). x)= H(g, + b, %) = H(p. X) + H (0. X1y _+OF?)

A LA ) N )

the last identity being a consequence of X1 Recalling that
where the 8s are smooth functions (depending on the Y § 4 &

. we are making the ansatz that = (¢ (¢1, we need to solve
above constants C,) such that thO O(e)/e* = O for any & v ‘ :

[up to order (@ (e? )] the equation

O0<a<].
e+ (¢, %) ¥, =gn) (10)
Part IlI. The HamiltonJacobi solution (I'y,du. hy) is for some function g to be determined.
given by the following recursive formulae. Let ¢0 = ¢, Taking the n-gradient of (5) one obtains

h0 =h,ey =eand, forj>0,let
_ H (¢ x)= [, ®) 1 0, +e )
¢/‘+1 :¢I_+¢l,, h/'+1 :h/,+g/,, € ‘_'”(ax(i’/ﬂ’x)”“hjﬂ ‘ _

where the superscript T denotes matrix-transposition.

where Theretore, since
&, 137, ) e, v, = O?)
Gmx=— Y T explia gm0 n) " noE
nezd ’anh,-("?)' n one sees that, up to order ¢ (¢2). (10) can be written as
o< I< N , :
e+hn ‘(a(ﬂ‘,‘.)tﬁ)~ v, =gm). (1
with Introducing the change of variables on T (parametrized
‘ 25 by n) x = § = qbn(n, x) and denoting by § — xw(n, §) its
N =4y, v=—log et inverse, one checks easily that
A}
(3, ®) 1, =3, x (. £). (12)
dx
Py = — . 2 - Equation (11) can be, now, easil Ived for n € I': Set
e/,n(n)—f e;(n. x)exp [—id ¢;(n, x) n]det(a(n,x)db/‘)(,md q (11) can be, now, easily solv ] e
i 2
~ . 2 dx
and en(n) = etn. x) expl—in - ¢, (n. )] a(nv*')d)' W
wd -
g (m=e ().
. dt
ThenT,, ¢, and h, are given by = e(n, x, (n, £))exp(—in- §)
J ¢ (271,)11
m
Se=0 + Z ‘b/“ h*EhO + Z 9; so that
j=0 Jj=0
and e, x) =X ¢, (n)explin- ¢ (n x)].
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Then one finds immediately

e (n)

ymox)=— ) ——

: explin- ¢_(n, x)] (13)
ey ihn(ﬂ)~ n i

and
g(m) = &, (n).

Notice that ¢ is well defined for n € I' since hn(f‘) is
(y, 7)-Diophantine, however, in order to have y defined
on open sets, we will follow Arnold’s original idea [2] of
introducing suitable truncations in Fourier space (cfr. the
A"]..’s in the above Thecorem). Once  is defined on a neigh-
borhood of I', to find a global smooth extension will be
elementary.

4. PROOF OF THE THEOREM

(For techniques similar to that used here see, besides the
already cited [15, 2, 16, 10, 18, 13, 14} also [12, 20, 21,
23] and, for our purposes, especially [S, 6, 8, 9)).

(i) The iterative step

Let us start by making quantitative the construction of
(I'", ¢', h', ¢") out of (I'. ¢, h, ¢). Notice that if f(n, x) is
s then f(n, &) = f(n, x (0, §)) Is real-
analytic on Yp(l‘) X ES and

”f“]‘.p.S %(n,x)twl o

real-analytic on 2,

sup | f(n. x)|| = sup
oS (n.EYEY, ()% &
Fix now an «analyticity-loss» parameter 0 < o < s/2.
As already remarked, to have ¢ defined on open sets
we need to introduce a truncation of the series expansion
of e:

s T) L LR 0y N7 5 -
e=eM 4R oD 2 Y 5 (m)explin ¢),
ni<N

the parameter NV being chosen so that %) = @ ( || e le . -
More precisely setting
4

N=—loge™
o

] . ] )

,
¢ rops)

(e=yp
because of tlie exponentially fast decay of the E" ’s (which
are nothing else than the Fourier coefficients of é(n, -)],
one has

(R ] 2
S A KA

provided
K ole<1 (14)

for a suitable constant K] depending only on d. Conse-
quently, ¢ is defined by replacing the sum over Z¢ \ {0}
in (13) by the suin over {n € z¢ . 0< ] n | < Nj. Now,
Y solves (forp €1

(T) (92 -1 -0
e +hn (2 n.x)¢) Y, =c,-

Moreover, having a finite number of divisors to deal
with, one can define  (and hence ¢' = ¢ + ) on an open

25 (1990)

_ o).

neighborhood of I'. In fact, setting

P

5
a)a n|, AN

“I‘,p,s
one can easily check that VO <|n | <N and Vn € YE(F)

1
(15)

h () -n|=
| 7 |/27|)1|T

whence there exists 1\"2 =K, (d, 7)so that
~ Y
190 s 0 =N <Ky el

To estimate sums containing small divisors, here and in
the following, we will make use of a result of Riissmann
(Theorem 1.1 of [20]).

The new error function e’ is given by

e'=e® 1 g +y . x)—H.x) —H (6, %) ¥ I+
2 -1
te, ~(3(n’x)¢) ¥,

and we want to estimate | ¢’ || (for n in a neighborhood of
I') in terms of | ¢ “r o5’ To do this we first show that if ¢
is so small that

K10t s~y el 80 <1 (16)
then

btV D, Y, (D) a7
In fact, since

dist(3X, 0X,_ )= 9], )¢l ) .o (18)

using Cauchy estimates to bound the supremum of deriva-
tives in terms of the supremumn of functions on smaller
domains (sec, e.g., Lemma 2 of [6]) one has

“ axw ||F,E,S*U <K3 ” az

(n.x)¢ “ I'.p,s (7/01- ! 1)” € ” I"p,s"

whicli, together with (16), implies (17). Now, using again
Cauchy estimates, § < p/2 and recalling (12) one finds

e lops o <70 'Jeli, (19)

2
2

1
2 o~
+ ? S;J{F ” ayl1 H || a(nx)¢ ” I‘,p,SI\Z

prre B L PP

< 1 2
2Ky o el

Let us pass now to define the new set I''. Assume that

G=Kee el ,, f@m=" ), <1, 20

for a suitable constant K4 = K4(d)‘ then by Cauchy esti-
mates,

24,01 _ 2 - 1325 1-1 2 -1
H (an/z ) H v = “ [+ (an/x) anco] (anh) ”l,’p/2 <
2 -1
<21 L, 2

Therefore. for any n, € I", the map n » aﬂlz'(n) is inver-
tible on Yp/:( n,) [= Yplz({no})]. Moreover, (21) implies
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that 0 h’(l’/z(qo)) contains a (closed) ball of radius

p(4| @1 )7t so that, by (20), 3 h(ny) €
' ! . 1 _ =1

anh()’p/z(no)). Also, if n, = (anh) o 8nh(n0) one

check easily

Img — o I <2] @21 o7 ef, s (22)
Thus, we can define
I"s(anh’)“ ° 9 h(I). (23)

As for the measure of I'" observe that, denoting by J'
the Jacobian of  — (anh')“' ° anh(n), (n €I, one has

| detJ' — 1| =] det[/ + @)~ '3281 —1| < 4
=2 2 \— —

<K ey, 1@ ), =G (25)

so that

(1 - C) ) <u(M)< (1 + (D). (20)

Now, if e is small enough, we can find a neighborhood
of I'' contained in Yp (T"). More precisely if

o | e

21 -
2@, 7 el <

i.e.,if for a suitable constant K5
27N
€oge 1)y tigl

[ P N CHO R P

5 T+l

then
YE/Z(F )C YE(F)'

Next, let us discuss the invertibility of Bfnx)(q) + Y).
Using Cauchy estimates, p < p/2 and (15), one finds
2
Y “ hn”l',p
07+2

2 2
" a(n,X)w ” r.g.s-o <K6 ” a(1n.Jf)¢“ r.e.s

LA L

Now, an argument similar to that used to derive (21) will
show that, if

3 (28)

21K aZ -1 aZ v “ /ln”I‘.P -1 <

7"( (n,x)¢) ”I‘,p,s” (n,x)¢”[‘,p,s 72 p “e”r,p,s\l
then

2 n—1 2 -1
1G85 <21 Q4L e, o (29)

Now, observe that (28) implies || wn | IS o < g; there-
fore, Vn € YE/Z(F )C YE(F)’
= _,, Co, x, = ).

This means that

x¢,(Y ('Y x = 5. Cxoﬁ(}"7 X E'.x ).

p12 -0

Thus, if one sets

s'=s5 - 2o,

one sets that afn_x)¢’ is invertible on

D s = VT X XL, X =x (Y, (D), 2 )

x¢,(n, -) being, of course, the inverse of ¢7"(n, -). Moreover
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9 c 2

,[",E/Z,S' r.p,s—o°

The last thing we need to discuss, in order to conclude
the iterative step, is the smooth extension of .

In the appendix we construct a function x € C((Fd) N
C(RY) : @¢ — [0, 1] with support in ¥ ,(I"), identically
equal to one in YHIB(I") and such that,¥ a € N9,

(|a| + 2

b—lal

(30)

slllllg||8‘;x||<a ,
where « is a suitable universal constant.

We then define ¢’ € C“(IRY) by setting y' =0 if n €
a\ Y;4(T') and ¥’ = xy if n € Y5, (I"). Thus, y' =y
in }’E/B(F') and [using once more Cauchy estimates to
estimate the derivatives of ¢ in }’5/4 T

1 a2 el . b1
la2av’|_ <K, , 7(——'| n.%) ““‘”) K
nx et a. pml o

(3D
2 el

Therefore, ¢' = ¢ + ¢', is a (global) canonical transforma-
tion if

2] @2

(7,x)

¢)7 1 aZ

(n.X)w'”w<1’

which, for a suitable constant K, is implied by
(32)
-1 )T + ].

K

“ a(zn,x)(P"[‘,p,S ” (8(27;,,\”)¢) l ;}mCl 6(’10}; €

8 g+

To conclude that the 1teration step we still need to define
the new radius p’, which in view of the above will be set
equal to p/8.

Finally , one can easily check that all the above smallness
conditions on e are fulfilled by requiring

C,c,C, elloge 1Yy 4! <1 (33)

K
9 glt+2

(ii) The iteration

The proof goes on by iterating the above step. provided
the condition corresponding to (33) is satisfied at each step
of the iteration.

Let us label by j the quantities involved at the i step,
ie., denote by {h/}/zo’ {¢/}j>0,{l“l.}j>0, co(hy=h by =h
. . .), the sequences obtained by iteratively applying the
above step. Fix the «analyticity-loss sequence» o; =52"0U+3)
so that ;=5 - 2 E{;d o, 1 s/2 (for a discussion of admissible
analyticity-loss sequence, see [9]). Denote by € (to be
defined in a moment) suitable upper bounds on

-] | —
7p/' ” e“i’ (“ ”, :" : ” l’[,p/,&/)
and notice that p, will then be defined in terms of €

Let us proceed by induction. Define

-

25
Nz=— 2loge ' =4 —loge ™!,
I g, s
i
€ =€ ¢, =ab’ e (loge, ) I(vj>0)

where ¢ = Klos’z(’”)Cl Cy b= 27+1 Assume that, for
0<i<y,
(1)1. € is an upper bound on Ye; ! || e;

i’
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(ll)l. (33)1‘ holds [(33),. is (33) with 0. ¢. T". .. . replaced

byo, ¢, ...]:

D, | QF, 1)) " [ <2 OF, ' |
CrARA R R CrA
138, 0l <2030, 0lo 13310, <
J@) | <2 @',

We are going to see that (6) implies (I, I, III)/.+ |

2 af]/.rn o

Remarks

1) The case i = 0 is implied by step (i).

2) Since (33)/ is assumed to hold the (j + l)”’ quantities
are well defined and controlled according to (the analogous
of) the estimates in (i).

3) Since for x small enough the functions x(log x~ )7+ !,

xz(log x Wy ! are increasing, (33) implies the correspond-
ing condition with €, replaced by yp, | e I;-

4) From the definition of the sequence g, it follows
easily that, for any i,
2 <e <[Beloge 1y *' P, Bz=ap4artl (34)

Thus, assuming that K, in (6) in such that
Be(log e 1y + 1 <1/2,

one sees that € { O faster than 2~ 2/.
From (19) and (Ill)i, i=0,..

.,Jj it follows easily (I)/‘+ 1
Now. I am going to prove in detail the first and the last of

(lll)H] (the other inequalities being similar and simpler).
Since ¢. , =¢+ EL o V> one has
1, )8 1) ! ] <
~1
-1 &
<“ (a(nx)¢) ” 1 _” (a(n x) ”w L" a(n x)\ll’,”m

Using the a§sumptions (I, III)’., (31) and the definition

ofo., one finds

” (n. x)d/ ”m
Therefore, by (34) and (6):

Kys THD a8 g2t e

i

@80 " ). Z 192, ¥ l.<
.

S ST [Tt Rl T N

Z [2(r+l)i/2i Bellog e-l)r+l]2i

i=0

<K)s T @E, 7 L3, 0yl Belloge™ !y <12,

which proves the first of the (III)/.+ ,

As for the last of the (mny,
@y, t 153241 -

By Cauchy estimates, by (III)I. and recalling that Py S
< pi/2 one obtains

f@in, )7, <I (a.if'>"||,~

f+1

25 (1990)

|@n | Daz”ou 39)
<4 @t Y lel o
i=0
L@y, Jde 1
R AT |

’YP i=0
Now, using (lI[)i and the definition of N’.,

I

<(K13S_(T+“) (log efl)'r+]7” anhno),‘ 2(1+1)i"

one obtains

Py _

-

i
ﬂ 3208 h ) y NP <

Thus, the right-hand-side of (35) is bounded by
(32h)-1 = o
4 ﬂ n "0 Z [(K]3s"(””(log6")'+'7||anh||0)'/2'
P i=0
x 20+ DI 120 ge (1o ¢ 1)+ ) lzi <

—])3/2(T+|)<l

52T+ 1) 32 ,
<K C; C2C3 e(loge >

»

where the final bound holds because of (6).
Finally let us prove (II). . Using (I, III)A+ )

2r+2
/+(17+ | o Tn.x) +1||/+1max | (8¢

) l“w X” (arzph/+l);l”/+l " a-nh/+l“]+lp/+l

and (6):

-1
(n, x)¢+l) ||/+l ’

” (a(n X) /+l

-1 ]

YO iy 6, Qoge, )70 <
< " ow e 1y7+] 1 Iyr+ 132741

<K, K| C,C,C oge 'y “ (Beloge " )™t )

1+1

1
. e 1214 1) ]
364 e(loge "H)\7 1< S

< [K”S {2r+ 3)C?C2(

This finishes the proof of the induction. To prove the
remaining statements in the Theorem is, at this point, straight-
forward: (i) of Part I follows from (26) and the inductive
estimates, (7) from (22), (8) is included in (II); and (9)
is a consequence of (31) and the inductive estimates.

APPENDIX

Llet R > 0 and A C @ be a compact set. We construct

function x € C(([Id) N C°°(1Rd): o - [0, 1] with support in

Yy = in e¢d:||n—n0 | <R

n, EL

identically equal to one in YR/2 and such that, Va € N9,

: (o] + 2
sup [ a"x” <« —Rlval

For t € R denote by X(0.1/2 ](t) the characteristic function

(36)
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of [0, 1/2] and for n € € Jet

1 1
Q(f)Exlo.m)(f)eXP (— i m)

— 1 t
g(t’)dt’) [ gt dt'

R .

G(1) E(

X, (= G +HG6UA -0

It is easy to see that the function Xy has the desired
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