
Nonlinearity 3 (1990) 39-44. Printed in the UK 

On the complex analytic structure of the golden invariant 
curve for the standard map 

Albert0 BerrettitSO and Luigi ChierchiaSII 
t Institut de Physique ThBorique, Ecole Polytechnique FBdBrale de Lausanne, PHB- 
Ecublens, CH-1015 Lausanne, Switzerland 
8 Dipartimento di Matematica, I1 Universith di Roma (Tor Vergata), Via del 
Fontanile di Carcaricola, 00133 Roma, Italy 

Received 27 April 1989, in final form 8 August 1989 
Accepted by R S Mackay 

Abstract. We consider the golden mean invariant curve for the standard map and give 
a strong numerical evidence that its conjugacy to a circle, regarded as a complex analytic 
function of the nonlinearity parameter, has a natural analyticity boundary found to be a 
circle of radius equal to the believed breakdown threshold. 

AMS classification scheme numbers: 30B10, 34C15, 34C35, 34D30, 39B99,41A21, 
58F13,58F14,70K50. 

1. Introduction 

Since the publication of Greene (1979) [l], which was subsequently supported by a 
great amount of numerical work (see, e.g., [2,3] and references therein), it is 
believed that the Chirikov-Greene ‘standard map’: 

f5 : ( x ,  y )  E x 5.3 - ( x ‘ ,  Y ’ )  U = R /2nZ 

y ’  = y  + E sinx x ‘ = x + y ’  (mod23t) 

has a unique smooth (probably analytic [4,5]) golden invariant curve for 0 s E < E, 

= 0.971 . . . , while for E > E, no invariant curves at all are expected to exist. Here 
‘invariant curve’ will always mean a closed, homotopically non-trivial continuous 
invariant curve and ‘golden’ means that the rotation number of such invariant curve 
is og = (fi - 1)n, i.e. 23t times the golden mean (for a general introduction to the 
dynamics of iterate area-preserving diffeomorphisms, the reader is referred, e.g., to 

Thus, if one ‘follows’ the golden invariant curve as E is increased from zero one 
would observe a smooth deformation until E reaches the so-called ‘breakdown 

[2,61. 
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threshold’ E,.  At such a value of the nonlinearity parameter the curve would be 
non-smooth but probably Hiilder continuous [7] and for E > E ,  it would break into 
Aubry-Mather sets. Such sets are invariant Cantor sets that can be embedded in the 
graph of a Lipschitz function (Aubry-Mather sets have in fact been proved to exist 
under very general assumptions [8-111). 

Up to now, not much of this intriguing ‘breakdown phenomenon’ has been 
mathematically explained. However, in [12] (see also [13]), it has been proved, by 
computer-assisted methods, that no invariant curve exists for E > 0.985 and in [14] it 
has been proved (also by computer-assisted methods) that the golden invariant curve 
exists for complex values of E ,  I E ~  s 0.65 (the meaning of ‘invariant curve’ when E is 
complex will be made clear in the next section). 

Here we study numerically the smoothness properties of the function which 
conjugates the golden mean invariant curve to the rigid rotation for < E , ,  with 
special emphasis on the complex analytic structure in the nonlinearity parameter E .  

2. Methods and results 

The dynamics of fE is easily seen to be described by the following nonlinear 
finite-difference equation: 

x , + ~  - 2x, +xnP1 = E sinx, (1) 
where (x,, y,,) is the nth iterate of a starting point (xo ,  yo) and y,, = x,  - x , - ~ .  

to a rigid rotation if there exists a continuous embedding of U into U x R: 
Let r be an invariant curve for fE; we say that fE 1 r is topologically conjugated 

Q :  e E U- @(e) = (q (e ) ,  ip2(e)) E r U x R 

such that fE 00 = 0 0  R,, where R,(8) = 8 + @(mod 2 ~ ) ;  w is the so-called rotation 
number of r. 

Since y’ = x ’  - x we have that 0 2 ( e )  = Ql(e) - Ql(8 - w); therefore, with a 
slight abuse of language we will call the circle homeomorphism Ql the ‘conjugating 
function’. Notice that if Ql is a conjugating function then 8 I+ Ql(6 + c )  is also a 
conjugating function for any real constant c .  We fix this ambiguity by requiring that 
the continuous periodic function 

have vanishing mean value. ,This function, which is the main object of our 
investigation, satisfies the following nonlinear equation (cf equation (1)): 

Conversely, any solution of (2) such that 8 + u(0) is strictly monotone yields an 
invariant curve with rotation number w, given in parametric representation by: 

U(e) = q e )  - e 

D ~ U  = U(e + CO, E )  - 2 4 8 ,  E )  + U(e - U, E )  = E sin(6 + U(e, E ) ) .  (2) 

x = e + U(e, E )  ‘y = w +U(@,  E )  - U(e - CO, E )  eEu.  

If U is Ck or analytic then so is r. In fact, by a theorem of Birkhoff (see e.g. 
[15]), r is the graph of a Lipschitz function x-Y(x), and so one can express 
derivatives of y(x) in terms of derivatives of the conjugating function Ql = 8 + u(6). 
For example 

_-  dy (d/de)(U(e) - U(e - U)) 
dx 1 + (du/de) 

- 
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In [14] it was proved that u(8, E )  = uWp(8, E )  is jointly analytic for IIm(8)l s 
and [ E (  6 0.65. Thus if one considers equation (1) in @" (i.e. if one allows complex E 

and looks for orbits {x,},~~ with x, E C) such a result yields complex analytic 
invariant curves analytically embedded in C2. 

Now, let 

2 u n ( 8 ) E n  
n a l  

be the power series expansion in E of u (8, E )  and let 
r 1-1 

(3) 

(by the above result p > 0.65), then for any E with I E ~  < p, u(8, E )  is also analytic in 
8 and it is natural to enquire about the relation between p and E, .  

By using the following recursion formulae for the computation of the U, 
bo = eie 

and, for n 2 1: 

one can compute a few hundreds of the U,, each as a trigonometric polynomial in 8. 
These formulae are due to Goroff [16]; for other ways of computing coefficients of 
the conjugating function see [17,18]. 

A plot of Ju,(0)J-l'n against n for various real 8 suggests that the limiting value 
is independent of 8 and might coincide with E ,  (see figure 1, where 8 = 1). 
However, the slow rate of convergence and the presence of many peaks (quite 
surely related to small divisors) make a reliable extrapolation practically impossible. 

More information can be obtained by means of rational (PadC) approximants. 
Given a function f ( z ) ,  analytic near 0, its Pad6 approximant [MINI is a rational 
approximant off with M and N being respectively the degrees of the numerator and 

n 
Figure 1. Plot of lu,(B)I-"" as a function of n, for 0 = 1; the horizontal line is at 
0.971. 
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denominator, such that the Taylor expansion of the approximant at order M + N 
coincides with the Taylor expansion of f at order M + N ;  formal uniqueness is 
obtained by imposing, for example, that the denominator is 1 at z = 0. Under 
suitable non-degeneracy conditions on f such approximants exist, are unique and 
can be recursively computed from the first M + N coefficients of the Taylor 
expansion off (see [19]). In computing the coefficients of the Pad6 polynomials, we 
used the formulae given on p77 of [19], which minimise round-off error. 

We consider various Pad6 approximants with M + N s 200 of the series (3), with 
13 fixed and real, and studied the distribution of the E-singularities in C. Typically, 
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Figure 2. Poles of various Pad6 approximants in 
the complex E plane. (a) [38/38] approximant, ( b )  
[50/50] approximant, (c) [60/60] approximant, ( d )  
[85/85] approximant, ( e )  [85/85] approximant. In 
each of (U ) - (d ) ,  0 = 1; in ( e )  8 = 2. The circle in 
each figure has radius 0.971. 
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we considered the ‘diagonal’ approximants [MIM] for several choices of 8 and 
10 S M S 90 and tried to determine the zeros of the denominator; to this end we 
used the NAG routine C02AEF, which gives accurate results for polynomials up to 
degree 100 provided they are not too ill conditioned; the roots found by C02AEF 
are tested for really being zero of the polynomial. All calculations have been 
performed in double precision (64 bits); the calculations of the Pad6 coefficients 
have been tested for absence of significant round-off error by computing some of 
them in quadruple precision and comparing with the same coefficients computed in 
double precision. 

Apart from a small number of unstable poles, we found a phenomenology 
largely independent of 8 (summarised in figure 2) which shows that as the degree M 
increases, the singularities of the approximants [ M I M ]  tend to fill up densely a 
circle of radius E,. The poles far from the circle of radius E,  (about 10-20% of the 
total number M of poles) are very unstable and disappear or move away if any 
parameter (like 8 or M )  is changed slightly. 

3. Conclusions 

The evidence we gather from the above analysis is that the functions E H U( 8, E )  

have, for typical values of 8, a natural analyticity boundary which is a circle of 
radius E,; here typical means that exceptional values of 8 might be excluded (e.g. 
8 = 0, n, because u ( 8 )  vanishes identically there). 

The present mathematical technology seems to be rather far from allowing a 
rigorous explanation of this phenomenon. However, we recall that an important 
class of analytic fiinctions that shows natural boundaries is the class of ‘lacunarity’ 
functions, i.e. functions which admit a series expansion of the type 

c 
is0 

where the sequence ni ~4 fast enough (for a review of the topic see, e.g., [20]). 
Therefore we tend to believe that a possible explanation of the appearance of circles 
of singularities could be found by investigating the ‘lacunar’ structure of the peaks of 
{]U,/} which, in turn, should be related to the occurrence of particularly small 
divisors entering the derivation of a coefficient when such a peak is achieved (an 
analogous mechanism has been considered in [5] in relation to the dependence of 
the Fourier coefficients iik = d6ezkeu(8, E )  on E ) .  All this would be very much in 
line with the ‘renormalisation group’ picture ([2,3,21]). In this respect, it is 
suggestive to think of Pad6 approximants as rational approximations to analytic 
functions in the same way as truncated continued fraction expansions are rational 
approximations to irrational numbers. 

Finally, it is interesting to ask whether an analogous picture holds for other maps 
and continuous-time Hamiltonian systems. An investigation of a few other ‘typical 
systems’ is currently under way. 
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