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Summary. A Hamiltonian with N degrees of freedom, analytic pertur-
bation of a canonically integrable strictly nonisochronous analytic Hamil-
tonian, is considered. We show the existence. of N functions on phase
space and of class O which are prime integrals for the perturbed motions
on a suitable region whose Lebesgue measure tends to fill locally the
phase space as the perturbation’s magnitude approaches zero. An applica-
tion to the perturbations of isochronous nonresonant linear oscillators
is given.

1. — Introduction.

Although it follows from the small-denominator theorem proof that the
small perturbations of integrable Hamiltonian systems are not ergodic for the
Liouville mesasure and that, therefore, there must be some prime integrals
for their motions, the prime integrals’ properties have not been investigated
in detail. )

' Here we show that the small-denominator theory contains all information
needed to deal with the above questions, at least as far as existence and basic
regularity are concerned. .

We shall only congider analytic Hamiltonian systems integrable by analytic
canonical transformations. _

Calling 4 € R” the N action variables and ¢ € 7% the N conjugate angles (°),
we suppose that the unperturbed Hamiltonian %, and the perturbation fo are

(*) T¥=standard torus in N dimensions = {[0, 27]¥ with opposite sides identified}.

271



278 ‘ ’ L. CHIERCHIA and G. GALLAVOTTI

defined on a set of the form V x 1%, VcRY open sphere with radius » > 0.
Thus the Hamﬂtoma.n will be written as

(1.1) Hy(4, ) = ho(4) + fo(A, ?).

We assume h, and f, analytic: more premsely, if T¥ is zd(mtszd with &
subset of C¥ via the map

@ = (Pry.ery Pu) > 5 = (31, ..., By) = (exP [ig1], ..., €xD [ipy])

and if V is also regarded as a subset of GN, We>suppose that, if we put

(1.2) C(Qo, &03A) = {(A', z)[(AI) z) € O, IA; — 4] < 0y
exp [—&] < Jo <-exp [&], i=1,2,.., N} ’

(L3)  Wleo, &5 V) = U Olev, & 4)> VX I¥,

Acy

then the functions Ay, f, regarded as functions on W(g,, &, V) n V X T¥ extend
to functions holomorphic in W(g,, &, V) which will be denoted with the same
symbols.

We can extend the differentiation with respect to <p in a na.tural way by Jﬁ
settmg

opr " Oy

i_@,;i)'i_@_,g
aA o a 1 aAN ! a(P ,—— a(pl’ o a¢N )

: N )

We shall define, for {e 0¥, [§| = > |{,| and, for M = N XN matrix, |M|=
N =1

—_— z |.M-ij!- Let

£,§=1

k= 1, ey N. E

‘We denote

(1.4) wo(d) = ah" a),

(1.5) E,>sup [wy(4)] ,

(1.6) . & >8up 8_3 (4, z) 031 % (4, z) l,
an 0 e (S]]
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where 8w,/0A is the Jacobian matrix of w, (see (1.4)) and (4, z)e W(g,, &; V).
We say that the unperturbed system with Hamiltonian h, is strictly an-
isochronous if 7, <-4 co. ‘ '
For simplicity, we take g, <7, & <1.
Our result is

Theorem. For fixed N, there exist B>1, x>0, >0, y > 0, »> 0-such
that, for all C, > E;* verifying

(1.8) Bg, Cy(E, Oo)f‘(no Qo_lEo)ﬁé-o—y <1,

it is possible to construct N functions A4;, 4,, ..., A, and a subset I'c V X T¥
such that

: - (0B, 037)* T
(1.9) i) Volume I'>{1—x | 5———]) volume VX I7¥.
' VB, 0,
‘ii) The A;,..., A, are prime integrals for the perturbed motions

starting in /.

iti) The A’s are «independent» on I, i.e. their Jacobian determinant
with respect to the 4 variables is not zero (actually equal to 1); furthermore,
they are in involution on I '

iv) Any other funetion A e 0°(V xT¥) which is a prime integral on I’
is, on I, a function of A4;, ..., Ay.

Our proof is based on the version of the Kolmogorov-Arnold-Moser the-
orem (1) given in (%), although it is in principle self-contained and the KAM
theorem is a corollary of the following proof.

After completing this work, we received a preprint (?) in which essentially
the same results are proved in the differentiable case: they do not imply im-
mediately our results in the analytic case and it seemed to us worth publishing
~our proof which might help the readers to compare the analytic case with the
differentiable case. 7

The proof of the theorem’s last statement is only sketched.

(3) V.Ar~orLD: Russ. Math. Surv., 18, 85 (1963); J. MosER: Stable and random motions
in dynamical systems, in Hermann Weyl Lectures (Princeton, N.J., and Tokyo, 1973).
(3) G. GarravorTti: Meccanica elementare (Torino, 1980).

(® J. PoscEL: Uber differenzierbare Faserungen invarianter Tori, preprint ETH,
Zirich (1981),. :
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%

2, - Proof.

N N
Denote z* = []#;' for z€ 0¥, v = (v,.., )€ 2" and let |v|=3 P,
i=1 i=1
Moreover, let exp [3] = (exp [24], .., ©XD [24]).
We consider the expansion

(2.1) fold, 5) = 3 1o ()2

vez™

and, by the assumed analiticity and Laurent’s theorem, we infer from (1.6)

fov

24 (A) <80 exp [— 50]9[] .

Proceeding as in the small-denominator theorem’s proof (2), p. 444, we fix a
sequence of « ana,lytlclty loss » parameters, qulte arbitrarily, 6, = 50/16 14 §)z
7 = 0 1 : 4 Z 61 < 50

§=0 .

We try now to remove the perturbation by a°canonical transformation
defined by a generating function @,. Following perturbation theory (2), p. 426,
we take

(2.3) Py 5) = 3 fuld) —>

o<V, — dwy(4') v’
which makes sense only if the denominator does not vanish: this is imposed
by thinking

(4, z)e W (o, 50, = U C(Bo, &o; A),

0
Aevy)

where g, is chosen small enough, 7.e. for a suitably chosen B,>1, as

(24) Oo = % 0o(B, OB, NG, Ny= 20, log (Coey 63) 1

and, if 8(A4, o) = open sphere in R¥ with centre A and radius 0y Vf,‘;’ is con-

veniently defined, for reasons which will appear clear, as union of spheres:

(2.5) ©_ Us( 2)

AeV(")
and the set 73‘;’ is taken to be a «nonresonant » set

(2.6) Vo= {AIA € V(0o, — @)y wo(A) V[ < Colv[¥, 0 < |v|< No}

o g
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and the set V(gy, — @) is constructed via the following strange-looking operation:
consider all the points 4 € V such that 8(4, g,} ¢ V and take the union of the
spheres S(A, g, — g): clearly, if V is a sphere (as supposed) and g, << g, <
< radius of V, one simply obtains all the points at a distance larger than g,
from 0V. However, this construction makes sense for any open set V and we
shall use it many times to build new sets out of other sets.

The above choice of §, stems from the requirement that, VA’ cx, W(g,,
o3 Vﬁ,‘:’) (7, being the «projection over the action variables» (A4, z) = A4,
my(A, 5) = z) the denominator in (2.3) is «nonresonant » (see also (%), p. 446):

2.M lwo(A') v[1< 20, v, Y0 < [v|< Ny,

imposed via the obvious estimates based on (2.2), while the definition of N,
has been made so that the «ultraviolet part» of the perturbation, defined as

(2.8) 14,8 = 3 [,

V>N,
be such that, (4, z) € W(go, & — 005 V),

a [>N,]
"%(P— (4, =)

(2.9)

A=l 1
‘ fo <B,&;0,

oA 7z)|+'é;

for some B, > 1, obtained in the obvious way via (2.2), (2.1).
By (2.2), (2.3) it easily follows a bound for @, on the set W(g,, & — o3 Vi)
on which @, turns out to be holomorphic:

0D,

od,
oep

1
+ E_ )<B380 O(E,Cy) 5™,
. ;

where B, > 1, x, > 1 are suitable constants: in the derivation of (2.10), (2.7)
plays a crucial role too.
Thus we can try to put -

oD,
Op;

A;=A4; 47— (4'7),

(2.11) j=1,.., N,

, 30,
zj:ziexp[ZG_AZ(A’z)]’;

and use this map of W(g,, & — J; V‘c‘:’)'into C?¥ to generate a canonical trans-
formation % and its inverse.
We have to invert the second of (2.11) with respect to =z’ or the first with

respect to A.
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Essentially one has to use some implicit functions’ theorem. The applicability
condition is, of course, that aqso/aA; has very small ¢p-derivative (to invert
the second) or that 0®,/dp; has very small 4'-derivative (to invert the first).

Actually we wish to invert the second of (2.11) in the nice form

(2.12) 2, =z, exp [i4,(4, z')]

with A analytic enough: to do this we must naturally give up some analyticity
in 5’ trying to define A only in a smaller set, say W(g, & — 2d,; V), com-
pared to the analyticity region W(g, & — do; V) for 2B,/0A'.

Similarly we wish to invert the first of eqs. (2.11) in the nice form

(2.13) A=A} E'(A, 5)

with &' analytic: again one must renounce to some analyticity in A trying to
define E’ in a smaller region, e.9. W(@,/2, & — o; V§).

For instance, if A and &' are required to exist and to be holomorphic in
the above-mentioned regions, the sufficient condition for this to happen can
be derived by some standard implicit-function theorems (see, for instance, (2),
p. 437, proposition XX); they have the form (see also (2.10))

(2.14) By(B; &, 0y B, 0y 6, 65 < 1

to define A or

(2.18) B,(B3 g, Oo By 0y 657 00)(0s/2)71 2% < 1

to define &', where B, > 4, #,>>1 are constants depending on the particular
implicit-function theorem used. It should be noted that the above conditions
have a « dimensional interpretation » and they can immediately be guessed (*).

Under assumptions (2.14), (2.15) the functions A, E' in (2.12), (2.13) also
verify the bounds (see (2.10), (2.11)),

]AI<B360 OOEO 00 50_”’ < 60 )
E'|<B;2, 0, B,y 0, 05" 00 < 30/8

' (2.16)

in their analyticity domains W(g,, & — 2d,; V) and W(G/2, & — 6o; Vi),
respectively.

(*) A dimensional estimate, as the physics nomenclature wishes, is basically a bound
on the derivative of a holomorphic function by its maximum divided by the distance
to the definition domain boundary.
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: . (0}
This allows us to define, for (A4', 5') € W(g,, 50— 2605 Vi )s

a e,

(2.17) 24, z) = (A’ =’ exp [@A ) % )])

and, for (4, z) € W(g/2, & — do; Vo),

-

0D, 5/( '
(2.18) A'(4,5) = 50 (A + E(4, 5),5).

In this way, we can consider the map €@

4= AI+ E’(Al’ z”) ! Tl 5 » (0)
(A, %) € W(Go, &0 — 2003 Voa)}

z =z’ exp [iA(4’', 5')],
and g
| A=A+ E(4,3), ‘(é’o
AzEW——E—é‘V‘?
(2.20) {z’:zexp[iA’(A,z)], (4, z) g7 S0 0 Yoy )

and &, &, A, A’ verify in their domains of definition and holomorphy the
bounds

|E], |E'|< Bsgo Co By Cy 05" 00 < 60/8
(2.21)

|A|7 ‘,A’I <Byey Oy By Cy 05" < by,

which imply

"(2.22) %“”W(%—“ £y — 360; V“”) W(—%— o — 2003 V“”)
(2.23) : %“»W(% & — 3y; V‘°’)c W(g—", & — 26,, ng),

and, by construction,

(2.24) FOZO — POYO = identity on W (%9, &y — 36,3 Vé?)k .

It is also easy to see that A, A’, E, & are real for (4, z) or (4', 5') in B* x T7.

It follows from the general theory of the canonical transformations that
% and ¢© are completely canonical maps of Vi) x I onto their images (and,
therefore, their Jacobian determinant in the (A, ¢@) variables must be 1).

Using the first of (2.4), one sees that (2.14), (2.15) can be imposed by re-
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quiring the stronger but simpler condition

(2.25) Bye, Oy( B, G2 Ny 5, < 1

‘ with By > 1, m, > 1 suitably chosen.
5 Hence, if (2.25) holds, we can use (2.19) to describe the Hamiltonian mo-
! tions taking place in the image of V3’ X T¥ in the new variables ), 7).

In the new variables the Hamiltonian is ‘

(2.26)  Hy(A', %) = ho(d'+ E(d', &) + fo(4'+ E(4', 5'), &' exp [IA(4', 5)]) .

Then, as in formal perturbation theory and a§ in the small-denominator
theorem’s proof ((?), p. 430, 448, [5.10.28], [5.12.37]), we write

H(A', 5') = h(A') + f(4', &),

where f, = H,— h, and bk, is defined as

| h(A') = To(A') + fop(d") .

A long but straightforward calculation based on the Cauchy formula for
the holomorphic functions and on the basic estimates (2.2), (2.9), (2.10), (2.21)
allows us after some labour to show that, if we define

O oh
(2.27) a=%, G=&—4, w(d) =7

4),
one has

(2.28)  EOW(o, & V) C Wigo, &3 V), FNVOXT)CVXI¥

and, for a suitable B, > 1, #,> 1, one can take

oh,
SUp | =

<Ey+ ¢ =FE, in W(go, &; V&r) s
od ' .

<7]o(1 -+ BeﬂogoQo—l) =M k in W (%7 o3 V,‘,?),

| (22 )—1
(229) |7 [\oded
o
o4

ofs

sup 3

1
+_
01

) <B, C, 83 NﬁVH(Eo 0,p)2 5;% =é& ‘\
in W(oi, &35 Ve,

provided (2.25) holds together with Bgnge, 00 < 1: these two conditions can
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be implied by the simpler one
(2.30) 6o = By, Cy(B, Go)zNéVH 60_%(7’]0 B, Q;l) <1,

if one notices that the holomorphy of & forces 7,H,gs >1.

The «harder » estimate is the lagt of eqs. (2.29) and its derivation can be
found also in (2) (p. 451-453), but it is simpler to derive it by oneself: it is.
again a « dimensional inequality ».

We define now

01\= 2:C,, N, =26 log (0'1131611v)_1 ’

= %1 (B, 01E1N11V+1)_1a 01 = B;&,C,(E, G’l)lef+1 5:“("71E19I1) )
(2.31) -
o= U s(4%),

, =
Ae?gl) 2

V&) = {Ald e V31, — @), |wi(4) v < CPIY, 0 < [v] <N}

and V(g:, — @) is the set constructed as described after (2.6), which now is
no longer as trivial as there. Notice that V{'c V.

The argument can now be iterated with W(gy, &; Vi) replacing W(g,,
&o; Vo)

Call

(2.32) & = (B, + Bo)* Cueul( By, G NI (1, B, 7Y) 020,

notice that &, > o;; then, assuming inductively

k1

§k=£0_426i’ Ok=00(1+k)29

i=0

| (2.33) Ek < 2Eo, N < 2770 5 6'k <1 ’

(0080)2k< Crer< (Goeo)“})k ’

Or> Qo[(log (C, 80)_1)*2’“25]8](2\’“) (B Co)~*,

one easily finds that, if &, is small enough,

(2.34) By, <1,

eqs. (2.33) hold, Vk>0.
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We can then define the canonical transformations €™, &» and (see (2.31),

(2.16))
(2.35) EW: W(Qntsy Enta; VorD) = Wlgn, &n; V).
| Call
W, =€ ... C"(W(0,, &n; V{,’;’)) cW.a,
(2.36)
I, =%9... %"—”(Vf,:’ XI¥YcTl,,.

It can be easily checked that the first inclusion follows trivially from de-
finitions (2.31) and from (2.16); the second inclusion follows from the inter-
mediate inequality in (2.16) and from the fact that C,e,0,E,Cndy ™ (Gp+1/2)" —2-0:
hence, possibly increasing the value of the constant B, in (2.34), we can and
shall assume that |E¢m| < §ara/2, if &, is the analogue of & for ¥, Va0,
strengthening the r.h.s. in (2.16).

I It is also easy to see that

(2.37) COW (0441560415 VED) C W (%, & — 364, Vé’;’) .

It can be easily checked that the limits

(4(A, 2), 5,(A4, z)) = lim ED ... FO(A, z)

n—>©

exist V(4,z)e W, = W,.

7n=0

In fact, the map @ differs from the identity map, together with its deriv-
atives of order M with respect to A and @ with respect to z, by a quantity
that on W(g./4, & — 38, Vi) can be estimated by (see (2.20), (2.21))

~ M Q!
foe |0+ (7, € — 7,)| < By, Co B, 01 65" 01 =5 5 2%+,
(2.38) - M'Q;' *
|8”+Q(n2 ¢ — ﬂz)l <By&;, O B, C 67™ "é:;[" —6—6 2¥+Q
x Ok

with natural notation and for some B, > 1: notice that eqs. (2.38) are again
dimensional estimates.
The convergence of (4., z.) on W is clearly guaranteed by (2.38) and (2.33)
! (implying that the r.h.s. of (2.38) converges to zero as k — oo faster than any
‘ exponential). Actually (2.38) gives much more: it shows that the functions

A(A, z) = 7,80 .. oA, ),
(2.39)

z;(A, z) = m By ., Z9(A, z)

i

-
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have, on W,, derivatives bounded as

l dlal+ipl
Eroe
QOlal+1bl

Yy T z,',(A, 3) <

A4,(4, z) |<B(a, b) ’ V{4, z) e W,,

(2.40)

Bl(ay b) ’ V(A7 z)eW,,

with B, B’ depending « on everything » but not on n. Furthermore, the de-
rivatives appearing in (2.40) converge, on W, to some limits, which we decide

to call
Jartisl Qlal+iel

(2.41) WAOO or 3458 %
- with the natural meaning of the symbols, and the convergence, as n— oo, is
faster than any exponential in n.

Our next task is to show that (2.41) are functions with the « correct prop-
erties » that one would expect from their symbolic notations.

To do this, we must be sure that the sets W, are not too small if I' =

=710

n=0

Let (4,z)e ', and let

0

(2.42) u= H (1 + (8NB,)s; 0, B, 0,57 55—1(91'/03 = (1490,,

i=0 §

then, for each n>0, there is (4,, z,) € Vi X T¥ guch that
(2.43) (A, z) = €0 ... 414, z,) .

We wish to show that, if (4, z) — (4',%")| = |4 — 4’| 4 g,|s'— =] and if
(A, %) — (4', )| < & o4/4p, then the point (4', z') is in W,: in other words,
. W, contains the complex sphere with radius &,,/4u around (4, z)el,.

In fact, eqs. (2.38) immediately imply for (4,, ), (4., z,) in W(g,/4,
& — 30,3 fo,’,)), (41, %) in V(:; XTY and |(Ay, ;) — (4s, 25)] < 0»/4 that

(2.44) B (A, 21) — Ay, 30)|[< (1 + 0,)|(4y, 2) — (s, 5)]|

with 0, defined in (2.42).
Hence, by induction, it follows that

(2.48)  |(Ay,, z,) — G0 . GO, 7')|=
= |§-v ., Z9(A, 5) — G0 ., Fo4’, 5| <

n—1

< [T @+ 014, 5) — (4, &) | <pé 0u/4p = 0. Eo/4 ;

=0
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taking {4, ”) Gov ... GO(4', 5'), We see that

[y — 4| < g,

(2.46) (50, — (=),

(5201 = [ — (ool () = |1+ Ak

since [(#.),| =1, as z,€ T%, hence, if £, =& — 4 §,,
=0

(2.47)  exp[—£,]1<1— &[4<T — & 0a/400<|(20)s] <

<14 50@1:/4Qo<1 + &/4 < exp [£a],

because the choice of d; has been such that &, > &/2. Therefore, (4., )€
€ W(on, &n; V) and (A’, z') is consequently in W,.
Let (A4, ), (4,3)eT w1 & = exp [ip], suppose that

(2.48) o Onir/Apu < |(A, 2) — (A, B)| < Eyon/dps .

Then the whole set of points parametrized by t€[0,1]: A(t) = At (1— t)fT,
pt)=ct 1+ (1—1)@ is in W, if we suppose, as we obviously may without
loss of gemerality, that the shortest path in 7% connecting ¢ with ¢ is the
above segment,

We can, therefore, apply the Lagrange-Taylor formula to estimate ]A
z) — W(Z %)| or, more generally, to estimate the difference between ,two
arbitrary derivatives of order a, in the action variables and b, in the angles:
given M > 0,

laol+1o1 4/ Dlasl+ibol 47~

(2.49) W( y %) — DA% dzbo (A7 z) —

~

(A—A) (z—3)°
al b!

Dlaotal+ibytbl 47

T 2y oA P

o<<lal+lbl<y

<

B(a, + a, b, + b))D(aoa by, M)!(A’ %) — (Z; E)IMH’

(o
Ial+IbI—M+1

where D is a suitable combinatorial factor notice that the r.h.s. does not ex-
plicitly depend on .

On the other hand, the limits (2.41) are reached at very high speed by
(2.38) and in (2.49) we can replace the index n by co with an error that can be
explicitly controlled by (2.38).
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If

/ © SN o ]aoH'lbol
250)  Callas], [bel) = Bolas]![bo]! S Cuse B, O 55 k«(—é: Me) :

k=n 0 0%

we can remark that {,——>0 faster that any exponential in (3)" or, see (2.33),
faster than any power in g,. Hence from (2.49), (2.50) we get, suitably
choosing D, :

ala°l+[b"1A;, a]ao+ul+]bo+b|A(’n ~
admaae A= .,,Ezyv aderaams b B g b!

olalHblSH

<D(jaol, |bo|, M)|(A, 3) — (4, B)|*** + E(|(4, 5) — (4, B)|, |ao], [bo], M)

(2.51)

and &(»;p, g, 8,) tends to zero, as @ — 0, faster than any power in #, Vp, ¢, s in-
tegers and { can be chosen as

£ . _ La(p + |a), ¢ + |B)) _”(é‘o@”)lalﬂbl ;
(2.562) (@ 0,0, 8) = 0<Iar§b|<g “alb! 0o 4‘ueo

if Qnir bo/du<® < @nbofdp.

Identical arguments and conclusions hold for the angle variables z_ (4, z),
A, zel’,. '

Hence (A, z.,) are 2N functions on I", extendible to its closure, by con-
tinuity, I', and their extensions are in C(I',) in the sense of Whitney (%),
i.e. essentially in the sense of (2.51).

It appears from the above analysis that the Jacobian matrix

0(4e, z5)
( o(4, z) )
is a matrix close to the identity if (2.34) holds.

The variables 4., . verify the canonical commutation rules on I',, since
.A,, ¢, do, being canonical variables by construction: in particular, the
A ’s are in involution on I',. It also follows from the canonicity of the maps
%O, ..., €™, ... that det (d(4,,,)/d(4,%)=1on I',.

Another consequence of the above arguments and estimates is the existence
of the limit

(2:53) lm w,(4) = w,(4), VAde 7 = V.
n=0

() H. WHITNEY: Trans. Am. Math. Soc., 36, 63 (1934).
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In fact, a repetition of the argument leading to (2.51) allows us to show,
Va>m, V(4, z) € W(ow, £u; V),

lal la] ©
T )2 )| e § 2

(2.54) g ~5de 2

with B(a) > 1 suitably chosen. From this one immediately deduces, proceeding
as before, that w, e C*(V) in the sense of Whitney and, more explicitly, if
0n/2<]|A— A| < 0,a/2, ATV, AeRY,

k=n

(2:85)  |n(4) — wn(d)] < Buo( Fogi* + i oo )l 4 — A+ 25 o<
<Bu(Bogs’ + 4 3 en0) 4 — A,
(2.56)  [n(4) — wo(d) — wn(d) + ()| <Bit 3 ero7l|d — .

This means that, if &, is small enough and if # is small enough, the function
@y, 15 one to one on Vg n {any sphere with radius #}; since |M,(4) o>, v,

(2.57)  [0n(d) — wn(d)] =
= |wo(A4) — we(A4) + w,(A4) — Wo(A4) — wyu(A') + wy(A4")|>

>lon(4) — @i )] — 4 3 g4 — 4 =
= [My(A')(A — A') + wi(d) — wy(A') — My(A')(A — 4')] —

— 4> oA —A'|>
k=0

A

- T &, - / 1 —~ I
>7]6—1 (1 *BloEo"'loQolz)‘o—ﬁo‘-L Zoekal) [A——A l>§n01,A—A ] 3
—

if & is small enough and if # = 1g,(B,, 10 By 05 %)™, the condition on ¢, can and
shall be met by possibly increasing the constant B, in (2.34).

We can use the above remarks to estimate the measure of r,.

In fact, observe that, if a set & c R¥ is a union of open spheres of equal
radius and each sphere contains some subset filling it up to a fraction 1 — «
of its volume, then the union of such subsets fills @ up to a fraction 1—B112\N/ ,
say, of its volume, By, being a G-independent constant.

Hence, if ¥ is a union of open spheres with radius ¢ and we consider the
set 17(9, — () obtained by taking out of each of the covering spheres the outer
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shell of width g, it follows that

(2.58) | vol V >(1— Bm\/ o) vol 7

We can now consider V&> V™ (see (2.31)). We estimate its volume by
that of V: this is a set obtained from V™", which is a union of spheres of
radius g, = §,—,/8 by first taking out of each of the spheres an outer shell of
width g, and, secondly, depriving the remaining set of the « resonant points ».

In the first step we obtain the set V" “(g,, — §») whose volume may be
bounded by using (2.58) by

2N .
(2.59) - VLV G P (0ny — Ba) > (1 — By, V%) vol Vit .

To estimate the measure of the set of the resonant points in V(‘,: 11’(@,,, ~— Ou)y
i.e. the measure of the set V, of points in V&"(o,, — §.) c V, such that the
inequality

[w,(A) v[ 1< Oplv]¥

is not true for some v, 0 < |[v|<XN,, we notice that

(2.60) volV, =}d4'< Tf ‘ dw ,

Vo w,(7y,)

where 7' is an estimate on the maximum number of points A'c V{?, where the
function w, takes the same value: by (2.57) we can take

P \¥
(2.61) T = (noEog;l 9—) By
o

for some B;; > 1.
Hence

N
(2.62) Vol Vi< B (Emoggl Qi) nggfdw<
0

@, (V)
-, Y\ 4 A
<Bi(Boos'ne—) 7S dw <Bus|Eomogs —) 7% > dw <
Go v0 - Qo v=£0 -
o] <ozlvl |wev] <oz v
Wwew,(Py) lwl <z,
L r\Y (2E,)N 2.
< By | B 1—) v <
13( 070 e Qo n On vgo ]VINH

. 7 \Y (Eono 05! E v
<B14(770E0901)N (‘é;) (OE%L vol V< By, (770_1’70%0__)__ vol V.
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Therefore,

= : E
Vol V> vol 75> (1 — B V/@fen) ol V47 — By, e E"g’ 2 o1y,
[1]

Hence inductively
(2.63) vol Vi >
=2 2N/ CONA ) (noBo0s")™ & 1
>{(}£I1 (1 — B,V Qk/Q@)) [(1 Ngyjr) — By, 7, C, > T 7 vol V>

k=0

—lyoN
>(1 — B, Metoe ) )vol v,

V'E,C,

where the last factor in the first intermediate term arises from the fact that
Vi) has to be treated differently from V{; the second inequality is an easy
consequence of the relation among gy, H,Cy, 0o, 7 (see (2.33) and recall that
r > 0o)-

Since I, = €@ ... ¢ (Vy” x I'¥) is a canonical image of Vi x T¥, it has
the same L10uv1lle meagsure:

(2.64) volI’q,>(1 — B, (”—"EM) vol (VX T¥) .

NV E,C,

The continuability of A, , z., to functions in C®(V xT¥) defined on the
whole phage space is an immediate consequence of Whitney’s theorem (4) and
of the uniformity of (2.51) with respect to (A4, z) (allowing the extension by
continuity of 4., =, and of their derivatives to the closure I', of I").

It remains to prove that the 4. are prime integrals in I .

We notice that the above analysis and estimates immediately imply that
the map (4, z) - (4,,, z,,) is one to one as a map between I", and () Ver x T

n=0
(recall that for each canonical map ¥* we constructed also its inverse @*)):
hence it is possible to define a system of C° co-ordinates in a neighbourhood
of I', for a neighbourhood of V) x T and wvice versa by using the above-men-
tioned O extension of the map (4, z) — (4., ). This is 80 because the Ja-
cobian determinant of the map (A, z) — (4, z,,) is 1 in the (4, @), (4., @)
variables, as already noticed.

We also noticed that from the above analysis it immediately follows that

(2.65) WA (4,(4, 3)) —o> Wo(Aa(4, 7)), Vd,z)el.,

faster than any power of g,/g,.

It is now easy to complete the proof.

First show that 4. are prime integrals: this follows from the fact that the
evolution « commutes » with the canonieal transformations.
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Let (4,z) eI, and fix ¢> 0. Then

n? “n

(2.66) G-y ... FO(80(A, z)) = 8" GV ... (A, 5) = 8(A,, 5,),

where Si”’ is the Hamiltonian flow with Hamiltonian H,: hence from the form
of the Hamilton’s equations it follows that

(2.67)  |8™(Ay, 54) — (An, 5, €xD [iwa(4,)1])| < oo(exp [07 ent] — 1) + eat,

at least as long as the motion stays in W{g,, &,; Vf,';’), .¢. a8 long as the r.h.s.
of (2.67) is <p,: this is certainly trie for » large since &, —0 much faster
than p,. Hence (2.68)-(2.67) imply, by taking the limit as # — co in (2.67),
Vd,z)el,, ‘

(2.68)  (A,(80(d, 5)), 5, (87(4, 5))) = (40,(4, 2), 5, exp [i2,(4,)1]) ,

which clearly means that 4. are prime integrals on I, .
The last statement of the theorem follows from the remark that, by con- .
struction,

(2.69) oo (AL vi< 40, VY if 0< |v|<N,.

Thus, if 4 e 0°(V xT¥) is a prime integral on I, it can be expressed in
a small neighbourhood of I’ as

(2.70) A(A, z) = 3(A (4, 3), 5,(4, 7))
because A, , z. are a co-ordinate system in a neighbourhood of V' x T¥-
representing the points of a neighbourhood of I',,.

Then, by (2.68) and since 4 is a prime integral on I,
2.71)  A(d, 5) = A(80(A, %)) = 8(4,(4, 2), 5.,(4, 5) exp [iw, (4., (4, ) 1]) ,
but the N pulsations w_(4,) are ratiqnally independent by (2.69): hence
(2.71) and the arbitrariness of ¢> 0 imply that & must be z, -independent on
I, ie A(A4,z) = b(d,(A4, ) for some be O°([,).

3. — A simple application to the harmeonic oscillators.

Consider N harmonic nonresonant oscillators which in action angle variables
are described by the Hamiltonian

3.1) Fd) = 0o A, (A, )R XTI
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with
(3.2) |wo-v|“1< O’M"‘ C>0, a>0.

Let f y @) be analytic in W(1,1, 8,) and assume that its average over
T¥, fo(A) is such that

) bazfo -1

@ |(gha)

in the whole analyticity domain.
Consider the Hamiltonian

(3.4) | h(A) + &4

<i<+oo

We can apply to it a Birkhoff transformation to write it in new variables
(A', ') as

(3.5) » ‘ ho(A') + € fo(4, @, ),
where
(3.6) ho(d') = o+ A + efo(4) + £2f(4, ¢)

all functions being analytic as (4, z) e W(z, 3, 8;) with f<1 as close to 1
a8 wished (see (%), p. 442, proposition XXTI) and as ¢ varies near 0. Furthermore,

Iwol ’ aho E—Nﬁ ,( 82}&0 ' )—’1 Ty
(3.7 — < 54 < 2|y} g < \saroa (AN |<2e77
and
|02 fo(A4, @' &) Oc?fo(A'sep’,y &) )
‘(3.8) so><sup T + 2 -—T<P,———— <@,¢

if ¢ is small enough.

Thus, by taking p > N and ¢ small enough, we can apply our theorem
to prove that 8, x T is covered, up to a set of measure as small as we wish
for ¢ —> 0, by invariant tori and locally such tori can be thought as level
surface of some C*-functions on S, x 77,

The idea for the above application is taken from (5): it was suggested to

us by GALGANT.
& %k %k

We owe to J. MosSER the information about the work of J. PoscHEL. We
are indebted to L. GALGANI for many discussions and suggestions.

We are indebted to B. SOUILLARD for some 1deas for the proof in the ap-
pendix.

(®) T. Nisuroa: Mem. Fac. Eng. Kyoto Univ., 33, 27 (1971).
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APPENDIX

Volume estimate.

Notice first that, if V is a union of unit spheres and if each of them is dilated
by a factor 1 - 5, keeping its centre fixed we obtain a new set V, such that
vol V,<(1 4 n)¥vol V.

Let V be a union of spheres, of unit radius, all intersecting one of them
8(x,,1). Suppose that each of them is covered up to a fraction 1 —a of its
volume by some points which we call the (1 —«) points. Call « points in V
those which are out of the complement of the union of the (1 — «) points.

Let 6 > 0 and consider a maximal et in the set of the centres of the spheres
consisting of pomts at mutual distance not smaller than %, Call ¢ this set and
let V4 be the union of the unit spheres centred at the points of G. Clearly Vg,.e
covers V and vol Vg ,s<(1 + o) vol V.

We can estimate the volume of the (1 — &) points in V as the fraetlon

(vol Vg — 2B(a?)¥ & vol V) [vol Ve > (1 — 2Bat-) /(1 + af)¥

where n=DB(«—%)¥ vol V is an estimate of the number of elements of G and use
has been made of the fact that the volume of each sphere is less than vol V.
Let now V be an arbitrary union of spheres and let «y, ..., 8, be a maximal
set of the set of the centres consisting of points such that |x; — x,|>2, i j,
and associate each of the other spheres to one (and only one) of the spheres of
the maximal set which intersect it. The set V will consist of the p disjoint
spheres with the centre in the selected maximal set, plus the set W of the (1 — «)
points outside this union plus the set of the « points oufside this union:

vol V.<p vol §(0, 1) + vol W (1 — (1 — Bat-%%)/(1 4 ad)¥) 2¥p vol (8(0, 1)) ,

while the (1 —e«) points in ¥V have a volume p(1 — &) vol §(0,1) +- vol W,
hence the fraction of (1 — «) points in V is bounded below by (1 — B,, max (,
a0, o¥%)). Then choose d = 1/2N.

., ® RIASSUNTO

8i considera un sistema hamiltoniano a N gradi di libertd, perturbazione analitica
di un sistema analiticamente e canonicamente integrabile e strettamente non isocrono.
Si mostra Desistenza di N funzioni definite sullo spazio delle fasi e ivi di classe O che
sono integrali primi per il moto perturbato su opportune regioni la cui misura di Lebesgue
tende a riempire localmente lo spazio delle fasi al tendere a zero della perturbazione.
S’illustra un’applicazione alle perturbazioni di oscillatori isocroni non risonanti.

Pe3toMe HEe HOIYYEHO,
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