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Abstract. A review of KAM stability estimates in Cel-
estial Mechanics' is' presented. Rotational and libra-
tional invariant surfaces are constricted to ensure con-
finement in the phase space of a model obtained in
the spin-orbit coupling between the revolutional and
rotational motions of a satellite around a primary
body. Stability of invariant tori for the restricted, circu-
lar, planar three body problem is also presented.
Finally, an application; of Arnold’s theorem to the
inclined planetary problem is briefly discussed. © 1998
Elsevier Science Ltd. All rights reserved

1. Introduction

One of the central problems in Celestial Mechanics is
certainly the study of periodic or, more in general, quasi-
periodic motions. On a technical level, the study of quasi-
periodic trajectories leads naturally to the famous “small
divisor problem”. Even though such problems have been
put in a rigorous setting and thoroughly investigated by
Henri Poincaré (Poincaré, 1892), the modern math-
ematical techniques have been developed in the so-called
KAM theory (Kolmogorov, 1954 ; Arnold, 1963a ; Moser,
1962). One of the main results of such a theory ensures,
under suitable hypotheses, the existence of quasi-periodic
motions for conservative dynamical systems which are a
small perturbation of an integrable system. The principal
motivation for KAM theory, which nowadays has been
successfully applied to a huge variety of problems ranging
from applied physics to abstract partial differential equa-
tions, comes undoubtly from Celestial Mechanics.
However, in view of the typical degeneracies of Celestial
Mechanical problems and of the relevant parameter
ranges, actual applications of KAM theory to Celestial
Mechanical models turned out to be particularly difficult.
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Here we shall focus on the quantitative aspects of the
KAM theory of Celestial Mechanics and review a few
results obtained in the last ten years. As mentioned above,
the existence of quasi-periodic motions may be established
provided certain parameters (measuring the size of the
“perturbation”) are small enough. KAM techniques do
provide (already in the original formulations of the foun-
ders) explicit estimates on the allowed range of the per-
turbing parameters (“KAM stability estimates™); how-
ever the “classical” estimates are so stringent to be of no
practical interest for any more or less concrete Celestial
Mechanical models.

The technique and results reviewed in this paper show,
instead, that a systematic reorganizations of KAM tools
(which include new developments due to Moser, Salamon
and Zehnder, see (Salamon and Zehnder, 1989) and (Cel-
letti and Chierchia, 1995)) joined with (rigorous) com-
puter implementations may lead to stability estimates
which are in reasonable agreement with experimental
expectations.

The paper is organized as follows. In Section 2 the
“spin-orbit coupling” (namely the motion of an ellipsoidal
satellite revolving around a central body on a Keplerian
orbit and rotating, at the same time, around an internal
spin-axis) is considered and rorational invariant surfaces
are constructed in order to trap the motion of the satellite
in a compact region of the phase space ; the construction of
trapping /ibrational surfaces is also presented. In Section 3
KAM estimates for a “*planar circular restricted three-
body problem”, modelled on the Sun-Jupiter-Ceres
system, are considered; (“planar circular restricted”
means that it is assumed that the ratio of the masses of
the secondary bodies is much less than one, that one of
the secondary bodies—i.c., the bigger one—moves on a
circle (zero eccentricity), that the motion of the three
bodies takes place on the same plane). Finally, in Section
4, we briefly discuss a different type of result concerning
the “spatial planetary three-body problem”, where it is
assumed that the masses of the secondary bodies are of
the same order of magnitude (so that one cannot neglect
their mutual interaction) and that the orbits might have a
mutual inclination in space (‘‘different” means that no
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stability bounds are included in such a result). The paper
concludes with a brief appendix where the mathematical
techniques needed to use computers in order to establish
rigorous mathematical estimates are discussed.

2. Spin-orbit coupling

Consider an ellipsoidal satellite S moving around a central
body P. Let T, be the period of revolution of S around
P and let T,,, be the period of rotation of S around its
spin-axis.

Definition: A spin-orbit resonance of type p:g occurs
whenever there exist p, ¢ = ¢Z\{0}, such that

Trev_p

Trol q ’

The most familiar example of a 1:1 (or synchronous)
spin-orbit resonance is provided by our Moon, since the
revolutional and rotational periods coincide. Conse-
quently, the Moon always points the same face toward
the Earth. As it is well known, all the tidally evolved
planets or satellites of the solar system are trapped in a
1:1 resonance. The only exception is provided by the
Mercury-Sun system, since the ratio between the period
of revolution of Mercury around the Sun and the period
of rotation about its spin-axis amounts to g—(] +107%).

Let us introduce a mathematical model describing an
approximation of the spin-orbit problem. Consider a tri-
axial ellipsoidal satellite S with principal moments of iner-
tia A < B < C. We assume that

(1) the centre of mass of the satellite moves on a Kepl-
erian orbit around the primary body P, with semi-
major axis ¢ and eccentricity e;

(ii) the spin-axis coincides with the shortest physical axis
(i.e., the axis whose moment of inertia is largest)

(iii) the spin-axis is perpendicular to the orbit plane (i.e.,
we neglect the so-called “obliquity™);

(iv) dissipative forces as well as perturbations due to other
bodies are neglected.

The equation describing the motion under the above
assumptions can be derived from Euler’s equations for a
rigid body. More precisely, denoting by x the angle
between the longest axis of the ellipsoid and the periapsis
line, by r the instantaneous orbital radius and f the true
anomaly (see Fig. 1), one has

Fig. 1. The spin-orbit geometry

 3B—A{fa\ . B
X+ET<;) sin(2x—2f) =0, 0

where the mean motion has been normalized to one (i.e.,
27[/ Trev =1).

We remark that a rotation of the satellite by 180° (i.e.,
x — x+m) gives an equivalent configuration and that the
above equation is trivially integrable in the case of equa-
torial symmetry (i.e., 4 = B) as well as for circular orbits
(ie., e =0).

A spin-orbit resonance of type p: ¢ is therefore a per-
iodic orbit x = x(t) associated to eqn (1), such that

x(t+2ng) = x()+2np,

namely during ¢ orbital revolutions around the primary
body P, the satellite S makes p rotations about its spin-
axis.

Due to assumption (i), both r and f are known 27-
periodic functions of the time. Introducing the parameter
&= %[(B—A)/ (] (proportional to the so-called ellipticity
(B—A)/C), one can expand (1) as

ire 3 W(-"—’,e)sin(zx—mt)=0, )

m#Qm = — o 2

where the coefficients W{(m/2,e) decay as powers of the
eccentricity e, i.e. W(m/2,e) oc e™ . For example, the
first few coefficients are given by (see, e.g., Cayley, 1859)

1 e € 5 . 143 | .
W(E’e)_ “21 167 34¢ " 18am’ TO@)

s, 13,35
W(l,e)- 1—2e + T6¢ —2886’ + O(e®)
30\ 7 123, 489 . 1763 .
W(z’e)"z_ 16 ¢ " 128 " 20a8¢ T
17, 115, 60l
WR2,e)=—e"— —e*+ —e° +0(e).

276 43

We simplify further the model as follows. According to
assumption (iv), we have neglected all the dissipative for-
ces; in particular, the tidal torque, due to the internal
non-rigidity of the satellite, provides the strongest con-
tribution. However its magnitude is small compared to
the gravitational term and we decide to neglect in the
series expansion of (2) those terms whose size is less or
equal than the average effect of the tidal torque. Therefore
we obtain an equation of the form

Rk m .

f+e ) W(E,e) sin (2x —mt) = 0, 3)
m#Q0m =N,

where N, and N, are some integers, which depend on the

physical and orbital elements of the satellite.

Let us now investigate the phase-space structure associ-
ated to (3): its Poincaré map has a pendulum-like struc-
ture, in which the periodic orbit is surrounded by
librational curves. A chaotic separatrix divides the
librational regime from the region in which rotational
invariant curves can be found (Fig. 2).

Due to its conservative character, eqn (3) can be derived
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Fig. 2. The Poincaré map around the synchronous periodic orbit associated to (3), with Ny = 1 and
N, =5, &= 001, e = 0.0549. The initial data are: (x,,3,) = (3.14, 1), (3.4, 1), (4. 1), (4.7, 1), (0, 1.2),

(0,0.8)

from Hamilton’s equations associated to the Hamiltonian
function

N,

_¢ Z W(%z,e)cos 2x—mt),

2 m#0m = N,y

o
H(y, X, 1) = Y

(H)

where yeR, (x,1)e T% Let us rewrite (H) in the form

H(p,x,0) = h()+8f(5, 1) =5 +of (1), (HO)

with the obvious identification of the functions A(y) and
f(x,0). In the integrable case Hamilton’s equations
become

)’,’:0

and their solution is provided by

VY=Y
X = Xy+Yol,

where we refer to the quantity w = [dA(y,)/dy] = w(y)
as the rotation number. The invariant surfaces of the
unperturbed system, i.e. 7o(w) = {y,} x T?, are described
by the planes y = y, on which periodic or quasi-periodic
motions take place, depending on the initial conditions.

When the perturbing parameter ¢ is not zero, KAM
theory provides the existence of an invariant surface for
the perturbed system with rotation number o, say 7 ().
This surface will be more deformed and displaced as ¢
grows, until ¢ reaches a critical value, say ¢, = e{w), at
which the invariant surface 7 ,(w) breaks-down, bifur-
cating into a so-called Mather set (a closed invariant Can-
tor set, lying in a graph of a Lipshitz function, Mather,
1984).

The phase space associated to (H0),

S ={(»xnlyeR, (x,neT?},

has dimension 3, while the invariant surfaces 7 ,(w) have
dimension 2 and separate % in two ‘“‘invariant” regions.
At the critical value ¢ = g (w), 7 .(w) breaks down and the
orbits can diffuse through the gaps of the Cantor set.

KAM theory provides an explicit constructive algo-
rithm to give an estimate on the perturbing parameter,
say & = ¢(w) ensuring the existence of 7 (w) for any
¢ < g(w). The conditions under which the KAM theorem
can be applied are:

(i) the unperturbed Hamiltonian A(y) is not-degener-
ate, 1.€.

d2A(y)
dy?

(notice that, for (HO), [d*k(y)/dy?] = 1);
(ii) therotation number w satisfies the diophantine con-
dition

#0 VyeR

1
}w-—}—’-‘ < Cq* Vp,gel, g#0, 4)

q

for some positive constant C.

2.1. Rotational invariant surfaces

We make use of the confinement property in the 3-dimen-
sional phase space, in order to get the stability of periodic
orbits. More precisely, let 2(p/q) be the periodic orbit
associated to the p: ¢ resonance. We intend to trap 2(p/q)
between invariant surfaces J(w,) and 7 (w,), with
w; < (p/q) < w,. To this end, we select the two sequences
of irrational rotation numbers

1

1 ,
r}{’"’)Eg—m, A}f"")Es'Fm, ke, k=2
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(o= [(\/3— 1)/2]), which approach p/g from below and
above, and satisfy the diophantine condition (4) with the
constant C = C;, = ¢’(k+a) (see Celletti, 1990).

As a specific example, consider the Moon—Earth system
and let us look at the sychronous resonance Z(1/1).
According to our simplifications, we are led to study the
Hamiltonian

2 3
H(y,x,n)= % —8[( : gz)cos(Zx——t)

1

3729

b

+<%e——~e >cos(2x—3z)
(
(5

3¢ > cos (2x—21)

17 , 115

+ z ——~e cos(2x—4t)
45 32,525
—e’— S)cos(2x—5t)

1536
533 4 2x—6
+*-3-5—c 4cos (2x—61)

228,347
7680

e’ cos (2x — 7t):|, (5)

where the physical value of the perturbing parameter
£= %[(B—A)/C] is 3.45 - 107* while e = 0.0549. The exis-
tence of the surface (YY) and J(AY) for
k=2,3,...,40is proven in (Celletti, 1990). Therefore the
motion of the Moon, in the approximation (5), will be
forever trapped in the region enclosed by 7 (I'}J) and
F(AY), which is shown to be a subset of
{(y,x,0):(x,HeT?, 0.97 < y < 1.03}. The proof is com-
puter-assisted ; the rounding-off and truncation errors
introduced by the machine are controlled by means of the
interval arithmetic technique presented in the Appendix
(see also Eckmann and Wittwer, 1985; Lanford, 1984).

Another application is obtained by looking at the Mer-
cury-Sun system. Due to the large eccentricity of
Mercury, e = 0.2056, we have to retain a larger number
of terms in (H):

”' . 3

€ m
H(y,x, t)_——i Y 114 7€ cos (2x —mt).
~11

m#Qm = -

By means of KAM theorem, it is proven in (Celletti and
Chierchia, 1995) the stability of the 3:2 resonance (in
which Mercury is actually observed) for the astronomical
value of the perturbing parameter,ie.¢ = 1.5+ 10~ The
closest tori to the periodic orbit #(3/2) are I' %% and
A$y? and the corresponding trapping region is contained
in {(y,x,0):(x,NeT?, 148 <y < 1.52}.

2.2, Librational invariant surfaces

The confinement of the motion of periodic orbits can also
be obtained constructing librational invariant surfaces.
Focussing our attention on the 1: 1 resonance, let us show

how one can construct the trapping surfaces (see Celletti,
1994 for further details).

First one centres the Hamiltonian on the 1: 1 periodic
orbit and expand in Taylor series around the new origin.
Next one diagonalizes the quadratic terms obtaining a
harmonic oscillator plus higher degree (time-dependent)
terms. Finally one transforms the Hamiltonian using the
action-angle variables (/, ¢) of the harmonic oscillator.
After these symplectic changes of variables one is led to a
Hamiltonian of the form

H(, $,0) = wl+eh(D+eR(1, ¢.1), IR, (¢.n)eT?,

where o = w(e) is the frequency of the harmonic oscil-
lator, while #(7) and R(J, ¢, t) are suitable functions, whose
expression is given below. As shown in (Celletti and Gior-
gilli, 1988), in order to improve the results provided by
KAM theory, it is convenient to reduce the perturbation
to higher orders in ¢ by a close-to-identity change of vari-
ables (I,¢,1)—(I',¢’,1"). Applying a Birkhoff nor-
malization procedure up to the order &, one gets a Hamil-
tonian of the type

H(I. ¢ 1) = of +ehI &)+ "R(T, ¢'.1).  (6)

Finally one can apply the KAM estimates provided in
(Celletti and Chierchia, 1987) to the Hamiltonian (6).

According to the above strategy, let us start by rewriting
the Hamiltonian (H) putting into evidence the term related
to the synchronous resonance :

2
42

H(y,x,0) = % —eacos(2x—21)

Ny

_ ¢ 5 W(%z e> cos (2x —mt),

m#E02m =N,

where a = %W(l,e). One can next translate to the origin
by means of the coordinate change x" = 2x-—2¢,
y = %( y—1). Expanding in Taylor series around the origin
and diagonalizing the time independent quadratic terms
by means of the symplectic transformation

{p =)
g=px"
where o = [\/2/(ea)'"*], B = [(¢a)'"*/\/2], the new Hamil-

tonian is given by

w 4 6
H(p.q.1) = 5(p2+q2)—s <4€TJ4—6L'1/3—6+ )

u - (m+2
-= W|——.e¢
2111#20;72 ( 2 )
2 4
X [cos(ml)(l-— qv +q—+"')
287 41p¢

. 9 q q
+sin (mf) <l)’ — g + 573_5 + )]

where @ = 2 /? is the frequency of the harmonic oscil-
lation, i = ee, while the coefficients ¥ have been rescaled
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as Wl(m+2)/2,e] = (1/e)W[(m+2)/2,e]. Using action-
angle variables (Z, ¢), i.e. setting

{p = N/?Icos 0]
g = V/ﬂsin ¢

the final Hamiltonian is given by

H(. ¢, 1) = ol ( r o +- )
L. 1) = wl—ea -
' 168* 2-61p°

I r r
—ga[— cos 2¢+ cosdo+
12ﬁ4 ﬁ4

x (15cos2¢ —6cosdd+cosbp)+ ]

ge ~/m+2
— = W/ ———,e)qcos(mi)
2 m#;fZ ( 2 >{

x| 1— -

[ 21p 8 - 3B
3

x (3—4cos2¢+cosdp)— ~
( s2¢ ®) i op
x (10—15cos2¢p+6cosdp—cos6p)+ - ]

oy =
. V2. V27

+ sin (mnt) |:-—-B—— sin ¢ — *27;_.7
\/2152
3sin¢—sin 3 +v—_
 (Gsing—sin3¢)+ s

x (10sin ¢ — 5sin 3¢ +sin 5¢) + }}

which can be rewritten in compact form as
H(, ¢, 1) = ol +eh(D)+eh(I, p)+eef (I, ¢, 1).

One can next apply a Birkhoff normal form (see, e.g.,
Gallavotti, 1983) so to reduce the size of the perturbation
R(1,¢,1) = b1, p)+ef (I, p, 1), obtaining the Hamiltonian

HL', ¢ 1) = bl ;e)+ e RU(T, ¢, 5 e),

where the functions /4, and R, can be explicitely deter-
mined. The application of the (computer-assisted) KAM
estimates developed in (Celletti and Chierchia, 1987)
allows to establish the existence of librational invariant
surfaces trapping the synchronous resonance.

In particular, considering the Moon-Earth and Rhea—
Saturn systems, which are observed in a synchronous spin-
orbit resonance as stated in (The Astronomical Almanac,
1990), the following results have been obtained in (Celletti,
1994).

Moon-Earth: consider the system described by the
Hamiltonian (H) with N, = — 1, N, = 5 and ¢ = 0.0549.
Let g, = 3.45 + 107* (i.e.. the physical value of the ellip-
ticity of the Moon); then there exists an invariant torus
corresponding to a libration of 8° .79 for any ¢ < £,,,/5.26.

Rhea-Saturn: consider the Hamiltonian function (H) with
Ny =1, N;=135 and ¢ =0.00098. Let ¢, = 3.45-10"°
(i.e., the observed value); then there exists an invariant
torus corresponding to a libration of 1° .95 forany ¢ < &,

Though definite conclusions cannot be drawn about
the stability of the Moon for the realistic values of the
parameters, we still believe that one can improve the
results using a different KAM algorithm. On the contrary,
the method applies to the Rhea-Saturn system, providing
an insight on the stability of the synchronous resonance.

3. Planar, circular, restricted three-body problem

We consider two bodies P, and P,, with masses m, and
m,, respectively, orbiting around a central (primary) body
P with mass M > m,, m,. In this section we will focus on
KAM stability estimates for the “planar, circular, restric-
ted three-body problem™ (hereafter PCRTBP): it is
assumed that the ratio of the masses of the secondary
bodies is much less than one, i.e. m;/m, « 1. This hypoth-
esis implies that P, does not affect the motion of P,;
therefore we can imagine that the motion of P, is ruled by
Kepler’s law. In particular, we assume that its orbital
eccentricity is zero, so that the orbit of P, is circular.
Moreover we impose that the motion of the three bodies
takes place on the same plane.

In order to derive the Hamiltonian function associated
to the PCRTBP, let us introduce the classical planar
Delaunay variables (Delaunay, 1860). Let A be the mean
anomaly, o the argument of the perihelion and y the
longitude of the planet P,. Consider the phase space

P = ()T x {(A,T,E)eR*:A =0, |[]<|A]}

endowed with the standard symplectic form
ds. A dA+do A dT'+dy A dE. Choosing the units of
measure so that M+m, = 1 and that the period of P is
2m, the dynamics associated to the PCRTBP is described
by the Hamiltonian

HoA T E. i o) =

where ¢ = m,/M and the perturbation function R, is given
as follows. Let ve T be the eccentric anomaly defined for
le] < I (¢e€R) by the Kepler’s equation

A =v—esinv.
Let ¢ €T be the true anomaly and r the orbital radius

_ a(l—e) )
I+ecos((p o)’

wherea = L

Then the perturbing function R, is given by

RyA T, A a—y)= — <r cos(@—~1)

1
x/l +r?—2rcos(p— W))’

where e is defined as

Using the Legendre polynomials P;= P(x) one can
expand R, (for r < 1) as
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Ry=1+ 3 PPfcos(p—))

j=2
Finally the symplectic transformation
(Lg,t)= (o= ), (L,G,T)=(AT,I'+E),

reduces H, to the form

1
H(L,G, l.g)= E —G+¢eRy(L,G, 1 9),

2

having omitted the dummy variable 7.

As a concrete example we identify P with the Sun, P,
with the asteroid Ceres and P, with Jupiter. We simplify
further the problem as follows. We have neglected in our
model the gravitational attraction exerted on Ceres by
other asteroids or planets as well as indirect perturbations.
In particular, one of the strongest contributions among
the neglected terms comes from the attraction provided
by Saturn. Therefore we decide to neglect in the Fourier
expansion of R, those terms whose size is comparable to
the Ceres—Saturn attraction %s,.

Let us evaluate 4, as follows. As found in (The Astro-
nomical Almanac, 1990), Ceres moves on a nearly elliptical
orbit of average eccentricity e, = 0.0766 and average semi-
major axis a, = 0.532. In general, for planets whose orbits
are external to that of Ceres, the secular term of H, is
given by ¢ (= mass of the planet/mass of the Sun) times
the term Ry = Ry(L;e) = (R(L,G,l,g)> (where (-
denotes the average over /. g). Then, for a generic planet
P

G5 = (‘(F) X Roo(L(ﬁ) ; €0),

where &(P) is the mass ratio between the planet P and the
Sun and L(P) is the ratio between the semimajor axes of
Ceres and the planet P. Using the data provided by (7he
Astronomical Almanac, 1990), one finds

Gy = Gogurn = 6.3778 + 107°.

Neglecting in the expansion of ¢R, those terms whose
size is smaller than %s,, we consider the Hamiltonian

1
H,(L,G,l,g;e)= Z —G+eR(L,G, 1 g) (7)

2
with R given by
RL.GlLoy= Y

HEz:
0<ln[+lnyl <10

R.(L,G)cos(nl+n.g) (8)

where R, = R, ,, vanishes unless it belongs to the fol-
lowing list :

Le 1+ O

2 8 ’

3 5 L*
R, = §L6<l+—L“>, R, = —Te(9+5L“),

L? 9 4 3,
RO()ET 1+RL +"?:€°, Ry =

8

L 5 3
Rzz = '4' (3"‘ 4L4>, R32 = ZL“@,

R —§L" 1+lL“ R —QU‘
BT 167 ) YT 64

63
Rss = @Lm 9)

(recall that the eccentricity e is related to the action vari-
ables by e = /1 —[G*/L?)).

Our results are based on computer-assisted KAM
theory. As mentioned in Section 2, KAM theory requires
that the unperturbed Hamiltonian is non-degenerate. In
the case of (7), the Hessian matrix associated to be the
unperturbed Hamiltonian

!
h L, G) = - G:
o 21

is not invertible. In order to overcome this problem we
adopt Poincaré’s trick (Poincaré, 1892), which consists in
replacing the Hamiltonian H, by its square. We remark
that the dynamics associated to a Hamiltonian & = A(q, p)
and to 4* coincide up to a time scale. Finally, we define
Hy = (H,)* as

1 2 1
H(L,G,l,g:8) = —G | 42| ——GR(L,G,I,¢
3 g:¢) <2L2 ) (21} ) ( g)

+&[(R(L, G, Lg)). (10)

To be consistent with the criterion adopted to derive (7),
we omit the term of order £ in (10) obtaining

1 2 1
H(L,G,l,g;e)=|— —G ) +2¢|—— —G|R(L.G,1,
( g:e) <2L2 > <2L2 )( 9)

= h(L,G)+¢f(L.G.1,g). an

Kepler’s third law provides a value of the average fre-
quency of Ceres

—Q. = —2.577107.

Since —Q, ~ (8H,/dL)|.., = — L~ we take as reference
L-value the quantity

Lo = 0.729305 ~ Q)

and, since G, = Ly\/1 —eg, we take as reference G-value
the quantity

G, =0.727162.

Let B be the analyticity domain associated to (11) defined
n

B={(L,G)eC*:|L—Lo| <ro, |G—Gyl <ro},
B,=BNR% (12)

with ry = 0.001. Notice that with our choice of the ana-
lyticity radius r, one finds that the function e(L, G) satisfies

0.019799 < |e(L, G)| < 0.106364, V(L.G)e B.

We construct invariant KAM curves trapping the motion
of Ceres as follows. Let ¢ = [(\/g— 1)/2] and let
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5 1
=-—4 =2 2.,
Q. 5 + 3+a 57343
1

4o = 2.579251 ...

Q 12+4a

il

>
"T2

Since the observed average frequency of Ceres is approxi-
mately —Q, = 2.577107, one has Q_ < Q, < Q,. Let

L,=Q7'"% G,=L./1—ej,
where ¢, = 0.0766. Finally, we let

]
o =(E.Q, . E,), E.= —«2(4—2--Gt>, (13)

2L
satisfying

lw'® n "' < Coln|, VYneZ?\[0},

with
C. =2E.|(/5+24+1).

Theorem: Let H be as in (11), (8), (9); let B, be as in
(12); let = be as in (13). Then, for all 0 < |g] < 107°
there exist (unique) two-dimensional analytic tori
(') [C] By x T?, depending analytically also on the
parameter ¢, on which the H-flow is (analytically) con-
jugated to the linear flow 8 T* — 6 — ' *1.

We refer to (Celletti and Chierchia, 1997) for the proof
of the theorem. We recall that the actual value of the
perturbing parameter (i.e. the Jupiter-Sun mass ratio) is
¢ = 107, This result represents a great improvement with
respect to previous KAM estimates, which were of the
order of 107 (see Hénon, 1966).

4. Spatial planetary three-body problem

We consider two bodies P, and P, (with masses m; and
m,) orbiting around a central body P (with mass M). We
assume that the masses of P, and P, are of the same order
of magnitude, so that it is necessary to consider also the
mutual interaction between the secondary bodies, besides
their own Keplerian motions around P. In the spatial
case, the Hamiltonian function can be written as follows :
let r,, r» and v, > be, respectively, the heliocentric pos-
itions of the planets and the conjugated momenta with
respect to the centre of mass. The Hamiltonian governing
the motion of P, and P, can be decomposed in the form

H: H()+H|.

The function H, is due to the independent Keplerian
motions of the planets, i.e.

2 (m+M
Hy=Y [ o
0 Z < mM e,

i=1

o] Mnlj
|‘~_G . )7
71

where G is the gravitational constant. The perturbing
function has the form

Uit b mm
le —Gj : 2 )
M ‘ifl"sz

representing the interaction between the two planets P,

and P,. Due to the conservation of the angular momen-
tum, the ascending nodes of the planets lie on the invariant
plane containing the central body P and perpendicular to
the angular momentum.

Stability estimates in the framework of the planetary
problem (which presents proper degeneracy) have been
investigated by Arnold (Arnold, 1963b), who discussed
the existence of invariant tori assuming that the motion
of the bodies is planar and that the ratio of the semimajor
axes tend to zero. More precisely, Arnold proved that
there exists a set of large measure of invariant tori, pro-
vided that the planetary masses and the eccentricities are
sufficiently small. A rough estimate of the quantities
involved in the proof is quoted in (Robutel, 1995) and,
precisely, the theorem holds when the perturbing par-
ameter is less than 107% and the eccentricities are less
than 10~%*. Later, Robutel improved this result in (Robu-
tel, 1995), showing the applicability of Arnold’s theorem
in the case of spatial motion and eliminating the restriction
to semimajor axes tending to zero. To this end, a normal
form defined for any value of the semimajor axes’ ratio is
explicitely computed in order to overcome the proper
degeneracy and the Hamiltonian is expanded using a suit-
able set of coordinates so to perform the reduction of the
angular momentum. The perturbing function is computed
according to (Laskar and Robutel, 1995) and the algebraic
manipulator TRIP (developed by Laskar in (Laskar,
1990) for Celestial Mechanics purposes) was used to per-
form the computations. Concrete estimates on the thresh-
olds of the masses or eccentricities are not discussed.

The main results obtained by Robutel (Robutel, 1995)
can be summarized as follows:

Assume that the ratio o between the planetary semi-
major axes satisfies 107 < « < 0.8, that 0.01 < (m,/m,) <
100 and that the mutual inclination i between the planets
satisfies i < 17 ; then for sufficiently small planetary masses
and eccentricities, Arnold’s fundamental theorem can be
applied.

This statement provides the existence of a large set
of invariant tori of maximum dimension. We refer to
(Robutel, 1995) for the details of the proof.
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Appendix : Interval arithmetic

The interval arithmetic technique is a rigorous method to control
the computer round-off and propagation errors (Eckmann and
Wittwer, 1985 ; Lanford, 1984).

Real numbers are represented by the computer with a sign-
exponent-fraction representation, where the number of digits in
the fraction and exponent varies with the machine. Since this
number is fixed, the result of an “elementary” operation, i.e.
sum, subtraction, multiplication and division, usually produces
an approximation to the true result. The computer guarantees
the result of an elementary operation up to a given precision
(i.e., up to a certain decimal digit). The idea of the interval
arithmetic is to start with an interval which certainly contains
the exact result of an elementary operation and to perform
the subsequent computations using subroutines for elementary
operations between intervals. For example, let us consider the
sum of [a,,h] and [a),b,]; the result is the interval
[ay, b3] = [a,+ as, b+ b,), such that

ifxela;,b)] and yela, b,] thenx+yelay, b;).

However the end-points as, b, of the new interval are themselves
produced by an elementary operation and therefore we need to
consider the round-off error introduced in the computation of
ay and b;. The idea is to link the subroutines for operations on
intervals to a procedure which provides strict lower and upper
bounds on g, and b, respectively. To this end, we need to know
the precision adopted by the computer we use. For example, on
a VAX there are F, D, G, H-floating data, which differ in the
length of the fractional and exponent representation.

Using G-floating precision, data run in the interval
0.56 - 107" to 0.9 - 10 and their precision is guaranteed to
about 15 decimal digits (Vax Architecture Handbook, p. 35),
while the result of an elementary operation is guaranteed up to
1/2 of the least significant bit. In order to obtain strict upper
and lower bounds on the result of an elementary operation, we
increase or decrease by one unit the least significant bit of the
mantissa, taking eventually control of the propagation of the
carry.



