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Metric stability of the planetary N-body problem

Luigi Chierchia and Gabriella Pinzari

Abstract. The “solution” of the N-body problem (NBP) has challenged astronomers and mathemati-
cians for centuries. In particular, the “metric stability” (i.e., stability in a suitable measure theoretical
sense) of the planetary NBP is a formidable achievement in this subject completing an intricate path
paved by mathematical milestones (by Newton, Weierstrass, Lindstedt, Poincarè, Birkhoff, Siegel,
Kolmogorov, Moser, Arnold, Herman,...). In 1963 V.I. Arnold gave the following formulation of the
metric stabiliy of the planetary problem:
If the masses of n planets are sufficiently small in comparison with the mass of the central body, the
motion is conditionally periodic for the majority of initial conditions for which the eccentricities and
inclinations of the Kepler ellipses are small.
Arnold gave a proof of this statement in a particular case (2 planets in a plane) and outlined a strategy
(turned out to be controversial) for the general case. Only in 2004 J. Féjoz, completing work by M.R.
Herman, published the first proof of Arnold’s statement following a different approach using a “first
order KAM theory” (developed by Rüssmann, Herman et al., and based on weaker non-degeneracy
conditions) and removing certain secular degeneracies by the aid of an auxiliary fictitious system.
Arnold’s more direct and powerful strategy – including proof of torsion, Birkhoff normal forms, ex-
plicit measure estimates – has been completed in 2011 by the authors introducing new symplectic
coordinates, which allow, after a proper symplectic reduction of the phase space, a direct check of
classical non–degeneracy conditions.

Mathematics Subject Classification (2010). 70H08, 70K43, 70F10, 70H12, 70K45, 70F15, 70E55,
34C20, 34C27, 34C29, 34D10.

Keywords. Planetary system, N–body problem, metric stability, Quasi–periodic motions, symplectic
invariants. Deprit’s reduction of the nodes, Birkhoff normal forms, KAM tori.

1. Introduction

On July 5th, 1687 Sir Isaac Newton published his Philosophiae Naturalis Principia Mathe-
matica, one of the most influential book in the history of modern science. The main impulse
for its publication came from Edmond Halley, who urged Newton to write the mathematical
solution of the two–body (Kepler) problem.

In general, the N–body problem (NBP) consists in determining the motion of N ≥ 2
point–masses (i.e., ideal bodies with no physical dimensions identified with points in the
Euclidean three–dimensional space) interacting only through Newton’s law of gravitational
attraction.

After his complete mathematical description of the general solution for the two body
case, Newton immediately turned to the three–body problem (Sun, Earth and Moon) but got
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discouraged, describing it as a “head–aching problem”. The immense difficulty in trying to
obtain explicitly the general solution of the NBP (something that, later, was proved to be im-
possible) drove, then, mathematicians to focus on the issue of convergence of formal power
series for solutions of the planetary problem, the smallness expansion parameter being the
mass ratio between planets and Sun. Many eminent personalities in the mid 1800’s, such as
Weierstrass and Dirichlet (who claimed to have a proof, which was never found), were con-
vinced that the series were convergent. The question become a major mathematical issue and
King Oscar II of Sweden and Norway, enlightened ruler, issued, in 1885, a prize for solv-
ing the problem or, in absence of a complete solution, for the best contribution. The prize
was finally awarded on the occasion of the king’s 60th birthday (21 January, 1889) to Henri
Poincaré1, who came to the belief (albeit not to the proof) that the series were divergent. The
convergence problem was exported into a more general (and less degenerate) setting, namely,
perturbation theory for non–degenerate nearly–integrable Hamiltonian systems. The break-
through came in 1954 at the Amsterdam ICM, where N.N. Kolmogorov announced and gave
a sketchy proof of his theorem on the preservation of (maximal) quasi–periodic motions2
in nearly–integrable systems. In his amazing 6–page long article [22] Kolmogorov set the
foundation of KAM (Kolmogorov–Arnold–Moser) theory, outlining a (super–exponentially)
convergent perturbation theory for real–analytic systems, able to deal with the small divisor
problems arising in the formal solutions of quasi–periodic motions: one of the crucial (and
ingenious) idea was to fix the frequencies of the final motions rather than initial data.3 With
additions by Moser and Arnold, Kolmogorov’s strategy could be used to show, indirectly,4
convergence of the formal (Lindstedt) series for “general” solutions, where “general” means
that the phase space region corresponding to (linearly) stable quasi–periodic motions tends
to fill a Cantor set of asymptotic measure density equal to one (as the smallness parameter
goes to zero). Thus, a way of rephrasing the main outcome of KAM theory is that ana-
lytic nearly–integrable (non–degenerate) Hamiltonian systems are asymptotically metrically
stable.

However, in view of the strong degeneracies of the Kepler problem (i.e., of the integrable
limit of the planetary NBP), the main hypothesis of Kolmogorov’s theorem did not apply
to the planetary problem. Besides the real–analyticity assumption, the main hypothesis of
Kolmogorov’s theorem is that the limit integrable Hamiltonian depends only on d action
variables, d being the number of degrees of freedom (:= half of phase–space dimension) and
that its gradient map is a local diffeomorphism. In the planetary problem the integrable limit
depends only on n actions while the number of degrees of freedom (after reducing the total
linear momentum; see below) is 3n.

In 1963 Arnold, 26, took up the question of extending Kolmogorov’s theorem to sys-
tems modeling the main features of the planetary problem, namely, Hamiltonian systems
with n+m degrees of freedom, whose integrable limit depends only on n action variables5

1At first Poincarè submitted a contribution containing a serious mistake, which he amended in a feverish effort:
the outcome was the famous 270 page memoir [25], by now, regarded as the birth of modern theory of dynamical
systems and chaos; compare [3].

2In general, a “quasi–periodic” (or “conditionally periodic”) orbit with (rationally independent) frequencies
(ω1, ...,ωd) = ω ∈ Rd is a trajectory conjugated to a linear flow, θ → θ + ωt on a d dimensional torus; if d
equals the number of degrees of freedom (i.e., half dimension of the pahse space), the quasi–periodic orbit is called
maximal.

3For generalities on KAM theory, see, e.g., [2] or [6].
4Direct proofs of convergence of Lindstedt series came much later; see [8, 16, 19].
5Such systems are sometimes called “properly–degenerate”.
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(which, in the planetary problem, are the square roots of the semimajor axes of the decou-
pled 2BP planet–Sun). This implies that the n conjugated angles (the mean anomalies of
the 2BP’s, in the planetary problem) are fast angles, bringing naturally in play averaging
theory, according to which the leading dynamics is governed by the average of the Hamil-
tonian over the fast angles; the resulting Hamiltonian is thus the sum of the integrable limit
and the average over the fast angles of the perturbation function (the “secular Hamiltonian”).
Now, what happens in the planetary problem is that the secular Hamiltonian has an elliptic
equilibrium in the origin of the remaining 2m symplectic variables, corresponding physi-
cally to circular orbits revolving in the same plane. Arnold formulated and gave a detailed
proof of a generalization of Kolmogorov’s theorem working for properly–degenerate sys-
tems with secular Hamiltonian possessing an elliptic equilibrium; he called such theorem
the “Fundamental Theorem”. The non–degeneracy hypotheses involve, now, not only the
integrable limit (which, as in Kolmogorov’s theorem, is assumed to define through the gra-
dient map an n–diffeomorphism), but also the Birkhoff normal form6 (“BNF” for short) of
the secular 2m variables, and in particular the first order Birkhoff invariants (the eigenval-
ues associated to the elliptic equilibrium) and the second order invariants, which may be
viewed as an (m × m) matrix. The “full” torsion (or “twist”) hypothesis is guaranteed if
such matrix is non–singular. After giving the (long and beautiful) proof of his Fundamental
Theorem, Arnold checks the torsion hypothesis in the simpler non–trivial case, namely, 2
planets constrained on a plane. He then discusses how to generalize first to the planar case
with n planets, and, from there, to the spacial general case.7

However, various serious problems prevented, for long time, to carry over Arnold’s strat-
egy. In first place, the standard hypotheses for constructing the BNF is that the first order
Birkhoff invariants are non–resonant (i.e., do not have vanishing non–trivial integer coeffi-
cient linear combinations) up to a certain order. But indeed, besides a well know resonance
related to rotation invariance, which Arnold was aware of, a second rather mysterious res-
onance was discovered by Herman in the 1990’s, namely, that the sum of the first order
Birkhoff invariants, in the general spatial case, vanishes identically; such resonance is now
known as “Herman resonance”. A second and more important problem is related to the tor-
sion hypothesis. Indeed, in the full 6n dimensional phase space, the planetary Hamiltonian
has an identically vanishing torsion (a fact, proved only recently in [12], ignored by Arnold
and only suspected by Herman, compare [20]). Finally, there is a rather vague suggestion by
Arnold to check non–degeneracies “bifurcating” from the planar problem, i.e., viewing the
planar problem as a limit of the spacial one, which is a fact hard to justify analytically.

Herman’s approach is rather different. After convincing himself that in the spatial case
there might be a serious torsion problem, he turned to a different KAM technique, based
on a different and somewhat weaker non–degeneracy condition, a condition which involves
only the first order Birkhoff invariants and the gradient map of the limiting integrable Hamil-
tonian. Such condition is that the first order Birkhoff invariants – which are parameterized
by the semimajor axes – do not lie identically in a fixed plane (“non–planarity” condition).
However, as mentioned above, this is not true in the planetary problem since the invari-
ants lie in the intersection of two planes corresponding to the rotational and the Herman’s
resonances. To overcome this problem, following a trick introduced by Poincaré, Herman
modifies the planetary Hamiltonian by adding a term proportional to a function Poisson–

6For generalities on Birkhoff normal form theory, see [21]; for a Birkhoff normal form theory adapted to the
NBP, see Proposition B.1 below.

7In Appendix C we report verbatim, some of Arnold’s claims and suggestions as given in [1].
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commuting with the planetary Hamiltonian; he manages to do that so that the modified
Hamiltonian is non–degenerate (i.e., the modified Birkhoff invariants are non–planar). Now,
by an abstract argument, two Poisson–commuting Hamiltonians have the same Lagrangian
transitive invariant tori, therefore the invariant tori gotten by applying the weaker KAM the-
ory to the modified Hamiltonian are invariant also for the planetary problem.8 This scheme
was worked out, clarified and published by Jacques Féjoz in [17]; see also [18].

Finally, in 2011, the original strategy of Arnold has been reconsidered, from a different
point of view, in the paper9 [11], where, thanks to new symplectic coordinates (called RPS
for RegularizedPlanetarySymplectic), it is proven that in a “partially reduced setting” the
planetary problem has indeed non–vanishing torsion. Recall that the “natural” phase space
(after linear momentum reduction) of the planetary (1+n)–body problem is 6n–dimensional
and that standard symplectic coordinates are given by Poincaré variables; this setting has
been used by Arnold (with minor modifications) and by Herman and Féjoz. In this setting
the planetary Hamiltonian is still rotation invariant and admits, therefore, besides energy,
other three global analytic integrals, which are the three components of the total angular
momentum. Now, while in three dimensions it is customary to use the celebrated Jacobi’s
classical reduction of the nodes10 in higher dimensions the reduction of the nodes is not
so popular, even though it was knonw since the early 1980’s thanks to the work of Deprit
[15]. In [11], (an action–angle version of) Deprit variables replace Delaunay variables and,
after a Poincaré regularization, one is lead to the new RPS variables. A main feature of
these variables is that one symplectic couple of the secular cartesian variables (related to the
inclination of the total angular momentum), say (pn, qn) are both cyclic coordinates (i.e.,
invariants), which means that the planetary Hamiltonian in such coordinates does not depend
on this couple of variables. The significance of this fact is that the phase space is foliated by
(6n − 2)–dimensional symplectic submanifold {(pn, qn) = const} on which the planetary
Hamiltonian has the same form. In this partially reduced11 setting the original Arnold’s
strategy can be carried out, torsion explicitely checked and all its dynamical consequences
drawn: All this will be described below.

2. The classical Hamiltonian of the planetary NBP

In this section (and in Appendix A) we review the classical Hamiltonian description of the
planetary NBP due, essentially, to Delaunay and Poincaré.

Newton’s equations for 1 + n bodies (point masses), which interact only through gravi-
tational attraction, are given by:

8However, besides not having information about the normal form around the tori of the original Hamiltonian
(which is intrinsic in this first order KAM theory), this abstract argument does not allow to read back the KAM
structure in the unmodified setting.

9This paper is based on the PhD thesis [23].
10For a symplectic description of Jacobi’s reduction of the nodes, see [4].
11Indeed, in these (6n − 2)–symplectic submanifold, the planetary Hamiltonian still admits an energy–

commuting integral, namely the Euclidean length of the total angular momentum. It is possible (and done in [11])
to further reduce to a fully rotationally reduced (6n−4)–dimensional phase space, however in such totally reduced
setting many symmetries and nice feature shared by Poincaré and RPS variables (such as D’Alembert rules, parities
in the secular variables, etc.) are lost and the symplectic description becomes somewhat more clumsy.
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ü(i) =
∑

0≤j≤n
j "=i

mj
u(j) − u(i)

|u(i) − u(j)|3
, i = 0, 1, ..., n , (2.1)

where u(i) =
(
u(i)
1 , u(i)

2 , u(i)
3

)
∈ R3 are the cartesian coordinates of the ith body of mass

mi > 0, |u| =
√
u · u =

√∑
i u

2
i is the standard Euclidean norm, “dots” over functions

denote time derivatives, and the gravitational constant has been set to one (which is possible
by rescaling time t). These equations are equivalent to the (standard) Hamilton equations
associated to the Hamiltonian function12

ĤN :=
n∑

i=0

|U (i)|2

2mi
−

∑

0≤i<j≤n

mimj

|u(i) − u(j)|
,

where (U (i), u(i)) are standard symplectic variables (U (i) = miu̇(i) is the momentum con-
jugated to u(i)) and the phase space is the “collisionless” open domain in R6(n+1) given
by

M̂ := {U (i), u(i) ∈ R3 : u(i) $= u(j) , 0 ≤ i $= j ≤ n} (2.2)

endowed with the standard symplectic form

n∑

i=0

dU (i) ∧ du(i) :=
∑

0≤i≤n
1≤k≤3

dU (i)
k ∧ du(i)

k . (2.3)

Exploiting the invariance of Newton’s equation by change of inertial frames, or, equivalently,
the existence of the vector–valued integral13 given by the total linear momentum

∑n
i=0 U

(i),
Poincaré showed how to make a “symplectic reduction” lowering by three units the number
of degrees of freedom. Indeed, the dynamics generated by ĤN on M̂ is equivalent to the
dynamics on

M :=
{
(X,x) = (X(1), ..., X(n), x(1), ..., x(n)) ∈ R6n : 0 $= x(i) $= x(j) , ∀ i $= j

}
,

(endowed with the standard symplectic form
∑n

i=1 dX
(i) ∧ dx(i)) by the Hamiltonian

Hplt(X,x) :=
n∑

i=1

|X(i)|2

2Mi
− Mim̄i

|x(i)|
+ µ

∑

1≤i<j≤n

X(i) ·X(j)

m0
− mimj

|x(i) − x(j)|

=: H(0)
plt(X,x) + µH(1)

plt(X,x) , (2.4)

where the mass of the Sun is14 m0 = m0 and the mass of the planets are mi = µmi

(1 ≤ i ≤ n), µ being a small parameter, while Mi :=
m0mi

m0+µmi
and m̄i := m0 + µmi. In

such description M corresponds to the (symplectic) submanifold of M̂ of zero total linear

12I.e., the equations U̇(i)
j = −∂

u
(i)
j

ĤN , u̇(i)
j = ∂

U
(i)
j

ĤN , 0 ≤ i ≤ n, 1 ≤ j ≤ 3; for general information on

Hamiltonian systems, see, e.g., [2].
13Recall that F (X,x) is an integral for H(X,x) if {F,H} = 0 where {F,G} = FX ·Gx −Fx ·GX denotes

the (standard) Poisson bracket; in particular an integral F for H is constant for the H flow, i.e., F ◦ φt
H ≡ const.,

where φt
H denotes the Hamiltonian flow generated by H.

14Note the different character: upright for unscaled and italic for rescaled masses.



552 L. Chierchia and G. Pinzari

momentum and zero total center of mass and x(i) = u(i) − u(0), for i ≥ 1, are heliocentric
coordinates; full details are given in Appendix A.

Obviously, in such variables, there is no more a conserved total linear momentum,15
however, the system is still invariant under rotations and the total angular momentum

C = (C1,C2,C3) :=
n∑

i=1

C(i) , C(i) := x(i) ×X(i) , (2.5)

is still a (vector–valued) integral for Hplt. The integrals Ci, however, do not commute (i.e.,
their Poisson brackets do not vanish16) but, for example, |C| and C3 are two commuting,
independent integrals, a remark that will be crucial in what follows.

Next, by regularizing the Delaunay action–angle coordinates for the n decoupled two–
body problems with Hamiltonian H(0)

plt in a neighborhood of co–circular and co–planar mo-
tions, Poincaré brings out in a neat way the nearly–integrable structure of planetary NBP. The
real–analytic symplectic variables doing the job are usually known as Poincaré variables: in
such variables the Hamiltonian Hplt(X,x) takes the form

Hp(Λ, λ, z) = hk(Λ) + µfp(Λ, λ, z) , (Λ, λ) ∈ Rn
+ × Tn , z := (η, p, ξ, q) ∈ R4n (2.6)

where the “Kepler” unperturbed term hk is given by

hk(Λ) := −
n∑

i=1

M3
i m̄

2
i

2Λ2
i

, Λi := Mi
√
m̄iai, (2.7)

ai being the semimajor axis of the instantaneous two–body system formed by the ith planet
and the Sun; as phase space, we consider a collisionless domain around the “secular origin”
z = 0 (which corresponds to co–planar, co–circular motions) of the form

(Λ, λ, z) = (Λ, λ,η, p, ξ, q) ∈ M6n
p := A× Tn ×B4n (2.8)

endowed with the symplectic form
n∑

i=1

dΛi ∧ λi +
n∑

i=1

ηi ∧ dξi +
n∑

i=1

dpi ∧ dqi; A is a set

of “well separated” semimajor axes

A :=
{
Λ : aj < aj < aj for 1 ≤ j ≤ n

}
(2.9)

where a1, · · · , an, a1, · · · , an, are positive numbers verifying aj < aj < aj+1 for any
1 ≤ j ≤ n, an+1 := ∞, and B4n is a 4n–dimensional ball around the secular origin z = 0.
A complete description of Delaunay and Poincaré variables is given in Appendix A.

Here, let us point out that the Hamiltonian (2.4) retains rotation and reflection invari-
ance and, in particular, invariance by rotation with respect the k(3)–axis and invariance by
reflection with respect to the coordinate planes. This implies that the perturbation fp in (2.6)
satisfies (classical) symmetry relations known as d’Alembert rules, which are given by the
following transformations:

15In particular,
∑n

i=1 X
(i) is not an integral for Hplt

16Indeed, {C1,C2} = C3, {C2,C3} = C1 and{C3,C1} = C2.
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




(η, ξ, p, q) → (−ξ,−η, q, p) , (Λ, λ) →
(
Λ, π

2 − λ
)

(η, ξ, p, q) → (η, ξ,−p,−q) , (Λ, λ) → (Λ, λ)
(η, ξ, p, q) → (−η, ξ, p,−q) , (Λ, λ) → (Λ,π − λ)
(η, ξ, p, q) → (η,−ξ,−p, q) , (Λ, λ) → (Λ,−λ)
(Λ, λ, z) → (Λ, λ1 + g, . . . , λn + g,Sgz)

(2.10)

where, for any g ∈ T, Sg acts as synchronous clock–wise rotation by the angle g in the
symplectic zi–planes:

Sg : z → Sgz =
(
Sgz1, ...,Sgz2n

)
, Sg :=

(
cos g sin g
− sin g cos g

)
; (2.11)

compare (3.26)–(3.31) in [12]. By such symmetries, in particular, the averaged perturbation

fav
p (Λ, z) :=

1

(2π)n

∫

Tn

fp(Λ, λ, z)dλ , (2.12)

which is called the secular Hamiltonian, is even in z around the origin z = 0 and its expan-
sion in powers of z has the form

fav
p = C0(Λ) +Qh(Λ) ·

η2 + ξ2

2
+Qv(Λ) ·

p2 + q2

2
+ O(|z|4) , (2.13)

where Qh, Qv are suitable quadratic forms and Q · u2 denotes the 2–index contraction∑
i,j Qijuiuj (Qij , ui denoting, respectively, the entries of Q, u). This shows that z = 0 is

an elliptic equilibrium for the secular dynamics (i.e, the dynamics generated by fav
p ). The

explicit expression of such quadratic forms can be found, e.g. , in (36), (37) of [17] (revised
version).

The truncated averaged Hamiltonian

Hav
p (Λ, λ, z) := hk + µ

(
C0(Λ) +Qh(Λ) ·

η2 + ξ2

2
+Qv(Λ) ·

p2 + q2

2

)

is integrable, with 3n commuting integrals given by

Λi , ρi =
ηi2 + ξi

2

2
, ri =

pi2 + qi2

2
, (1 ≤ i ≤ n) .

The general trajectory of this system fills a 3n–dimensional torus with n fast frequencies
∂Λihk(Λi) and 2n slow frequencies given by

µΩ = µ(σ, ς) = µ(σ1, · · · ,σn, ς1, · · · , ςn) , (2.14)

σi and ςi being the real eigenvalues of Qh(Λ) and Qv(Λ), respectively. Such tori corre-
spond to n nearly co–planar and co–circular planets rotating around the Sun with Keplerian
frequencies ∂Λihk(Λi) and with small eccentricities and inclinations slightly and slowly os-
cillating with frequencies µσ and µς .

A fundamental problem in the planetary NBP concerns the perturbative analysis of the
integrable dynamics governed by Hav

p , when the full planetary Hamiltonian Hp is consid-
ered. The main technical tool is Kolmogorov’s 1954 Theorem [22] (which, incidentally, was
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clearly motivated by Celestial Mechanics) on the persistence under perturbation of quasi–
periodic motions for nearly–integrable system with real–analytic Hamiltonian in action–
angle variables given by

Hµ(I,ϕ) := h(I) + µf(I,ϕ) , (I,ϕ) ∈ Rd × Td. (2.15)

Kolmogorv’s Theorem, however, holds in a neighborhoods of points I0 where the integrable
Hamiltonian is non–degenerate in the sense that deth′′(I0) #= 0, where h′′ denotes the Hes-
sian matrix of h (equivalently, the frequency map I → h′(I) is a local diffeomorphism).
This condition is strongly violated by the planetary Hamiltonian since for µ = 0 the inte-
grable (Keplerian) limit depends only on n action variables (the Λ’s), while the number of
degrees of freedom is d = 3n. A nearly–integrable system with Hamiltonian as in (2.15) for
which h does not depend upon all the actions I1,...,Id is called properly–degenerate.17

In the next section we recall Arnold’s statement on the planetary NBP and outline his
strategy of proof based on a generalization of Kolmogorov’s theory to properly–degenerate
system.

3. Arnold’s theorem on the planetary NBP (1963)

In the 1963 paper [1] Arnold – probably in his deeper contribution to KAM theory and
Celestial Mechanics – formulated his main result as follows ([1, p. 127]):

Theorem 3.1. If the masses, eccentricities and inclinations of the planets are sufficiently
small, then for the majority of initial conditions the true motion is conditionally periodic
and differs little from Lagrangian motion18 with suitable initial conditions throughout an
infinite interval of time −∞ < t < +∞.

Proper degeneracies and Arnold’s “Fundamental Theorem”. As mentioned above, Kol-
mogorov opened the route to a rigorous proof of existence of (maximal) quasi–periodic
trajectories in Hamiltonian systems, but the planetary system violates drastically the main
hypotheses of his theorem. This was a main challenge for his young and brilliant student
Vladimir Igorevich Arnold, who at 26 gave a major impulse and draw the path which, even-
tually, would lead to a complete solution of the metric stability problem for the NBP.
One of the main steps – a result that in [1] Arnold called “The Fundamental Theorem” – is
to extend Kolmogorov’s Theorem to properly–degenerate systems, and, more specifically,
to properly–degenerate systems with “secular” elliptic equilibria (or, more precisely, elliptic
lower dimensional tori).
Let us proceed to formulate Arnold’s Fundamental Theorem.

Let M denote the phase space M :=
{
(I,ϕ, p, q) : (I,ϕ) ∈ V × Tn and (p, q) ∈ B

}

17In general, maximal quasi–periodic solutions (i.e., quasi–periodic solutions with d rationally–independent fre-
quencies) for properly–degenerate systems do not exist: trivially, any unperturbed properly–degenerate system on
a 2d dimensional phase space with d ≥ 2 will have motions with frequencies not rationally independent over Zd.
But they may exist under further conditions on the perturbation f , as we shall see.

18Arnold defines the “Lagrangian motions”, at p. 127 as follows: the Lagrangian motion is conditionally periodic
and to the n “rapid” frequencies of the Kepler motion are added n (in the planar problem) or 2n− 1 (in the space
problem) “slow” frequencies of the secular motions. This dynamics corresponds, essentially, to the above “truncated
integrable planetary dynamics”. The missing frequency in the space problem is because one of the spatial secular
frequency, say, ςn vanishes identically; compare Eq. (3.3) below.
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where V is an open bounded region in Rn and B is a ball around the origin in R2m; M is
equipped with the standard symplectic form

dI ∧ dϕ+ dp ∧ dq =
n∑

i=1

dIi ∧ dϕi +
m∑

i=1

dpi ∧ dqi .

Let, also, Hµ be a real–analytic Hamiltonian on M of the form Hµ(I,ϕ, p, q) := h(I) +
µf(I,ϕ, p, q), and denote by fav the average of f over the “fast angles” ϕ: fav(I, p, q) :=∫

Tn

f(I,ϕ, p, q)
dϕ

(2π)n
.

Theorem 3.2 (“The Fundamental Theorem”; [1]). Assume that fav is of the form

fav = f0(I) +
m∑

j=1

Ωj(I)rj +
1

2
τ(I)r · r + o4 , rj :=

p2j + q2j
2

, (3.1)

where τ is a symmetric (m × m)–matrix and lim(p,q)→0 |o4|/|(p, q)|4 = 0. Assume, also,
that I0 ∈ V is such that

deth′′(I0) $= 0 (∗) ; det τ(I0) $= 0 (∗∗) . (3.2)

Then, in any neighborhood of {I0} × Td × {(0, 0)} ⊆ M there exists a positive measure
set of phase points belonging to analytic “KAM tori” spanned by maximal quasi–periodic
solutions with n+m rationally–independent (Diophantine19) frequencies, provided µ is small
enough.

Let us make some remarks.

(i) The function fav in (3.1) is said to be in Birkhoff normal form (with respect to the
variables p, q) up to order 4 (compare [21] and Appendix B below). Actually, Arnold
requires that fav is in Birkhoff normal form up to order 6 (instead of 4); but such con-
dition can be relaxed and (3.1) is sufficient: compare [9], where Arnold’s Fundamental
Theorem is revisited and various improvements obtained.

(ii) Condition (3.2)–(∗) is immediately seen to be satisfied in the general planetary prob-
lem; the correspondence with the planetary Hamiltonian in Poincaré variables (2.6)
being the following: m = 2n, I = Λ, ϕ = λ, z = (p, q), h = hk, f = fp.

(iii) Condition (3.2)–(∗∗) is a “twist” or “torsion” condition on the secular Hamiltonian.
It is actually possible to develop a weaker KAM theory where no torsion is required.
This theory is due to Rüssmann [27], Herman and Féjoz [17], where fav is assumed
to be in Birkhoff normal form up to order 2, fav = f0(I) +

∑m
j=1 Ωj(I)rj + o2, and

the secular frequency map I → Ω(I) is assumed to be non–planar, meaning that no
neighborhood of I0 is mapped into an hyperplane.

(iv) The ingenious idea of Arnold in order to remove the proper degeneracy of the system
goes roughly as follows. Instead of h(I), consider ĥ(I, r) := h(I) + µfav

2 (I, r) as
a new unperturbed part viewed as a function of the actions (I, r), fav

2 (I, r) being the

19A vector ω ∈ Rd is Diophantine if there exist positive constants γ and c such that |ω · k| ≥ γ/|k|c, ∀ k ∈
Zd\{0}.
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truncation of fav in (3.1) up to degree two in the variables r. By averaging theory, the
original Hamiltonian can be symplectically conjugated to a new “effective” nearly–
integrable system h̃(I, r) + µaf̂(I, r,ϕ,ψ) ((ϕ,ψ) ∈ Tn × Tm) with a ∈ N large
enough and h̃ close to ĥ: this is the starting point for constructing Kolmogorov (n+m–
dimensional) tori (note that the full torsion condition mentioned in the introduction
corresponds to the Kolmogorov non–degeneracy of ĥ).

(v) The elliptic secular equilibrium (p, q) = 0 plays a fundamental rôle in this construc-
tion. The density of the tori is closer and closer to one as soon as the variables (p, q)
(eccentricities and inclinations, in the planetary problem) approach the origin; see
also Theorem 5.3 below. Arnold however noticed that, at least in the case of the planar
three–body problem, a stronger result holds: fav is integrable and one can replace
fav
2 with fav in the definition of ĥ (see the previous item); this yields a more global

and astronomically relevant result. Indeed, the density of the tori depends only on
µ and not on eccentricities and inclinations. The independence of the Kolmogorov
tori from eccentricities (in such cases inclinations are not independent quantities20)
has been proved also for the spatial three–body case and the planar general case [24]
(notwithstanding the fact that fav is no longer integrable).

(vi) Actually, the torsion assumption (3.2)–(∗∗) implies stronger results:

− It is possible to give explicit and accurate bounds on the measure of the “Kol-
mogorov set”, i.e., the set covered by the closure of quasi–periodic motions ([9]).

− The quasi–periodic motions found belong to a smooth family of non–degenerate
Kolmogorov tori, which means, essentially, that the dynamics can be linearized in a
neighborhood of each torus.

− The above Kolmogorov tori are cumulation sets for periodic orbits with longer and
longer periods. Thus the measure of the closure of periodic orbits tends to fill a set of
full measure as the distance from the secular origin z = 0 tends to zero, showing that
a “metric asymptotic” version of Poincaré’s conjecture about the density of periodic
orbits in phase space holds in the general planetary NBP around co–planar and co–
circular motions; see [7].

On the basis of Theorem 3.2, Arnold’s strategy is to compute the Birkhoff normal form
(3.1) of the secular Hamiltonian fav

p in (2.12) and to check the non–vanishing of the torsion
(3.2)–(∗∗), a program which he carried out completely only in the planar three–body case
(n = 2).

The planar three–body case (Arnold, 1963). In the planar case the Poincaré variables
become simply (Λ, λ, z) := (Λ, λ,η, ξ) ∈ Rn

+ × Tn × R2n, with the Λ’s as in (2.7) and

λi = #i + gi ,

{
ηi =

√
2(Λi − Γi) cos gi

ξi = −
√

2(Λi − Γi) sin gi
,

where, referring to the instantaneous ith two–body system planet–Sun, #i is the mean
anomaly, gi the argument of the perihelion and Γi the absolute value of the ith angular

20In the spatial three–body problem completely reduced by rotations, the mutual inclination is a function of
eccentricities.
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momentum (compare Appendix A for more details). The planetary, planar Hamiltonian, is
given by

Hp,pln(Λ, λ, z) = hk(Λ) + µfp,pln(Λ, λ, z) , z := (η, ξ) ∈ R2n

with 1
(2π)n

∫
Tnfp,pln =: fav

p,pln = C0(Λ) +Qh(Λ) · η2+ξ2

2 + O(|z|4). In Eq. (3.4.31), p.138
of [1], Arnold computed the first and second order Birkhoff invariants for n = 2 finding, in
the asymptotics a1 " a2:






Ω1 = −3

4
m1m2

(a1
a2

)2 1

a2Λ1

(
1 + O

(a1
a2

))

Ω2 = −3

4
m2

2
1

a2Λ2

(
1 + O

(a1
a2

)2)

τ = m1m2
a21
a32

(
3

4Λ2
1

− 9
4Λ1Λ2

− 9
4Λ1Λ2

− 3
Λ2

2

)
(1 + O(a−5/4

2 )) ,

which shows that the Ωj’s are non resonant up to any finite order (in a suitable Λ–domain),
so that the planetary, planar Hamiltonian can be put in Birkhoff normal form up to order 4
and that the second order Birkhoff invariants are non–degenerate in the sense that21

det τ = −(m1m2)
2 117

16

a41
a62(Λ1Λ2)2

(1 + o(1)) = −117

16

1

m2
0

a31
a72

(1 + o(1)) $= 0.

This allow to apply Theorem 3.2 and to prove Arnold’s planetary theorem in the planar
three–body (n = 2) case.

An extension of this method to the spatial three–body problem, exploiting Jacobi’s re-
duction of the nodes and its symplectic realization, is due to P. Robutel [26].

Obstacles to the generalization of Arnold’s project: Secular degeneracies. In the gen-
eral spatial case it is customary to call σi the eigenvalues of Qh(Λ) and ςi the eigenvalues of
and Qv(Λ), so that Ω = (σ, ς); compare (2.14).

It turns out that such invariants satisfy identically the following two secular resonances

ςn = 0 ,
n∑

i=1

(σi + ςi) = 0 (3.3)

and, actually, it can be shown that these are the only exact resonances identically satisfied by
the first order Birkhoff invariants; compare [17, Prop. 78 at p. 1575].

The first resonance was well known to Arnold, while the second one was apparently
discovered by M. Herman in the 1990’s and is now known as Herman resonance.

Both resonances violate Birkhoff’s non–resonance condition (compare Eq. (B.1) below)
but do not violate a more special Birkhoff condition sufficient for rotational invariant sys-
tems, as explained in Appendix B (compare, in particular Eq. (B.3)).

There is, however, a much more serious problem for Arnold’s approach, namely, a strong
degeneracy of the second order Birkhoff invariance, still a reflection of rotational invariance.
Indeed, the torsion matrix τ is degenerate, as clarified in [12], where it is proven that τ is

21In [1] the τij are defined as 1/2 of the ones defined here.
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equivalent to a matrix of the form (
τ̄ 0
0 0

)
(3.4)

τ̄ being a matrix of order (2n− 1).

4. Proofs of Arnold’s theorem

Herman-Fejóz proof (2004). In 2004 J. Fejóz [17] published the first complete proof of
a general version of Arnold’s planetary theorem: this proof completed a long project car-
ried out by M. Herman. In order to avoid fourth order computations, Herman (also because
seemed to suspect the degeneracy of the matrix of the second order Birkhoff invariant; com-
pare the Remark towards the end of p. 24 of [20]), turned to a weaker KAM theory, which
makes use of a “first order KAM condition” based on the non–planarity of the frequency
map. But, the resonances (3.3) show that the frequency map lies in the intersection of two
planes, violating the non–planarity condition. To overcome this problem Herman and Féjoz
use a trick by Poincarè, consisting in modifying the Hamiltonian by adding a commuting
Hamiltonian, so as to remove the degeneracy. By a Lagrangian intersection theory argu-
ment, if two Hamiltonian commute and T is a Lagrangian invariant transitive torus for one
of them, then T is invariant (but not necessarly transitive) also for the other Hamiltonian;
compare [17, Lemma 82, p. 1578]. Thus, the KAM tori constructed for the modified Hamil-
tonian are indeed invariant tori also for the original system. Now, the expression of the
vertical component of the total angular momentum C3 has a particular simple expression in
Poincaré variables: indeed, C3 =

∑n
j=1

(
Λj − 1

2 (η
2
j +ξ2j +p2j +q2j )

)
, so that the modified

Hamiltonian Hδ := Hp(Λ, λ, z) + δC3 is easily seen to have a non–planar frequency map
(first order Birlhoff invariants), and the above abstract remark applies.

Herman’s KAM theory (as given in [17]) works in the C∞ category, so that the tori
obtained in [17] are proven to be C∞, on the other hand, since the planetary Hamiltonian
flow is real–analytic, it is natural to expect that also their maximal quasi–periodic solutions
(and the tori they span) are real–analytic. This is proven in [13], where Rüßmann first–order
KAM theory [27] is extended to properly–degenerate systems.

Completion of Arnold’s project (2011). In [11] Arnold’s original strategy is reconsidered
and full torsion of the planetary problem is proved by introducing new symplectic variables
(called rps–variables standing for Regularized Planetary Symplectic variables), which al-
low for a symplectic partial reduction of rotations eliminating one degree of freedom (i.e.,
lowering by two units the dimension of the phase space). In such reduced setting the first
resonance in (3.3) disappears (but not the second one) and the question about the torsion is
reduced to study the determinant of τ̄ in (3.4), which, in fact, is shown to be non–singular;
compare [11, §8] and [12] (where a precise connection is made between the Poincaré and
the rps–variables compare also Theorem 5.1 below).

In the next section we shall review the main ideas and techniques discussed in [11].
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5. A new symplectic view of the planetary phase space and completion of
Arnold’s project

We start by describing the new set of symplectic variables, which allow to have a new insight
on the symplectic structure of the phase space of the planetary model, or, more in general,
of any rotational invariant model.

The idea is to start with action–angle variables having, among the actions, two inde-
pendent commuting integrals related to rotations, for example, the Euclidean length of the
total angular momentum C and its vertical component C3, and then (imitating Poincaré) to
regularize around co–circular and co–planar configurations.

The variables that do the job are a “planetary” action–angle version of certain variables
introduced by A. Deprit in22 1983 [15].

The Regularized planetary symplectic (RPS) variables. Let n ≥ 2, 1 ≤ i ≤ n, and con-
sider the “partial angular momenta” S(i) :=

∑i
j=1 C

(j), (note that S(n) =
∑n

j=1 C
(j) =: C)

and define the “Deprit nodes”





νi := S(i) × C(i) , 2 ≤ i ≤ n
ν1 := ν2
νn+1 := k(3) × C =: ν̄ ;

(recall the definition of the “individual” and total angular momenta in (2.5)).
The Deprit action–angle variables (Λ,Γ,Ψ, ", γ,ψ) are defined as follows. Let Pi denote

the coordinates of the ith instantaneous perihelion (relatively to the instantaneous planet–
Sun 2–body system), let (k(1), k(2), k(3)) be the standard orthonormal basis in R3, and, for
u, v ∈ R3 lying in the plane orthogonal to a non–vanishing vector w, denote by αw(u, v)
the positively oriented angle (mod 2π) between u and v (orientation follows the “right hand
rule”, the thumb being w).

The Deprit variables Λ, Γ and " are in common with the Delaunay variables (compare
(A.4) in Appendix A), while

γi := αC(i)(νi, Pi), Ψi :=

{
|S(i+1)| , 1 ≤ i ≤ n− 1
C3 := C · k(3) i = n,

ψi :=

{
αS(i+1)(νi+2, νi+1) 1 ≤ i ≤ n− 1
ζ := αk(3)(k(1), ν̄) i = n.

Define also G := |C| = |S(n)|.
The “Deprit inclinations” ιi are defined through the relations

cos ιi :=






C(i+1) · S(i+1)

|C(i+1)||S(i+1)|
, 1 ≤ i ≤ n− 1 ,

C · k(3)

|C| , i = n .

Similarly to the case of the Delaunay variables, the Deprit action–angle variables are not
defined when the Deprit nodes νi vanish or the eccentricitiy ei /∈ (0, 1), but on the do-

22See also [10] and [11].



560 L. Chierchia and G. Pinzari

main where they are well defined they yield a real–analytic set of symplectic variables, i.e.,∑n
i=1 dX

(i) ∧ dx(i) =
∑n

i=1 dΛi ∧ d!i + dΓi ∧ dγi + dΨi ∧ dψi; for a proof, see [10] or §3
of [11].

The rps variables are given by23 (Λ,λ, z) := (Λ,λ, η, ξ, p, q) with (again) the Λ’s as in
(2.7) and, for 1 ≤ i ≤ n,

λi = !i + γi + ψn
i−1 ,

{
ηi =

√
2(Λi − Γi) cos

(
γi + ψn

i−1

)

ξi = −
√

2(Λi − Γi) sin
(
γi + ψn

i−1

)

{
pi =

√
2(Γi+1 +Ψi−1 −Ψi) cosψn

i

qi = −
√
2(Γi+1 +Ψi−1 −Ψi) sinψn

i

where Ψ0 := Γ1, Γn+1 := 0, ψ0 := 0, ψn
i :=

∑
i≤j≤n ψj . On the domain of definition, the

rps variables are symplectic:

n∑

i=1

dΛi ∧ d!i + dΓi ∧ dγi + dΨi ∧ dψi =
n∑

i=1

dΛi ∧ dλi + dηi ∧ dξi + dpi ∧ dqi ;

for a proof, see [23] or [11, §4].
As phase space, consider a set of the same form as in (2.8), (2.9), namely

(Λ,λ, z) ∈ M6n
rps := A× Tn ×B4n (5.1)

with B a 4n–dimensional ball around the origin (origin, which corresponds, as in Poincaré
variables, to planar co–circular motions).

Poincaré and rps variables are intimately connected: If we denote by

φrpsp : (Λ,λ, z) → (Λ, λ, z) (5.2)

the symplectic trasformation between rps and Poincaré variables, then the following result
holds.

Theorem 5.1 ([12]). The symplectic map φrps
p in (5.2) has the form

λ = λ+ ϕ(Λ, z) z = Z(Λ, z)

where ϕ(Λ, 0) = 0 and, for any fixed Λ, the map Z(Λ, ·) is 1:1, symplectic (i.e., it preserves
the two form dη∧dξ+dp∧dq) and its projections verify, for a suitable V = V(Λ) ∈ SO(n),

ΠηZ = η +O3 , ΠξZ = ξ +O3 , ΠpZ = Vp+O3 , ΠqZ = Vq +O3 .

where O3 = O(|z|3).

Partial reduction of rotations. Recalling that Γn+1 = 0, Ψn−1 = |S(n)| = |C|, Ψn = C3,
ψn = αk(3)(k(1), k3 × C) one sees that

{
pn =

√
2(|C|− C3) cosψn

qn = −
√

2(|C|− C3) sinψn ,

23Beware of notations: we use upright characters for Poincaré variables (Λ, λ, z) := (Λ, λ, η, p, ξ, q) and
standard italic for rps variables (Λ,λ, z) := (Λ,λ, η, ξ, p, q).
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showing that the conjugated variables pn and qn are both integrals and hence both cyclic for
the planetary Hamiltonian, which, therefore, in such variables, will have the form

Hrps(Λ,λ, z̄) = hk(Λ) + µfrps(Λ,λ, z̄) , (5.3)

where z̄ denotes the set of variables

z̄ := (η, ξ, p̄, q̄) :=
(
(η1, . . . , ηn), (ξ1, . . . , ξn), (p1, . . . , pn−1), (q1, . . . , qn−1)

)
.

In other words, the phase space M6n
rps in (5.1) is foliated by (6n−2)–dimensional invari-

ant manifolds
M6n−2

pn,qn := M6n
rps |pn,qn=const , (5.4)

and since the restriction of the standard symplectic form on such manifolds is simply dΛ ∧
dλ + dη ∧ dξ + dp̄ ∧ dq̄, such submanifolds are symplectic and the planetary flow is the
standard Hamiltonian flow generated by Hrps in (5.3). The submanifolds depend upon a
particular orientation of the total angular momentum: in particular, M6n−2

0 correspond to
the total angular momentum parallel to the vertical k3–axis. Notice, also, that the analytic
expression of the planetary Hamiltonian Hrps is the same on each submanifold.

In view of these observations, it is enough to study the planetary flow of Hrps on, say,
the vertical submanifold M6n−2

0 .

Planetary Birkhoff normal forms and torsion. The rps variables share with Poincaré vari-
ables classical D’Alembert symmetries, i.e., Hrps is invariant under the transformations
(2.10), S being as in (2.11); compare also Remark 3.3 of [12].

This implies that the averaged perturbation fav
rps :=

1

(2π)n

∫

Tn

frps dλ also enjoys

D’Alembert rules and thus has an expansion analogue to (2.13), but independent of (pn, qn):

fav
rps(Λ, z̄) = C0(Λ) +Qh(Λ) ·

η2 + ξ2

2
+ Q̄v(Λ) ·

p̄2 + q̄2

2
+ O(|z̄|4) (5.5)

with Qh of order n and Q̄v of order (n− 1). Notice that the matrix Qh in (5.5) is the same
as in (2.13), since, when p = (p̄, pn) = 0 and q = (q̄, qn) = 0, Poincaré and rps variables
coincide.

Using Theorem 5.1, one can also show that Qv :=

(
Q̄v 0
0 0

)
is conjugated (by a unitary

matrix) to Qv in (2.13), so that the eigenvalues ς̄i of Q̄v coincide with (ς1, ..., ςn−1), as one
naively would expect.

In view of the remark after (3.3), and of rotation–invariant Birkhoff theory,24 one sees
that one can construct, in an open neighborhood of co–planar and co–circular motions, the
Birkhoff normal form of fav

rps at any finite order.
More precisely, for ε > 0 small enough, denoting

Pε := A× Tn ×B4n−2
ε , B4n−2

ε := {z̄ ∈ R4n−2 : |z̄| < ε} ,

an ε–neighborhood of the co–circular, co–planar region, one can find a real–analytic sym-
plectic transformation φµ : (Λ, λ̆, z̆) ∈ Pε → (Λ,λ, z̄) ∈ Pε such that H̆ := Hrps ◦ φµ =

24According to which the only forbidden frequencies for constructing the Birkhoff normal form are generated by
those integer vectors k such that

∑
ki = 0; compare Proposition B.2, Appendix B below.
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hk(Λ) + µf(Λ, λ̆, z̆) with

f̆av(Λ, z̆) :=
1

(2π)n

∫

Tn

f dλ̆ = C0(Λ) + Ω · R̆ +
1

2
τ̄ R̆ · R̆ + P̆(Λ, z̆)

where





Ω = (σ, ς̄)
z̆ := (η̆, ξ̆, p̆, q̆) , R̆ = (ρ̆, r̆) , P̆(Λ, z̆) = O(|z̆|6) ,
ρ̆ = (ρ̆1, · · · , ρ̆n) , r̆ = (r̆1, · · · , r̆n−1) ,

ρ̆i :=
η̆2
i+ξ̆2i
2 , r̆i =

p̆2
i+q̆2i
2

With straightforward (but not trivial!) computations, one can then show full torsion for
the planetary problem.
More precisely, one finds (compare Proposition 8.1 of [11]):

Theorem 5.2. For n ≥ 2 and 0 < δ# < 1 there exist µ̄ > 0, 0 < a1 < a1 < · · · < an < an
such that, on the set A defined in (2.9) and for 0 < µ < µ̄, the matrix τ̄ is non–singular:
[i.e., double point should be added] det τ̄ = dn(1 + δn), where |δn| < δ# and

dn := (−1)n−1 3

5

(45
16

1

m2
0

)n−1 m2

m1m0
a1
( a1
an

)3 ∏

2≤k≤n

( 1

ak

)4
.

Kolmogorov tori for the planetary problem. At this point one can apply to the planetary
Hamiltonian in normalized variables H̆(Λ, λ̆, z̆) Arnold’s Theorem 3.2 above completing
Arnold’s project on the planetary N–body problem.

Indeed, by using the refinements of Theorem 3.2 as given in [9], from Theorem 5.2 there
follows

Theorem 5.3. There exists positive constants ε∗, c∗ and C∗ such that the following holds.
If 0 < ε < ε∗ and 0 < µ < ε6/(log ε−1)c∗ then each symplectic submanifold M6n−2

pn,qn (5.4)
contains a positive measure Hrps –invariant Kolmogorov set Kpn,qn , which is actually the
suspension of the same Kolmogorov set K ⊆ Pε, which is H̆–invariant.
Furthermore, K is formed by the union of (3n− 1)–dimensional Lagrangian, real–analytic
tori on which the H̆–motion is analytically conjugated to linear Diophantine quasi–periodic
motions with frequencies (ω1,ω2) ∈ Rn × R2n−1 with ω1 = O(1) and ω2 = O(µ).
Finally, K satisfies the bound25 measPε ≥ measK ≥

(
1− C∗

√
ε
)
measPε.

Conley-Zehnder stable periodic orbits. The tori T ∈ K form a (Whitney) smooth family
of non–degenerate Kolmogorov tori, which means the following. The tori in K can be pa-
rameterized by their frequency ω ∈ R3n−1 (i.e., T = Tω) and there exists a real–analytic
symplectic diffeomorphism ν : (y, x) ∈ Bm × Tm → ν(y, x;ω) ∈ Pε, m := 3n − 1,
uniformly Lipschitz in ω (actually C∞ in the sense of Whitney) such that, for each ω

• H̆ ◦ ν = E + ω · y +Q; (Kolmogorov’s normal form)
• E ∈ R (the energy of the torus); ω ∈ Rm is a Diophantine vector;

• Q = O(|y|2) and det

∫

Tm

∂yyQ(0, x) dx )= 0 , (non–degeneracy)

25In particular, measK ! ε4n−2 ! measPε.
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• Tω = ν(0,Tm).

Now, in the first paragraph of [14] Conley and Zehnder, putting together KAM theory (and in
particular exploiting Kolmogorv’s normal form for KAM tori) together with Birkhoff–Lewis
fixed–point theorem show that long–period periodic orbits cumulate densely on Kolmogorov
tori so that, in particular, the Lebesgue measure of the closure of the periodic orbits can be
bounded below by the measure of the Kolmogorov set. Notwithstanding the proper degen-
eracy, this remark applies also in the present situation and as a consequence of Theorem 5.3
and of the fact that the tori in K are non–degenerate Kolmogorov tori it follows ([7]) that in
the planetary model the measure of the closure of the periodic orbits in Pε can be bounded
below by a constant times ε4n−2.

A. Details on the classical Hamiltonian structure

Inertial manifold. Equations (2.1) are invariant by change of “inertial frames”, i.e., by
change of variables of the form u(i) → u(i) − (a+ ct) with fixed a, c ∈ R3. This allows to
restrict the attention to the manifold of “initial data” given by

n∑

i=0

miu
(i)(0) = 0 ,

n∑

i=0

miu̇
(i)(0) = 0 ; (A.1)

indeed, just replace the coordinates u(i) by u(i) − (a+ ct) with

a := m−1
tot

n∑

i=0

miu
(i)(0) and c := m−1

tot

n∑

i=0

miu̇
(i)(0) , mtot :=

n∑

i=0

mi .

The total linear momentum Mtot :=
∑n

i=0 miu̇(i) does not change along the flow of (2.1),
i.e., Ṁtot = 0 along trajectories; therefore, by (A.1), Mtot(t) vanishes for all times. But,
then, also the position of the total center of mass B(t) :=

∑n
i=0 miu(i)(t) is constant (Ḃ =

0) and, again by (A.1), B(t) ≡ 0. In other words, the manifold of initial data (A.1) is
invariant under the flow generated by (2.1).

The Linear momentum reduction. In view of the invariance properties discussed above,
in the variables (U (i), u(i)) ∈ M̂, (recall (2.2) and that U (i) := miu̇(i)), it is enough to

consider the submanifold M̂0 := {(U, u) ∈ M̂ :
n∑

i=0

miu
(i) = 0 =

n∑

i=0

U (i)}, which

corresponds to the manifold described in (A.1).
The submanifold M̂0 is symplectic, i.e., the restriction of the form (2.3) to M̂0 is again

a symplectic form; indeed:
( n∑

i=0

dU (i) ∧ du(i)
)∣∣∣

M̂0

=
n∑

i=1

m0 +mi

m0
dU (i) ∧ du(i).

Poincaré’s symplectic reduction (“reduction of the linear momentum”) goes as follows.
Let φhe : (R, r) → (U, u) be the linear transformation given by

φhe :

{
u(0) = r(0) , u(i) = r(0) + r(i) , (i = 1, ..., n)
U (0) = R(0) −

∑n
i=1 R

(i) , U (i) = R(i) , (i = 1, ..., n) ;
(A.2)
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such transformation is symplectic, i.e.,
∑n

i=0 dU
(i)∧du(i) =

∑n
i=0 dR

(i)∧dr(i). recall that
this means, in particular, that in the new variables the Hamiltonian flow is again standard:
more precisely, one has that φt

Ĥ
N

◦ φhe = φhe ◦ φt
Ĥ

N
◦φ.

Letting mtot :=
∑n

i=0 mi one sees that, in the new variables, M̂0 reads

{
(R, r) ∈ R6(n+1) : R(0) = 0, r(0) = −m−1

tot

n∑

i=1

mir
(i) , 0 %= r(i) %= r(j) ∀ 1 ≤ i %= j ≤ n

}
.

The restriction of the 2–form (2.3) to M̂0 is simply
n∑

i=1

dR(i) ∧ dr(i) and

HN := ĤN ◦ φhe|M0 =
n∑

i=1

|R(i)|2

2 m0mi
m0+mi

− m0mi

|r(i)|
+

∑

1≤i<j≤n

R(i) ·R(j)

m0
− mimj

|r(i) − r(j)|
.

The dynamics generated by ĤN on M̂0 is equivalent to the dynamics generated by the
Hamiltonian (R, r) ∈ R6n → HN(R, r) on

M0 :=
{
(R, r) = (R(1), ..., R(n), r(1), ..., r(n)) ∈ R6n : 0 %= r(i) %= r(j) , ∀i %= j

}

with respect to the standard symplectic form
∑n

i=1 dR
(i) ∧ dr(i); to recover the full dy-

namics on M̂0 from the dynamics on M0 one will simply set R(0)(t) ≡ 0 and r(0)(t) :=

−m−1
tot

n∑

i=1

mir
(i)(t).

Since we are interested in the planetary case, we perform the trivial rescaling by a small
positive parameter µ:

m0 := m0 , mi = µmi (i ≥ 1) , X(i) :=
R(i)

µ
, x(i) := r(i) ,

Hplt(X,x) :=
1

µ
HN(µX, x) ,

a transformation which leaves unchanged Hamilton’s equations.

Delaunay and Poincaré variables. The Hamiltonian H(0)
plt in (2.4) governes the motion of

n decoupled two–body problems with Hamiltonian

h(i)
2B =

|X(i)|2

2Mi
− Mim̄i

|x(i)|
, (X(i), x(i)) ∈ R3 × R3

∗ := R3 × (R3\{0}) .

Such two–body sytems are, as well known, integrable. The explicit “symplectic integration”
is done by means of the Delaunay variables, whose construction we, now, briefly, recall (for
full details and proofs, see, e.g., [5]).

Assume that h(i)
2B(X

(i), x(i)) < 0 so that the Hamiltonian flow φt
h(i)
2B

(X(i), x(i)) evolves

on a Keplerian ellipse Ei and assume that the eccentricity ei ∈ (0, 1).
Let ai, Pi denote, respectively, the semimajor axis and the perihelion of Ei.
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Let C(i) denote the ith angular momentum C(i) := x(i) × y(i).
Let us, also, introduce the “Delaunay nodes”

ν̄i := k(3) × C(i) 1 ≤ i ≤ n , (A.3)

where (k(1), k(2), k(3)) is the standard orthonormal basis in R3. Finally, for u, v ∈ R3

lying in the plane orthogonal to a non–vanishing vector w, let αw(u, v) denote the positively
oriented angle (mod 2π) between u and v (orientation follows the “right hand rule”).

The Delaunay action–angle variables (Λi,Γi,Θi, $i, gi, θi) are, then, defined as
{

Λi := Mi
√
m̄iai

$i := mean anomaly of x(i) on Ei
,

{
Γi := |C(i)| = Λi

√
1− e2i

gi := αC(i)(ν̄i, Pi)
{

Θi := C(i) · k(3)
θi := αk(3)(k(1), ν̄i)

(A.4)

Notice that the Delaunay variables are defined on an open set of full measure of the
Cartesian phase space R3n × R3n

∗ , namely, on the set where ei ∈ (0, 1) and the nodes ν̄i
in (A.3) are well defined; on such set the “Delaunay inclinations” ii defined through the
relations

cos ii :=
C(i) · k(3)

|C(i)|
=

Θi

Γi
, (A.5)

are well defined and we choose the branch of cos−1 so that ii ∈ (0,π).
The Delaunay variables become singular when C(i) is vertical (the Delaunay node is no

more defined) and in the circular limit (the perihelion is not unique). In these cases different
variables have to been used (see below).

On the set where the Delaunay variables are well posed, they define a symplectic set of
action–angle variables, i.e.,

∑n
i=1 dX

(i)∧dx(i) =
∑n

i=1 dΛi∧d$i+dΓi∧dgi+dΘi∧dθi,
for a proof, see §3.2 of [5].

In Delaunay action–angle variables ((Λ,Γ,Θ), ($, g, θ)) the Hamiltonian H(0)
plt takes the

form (2.7). We shall restrict our attention to the collisionless phase space

Mplt :=
{
Λi > Γi > Θi > 0 ,

Λi

Mi
√
m̄i

'= Λj

Mj
√
m̄j

, ∀ i '= j
}
× T3n ,

endowed with the standard symplectic form
∑n

i=1 dΛi ∧ d$i + dΓi ∧ dgi + dΘi ∧ dθi.
Notice that the 6n–dimensional phase space Mplt is foliated by 3n–dimensional H(0)

plt–
invariant tori {Λ,Γ,Θ}× T3, which, in turn, are foliated by n–dimensional tori {Λ}× Tn,
expressing geometrically the degeneracy of the integrable Keplerian limit of the (1 + n)–
body problem.

A regularization of the Delaunay variables in their singular limit was introduced by
Poincaré, in such a way that the set of action–angle variables ((Γ,Θ), (g, θ)) is mapped onto
cartesian variables regular near the origin, which corresponds to co–circular and co–planar
motions, while the angles conjugated to Λi, which remains invariant, are suitably shifted.

More precisely, the Poincaré variables are given by (Λ, λ, z) := (Λ, λ,η, ξ, p, q) ∈ Rn
+×

Tn × R4n, with the Λ’s as in (A.4) and

λi = $i + gi + θi,

{
ηi =

√
2(Λi − Γi) cos (θi + gi)

ξi = −
√

2(Λi − Γi) sin (θi + gi)
,

{
pi =

√
2(Γi −Θi) cos θi

qi = −
√

2(Γi −Θi) sin θi
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Notice that ei = 0 corresponds to ηi = 0 = ξi, while ii = 0 corresponds to pi = 0 = qi;
compare (A.4) and (A.5).

On the domain of definition, the Poincaré variables are symplectic

n∑

i=1

dΛi ∧ d!i + dΓi ∧ dgi + dΘi ∧ dθi =
n∑

i=1

dΛi ∧ dλi + dηi ∧ dξi + dpi ∧ dqi ;

for a proof, see Appendix C of [4].

B. Birkhoff normal forms

In this appendix we recall a few known and less known facts about the general theory of
Birkhoff normal forms.

Consider as phase space a 2m ball B2m
δ around the origin in R2m and a real–analytic

Hamiltonian of the form H(w) = c0 + Ω · r + o(|w|2) where
{

w = (u1, . . . , um, v1, . . . , vm) ∈ R2m ,

r = (r1, . . . , rm) , rj =
u2
j+v2

j

2 .

the symplectic form being
∑

dui ∧ dvi. The components Ωj of Ω are called the first order
Birkhoff invariants. The following is a classical result due to G.D. Birkhoff.

Proposition B.1. Assume that the first order Birkhoff invariants Ωj verify, for some a > 0
and integer s,

|Ω · k| ≥ a > 0, ∀ k ∈ Zm : 0 < |k|1 :=
m∑

j=1

|kj | ≤ 2s . (B.1)

Then, there exists 0 < δ′ ≤ δ and a symplectic transformation φ̆ : w̆ ∈ B2m
δ′ → w ∈ B2m

δ
which puts H into Birkhoff normal form up to the order 2s, i.e.,

H ◦ φ̆ = c0 + Ω · r̆ +
∑

2≤h≤s

Ph(r̆) + o(|w̆|2s)] , (B.2)

where Ph are homogeneous polynomials in r̆j = |w̆j |2/2 := (ŭ2
j + v̆2j )/2 of degree h.

Less known is that the hypotheses of this proposition may be loosened in the case of rotation
invariant Hamiltonians: this fact, for example, has been used neither in [1] nor in [17].

First, let us generalize the class of Hamiltonian functions so as to include the secular
Hamiltonian (2.13): let us consider an open, bounded, connected set U ⊆ Rn and consider
the phase space D := U × Tn × B2m

δ , endowed with the standard symplectic form dI ∧
dϕ+ du ∧ dv.

We say that a Hamiltonian H(I,ϕ, w) on D is rotation invariant if H ◦Rg = H for any
g ∈ T, where Rg is a symplectic rotation by an angle g ∈ T on D, i.e., a symplectic map of
the form Rg : (I,ϕ, w) → (I ′,ϕ′, w′) with I ′i = Ii, ϕ

′
i = ϕi + g, w′ = Sgw, with Sg

definined in (2.11).
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Now, consider a ϕ–independent real–analytic Hamiltonian H : (I,ϕ, w) ∈ D →
H(I, w) ∈ R of the form H(I, w) = c0(I) + Ω(I) · r + o(|w|2; I), by f = o(|w|2; I)
we mean that f = f(I, w) and |f |/|w|2 → 0 as w → 0.

Then, it can be proven the following

Proposition B.2. Assume that H is rotation–invariant and that the first order Birkhoff in-
variants Ωj verify, for all I ∈ U , for some a > 0 and integer s

|Ω · k| ≥ a > 0, ∀ 0 %= k ∈ Zm :
n∑

i=1

ki = 0 and |k|1 ≤ 2s . (B.3)

Then, there exists 0 < δ′ ≤ δ and a symplectic transformation φ̆ : (I, ϕ̆, w̆) ∈ D̆ :=
U ×Tn×B2m

δ′ → (I,ϕ, w) ∈ D which puts H into Birkhoff normal form up to the order 2s
as in (B.2) with the coefficients of Ph and the reminder depending also on I . Furthermore,
φ̆ leaves the I–variables fixed, acts as a ϕ̆–independent shift on ϕ̆, is ϕ̆–independent on the
remaining variables and is such that

φ̆ ◦Rg = Rg ◦ φ̆ . (B.4)

The proof of Proposition B.2 may be found in §7.2 in [11].

C. Arnold’s statements (from [1])

• Conditionally periodic motions in the many–body problem have been found. If the
masses of n “planets” are sufficiently small in comparison with the mass of the central
body, the motion is conditionally periodic for the majority of initial conditions for
which the eccentricities and inclinations of the Kepler ellipses are small. Further, the
major semiaxis perpetually remain close to their original values and the eccentricities
and inclinations remain small. [1, p. 87]

• With the help of the fundamental theorem26 of Chapter IV , we investigate in this
chapter the class of “planetary” motions in the three–body and many–body problems.
We show that, for the majority of initial conditions under which the instantaneous
orbits of the planets are close to circles lying in a single plane, perturbation of the
planets on one another produces, in the course of an infinite interval of time, little
change on these orbits provided the masses of the planets are sufficiently small.
In particular, it follows from our results that in the n-body problem there exists a set
of initial conditions having a positive Lebesgue measure and such that, if the initial
positions and velocities of the bodies belong to this set, the distances of the bodies
from each other will remain perpetually bounded. [1, p.125]

• At p. 127 one finds Theorem 3.1 reported at the beginning of § 3 above.

• As mentioned in the introduction, Arnold provides a full detailed proof, checking
the non–degeneracy conditions of his fundamental theorem, only for the two–planet
model (n = 2) in the planar regime. As for generalizations, he states:

26I.e., Theorem 3.2 above.
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• The plane problem of n > 2 planets. The arguments of §2 and 3 easily carry over
to the case of more than two planets. [· · · ] We shall not dwell on the details of the
calculations which lead to the results of §1, 4. [1, p. 139]

• Finally, for the spatial general case:

The rather lengthy calculations involved in the solution of (3.5.9), the construction of
variables satisfying conditions 1)–4), and the verification of non–degeneracy condi-
tions analogous to the arguments of § 4 will not be discussed here. [1, p. 142]
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