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1. INTRODUCTION

In 1954 A.N. Kolmogorov ([1, 2]), in occasion of the International Congress of Mathematicians in
Amsterdam, presented a fundamental theorem concerning the existence, under suitable assump-
tions, of quasi–periodic trajectories in the dynamics generated by nearly–integrable Hamiltonian
systems. Kolmogorov’s theorem is the fulcrum of the well–known KAM (Kolmogorov–Arnol’d–
Moser) theory; for reviews, see, e.g., [3, §6.3].
KAM proofs are typically based on two clearly separated steps:

(i) a “Newton like” scheme1);
(ii) quantitative estimates and proof of convergence of the scheme.

In [1], Kolmogorov, besides stating precisely the result, gives complete details for step (i) and,
as for step (ii), simply says2): “Only the use of condition (3) for proving the convergence of the
recursions, K

(k)
θ , to the analytical limit for the recursion Kθ is somewhat more subtle”.

In this paper, we review and comment Kolmogorov’s original paper [1]. In particular, we recall
Kolmogorov’s statement and give a complete and elementary proof of it, by recalling step (i) as
given in [1] and giving complete details for step (ii).

We point out that step (ii) – which consists in introducing a “scale of Banach spaces3)”, giving
recursive estimates and deducing from such estimates the convergence of the scheme – is based
on very classical tools (such as Cauchy estimates for analytic functions or the classical Implicit
Function Theorem) obviously well known to Kolmogorov.

*E-mail: luigi@mat.uniroma3.it
1)Loosely speaking, a “Newton like” scheme (which takes its name from the elementary Newton’s tangent algorithm

for finding zeros of real functions) consists in finding solutions of a (functional) equation F (u) = 0 by successive

approximate solutions un so that the error at the nth step, εn := ‖F (un)‖, is (roughly) quadratic in the preceding

error: εn ∼ ε2n−1.
2)The quotation is from p. 55 of [1]: Eq. (3) corresponds to the Diophantine assumption (compare (2) below); θ is

the perturbative parameter that, in this paper, will be denoted ε; finally K refers to symplectic transformations
(while here the letter K will denote a Hamiltonian in “Kolmogorov’s normal form”).

3)Compare (c) of Remark 1 below.
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It is our belief that the deepest part of the proof is, by far, step (i) so that, in a sense,
Kolmogorov’s paper might be regarded as “essentially complete”.

However, Kolmogorov’s approach has been, somehow, overlooked. In particular, neither V.I.
Arnol’d nor J.K. Moser followed up Kolmogorov’s outline: Arnol’d, in 1963 [4], published a lengthy,
detailed proof of Kolmogorov’s theorem using a rather different approach, which might be called a
“renormalization approach”, leading, in the limit, to a “pointwise integrable” Hamiltonian (or more
precisely, to a Hamiltonian integrable on a Cantor set); Moser’s first complete proof ([5], 1962),
which is also rather different, deals with the finitely differentiable case for twist maps.

We mention that Moser wrote a review [6] of Kolmogorov’s article [2] saying also: The proof of
this theorem was published in Dokl. Akad. Nauk SSSR 98 (1954), 527–530 [MR0068687 (16,924c)],
but the convergence discussion does not seem convincing to the reviewer.

Indeed, Moser’s opinion is certainly correct, since Kolmogorov did not discuss the convergence of
the algorithm (apart from the sentence quoted above) and our belief should not appear in contrast
to Moser’s statement: we simply argue that step (ii) – although it involves several (elementary)
estimates – is rather straightforward and based on well known tools4) while the real breakthrough
in the solution of the problem is based on step (i).

We hope that this paper will help to appreciate, once more, the beauty of Kolmogorov’s proof.

2. KOLMOGOROV’S THEOREM

Kolmogorov considers a one–parameter family of Hamiltonian systems governed by a real–
analytic Hamiltonian (y, x, ε) ∈ M2d × (−ε0, ε0) := B × T

d × (−ε0, ε0) → H(y, x; ε), where B is a
d-ball around the origin in R

d, T
d := R

d/(2πZ
d), ε0 > 0 and ε is a real “small” parameter; the

phase space M2d is endowed with the standard symplectic form dy ∧ dx =
∑d

j=1 dyj ∧ dxj so that
for each ε the Hamiltonian flow φt

H : M2d → M2d generated by H is the solution at time t of the
Cauchy problem ⎧⎨

⎩ ẏ = −Hx(y, x; ε)

ẋ = Hy(y, x; ε)
,

⎧⎨
⎩ y(0) = y

x(0) = x

where dot is derivative with respect to time t ∈ R and Hx and Hy denote the gradients with respect
to x and y (for generalities see [3]).

Theorem (Komogorov [1], p. 52). Let H be as above and assume that K(y, x) := H(y, x; 0) has
the form5)

K := E + ω · y + Q(y, x) and Q = O(|y|2); (1)

E ∈ R and ω ∈ R
d is a (homogeneously) Diophantine vector, i.e., there exist positive constants κ

and τ such that6)

|ω · n| � κ

|n|τ , ∀ n ∈ Z
d\{0}. (2)

Furthermore, K in (1) is assumed to be non–degenerate in the sense that

det〈∂2
yQ(0, ·)〉 �= 0,

4)Compare (d) and (c) in Remark 1 below.
5)As usual, ω · y =

�d
j=1 ωjyj ; Q = O(|y|2) means that ∂α

y Q(0, x) = 0 for all α ∈ N
d with |α| � 1, where ∂α

y =

∂|α|

∂y
α1
1 ···∂y

αd
d

and |α| = α1 + · · · + αd.

6)Normally, for integer vectors n, |n| denotes |n1| + · · · + |nd|, but other norms may as well be used.
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where 〈·〉 denotes average over T
d. Then, there exist 0 < ε∗ � ε0, a ball B∗ ⊂ B centered at the origin

of R
d and a real–analytic symplectic transformation φ∗ : B∗ × T

d → M2d, depending analytically
also on ε ∈ (−ε∗, ε∗), such that φ∗|ε=0 is the identity map and, for any |ε| < ε∗,

H ◦ φ∗(y′, x′) = K∗(y′, x′; ε) = E∗(ε) + ω · y′ + Q∗(y′, x′; ε), with Q∗ = O(|y′|2).

Remark 1. (a) A Hamiltonian K of the form (1) is said to be in Kolmogorov’s normal form;
the Lagrangian torus Tω := {0} × T

d is invariant for K, as φt
K(0, x) = (0, x + ωt); viceversa a

Hamiltonian admitting a d-dimensional invariant torus on which the flow is conjugated to the
translation x → x + ωt (with ωj rationally independent) can be put in Kolmogorov’s normal form.
From Kolmogorov’s Theorem it follows that the torus Tω,ε := φ∗(0, Td) is a Lagrangian torus
invariant for φt

H and the H-flow on Tω,ε is analytically conjugated (by φ∗) to the translation
x′ → x′ + ωt with the same frequency vector of Tω = Tω,0 (while the energy of Tω,ε, namely E∗, is
in general different from the energy E of Tω). The idea of keeping fixed the frequency is one of the
fundamental ideas introduced by Kolmogorov.

(b) The map φ∗ is obtained as φ∗ = limk→∞ φ1 ◦ · · · ◦ φk, where the φk’s are (ε-dependent)
symplectic transformations of M2d closer and closer to the identity. It will be enough to describe
the construction of φ1; φ2 is then obtained by replacing H0 := H with H1 = H ◦ φ1 and so on. The
construction of φ1 is carried out in step (i) following closely Kolmogorov.

(c) The analytical tools on which step (ii) is based are classical (and well established at the
beginning of the XXth century). Let us recall them here. For ξ > 0, let

Dd
ξ := {y ∈ C

d : |y| < ξ} and T
d
ξ := {x ∈ C

d : | Im xj| < ξ, 1 � j � d}/(2πZ
d);

let, then, Bξ = Bξ,ε0 be the Banach spaces of real–analytic functions f on

Wξ,ε0 := Dd
ξ × T

d
ξ × {ε ∈ C : |ε| < ε0}

with finite sup–norm7)

‖f‖ξ = ‖f‖ξ,ε0 := sup
Wξ,ε0

|f |. (3)

The standard sup-norm of real-analytic functions on T
d depending analytically on ε ∈ D1

ε0
= {ε ∈

C : |ε| < ε0} will be denoted by ‖ · ‖0 = ‖ · ‖0,ε0 = supTd×D1
ε0
| · |. Then

1. Bξ′ ⊂ Bξ whenever ξ < ξ′ and ‖f‖ξ � ‖f‖ξ′ for any f ∈ Bξ′ ;

2. if f ∈ Bξ and fn(y; ε) denotes the n-th Fourier coefficient of the periodic function x →
f(y, x; ε), then, by Cauchy integral formula of complex variables,

|fn(y; ε)| � ‖f‖ξe
−|n|ξ , ∀ n ∈ Z

d , ∀ y ∈ Dd
ξ , ∀ε ∈ C : |ε| < ε0;

3. let f ∈ Bξ and let p ∈ N then there exists a constant Bp = Bp(d) � 1 such that, for any
multi–index (α, β) ∈ N

d × N
d with |α| + |β| � p and for any 0 � ξ′ < ξ, one has8)

‖∂α
y ∂β

xf‖ξ′ � Bp‖f‖ξ (ξ − ξ′)−(|α|+|β|); (4)

7)Sometimes, the explicit dependence on ε0 will not be denoted in the norms or in the B–spaces, as ε0 (or ε∗ below)
will not be changed during the iteration.

8)These are the so called Cauchy estimates, which follow immediately by Cauchy integral formula.
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4. assume that9) x → f(x) ∈ Bξ has zero average; assume that ω satisfies (2) and let p ∈ N;
denote by

Dω := ω · ∂x :=
d∑

j=1

ωj
∂

∂xj
(5)

the derivative on T
d in the direction ω and let

u =
∑
n∈Zd

n�=0

fn

iω · n ein·x =: D−1
ω f

denote the unique solution with zero average of the equation

Dωu = f , 〈u〉 = 0.

Then, D−1
ω f ∈ Bξ′ for any 0 � ξ′ < ξ and there exist constants B̄p = B̄p(d, τ) � 1 and

kp = kp(d, τ) � 1 such that, for any multi–index β ∈ N
d with |β| � p, one has10)

‖∂β
x D−1

ω f‖ξ′ � B̄p
‖f‖ξ

κ
(ξ − ξ′)−kp . (6)

(d) Cauchy estimates and the “small divisor estimate” (6) are based on the idea of giving
bounds of analytic functions, on which there act operators diagonal in Fourier space, on smaller
complex domains. This idea goes back to Cauchy and it seems unlikely that it was not obvious to
Kolmogorov.

Proof of the Theorem. By hypothesis (eventually reducing ε0), it follows that there exist
0 < ξ � 1, such that H ∈ Bξ,ε0. Write H(y, x; ε) as H = K + εP , then K,P ∈ Bξ,ε0.

Step (i) Kolmogorov’s idea is to construct a near–to–the–identity symplectic transformation φ1,
such that

H1 := H ◦ φ1 = K1 + ε2P1, K1 = E1 + ω · y′ + Q1(y′, x′), Q1 = O(|y′|2); (7)

if this is achieved, the Hamiltonian K1 has the same basic properties of K (the linear part in y
is the same and, being φ1 close to the identity, K1 is non–degenerate), and the procedure can be
iterated.

To carry out this strategy, Kolmogorov indicates the form of the generating function of φ1,
namely11)

g(y′, x) := y′ · x + ε
(
b · x + s(x) + y′ · a(x)

)
, (8)

where s and a are (respectively, scalar and vector–valued, ε–dependent) real–analytic functions on
Td with zero average and b ∈ Rd.

9)Clearly, all definitions may be easily adapted to functions depending only on x.
10)This estimate follows by expanding in Fourier series. In fact, if δ := ξ − ξ′, by (2), ‖∂β

xD−1
ω f‖ξ′ �

�
n∈Zd

n �=0

|n||β| |fn|
|ω·n| eξ′|n| � ‖f‖ξ

�
n∈Zd

n �=0

|n||β|+τ

κ
e−δ|n| =

‖f‖ξ

κ
δ−(|β|+τ+d)

�
n∈Zd

n �=0
[δ|n|]|β|+τ e−δ|n| δd �

B̄p
‖f‖ξ

κ
(ξ − ξ′)−(|β|+τ+d), where last estimate comes from approximating the sum with the Riemann

integral
�

Rd |y||β|+τ e−|y| dy.
11)Compare [3] for generalities on symplectic transformations and their generating functions. For simplicity, we do

not report in the notation the dependence of various functions on ε, but, in fact, P = P (y, x; ε), s = s(x; ε),
a = a(x; ε), etc.
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Remark 2. (a) If we denote12)

β0 = β0(x) := b + sx , A = A(x) := ax and β = β(y′, x) := β0 + Ay′,

then φ1 is implicitly defined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y = y′ + εβ(y′, x) := y′ + ε(β0(x) + A(x)y′)

x′ = x + εa(x).

(b) For ε small, x ∈ T
d → x + εa(x) ∈ T

d defines a diffeomorphism of T
d with inverse

x = ϕ(x′) := x′ + εα(x′; ε),

for a suitable real–analytic function α. Thus φ1 is explicitly given by

φ1 : (y′, x′) →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y = y′ + εβ
(
y′, ϕ(x′)

)

x = ϕ(x′).

(9)

To determine b, s and a, observe that by Taylor’s formula

H(y′ + εβ, x) = E + ω · y′ + Q(y′, x) + ε
[
ω · β + Qy(y′, x) · β + P (y′, x)

]
+ ε2P ′(y′, x) (10)

where P ′ := P ′(y′, x; ε) := P (1) + P (2) with⎧⎪⎪⎨
⎪⎪⎩

P (1) := 1
ε2 [Q(y′ + εβ, x) − Q(y′, x) − εQy(y′, x) · β] =

∫ 1

0
(1 − t)Qyy(y′ + tεβ, x)β · β dt

P (2) := 1
ε [P (y′ + εβ, x) − P (y′, x)] =

∫ 1

0
Py(y′ + tεβ, x) · β dt.

(11)

Note that

Qy(y′, x) · (axy′) =: Q(1)(y′, x) = O(|y′|2), (12)

and that (again by Taylor’s formula)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Qy(y′, x) · β0 = Qyy(0, x)y′ · β0 + Q(2)(y′, x) , Q(2) :=
∫ 1

0
(1 − t)Qyyy(ty′, x)y′ · y′ · β0 dt

P (y′, x) = P (0, x) + Py(0, x) · y′ + Q(3)(y′, x) , Q(3) :=
∫ 1

0
(1 − t)Pyy(ty′, x) y′ · y′ dt .

(13)

Thus, since13) ω · β = ω · b + Dωs + Dωa · y′, we find

H(y′ + εβ, x) = E + ω · y′ + Q(y′, x) + εQ′(y′, x) + εF ′(y′, x) + ε2P ′(y′, x) (14)

with P ′ as in (10)–(11) and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q′(y′, x) := Q(1) + Q(2) + Q(3) = O(|y′|2)

F ′(y′, x) := ω · b + Dωs + P (0, x) +
{

Dωa + Qyy(0, x)b + Qyy(0, x)sx + Py(0, x)
}
· y′

(15)

12)As usual, we denote sx = ∂xs = (sx1 , ..., sxd) and ax denotes the matrix (ax)ij :=
∂aj

∂xi
; as above, we often do not

report in the notation the dependence upon ε (but β0, A and β do depend also on ε).
13)Recall that ω · sx = Dωs and ω · (axy′) = (Dωa) · y′.
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It is now easy to see that there exist a unique constant b and unique functions s and a (with zero
average) such that F ′ is constant. In fact, if14)⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s := −D−1
ω

(
P (0, x) − P0(0)

)
= −

∑
n∈Zd

n�=0

Pn(0)
iω · n ein·x

b := −〈Qyy(0, ·)〉−1
(
〈Qyy(0, ·)sx〉 + 〈Py(0, ·)〉

)
a := −D−1

ω

(
Qyy(0, x)(b + sx) + Py(0, x)

)
then F ′ = ω · b + P0(0). Thus, with this determination of g in (8), recalling (b) of Remark 2, we
find that (7) holds with⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E1 := E + εẼ , Ẽ := ω · b + P0(0)

Q1(y′, x′) := Q(y′, x′) + εQ̃(y′, x′) , Q̃ :=
∫ 1

0
Qx(y′, x′ + tεα) · αdt + Q′(y′, ϕ(x′))

P1(y′, x′) := P ′(y′, ϕ(x′)) .

Clearly, for ε small enough 〈∂2
y′Q1(0, ·)〉 is invertible and, if T := 〈Qyy(0, ·〉−1, we may write

T1 := 〈∂2
y′Q1(0, ·)〉

−1 =: T + εT̃ . (16)

Step (ii) This step (missing in Kolmogorov’s paper [1]) will be divided in two lemmata: the first
Lemma consists in equipping with estimates the construction of Kolmogorov’s transformation φ1

discussed in step (i) and the second one describes the iteration and its convergence.

Let M := ‖P‖ξ,ε0; let C > 1 be a constant such that15)

|E| , |ω| , ‖Q‖ξ , ‖T‖ < C ; (17)

fix16)

0 < δ < ξ and define ξ̄ := ξ − 2
3
δ , ξ′ := ξ − δ .

Lemma 4. There exist constants c̄ = c̄(d, τ, κ) > 1, µ̄ ∈ Z+ and ν̄ = ν(d, τ) > 1 such that17)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖sx‖ξ̄, |b|, |Ẽ|, ‖a‖ξ̄ , ‖ax‖ξ̄ , ‖β0‖ξ̄, ‖β‖ξ̄ , ‖Q′‖ξ̄, ‖∂2
y′Q′(0, ·)‖0 � c̄C µ̄δ−ν̄ M =: L̄ ,

‖P ′‖ξ̄ � c̄C µ̄δ−ν̄ M2 = L̄M .

(18)

Furthermore, if ε∗ satisfies

ε∗ L̄ � δ

3
, (19)

14)Recall point (c) in Remark 1 above for the notation.
15)The notation in Eq. (17) means that each term on the l.h.s. is bounded by the r.h.s. The choice of norms on finite

dimensional spaces (Rd, C
d, space of matrices, tensors, etc.) is not particularly relevant, however for matrices,

tensors (and, in general, linear operators) we shall work with the “operator norm”, i.e., the norm defined as
‖L‖ = supu �=0 ‖Lu‖/‖u‖, so that ‖Lu‖ � ‖L‖‖u‖, an estimate, which will be constantly used.

16)The parameter ξ′ will be the size of the domain of analyticity of the new symplectic variables (y′, x′), domain
on which we shall bound the Hamiltonian H1 = H ◦ φ1, while ξ̄ is the size of an intermediate domain where we
shall bound various functions of y′ and x.

17)Here ‖ · ‖ξ̄ = ‖ · ‖ξ̄,ε0
.

REGULAR AND CHAOTIC DYNAMICS Vol. 13 No. 2 2008



136 CHIERCHIA

the following is true. For |ε| < ε∗, the map ψε(x) := x + εa(x) has an analytic inverse ϕ(x′) =
x′ + εα(x′; ε) such that, for all |ε| < ε∗,

‖α‖ξ′,ε∗ � L̄ and ∀ |ε| < ε∗, ϕ = id + εα : T
d
ξ′ → T

d
ξ̄ ; (20)

for any (y′, x, ε) ∈ Wξ̄,ε∗, |y′ + εβ(y′, x)| < ξ; the map φ1 is a symplectic diffeomorphism and

φ1 =
(
y′ + εβ(y′, ϕ(x′)), ϕ(x′)

)
: Wξ′,ε∗ → Dd

ξ × T
d
ξ , and ‖φ̃‖ξ′,ε∗ � L̄, (21)

where φ̃ is defined by the relation φ1 =: id + εφ̃.
Finally, there exist c � c̄, µ � µ̄ and ν � ν̄ such that if 18)

ε∗ L := ε∗ cCµδ−ν M � δ

3
, (22)

then ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|Ẽ| , ‖Q̃‖ξ′,ε∗ , ‖T̃‖ , ‖φ̃‖ξ′,ε∗ � L,

‖P1‖ξ′,ε∗ � LM.

(23)

Proof. The estimates in (18) follow easily from (c) of Remark 1: as an example, let us work out
the first two estimates in (18), i.e., the estimates on ‖sx‖ξ̄ and |b|: actually these estimates will be
given on a larger intermediate domain, namely, Wξ− δ

3
,ε0

, allowing to give the remaining bounds on
the smaller domain Wξ̄,ε0

. Let f(x) := P (0, x) − 〈P (0, ·)〉. By definition of ‖ · ‖ξ and M , it follows
that ‖f‖ξ � ‖P (0, x)‖ξ + ‖〈P (0, ·)〉‖ξ � 2M . By (6) with p = 1 and ξ′ = ξ − δ

3 , one gets

‖sx‖ξ− δ
3

� B̄1
2M
κ

3k1δ−k1 ,

which is of the form (18), provided c̄ � B̄1 · 2 · 3k1/κ and ν̄ � k1. To estimate b, we need to bound
first |Qyy(0, x)| and |Py(0, x)| for real x. To do this we can use Cauchy estimates: by (4) with p = 2
and, respectively, p = 1, and ξ′ = 0, we get

‖Qyy(0, ·)‖0 � m B2Cξ−2 < m B2Cδ−2 and ‖Py(0, x)‖0 < mB1Mδ−1,

where m = m(d) � 1 is a constant which depends on the choice of the norms (recall also that
δ < ξ). Putting these bounds together, one gets that |b| can be bounded by the r.h.s. of (18)
provided c̄ � m(B2B̄1 · 2 · 3k1κ−1 + B1), µ̄ � 2 and ν̄ � k1 + 2. No new ideas are required to work
out the other estimates in (18).

Next, we show how (19) implies the existence of the inverse of ψε satisfying (20). The defining
relation ψε ◦ϕ = id implies that α(x′) = −a(x′ + εα(x′)), where α(x′) is short for α(x′; ε), and such
relation is a fixed point equation for the non–linear operator f : u → f(u) := −a( id + εu). To find
a fixed point for this equation one can use a standard contraction Lemma (see [7]). Let Y denote
the closed ball (with respect to the sup–norm) of continuous functions u : T

d
ξ′ × {|ε| < ε∗} → C

d

such that ‖u‖ξ′,ε∗ � L̄. By (19), | Im (x′ + εu(x′))| � ξ′ + ε∗L̄ � ξ′ + δ
3 = ξ̄, for any u ∈ Y and any

x′ ∈ T
d
ξ′ ; thus, ‖f(u)‖ξ′,ε∗ � ‖a‖ξ̄ � L̄ by (18), so that f : Y → Y ; notice that, in particular, this

means that f sends x–periodic functions into x–periodic functions. Moreover, (19) implies also that
f is a contraction: if u, v ∈ Y , then, by the mean value theorem and (18), |f(u) − f(v)| � ‖ax‖ξ̄ |ε|
|u − v| � L̄|ε| |u − v|, so that, by taking the sup–norm, one has ‖f(u) − f(v)‖ξ′ � ε∗L̄‖u − v‖ξ′ �
1
3‖u − v‖ξ′ showing that f is a contraction. Thus, there exists a unique α ∈ Y such that f(α) = α.
Furthermore, recalling that the fixed point is achieved as the uniform limit limn→∞ fn(0) (0 ∈ Y )
and since f(0) = −a is analytic, so is fn(0) for any n and, hence, by Weierstrass Theorem on the

18)Notice that, since L � L̄, (22) implies (19).
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uniform limit of analytic functions, the limit α itself is analytic. In conclusion, ϕ ∈ Bξ′,ε∗ and (20)
holds. Next, for (y′, x, ε) ∈ Wξ̄,ε∗ , by (18), one has |y′ + εβ(y′, x)| < ξ̄ + ε∗L̄ � ξ̄ + δ

3 = ξ − δ
3 < ξ

so that (21) holds and φ1 defines a symplectic diffeomorphism19) satisfying (21) and the fourth
inequality in the first line of (23).

It remains to show the other estimates in (23). Since L � L̄, the bound on |Ẽ| comes
straightforwardly from (18). By (20) and (18), one has ‖P1‖ξ′,ε∗ � ‖P ′‖ξ̄,ε∗ � L̄M � LM . Now,
by Cauchy estimates, (18) and (21), it follows immediately that20)

‖Q̃‖ξ′,ε∗ , 2C2 ‖∂2
y′Q̃(0, ·)‖0,ε∗ � cCµδ−ν M = L , (24)

for suitable constants c � c̄, µ̄ � µ, ν̄ � ν. Thus,

〈∂2
y′Q1(0, ·)〉 = 〈∂2

yQ(0, ·)〉 + ε〈∂2
y′Q̃(0, ·)〉 = T−1(11d + εT 〈∂2

y′Q̃(0, ·)〉)
=: T−1(11d + εR) , (25)

and, in view of (17) and (24), we see that ‖R‖ < L/(2C). Therefore, by (22), ε∗‖R‖ < 1/6 < 1/2,
implying that (11 + εR) is invertible and

(11d + εR)−1 = 11d +
∞∑

k=1

(−1)kεkRk =: 11 + εD

with ‖D‖ � ‖R‖/(1 − |ε| ‖R‖) < L/C. In conclusion, by (25), and the estimate on ‖D‖,

T1 = (11 + εR)−1T = T + εDT =: T + εT̃ , ‖T̃‖ � ‖D‖C � L

C
C = L ,

proving last estimate in (23) and, hence, Lemma 4. �

Next lemma shows that, for |ε| small enough, Kolmogorov’s construction can be iterated and
convergence proven.

Lemma 5. Let
C := 2max

{
|E|, |ω|, ‖Q‖ξ , ‖T‖, 1

}
. (26)

Fix 0 < ξ∗ < ξ and, for j � 0, let⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ0 := ξ

δ0 :=
ξ − ξ∗

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δj :=
δ0

2j

ξj+1 := ξj − δj = ξ∗ + δ0
2j

(so that ξj ↓ ξ∗). Let, also, H0 := H, E0 := E, Q0 := Q, K0 := K, P0 := P and let c, µ and ν be
as in (22) with δ = δ0, and assume that ε∗ satisfies

ε∗ c∗ d∗ ‖P‖ξ,ε0 � 1 where c∗ := 3c δ
−(ν+1)
0 Cµ , d∗ := 2ν+1 � 1. (27)

Then, one can construct a sequence of symplectic transformations

φj : Wξj ,ε∗ → Dd
ξj−1

× T
d
ξj−1

(j � 1), (28)

so that

Hj := Hj−1 ◦ φj =: Kj + ε2j
Pj (29)

19)Notice, in particular, that the matrix 11d + εax is, for any x ∈ T
d
ξ̄ , invertible with inverse 11d + εS(x; ε); in

fact, since ‖εax‖ξ̄ < ε∗L̄ < 1/3 the matrix 11d + εax is invertible with inverse given by the “Neumann series”

(11d + εax)−1 = 11d +
�∞

k=1(−1)k(εax)k =: 11d + εS(x; ε), so that ‖S‖ξ̄,ε∗ � ‖ax‖ξ̄,ε∗/(1 − |ε|‖ax‖ξ̄,ε∗) < 3
2
L̄.

20)It is only here that a constant L > L̄ is needed; the (irrelevant) factor 2C2 has been introduced for later
convenience.
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converges uniformly to a Kolmogorov’s normal form. More precisely, ε2j
Pj , Φj := φ1 ◦ φ2 ◦ · · · ◦ φj ,

Ej , Kj , Qj converge uniformly on Wξ∗,ε∗ to, respectively, 0, φ∗, E∗, K∗, Q∗, which are real–analytic
on Wξ∗,ε∗ and H ◦ φ∗ = K∗ = E∗ + ω · y + Q∗ with Q∗ = O(|y|2). Finally, the following estimates
hold for any |ε| < ε∗ and for any i � 0:

|ε|2i
Mi := |ε|2i‖Pi‖ξi,ε∗ � ( |ε|c∗ d∗M)2

i

c∗ d∗
i+1

, (30)

‖φ∗ − id ‖ξ∗ , |E − E∗|, ‖Q − Q∗‖ξ∗ , ‖T − T∗‖ � |ε| c∗ d∗M , (31)

where M := ‖P‖ξ,ε0 = M0 and T∗ := 〈∂2
yQ∗(0, ·)〉−1.

Proof. Notice that the constant C defined in (26) satisfies (17) and that (27) implies (22) (and,
hence, (19)).

Let us assume (inductive hypothesis) that we can iterate j � 1 times Kolmogorov transfor-
mation obtaining j symplectic transformations φi+1 : Wξi+1,ε∗ → Dd

ξi
× T

d
ξi

, for 0 � i � j − 1, and

j Hamiltonians Hi+1 = Hi ◦ φi+1 = Ki+1 + ε2i
Pi+1 real–analytic on Wξi+1,ε∗ such that, for any

0 � i � j − 1, ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|ω|, |Ei|, ‖Qi‖ξi
, ‖Ti‖ < C

|ε|2i
Li := |ε|2i

cCµδ−ν
0 2νiMi � δi

3 .

(32)

Observe that for j = 1, it is i = 0 and (32) is implied by the definition of C in (26) and by
condition (27).

Because of (32), (22) holds21) for Hi and Lemma 4 can be applied to Hi, and one has, for
0 � i � j − 1 and for any |ε| < ε∗ (compare (23)):

|Ei+1| � |Ei| + |ε|2i
Li , ‖Qi+1‖ξi+1

� ‖Qi‖ξi
+ |ε|2i

Li , ‖Ti+1‖ � ‖Ti‖ + |ε|2i
Li ,

‖φi+1 − id ‖ξi+1
� |ε|2i

Li , Mi+1 � MiLi . (33)

Observe that, by definition of c∗, d∗ in (27) and of Li in (32), one has |ε|2i
Li(3δ−1

i ) = c∗ d∗
i|ε|2i

Mi, so
that Li < c∗ d∗

iMi, thus by last relation in (33), for any 0 � i � j − 1, |ε|2i+1
Mi+1 < c∗ d∗

i(Mi|ε|2
i
)2,

which, after having been iterated, yields (30) for 0 � i � j.
Next, we show that, thanks to (27), (32) holds also for i = j. In fact, by (32), (33) and the

definition of C in (26):

|Ej | � |E| +
j−1∑
i=0

ε2i

∗ Li � |E| + 1
3

∑
i�0

δi < |E| + 1
3

∑
i�0

2−i = |E| + 2
3

< C .

The bounds for ‖Qj‖ and ‖Tj‖ are proven in an identical manner. Define Lj as in (32) for i = j.
Now, by (30)i=j and (27),

|ε|2j
Lj(3δ−1

j ) = c∗ d∗
j|ε|2j

Mj � c∗ d∗
j(c∗ d∗ε∗M)2

j
/(c∗ d∗

j+1) � 1/ d∗ < 1 ,

which implies the second inequality in (32) with i = j; the proof of the induction is finished and
one can construct an infinite sequence of Kolmogorov transformations satisfying (32), (33) and (30)
for all i � 0.

To check (31), we observe that for any i � 0

|ε|2i
Li =

δ0

3 · 2i
c∗ d∗

i|ε|2i
Mi � 1

2i+1
(|ε|c∗ d∗M)2

i �
( |ε|c∗ d∗M

2

)i+1
,

21)Mutatis mutandis.
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and therefore ∑
i�0

|ε|2i
Li �

∑
i�1

( |ε|c∗ d∗M

2

)i
� |ε|c∗ d∗M .

Thus,

‖Q − Q∗‖ξ∗ �
∑
i�0

‖Q̃i‖ξi
�

∑
i�0

|ε|2i
Li � |ε|c∗ d∗M ;

and analogously for |E − E∗| and ‖T − T∗‖.
To estimate ‖φ∗ − id ‖ξ∗ , observe that for any i � 2

‖Φi − id ‖ξi
� ‖Φi−1 ◦ φi − φi‖ξi

+ ‖φi − id ‖ξi
� ‖Φi−1 − id ‖ξi−1

+ |ε|2i−1
Li−1,

which, after having been iterated, yields ‖Φi − id ‖ξi
�

∑i
k=0 |ε|2

k
Lk � |ε|c∗ d∗M ; taking the limit

over i completes the proof of (31), of Lemma 5 and, hence, of Kolmogorov’s Theorem. �
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