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1. INTRODUCTION

a. “One of the most remarkable of A.N. Kolmogorov’s mathematical achievements is his 1954
work on classical mechanics”: this is the beginning of V. I. Arnold’s celebrated paper Proof
of A.N. Kolmogorov’s Theorem on the Conservation of Conditionally Periodic Motions
with a Small Variation in the Hamiltonian [1], published in 1963, on the occasion of
A.N. Kolmogorov’s 60th birthday. A few lines after, Arnold adds: “Its deficiency has been
that complete proofs have never been published”.
Even though one could argue whether Kolmogorov’s proof in [11] is “complete” or not (see,
e. g., [5]), Arnold’s paper is certainly a milestone of modern dynamical systems, which not
only contains a complete and detailed proof of Kolmogorov’s theorem, but also introduces
new original, technical ideas of enormous impact in finite- and infinite-dimensional systems
(for reviews, see, e. g., [2] or [9]).

b. As is well known, Kolmogorov’s 1954 theorem in classical mechanics [11] (see also [5]) deals
with the persistence, for small ε, of Lagrangian invariant tori of analytic integrable systems
governed by a nearly integrable Hamiltonian

H(y, x) = K(y) + εP (y, x) (1.1)

where (y, x) ∈ R
d × T

d are standard symplectic action-angle variables. In short, the theorem
says that:

for small ε, non-degenerate Diophantine unperturbed Lagrangian tori persist

Let us recall that “Diophantine” means that the unperturbed torus Tω,0 := {y0} × T
d, which

is invariant for the flow φt
K governed by the integrable Hamiltonian K, is such that the

frequency ω := Ky(y0) is Diophantine, i. e., it satisfies, for some α, τ > 0,

|ω · k| :=
d∑

j=1

|ωjkj | �
α

|k|τ , ∀ k ∈ Z
d\{0} ; (1.2)
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584 CHIERCHIA, KOUDJINAN

“non-degenerate” means that the Hessian of K at y0 is invertible; finally, “persists” means

that Tω,0 deforms, for positive small enough ε, into a Lagrangian1) torus Tω,ε invariant for φt
H .

The scheme on which Arnold’s proof of Kolmogorov’s theorem is based, while sharing two
basic ideas of Kolmogorov’s approach, namely, the use of a quadratic symplectic iterative
method and the idea of keeping fixed the Diophantine frequency of the motion, is quite
different from Kolmogorov’s scheme in the following respects.

First, for a fixed frequency, Arnold constructs an embedded, Lagrangian invariant torus
obtained as a limit of symplectic transformations on action domains shrinking to a single
point; in contrast, Kolmogorov conjugates the given Hamiltonian to a complete normal form
admitting a Lagrangian invariant torus with the prescribed frequency.

A key difference between these two approaches is that Arnold, at each step of the iteration,

needs to control only a finite number of small divisors2), which, however, depend on actions
(this being the reason for the shrinking to one point of the action domains), while in the
denominators appearing in Kolmogorov’s scheme there enters only the prefixed Diophantine
frequency, allowing one to control at once all small divisors, and also to work with smaller and
smaller domains, which contain a fixed open set, allowing one, in the end, to get a genuine
symplectic transformation.

A clever quantitative revisitation of Kolmogorov’s scheme ([16]) shows that such a scheme
leads to optimal asymptotic estimates (as ε → 0). We shall show below that this is true also
for Arnold’s original “pointwise” scheme.

c. Kolmogorov’s and Arnold’s schemes are “pointwise” in the sense that they deal with the
continuation of a single prefixed unperturbed Lagrangian torus with Diophantine frequency.

This is in contrast with versions of the KAM theorem3) dealing with the persistence of sets
of simultaneously persistent invariant tori, see [1, 7, 13, 14]. We point out that, actually,
Arnold’s original formulation of the KAM theorem in [1] belongs to this second kind of
theorem as it states the existence of a set of simultaneously invariant tori, however, the proof
is pointwise in nature and its scheme is exactly the one we follow closely here. Typically,
especially when one is concerned with lower-dimensional invariant tori, it is not possible to
construct a single torus with some pre-assigned property, but, rather, one obtains “Cantor”
families of persistent tori (compare, e. g., [9]).

d. The smallness condition, i. e., how small the perturbation has to be in order for the perturbed
invariant torus to exist, depends on local analytic properties of K (and on the analytic norm
of P ). In particular, the main quantitative “competition” is between ε and the size of the
small divisors appearing in the iterative scheme, the size of which may be measured by
the “homogeneous Diophantine constant” α (compare Eq. (1.2)) of the prefixed frequency
ω = Ky(y0).

The most important quantitative relations may be easily understood by looking at explicitly
solvable examples, i. e., at integrable systems.

To illustrate this point, let us consider, for example, a simple pendulum with gravity ε,

H(y, x) =
1

2
y2 + ε(cos x− 1) , (1.3)

1)A Lagrangian manifold is a submanifold of dimension d on which the restriction of the two form
∑d

j=1 dyj ∧ dxj

vanishes.
2)To work with a finite number of divisors, Arnold introduces a Fourier cut-off (depending, in view of analyticity,
logarithmically on the size of the perturbation), an idea which has been widely followed also in infinite-dimensional
Hamiltonian perturbation theory.

3)Strictly speaking, there does not exists a KAM theorem (“KAM” standing for the initials of A.N. Kolmogorv,
V. I. Arnold and J. K. Moser), however, normally, it refers to (variations of) Kolmogorov’s theorem. Here, we
follow this tradition.
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V. I. ARNOLD’S “POINTWISE” KAM THEOREM 585

viewed as an ε–perturbation of the non-degenerate Hamiltonian K(y) :=
1

2
y2, (here, d = 1).

The energy zero level {H = 0} corresponds to the separatrix, i. e.,

y = ±
√

2ε(1 − cos x) ,

which shows immediately that in the region S := {|y| � 2
√
ε} there are no homotopically

non trivial invariant tori (curves) or, equivalently, no Lagrangian invariant curves, which are
graphs over the angle variable (“primary tori”). In other words, the region of action space
where unperturbed curves {y0} × T may be continued into invariant Lagrangian invariant
curves, which stay out of the “singular region” S are such that:

|y0| > 2
√
ε . (1.4)

Now the resonant relations |Ky(y0) · k| become, in this one-dimensional example, simply
|y0||k| and the Diophantine condition is, therefore, equivalent to requiring that α = |y0|
(recall (1.2)), and the necessary condition (1.4) becomes

ε

α2
<

1

4
. (1.5)

Another fact that can be easily extracted from this example concerns the oscillations of
(primary) invariant tori4).
For y0 > 0 the invariant (primary) curves are given by

yε(x) :=
√
y20 + 2ε(1 − cosx) = y0 + vε(x) ,

with

vε(x) :=
2ε(1 − cos x)

y0 +
√

y20 + 2ε(1 − cos x)
.

Thus, one has that

osc (yε) = osc (vε) � vε(π)− vε(0) =
4ε

y0 +
√

y20 + 4ε
=

ε

y0

4

1 +
√

1 + 4ε/y20

which, in view of (1.5), yields the relation

osc (vε) �
4

1 +
√
2
· ε
α
. (1.6)

Below, we shall prove that the enhanced Arnold scheme leads to a smallness condition of the
type (compare (2.4) below)

ε

α2
< c (1.7)

(for an ε and α independent constant c), which is in agreement with (1.5).
Furthermore, we shall also show that Arnold’s scheme leads to a bound on the oscillations of
persistent tori given as graphs {y = y0 + v∗(x), x ∈ T

d} of the form (compare (2.6) below)

osc (v∗) � C · ε
α

(1.8)

(for an ε and α independent constant C), which, in view of (1.6), is seen to be optimal (as
far as the dependence upon ε and α is concerned), showing the “quantitative sharpness” of
Arnold’s scheme, on which the proof presented below is based.

Condition (1.7) is also the fundamental quantitative relation needed to evaluate the measure
of the Kolmogorov set, i. e., the union (in a prefixed bounded domain) of all primary tori.

4)A primary Lagrangian torus is a graph over the angles {(y, x)| y = U(x) , x ∈ T
d} and its oscillation is given by

supx,x′ |U(x)− U(x′)|.
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Indeed, (1.7) leads to a bound on the Lebesgue measure of the complement of the Kolmogorov
set by a constant times

√
ε (compare [13, 14]), which again, comparing with the simple

pendulum (1.3) — that has a region (the area enclosed by the separatrix) of measure 16
√
ε

free of primary tori — is seen to be asymptotically optimal. It has to be remarked, however,
that obtaining such an estimate is quite delicate and far from trivial (for a more detailed
discussion on this point, see [3, 8, 12]).

e. As is well known, Arnold’s scheme is an iterative Newton scheme yielding a sequence of
“renormalised Hamiltonians”

Hj := Kj + ε2
j
Pj ,

so that H0 = H is the given nearly integrable Hamiltonian (1.1) and, for any j, Kj is
integrable (i. e., depends only on the action variable y), real-analytic in a rj-ball around
a point yj close to y0 and satisfies:

∂yKj(yj) = ω := ∂yK(y0) , det ∂2
yKj(yj) �= 0 , (1.9)

which means that at each step the frequency is kept fixed and that the integrable Hamiltonian
Kj is non-degenerate. The sequence of Hamiltonians Hj is conjugated, i. e., Hj+1 = Hj ◦ φj ,
with φj symplectic, closer and closer to the identity. The persistent torus Tω,ε is then obtained
as the limit

lim
j→+∞

φ0 ◦ · · · ◦ φj−1(yj,T
n) .

The symplectic transformations φj’s are obtained by solving the classical Hamilton – Jacobi
equation so as to remove quadratically the order of the perturbation. In doing this one cannot
take into account all small divisors (which are dense) and therefore Arnold introduces a
Fourier cut-off κj , which allows him to deal with a finite number of small divisors. In view

of the exponential decay of Fourier coefficients, κj can be taken ∼
∣∣ log

(
e2

j‖Pj‖
)∣∣, which

introduces a logarithmic correction5), which does not affect the convergence of the scheme.
All this is well known.
The problem is to equip the scheme with “optimal” quantitative estimates, which may lead,
in the end, to the above sharp asymptotic bounds. This involves careful choices of various
parameters entering the scheme (see § 3.2) and, in particular, it is crucial to treat the first
step in a different way with respect to the remaining steps: this technical, but important,
aspect is explained in Remark 1 below.

f. V. I. Arnold pointed out that his proof extended with little changes to the iso-energetically
non-degenerate case, i. e., when the energy is prescribed and the unperturbed Hamiltonian

satisfies the condition6)

det

⎛

⎝∂2
yK ∂yK

∂yK 0

⎞

⎠
∣∣∣
y=y0

�= 0 . (1.10)

Indeed, it would not be difficult to adapt our improved Arnold’s scheme also to the
iso-energetically non-degenerate case, proving the sharpness of the asymptotic smallness
conditions also in this case.

g. Finally, we mention that the quantitative estimates provided in this paper could be used to
improve the (exponentially long) stability time of “nearly-invariant tori”, introduced in [10].

5)For full details, see § 3.1 below and, in particular, “Step 1: Construction of Arnold’s transformation”.
6)The matrix in (1.10) is a (d+ 1) × (d+ 1) matrix, where the upper right corner ∂yK has to be interpreted as a
column vector, while the lower left corner is a raw vector and the zero is a scalar. The condition expresses the
fact that the map (y, λ) �→ (λ∂yK,K) is locally invertible.
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2. NOTATION AND QUANTITATIVE STATEMENT OF ARNOLD’S THEOREM

• For d ∈ N := {1, 2, 3, . . .} and x, y ∈ C
d, we let x · y := x1ȳ1 + · · ·+ xdȳd be the standard inner

product; |x|1 :=
d∑

j=1

|xj | be the 1-norm, and |x| := max
1�j�n

|xj | be the sup-norm.

• T
d := R

d/2πZd is the standard d-dimensional (flat) torus.

• π1 : C
d ×C

d 	 (y, x) 
−→ y and π2 : C
d ×C

d 	 (y, x) 
−→ x are the projections on the first and
second component, respectively.

• For α > 0, τ � d− 1 � 1,

Δτ
α :=

{
ω ∈ R

d : |ω · k| � α

|k|τ1
, ∀ 0 �= k ∈ Z

d

}
(2.1)

is the set of (α, τ)-Diophantine numbers in R
d.

• For r, s > 0, y0 ∈ C
d, we denote:

T
d
s :=

{
x ∈ C

d : | Imx| < s
}
/2πZd,

Br(y0) :=
{
y ∈ R

d : |y − y0| < r
}
, (y0 ∈ R

d),

Dr(y0) :=
{
y ∈ C

d : |y − y0| < r
}
, Dr,s(y0) := Dr(y0)× T

d
s.

• If �d := diag (1) is the unit (d× d) matrix, we denote the standard symplectic matrix by

J :=

⎛

⎝ 0 −�d
�d 0

⎞

⎠ .

• For y0 ∈ R
d, Ar,s(y0) denotes the Banach space of real-analytic functions with bounded

holomorphic extensions to Dr,s(y0), with norm

‖ · ‖r,s,y0 := sup
Dr,s(y0)

| · | .

We also denote:

‖ · ‖r,y0 := sup
Dr(y0)

| · | , ‖ · ‖s := sup
Td
s

| · | .

• We equip C
d × C

d with the canonical symplectic form


 := dy ∧ dx = dy1 ∧ dx1 + · · · + dyd ∧ dxd

and denote by φt
H the associated Hamiltonian flow governed by the Hamiltonian H(y, x),

y, x ∈ C
d, i. e., z(t) := φt

H(y, x) is the solution of the Cauchy problem ż = J∇H(z), z(0) =
(y, x).

• Given a linear operator L from the normed space (V1, ‖ · ‖1) into the normed space (V2, ‖ · ‖2),
its “operator-norm” is given by

‖L‖ := sup
x∈V1\{0}

‖Lx‖2
‖x‖1

, so that ‖Lx‖2 � ‖L‖ ‖x‖1 for any x ∈ V1.
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• Given ω ∈ R
d, the directional derivative of a C1 function f with respect to ω is given by

Dωf := ω · fx =

d∑

j=1

ωjfxj .

• If f is a (smooth or analytic) function on T
d, its Fourier expansion is given by

f =
∑

k∈Zd

fk e
ik·x, fk :=

1

(2π)d

∫

Td

f(x) e−ik·x dx ,

(where, as usual, e := exp(1) denotes the Neper number and i the imaginary unit). We also
set:

〈f〉 := f0 =
1

(2π)d

∫

Td

f(x) dx , (pNf)(x) :=
∑

|k|1�N

fk e
ik·x, N > 0 ,

pN being the Fourier projection onto the Fourier modes with |k|1 � N ; notice that 〈·〉 = p0(·).

We are ready to formulate a quantitative version of Arnold’s theorem7).

Theorem A. Let d � 2; τ � d− 1; α, r, ε > 0; 0 < s∗ < s � 1; y0 ∈ R
d; K,P ∈ Ar,s(y0); H :=

K + εP . Assume that
⎧
⎪⎨

⎪⎩

ω := ∂yK(y0) ∈ Δτ
α ,

det(∂2
yK(y0)) �= 0 .

(2.2)

Define:

T := ∂2
yK(y0)

−1, P := ‖P‖r,s,y0 , K := ‖∂2
yK‖r,y0 , T := ‖T‖ , θ := TK,

and denote by ε the rescaled smallness parameter:

ε := KP
ε

α2
. (2.3)

There exist constants 1 < C < C∗ depending only on d and τ , such that, if a := 6τ + 3d+ 8 and

α � r

T
and ε � ε∗ :=

(s− s∗)a

C∗ θ4
, (2.4)

then there exists a real–analytic embedding

φ∗ : x ∈ T
d
s∗ 
→ φ∗(x) := φe(y0, x) +

(
v∗(x), u∗(x)

)
∈ Dr,s(y0),

where φe is the trivial embedding

φe : x ∈ T
d → (y0, x),

such that the d–torus

Tω,ε := φ∗
(
T
d
)

(2.5)

is a Lagrangian torus satisfying

φt
H ◦ φ∗(x) = φ∗(x+ ωt), ∀ x ∈ T

d
s∗ ∀ t ∈ R .

7)To avoid introducing too many symbols, we use capital straight style for positive constants (P,K,T,C, . . .), while
usually capital normal style is used for functions or matrices (K,P,H, T, . . .).
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Furthermore,

max
{
‖u∗‖s∗ ,

1

2 e
‖∂xu∗‖s∗ ,

K

α
‖v∗‖s∗

}
� C θ3

(s− s∗)a
ε � 1

4 e
. (2.6)

Remarks and addenda.

(i) θ is a measure of the local “torsion” and is a number greater than or equal to one:

θ := TK � T‖Kyy(y0)‖ � ‖T‖‖Kyy(y0)‖ = ‖T‖‖T−1‖ � 1 . (2.7)

(ii) Notice that the estimate on v∗ in (2.6) implies that the maximal action oscillation of the
torus Tω,ε is bounded by a constant times αε, which in view of (2.3) is ∼ ε/α as advertised
in (1.8).

(iii) All numerical constants are explicitly “computed” during the proof. A complete list of them,
including the definitions of C∗ and C, is given in Appendix A.

(iv) The torus Tω,ε is Kolmogorov non-degenerate. More precisely, H can be put in Kolmogorov’s
normal form with non-degenerate quadratic part: there exists a symplectic transformation φ
close to φe, for which

H ◦ φ(y, x) = E + ω · y +Q(y, x) such that det〈Qyy(0, ·)〉 �= 0;

for details, see Appendix B.

(v) The value of ε∗ in (2.4) is not optimal. In Remark 2 a better (still not optimal) value is given.

(vi) The dependence of the invariant torus Tω,ε on ε is analytic. More generally, if H = H(y, x; z)
is real-analytic also in z ∈ V , V being some open set in C

m, and all the above norms are
uniform in z ∈ V , then the invariant torus Tω,z is real-analytic in V . This is an obvious
corollary of Weierstrass’s theorem on uniform limits of holomorphic functions, in view of the
uniformity of the limits in the proof.

3. PROOF

3.1. Arnold’s Scheme: the Basic Step

The next Lemma describes Arnold’s basic KAM step, on which Arnold’s scheme is based. Its
quantitative formulation involves a few constants, which are defined as follows:

ν := τ + 1 , C0 := 4
√
2

(
3

2

)2ν+d ∫

Rd

(
|y|ν1 + |y|2ν1

)
e−|y|1dy ,

C1 := 2

(
3

2

)ν+d ∫

Rd

|y|ν1 e−|y|1dy ,

C2 := 23dd , C3 :=
(
d2C2

1 + 6dC1 + C2

)√
2 , C4 := max

{
6d2C0, C3

}
.

Lemma 1. Let8) r > 0, 0 < 2σ < s � 1, y ∈ R
d, K,P ∈ Ar,s(y) and consider the Hamiltonian

parametrised by ε > 0

H(y, x; ε) := K(y) + εP (y, x).

Assume that

detKyy(y) �= 0 , ω := Ky(y) ∈ Δτ
α ,

8)K and P stand here for generic real-analytic Hamiltonians which later on will, respectively, play the roles of Kj

and Pj , and y, r, the roles of yj , rj in the iterative step.
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and let K, T and P be positive numbers such that

‖Kyy‖r,y � K, ‖T‖ � T, ‖P‖r,s,y � P, (3.1)

where T := Kyy(y)
−1.

Now let λ, ř, r̄ be positive numbers such that:

λ � log
(
σ2ν+d α2

εPK

)
, ř � 5

24d

r

TK
, r̄ � min

{
ř,

α

2dKκτ+1

}
, (3.2)

where

κ :=
4λ

σ
.

Finally, define

L := Pmax
{40dT2K

r2
σ−(ν+d),

C4√
2
max

{
1,

α

rK

} K

α2
σ−2(ν+d)

}
, s̄ := s− 2

3
σ, s′ := s− σ .

Then, if

εL � σ

3
, (3.3)

there exist y′ ∈ R
d and a symplectic change of coordinates

φ′ = id + εφ̃ : Dr̄/2,s′(y
′) → D2r/3,s̄(y), (3.4)

such that
{
H ◦ φ′ =: H ′ =: K ′ + ε2P ′ ,

∂y′K
′(y′) = ω, det ∂2

y′K
′(y′) �= 0,

(3.5)

where

K ′ := K + εK̃ := K + ε
〈
P (y′, ·)

〉
.

Moreover, letting
(
∂2
y′K

′(y′)
)−1

=: T + ε T̃ ,

the following estimates hold:

‖∂2
y′K̃‖r/2,y � KL , |y′ − y| � 8εTP

r
, ‖T̃‖ � TL , (3.6)

max{‖∂xπ2φ̃‖s′ , ‖W φ̃‖r̄/2,s′,y′} � d−2σd−1L, ‖P ′‖r̄/2,s′,y′ � LP, (3.7)

where

W :=

⎛

⎜⎝
max{K

α , 1r} �d 0

0 �d

⎞

⎟⎠ .

Observe that

σ−2(ν+d)ε PK/α2 � (
√
2/C4) ε L,

so that (3.3) implies

εPK

α2
<

σ2ν+d

e
,

which, in particular, implies that λ > 1 and κ > 4.
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Proof.

Step 1: Construction of Arnold’s transformation

We seek a near-identity symplectic transformation

φ′ : Dr1,s1(y
′) → Dr,s(y),

with Dr1,s1(y
′) ⊂ Dr,s(y), generated by a generating function9) of the form y′ · x+ εg(y′, x), so that

φ′ :

{
y = y′ + εgx(y

′, x)

x′ = x+ εgy′(y
′, x),

(3.8)

such that
{
H ′ := H ◦ φ′ = K ′ + ε2P ′ ,

∂y′K
′(y′) = ω, det ∂2

y′K
′(y′) �= 0.

(3.9)

By Taylor’s formula, we get10)

H(y′ + εgx(y
′, x), x) = K(y′) + εK̃(y′) + ε

[
K ′(y′) · gx + pκP (y′, ·)− K̃(y′)

]

+ ε2
(
P (1) + P (2) + P (3)

)
(y′, x)

= K ′(y′) + ε
[
K ′(y′) · gx + pκP (y′, ·)− K̃(y′)

]
+ ε2P+(y

′, x),

(3.10)

with κ > 0, which will be chosen large enough so that P (3) = O(ε) and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P+ := P (1) + P (2) + P (3)

P (1) :=
1

ε2
[
K(y′ + εgx)−K(y′)− εKy(y

′) · gx
]
=

∫ 1

0
(1− t)Kyy(εtgx) · gx · gxdt

P (2) :=
1

ε

[
P (y′ + εgx, x)− P (y′, x)

]
=

∫ 1

0
Py(y

′ + εtgx, x) · gxdt

P (3) :=
1

ε

[
P (y′, x)− pκP (y′, ·)

]
=

1

ε

∑

|n|1>κ

Pn(y
′) ein·x.

(3.11)

By the non-degeneracy condition detKyy(y) �= 0, for ε small enough (to be made precise below),

det ∂2
y′K

′(y) �= 0 and, therefore, by the standard inverse function theorem (see, e. g., Lemma 5),

there exists a unique y′ ∈ Dr(y) such that the second part of (3.9) holds. In view of (3.10), in order

to get the first part of (3.9), we need to find g such that Ky(y
′) · gx + pκP (y′, ·)− K̃(y′) vanishes;

such a g is indeed given by

g :=
∑

0<|n|1�κ

−Pn(y
′)

iKy(y′) · n
ein·x, (3.12)

provided that

Ky(y
′) · n �= 0, ∀ 0 < |n|1 � κ, ∀ y′ ∈ Dr1(y

′) (⊂ Dr(y)) . (3.13)

But, in fact, since Ky(y) is rationally independent, then, given any κ > 0, there exists r̄ � r such
that

Ky(y
′) · n �= 0, ∀ 0 < |n|1 � κ, ∀ y′ ∈ Dr̄(y). (3.14)

9)Following the classical approach of Arnold, we use generating functions to construct symplectic transformations.
Of course, one could also use the equivalent method of time-one Hamiltonian flows (or Lie series).

10)Recall (§2) that 〈·〉 stands for the average over Td and that pN is the Fourier projection onto modes with |k|1 � N .
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The last step is to invert the function x 
→ x+ εgy′(y
′, x) in order to define P ′. By the inverse

function theorem, for ε small enough, the map x 
→ x+ εgy′(y
′, x) admits a real-analytic inverse of

the form

ϕε(y
′, x′) = x′ + εϕ̃ε(y

′, x′), (3.15)

so that Arnold’s symplectic transformation is given by

φ′ : (y′, x′) 
→
{
y = y′ + εgx(y

′, ϕε(y
′, x′))

x = ϕε(y
′, x′) = x′ + εϕ̃ε(y

′, x′).
(3.16)

Hence, (3.9) holds with

P ′(y′, x′) := P+

(
y′, ϕε(y

′, x′)
)
. (3.17)

Step 2: Quantitative estimates
First of all, notice that from the definitions of r̄ and ř it follows that

r̄ � ř � 5r

24d
<

r

2
. (3.18)

We begin by extending the “Diophantine condition w.r.t. Ky” uniformly to Dr̄(y) up to order κ.
Indeed, by the mean value inequality and Ky(y) = ω ∈ Δτ

α, we get, for any 0 < |n|1 � κ and any
y′ ∈ Dr̄(y),

|Ky(y
′) · n| = |ω · n+ (Ky(y

′)−Ky(y)) · n| � q|ω · n|
(
1− d

‖Kyy‖r̄,y
|ω · n| |n|1r̄

)

� q
α

|n|τ1

(
1− dK

α
|n|τ+1

1 r̄

)
� q

α

|n|τ1

(
1− dK

α
κτ+1r̄

)
� α

2|n|τ1
, (3.19)

so that, by Fourier estimates (Lemma 4(ii)), we have

‖gx‖r̄,s̄,y def
= sup

Dr̄,s̄(y)

∣∣∣∣∣∣

∑

0<|n|1�κ

nPn(y
′)

Ky(y′) · n
ein·x

∣∣∣∣∣∣
�

∑

0<|n|1�κ

‖Pn‖r̄,s̄,y
|Ky(y′) · n|

|n|1 e(s−
2
3
σ)|n|1

�
∑

0<|n|1�κ

P e−s|n|1 2|n|
ν
1

α
e(s−

2
3
σ)|n|1 � 2P

α

∑

n∈Zd

|n|ν1 e−
2
3
σ|n|1

� 2P

α

∫

Rd

|y|ν1 e−
2
3
σ|y|1dy =

(
3

2σ

)ν+d 2P

α

∫

Rd

|y|ν1 e−|y|1dy = C1
P

α
σ−(ν+d),

‖∂y′g‖r̄,s̄,y
def
= sup

Dr̄,s̄(y)

∣∣∣∣∣∣

∑

0<|n|1�κ

(
∂yPn(y

′)

Ky(y′) · n
− Pn(y

′)
Kyy(y

′)n

(Ky(y′) · n)2

)
ein·x

∣∣∣∣∣∣

�
∑

0<|n|1�κ

sup
Dr̄(y)

(
‖(Py)n‖r̄,s,y
|Ky(y′) · n|

+ ‖Pn‖r,s,y
‖Kyy‖r,y|n|1
|Ky(y′) · n|2

)
e(s−

2
3
σ)|n|1

(3.1)+(3.19)

�
∑

0<|n|1�κ

(
P

r − r̄
e−s|n|1 2|n|

τ
1

α
+ P e−s|n|1K|n|1

(
2|n|τ1
α

)2
)

e(s−
2
3
σ)|n|1

(3.18)

� 4P

α2r

∑

0<|n|1�κ

(
|n|τ1α+ rK|n|2τ+1

1

)
e−

2
3
σ|n|1

� max {α, rK} 4P

α2r

∑

0<|n|1�κ

(
|n|τ1 + |n|2τ+1

1

)
e−

2
3
σ|n|1

� max
{
1,

α

rK

} 4PK

α2

∫

Rd

(
|y|τ1 + |y|2τ+1

1

)
e−

2
3
σ|y|1dy
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=

(
3

2σ

)2τ+d+1

max
{
1,

α

rK

} 4PK

α2

∫

Rd

(
|y|τ1 + |y|2τ+1

1

)
e−|y|1dy

� C0√
2
max

{
1,

α

rK

} PK

α2
σ−(2τ+d+1) < L,

where

L := 6
C0√
2
max

{
1,

α

rK

} PK

α2
σ−(2ν+d+1) .

Analogously,

‖∂2
y′xg‖r̄,s̄,y �

C0√
2
max

{
1,

α

rK

} PK

α2
σ−(2ν+d) � L,

and, by Cauchy’s estimate (Lemma 4(i)), we get

‖∂3
y′xxg‖r̄,s′′,y �

6C0√
2
max

{
1,

α

rK

} PK

α2
σ−(2ν+d+1) = L, (3.20)

where

s′′ := s− 5

6
σ and ‖∂3

y′xxg‖r̄,s′′,y := sup
Dr̄,s′′ (y)

max{|∂3
y′ixjxk

g| : i, j, k = 1, · · · , d}.

Also,

‖K̃y‖r/2,y = ‖〈Py〉‖r/2,y � ‖Py‖r/2,s̄,y �
P

r − r
2

� 2P

r
,

‖∂2
y′K̃‖r/2,y = ‖〈Pyy〉‖r/2,y � ‖Pyy‖r/2,s̄,y �

P

(r − r
2)

2
� 4P

r2
� KL .

Next, we prove the existence and uniqueness of y′ in (3.9). Let Uε := {η ∈ C : |η| < 2ε } and consider
the map

F : Dř(y)× Uε −→ C
d

(y, η) 
−→ Ky(y) + ηK̃y′(y)−Ky(y).

Then

• F (y, 0) = 0, Fy(y, 0)
−1 = Kyy(y)

−1 = T .

• For any (y, η) ∈ Dř(y)× Uε,

‖�d − TFy(y, η)‖ � ‖�d − TKyy‖+ |η| ‖T‖ ‖∂2
y′K̃‖r/2,y

� d‖T‖‖Kyyy‖ř,yř + 2εT
4P

r2

� dTK
ř

r − ř
+ 8T

εP

r2

(3.18)

� dTK
2ř

r
+ ε

8TP

r2

� 2dTK
r̄

r
+

1

2
εL

(3.18)+(3.3)

� 5

12
+

σ

6
� 5

12
+

1

12
=

1

2
.
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• Recalling σ � 1
2 , we have

2‖T‖‖F (y, ·)‖2ε ,0 = 2‖T‖ sup
Uε

|ηK̃y′(y)| � 2T
4εP

r
� 5 · 2ν+d

8d

r

TK
σν+dε L

= 3 · 2d (2σ)ν ř σdεL � 3 · 2d ř σdεL (3.21)

(3.3)

� 3 ř (2σ)d
σ

3
� ř

2
.

Therefore, we can apply the inverse function theorem (Lemma 5). Hence, there exists a function
g : Uε → Dř(y) such that its graph coincides with F−1({0}). In particular, y′ := g(ε) is the unique
y ∈ Dř(y) satisfying 0 = F (y, ε) = ∂yK

′(y)− ω, i. e., the second part of (3.9). Moreover,

|y′ − y| � 2‖T‖‖F (y, ·)‖2ε ,0 �
8εTP

r

(3.21)

� 3 · 2d ř σdεL � ř

2
, (3.22)

so that

D ř
2
(y′) ⊂ Dř(y). (3.23)

Next, we prove that ∂2
yK

′(y′) is invertible. Indeed, by Taylor’ formula, we have

∂2
yK

′(y′) = Kyy(y) +

∫ 1

0
Kyyy(y + tεỹ) · εỹdt+ εK̃yy(y

′)

= T−1

(
�d + εT

(∫ 1

0
Kyyy(y + tεỹ) · ỹdt+ K̃yy(y

′)

))

=: T−1(�d + εA),

and, by Cauchy’s estimate,

ε ‖A‖ � ‖T‖
(
d‖Kyyy‖r/2,yε |y′ − y|+ ε ‖∂2

y′K̃‖r/2,y
)

� ‖T‖
(
d‖Kyy‖r,y
r − r

2

ε |y′ − y|+ ε ‖K̃yy‖r/2,y
)

(3.22)

� T

(
2dK

r

8εTP

r
+

4εP

r2

)
� 4εTP

r2
(4dTK+ 1)

� 20dεT2KP

r2
� 1

2
εL

(3.3)

� σ

6
� 1

2
.

Hence, ∂2
y′K

′(y′) is invertible with

∂2
y′K

′(y′)−1 = (�d + εA)−1T = T +
∑

k�q1

(−ε)kAkT =: T + εT̃ ,

and

ε ‖T̃ ‖ � ε
‖A‖

1− ε ‖A‖‖T‖ � 2ε ‖A‖‖T‖ � εLT � 2
σ

6
T = T

σ

3
.

Next, we prove the estimate on P+. We have

ε ‖gx‖r̄,s̄,y � εC1
P

α
σ−(τ+d+1) � ε

r

3
L

(3.3)

� r

3

σ

3
� r

3
,

so that, for any (y′, x) ∈ Dr̄,s̄(y),

|y′ + εgx(y
′, x)− y| � r̄ +

r

3
<

r

8d
+

r

3
<

2r

3
< r ,
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and thus

‖P (1)‖r̄,s̄,y � d2‖Kyy‖r,y‖gx‖2r̄,s̄,y � d2K

(
C1

P

α
σ−(ν+d)

)2

= d2C2
1

KP2

α2
σ−2(ν+d),

‖P (2)‖r̄,s̄,y � d‖Py‖ 5r
6
,s̄,y‖gx‖r̄,s̄,y � d

6P

r
C1

P

α
σ−(ν+d) = 6dC1

P2

αr
σ−(ν+d),

and by Fourier estimates (Lemma 4(ii)), we have

ε ‖P (3)‖r̄,s−σ
2
,y �

∑

|n|1>κ

‖Pn‖r̄,y e(s−
σ
2
)|n|1 � P

∑

|n|1>κ

e−
σ|n|1

2

� P e−
κσ
4

∑

|n|1>κ

e−
σ|n|1

4 � P e−
κσ
4

∑

|n|1>0

e−
σ|n|1

4

= P e−
κσ
4

⎛

⎝
(
∑

k∈Z
e−

σ|k|
4

)d

− 1

⎞

⎠ = P e−
κσ
4

⎛

⎝
(
1 +

2 e−
σ
4

1− e−
σ
4

)d

− 1

⎞

⎠

= P e−
κσ
4

((
1 +

2

e
σ
4 − 1

)d

− 1

)
� P e−

κσ
4

((
1 +

2
σ
4

)d

− 1

)

� σ−dP e−
κσ
4

(
(σ + 8)d − σd

)
� d8dσ−dP e−

κσ
4

= C2σ
−dP e−λ

(3.2)

� C2σ
−dPσ−(2ν+d) εPK

α2
= C2P

εPK

α2
σ−2(ν+d).

Hence,

‖P+‖r̄,s̄,y � ‖P (1)‖r̄,s̄,y + ‖P (2)‖r̄,s̄,y + ‖P (3)‖r̄,s̄,y

� d2C2
1

KP2

α2
σ−2(ν+d) + 6dC1

P2

αr
σ−(ν+d) + C2P

εPK

α2
σ−2(ν+d)

=
(
d2C2

1rK+ 6dC1ασ
ν+d + C2rK

) P2

α2r
σ−2(τ+d+1)

�
(
d2C2

1 + 6dC1 + C2

)
max {α, rK} P2

α2r
σ−2(τ+d+1)

� C3√
2
max

{
1,

α

rK

} P2K

α2
σ−2(ν+d) � LP.

Finally, we prove that, given y′ ∈ Dr̄(y), the function ψε(x) = x+ εgy′(y
′, x) has an analytic

inverse11). Consider the Banach space

B :=

{
u ∈ C1(Td

s′ ,C
d) : ‖u‖s′,1 := max

{
‖u‖s′ , ‖∂xu‖s′

}
� L

}
.

For any u ∈ B and any x′ ∈ T
d
s′ , we have Im

(
x′+ εu(x′)

)
� s′ + ε ‖u‖s′ � s′+ εL

(3.3)

� s′ +σ/6 = s′′.
Hence, the functional f : B 	 u 
→ −gy′(y

′, id + εu) is well-defined and smooth. Moreover, for any
u ∈ B,

‖f(u)‖s′ � ‖gy′‖W ′′ � L, ‖∂x(f(u))‖s′ � ‖gy′x‖W ′′ · |ε|‖∂xu‖s′ � L · |ε|L
(3.3)

� L · σ
6
< L.

11)Observe that ψε(id+ εu) = id is equivalent to u = −gy′(y′, id+ εu), i. e., u is a fixed point of the map

u �→ −gy′(y′, id+ εu).
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Thus, f : B → B. Furthermore, for any u1, u2 ∈ B,

‖f(u1)− f(u2)‖s′,1 � (1 + d2εL)εL · ‖u1 − u2‖s′,1
(3.3)

� 2
σ

3d2
· ‖u1 − u2‖s′,1 <

1

2
‖u1 − u2‖s′,1,

Hence, f is a contraction. Therefore, by the Banach –Caccioppoli fixed-point theorem, f has a
unique fixed point ϕ̃ε ∈ B; ϕ̃ε is obtained as the uniform limit lim

n
fn(0) (as 0 ∈ B). Thus, as f0 = f

is real-analytic on Dr̄(y)× T
d
s′, by Weierstrass’s theorem on the uniform convergence of analytic

functions, ϕ̃ε is real-analytic on Dr̄,s′(y). The rest of the claims on φ′ and P ′ are then obvious. �

3.2. Arnold’s Scheme: Iteration

Let d, τ , H, K, P , T , ε, α, r, s, s∗, P, K, T, θ, ε be as in Theorem A. Set K0 := K , P0 :=
P , H0 := H. Then, starting from H0, we shall iterate infinitely many times Lemma 1.
The very first step being quite different from all the others, it shall be done separately.

Before starting, let us give some definitions12).

ε0 := ε , θ0 := θ , r0 := r , T0 := T , K0 := K , P0 := P ,

σ0 := (s− s∗)/2 , λ0 := log ε−1 , κ0 := 4σ−1
0 λ0 ,

C5 :=
3 · 25d

5
, C6 := max

{
22ν , C5

}
, C7 := 3d · 26ν+2d+3

√
2max

{
640d2, C4

}
,

C8 :=
(
2−dC6

) 1
8
, C9 := 3max

{
80d

√
2 , C4

}
,

λ∗ := C7 σ
−(4ν+2d+1)
0 λ2ν

0 θ2, θ∗ := 22ν+2d+1 C2
6 θ

2.

ε̂0 := C9 σ
−2(ν+d)−1
0 ε0 θ0, P1 :=

ε̂0P0

ε
.

We also set, for j � 0,

σj :=
σ0
2j

, sj+1 := sj − σj = s∗ +
σ0
2j

, s̄j := sj −
2σi
3

, κj := 4jκ0,

Kj+1 := K0

j∏

k=0

(1 +
σk
3
) � K0 e

2σ0
3 � K0

√
2 , Tj+1 := T0

j∏

k=0

(1 +
σk
3
) � T0

√
2,

rj+1 :=
1

2
min

{
α

2d
√
2K0κνj

,
5

48d

rj
θ0

}
, Wj := diag

(
max

{
Kj

α
,
1

rj

}
�d,�d

)
,

Lj := Pimax

{
80d

√
2 T0 θ0
r2j

σ
−(ν+d)
j , C4 max

{
1,

α

rjKj

}
K0

α2
σ
−2(ν+d)
j

}
.

Observe that

W0 = diag
(
Kα−1

�d,�d
)
, sj ↓ s∗ , rj ↓ 0 , e ε0 � ε̂0 .

Note also that, since ε̂0 is proportional to ε, P1 is independent of ε.

3.2.1. First step

Lemma 2. Assume

α � r0
T0

and ε̂0 � 1 . (3.24)

12)Recall the definitions of ν and C4 given at the beginning of § 3.1.
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Then there exist y1 ∈ Dr0(y0) and a real-analytic symplectic transformation

φ0 : Dr1,s1(y1) → Dr0,s0(y0) , (3.25)

such that, for H1 := H0 ◦ φ0 , we have
{
H1 =: K1 + ε2P1 ,

∂y1K1(y1) = ω , det ∂2
y1K1(y1) �= 0

(3.26)

and

|y1 − y0| �
8εT0P0

r0
, (3.27)

‖K1‖r1/4,y1 � K1 , ‖T1‖ � T1 , T1 := ∂2
y1K1(y1)

−1 , (3.28)

ε2‖P1‖r1,s1,y1 � ε2P1 , (3.29)

max
{
‖W0(φ0 − id)‖r1,s1,y1 , ‖∂xπ2(φ0 − id)‖s1

}
� d−2σd−1

0 εL0 . (3.30)

Proof. Since

κ0
(3.24)

� 4σ−1
0 � 8 (3.31)

and

α

2d
√
2K0kν0

(3.24)+(3.31)

� 1

2d · 8ν
√
2K0

r0
T0

<
5

48d

r0
θ0

,

we get

r1 =
1

2
min

{
α

2d
√
2K0κ

ν
0

,
5

48d

r0
θ0

}
=

α

4d
√
2K0κ

ν
0

. (3.32)

Thus,

εL0(3σ
−1
0 ) � 3εP0 max

{
80d

√
2 T0 θ0
r20

σ
−(ν+d)
0 , C4max

{
1,

α

r0K0

}
K0

α2
σ
−2(ν+d)
0

}
σ−1
0

� 3max

{
80d

√
2 θ0

α T0

r0

α

r0K0
, C4max

{
1,

α

r0K0

}}
σ
−2(ν+d)−1
0

K0εP0

α2

(3.24)

� 3max
{
80d

√
2, C4

}
σ
−2(ν+d)−1
0 ε0 θ0 = ε̂0

(3.24)

� 1. (3.33)

Therefore, Lemma 1 implies Lemma 2. �

3.2.2. Subsequent steps, iteration and convergence

For j � 1, define

εj :=
K0 ε

2jPj

α2
, Pj+1 := λ∗θ

j−1
∗

K0Pj
2

α2
, ε̂j := λ∗ θ

j
∗ εj.

Thus, for any j � 1, one has

ε̂j+1 = λ∗ θ
j+1
∗ εj+1 = λ∗ θ

j+1
∗

K0ε
2j+1

Pj+1

α2
= λ∗ θ

j+1
∗

K0ε
2j+1

α2
λ∗θ

j−1
∗

K0Pj
2

α2

=
(
λ∗ θ

j
∗ εj
)2

= ε̂2j ,

i. e.,

ε̂j = ε̂2
j−1

1 .

Once the first step is completed, all the following steps do not need any other condition. Actually,
the first condition in (3.24) is no longer necessary and the second condition needs to be strengthened
merely a little bit more. To be precise, the following holds.
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Lemma 3. Assume (3.26) ÷ (3.29) and

C8 θ
1
8
0 ε̂1 < 1 . (3.34)

Then one can construct a sequence of symplectic transformations

φj−1 : Drj ,sj(yj) → Drj−1,sj−1(yj−1), j � 2 (3.35)

so that

Hj := Hj−1 ◦ φj−1 =: Kj + ε2
j
Pj (3.36)

converges uniformly.

More precisely, ε2
j−1

Pj−1, φ
j−1 := φ1 ◦ φ2 ◦ · · · ◦ φj−1, Kj−1, yj−1 converge uniformly on {y∗}×T

d
s∗

to, respectively, 0, φ∗, K∗, y∗ and H1◦φ∗=K∗ with φ∗ real-analytic for x ∈ T
d
s∗ and det ∂2

yK∗(y∗) �=0.
Finally, the following estimates hold for any i � 1:

ε2
i‖Pi‖ri,si,yi � ε2

i
Pi , (3.37)

|yi+1 − yi| �
8
√
2T0ε

2iPi

ri
, (3.38)

|W1(φ
∗ − id)| � 2σd

0 ε̂1
3d2 θ∗

on {y∗} × T
d
s∗ . (3.39)

Remark 1. Notice that P1 is actually independent of ε (and, in particular, of log ε−1), while Pj

for j � 2 does depend on log ε−1 through λ∗. This is a crucial point, which allows us, in the end,
to get optimal bounds on the displacement of the persistent invariant torus from the unperturbed
one.

Proof. First of all, notice that, for any i � 1,

ri+1 = min

{
α

4d
√
2K0κ

ν
i

,
5

96d

ri
θ0

}
= min

{
r1
4iν

,
5

96dθ0
ri

}

= min

{
r1
4νi

,
5

96dθ0

r1
4ν(i−1)

,

(
5

96dθ0

)2

ri−1

}

...

= min

{
r1
4νi

,
5

96dθ0

r1

4ν(i−1)
, · · · ,

(
5

96dθ0

)i

r1

}

=
r1
4νi

min

{(
5 · 4ν
96dθ0

)0

, · · · ,
(
5 · 4ν
96dθ0

)i
}

=
r1
4νi

mini
{
5 · 4ν
96dθ0

, 1

}
= r1mini

{
1

22ν
,

5

96dθ0

}
=

r1
ai1

,

where

a1 := max

{
22ν ,

96dθ0
5

}
� max

{
22ν ,

96d

5

}
· θ0 = C6 θ0 . (3.40)

For a given j � 2, let (Pj) be the following assertion:

there exist j − 1 symplectic transformations13)

φi : Dri+1,si+1(yi+1) → D2ri/3,s̄i(yi), for 1 � i � j − 1, (3.41)

13)Compare (3.4).
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and j − 1 Hamiltonians Hi+1 = Hi ◦ φi = Ki+1 + ε2
i+1

Pi+1 real–analytic on Dri+1,si+1(yi+1) such
that, for any 1 � i � j − 1,

⎧
⎨

⎩

‖∂2
yKi‖ri,yi � Ki , ‖Ti‖ � Ti , ∂yKi(yi) = ω , ∂2

yKi(yi) �= 0 ,

‖Pi‖ri,si,yi � Pi , κi � 4σ−1
i log

(
σ2ν+d
i ε−1

i

)
, ε2

i
Li �

σi
3

(3.42)

and ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂yKi+1(yi+1) = ω , ∂2
yKi+1(yi+1) �= 0 , |yi+1 − yi| �

8
√
2T0ε

2iPi

ri
,

‖Ti+1‖ � ‖Ti‖+ Tiε
2iLi , ‖Ki+1‖ri+1,yi+1 � ‖Ki‖ri,yi + ε2

i
Pi ,

‖∂2
yKi+1‖ri+1,yi+1 � ‖∂2

yKi‖ri,yi + Kiε
2iLi ,

max
{
‖Wi(φi − id)‖ri+1,si+1,yi+1 , ‖∂xπ2(φi − id)‖si+1

}
� d−2 σd−1

i ε2
i
Li ,

‖Pi+1‖ri+1,si+1,yi+1 � PiLi .

(3.43)

Assume (Pj) for some j � 2 and let us check (Pj+1). Fix 1 � i � j − 1. Then

‖∂2
yKi+1‖ri+1,yi+1

(3.43)

� ‖∂2
yKi‖ri,yi + Kiε

2iLi
(3.42)

� Ki + Ki
σi
3

= Ki+1 < K0

√
2

and, similarly,
‖Ti+1‖ � Ti+1,

which proves the two first relations in (3.42) for i = j. Also,

α

riKi
>

α

r1K0

√
2
= 4dκν0

(3.31)
> 1 , (3.44)

so that

ε2
i
Li(3σ

−1
i ) = 3ε2

i
Pi max

{
80d

√
2T0θ0
r2i

σ
−(ν+d)
i , C4 max

{
1,

α

riKi

}
K0

α2
σ
−2(ν+d)
i

}
σ−1
i

(3.44)

� 3ε2
i
Pimax

{
80d

√
2T0θ0
r2i

, C4
1

αri

}
σ
−2(ν+d)−1
i

= 3max

{
80d

√
2T0θ0

α

ri
, C4

}
σ
−2(ν+d)−1
i

ε2
i
Pi

αri

= 3max
{
640d2θ20a

i−1κν0 , C4

}
σ
−2(ν+d)−1
i

ε2
i
Pi

α2
4d

√
2K0κ

ν
0a

i−1

(3.31)

� 12d
√
2max

{
640d2 , C4

}
σ
−2(ν+d)−1
i

K0ε
2iPi

α2
θ20a

2(i−1)κ2ν0

(3.40)

� 12d
√
2max

{
640d2 , C4

}
σ
−2(ν+d)−1
i

K0ε
2iPi

α2
θ2i0 C

2(i−1)
6 κν0

= 3d · 26ν+2d+3
√
2max

{
640d2 , C4

}
σ
−(4ν+2d+1)
0

(
22ν+2d+1C2

6θ
2
0

)i−1

× K0ε
2iPi

α2

(
log ε−1

0

)2ν
θ20

� C7σ
−(4ν+2d+1)
0

(
log ε−1

0

)2ν
θ20 θ

i−1
∗

K0ε
2iPi

α2
= λ∗ θ

i−1
∗ εi =

ε̂i
θ∗

=
ε̂2

i−1

1

θ∗
(3.34)

� 1

θ∗
< 1 .
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Moreover,

ε2
i
Li < λ∗ θ

i−1
∗ εi .

Thus, by the last relation in (3.43), for any 1 � i � j − 1,

ε2
i+1‖Pi+1‖ri+1,si+1,yi+1 � ε2

i
Li ε

2iPi < λ∗θ
i−1
∗ εi ε

2iPi = ε2
i+1

Pi+1 ,

which proves the fourth relation in (3.42) for i = j. Furthermore, by exactly the same computation
as above, one gets

ε2
i+1

Li+1(3σ
−1
i+1) �

ε̂i+1

θ∗
=

ε̂2
i

1

θ∗
< 1 ,

which proves the last relation in (3.42) for i = j. It remains only to check that the fifth relation
in (3.42) holds as well for i = j in order to apply Lemma 1 to Hi, 1 � i � j and get (3.43) and,

consequently, (Pj+1). In fact, we have14)

λ∗ θ∗ ε
2
0 < λ∗ θ∗ ε0 ε̂0 = ε̂1 � C7 σ

−(4ν+2d+1)
0 θ∗ θ

2
0 ε̂0 , (3.45)

so that

4σ−1
j log

(
σ2ν+d
j ε−1

j

)
� 4σ−1

j log
(
ε−1
j

)
= 4σ−1

j log
(
λ∗θ

j
∗ε̂

−2j−1

1

)

(3.45)

� 4σ−1
j log

(
λ∗θ

j
∗(λ∗θ∗ε

2
0)

−2j−1
)
� 4σ−1

j log
(
ε−2j

0

)

= 4j · 4σ−1
0 log

(
ε−1
0

)
= κj .

To finish the proof of the induction, i.e., to construct an infinite sequence of Arnold’s transfor-

mations satisfying (3.42) and (3.43) for all i � 1, one needs only to check (P2). Thanks to15)

(3.26) ÷ (3.29), we just need to check the two last inequalities in (3.42)i=1. But, in fact, this is
contained in the above computation. Then we apply Lemma 1 to H1 to get (3.41)i=1 and (3.43)i=1,

which achieves the proof of (P2).
Next, we prove that φj is convergent by proving that it is a Cauchy sequence. For any j � 4, we

have, using again Cauchy’s estimate (and noting that 2i−1 � i, ∀ i � 0),

‖Wj−1(φ
j−1 − φj−2)‖rj ,sj,yj = ‖Wj−1φ

j−2 ◦ φj−1 −Wj−1φ
j−2‖rj ,sj,yj

(3.41)

� ‖Wj−1Dφj−2W−1
j−1‖2rj−1/3,sj−1,yj−1

‖Wj−1(φj−1 − id)‖rj ,sj ,yj
(3.43)

� max

(
rj−1

3

rj−1
,

3

2σj−1

)
‖Wj−1φ

j−2‖rj−1,sj−1,yj−1×

× ‖Wj−1(φj−1 − id)‖rj ,sj,yj

=
3

2σj−1
‖Wj−1φ

j−2‖rj−1,sj−1,yj−1 ‖Wj−1(φj−1 − id)‖rj ,sj ,yj

� 1

2
‖Wj−1φ

j−2‖rj−1,sj−1,yj−1 · σd
j−1

(
ε2

j−1
Lj−13σ

−1
i−1

)

� 1

2
‖Wj−1φ1‖r2,s2,y2 · σd

j−1 ε̂j−1

� 1

2

(
j−2∏

i=1

‖Wi+1W
−1
i ‖
)
‖W1φ1‖r2,s2,y2 · σd

j−1 ε̂j−1

14)Notice that (log t)2s � t1/2 , ∀ t � e, ∀ s � 1/4, so that ε0(log ε
−1
0 )2ν

(3.34)

� √
ε0 � e−1/2 < 1, which in turn

proves the r.h.s. inequality in (3.45).
15)Observe that for j = 2, i = 1.
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(3.44)
=

1

2

(
j−2∏

i=1

ri
ri+1

)
‖W1φ1‖r2,s2,y2 · σd

j−1 ε̂j−1

=
r1

2rj−1
‖W1φ1‖r2,s2,y2 · σd

j−1 ε̂j−1

(3.40)

� 1

2
σd
3 (C6 θ0)

2 ‖W1φ1‖r2,s2,y2 ·
(
2−dC6 θ0

)j−4
· ε̂2

j−2

1

� 1

2
σd
3 (C6 θ0)

2 ‖W1φ1‖r2,s2,y2 ·
(
2−dC6 θ0

)2j−5

· ε̂2
j−2

1

=
1

2
σd
3 (C6 θ0)

2 ‖W1φ1‖r2,s2,y2 ·
((

2−dC6 θ0

) 1
8
ε̂1

)2j−2

=
1

2
σd
3 (C6 θ0)

2 ‖W1φ1‖r2,s2,y2 ·
(
C8 θ

1
8
0 ε̂1

)2j−2

.

Therefore, for any n � 1, j � q0,

‖W1(φ
n+j+1 − φn)‖rn+j+2,sn+j+2,yn+j+2 �

n+j∑

i=n

‖W1(φ
i+1 − φi)‖ri+2,si+2,yi+2

�
n+j∑

i=n

(
i∏

k=1

‖WkW
−1
k+1‖

)
‖Wi+1(φ

i+1 − φi)‖ri+2,si+2,yi+2

(3.44)
=

n+j∑

i=n

i∏

k=1

max

{
1,

rk+1

rk

}
‖Wi+1(φ

i+1 − φi)‖ri+2,si+2,yi+2

=

n+j∑

i=n

‖Wi+1(φ
i+1 − φi)‖ri+2,si+2,yi+2

� 1

2
σd
3 (C6 θ0)

2 ‖W1φ1‖r2,s2,y2 ·
√
ε

n+j∑

i=n

(
C8 θ

1
8
0 ε̂1

)2i

.

Hence, by (3.34), φj converges uniformly on {y∗} × T
d
s∗ to some φ∗, which is then a real-analytic

map in x ∈ T
d
s∗ .

To estimate |W0(φ
∗ − id)| on {y∗} × T

d
s∗, observe that, for i � 1,

σd
i ε2

i
Li �

σd+1
0

3 · 2i(d+1)

ε̂2
i−1

1

θ∗
� σd+1

0

3 · 2(d+1)iθ∗
ε̂i1 =

(2σ0)
d+1

3θ∗

( ε̂1
2d+1

)i+1

and therefore
∑

i�1

σd
i ε2

i
Li �

(2σ0)
d+1

3θ∗

∑

i�1

( ε̂1
2d+1

)i
� 2σd+1

0 ε̂1
3 θ∗

.

Moreover, for any i � 1,

‖W1(φ
i − id)‖ri+1,si+1,yi+1 � ‖W1(φ

i−1 ◦ φi − φi)‖ri+1,si+1,yi+1 + ‖W1(φi − id)‖ri+1,si+1,yi+1

� ‖W1(φ
i−1 − id)‖ri,si,yi + (

i−1∏

j=0

‖WjW
−1
j+1‖)‖Wi(φi − id)‖ri+1,si+1,yi+1

= ‖W1(φ
i−1 − id)‖ri,si,yi + ‖Wi(φi − id)‖ri+1,si+1,yi+1

= ‖W1(φ
i−1 − id)‖ri,si,yi + ‖Wi(φi − id)‖ri+1,si+1,yi+1

� ‖W1(φ
i−1 − id)‖ri,si,yi + d−2σd−1

i ε2
i
Li ,
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which iterated yields

‖W1(φ
i − id)‖ri+1,si+1,yi+1 � d−2

∑

k�1

σd−1
k ε2

k
Lk � 2σd

0 ε̂1
3d2 θ∗

.

Therefore, taking the limit over i completes the proof of (3.39) and hence of Lemma 3. �

CONCLUSION

We can now complete the proof of Theorem A. Let

C10 :=
(
2−(4ν+2d+1) + 2C7

)
C9/(3d

2) , C11 :=
1

25ν+3d−2
+

C7 C9

3 · 5 · 2ν+2 · d2 ·
√
2
,

C12 := 22ν+2d+1 C2
6 C7 C8 C9 , C13 := C10 + 2−(ν+1) C11 ,C14 := 22(3ν+2d+1)C12 ,

C15 := 18d3 + 70 , C := 26τ+3d+8C13 , C∗ := max
{
(4ν e−1)8ν/3C

2/3
14 , 2C15C

}
.

Observe that

(log t)4ν � (4ν e−1)4ν
√
t , ∀ t > 1. (3.46)

Then

C8 θ
1
8
0 ε̂1 = C14 θ

41/8 (s− s∗)
−2(3ν+2d+1) ε2(log ε−1)2ν

(3.46)

� (4ν e−1)4ν C14 θ
41/8 ε3/2 (s− s∗)

−2(3ν+2d+1)

<
(
C∗ θ

4 (s− s∗)
−(6ν+3d+2) ε

)3/2

(2.4)

� 1

and

ε̂0 < C∗ θ
4 (s− s∗)

−(6ν+3d+2) ε
(2.4)

� 1.

Hence, (2.4) implies the smallness conditions (3.24) and (3.34). Therefore, Lemmas 2 and 3 hold.

Now set φ∗ := φ0 ◦ φ∗ and observe that, uniformly on {y∗} × T
d
s∗ ,

|W0(φ∗ − id)| � |W0(φ0 ◦ φ∗ − φ∗)|+ |W0(φ
∗ − id)|

� ‖W0(φ0 − id)‖r1,s1,y1 + ‖W0W
−1
1 ‖ |W1(φ

∗ − id)|

� 1

d2
σd
0 εL0 +

2σd
0

3d2θ∗
ε̂1

(3.33)+(3.45)

� σd
0

3d2
ε̂0 +

2σd
0

3d2θ∗
C7 σ

−(4ν+2d+1)
0 θ∗ θ

2
0 ε̂0

�
(

1

3d224ν+2d+1
+

2C7

3d2

)
σ
−(4ν+d+1)
0 θ20 ε̂0 = C10 σ

−(6ν+3d+2)
0 θ30 ε0 =: γ .

Moreover, for any i � 1,

|yi − y0| �
i−1∑

j=0

|yj−1 − yj|
(3.27)+(3.38)

� 8T0εP0

r0
+

i−1∑

j=1

8
√
2T0ε

2jPj

rj

� 8T0εP0

r0
+
∑

j�1

rj
10dθ0

σν+d
j ε2

j
Lj �

8T0εP0

r0
+

r1
10dθ0

σν
1

∑

j�1

σd
j ε

2jLj

� 8T0εP0

r0
+

r1
10dθ0

σν
1

2σd+1
0 ε̂1
3θ∗

(2.4)+(3.45)

� C11 σ
−(5ν+3d+1)
0 θ20

ε P0

α
,

and then, passing to the limit, we get

|y∗ − y0| � C11 σ
−(5ν+3d+1)
0 θ20

ε P0

α
.
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Thus, the triangle inequality gives

sup
Td
s∗

|W0(φ∗ − φe)| � C13 σ
−(6ν+3d+2)
0 θ30 ε0 ,

which proves the bounds on ‖u∗‖ and ‖v∗‖ in (2.6). Let us now prove the bound on ∂xu∗ in (2.6). Set

ũj := ∂xπ2(φj − id), U j := ∂xπ2φ0 ◦ φj = (�d + ũ0) ◦ · · · ◦ (�d + ũj).

Then, for any j � 0, we have

‖U j‖si+1 � (1 + ‖ũ0‖s0) · · · (1 + ‖ũj‖sj )
(3.30)+(3.43)

� exp

⎛

⎝d−2
∑

k�0

σd−1
k ε2

k
Lk

⎞

⎠ � eγ ,

so that

‖U j+1 − U j‖s∗ = ‖U j(�d + ũj+1)− U j‖s∗ � ‖U j‖sj+1‖ũj+1‖sj+1

(3.30)+(3.43)

� eγd−2σd−1
j+1 ε2

j+1
Lj+1,

which implies

‖U j − �d‖s∗ � eγd−2
∑

k�0

σd−1
k ε2

k
Lk � γ eγ

(2.4)

� e γ
(2.4)

� 1

2

and then, letting j → ∞, we get the estimate on ∂xu∗. �
Remark 2. As it is easy to check, Theorem A holds under the milder condition ε � ε� where

ε� := max
{
ε > 0 : C14 θ

41
8 (s− s∗)

−2(3ν+2d+1) ε2
(
log ε−1

)2ν � 1 ,

and 2C (s− s∗)
−(6ν+3d+2) θ3 ε exp

(
C (s− s∗)

−(6ν+3d+2) θ3 ε
)
� 1
}
.

Notice that ε∗ < ε�.
Indeed, the condition

C14 θ
41
8 (s− s∗)

−2(3ν+2d+1) ε2
(
log ε−1

)2ν � 1

guaranties the convergence of Arnold’s scheme, while the condition

2C (s − s∗)
−(6ν+3d+2) θ3 ε exp

(
C (s− s∗)

−(6ν+3d+2) θ3 ε
)
� 1

ensures that the torus Tω,ε is a Lagrangian graph (over the “angle” variables).

APPENDIX A. CONSTANTS
For convenience, we collect here the list of constants appearing in the proof of Theorem A.

Recall that τ � d− 1 � 1 and notice that all Ci’s are greater than 1 and depend only upon d and τ .

ν := τ + 1 ,

C0 := 4
√
2

(
3

2

)2ν+d ∫

Rd

(
|y|ν1 + |y|2ν1

)
e−|y|1dy , C1 := 2

(
3

2

)ν+d ∫

Rd

|y|ν1 e−|y|1dy ,

C2 := 23dd , C3 :=
(
d2C2

1 + 6dC1 + C2

)√
2 , C4 := max

{
6d2C0, C3

}
,

C5 :=
3 · 25d

5
, C6 := max

{
22ν , C5

}
, C7 := 3d · 26ν+2d+3

√
2max

{
640d2 , C4

}
,

C8 :=
(
2−dC6

) 1
8
, C9 := 3max

{
80d

√
2 , C4

}
, C10 :=

(
2−(4ν+2d+1) + 2C7

)
C9/(3d

2) ,

C11 :=
1

25ν+3d−2
+

C7 C9

3 · 5 · 2ν+2 · d2 ·
√
2
, C12 := 22ν+2d+1 C2

6 C7 C8 C9 ,

C13 := C10 + 2−(ν+1) C11 , C14 := 22(3ν+2d+1)C12 , C15 := 18d3 + 70 ,

C := 26τ+3d+8C13 , C∗ := max
{
(4ν e−1)8ν/3C

2/3
14 , 2C15C

}
.
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APPENDIX B. KOLMOGOROV’S NON-DEGENERACY

Let

ε̂ := 2 e C (s− s∗)
−(6τ+3d+8) θ3 · K εP

α2
.

Since ‖∂xu∗‖s∗
(2.6)

� 1/2, it follows that id + u∗ is a diffeomorphism of Td. Letting

(∂x(id + u∗)(x))
−1 =: �d +A(x) ,

we have

‖A‖s∗ � 2‖∂xu∗‖s∗
(2.6)

� 2ε̂
(2.4)

� 1 ; ‖v∗‖s∗
(2.6)

� α

K

ε̂

2 e

(2.4)

� r

θ

1

4 eC15
<

r

8
. (B.1)

In [15] it is proven that the map

φ(y, x) := (y0 + v∗(x) + y +AT y, x+ u∗(x))

is symplectic. Then

H ◦ φ(y, x) = E + ω · y +Q(y, x)

with

E = K(y0), 〈Qyy(0, ·)〉 = Kyy(y0) + 〈M〉 ,

M := ∂2
y

(
K(y0 + v∗ + y +AT y)− 1

2
yTKyy(y0)y

)∣∣∣
y=0

+ ∂2
y(εP ◦ φ)

∣∣∣
y=0

,

sup
Td
s∗

‖Kyy(y0)
−1M‖

(B.1)

� (18d3 + 70)ε̂θ
(2.4)

� 1/2,

which shows that 〈Qyy(0, ·)〉 is invertible.

APPENDIX C. REMINDERS

Classical Estimates (Cauchy, Fourier)

Lemma 4. [4] Let p ∈ N, r, s > 0, y0 ∈ C
d and let f be a real-analytic function Dr,s(y0) with

‖f‖r,s := sup
Dr,s(y0)

|f |.

Then
(i) For any multi-index (l, k) ∈ N

d ×N
d with |l|1 + |k|1 � p and for any 0 < r′ < r, 0 < s′ < s,16)

‖∂l
y∂

k
xf‖r′,s′ � p! ‖f‖r,s(r − r′)|l|1(s− s′)|k|1 .

(ii) For any k ∈ Z
d and any y ∈ Dr(y0)

|fk(y)| � e−|k|1s‖f‖r,s.

16)As usual, ∂l
y := ∂|l|1

∂y
l1
1 ···∂yld

d

, ∀ y ∈ R
d, l ∈ Z

d.
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Implicit Function Theorem

Lemma 5. [6] Let r, s > 0, n,m ∈ N, (y0, x0) ∈ C
n × C

m and17)

F : (y, x) ∈ Dn
r (y0)×Dm

s (x0) ⊂ C
n+m 
→ F (y, x) ∈ C

n

be continuous with continuous Jacobian matrix Fy. Assume that Fy(y0, x0) is invertible with inverse

T := Fy(y0, x0)
−1 such that

sup
Dn

r (y0)×Dm
s (x0)

‖�n − TFy(y, x)‖ � c < 1 and sup
Dm

s (x0)
|F (y0, ·)| �

(1− c)r

‖T‖ . (C.1)

Then there exists a unique continuous function g : Dm
s (x0) → Dn

r (y0) such that the following are
equivalent:

(i) (y, x) ∈ Dn
r (y0)×Dm

s (x0) and F (y, x) = 0;

(ii) x ∈ Dm
s (x0) and y = g(x).

Moreover, g satisfies

sup
Dm

s (x0)
|g − y0| �

‖T‖
1− c

sup
Dm

s (x0)
|F (y0, ·)|. (C.2)
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