
Rend. Lincei Mat. Appl. 25 (2014), 293–299
DOI 10.4171/RLM/679

Mathematical analysis — The steep Nekhoroshev’s Theorem and optimal stability
exponents (an announcement), by Massimiliano Guzzo, Luigi Chierchia

and Giancarlo Benettin, communicated on 9 May 2014.

Abstract. — A new statement of Nekhoroshev’s Theorem in the general steep case with stability

exponents, conjectured to be optimal, is presented.
Si presenta un nuovo enunciato del teorema di Nekhoroshev nel caso ripido (‘‘steep’’) generico,

con migliori esponenti di stabilità, che si congetturano essere ottimali.
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Nekhoroshev’s Theorem concerns one of the main results in the modern theory
of perturbative Hamiltonian systems. Indeed, KAM theory (see [1] for general in-
formation) ensures that the majority (in measure theoretic sense) of initial data in
the phase space of a general, real-analytic (or smooth enough) nearly-integrable
Hamiltonian system evolve in a regular (quasi-periodic) way with a small dis-
placement of the action variables (‘‘metric stability of non-degenerate nearly-
integrable Hamiltonian systems’’). Nekhoroshev’s Theorems deals with what
happens in the complementary region of phase space where, in general, unstable
motions may occur with a large variation of the actions (Arnold di¤usion).
N. N. Nekhoroshev, in the late 1970’s ([11, 12]), proved that all motions of a
real-analytic, ‘‘steep’’ Hamiltonian system are stable (in the sense that the action
variables stay close to their initial values) for exponentially long times (exponen-
tial stability). ‘‘Steepness’’ is a generic non-degeneracy condition, which is the
main natural hypothesis for Nekhoroshev’s Theorem (in general, non-steep sys-
tems are not exponentially stable).

It is important—both from a purely mathematical and an applicative point of
view—to compute the stability exponents, which gives the leading order for the
stability time (‘‘e¤ective stability’’).

Here, we announce a version of Nekhoroshev’s Theorem in the general steep
case with improved stability exponents and conjecture that such formulation is
‘‘sharp’’ (i.e., the stability exponents are optimal).

Let us proceed, now, with more formal statements. Consider a real-analytic
Hamiltonian system with Hamiltonian given, in standard action-angle coordi-
nates, by

HðI ; jÞ ¼ hðIÞ þ ef ðI ; jÞ; ðI ; jÞ a B� Tn;ð1Þ



where: BJRn is open, Tn ¼ Rn=ð2pZÞn, and e is a small parameter. We recall
that a C1 function hðIÞ is steep in BJRn with steepness indices a1; . . . ; an�1 b 1
and (strictly positive) steepness coe‰cients C1; . . . ;Cn�1 and r, if inf I AUkoðIÞk
> 0 and, for any I a B, for any j-dimensional linear subspace LMRn orthogonal
to oðIÞ with 1a ja n� 1, one has (for any vector u a Rn we denote by

kuk :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i juij
2

q
its euclidean norm):

max
0ahax

min
u AL:kuk¼h

kpLoðI þ uÞkbCjx
aj Ex a ð0; r�;ð2Þ

where pL denotes the orthogonal projection over L. The simplest steep functions
are the convex, or quasi-convex ones, in which case the steepness indices have the
minimum values a1 ¼ � � � ¼ an�1 ¼ 1.

The following statement can be found in [11, p. 4 and p. 8] and [11, p. 30]:

Theorem (Nekhoroshev). Let H in (1) be real-analytic with h steep. Then, there
exist positive constants a, b and e0 such that for any 0a e < e0 any solution ðIt; jtÞ
of the Hamilton equations for HðI ; jÞ satisfies

jIt � I0ja eb

for any time t satisfying

jtja 1

e
exp

� 1

ea

�
:

Furthermore, a and b can be taken as follows:

a ¼ 2

12zþ 3nþ 14
; b ¼ 3a

2an�1
ð3Þ

where

z ¼ ½a1 � ða2ð. . . ðan�3ðnan�2 þ n� 2Þ þ n� 3Þ þ . . .Þ þ 2Þ þ 1� � 1;

and ai are the steepness indices of h.

The steepness hypothesis on the integrable limit hðIÞ was introduced by Nekhor-
oshev (compare [10]; conditions close to steepness appeared earlier in [6]) and can
be viewed as a ‘‘minimal transversality’’ condition, which Nekhoroshev proved to
be generic in Cl class.

The original papers by Nekhoroshev are quite hard to read and the exponents
(3) not optimal. A lot of e¤ort has been put in simplifying the proof and in
trying to obtain better exponents. However, this has been done essentially only
under much stronger (and non-generic) hypothesis, namely, that hðIÞ is convex
or quasi-convex. In this case, conservation of energy, may be used to essentially
simplify the action confinement mechanism (see [5, 2, 3]). The only alternative
proof in general steep case, to the best of our knowledge, has been given in [14]
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using simultaneous Diophantine approximations (but the stability exponents are
worst than Nekhoroshev’s ones).

In the quasi-convex case it is usually believed that the stability exponent
a ¼ 1=ð2nÞ is sharp. Such value has been obtained, with di¤erent techniques, by
P. Lochak and A. Neishtadt, [9], [8], on one side (who introduced the idea of
covering the phase space with neighborhoods of periodic orbits using the theory
of Diophantine approximations) and by J. Pöschel, [16], on the other side (who
simplified significantly Nekhoroshev’s geometric construction and introduced
the idea of taking into account the geometry of the resonance lattices to weight
di¤erently small divisors).

Obviously the stability exponents a and b are related to each other and one
can improve one at the expense of worsening the other; this was pointed out,
e.g., in [16]; for a more refined discussion see [4].

A confirmation, based on Arnold di¤usion, towards the optimality of a ¼
1=ð2nÞ in the convex case is given in [17].

On the other hand, no improvements on the original Nekhoroshev’s stability
exponents, in the general steep case, are yet available (in [13], there is a statement
concerning improved values for the stability exponents, however, the proof ap-
pears to have a serious gap and such values are not justified, compare [15]).

At this regard, we can prove (the proof will appear elsewhere, [7]):

Theorem 1. Let H in (1) be real-analytic with h steep in B with steepness indices
a1; . . . ; an�1 and let

p1 :¼
Yn�2

k¼1

ak; a :¼ 1

2np1
; b :¼ a

an�1
:

Then, there exist positive constants e0, R0, T, c > 0 such that for any 0a e < e0
the solution ðIt; jtÞ of the Hamilton equations for HðI ; jÞ with initial data ðI0; j0Þ
with I0 a U � 2R0e

b (U � d denotes the set of points in U with distance from the
boundary at least d) satisfies

kIt � I0kaR0e
bð4Þ

for any time t satisfying:

jtja Tffiffi
e

p exp
� c

ea

�
:ð5Þ

Let us make a few remarks.

• Notice that the gradient of a steep functions does not yield in general an inver-
tible map, a fact, which makes the analysis of resonances much more compli-
cate (since the frequency space is not di¤eomorphic to the action space).

• The constants e0, R0, T , c > 0 are explicitly computed in [7].

• In the quasi-convex case ak ¼ 1 for all k and the sharp statements in [9] and
[16] are recovered (but with a substantially di¤erent proof ).
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• The conjecture that the exponents are optimal is also based on relatively simple
heuristic arguments, thoroughly discussed in [7]. Here we only mention that the
root 1=p1 comes in by a natural (and necessary) iterative dimensional argument
(related to a power-law scaling of the amplitudes of the resonance domains)
and the tangential non-degeneracies given by the steepness property (2). The
constant in front of p1 in the simplest and less degenerate case is the 2n coming
from the quasi-convex case. Putting these two things together one sees that the
exponent 1=ð2np1Þ is, roughly speaking, ‘‘necessary’’.

• The proof of Nekhoroshev’s Theorem, in its various settings, is clearly split into
three parts: (a) a geometric part, devoted to the analysis of distribution of small
divisors in action-space; (b) an analytic part, devoted to the construction of
normal forms, which is obtained by adapting averaging methods to an analytic
setting; (c) a stability argument yielding the confinement of the actions.
As for (b), we follow the nice and e¤ective normal form theory as given by
Pöschel in [16]. Part (c) is short and simple and based on the so-called ‘‘trap-
ping in (lower dimensional) resonances’’. The geometric part (a) is the real
heart of the whole proof and is where all improvements are realized. Of course
this part is highly technical, expanding, among other things, some key ideas
of Nekhoroshev (e.g., non-overlapping of resonant zones) and of Pöschel (e.g.,
weighting small divisors with the volume of the resonant lattice). Few more
details are discussed below.

On the proof of Theorem 1. As mentioned above, the core of the argument is
based on a subtle analysis of resonances which are responsible of the small divi-
sors appearing in averaging or normal form theory. To carry out such analysis
one has to divide the action space into non-resonant and resonant regions. In
particular it is necessary to provide a hierarchy of resonances (simple, double,
etc.) and to introduce suitable weighted neighborhoods of them.

Let us now give a precise description of the ‘‘geography of resonances’’. First,
we introduce a ‘‘Fourier cut-o¤ ’’ K P 1=ea needed to truncate the Fourier series
of the perturbing function so as to carry out the analytic part and construct the
normal forms up to an exponentially small remainder. Therefore one needs to
consider only resonances due to integer vectors (Fourier modes) up to order K .
As in [16], we consider only resonances defined by integer vectors k in some
maximal K-lattice LJZn. We recall that a ‘‘maximal K-lattice’’ L is a lattice
which admits a basis of vectors ~kk a Zn with j~kkj :¼

Pn
i¼1 j~kkijaK , and it is not

properly contained in any other lattice of the same dimension; the volume jLj
of the lattice L is defined as the euclidean volume of the parallelepiped spanned
by a basis for L; (see [16]).

We define the following sets in action space (the explicit values of the param-
eters appearing in these definitions are listed at the end of the note).

Resonant zones (neighborhoods of exact resonances oðIÞ � k ¼ 0 with k in
some K-maximal lattice L):

ZL :¼ fI a B : kp3L4oðIÞk < dLg;ð6Þ
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where 3L4 denotes the real vector space spanned by the lattice L, and dL is
set equal to dL ¼ lj=jLj, where lj depends only on K and on j ¼ dimL;
resonant blocks (region of resonances of order j but not of higher order):
BL :¼ ZLnZjþ1, where j ¼ dimL and

Zi :¼
[

fL0:dimL0¼ig
ZL0 ;

non-resonant block (non-resonant region): B0 :¼ Z0nZ1, where Z0 :¼ B; by
requiring (because of steepness) that inf I ABkoðIÞk > dL, the completely reso-
nant zone ZZn is empty and so is Zn;
discs (neighborhoods of a given fast drifts plane passing through a point I
within a given resonant zone):

D
r
L;hðIÞ :¼

�� [
I 0 A Iþ3L4

BðI 0; hÞ
�
BZLB ðB� rÞ

�I
JZLB ðB� rÞ;ð7Þ

where BðI 0; hÞ denotes the euclidean ball centered in I of radius h, I þ 3L4
(called by Nekhoroshev, ‘‘fast drift plane’’) denotes the plane through I par-
allel to 3L4, ðCÞI denotes the connected component of a set C which contains
I , h is any positive number less or equal than r;
extended resonant blocks (open neighborhood of all fast drift planes passing
through an arbitrary point of a resonant block):

B
r
L; rL

:¼
[

I ABLBðB�rÞ
D

r
L; rL

ðIÞMZLB ðB� rÞ;ð8Þ

extended non-resonant block: Br
0 :¼ B0B ðB� rÞ.

The strategy is now the following:

Step 1: Compute the diameter of the intersection of a fast drift plane with
a resonant zone (more precisely the maximum distance between a point
I a BLB ðB� rÞ and a point in D

r
L; rL

ðIÞ: such diameter is (roughly speaking)

given by d
ð1=ajÞ
L . Here is the only place where steepness enters directly.

Step 2: Give small divisor estimates on blocks and extended blocks: a reso-
nant block BL is gL-K non-resonant (meaning that joðIÞ � kjb gL for I in
the block, all k outside the resonant modulus L and jkjaK); B0 is l1-K non-
resonant; extended resonant blocks satisfy similar properties.
Step 3: Prove non-overlapping of resonant regions of the same dimension:
more precisely, the closure of Br

L; rl
does not intersect the resonant zone ZL0

if L and L0 have the same dimension.

From these steps (and the normal form theory in [16]) it follows easily

Step 4: the ‘‘resonant trap argument’’, which, roughly speaking, says that a
motion starting in a certain resonant zone either stays there for exponentially
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long times or goes into lower order resonant regions ending, eventually, in the
non-resonant block where it remains for exponentially long times.

In order for the first three steps to hold and fit in an ‘‘optimal way’’ it is crucial to
optimize the choice of parameters defining the geography of resonances.

This is done by defining:

K :¼
� e�
e

�a
ð9Þ

r :¼ R0

n
ebð10Þ

ôo :¼ 1

2
ffiffiffi
2

p inf
I AB

koðIÞkð11Þ

lj :¼
ôo

ðAKÞqj ; where; and A :¼ 6Eð12Þ

rL :¼ dL

M
ð13Þ

with suitable R0, �� > 0, Eb 4, while M is a Lipschitz constant for oðIÞ and, for
any 1a ja n� 2:

pj :¼
Yn�2

k¼ j

ak; qj :¼ npj � j; qn :¼ 0; qn�1 :¼ 1;ð14Þ

an�1 :¼ 1; aj :¼ qj � qjþ1 ð1a ja n� 2Þ:
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