KAM Lectures

LUIGI CHIERCHIA

The aim of these lectures is to present, in a self contained way, the fun-
damentals of KAM theory, which, as well known, deals with the problem of
constructing quasi-periodic motions in real-analytic or smooth conservative dy-
namical systems.

KAM theory is based upon quantitative techniques designed to overcome
the so-called small denominator difficulties arising in the construction of quasi-
periodic motions and works under rather stringent smallness and regularity as-
sumptions.

For sake of presentation, we will consider only second order Hamiltonian
systems with a finite number of degrees of freedom (periodic in the “space”
variables), i.e., systems governed by Hamiltonian functions of of the form

) HQy,x) =5+ V),

where y and x are standard symplectic variables (y, x) € B x4, and V : ‘;E‘d -
I& is a (multi-periodic) smooth or real-analytic function; yi=y.y:= =1 Y-
Here, T denotes the standard flat d-torus T¢ := &Y/ Z); the (sl_andard)
symplectic structure is: dyAdx = 2:;-;, dyjndx; and the Hamilton equations are

2) y=-H:, x=Hy,

where H, denotes the y-gradient (Hy,, ..., Hy,) and Hy denotes the x-gradient
(Hyy, ..., Hyy); dot denotes time derivative. i A . .
The point of view taken up in these lectures is that of non-linear functional
analysis, as we briefly proceed to explain. The problem of constructing (1_m|x—
imalV) quasi-periodic solutions is essentially equivalent to solve a non-linear
partial differential equation on 14, £(u) = 0, with real-analytic or C* coe?ll-
cients. If one is given an approximate solution, i.e. a function v for which
£(v) is not zero but small (in suitable norms), then, under suitable conditionzq,
it is possible to find a true near-by solution. The method we shall follow is

(0] ¢, quasi periodic-solutions with 4 independent frequencies; for the definition of quasi-periodic
solutions, sec below.

2 LUIGI CHIERCHIA

based on a Newton (“quadratic”) scheme, which allow to construct a sequence
of better and better approximations (living in larger and larger Banach spaces)
converging to a true solution. The loss of regularity (related to the inversion of
non elliptic differential operators and to the above mentioned small denominator
problems) arising in solving the associated linearized equation is overcome by
the speed of convergence of the scheme.

The approach presented here — sometimes referred to as KAM theory in
configuration space — avoids completely the use of symplectic transformations
and needs less preparation than standard KAM theory.

The notes of the lectures are divided in two chapters:

In the first chapter a KAM theorem establishing the existence of quasi-
periodic solutions (with prescribed “diophantine” frequencics), in real-analytic
setting, is presented. The “potential” V in (1) is not assumed to be small; what
allows to start up the perturbative procedure is the existence of a good enough
approximate solution.

While no effort is put in trying to get “optimal estimates™, a certain care
is devoted to perform explicit estimates and also to discuss convenient norms
(Fourier and complex sup-norms).

In the second chapter, we shall consider Hamiltonians {/ in (1) with V €
CH(T9), which shall be assumed to be small in C* norm. Then, assuming [ big
enough and using the approximation technique due to Bernstein, Jackson, Moser
and Zehnder'®, we shall construct (using the real-analytic KAM theorem of the
first chapter) a sequence of real-analytic approximate solutions converging to
C* quasi-periodic solutions; explicit estimates on ! and s will be given,

The main references are:

[1] D. Salamon, E. Zehnder: KAM theory in configuration space, Comm. Math.
Helv. 64 (1989), 84-132.

[2] D. Salamon, The Kolmogorov-Arnold-Moser theorem, FIM-Preprint, ETH-
Zurich, (1986), available on http:
/twww.math.ethz.ch/“salamon/PREPRINTS/KAM.htm.

For the analytic part, see also:

[3]1 A. Celletti and I.. Chierchia: A constructive theory of Lagrangian tori and
computer—assisted applications, Dynamics reported, 60-130, Dynam. Re-
port. Expositions Dynam. Systems (N.S.), 4, Springer, Berlin, 1995.

2 Such technique gives precise hypotheses in order to approximate C* functions with real-analytic
ones and, viceversa, (0 gel ¢! functions out of limits of real-analytic sequences.
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1. — Analytic KAM theory

1.1. — Warm up: Newton scheme for the standard IFT

The aim of this section is to discuss a proof of the (standard) Implicit
Function Theorem in " based on the “Newton method” with the purpose of
illustrating, in a trivial case, the scheme of proof that we shall use to construct
quasi-periodic motions for Hamiltonian systems.

Let (y,x) € R" x ™; denote by D; the closed ball in R” centered at
with radius p and by DZ the closed ball in ™ centered at X with radius 7;
let X, , denote the Banach space, C(D;", D7), of continuous function from D}
into 17 endowed with the sup-norm.
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THreorEM 1. Let F € C(D;: x DIFRY) be such that y + Fiy,x) €
CE(D;L R") for all x € D' with Fy invertible on D} x D', Let w and B be
positive numbers such that
o2
2

3) 1) s < e, N Fpllpr =B

I - llp7 being short for sup DExDI |-l Suppose that, for some 0 < r = ¥ and
r - -
0 < o <1, there exists up € Xy, such that |lug — yl, 1= supp: [ten — ¥| < p and:

@ I F(uo(x), x)ll, < min {% 1—;-5"- (p - llug — m)} :

Then, there exists a unique function w € X, , such that:

(5) Flu(x),x)=0, VYxeD",

and o )
flu — upllr = -5 I F (e (), ) -

REMARK 1.
(i) The limiting case 8 = 0 corresponds to the linear case
F(y,x) =a(x)+ A(x)y

(with A invertible), in which case the solution of £ (i, x) = 0 is simply
w=—A"a.

(ii) If F(3, %) =0, one can obviously take up(x) = ¥ (choosing suitably 7 so
as to meet condition (4).

(iii) The function uy is called an approximate solution of (5); the function

(6) eo(x) i= Fup(x), x),

is the associated error function. The inequality (4) should be interpreted as
a smallness condition on the error function and the IFI' can be rephrased
by saying that if the smallness condition is verified by e error function &y
associated to the approximate solution wg, than there exists a (unique) true
solution u, which is || g||-close to the approximate solution uy.

Proor. We first show how to construct out of «y a new approximate solution
u; for which the associated error function &) (x) := F(u)(x), x) is quadratically
smaller that &.

Let &y be as in (6) and define

(M wy(x) = —(Fy(ua(x), ) eo(x) , =g +uy.
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We claim that u) € X, , and that wy and &, 1= F(uy, x) verify:
< - 2
® lhwoll: = allollr el = Blleoll -

In fact, the first estimate in (8) is immediate consequence of the definitions of
wy and ¢, To show that uy : D — L)z, we compute:

ey = ¥l 2= llup + wo — yil, = lluwo — ¥II, + Nlwoll-
_ _ l—o _
= llwo — ¥llr +alleolly = llup — ¥l + o— (o~ llug = 3l,)
<p

where we have used the assumption (4) on gy := F(uy, x). Observe that, by
the definition of &), wy and Taylor’s formula, one gets:

e = F(uy,x) = F(ug+ wo, x) = F(uy, x) + Fy(ug, x)wo + Q

9
= &g+ Fy(uo, x)wo + Q = Q
where®
|
(10) Q= / (1 = 1) Fyy (g + twg, x)wg - wdt .
0

Thus, by the estimates on wy in (8) and the definition of 8, we get

1 a? .
an - lede = 1Ql- = S0 llp7 lwoll?2 = = IFyyllp7 lleal? = Bllwall?,

completing the proof of (8).
The idea is, now, to iterate such construction: fix & = 2 and assume that

Uy, ..., Up—y are given approximate solutions belonging to the Banach space
X, and such that, if one defines

(12) wyo= gy —uy, o g(x) = Fayx),x), 0=j=k-=2),

then the following inequalities hold for all 0 < j <k —2:

(13) llwill: = allell- Ll < Bliesll? -

Note that such inductive assumption has been verified for k = 2 with «; as in (7).
We claim that, under the inductive assumption (12) and (13), setting

(14) g (x) = Flug—1(x), x) , Wi (x) = —Fy(up_i(x), x)&p_1 (x},

3hex denotes, here, the standard inner product.

6 LUIGI CHIERCHIA
then one has

(15) U =gy ey € Xr g,

and (13) holds also for j =k — 1.

In fact, the estimate on [wi_;|l, follows at once {as abave) from the
definition of w;.; and @ (and the inductive assumption on wiy_;). Let us, now,
show (15). Multiplying by 8 the second relation in (13) can be rewritten as

2
(16) Bllgalls = (Blleill)*,
which iterated leads to

(17) Bllgill, < (Blleall ) . YO<j<k-1L.

Thus, by (12), (13) (first inequality), (17) and (4), one has

k—1
g = Flle = ||uo+ D> w; — 3
i=t .

k—1

llwo — 31l + D lhwyll,

j=0

1A

k-1
- Y

< llug 3l +a Y lgllr
=0

k1

< lluo — 3l + % S (Blieoll)?

j=n

< llug — 31l + % S Blleoll,)

j=1
_ lleollr
= llug — ¥l + @ ———
YT Bleols
_ [l2oll
= |luwp — ¥l +(x]—r-
—a

—0p—llup—Fllr _

< |luo — ¥lir +o— P
o l—0

This shows (15). At this point, also the estimate on |||, follows: just replace
g1, up and wp in (9)=(11) by, respectively, £x, ue—y and we 1.
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Thus, thanks to (4), the construction can be iterated indefinitely and {1}
will converge to a function u € X,,. Clearly, since |l&ll, — 0 (super-
exponentially fast), one has

Fu, x) =lmF(up, x) =limeg, =0,

showing (5).

Uniqueness is an obvious consequence of the invertibility of F,. 8]
REMARK 2.
(i) The approximate solutions uy’s belong to the same Banach space X, ,.

This is so because 4wy belongs to the same space of uy_;. In the more
complicate case of quasi-periodic solutions for Hamiltonian systems this will
not be the case any more: the analogous of I~'y‘] will be an unbounded
operator (involving small divisors) and (the analogous of) wy_; will lie, in
general, in a smaller Banach space.
(ii) In fact, even formally, it will not be possible to solve the lincarized equa-
. tion™ exactly but only up to quadratically small terms.
(iii) The argument to prove (local) uniqueness in the quasi-periodic case will
be different (because of the lack of invertibility of Fy).

1.2. — Quasi-periodic solutions (definitions)

Let, as above, T¢ := ®¢/(2nZ*) be the standard d-dimensional flat torus
and let 2 be a bounded domain in B¢, Consider a smooth (say C?) Hamiltonian
H(y,x) from € xT¢ to R and the associated Hamiltonian equations

. ol
=T
x; .
(18) Y i=1,...,d.
b 2
by

An interesting example is when the system is nearly-integrable, i.e., when H
is of the form
H(y,x) = Hy(y) + eHy(y, x)

with & a small parameter. The corresponding Hamiltonian equations become

. dH,
Yi=—¢ i
(19) . 3 Ho aH, i=1,...,d.
Xi=—FT—+E— .
Ay dyi

When ¢ = 0 this system is completely integrable and all solutions,
y0) =y ,
dHy
x(1) = x(0) + --;)~--(y(0)) t, (mod(2m, ..., 2m)),
ay

are quasi-periodic:

)1e., the equation Fy(ug, x)wo + & = 0.
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DeeINITION 1. A solution (y(z), x(r)) of (18) is said to be quasi-periodic,
if there exist a vector € B¢ (frequency vector) and two functions u, v &
C*(14, ) such that

(1) = v(wt
(20) y( (@) ‘
x(1) = wt + ulwr) (mod(2m, ..., 2m)).
for every ¢. If the frequency vector is rationally independent Ge® w-n£0
for every n & Z4\ {0}), then the solution (y(r),x(r)) is said to be maximal
quasi-periodic.
REMARK 3.

Non-maximal quasi-periodic solutions include periodic solutions: this is the

case when there exist 7 > 0 and n € Z¢ such that @7 = 2wn; nolice that

in this case there exist d — 1 linearly independent vectors n; € % such
that @-n; =0 for® j=1,...,d—1. More in general, frequencies may

be classified in terms of the number of relations @ - m = 0 satisfied by o

with independent vectors m € 24,

(i) A maximal quasi-periodic solution is said to be non-degenerate if (@ is
rationally independent and) the map 0 € T4 > 0+4-u(d) € T is a diffeomor-
phism of T¢ so that the map 6 € T¢ — (v(8), 8 +u(®)} € B x 19 yields
an embedding of the d-dimensional torus into the phase space © x TV,
The relation (20) says that non-degenerate maximal quasi-periodic solutions
correspond to d-dimensional invariant tori on which the H-flow is conjugate
to the linear flow 6 — 6 + wt.

(iii) In these lectures we shall consider only non-degenerate maximal quasi-periodic

solutions and, hereafter, “quasi-periodic solution” will be nsed as synony-

mous of “non-degenerate maximal quasi-periodic soluticns”. In particular,
the frequency vector e is always assumed to be rationally independent.

Consider a quasi-periodic solution (y(t), x(¢)) as in (20). Differentiating it
with respect to ¢ we get

(i

~

¥(1) = Dv(wt)
{ X(1) = @+ Du(wt),

where
|
D:=D, = i— .
"2
Since (y, x) is a solution of (18), we have
aH
Dv;(wt) = ———(v(wt), ot + u(wt))
0x;

aH
w; -+ Dug(wt) = a—(u(rut),wt + u(wr))
Yi

SIEor vectors a, b € RY we denote a - b == z:'i=1 aib;
®)n fact, if T = 2wn with T = O and n € Z%\ {0} then there are exact!y (d — 1) independent
vectors nj s.t. @ - nj = (.
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which, by density of the trajectory 7 +> wt on'” T¢ are equivalent to

0emd.

@1 { Du(#) = —He(v(0), 0 + u(0))

w + Du(®) = H,(v(0),0 + u(@))

Hereafter, (for simplicity) we shall consider only Hamiltonians I of the form
¥? 1<
— 2 .
H(y,x) =5 +V@)i=3 ;y,- + V().
j=

In this special case (18) takes the form

{)"‘=—Vx
X=y

or, equivalently,
¥=-V,.

Notice that, in such a case, the second equation in (21) becomes simply
(22) v(f) = w+ Du(#),

so that the system (21) becomes the following single (vector) equation for u:
(23) D’u(6) = = V(0 +u(®)).

The lectures are devoted to discuss solutions of (23).
It is clear that an important role in the study of (21) or (23) is played by
the linear equation
Du=f,
with f a given function on T¢. Proceeding formally, we expand both sides in
Fourier series getting

L e = Z i(w-n)uue™? .
nezd nezd

Equating Fourier coefficient, we get, for n = 0, the compatibility condition®

24 fo=(f1=0,

M As well known, 0 € TY — wr € T4 is dense if and only if @'is rationally independent; see,
e.%.. [V.I. Amold, Mathematical methods of classical mechanics, Springer-Verlag, 1989].
®we denote {-) 1= f.[u - dé = ()4 f.j.d - de.
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and, for n # 0,

05) =T mezi\(0).
i(w-n)

The denominator (w - n) in (25), even though never vanishes, might become
arbitrarily small making doubtful the convergence of the Fourier serics

(26) X e

nezd

DerFiniTioN 2. We say that @ € R4 is (y, T)-diophantine if y, 7 are positive
constants such that

27 |w-n| = ﬁ for every n € 74\ (0.
n

REMARK 4. For 7 > d — 1 fixed, the set of diophantine vectors is of full
measure (exercise). For T < d — 1 (27) is never satisfied (Liouville).

Suppose now that @ is (y, t)-diophantine and f is a smooth enough func-
tion with vanishing mean value, {f} = 0. Then (25)-(26) actually define the
function u, solution of Du = f, up to an additive constant {the average of u);

the unique solution of the system:
Du=f, {u) =0,

will be denoted by D711,

Exeraise. Find a lower bound on k so that if £ € C¥(T%) then D™Uf has
an absolutely convergent Fourier series expansion.

REMARK 5. The analysis described in these lectures could be easily extended
to the non-autonomous case, ie., the case when the potential V = V(x.1)
depends also explicitly (and periodically) on time ¢, V' : T¢~! — R. In such a
case D, has to be replaced by

d
il 9
D= wi—- >
l,_z;l:wl ax; 1 at

with (@, 1) € R47! rationally independent and equation (23) becomes

D2u(®,1) = —V, (6 +u(®,1),1).



KAM LECTURES 11

1.3. — Newton scheme for Quasi-periodic solutions

In this section we describe the Newton scheme on which the construction
of solutions of the functional equation (23) will be based.

The strategy that we shall follow mimics the proof of Theorem 1: we shall
start from an approximate solution v of (23), ie., a (smooth) function v such
that the associated error function

(28) g = EW) = D+ V(0 + 1),

is “small” and try to construct a “better” approximate solution

’

(29) vi=v4w,
whose associated error function
(30) & = EW') ;= D + V(0 +v)

is “quadratically smaller” than the error function associated to v.

Remark 6. The discussion in this section will be algebraic in character
and the necessary estimates will be discussed later (Section 1.5). Therefore,
words such as “small” or “quadratically smaller” are used, here, in a somewhat
formal way®. Roughly speaking, the idea is to look for w ~ & (ie., “of the
same order of £”) so that £(v+w) ~ &2. However, as clarified also in Remark 7
below, the reader can also disregard any reference to “smallness” following only
the algebraic identities involved.

Define Q) as
31 Qpi=Ve(@+v+w) — Ve(@ A v) = Ve (0 +v)w.

and note that, by Taylor’s formula, Q; is quadratic in'? w. Expanding V(6 +
v+ w) we find:

g = EQ@) 1 = D*v+ D w+ V(0 + v+ w)

D2+ Vi (8 + 1) + D*w + Vie (0 + v)w + O
D EW) + D*w + Ve (8 + v)w + Oy

=&+ D*w+ Vi (0 +v)w+ Q1.

Ii

(32)

YAt an intuitive level, one should think to substitute the error function & with pe thinking g

as a small real parameter: the terms appearing with a g in front will be thought of as “small”
“ > o a2 ;

térms and of the same “order” of the error function, terms with a p2* in front will be thought of as

“%uadratically smaller terms”, etc.

(M fere and in what follows the symbol Qj’s stand for terms “quadratic in &"”.
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The perfect analogue of the Newton scheme described in the proof of the
standard IFT given in Section 1 would consist in finding an “explicit” solution

of the the following PDE on T¢

(33) e DMw At Vi (0 4+ v)w =0,
However this is not so easy and, in fact, we shall be able tc solve (33) only up
1o quadratic terms in €.

To proceed further, we look at the variation equation for (23), ie., the
equation

(34) €6 = D%y + Vis (0 4 0)(I - 1),

which is gotten by differentiating with respect to ¢ the system (23); here, for
a given function  : T4 — R4, uy denotes the Jacobian matrix

du;
ug = ( (0)) ’
(’0] ij=lu..d

and / := I; denotes the unit (d x d) matrix.
Setting

(35) M:=1+uy

we can rewrite (34) in the form

(36) gg = DM + Voo (0 + 0IM .

Assume that M(8) is invertible for all & € T¢. From (36) we get
Vir(0 + ) = (g9 — D*MIM™!

and plugging this equality in (32), we find

¢ =&+ Dw+ (eg — D*MIM w + 0,
(37) =&+ D'w— (D2MM ™ 'w+ esM w4 0
= &4 Dw— (D*M)M'w + 0,

with

(38) Q2= 01 +&M w.
Setting

(39) =M 'w,
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we gel:

g =¢+4 DYMz) — (D*M)z+ Oy
(40) =g+ D(MDz)+ D(DMz) — (D*M)z + 0>
=¢e+ DMDz)+ (DM)(Dz) | Q7.

Denote by M7 the transpose of the matrix M and let M 7 := (MT) !. Then:

'=M"(M"e | MTD(MDz) + M"(DM)(D2)) + 02
@) =MTM e+ DMTMDz) — (DMTYMD2) + MU (DM)Y(D2) + Q2
= M T M's 4+ DIM"MDz2)) + g+ 0,

with
(42) g:=M T (M'DM — (DMT)M)D:.
We claim that g is quadratic in €. To check this, we, first, remark that

(MTDM — (DMTYM) = (M7 Dvg — (DvD)M)
(43) = {(I + v]YDuy — (DVIYUT + vp))
= (x:g-Dve - Dv;‘vg) N

(since {Du} =0 for any periodic function u). Integrating by parts,

duy vy ka Blrk)
T
vg Dvg — D =t -] = D— —_—
{ & Lg vg) if Z][ (99 ( dé’j) ( d9 ) 89_,'
= 3%y 82
=- Dug) — (D
%;][w (aojan,-( u) = "")30,-3{9,-)

=0,

showing that
(44) (MTDM — (DMTYM) =0.
Thus, we can write:
MTDM — (DMDYM = D' [DMT DM — (DMTY)M)].
But, by (36),

DMEDM — (DM"YM) = MTD*>M — (D*MT)M
=MV, M+ Meg+ MV M—el'M
= MTag — Eg’M )
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showing that
(45) (MTey — eZ,M) =0,

and that N B
MTDM — (DMIM =D ' (MTeg — el M.

Thus

(46) g=MT(D (Mg ] M) Dz

is quadratic in e. Purthermore (41) can be rewritten as

A7) e =MT"(M"s+ DIMTMD)) + Qs,
with

(48) Q3= Qa+ M (D7 (M"e5 — ef M) Dz.

We can now show that the equation
(49) MTe + DIMTMDz) =0

can be explicitly solved.

We have already studied the inversion of the differential operator £ and
therefore we know that a necessary condition to solve our equation is that the
average (MT¢g) of M"e over T/ is equal to 0. This is indeed the case, as we

proceed to show.
First, by the definitions of M and &,

(M7 &) = (I + v5)D™ + Vo(6 +v))

50 .
G0) = (vj D) + (M" V(6 +v))

where the latter equality follows since (D?v) = 0. Let us compute the i-th
component of (v} D?v). Integrating by parts

du,

(v D*vh L][l‘d(’)ﬂk
. _1)Z][wuka'—0(pzuk)d0
= (-1 ,V_jf (Du«)D—de

= (1y? 2, 33
= (=1 ;fw(n vk)aerdr’)

(51D

= — (v} D), .
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Thus (ugll)lv) =0 and, in view of (50), it remains to check that
(MTV, (6 +v)) =0.

By the chain rule:

d \
T . 30 +vO)h ya > =0
MTV (0 +v)); = <; % Ve (0 +v) ) = <39‘_ V(e +v) .
showing that
(52) MTe) =0.

Inverting D in (49) we find that
(53) M™MDz=-D"'(M"e) +¢,

where ¢ is a suitable constant vector that we shall shortly identify.
Let

(54) P=M'M

and notice that P = P(#) is, for 0 € T, a strictly positive defined matrix:
P = 0. Thus P is invertible and P~! > 0. Rephrasing (53) in terms of P:

(55) Dz=-P'D'(MTe)+ P'c.

By the positiveness of P~! and its integrability over T4, we have that also
(P~1) is positive and in particular invertible. By taking the average on both
sides of (55), we see that in order for (55) to make sense we have to choose:

(56) ¢:=(PHHPT' DI (M e)).
We can now solve for z obtaining:

2=b+4+D =P D" (MTe)+ P 0)

©7) =:b+1Z

having defined Z as

(58) s =D Y =P 'D'MTe)+ P70,

and b denotes the arbitrary average of z. We fix this ambiguity by requiring that
(59) () =(v),

which is equivalent to

0= (w) = (Mz) = (Mb) + (M2) = (M)b + (M2) = b+ (M%),
ie.,
(60) b= —{M3Z).

The above analysis may be summarized in the following
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LEmMA 2 (KAM scheme). Ler V : T — 1 be smooth enough and let o € RY

be a diophantine vector. Assume that a smooth enough function v : T¢ — RS iy
given so that

M=1+v

is an invertible matrix on T¢ and define

d P

R}
0) 1= D>v + Vi (0 +v), D=) .
e(0) v+ Vi V) ( ,-=|“{”ﬁ'z)

Then:
(61) (MTe) =0 and (M"sy— el My=0.
Furthermore, if we let:

Pi=M'M
ci={Py"HP'D T (MTe))
=D (=P 'D M e)+ P '0)

b= —(M3)
z:=h+1z2
w:i= Mz

O =V (0 +v+w)— V(0 +v) — Vi (8 + v)w
Q1= Q) + €z
Q3= Q1+ M T (DM eg — el M) Dz
vVi=v4w
£'(0) := D*' - V(0 4-0'),

(62) &=03 and {')={v).

REMARK 7.

(i) The above lemma does not contain any quantitative statement, nor its proof
uses in any way the fact that ¢ should be a “small” function.

(ii) The proof of Lemma 2 is based upon a series of ideatities: (50)--(52)
and (43)=-(45) [proof of (61)]; (32), (37), (40), (41), (45), (48), (49), (59)
[proof of (62)].

(iii) At this level, the above KAM scheme is purely “algebraic™ and it will
be only after having equipped it with quantitative estimates that it will be
possible to iterate the scheme and to actually construct solutions of (23).
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1.4. - Banach spaces of analytic functions and technical lemmata

In this section we introduce “monotone families” of Banach spaces of real-
analytic functions on T¢; such families will depend upon a parameter & = 0
and “monotone” means that a space parameterized by & = &' is smaller than
the space parameterized by &'

Usually in KAM theory one works either with complex sup-norms or with
Fourier norms. In connection with smooth theory (chapter two below) sup-
norms are more convenient, while for the extension of KAM theory to infinite
dimensions Fourier norms are more suited. In this section we shall discuss
sup-norms and for completeness we present the analogous technical results also
for Fourier norms in Appendix B.

In these lectures we use the following standard notation: for n € 74,
« e NY and x € T¢, we let

d d gertotay £
©3) Inl =Y lml, Jal=) a, erﬁirmfg,x5=ﬁﬂuﬁ%
= = axy ... 0xy
Fourier coefficients of a periodic function will be denoted f,; denote, also, by
/_\‘; the complex strip

(64) Al i={xeC: |Imy| <& j=1,...,d).

For & = 0 we define!?
Re (T, ’YY = fecC (T4, &Ny with analytic and bounded extension on Ag} .

R (14, 1Y) endowed with the sup-norm
Il fll :=sup|f]
af

is a Banach space.

Remark 8. In the following, we will consider function f € Ry (T4, X)
with values in a matrix or tensor space X; in such cases the definition of the
norm will be adapted in the obvious way!!?).

We proceed to discuss, from a quantitative point of view, the equation
Du = f (for f with {f) = 0) for @ diophantine. While it is clementary to get
a bound of the form¢?

1
wllg—s < cd, 1) —
lellg—s = c( )yrS" 1 £ lle
(with 0 < & < &) for some « = 0, to get the optimal dependence on the
“analyticity loss™ & (i.e., the best @) is a subtle matter, which was solved by
H. Riissmann. We present a version of Rilssmann’s result duc to J. Moser
(compare also Salamon’s paper [2]).

(UDR4 denotes simply C(114, RV) endowed with the sup-norm.
(D For example, if X = Mat(n x n), then f, € X and, in the definition of the norm || f|l¢, the

expression | f,| denotes the standard “operator norm” supy,|_. | fucl.
O3 Exercise.
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LEMMA 3 (Riissmann, Moser). Lerd =2, y = Oandt = d — 1; let w € R?
be (y, T)-diophantine and let f & R¢ be such that { f) = 0. Denote (as above) by
u = D" [ the unique solution of Du = f with zero average. Then, there exists a
constant ¢ = ¢(z,d) = O such that for every

0 <& < min{l, &},

one has

) - ¢
(65) llwllg—s = 1D™" fllg—s = ;(s—rll.flle_Ag
where

2
17152, o 2= sup (/lef(wriv)lzdu) <&

ReEMARK 9. Clearly "fll,?‘ f‘g < | flle.

In order to prove the above lemma, we shall make use of the following
general estimates, the proof of which are deferred to the Appendix A.

LemMa 4. Let f € Rg. Then, for every n € Zd,
Lol < 1f 12, g e
< flle e

Furthermore, there exists a constant ¢ = co(d) = 0 such that, for every paositive
number § < min{l, £} and for every x € Ag_a, one has:

(66)

©67) s 3 fule i) < C—;Ilfll,_z‘Ag-

nezd 8
Proor OF ILEMMa 3. As already discussed above, the unique analytic solu-
tions with vanishing mean value of Du = f is given by

Ju

in-w)’

w@:= MO = > we", wuy =

nezd\(0)

In order to establish the inequality (65) we first single out the subset
. d Y
J0.={neZ \ {0} - 1”'10125}

and define _
WP(x) = Z e

nely
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By Lemma 4, we get that, for [Imx| <& — &

W)= > ol i flem ™

neldy

2 e
(68) =2 30 Malem Y
¥ nezd

Cl .
= W”j ||,_2_Ag

a where ¢; 1= 2c¢q and we have used that T 2 d —1 = %.
The more delicate part of the estimate concerns the integer vectors in 24\ Jo.
First of all, let us assume, without loss of generality, that

(69) lwe| < |ewq] Vi<k=<d-1;

let us also introduce the following notation: if y = (yi,...,Ys) 18 @ vector
with d components, we denote by ¥ := (y1,...,ys—1) the vector formed by
the first (d — 1) components of y. Let, now, K = 1 be a fixed number and for
v=1, 2..., define

v,,—1

JWK)i=(ne? 0<n=K: 2y ' <n-o <22yl
=me? 0<n|<sK: 27Dy <jn-w| <27V]).

Here is a list of properties of w and J(v, K):

(1) |wa| = |l =z 3

(ii) if n € J(v, K) then 7 # 0;
(iii) if n,n" € J(v, K) and 1 = A’ then n =n';
(iv) if n € 24 is such that 7 7 0 then

.
70) In- ol = GiAD

v=1
(v) if n,n' € J(v,K) and n # n’ then |i —n'| = B 3' ;

(vi) there exists a constants ¢; = ¢2(d) = 0 such that
d—1,—2d=1
Card J(v, K) < K727 77

(vii) J(v, K) =@ when 2¥ = K;
(viii) there exists a constant ¢3 = c3(d) > 0 such that the following holds. If
J(K) denotes the set

JK)=meZ' 0<n <K and n-o| <y/2)= ] IO K),

v=1
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then

1 K*
an Y —— e —.
ned(K) In - ] 4

PROOF OF PROPERTIES (1)--(viii)

(i): The first inequality is (69). The second inequality follows from the Dio-
phantine property (27) by taking n = ¢, (the unit versor in 2.

(i) If n € J(v, K), then

(72) n-w) =27"y < y/2;

thus from A = 0 it would follow, by (i), that |n - 0| = |ngwy| = [w4| = ¥,
which would contradict (72).

(iii): Assume (by contradiction) that n,n' € J(v, K) with i =i’ and ny # n).
Then, by (i) and (72):

4 ! - ! N ./ . y
y < lwgl < Ing —njy| lwgl =n-w—n"-w| <|n- o +n-o < Fh5= V.

which is impossible.

(iv): Fix A # 0 and choose ng € Z so that nyy, = (A, ng) minimizes [n - o).
Clearly, 1y, minimizes also |f- %+nd| = |n-w|/|wg|. Thus, |ﬁ-ﬁ+nd| <
1. Therefore, by (69), |ng] <1+ |ii - %l < 14 |n| < 2|a|, which implies
that [l = || + |ng] < 3]4]. In conclusion, by (27), and the above
estimates,

4 Y
-l 2 g - @] Z ——— =
,”minlr (’ﬂ"l)r

(v): By (iii), # % A’. Thus, by (iv) (applied to the difference n — n’) and
by the definition of J(v, K), we find [n — A'|7% = %](n —n') | =
%(]n cw| 4| w]) < 37270D proving the claim.

(vi): By (iii), J(v, K) is in a one-to-one correspondence with f(v, K):=|{n¢€
781 . n e J(v,K)}. By the estimate in (v), the distance between two
vl

points in J, K) is at least 2 3' . Thus a simple geometrical argument
yields the desired upper bound on the cardinality of J(v, K) and hence on
the cardinality of J(v, K). '

(vii): If n € J(v, K), by definition |n - @] < y27%; on the other hand the
Diophantine property (27) implies that |n - | = y|n[™" = ¥ K™ implying
that K = 2"/7, which is equivalent to the claim.

(vii): In view of (vii), J(K) = Ui, J(v, K) where v, dencies the integer part
of tlogK/log2 (ie., v, is the maximal integer v fcr which T < K
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for v = v,, J(v, K) = @). Thus, by (vii), the definition of J(v, K), (vi),
one finds
> s ¥ o
gty @l T Ty Il

v+l Yz gudl

D DJESED 38

v=1 net(v,K) I pe=1

20, K41 & +1=d.
< 2 Zzu(r ! 4y

14 v=1

Card J (v, K)

LA

\

e
Y

A

We are now ready to conclude the proof of (65).
e = ules < Y 1 fulln - o] el
n;z"u
= llfll,_z o L n-w|"le M®

m;{lo

L E
= 11fll;2, Adz E In-w| e vk

e ngJy, |n2=k

=Ifll2, AJZ 3 e teV®

= L1/ (VE=T)

=1fll2, Adz ST el e VES _ o~ VETTS)

k =1 ned (VE)
= &
sz, af (Z N ﬁﬁ) 3 el
k=1 nel (VE)
T > o | I
= 50 N2, 40 TV
2)’ f LZ'AEZ_I
€3
<2 ||f||L2 s u ZA'“kTe /i
2y 8 O<d=l} )
P ¢4 .
< Ve H/",_z.ag.

whc1e (%) is by (66); (xx) follows from the elementary bounds ™ —e™ 7% <

S any s > 0, £ > 0) and VT-+1— T < 207 (any ¢ = 0); (f) is
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by property (viii) above; (f) holds for a suitable constant ¢y = cs(d, 7) = 0
-1
since SUPg.;<) Dot ATHET ¢ VR < o0, The proof is completed if one takes
¢ = max{cy, c4}. ]
Another fundamental tool are the so-called Cauchy estimates, i.e., the esti-
mates of the sup-norm of derivatives of f € Ry in /_\.g_ﬁ.

Denote by D4(x) the complex polydisc
Dix)y=10 et 10 —x]|=<r Vi),
and let r = 0 be such that!# D,“.'(x) C /.\‘;. Then, by Cauchy Integral Formula,

a! f©)
a4« do
TJw) = (2mi)? /m“'(;) @ — x))+ (G — xptat] ‘

In particular, taking r = 8, we have for every x € A‘g_s:

oo < @)l
IS Gy ./aog e TE T

!
oo l|fllls/ 4o
(2”):15|m+d 30.‘;1

Ilflls

5Ift|
Thus, the following Cauchy estimate holds
a3 1% fllg—s < a8 £l -

Combining the above estimates one gets easily the following
LEMMA 5. Let f € Re(T4, X), letpe N, @ € N and assume (f) = 0 when
a=0. LetO < 8 <& Then, there exist C(p, a, 1) > 0 such that

C(p a,
yrarT ypspTtal

ID7PO* fllg-s = ||f”t

ExEercIise.  Give an c)iplicit estimate of C(p, @, 7).
REMARK 10. We shall use also the following trivial facts:

(i) Let f € Rg(1%,X), g € Re(T4,Y), with X and Y tensor spaces (Y,
matrices or higher dimensional tensors) and assume thet the product fg is
well defined. Then

Ifgle =l fllelgle -

(M) Notice that f is bounded on A‘E’ so f cannot have singularities on the boundary of the stip.
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(ii) Let V € Ry, (T4 R), g € Re(T¢, RY), with & = £, If |[Img|ly =& —&
forall j=1,...,d, then |[V(x + gDl = [IV],-
REMARK 11. The same estimates could be done also for the non-autonomous

case. In this case we consider a function f(x,¢) defined on the (d -+ 1)-
dimensional torus and we require w to be (y, r)-diophantine in the sense that

lw-n+m| = .4
In|*

for some 1 = d, y = 0 and every (n,m) € Z¢ x Z with n # 0.

1.5. = An analytic KAM theorem

In this section we prove a KAM theorem in the real-analytic setting.

THEOREM 6. Fix 0 < E < & < & < 1. LaV € Re, (T% W), letv €
Ry (T4, RY) be such that

(74 IImully =& —§&,

and let w be (y, v)-diophantine"®. Let, also, ), 1 and « be numbers greater or
equal than one such that

@ = ” Vxxx “l;_.

Azl 4l oz I+ ) v

There exists a constant C = C(t,d) = 1, such that if '®

5) Fim S IEGE @Gt € B4 <1,

then lher-e exists u € R (79, By with (1) = (v}, which solves the Euler equation
(76) DY+ V(@ +u) = E) =0.

Furthermore, there exists a constant K = K (t,d) = 0 such that

(7 max(|lu — vllg . 19— dpullg) < K E.

PrOOE. As a first step, we equip the KAM scheme described in Lemma 2
with analytical estimates. The second step will be to iterate the procedure
controlling the convergence.

Us_jR(:ca]l Definition 2.
(6)Recall that £ is the differential operator defined as £(v) = D%u + Vi (0 + v) where D =

ZL, ©;3,; notice, also, that, since || Imvjl; < & — &, then 8 v &€ Ag' whenever 8 € A‘;‘
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[N

ReMark 12. Here and below for simplicity we will use the notation “const”

to denote finite (different) constants, which depend only on t and d.

Define
e(8) := D v+ V(0 +v).

and let o = 0 be such that
llelle =< pe.

Recalling the definition of M = I + vy, we have, by hypothesis,

Ml <x, M7 <.

Fix(1W & < £ <& and let § = (£ —&)/2:

. !
(78) E = £ 25, 5=5 E,
2
and let us denote, as above, N
P=M'M.
‘Then
(79) 1Ple <22, 1P ' < 0.

We start by estimating ¢ in (56). To estimate it, we will use the fact!'® that
for each positive symmetric matrix 7 : T — Mat(d x d),

(80) T~ < sup 1T
peTd

Therefore, by (80) and (79),

P~ = I1Pllo < A2,

By Lemma 5 we get

R _ _ const .
1P D (M )0 < 1P ol DM e)]lo < ;—g—;anMTng,

which leads to

3”2
.
E\'

(81) |c] < const
Y

U7 ater we shall make a specific (somewhat arbitrary) choice.
U9 For the proof see Lemina 12 in Appendix A.
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We proceed to estimate 7 (see (58)). Applying Lemma 5 twice, we have

1
21l < const —|| — PID ' MTe)+ P elle—s
)/5‘

237 L
1D (M7 +
E{
2 13 2 A
< const 1 TR ——lf-
yét | vET vt
;\'3 4
< consty 5
Thus,
l3n4
(82) Zllgr = C()nsl-yzs«z;u.
Now, since z = b+ 7 and b = —(MZ), we have
(bl = (MZ)| < Alizllg: -
Therefore,
(an)? Ay
(83) lzllgr = CO'lstz(ng w, [lwl]ler = conbtyqs,rn

Let us estimate now the remainder Q). Using again the standard formula for the
remainder of the Taylor expansion and applying Remark 10 and the definition
of «, we have

l IOUS LZ alanS
@D Qe =51 Viexllg, lwllf < const| szx"E*W = C"“S"‘y—254, ",

provided (compare Remark 10)
ITm( + sw)llyr < & — &'
for every s € [0, 1]. But, by (74) and (83),

Im(v + sw)ller < [ Imvlle + lwlle < & — & + [wlg
35,4

Ih

& —& +Cmmy’52‘

=& &,
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which is implied if we assume that

5

(85) const () < 1.

prgaH it =
Since 2 = Q) + £z, by Lemuma 5 and Remark 10, we find

(86) lleallz—a = E

and

- - " 0, = o
I1Qaller = N1 Q1ller + Nleszller < N1 Q1llgr + lleallerlizlles = HOille + ﬁ”iilg-’-

Thus, by (83) and (84),

]0”3 B
@7 1021l < const” e

Here we implicitly used the fact that v = 1/2 and § =< L
We turn to the estimate of the norm of Q3 (defined in {48)); we will use
again Lemma 5. First, observe that Dz = DZ and that
Di=—P 'D'MTe)+ Pl

Thus
3.4

Dzl = || — P~ D' (MTe) + P l(‘“;l‘\umbl-—g--/L.

Recalling (86), we find
) - A
1D~ (M ey — el M)y = consrﬁllMlsollg_,s < const o TR

As for the second term in the formula for @3, we find

) L " e Wnte Mt
1M T (D" (M &5 — e M))Dzllgr < const LariT g < const oy e

Finally, recalling (87), we get the following bound

all() 8 ~ .C\‘(}.T])lu "
84 u. = const Mmo.

(88) 1Qsllgr = const——— 25

Our next step will be to estimate v}, M':= M + wy and ¢ in terms of v, M
and .
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Let us start with wg. Here again, as we have alrcady done for z, we will
apply Lemma 5 twice. In fact,

1
lwollgr = ’b:llwllg—s.
Then, since £’ =& — 8§ = & — §/2 — §/2, using twice Lemma 5, we get

N ] - _ . B
IZlle—s < const——[| — P DN M e) -+ P~ ecllg—sp
yér

2 3,2
neo| AT Lo agT
< t A 1D (M )| -
= const | — g 1D (M)l mJ
2 [53,2
ne AT At
= const-—— |- +
=g [ vE® y(w)f}
413
= constmu .

Since z =5b+ 7 and w = Mz, we get the estimate

5n4
(89) [lwallg = const ;"—71_5?”# .
Next, using (89), we easily get

Sy,
1M Ylgr = 1M + wpllgr = 2+ const y28%El
)

() u) .

y2620+1

(90)
= A (l + const

As for the inverse matrix

M) e < 1M+ we) Nl = 1+ M wg) ' M e
-1
) u
=7 (] - C‘mSt;zsz—r-ﬂ s

()’
y2srH

provided

const

In fact, assuming that

o oa? 1
[E2)] u)nslmu =< 3
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one finds1?
Y s
(92) {|(_M’)—l”£! < (I +Const%u) =7

Note that (91) is the same condition (up to the constant) as (85). Since, by
definition, &' = (03, we have obtained

a(a'®
(93) ey = conslszp,2 =:u'.

It will be useful to introduce also a “dimensionless” parameter
= =2
4 =gy,

in terms of which (93) may be rewritten as

2 2
)i an)’ i
(95) )Ie'llyy_z < (consl.ﬂf-s;—)«ﬁ) < (cunst-\/ig;fvl)-ff) =

From now on we will replace (91) by the stronger condition

JaCayE

(96) const S =

Let us now turn to the second step, ie., to the control of the convergence of
the iteration process. For i = (), let the input data v, &, £ cormrespond to the /-th
step of iteration, and let the output v', &" and & correspond to (i + 1)-th step:
in particular the function v and the parameter £ in the statement of Theorem 6
will be denoted, respectively, vy, &. Thus, -

i1
v = vo—i—ij,
j=0

and our aim is to show that this sequence converges to some real-analytic
function u, which solves the Euler equation

D%+ Vo (0 +u()) =0.

We fix a sequence (&} as follows

(9 This follows from the following inequality: (1 - V=l 2rvalidfor0 <x <1/2.
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So, {&]} is a decreasing sequence, which tends to & In view of the above
definition of §, we fix also

If (96) holds at each each step of the iteration, ie., if

Van) iy

<1 J=01,...,i
Srs! <1, N N
8

97) const

then, in particular, we see that (compare (90) and (92) attaching the indices i
and { + 1 in the obvious way)

(98) X o=2x, mi =2, j=0,1,...,i.
In terms of Ay and 7 condition (97) can be rewritten in the form

«/&(luflu)sgh P
(&~ 5)2_‘“

Ih

Cy

where Cy = Cy(d, t) denotes the largest constant “const” occurred until now.

Denoting,

2

A= gy /Elam) B := 22!
(E — E)Zx-i-l

we see that (95) yields
(99) fiip1 < AB'Al <1,
Such relation may be rewritten as
Pt = A7, = AB iy
which, iterated, leads to

- _ (AB)”
(100) = —

In particular, one can conclude that the iteration process converges if

£
ABfip < 1, jto = Ieollgy 0|2|;0 .

14
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showing, in pa{licular, that v + Zf.io w; converges uniformly on the complex
strip of width § to the real-analytic function

no
u=v-4 Z w;,
j=0

which (since ¢; — O uniformly) will satisty the Euler equation (76).
Finally, we prove (77). First of all note that in fact E is nothing else but

E=ABny.
Now, (compare (98)),
22r(j+2])~5")‘}llj _ )
llhe;llg = const W = c0nsl(4”);fn}_t7,‘a)

< (const(honp)®) 2100420 ;. G210 g,
where C := const(Ag7o)°. Since by (100)

fii < (ABuo) ,

we have
L2ml+2”llj < Zzz(sﬂumyﬂn)z _ Z(Clz)_.EzJ ’
j=0 j=D j=0

where we have denoted Cy = 2%**. Continuing the last inccuality, we get

1
=)

S CVEY <3 eV EY =3 (6B
j=0 j= =0

o0
; CE
SYACEY = ———
; 1-CE
j=1
= CIE(1+2C,E) < 2C\F,

provided 00 < CyE = 1/2. This last assumption can be always satisfied by the
right choice of the constant. 1

We conclude this section with an immediate application of Theorem 6 to
the “nearly-integrable™ case.
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PROPOSITION 7. Let € B4 be (y, T)-diophantine. Let V € Ry, (14, &) and
u, it € Ry (T, RY). Assume that u and i are two solutions of (102) such that

(1) = (&t). Assume moreover that I + ug is invertible everywhere on T4 and that

CoroLLARY 1. If

2 Fydz 12
Yy g8 2
(101 Velle = = —————1{L [ Vaxzlle. ¥ ™7}, _

¢ max [lelle, el < & — &
. : o d ) (7 4+ ug)Mle <1 < +o0
then there exists a function u € Rg(T, RY) such that {u) = O which solves the I+ uglle < X < +00.

Euler equation D2u + V(@ 4+ u) =0 with

Define
C max{1, || Ve llz, ¥ 2}
Iullg = 5 WValle =i — é’)‘jrf_z : . ey Y
- )‘-5714” Vxxx "k, ’
Proor. Take as initial approximate solution the function v = 0. Then where ¢y = co(d, T) = 1 is a suitable constant. Then, if |lu — |y < ¢ one has that

E(v) = £(0) = V,(f) and one can take A = n = | so that (101) is recognized =i

to be (75). 0
Proor. Let

ReEmMARk 13. Let [[Vy|le, [[Viuxlle < &. From the properties of diophantine wi=i—u

numbers it follows that, if we denote and notice that {w) = 0. Since # and u are solutions of (102), we have
) 0=D%+ V,(0+0
Q,.:{(;)EBf : |a)-n|‘;‘L Vnezd\{O}} , 2u : "§ +il)
|nl® (108 =D*w A+ Dou+ V(0 +w+u)
= D*w A4 V(0 +w+u) — V(0 4 1)
then D+ Vg (0 + wyw + Q
= w -1+ ‘. u
meas(B:‘ \VQ) = conslmcas(Bf)y . o
. . ) A oA, where
Now, condition (101) can be met by taking y = /&¢C with C big enough, ) r
showing that the set of w’s for which we can find simultaneously a solution for Q= /o (1 =) Vixx (6 + u + swywwds .
the Euler equation fills (as £ — 0) a ball of radius r up to a set of measure at . ) X 10 il
most const /€. From the expression of Q and Lemma 15 [Remark 10] we easily get
1
1.6. — Local uniqueness (105) ||Q||§' = E”er.v”_& I "’”gl
In this section we formulate a sufficient condition which provides “local” for every £’ € [0, &].
uniqueness for the solution of Euler equation. First we remark that if u verifies Let M = I + ug. Differentiating with respect to ¢ equation (102) we gel
the equality
(102) DX+ V(B +u)=0 ) _
A (106) Ve + 1) = —(D*M)M™!

then also that we can plug in (104) obtaining

w:(0) > ¢+ ud+c) .
0=Dw— (D°M)M 'w+ Q.

is a solution of the same equation, for every constant ¢ € R?. Since (i) =
(1) +c, it is natural to investigate local uniqueness of solutions with prescribed
average.

Letting
7= A‘[_1 w
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we have B 5
0= D*(Mz) -~ (D"M)z+ Q

= D(MDz) + D(DMz) — (D*M)z+ Q
= D(MDz) + (DM)(Dz)+ @,

which can be rewritten as
(107) 0=M"M" DWMDZ)+ M (DM)(D2))+ Q.
Moreover from (106), we have that the matrix (D*M)M~" is symmetric and so
0= MI(D*M) — (D*M)"M
=DM DM — (DMTYM);
in particular, since D710 =0 we have
M DM — (DMTYM = (M" DM — (DM")M) .
By equation (44) we already know, however, that
(MTDM — (DM")M) =0
for every matrix M of the form 7 4 up. Thus
MTDM —~DM™M =0,

ie.
M'DM =DM M.

From (107) it follows:
0=M"TMIDMDz)+ (DMT)MDz) -+ Q
=M TDM"MDz)+ Q

which means, setting P = MM, that PDz = —D~'(M" Q) +c¢; for a suitable
constant vector ¢,. Thus

(108) Dz=—P'DYM" Q)+ P e
and

(109) w=MDY(—P DM Q)+ Ple)) + Mcy
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for a suitable constant vector ¢;. Taking averages in (108) and (109) we obtain
the following expressions for ¢; and c;:

(110) & = (P (PIDT (M Q)

(111) Cr=—{MD =P "D Y MTQ) + P e,

Let us now define, for every j € N, & = 27 /&. For every j € N, by estimates
similar to the ones already seen in the previous section we get from (110) and
(111) the following inequalities:

2 er

el = COIlSll]’l"y'E"; Qg
4L+

le2l = constr‘n“y?TuQnsj

which can be inserted in (109) obtaining

4Z’.jr
(112) const [[wllg, ,, = P -

77'1) .
g0l

Letting
k =max<1 constksn LHV Il I
' 252‘, XXX E;J

we obtain from (112) and (105)
lwllg;,, < k477wl
and, iterating as done above (compare (99), (100)), we get
lwlo < fwll,, < Ga> wle)?
showing that [Jw|lp = 0 (and hence by analyticity w = 0) whenever

k4¥ wile < 1. ]
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2. = Smooth KAM theory

The aim of this chapter is to exhibit a result of existence of quasi-periodic
solutions for systems that are no more required to be analytic but just smooth
enough. We will heavily use the previous results, passing through analytic
approximations of smooth functions.

2.1. — Approximation theory

Here we prove the necessary technical approximation results.
We start by introducing Holder norms. First of all, for every Iy € N and
for every f e C'o(R™), we define

|flgtg = sup sup |8 f].
I

)<l R™M
If I =ly+ p with [y € N and e € (0, 1), we set

8% f (x) — 8 f ()]
| flet = |f|(_~;'0 -+ sup sp  ———————,
) lw|=ly O<|x—y|<1 [x — yl#

For every [ = 0 we define
C'RY Ry = {f R > R™ . | fla = +00).

The space C' (R4, ™) endowed with the norm |-]ot is a Banach space; the sub-
space of C'(R¢, R"™) made of functions which are 27-periodic in each variable
will be denoted C*(T9, ™).

ReMark 14. In this section it is convenient to work with Euclidean norms
on vectors and the associated operator norms on matrices and tensors.

ProrosiTion 8 (Jackson, Moser, Zehnder). Let | = 0, d € 7y and f €
CH(RY). There exists a constant ¢ = c(, d) = O such that for every 0 < r < 1 there
exists a real analytic function f, on AY which satisfies”"

(i Tmx)”?

| = clf[clr'_"”, Vxe Af

113) @A - Y 3" f(Rex)

1A=t =]

for all « such that |«| = 1.
In fact, the analytic extension f, may be defined as follows. Let ¢y be an even
Sunction in C§¥(R) with support [—1, 1], increasing in |1, 0] and such that

nO=1, P (0)=0 (Vnzl);

20 We will use the following notations:

Rex := (Rex;,...,Rexy) and Imx = (Imxy,... , Imxg).
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for£ e BY, let p(£) = ¢ (& I2) and let K be the anti-Fourier transform of ¢

1

K = Gy

/ p(E)"EdE
Jmrd

then f, can be taken to be

X =y

frlx) s = (S f)x) =1 /l;" K ( ) F(ydy

(114) }
=[x (f—g) Fogde = [ KOst = rady.
R4 L4 Jrd

ProoF. Since ¢ is a real smooth function with compact support, K is real
analytic on Y. Some properties of K are collected in the following

LeEMMA 9. The derivatives of K satisfy

S|l
115 v Lo 3e,: |PK()| < cp——— Y IBl < p
(115) peN cp i (x)l_t,,(]_HxDp Bl=p
(116) up sup [P K (x)] = ! el
N = ———léll -
ceR? gend (2m)¢
Furthermore, if «, B € N and x = u + iv € €4, then?V
W B y
. (=D — (i) e <f,
(117) Lag ;:/ w3 K (u + iv)du = ! B ~-a)!( / !
e 0, otherwise .

Proor. First of all, remark that if u € supp¢ = B;(0), then

Ielx-ul — e—lmx-u < elhm—l .

Let us denote ¢pglu) = ufp (). We have

K@) :=0° ((2::)4 /Rd Bw)e™ du |

18l .
= —_(2;7)" Ad dp()e™“du,

21 I
@Dyor vectors @, A € MY, we denote

a=f = o=p Vi=1,...,d.
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and, for any multi-index @ € NY, || integrations by part give
jlal 161

anp ) —
PR = g

] (’)“(;ﬁﬂ(u)e‘-""“du .
wd

Hence

1
48P K (x)] < Wla":pﬂu.md,e“ml.

Now remark that for any p € N,
p p! .
U+ 1xD? < A+ bl + 1l + . )P = ) e XL
lal=p p = lapie!

Hence for |8] < p, one finds

|Tanx |

1 -~ p! e
(DMK = Gy 2 Gy a0l

1 Imx|
€ — sup {[8“¢plL1gay) | €™
2m)¢ IEIJ |a|)'u' Bl=p LI(RY)
Thus
ﬂK |tmx|
KL= e e

proving (115). Moreover, if x € B¢ and B € N9, we have:

3P K ()] = f [l ()| du

= @

which is (116).

The relation (115) shows that the integral I, g is well defined. Moreover,
notice that if o = f for some i, @; integrations by part show that Iz =0
since 9% uf = 0. So we can assume that «; < f; for all i (ie. @ = ). By
integration by part, we see that

Iog = (—D¥ @ ﬂ'u)—'/ WP K (u - iv)du
Notice also that
K(u+iv) = o )d/ G (E)e H U yg

= (2”,/ (Ere"Ee b dE = Ry
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that we can think to be the anti-Fourier transform of
$u(E) = p(&)e™* € CP(RY)

for each fixed v.
Hence:

1 fif—=

. [ . P )e THE
(Ci)#al gghe /l;-" K(i+iv)e ™ du

/ WK (4 + iv) du =
rd

=0

1 a!ﬂ—lﬂ - y
S Roiwye—i 4
(—i)lp-al g gh-a - ,/kd vluee 7

1 lé—«l
- W'&[ 3 ;;’_-ﬂ—a

(1)

le=0
where, in the last equalitics, we used the fact that the right hand-side integral

is the Liourier transform of K, (i.e. 451.). Now, using (8), we obtain:

1
B-a e - B
/Rdu K(u+iv)du = P ul¢(0)( Vi
= (—iv)ﬁ_“ .
From the properties above, we can conclude:
: PP, if a8,
leg :-‘—‘/ w3 K (u -+ iv) du = { —at ) A
R 0, otherwise .

We proceed with the proof of Proposition 8. Recall the cefinition of f, = S,
given in (114) and notice that (117) implies S, P = P for any polynomial P:

(& P)(x) =/ K@) P(x — ro)dn
®d

/ kop | 3 ate | dn
Iquieb}’
= > ak(x,r)/ K (pytdy
|kj=deg P =

=ap(x, r) = P(x).

We claim also that for every [ € By and f € C', then there exists a constant
rq(l d) such that

(118) Lf G+ y) = Pelx, I = eoll, D) eyl
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where

, 8“f(x) ¥ -

Pr(x,y) = Z o and k=[1].
el =k

In fact, if { is an integer (118) comes immediately from Taylor’s formula (and,

actually, one could get ¢o(l,d) as small as one wants); if [ = k + p with

w e (0,1), we get

SITRETS
If(x+y) — Pelx, y)| < /0 a-n (ka(x +y)y® — ﬂkf'(-r)y(”) dt

(k—1)!
; U1 % ok F(x + ty) — akf(x)]brl**f‘dz
Jo k=1)! [ey|#
Sl
= L

Let x = u +iv, § = <% where u, v, y belong to k4. Then

() = 8¢ (;IJ /L K( — )f(y)dy)

! -l-«')"l(( ; +t—)f())dy

rd Jud rlal

: / —B"K (n + l'—) flu—rn)d(u—rn)

r|°'f R4 rd

1 v
ﬁ/ a*K (r}-l—i—) fQe—rn)dn.
riel fgd r

Let us consider now |8| =/ — |af; in view of (117):

II

Il

DLW 0TS @ N
B! v = = B! (_l)luIM! ( ,'E)B _/:ld K("+lr)n :
_ " o O PPN
_./Rda K(n+t—) (ﬂ+a),( 1) n“dy
1 L LC) PRSP
. e ) — 7 Pdn.
[k (n+i2) TLS v tienay

Hence, if we denote k = |/] and apply again (117), we obtain:

Hetp
Z a“l f (u) (iv)?

1Bl =t el p:
3+ f () la+Bl (py@+h
(n+,_) 5 (m—a)!(_l) (rm** ) dn

18 <l—a|

a f
L/ a“K ( ) Pelu — r)dn.

ylel

Flal

Il
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In view of the above calculations and of the inequality (118), we have:

i0)E |
3 fr(x) — Z 8 £ () (lv‘) |
81—l B! ‘

1
= / a“K [ n+ iE [ flu—rn)— P(u—rg)|dy
rlel fpd r

By
®d

< ol ' |
Jrd

Applying (117) for p = I big enough (ie., p =1 +d), we get

3K (7)+i2);|1)|’dn
r

9K (n—f»if>‘(1 -l dy.

- vy |
A - Y 35w SR salflar™ [ 0wy
IBl=i=lal At #

< el d)| fler'
which completes the proof. a
Remark 15.
(i) In particular, (113) (with x € R?) implies, for s </ (s integer),
(119 e = fles <€Ifle ¥ (=D,

for a suitable ¢’ = ¢'(l, d).
(it) Also, (113) with [ =0, yields, for every f € " and any r = 0,

(120) suplfrl = (c+1) |fleo.

af

(iii) If x is real, the definition of f, implics immediately taat, if f ¢ C* and
leef =4,

(121) Y fr(x) = (3% f)r(x).

By analyticity, such relation is seen to hold for any x e C9.
(iv) Using the observation in (iii) and Cauchy estimates, one can give the
following bound on the derivatives of f, with f e C":

(122) Ifrles <" 1flear™ . (s = | integers) ,

¢ = c"(l, d) being a suitable positive constant.
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Prook. If s =1, (122) comes from (119). Let s = [. For any multi-index «
such that |o| = s we can find g and @ such that @ = 8 +aq with |ay| =1 and
|8l =s — 1. Then, by (121), Cauchy estimates and (120), denoting by *“const”
(possibly different) constants depending on / and d, we find

[ fylco = 18 (@ f)rlco = COﬂStSl’dP |(3“”f):|r—.‘. 7
a 0
1
< const [3“? f o~ = const [Flert=s.
0

(v) (Convexity estimates) Let [ = 0, let £ € C' and let k, m be integers such
that 0 < k < m < I. Then, there exist a constant ¢ = &(/, d) = 0 such that

k

(123) [flem = ¢ Ifl IJIC:

1
ProoF. Define r := (- ?ll’-T)T:f Then » < 1 and by (119) and (122), we get

|ﬂmuﬂﬁ—fm~Hﬁkm<meﬂaﬁﬂ+vun“%
m m K (]

_2utmsl|jlck |f|
(vi) If f is periodic, f, is obviously periodic. Moreover, if f belongs to
CO(1%), then
S S =F S fe "
1

2][1‘4 (jud K(np)flx— rr))dn) ey
_ —irn-y o —i{x—rn)n
= ./Rd K(n)e G]ﬂf(x rn)e dx) dn

= fap(rn),

showing that f, is a trigonometric polynomial.

ProposiTioN 10 (Bernstein, Moser). Letl > O and d € Z,. Lex fo = 0and
foreach j in Z,, let f; be a real analytic function on A" c € where r; = ry/2!

Jorsome 0 < rg = 1. Assume that
(124) 1f = fi—ily < Arf

for every j = 1 and some constant A.
Then, f; tends to f uniformly on RY and f € C*(RY) for every non integer
s < 1. Furthermore, there exists a constant C = C(l, d) such that:

CA
w(l = p)
where jt = s — [s). Finally, if the f;’s are periodic in each variable x; then so is f.

l1—s

(125) lf,c.v(nd) = 0
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REMARK 16.

@) If fo# 0 and (124) holds for all j = 1, we can apply the proposition 1o
fi = fj — fo getting that f; tends uniformly to f € C* so that f; tends
uniformly to f := fy - f € C*. Moreover,

C A
(126) If — folesa — .
CS(kd)y = n( M)

(ii) It is enough to prove Proposition 10 in the particular case where { € (0, 1)

and s =/ = p as we proceed to check.

PROOE OF POINT (ii) OF REMARK 16. Let us consider the three following
claims:
(a) “Proposition 10 holds true for 0 <s <! = 1"
(b) *“Proposition 10 holds true for 0 =5 <1 < 1"
(c) “Proposition 10 holds true for 0 < s =1 < 1"

We will show that
(© = (b) = @

and finally that (a) implies the general case.
(b) = (a): To prove (a), we assume (124) with / =1 and fix 0 <5 < 1.
Then, for every s </ < 1,

1f; = fi-1ly < Ary = Ar]
which shows that f; satisfies the hypothesis (124) of (b). Applying (b), we get

cA
IFles £ ———7¢

s(1 —s)

s

and taking the infimum in the above expression over ! < 1, we get

fles < —2 i
5 K —)
C=5a=-9n"

(¢) = (b): We have

fi= Fialy < Arf = Arj™r} < Arg™r}
which shows that f, 1 /r satisfies the hypothesis of (¢) Then, by (c), the
uniform limit f of f, belongs to C* and

= CA
fle 5455

+
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which is equivalent to
CA

s(l—s),0

[fles =

which proves (b).
Now, let us show that the claim (c) implies the general case. We prove
by induction on k ( k = 1) that

(P¢) “Proposition 10 holds true for 0 <[ < &”.

First of all, notice that (P;) holds true since (c) implies (a) and (b). Let s be a
non integer such that 0 < s </ < k- 1. We can assume that k </ <k +1 (if
not, then 0 < / < k and we can apply the inductive hypothesis). By assumption,

we have
Al
Lfj = fimtly < Arf.

Using Cauchy estimates (Lemma 5) we have for every « € N4 such that |a| = 1,
i\ -1
Iauﬁ—f’",fj—ll% =1 = fi-ly (5) = 24r7.

Then by (Px), fj converges uniformly to feC* forany s =/ —1 and

_CU-DA
[fles = T L

Proor oF ProrosirioN 10. In view of point (i) of Remark 16, we may
suppose, without loss of generality, that

(127) O<l=s=p=<1l.

In this case, we have to prove that f; converges uniformly on 4 to f and that

) YW= FoN __CA
[fler =1flco +0<|§E§|$1 g = PR

Set g; = f; — fi—1. First of all, let us prove that f; converges uniformly on
B9, For any 1 <n < N, one has (recall that rj = ro/279)

N
Igilco = Y_1fi — fi1leo

N
Zgj = )

Jj=n c0 Jj=n J=n

-

(128)
I

_iA ro\" _ Ary
I 2 ) T owem 12w
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:hi 7 ol - . < PSS 9 — o0
\\l.uch comcrgcsd o zero as' n goes to +oo; thus f; converges to f = Ej__l &
uniformly on R and (setting n = 1 and N = 400 in the above estimates)
we have

L

1—2%"
Since 1 —27# = /2 for cach p € [0, 1], we get:

[fleo = Arg

2458 24, 24
< ro = .
nwo on(—0 " T -

(129) [Fleo =

In order to estimate the second part of | f|ce we need to distinguish two cases
according to whether rp < Jx —y| =1 or |x — y| < ry.

First case: rg < |x — y| = 1. Then using the second inequality in (129),
we get

L 4A . 44
p(l=p) = (=

Second case: 0 < |x — y| < ry. Then there exists a N in N such that:

(130) Lfx) = FII =20 fleo = )I«\' -yl

p LT
(131) N <l|lx—yl =< ‘:2";-
The second inequality in (129) is equivalent to
(132) @ < e =yt

Now,

LFGx) = FOL < D 1gi(x) -~ g ()]

j=1
=)l — g+ Y 1) - gl
j=1 J=N+1

Let us estimate separately the two sums. Using Cauchy estimates, we have
(recall that, by hypothesis, |g; I,J. < Ar}‘);

-1 -1
r; ri gt
Bcgly < gl (5) < Igjlco (5’) <24r "

Hence,

N N 2] l—p
S lgix) - g = 241x — ¥ (—)
j=1 j=1\'0

QNHDU-e) _

=24l =yl ) )
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Since 2/ — 1 = /2 for any t = 0 (and since 217# < 2), by (132) we get

N . 2[N+l)(|—}‘)
3l — ;0] < 240 — yI(05)' ) (4 —
(133) =1 !

Next (using again 1 — 27" = p/2 for p € [0, 1] and (129))

o0 o0 o N
S Iy -2 Y lglo=24 Y (;—j)

(]'_;4) j=N+1 J=N+1 Jj=N+1
o\ 1 =y
=24 (2N+l) ‘l-‘_ T :4:‘1—;‘. .

Putting (133) and (134) together, we get:

164 44 )
[f@) = fO] <l =y + | = yIf
(135) I—n ®
St 6
< ——I -V .
Sua—w
Thus, by (129) and (135), we get
| flew = PR
with C = 18. ]

2.2. — A KAM theorem in C* category

In this section we extend KAM theory to the finitely differentiable case.
For simplicity, we shall discuss only the nearly integrable case: in particular
we prove the following generalization of Corollary 1.

TueoreM 11, Let @ € R4 be (v, T)-diophantine, let | > Iy = 4t + 3, let
V e CHTY) and let M > 0 be such that V] < M. There exists a constant
Kk =k(l,d,t,y, M) > 1such that if
=
(136) k([Veleo) T =1,

then there exists a function w : T¢ — ®?, which belongs to C* foralls <1 -1y not
integer, satisfying

(137) Dl V(@ +u)=0,
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and
K =tp—s
(138) luler < ————(Vileo) 7T, pi=s-I[s].
p(l—p)

If s < 2, from the proof given below it follows easily (as relation (137)
suggests) that the double directional derivative D?u exists and is a (1)
function (exercise).

Proor. Let

%}' + E/

1 £ .
(139) £ = (lv.rl(;“)z_—l ). Ej = 57 E/ = 5= e

Notice that (136) implies that ¢ < 1.
By Proposition 8, the real-analytic functions V; := S‘&j Ve Ry, satisfy

ARV (R ; e
ﬁ(i Imx)?| = c|V]C!§)-[ fel

(140) BV (x) — w;l | 5

for every x € Ag’j and || <. Denote by &; the differential aperator

& v — &) =D+ 3. Vi(0 +v).

The strategy is to construct a sequence of real-analytic functions u; & Rg,.
satisfying &£;(«;) = 0 and to obtain, by Proposition 10, the solution u as uniform
limit of the u}s.

For the purpose of this proof, we denote by “const” (possibly dillerent)
constants depending on /,d and v and by k; suitable constents depending on
I,d, t,y, M. The constant « in (136) is assumed to be such that

(141) K=K, Vi.

As a preliminary remark, we observe that, for any |¢| <3 znd for any j = 0,

(142) sup |8 V;| < const M ,

ad
&

as it follows from (140) and the fact that ¢ < 1:

Aty (@
@l < v — 3 YO

1l=1-3 B!

f4a (s
+ Z 8_;‘;'_(1“2(‘ Im x)?

[1B1=t-3
= const(ME] > + V|3 + ME;)

< const M .
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We proceed in three steps: construction of wup; inductive construction of u;
(7 = 1); construction of u as limu;.

StEP 11 CONSTRUCTION OF #p. We want (o apply the KAM Theorem 6 with
v=0&=%&, ¢t= 50/2 = ¢/2, £ = £ = £/4. We start by estimating
Eo(v) = £(0). Let 6 € AE’ ie, |ImO] <e/2. Then

[E0(0)(@)] : = [0: Vo (9)]

— dFa, V(NO
<law® - 3 —ﬂ!()(r no)y?
1Bl=l-1
f
S o,;/(:ﬂe)( imey?

|Al=t-1

(%) — j
< const | [V]gre'™ 4+ 37 Vilesed

(143) j=l—1
(#%) . = —I—r'Ll_
< const (IVICISI Ty L [Vilo |V|IJ_ €
j=t=1

© const WVle + Z IV|§T) el

j=t-1
< const max{1, M}e"!
= K]E )
where: (%) is implied by (140); (+#) is the convexity estimate (123) with k = 0,
m = j and [ replaced by [ — I; (T) is the definition of e. Thus, recalling the
notations in Theorem 6, and observing that @ < max{I, const M /7% by (142),

that . = n = 1 and recalling the definition of Ej, we see that (75) is implied,
in our case, by

(144) e,

for a suitable x» = 1. Such condition, in view of (141) and of the definition
of ¢, is implied by (136). Therefore, by Theorem 6, there exists a function

Hg € R@n such that
Eo(up) =0

and such that
(145) laollg, Idpuollg, < k3 &'~ <1,

where k3 = Kks, K being the constant in (77); the second inequality holds
because of (141) and (136). The first step is completed.
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StEP 20 CONSTRUCTION OF {u;}. We proceed inductively constructing ujy,
for j = 0, via ThcoreAm 6 by taking v = u; as approximate solution. We also
take & = &4y, & = & and E= §j+1. The parameter «, in view of (142), is
uniformly bounded by max{], const M /y?}.

We, now, assume that, for 0 < k < j, there exist functions u; R’é’k such that

Ex(uy) =0

and such that®®

e\l
(146)  lug — ug—1llg, 109 (ux — - llg, = x4 (5}‘) \ (I =k=j)
Jor a suitable ks = &3 specified below; finally we assume that 0 <k < j:
(147) NBouelly, < 1. U+ dpu) ", <2

Notice that louxlly, =1 implies® || I + dguyllg, < 2 so that, if (147) holds,

then in Theorem 6 one can take A = 5 = 2. The inductive assumption (147)

and the definitions in (139) imply that (74) is satisfied: in fact, if @ € A}‘ , then
&

[Imu;(0)] = | Im(u;(0) — u;(RO))]
=< i (0) — u; (NO)|
=< Il("eujllg-jEj
<& =&, —&.
We need, now, to estimate & (u;). Since, by the inductive assumption,
&£(u;) =0, we find, for 0 € Ag. and because of (140),
j

€41 (O)] = | D> (0) + 9 Vj 1 (6 + u;)|
= |8y Vj+l(9 Fup) = 3 Vi(0 + uj)|

BV (RO + u;
= |0 Vi (0 »1-141-)“2 S (9%(’6 Fu))
1Bl=t—1 B!

8P, V(‘JI 0+ u

> ( ’))( Im(@ + u;))? — 3, V;(0 +uj)!
|lp =i-1 |

< const | V|q (&7 + s}“)i

=< const ME;"'

|
(i Tm(0 +u,-))ﬂ“

(148)
o

CDFor j = 0(146) is obviously replaced by the already proven (145).
@ We are choosing norms for which ||/ = 1.
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Thus, (75) becomes, in the present case,

e\l
(149) Ks (m) =1,

for a suitable x5 = 1. We now define®® k4 as
(150) kq = max{xs, Kxs}.

Notice that condition (149) is again implied by (136). Thus, by Theorem 6,
there exists a function ujy| € ’R,EHI such that

Epruj) =0

and such that

14,
& 4]
(151) loejar = wjllg;,, > N3 Gejen — uidll, | = K4 (2—j+1) )

which is exactly (146) with k = j -+ 1. The bounds (151) together with the
condition (136) easily implies that the inductive assumptions (147) are satisfied
also for® k = j + 1, allowing to iterate the inductive procedure indefinitely.
The second step is completed.

StEpP 3: CONSTRUCTION OF 1. At this point we can apply Proposition 10 (see
also Remark 16) with: [ replaced by [ —1Ip; f; = uj—ug; rj = f,— = g/2%? (s0
that rg = &/4); A = k44'~% (compare (124), (151) and the choice of r;). The
thesis of the theorem now follows at once from Proposition 10. (]

EXERCISE. Discuss the C™ case.
Exercise*. Extend Theorem 6 to the differentiable case.

3. — Appendix A

Limma 12, If T = T(0) is a strictly positive and symmetric real matrix for
each @ € T¢, then
T < sup 1771
oe1d

Proor. By hypotheses there exists an orthogonal matrix P such that PY7T'P
is diagonal. Let {%; :i =1,...,d} be the spectrum of 7' and y a vector whose

() This is well defined since in the computations leading to the definition of x5 the inductive
hjsl):()lheses (146) have not been used.
“?)Exercise Fill in the details.
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coordinates are y; for i = I,...,d in the basis where T is diagonal. Then,
we have:

d
(Ty)-y=>_ hy}
i=l

= 1 A 2 2 .
_‘_E(r]r‘l_lfl_d’l iyl

But, min;¢(y, . g){%i} = 1717, thus,

lIyll®
171
Iy

T osupgepa 1T

(Ty) -y

AY

2
l

Set y = (T} 'x. Taking the average of the last expression, we get

2
(T(T)y %) y) = <~—M~_T”> ._

supyepd |7

ie.,

e — lIyll?

(rym! 2 Ty
SuPgeya ITHI

Finally, using Schwarz’s inequality in the left-hand side, and dividing by [y,

we get

el 2 2
T osupyepd |17 e
1e.,
T -1
sup “T_l||2M:”< ) X”
peTd flxll [fxHl
Since this is true for all x, the result follows. 0

ProoF oF LEMMaA 4. To prove (66), we observe llnt by Parseval identity,
if ve C? js such that |Imu| < £, then

(152) S 10 = [ f i)l du < 111 50

nezd

Thus, for any n € 74 and any v as above,

TR VAR T POVE
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and choosing®® v = —(signny, ..., signng) (€ — &) we get

" 1fal = 112,08 el

letting £ — 0, (66) follows.

Let us turn to (67). For the purpose of the following argument we let |n]
denote the Euclidean norm also for integer vectors.

The first inequality in (67) is obvious; in order to establish the second one
for a fixed vector x € Ag_5 we define the set

-4
Iy = {n €z (n-Imx) < — |ﬂ|(§° — 2} R
and let
o= _%'
= e
Observe that (n-Imx) < —IQILZ_J is equivalent to
. |n|8
(153) —n-Imx < —n-puImx — -5

Thus, by (153), Schwarz inequality and (152) (since px € Ag), we get

S e 1m0 < 3 | fylemnmemh

nelg nely
1 ]
2 2
- 2 ~2(n-pImx) ~|n|8
< | Do Ifulfe®® ¢!
nezd nezd
1
1

IA

C

i
—7 Iz ads
87 g

where®”

c) = c¢1(d) = sup Z e £ oo
0<i<l 1
neds

(6YHere, we let signa be 1if a = 0 and (—1) otherwise.
77)

O et ) (ed AN (d »|n|}.)
LL _Bd(b Ze )::adobuP ).Ze .

<i<l

52 LUIGI CHIERCHIA

It is easy to see that there exist an integer s = s(d) and a collection of s
unit vectors ey, ..., e; in B¢, such that for ever y € RY (here exists o €
{1,... .5} with®

[¥l
Vaey) >
(y-eo) )
Now, every nonzero integer vector outside /g, lies in one the sets [, defined as
nj(€ -8 in
I, == {n ezt (n-Tmx) = —%. (n-e,) = '—;)—l} E

But, (using again Schwarz inequality and (152)),

— - ()]
Yo fale @m0 < N flet T

nely nely
1
2 2
<[ Siser] (3o ee
nely nely
1 L
2 2
< Z lfHIZe—-’l(n-Eeg) Z e—!nl&
nezd nezd
3
i
= gl fllj2 aa-
§2 §
Inequality (67) now follows and one can take cp = (s + 1) /cy. a

4. — Appendix B (Fourier Norms)

For & = 0 let us define the space

Re(T, BY) :={ F e CTLRY)s. t. (Ifllg == D Ifule"® <oc

nezd

The space Ry(T¢,®Y) is a Banach space with respect to the norm || f [I;.
Moreover, since

Ll < U flge”™,

@ Givenv € $41 == [y e RY : |y| = 1},1etCy = {w € $47! 1 w-v > ). Then Cyisanopen
(in the relative topology) neighborhood of v and (Cy, : v € $471} is an open cover of the compact
set S9=1. Thus there exist unit vectors vy =: ey, ... , Us =: ¢ such tha: sd=1 U}le,;: this is

equivalent (o the claim.
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(when & = 0) the function f has a holomorphic extension to the complex strip
Ag. Notice that

(154) sup £l =sup| Y fue™| = D [fule™E = 1],
Ag Ag nezd nezd
and if 0 < &' < &, then ’ég C 7@51 (exercise). In particular, (154) shows that
-

f e 7%5 admits a holomorphic and hounded extension to Ag.

LemMma 13. Let f € 7%5('11“1, X), p € Z, « € N be such that | p| + || > 0. If
p = 0, assume either || = Oor (f} = 0. Let 0 < § < E. Then

ID™70% flly_5 < Cpal@ I

where .
Inale— n

Cp,a(w) 1= sup ———

nF#0 lm-nll

If w is (y, v)-diophantine, then

(Pt + la))! :

‘ “yrapid Jorpz0,
Cpu(w) (Ipl + !

(sup l{ui])lpl Sptv el , Jorp<0.

Slel+lel

PROOF.

ID=Pa%f). , = R fu in e e e—s - -
Plgs = > e =2 ot Y = @il -
n#0 n#0

If p>0and w is (y, v)-diophantine, then

n|lel+Te

Cpalw) < sup L

n#0 Y u

The function on the right is of the form g(z) = t¢~%!, t = 0, a > 0, and has
a maximum at the point ,, = § such that g(z,) = a®(ed)™® < a!67, where if
a is not an integer, we define®” a! = ([a] + 1)!

If now p < 0, one can repeat the previous arguments using the fact that

in this case |w - |l < (sup Jw;|)!?!|n|lP. O
N a e N, then (4)° = 4 < 5 = gl If a is non-integer, then we can
l4atS+ot &t o

repeat the same argument eliminating all terms in the Taylor expansion for the exponent except
1+ aleHl(fa] + D
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In particular, if {f) =0, then
N L eyt a7
(155) I1D7" fllg—s = Il f ”éﬁ'

LEMMA 14, Let f € '/%5 (']I“i, X), g€ ﬁg(’W, Y), with X and Y tensor spaces
(BY, matrices or higher dimensional tensors) and assume that the product fg is
well defined. Then

If gl < 0F 108l -

Proor. Indeed,

eltls
n | m

= Z lfn—m ||grr:|e|"_’,llgetm|§ - ”f”g llg “g -

n.m

If gl =D 1 Dale™ =D fumgn

]

LemMa 15. Let V € R, (T4, R), g € Re (T4, RY), with &, = E. If llgilly <
Eo—Eforalli=1,....d, then |V(x + gDl < VI,

Proor. Using Lemma 14, the fact that || - ]Ié is a norm, one finds

IV + gl =D 1V (x + g(x)ale"*

n m n
= Z Z Vin (eim-g(x))"_m eln!&

n m
= E Ivm ||(eirwg(x))"_m[elrx;f

nom

(im - g(x))j —ml|E |miE

D> [7 onl i

n.m jz0 ‘]' n—m

Vil e . j In—mil
= L%el &ZH(lm-g(X))’]n—mh—" ’

m, j ) n
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[Vl n Y
< Z-j:’jLe' (i - gllg)

m, j

d i
. IVIHI |ml& \ -
= Z Te ' L”li ||8'i||_5

m,j i=1

L Ivnll ~j j
= > e sup gl )ml

m,j ) !

< S Vol e e, gyipmp

m,j
= 3|Vl Bl Ol =y g
m
The Fourier norm | - ]|; and the sup-norm || - ||¢ are not equivalent (exercisc);
however they are strictly related. We have already seen (compare (154)) that
(156) Ifle = U flle,

which implies immediately©"
(157) Re(T9) € Re (1)

We now prove that a weaker version of the converse of (156) is true. Let
§' =& =0 and assume that f € R Since, for every n € Z9,

Ll < I fllgre™™E

£l =D 1falel™® < lIfllge D e e 8,

But (for suitable positive constants ¢(d), C(d))

M0 < oty [ eWE-gy = D [ g, €D
2 ¢ ()/ma" ' (5'—s)d/ma" MR CEST

nezd

we have

so that

. IS ller
(158) flle = C@d) ———.
¢ & — &)
This relation shows, in particular, that
(159) Ry (T € Re(TY) VE sk,

EXERCISE. Give explicit upper bounds on ¢(d) and C(d).

(0 Actually R (T9) ;%R;('lrd ) (exercise).



