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KAM Stability for a three-body problem of the Solar system1
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Abstract. A new (iso-energetic) KAM method is tested on a specific three-body problem “ex-
tracted” from the Solar system (Sun-Jupiter + asteroid 12 Victoria). Analytical results in agree-
ment with the observed data are established. This paper is a concise presentation of [2].
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1. Introduction

The stability of the Solar System is among the most important questions in Ce-
lestial Mechanics. Its full solution involves understanding the dynamics of a large
number of objects such as planets, satellites, comets and asteroids. Due to its
intrinsic difficulty, the problem has been usually reduced to the study of models
involving a smaller number of objects. In this direction, the simplest (non trivial)
model of planetary motion involves the dynamics of three bodies. However, as
shown by Poincaré, even the three-body model cannot be solved analytically. In
this paper we analyze the stability of the so–called “restricted, circular, planar
three-body problem”. In particular, we consider the motion of an asteroid under
the gravitational attraction of Sun and Jupiter. We assume that the three bod-
ies move on the same plane, that the asteroid does not influence the motion of
the primaries, and that the orbit of Jupiter is circular around the Sun–Jupiter
barycenter. This problem can be conveniently described in terms of Delaunay
action-angle variables. The corresponding Hamiltonian has two degrees of freedom
and is nearly–integrable: the integrable part corresponds to the Keplerian motion
of the asteroid around the Sun, while the perturbation is due to the gravitational
influence of Jupiter. The perturbing parameter ε represents the Jupiter–Sun mass
ratio and its astronomical observed value amounts to about 10−3. The perturbing
function can be expanded in Fourier–Taylor series and we shall retain only the

1Supported by the MIUR projects: “Dynamical Systems: Classical, Quantum, Stochastic”
and “Variational Methods and Nonlinear Differential Equations”



34 A. Celletti and L. Chierchia ZAMP

most physically significant terms. The stability of the asteroidal motion can be
obtained by fixing an energy level on which we prove the existence of two invariant
tori, which trap the motion of the minor body in the phase space. The strategy we
follow is based upon a new computer-assisted, iso-energetic KAM theory (which,
as well known provides, under suitable general assumptions, the existence of in-
variant tori).

Before stating the results, we remark that standard applications of KAM theory
usually lead to unrealistic estimates of the physical parameters2. In our application,
we consider the motion of the asteroid 12 Victoria3. Exploiting a new iso-energetic
KAM theory, we can prove the stability of the motion of the asteroid Victoria
by constructing trapping invariant tori on the energy level corresponding to the
osculating Keplerian motion. The existence of the trapping invariant surfaces
is proved for values of the perturbing parameter less or equal than 10−3. The
solutions are proven to be close to the 12th order truncation of (iso-energetic)
Lindstedt series.

Due to the length of the computations involved, we make use of a computer,
writing a Fortran program consisting of about 12000 lines. The numerical errors
are controlled by means of the so–called interval arithmetic (see, e.g., [4], [6]).

2. Iso-energetic KAM theory

We consider a real-analytic Hamiltonian function H = H(x, y), with x ∈ T
d :=

(R/2πZ)d and y ∈ R
d (d ≥ 2) being standard symplectic coordinates. Hamilton’s

equations can be written as

ẋ = Hy(x, y) , ẏ = −Hx(x, y) . (2.1)

Let φt
H(x, y) be the flow generated by (2.1), representing the solution x(t), y(t)

of (2.1) at time t with initial data given by x(0) = x and y(0) = y. Given a
Diophantine vector4, a KAM torus with frequency ω is an φt

H -invariant surface
embedded in T

d × R
d, which is parametrically described, for θ ∈ T

d, by

x(θ) = θ + ũ(θ) , y(θ) = ṽ(θ) , det
(
I + ũθ(θ)

)
�= 0 , (2.2)

2 In the case of the three-body problem, M. Hénon ([5]) showed that an application of the
original version of Arnold’s theorem allows to prove the existence of invariant tori for values of
the perturbing parameter (corresponding to the planet-Sun mass ratio) less than or equal to
10−333, while an aplication of Moser’s theorem yields existence for perturbing parameters up to
10−50 (which is approximately the proton/Sun mass ratio). For later improvements, see [1] and
references therein.
3 The number 12 refers to the standard classification of asteroidal bodies as found, e.g., at
http : //ssd.jpl.nasa.gov/sb elem.html
4 I.e. a vector ω ∈ Rd such that |ω · n| = |∑d

j = 1 ωjnj | ≥ γ

|n|τ , ∀ n ∈ Zd\{0} for some γ > 0

and τ ≥ 1.
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with ũ and ṽ real-analytic on T
d, and satisfying

φt
H(x(θ), y(θ)) = (x(θ + ωt), y(θ + ωt)) . (2.3)

Inserting (x(θ), y(θ)) into Hamilton’s equations (2.1) (by the rational independence
of ω) one obtains a quasi-linear system of PDE’s on T

d, which, implemented with
the normalization condition5 ũ(0) = 0 and by the requirement that the torus
belongs to the energy surface H−1(E), is given by:

ω + Dωũ − Hy(θ + ũ, ṽ) = 0 ,

Dω ṽ + Hx(θ + ũ, ṽ) = 0 ,

ũ(0) = 0 ,

H(0, ṽ(0)) − E = 0 , (2.4)

where Dω := ω · ∂θ :=
∑d

j=1 ωj
∂

∂θj
. Viceversa, given a triple (ũ, ṽ, ω) such that

(2.4) and the inequality in (2.2) are satisfied, by means of (2.2), one obtains, on the
energy level H−1(E), an invariant torus such that (2.3) holds. By a slight abuse
of notation, we shall also refer to (ũ, ṽ, ω) as a KAM torus with frequency ω.

In order to find solutions of (2.4), we need to define an approximate KAM
torus which is given by a triple (u, v, ω), where u and v are real-analytic R

d-valued
functions on T

d such that the inequality in (2.2) holds, ω is a Diophantine vector
and the normalizing condition u(0) = 0 is satisfied. Having fixed an energy level
E, an approximate KAM torus satisfies the system of equations

ω + Dωu − Hy(θ + u, v) = f ,

Dωv + Hx(θ + u, v) = g ,

u(0) = 0 ,

H(0, v(0)) − E = h , (2.5)

where the “error functions” f , g and the “error number” h are defined by these
equalities. Obviously, if f and g vanish, and if h = 0, the approximate KAM torus,
then, corresponds to a KAM torus with frequency ω and energy E.

In the following proposition we show how to construct a new approximate KAM
torus given by

u′ := u + z , v′ := v + w , ω′ := (1 + a)ω =: ωa ,

starting from an approximate KAM torus (u, v, ω) so that the new “errors” f ′, g′

and h′ are “quadratic” in f , g and h. Varying ω by a factor is necessary in order
to meet the energy constraint.

Proposition 2.1. Fix E ∈ R and let (u, v, ω) be an approximate KAM torus.
Define 6

T := M−1H0
yyM−T , M := I +uθ ,

(
H0

yy := Hyy(θ+u(θ), v(θ))
)

(2.6)

5 Such condition corresponds to fix the “origin” of the invariant torus in θ = 0.
6 In what follows, given an approximate KAM torus (u, v, ω), H0 (or H0

x, etc.) will be short for
H(θ + u(θ), v(θ)) (or for Hx(θ + u(θ), v(θ)), etc.)
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and, for a ∈ R\{−1}, define

fa := (1 + a)f + a H0
y , ga := (1 + a)g − aH0

x ,

ba := vT
θ fa −MT ga , Ga := fT

a,θvθ + MT ga,θ − vT
θ fa,θ − gT

a,θM .

Then, 〈ba〉 = 0 and 〈Ga〉 = 0, where 〈·〉 denotes average over T
d. Next, assume

that there exist c ∈ R
d and a ∈ R\{−1} such that7

{
〈T 〉c + 〈T D−1

ωa
ba〉 − 〈M−1fa〉 = 0 ,

H
(
0, v(0) + M−T (0) [c + D−1

ωa
ba(0)]

)
= E ,

(2.7)

where ωa := (1 + a)ω, Dωa
:= ωa · ∂θ. Define

ẑ := T c + T D−1
ωa

ba −M−1fa , ẑ0 := −
(
D−1

ωa
ẑ
)
(0) ,

z := MD−1
ωa

ẑ + Mẑ0 , w := M−T (vT
θ z + c + D−1

ωa
ba)

and assume that det
(
M + zθ

)
�= 0. Then, the triple K(u, v, ω) := (u′, v′, ω′) =

(u + z, v + w,ωa) is an approximate KAM torus satisfying H(0, v′(0)) − E = 0.
Furthermore, f ′ and g′, defined by

ωa + Dωa
u′ − Hy(θ + u′, v′) = f ′ ,

Dωa
v′ + Hx(θ + u′, v′) = g′ ,

are quadratic in z, w, fa,θ and ga,θ, as the following identities show:

f ′ = −[Hy(θ + u + z, v + w) − H0
y − H0

yxz − H0
yyw]

+ fa,θM−1z + H0
yyM−T (D−1

ωa
Ga) M−1z ,

g′ = Hx(θ + u + z, v + w) − H0
x − H0

xxz − H0
xyw

+ M−T gT
a,θz −M−T fT

a,θw

+ M−T vT
θ

(
fa,θM−1z + H0

yyM−T (D−1
ωa

Ga) M−1z
)

.

It is not difficult to show that a non-degenerate solution (c, a) of the system
(2.7) will be proportional to f , g and h so that f ′ and g′ will be quadratic in objects
proportional to f , g and h. The map K : (u, v, ω) → (u′, v′, ω′) in Proposition 2.1
will be called the KAM map. The proof of Proposition 2.1 is just a check (see
§ 2.3 in [2]).

Assume, now, that H is real-analytic on8
T

d
ξ̄
×Dd

r (y0) for some y0 ∈ R
d, ξ̄ > 0,

r > 0. Let Ep,q be such that ‖∂p
x∂q

yH‖ξ̄,r ≤ Ep,q.

7 If q is an analytic function on Td with 〈q〉 = 0 (and ω is a Diophantine vector), D−1
ω q denotes

the unique analytic function p on Td such that Dωp = q.
8 Notations: | · | =Euclidean norm; Td

ξ := {y ∈ Cd : | Im y| ≤ ξ, Re yi mod 2π};
Dd

r (y0) := {y ∈ Cd : |yi − y0i| ≤ r, ∀i}; if f is analytic on Td
ξ , we set ‖f‖ξ :=∑

n∈Zd |fn| exp(|n|ξ) where fn are Fourier coefficients; if f is analytic on Td
ξ × Dd

r (y0), we set

‖f‖ξ,r :=
∑

n |fn|r exp(|n|ξ) :=
∑

n,k |fnk|r|k|1 exp(|n|ξ), where |k|1 :=
∑d

j=1 |kj | and fnk are

Taylor–Fourier coefficients (around y0).
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Let (u, v, ω) be an approximate torus as in (2.5), such that

sup
Td

ξ

| Im u| ≤ ξ̄ − ξ , r̂ := sup
Td

ξ

|v(θ) − y0|∞ < r , |ω| ≤ Ω , (2.8)

for some 0 < ξ < ξ̄ and some Ω > 0. Fix ρ > 0 and 1 < κ ≤ 2. Let M and T
be the matrices defined in (2.6) and assume that the ((d + 1) × (d + 1))-matrix
defined as

A :=




〈T 〉 −〈χ〉

χ(0)T 0


 , χ(θ) = χ(θ; ρ) :=

1
ρ
M−1Hy(θ + u(θ), v(θ)) , (2.9)

is invertible9. Let F , G, h, M , M , U , V , Ṽ , A be non-negative numbers such that

‖f‖ξ ≤ F , ‖g‖ξ ≤ G , |h| ≤ h̄ , ‖M‖ξ ≤ M , ‖M−1‖ξ ≤ M ,

sup
Td

ξ

| Im u| ≤ U , ‖v‖ξ ≤ V , ‖vθ‖ξ ≤ Ṽ , |A−1| ≤ A , (2.10)

and define the following weighted norms:

E∗
1 := max

{
E0,1,

E1,0

ρ

}
, E∗

2 := max
{

E0,2,
E1,1

ρ

}
,

E∗
3 := max

{
E0,3,

E1,2

ρ
,
E2,1

ρ2
,
E3,0

ρ3

}
, E∗ := max

{
E∗

1 , E∗
2ρ,E∗

3ρ2
}

,

µ := max
{

F

Ω
,

G

Ω ρ
,

h

Ω ρ

}
,

Ω∗ := max
{

Ω , E∗
}

= max
{

Ω, E∗
1 , E∗

2ρ,E∗
3ρ2

}
,

β0 := max
{

1,
Ṽ

ρ

}
, β1 :=

Ω∗

γ
, α := max

{
1,

AΩ∗

ρ

}
.

Then, iterating the KAM map K, one can prove the following

Theorem 2.1. Fix 0 < ξ∞ < ξ and let ξ∗ := min
{

1, ξ∞, ξ−ξ∞
4

}
. Then, there

exist constants ĉ < c∗ and c∗∗ larger than one and depending upon d, τ , κ, such
that the following holds. If µ is so small that

c∗ M
10

M4 ξ
−(4τ+1)
∗

Ω∗

Ω
α2β4

0β4
1 µ ≤ 1 , c∗∗ M

5
M2 ξ−2τ

∗ αβ2
0β2

1

ρ

r − r̂
µ ≤ 1 ,

then there exists a (unique) constant ã ∈ (−1, 1) and (locally unique) real-analytic
functions ũ and ṽ satisfying (2.4) with ω replaced by (1 + ã)ω and

sup
Td

ξ∞

| Im ũ| < ξ̄ − ξ∞ , sup
Td

ξ∞

|ṽ(θ) − y0|∞ < r .

9 Under such condition, by the IFT, the system (2.7) admits a nondegenerate solution (c, a)
proportional to f , g and h.
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Furthermore, |ã|, ‖u − ũ‖ξ∞ and ‖v − ṽ‖ξ∞ are small with µ, i.e.,

max
{
|ã| , ‖ũ − u‖ξ∞ , ‖ũθ − uθ‖ξ∞ , ρ−1‖ṽ − v‖ξ∞ , ρ−1‖ṽθ − vθ‖ξ∞

}

≤
(
ĉ M

5
M2ξ

−(2τ+1)
∗ αβ2

0β2
1

)
µ .

The constants ĉ, c∗ and c∗∗ can be computed explicitely: for example, in the
case d = 2, τ = 1, κ = 1.01, one can take ĉ = 111.7, c∗ = 38528.282 and
c∗∗ = 49.088.

3. The restricted, circular, planar three-body problem

Let P0, P1, P2 be three bodies (“point masses”) with masses m0, m1, m2, re-
spectively, subject only to the mutual gravitational attraction. Let u(i) ∈ R

3,
i = 0, 1, 2, denote the positions of the bodies in an inertial reference frame (with-
out loss of generality, we normalize the gravitational constant to one). Then,
Newton equations take the form

d2u(i)

dt2
= −

∑
0≤j≤2

j �=i

mj
u(i) − u(j)

|u(i) − u(j)|3 , i = 0, 1, 2 , (3.11)

The restricted three-body problem (with “primary bodies” P0 and P1) is, by def-
inition, the problem of studying the bounded motions of the system (3.11) with
m2 = 0. In the restricted three-body problem, the motion of P0 − P1 becomes
an independent (integrable) two-body problem. We assume that such a two-body
system revolves on Keplerian circles (circular case). Finally, we assume that the
position and velocity at a given time (and, hence, for all times) of the third body
P2 lie on the P0 − P1 plane (planar case).

If the mass ratio m1/m0 is small (as it happens when P0 is a star and P1 a
planet), then the restricted, circular, planar three-body problem (RCPTBP, for
short) may be viewed as a perturbation of the integrable system associated to P0

and P1 and, in suitable phase regions, Delaunay action-angle variables may be
conveniently used (see, e.g., §3 of [2]).

As a model for a restricted, circular, planar three-body problem, we consider
Sun-Jupiter and the asteroid 12 Victoria, a minor body in the asteroidal belt,
whose observed osculating data are:10 aV 	 0.449, eV 	 0.220, ıV 	 1.961 10−2.
The size of the (normalized) perturbation parameter ε is given by

εJ :=
mJ/(mS + mJ)

(mS/(mS + mJ))2/3
	 0.954 · 10−3 .

10 aV denotes the ratio between the observed semi-major axis of Victoria and that of Jupiter; eV

is the observed eccentricity of the osculating ellipse of Victoria and ıV is the relative inclination
of the observed orbital planes of Victoria and Jupiter measured in degrees and normalized to
one.
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Using Delaunay action-angle variables, one sees that the system (3.11)|m2=0 can
be described (in suitable units) by action-angle variables11 0 < G < L, (g, �) ∈ T

2

(with respect to the standard form d�∧dL+dg∧dG). Truncating the perturbation
in a suitable (physically motivated) way, one is led to the following one-parameter
family of Hamiltonians modelling, for ε = εJ , the Sun-Jupiter-Victoria system
regarded as a RCPTBP:

HSJV, ε(�, g, L,G) := − 1
2L2

−G− εPSJV(�, g, L,G) =: H0(L,G) + εH1(�, g, L,G) ,

with (�, g) ∈ T
2, 0 < G < L and with

PSJV(�, g, L,G) := 1 +
a2

4
+

9
64

a4 +
3
8

a2e2

−
(1

2
+

9
16

a2
)

a2e cos � +
(3

8
a3 +

15
64

a5
)

cos(� + g)

−
(9

4
+

5
4
a2

)
a2e cos(� + 2g) +

(3
4

a2 +
5
16

a4
)

cos(2 � + 2 g)

+
3
4

a2e cos(3 � + 2 g) +
(5

8
a3 +

35
128

a5
)

cos(3 � + 3 g)

+
35
64

a4 cos(4 � + 4 g) +
63
128

a5 cos(5 � + 5 g) ,

where a = L2, e =
√

1 − G2

L2 . For a numerical investigation of the validity of such
model, see [3].

We now select the region of the phase space associated to HSJV, ε, which can
be considered more interesting from an astronomical point of view. From the
observed osculating elements of Victoria, we compute the associated “observed”

value for the action variable LV = 0.670 and by the relation e =
√

1 − G2

L2 we
compute the corresponding (approximated) value for the action variable GV =
0.654. Since the observed astronomical data are provided in terms of osculating
Keplerian ellipses, it seems reasonable to define the “osculating energy value” in
terms of the Keplerian approximation. However, since the “secular” effects12 are
also important, we take them into account while defining the osculating value of
the energy. We therefore let

E
(0)
V := H0(LV, GV) = − 1

2L2
V

− GV 	 −1.768 ,

E
(1)
V :=

〈
H1(·, LV, GV)

〉

= −
(
1 +

L4
V

4
+

9
64

L8
V +

3
8

(L4
V − G2

VL2
V)

)
	 −1.060 ,

EV(ε) := E
(0)
V + εE

(1)
V ,

11 Physically, � is the mean-anomaly; g = γ − ψ, where γ is the argument of the perihelion and
ψ is the longitude of Jupiter; L =

√
a and G = L

√
1 − e2, where a and e are, respectively, the

semi-major axis and the eccentricity of the osculating Sun-Asteroid ellipse.
12 Roughly speaking, the effects of the averaged perturbing Hamiltonian.
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and define the osculating energy level of the Sun-Jupiter-Victoria model as

EV(εJ) = E
(0)
V + εJE

(1)
V 	 −1.769 .

Let Sε,V := H−1
SJV, ε

(
EV(ε)

)
and consider the two tori on S0,V having (unperturbed)

motion frequencies

ω̃± :=
∂H0

∂(L,G)
=

( 1
L̃3±

,−1
)

=: (α̃±,−1) ,

where L̃± = LV ± 0.001. Such tori trap the osculating torus (LV, GV) × T
2. In

order to apply KAM theory, we need, however, Diophantine frequencies. We,
therefore, compute the continued fraction representation of α̃± up to order 5 and
we modify the frequencies by adding a tail of all one’s. This procedure leads to
the quadratic “noble” numbers α± given by:

α− := [3; 3, 4, 2, 1∞] = 3.30976... , α+ := [3; 2, 1, 17, 5, 1∞] = 3.33955...

The frequencies ω± := (α±,−1) are Diophantine vectors with Diophantine con-
stants (see, e.g., Appendix B in [2]):

τ± := τ = 1 , γ− := 7.224496 · 10−3 , γ+ := 3.324329 · 10−2 .

Let, now, T ±
0 := (L±, G±) × T

2 ⊂ H−1
0 (E(0)

V ), where L± := 1

α
1/3
±

and G± :=

− 1
2L2

±
− E

(0)
V . Then, we can prove the following stability result.

Theorem 3.1 ([2]). The tori T ±
0 can be analytically continued for |ε| ≤ 10−3

into invariant tori T ±
ε on the energy level Sε,V = H−1

SJV, ε(EV) keeping fixed the
ratio of the frequencies. Since HSJV, εJ

is a two-degree-of-freedom, iso-energetically
non-degenerate Hamiltonian, the tori T +

εJ
and T −

εJ
are the boundary of a φt

HSJV, εJ
-

invariant region JεJ
; such region contains the surface (LV, GV) × T

2, showing, in
particular, that the motions

(�(t), g(t), L(t), G(t)) := φt
HSJV, εJ

(�0, g0, LV, GV) (3.12)

belong for any t ∈ R and any (�0, g0) ∈ T
2 to the region JεJ

. As a corollary, the
values of the perturbed integrals L(t) and G(t) stay close to their initial values
LV and GV forever and the actual motion (in the mathematical model) is nearly
elliptical with osculating orbital values close to the observed ones.

The proof of this theorem is computer-assisted and is based on the following
steps: (1) One finds “starting” approximate tori computing suitable truncations
of the Lindstedt iso-energetic series; (2) the parameter values in (2.10) for such
approximate tori are evaluated; (3) the KAM map described in Proposition 2.1 is
iterated a few times and the norms of the quantities in (2.10) are evaluated; (4)
Theorem 2.1 is applied.
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