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1. Introduction

Let us consider a special class of area-preserving homeomorphisms of
the cylinder ¥ = S' x R (S' = R/Z), namely,

f=fii@x ) eS' xR->(x+y + w(x), y + v(x) € S' x R (1.1)

where v is a continuous function of period 1 and average 0 and A is a
positive parameter. Such maps are examples of so-called area-preserving,
monotone twist mappings which have been extensively studied by, e.g.,
Poincare, Birkhoff, Moser, Herman, Aubry and Mather (see [13], [6] and [2]
for reviews).

For 1 =0, f; is integrable, i.e., the orbits stay on invariant circles
S' x {y} and

foGep) sfoo o fo(x,y) =(x+ny,y) € S' x {y}.
In general, setting f™(xo, yo) = (x,, y,) and observing that y, =x, — x,_,,
one sees that the dynamics of f'can be described by the following nonlinear
finite-difference equation :

Xn+1 _2xn =+ Xp—1= Av(xn)'

As soon as 4 # 0 and v is non trivial such dynamics becomes extremely rich
and complicated and one would like to understand the structure of the
invariant sets for f;. Examples of interesting invariant sets are periodic
orbits, invariant circles and Mather (or Aubry-Mather) sets. Here by
“circle” we shall always mean “homotopically nontrivial embeddings of S’
into ¥ and Mather sets are, roughly speaking (see below for a precise
definition), Cantor sets semi-conjugate to rotations.

* This work has been completed while the aﬁthor was a guest of the ETH, Theoretische Phyéik, Ziirich.
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In this note, we extend a result by J. N. Mather [9] and prove a simple
and quantitative relation between the location of Mather sets and “relative
deviations” of v. As a byproduct we get some new non-existence criteria
which involve a condition on the size of v rather than on its derivatives (for
non-existence methods based on different ideas see [10], [7] and [4]).

In the next paragraph we recall a few basic facts from Mather’s theory.
In §3 we formulate our results and in §4 and in the Appendix we prove
them.

2. Mather sets

In this section we review some well known aspects of Mather’s theory
(cf. [8], [9], [11]). Most of the following results were obtained independently
and with different, although not unrelated, methods by Aubry and collabo-
rators (see [1] and references therein).

To any area-preserving (right-) twist map it can be associated a generat-
ing function, namely, a C'(R? function 4 such that A(x +1,
x"+ 1) =h(x, x’) and

(V' x)=f(x,y) &y = —h(x,x), " = he(x, x'). (2.1)
For f; the generating function is given by
h(x,x) =3(x —x")*+ AV(x), V’'=v.

For a fixed number w, Percival [15] introduced the Lagrangian

Fo(¢) = J; h(o, ™) dt = J; (¢ — &) + AV (9)] dr

for continuous real functions ¢ such that ¢(z + 1) = ¢(¢) + 1; ¢ * denotes
the translation of ¢ by tw: ¢*() = ¢(t + w). A formal variation of F,
yields the following Euler-Lagrange equation

Ey=h(9,0")+he(d™,9)=—(0"—20+ )+ () =0 (2.2
so that [cf. (2.1)] to any solution of (2.2) corresponds an invariant set
My=15{(P, P~ — D) |t € R}, (2.3)

where 7, denotes the projection of R? onto ¥. The dynamics on .4, is
simply a translation by w: f o nx(p, ¢~ — ¢) =ne(dp +, ¢ — ¢ ). In particu-
lar if ¢ is strictly increasing one gets invariant circles conjugate to a
translation by w. To actually prove the existence of invariant circles is, in
general, possible only under stringent assumptions on w, A and on the
smoothness of v and proofs are hard (cf. [12], [4, 5], [3]). On the other
hand, Mather ([8], [11]) gave a simple proof of the existence of solutions of
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(2.2) in the class ¥ = {¢: R—> R s.t. ¢ is not decreasing, left continuous, i.e.,

¢(t—) = ¢(1) and ¢t + 1) = () + 1}:

Theorem. (Mather) For any w € [0, 1] there exists a solution ¢,, € Y of
(2.2). Moreover, ¢,, is strictly increasing whenever w is irrational.

Remark 1. Originally, Mather considered homeomorphisms of the an-
nulus S’ x [0, 1] leaving the boundary circles invariant and later, ([11], §5)
adapted his methods to the (actually simpler) case of the
cylinder.

Remark 2. In our case f could be also viewed as a homeomorphism of
the torus T?=S"' x S'. With abuse of language, we shall denote by the
same symbol f the lift to R? of (1.1) defined by the same formula in (1.1)
with S! x R replaced by R

The above theorem is based on a non-standard variational approach,
which we briefly review. One can define a distance on Y by letting G(¢)
denote the “graph” of ¢ € Y:

G)={(t,x) eREP() < x <Pt +)}
and, for ¢, ¥ € Y, letting

d(d, ) = max{ su inf [z —w|, su inf |z —wl|}.

(¢ lp) {zEGgﬁ) weG(¢) I | 2568)) weG(Y) | |}

Then one can compactify ¥ by taking the quotient with respect to transla-
tions: X =Y/ ~where ¢ ~yifJaeRs.t. ¢ =yT, [YyT,(¢) =y(t + a)]. The
metric d projects naturally on X by setting for ¢, Yy € X

d(¢,¥) =inf{d(d,¥): p € b, Y €Y}

and with respect to such a metric X is compact. Then one can easily show
that F,, which being translation invariant is well defined on X, is continu-
ous on X and therefore has a minimum and a maximum. Finally one can
show that the minimum verifies the Euler-Lagrange equation (2.2). [Again
there is a slight abuse of language here since E; in (2.2) is de-
fined for functions; however it is clear that E,(f) =0 if and only if
E,T,(f) =0Va € R therefore it makes sense to talk about solutions of (2.2)
in X.] Such a verification (which does not work for the maximum) is the
delicate part of the proof of the above theorem (see also the Appendix
below).

Remark 3. Actually in [8] the generating function is taken with opposite
sign and therefore F, is there maximized rather than minimized. Also the
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original compactification in [8] is slightly different from that defined above,
which is the one used in [9].

Now, it is not difficult to see that if one defines # = My, as in (2.3)
(with ¢ replaced by ¢,,) then .# verifies the following four conditions (cf.
§2 of [9]):

(i) # is minimal for f (“‘minimal” means that .# is closed, invariant
and transitive, i.e., every orbit is dense in .#);

(i) The projection ng:: € — S' is one-to-one on 4;

(iii) f (considered on R?) preserves the R-order on ng'(.#);

(iv) lim, ., ; o w51 (f7(x, ) /n = @, V(x, y) € A.

A set .# satisfying these conditions will be called a Mather set with rotation
number w. In fact Mather proved [9, Proposition at pag. 469] that the
correspondence between Mather sets and solutions of (2.2) is one-to-one.

Remark. As defined in (iv), w is an element of S', however we shall
associate to w the unique real number in (0, 1] in the equivalence class w
and, with the same abuse of language of Remark 2, we shall denote it by the
same symbol.

Let us now recall what the situation is in the presence of an invariant
circle I'. By a theorem of Birkhoff (see, e.g., [4]) I is the graph of a
Lipschitz continuous function y, I' = {(x, y(x))|x € S'}, therefore finduces a
circle homeomorphism defined by

fix € 8! > msf (x, y(x)),

so that the classical theory of Poincaré and Denjoy (see, e.g., [14]) applies.
In particular the rotation number

o =lim,_, ; f(x)/n =lim, , ; ,, w1 (f(x, Y(x))/n

exists and is independent of x. Moreover, if w is irrational and if 2 denotes
the set of accumulation points of any orbit starting on I, then X is either
the whole circle or is the unique minimal set in T in which case is a Cantor set.
In [11, Proposition 4, pag. 514] it is shown that if w is irrational, if there
exists an invariant circle I', with rotation number w and if .#,, is a Mather
set with the same rotation number then either #, =T, or M#, is the unique
minimal set in T,,.

3. Results

To state our results we are going to use the following definition of
deviation for a periodic continuous function with 0 average.



84 L. Chierchia =~ ZAMP

Definition. An interval (¢,, &,) will be called a deviation (from 0) if £, is
a relative minimum for » with v(¢,) <0 and &, is a relative maximum with
v(£;) > 0. The positive number ¢ = min{—v(¢,), v(¢,)} will be called the
(relative) size of the deviation (&, &,).

Remarks. i) The results presented below do not hold for the case of
“reverse” deviations, i.e., intervals (x;, x,) where v(x,) >0 > v(x,).

ii) By possibly translating » we can always assume that there is no
deviation containing integer numbers. In what follows, a deviation will be
always taken to be in (0, 1].

iii) There is always a maximal deviation (i.e. a deviation with maximal
size) given by &,;: v(£,) = ming: v and &,: v(£,) = maxg v.

Proposition 1. Let (£,,&,) be a deviation of size ¢ for v. Then if
A>0¢"', for any  there exists a Mather set .#, such that
nsi(M,) = (&1, &)/ 2.

Corollary 1. Let M =maxsiv, m =mingiv. Then if 1 >max{l/M,
—1/m} there does not exist any invariant transitive circle for f; with
irrational rotation number.

Corollary 2. Assume that v has two disjoint deviations of sizes a,, 7,.
Then if 2 > max{1/o,, 1/0,} there does not exist any invariant circle for f;
with irrational rotation number.

Proposition 1 can be extended to the case of many deviations:

Proposition 2. Assume that v has n > 2 disjoint deviations, (¢{?, £9),
with relative sizes g, . .., 0,. Then if A > max, g; ', for any w there exists
a (n—1)-parameter family of Mather sets 42, a=(ay,...,d,_1),
0<ay<a;<--:<a,_ <1 such that s (#3) < J7o: (&P, ES)/Z and
nsi(ME) N (&P, EP)/Z +# O Vi

4. Proofs

Corollaries 1 and 2 follow immediately from Propositions 1 and the
uniqueness properties of Mather sets in the presence of circles with the same
(irrational) rotation numbers (cfr. end of §2). O

Proof of Proposition 1. Following Mather, we let Y,={¢e€
Y: ¢((0, 1]) = [, &]} and let X, = n(Y,), where n denotes the projection
onto X. Xj is a closed subset of X, therefore F,, has a minimum on it and
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we have to show that such a minimum satisfies the Euler-Lagrange equation
(2.2). To do this we need the following

Lemma. If 2 > ¢~ then there exists a § > 0 and ¢; € Y, minimizing F,,
on Y, such that ¢;((0, 1]) = [¢, + 6, &, — ).

Remark. Notice that z is a bijection of Y, onto X,, therefore we shall
work directly in Y, rather than in X,.

Proof of the Lemma. Let ¢ denote a minimizing element of F,, in Y,; we
will show that we can find @; € Y, such that ¢5((0, 1]) = [&, + 6, &, — 8] and

Fm(¢6) = Fw(¢) (41)

so that also ¢, is a minimum for F, on ¥,. To show (4.1) we will use the
following general inequality: Let y,, Y, € Y then

L (Wi —¥)?— W3 —y,)? dt S2J; W1 — ¥, | dt. (4.2)

Remark. This inequality cannot be improved since one gets equality by
letting w =1/2 and ¥, =0 for 0<¢<1/2 and Y, =k/3 for 1)2<t<1.
Notice that because of the property y(z + 1) =y(f) +1 it is enough to
define elements of Y only in (0, 1].

To check (4.2) let p =y — ¥, + Y5 — ¥, and notice that p is periodic
and satisfies 0 < p < 2. Then

‘L @i —v)* =W —y.)?at

= U; T —v3) — W — )l at

LP(WT—!H)dt

_‘J; P — ) dt

= IL (™ =p)Y — ) dt

s2£ W1 — | dt.

Now, since A > ¢ ~!, there exists an ¢ > 0 such that 1 > 1/(c — &); moreover,
recalling the definition of o and the fact that v is the derivative of V, we can
pick a ¢ so that

V(x) — V(x') 2 (6 —g)|x — x| (4.3)
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whenever either £, < x < x'< ¢, 4+doré,—0 <x’<x <¢,. Thus, defining
(in (0, 1])
Ei+0 it é <) <& +0
$s=48,—0 fr:é,—0<¢() <&
¢ otherwise (for ¢ in (0, 1])

(and extending, as above, such definition to all of R) one has that
¢5((0, 1]) = [, + 6, &, — 0] (hence ¢; € Y,) and, by (4.2) and (4.3),

L (65 — $s)>— b+ — )2 dt s2L |65 — | dt
2

g—¢&

<

J; [(V(¢) — V(9,)) dt

1
<2 J [V(¢) — V(ds)] dt,
0
proving (4.1) and finishing the proof of the Lemma. Od

Proof of Proposition 1. It remains to prove that the above minimizing
element ¢, satisfies the Euler-Lagrange equation (2.2). The argument is
given by Mather in [9] (see Proof of Lemma 1 at pag. 472 of [9] and recall
Remark 1 and 3 above to adapt Mather’s argument to our case). However,
for completeness and convenience of the reader we include the detailed
argument in the Appendix. O

Proof of Proposition 2. For a vector a as in Proposition 2, introduce the
space

Ya = {(tb e ¥ ¢((ai—laal]) c[&ﬂi)’ ég)], I= 1, cee ,n}

and define X, = n(Y,). As above, one easily checks that X, is a closed subset
of X, so that F, will take a minimum value in X, and therefore in Y, for
some ¢, € Y,. Again as above, one then shows that, since A > max, o !,
there exists a é and a minimizing element ¢;€ Y, such that
ds((@i_y, a;])) <[EP + 6, £ —5]. The rest of the argument follows the
above pattern and is omitted. |

Appendix

Here, following ideas of Mather, we show that the minimizing element
¢; of Lemma 1 satisfies the Euler-Lagrange equation (2.2).

Since (dropping the subscript ) ¢ has bounded variation in [0, 1], it has
at most a countable number of discontinuities. Therefore, to prove (2.2) it
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is enough to prove it at points #, such that #,, ¢, + w are of continuity for
¢. In order to take variations of F, one needs a family of curves in ¥, rich
enough to get the Euler-Lagrange equation out of the variations. Let us
introduce the following families of curves. Let ¢ € C([0, 1]) (=the class of
C* functions with support in [0, 1]) and extend it periodically to R. Now,
let

Y, =Y 9 = ¢ + s0(9).

Then, if we assume that

) 1
< A.l
b1 < mind o 577 God

it follows that ¥, € Y,. In fact, clearly ¥, is left continuous and satisfies
Y. (t +1) =y, (¢) + 1; furthermore, |s
has

V() — s (1) 2 3(6(2) — $(1)]

hence Y, € Y,. Finally, from ¢((0, 1]) =[&, + 6, & — 0] and |s| < 6/| 0]« it
follows that , € Y,. The curve y, classify for variations and in fact it is
easy to see that [recalling the definition of E, in (2.2)]

d

ds

Now, let ¢, be as above (i.e. ¢ is continuous at #,, fo + ®). There are two
cases: either (i) ¢ ~'@(t) = {to}, i.e., #, is a point of increase for ¢, or (ii)
@ ~'¢(,) is an interval with ends a < f: such an interval is closed if ¢ is
continuous at « otherwise is the interval («, f]; in any case, since £, is a point
of continuity a < #, < f. In the first case, (i), there exist a < ¢, < b such that
¢ is strictly increasing in [a,b]. Let a<a’<t,<b’<b and pick a ¢
identically equal to 1 on [¢(a’), $(b")] and with support in [¢(a), ¢()]. Since
¢ is a minimum for F,,, (d/ds)|,;~oF,(¥,) =0 and varying ¢ and a’, b’ one
check easily that E, (%) =0

The case (ii) is the delicate part of the proof [for example, here comes
in the fact that Mather’s argument works only for minima]. To conclude
that E,(t,) =0 also for points #, where ¢ is not increasing one needs to
introduce more test curves: Let

Y = ¢ for0<r=<t YO = Y, for0<t<t,
i ¥, forag<t<T; ¢ fority<t<l

o Fo(¥;) = L E,()ae(9) dt.

and extend the definition to R as usual. Now, from the above discussion
one sees that if (A.1) holds and s = 0 for Y+, s <0 for Y then yP e Y,
(but Y{¥) ¢ Y, for s in any neighborhood of 0). The variation of F, will
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now yield
4| R - f Ex(De(@) dt,
d e
4 Fey = f E,(0o(¢) dt
s=0 0

and since ¢ is a minimum one has

d d
S F ~(¢+) =20, —
dS‘ b w(w ) dS
Now, since 4., <0 (in our case A, = —1), E, is decreasing (=not increas-
ing) on («, f] and we claim that, by varying g one can show that

d

ds

F,(y{7) <0.

s=0

Fo(y§) 20 = E,u (1) 20,
s=0

(A.2)
4
ds
so that E,(f,) =0 also in case (ii).
Let us prove the first of (A.2). If ¢ has a discontinuity at B, i.e.

#(B+) > ¢(B), by taking the support of g in [¢(0), ¢(B+)] and o =1 at
(%), one sees that, because E, is decreasing in (a, ),

1 B
0< f Ejodt = f Eydt < E4(to)(B — 1),
t to

0

F,$7) <0=E4(t) <0

s=0

e, E4(to) 20. If ¢(B+)=¢(P), one can argue as above by taking
B <b’<b such that ¢ is strictly increasing in (8, b) and choosing ¢ with
support in [¢(0), ¢(b)] and ¢ =1 on [¢(%,), ¢(b)]. By taking (b — B) small
enough and using the continuity of Ej at ¢, one concludes that Ey(t,) 2 0.

The second implication in (A.2) can be proved analogously. O
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Abstract

A result by J. N. Mather on the non-uniqueness of solutions of Percival’s Euler-Lagrange equations
for invariant sets of a certain class of area-preserving twist homeomorphisms of the cylinder is extended
and made quantitative. As a by-product a new criterion for the non-existence of invariant circles is
found.
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