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Summary 
 
Planetary systems, under suitable general assumptions, admit positive measure sets of 
“initial data” whose evolution gives rise to the planets revolving on nearly circular and 
nearly co–planar orbits around their star. This statement (or more primitive 
formulations) challenged astronomers, physicists and mathematicians for centuries. In 
this chapter we shall review the mathematical theory (with particular attention to recent 
developments) needed to prove the above statement.  
 
1. The N–Body Problem: A Continuing Mathematical Challenge 
 
The problem of the motion of 2N t  point–masses (i.e., ideal bodies with no physical 
dimension identified with points in the Euclidean three–dimensional space) interacting 
only through Newton‟s law of mutual gravitational attraction, has been a central issue in 
astronomy, physics and mathematics since the early developments of modern calculus. 
When 2N   the problem has been completely solved (“integrated”) by Newton: the 
motion take place on conics, whose focus is occupied by the center of mass of the two 
bodies; but for 3N t  a complete understanding of the problem is still far away.  
 
While the original impulse, coming from astronomy, has been somehow shaded by the 
massive use of machines for computing orbits of celestial bodies or satellites, the 
mathematical richness and beauty of the N –body problem has retained most of its 
original attraction; for a selection of recent contributions, see, e.g., (Chenciner and 
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Montgomery, 2000), (Ferrario and Terracini, 2004), (Hampton and Moeckel, 2006), 
(Chen, 2007), (Fusco, Gronchi and Negrini, 2011), (Chierchia and Pinzari, 2011 (c)).  
 
Here, we will be concerned with the planetary N –body problem, which, as the name 
says, deals with the case of one body (the “Sun” or the “Star”) having mass much bigger 
than the remaining bodies (“planets”). The main question is then to determine “general” 
conditions under which the planets revolve around the Sun without collisions and in a 
“regular way” so that, in particular, no planet crashes onto another planet or onto the 
Sun, nor does it escape away from such “solar system”.  
 
Despite the efforts of Newton, Euler, d‟Alembert, Lagrange, Laplace and, especially, 
Henri Poincaré and G.D. Birkhoff, such question remained essentially unanswered for 
centuries. It is only with the astonishing work of a 26–year–old mathematician, V.I. 
Arnold (1937–2010), that a real breakthrough was achieved. Arnold, continuing and 
extending fundamental analytical discoveries of his advisor A.N. Kolmogorov on the so 
called “small divisors” (singularities appearing in the perturbative expansions of orbital 
trajectories), stated in 1963 (Arnold, 1963) a result, which may be roughly formulated 
as follows (verbatim formulations are given in Section 3.1 below).  
 
If the masses of the planets are small enough compared to the mass of the Sun, there 
exists, in the phase space of the planetary N –body problem, a bounded set of positive 
Lebesgue measure corresponding to planetary motions with bounded relative distances; 
such motions are well approximated by Keplerian ellipses with small eccentricities and 
small relative inclinations.  
 
Arnold gave a brilliant proof in a special case, namely, the planar three–body problem 
(two planets), giving some suggestions on how to generalize his proof to the general 
case (arbitrary number of planets in space). However, a complete generalization of his 
proof turned out to be quite a difficult task, which took nearly another fifty years to be 
completed: the first complete proof, based on work by M.R. Herman, appeared in Féjoz 
(2004) and a full generalization of Arnold‟s approach in Chierchia and Pinzari  (2011c).  
 
The main reason beyond the difficulties which arise in the general spatial case, is related 
to the presence of certain “secular degeneracies” which do not allow a tout court 
application of Arnold‟s “fundamental theorem” (see Section 3.2) to the general 
planetary case.  
 
In this chapter we shall give a brief account (avoiding computations) of these results 
trying to explain the main ideas and technical tools needed to overcome the difficulties 
involved.  
 
2. The Classical Hamiltonian Structure 
 
2.1. Newton Equations and Their Hamiltonian Version 
 
The starting point is with the Newton‟s equations for 1 n�  bodies (point masses), 
interacting only through gravitational attraction: 
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where ( ) ( ) ( ) ( ) 3

1 2 3( )i i i iu u u u � � �  are the Cartesian coordinates of the thi  body of 

(unscaled) mass m 0i ! , 2
iiu u u u_ _ �  ¦  is the standard Euclidean norm, “dots” 

over functions denote time derivatives, and the gravitational constant has been set to 
one (which is possible by rescaling time t ).  
 
Equations (1) are invariant by change of “inertial frames”, i.e., by change of variables of 
the form ( ) ( ) ( )i iu u a cto � �  with fixed 3,a c� . This allows us to restrict the 
attention to the manifold of “initial data” given by 
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indeed, just replace the coordinates ( )iu  by ( ) ( )iu a ct� �  with  
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The total linear momentum ( )

tot 0M : mn i
ii u

 
 ¦  does not change along the flow of (1), 

i.e., tot 0M   along trajectories; therefore, by (2), totM ( )t  vanishes for all times. But, 

then, also the position of the barycenter ( )
0B( ) u ( )n i

iit m t
 

� ¦  is constant ( B 0 ) and, 
again by (2), B( ) 0t { . In other words, the manifold of initial data (2) is invariant under 
the flow (1).  
 
Equations (1) may be seen as the Hamiltonian equations associated to the Hamiltonian 
function 
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where the subscript N  signifies Newton,  ( ) ( )( , )i iU u  are standard symplectic variables 
( ( ) ( )mi i

iU u  is the momentum conjugated to ( )iu ) and the phase space is the 
“collisionless” open domain in 6( 1)n�  given by  
 

( ) ( ) 3 ( ) ( ){ , 0 }i i i jU u u u i j n� � � z � d z d  
 
endowed with the standard symplectic form  
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We recall that the Hamiltonian equations associated to a Hamiltonian function 

1 1( , ) ( )n nH p q H p p q q ����� � ����� , where ( , )p q  are standard symplectic variables (i.e., 

the associated symplectic form is 
1
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We shall denote the standard Hamiltonian flow, namely, the solution of (4) with initial 
data 0p  and 0q , by 0 0( , )t

H p qI . For general information, see (Arnold et al, 2006).  
 
2.2 The Linear Momentum Reduction 
 
In view of the invariance properties discussed above, it is enough to consider the 
submanifold  
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which corresponds to the manifold described in (2).  
 
The submanifold 0  is symplectic, i.e., the restriction of the form (3) to 0  is again 
a symplectic form; indeed:  
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Following Poincaré, one can perform a symplectic reduction (“reduction of the linear 
momentum”) allowing to lower the number of degrees of freedom by three units; recall 
that the number of degree of freedom of an autonomous Hamiltonian system is half of 
the dimension of the phase space (classically, the dimension of the configuration space). 
Indeed, let he ( , ) ( , )R r U uI � o  be the linear transformation given by  
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such transformation is symplectic, i.e.,  
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recall that this means, in particular, that in the new variables the Hamiltonian flow is 
again standard: more precisely, one has that 

N Nhe he
t t

I
I I I I , where the subscript 

“he” signifies helium (sun) and the little circles mean composition. 
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The restriction of the 2–form (3) to 0  is simply ( ) ( )
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Thus, the dynamics generated by N  on 0  is equivalent to the dynamics generated 
by the Hamiltonian 6

N( , ) ( , )nR r R r� o  on 
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Since we are interested in the planetary case, we perform the trivial rescaling by a small 
positive parameter P :  
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which leaves unchanged Hamilton‟s equations. Explicitly, if  
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the phase space being  
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Recall that ( , )F X x  is an integral for ( , )X x  if { } 0F �   where 
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is still a (vector–valued) integral for plt . The integrals Ci , however, do not commute 
(i.e., their Poisson brackets do not vanish):  
 

1 2 3 2 3 1 3 1 2{C ,C } C , {C ,C } C , {C ,C } C ,    
 
but, for example, 2| C |  and 3C  are two commuting, independent integrals.  
 
2.3. Delaunay Variables 
 
The Hamiltonian (0)

plt  in (6) governs the motion of n  decoupled two–body (signified 
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Such two–body systems are, as well known, integrable. The explicit “symplectic 
integration” is done by means of the Delaunay variables, whose construction we, now, 
briefly, recall (for full details and proofs, see, e.g., (Celletti and Chierchia, 2007)).  
 
Assume that � �( ) ( ) ( )

2B 0i i ih X x� �  so that the Hamiltonian flow � �( ) ( )
( )
2B

t i i
ih

X xI �  evolves on 

a Keplerian ellipse iE  and assume that the eccentricity (0 1)ie � � .  
 
Let ia , iP  denote, respectively, the semimajor axis and the perihelion of iE .  
 

 
 

Figure 1. Spatial Delaunay angle variables. 
 

Let us, also, introduce the “Delaunay nodes”  
 

(3) ( ): C 1 ,i
i k i nQ  u d d  (8) 

 
where (1) (2) (3)( , , )k k k  is the standard orthonormal basis in 3 . Finally, for 3,u v�  
lying in the plane orthogonal to a non–vanishing vector w , let ( , )w u vD  denote the 
positively oriented angle (mod 2S ) between u  and v  (orientation follows the “right 
hand rule”).  
 
The Delaunay action–angle variables � �i i i i i ig T/ �* �4 � � �  are, then, defined as 
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Notice that the Delaunay variables are defined on an open set of full measure of the 
Cartesian phase space 3 3n n


u , namely, on the set where (0 1)ie � �  and the nodes iQ  
in (8) are well defined; on such set the “Delaunay inclinations” ii  defined through the 
relations  
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are well defined and we choose the branch of 1cos�  so that i (0 )i S� � .  
 
The Delaunay variables become singular when ( )C i  is vertical (the Delaunay node is no 
more defined) and in the circular limit (the perihelion is not unique). In these cases 
different variables have to be used (see below).  
 
On the set where the Delaunay variables are well posed, they define a symplectic set of 
action–angle variables, meaning that  
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for a proof, see Section 3.2 of (Celletti and Chierchia, 2007).  
 
In Delaunay action–angle variables (( ) ( g ))T/�*�4 � � �  the Hamiltonian (0)
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form  
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We shall restrict our attention to the collisionless phase space  
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endowed with the standard symplectic form  
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Notice that the 6n –dimensional phase space plt  is foliated by 3n–dimensional (0)

plt –

invariant tori 3{ }/�*�4 u , which, in turn, are foliated by n –dimensional tori 
{ } n/ u , expressing geometrically the degeneracy of the integrable Keplerian limit of 
the (1 )n� –body problem. 
 
2.4. Poincaré Variables and the Truncated Secular Dynamics 
 
A regularization of the Delaunay variables in their singular limit was introduced by 
Poincaré, in such a way that the set of action–angle variables (( ) (g ))T*�4 � �  is mapped 
onto Cartesian variables regular near the origin, which corresponds to co–circular and 
co–planar motions, while the angles conjugated to i/ , which remains invariant, are 
suitably shifted.  
 
More precisely, the Poincaré variables are given by  
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Notice that 0ie   corresponds to η 0 ξi i  , while i 0i   corresponds to p 0 qi i  ; 
compare (9) and (10).  
 
On the domain of definition, the Poincaré variables are symplectic 
 

1 1
g λ η ξ p q ;

n n
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d d d d d d d d d d d dT
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for a proof, see Appendix C of Biasco et al (2003). As phase space, we shall consider a 
collisionless domain around the “secular origin” z 0  (which correspond to co–planar, 
co–circular motions) of the form  
 

6 4
P( λ,z) n n nB/� � � u u  (12) 
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where  is a set of well separated semimajor axes  
 

{ for 1 }j jj a a j na� / � � � d d  (13) 
 
where 1, , na a , 1, , na a , are positive numbers verifying 1jj jaa a �� �  for any 

1 j nd d , 1na � � f , and 4nB  is a small 4n–dimensional ball around the secular origin 
z 0 .  
 
In Poincaré coordinates, the Hamiltonian plt  (6) takes the form  
 

4
P K P( ,λ,z) ( ) ( ,λ,z), z : (η,p,ξ,q) nh fP/  / � /  �  (14) 

 
where the “Kepler” unperturbed term Kh  is as above; compare (11).  
 
Because of rotation (with respect the (3)k –axis) and reflection invariance of the 
Hamiltonian (6) (with respect to the coordinate planes), the perturbation Pf  in (14) 
satisfies well known symmetry relations called d’Alembert rules i.e., Pf  is invariant 
under the following transformations: 
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where, for any g� , g  acts as synchronous clock–wise rotation by the angle g  in 
the symplectic zi –planes:  
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compare (3.26)–(3.31) in Chierchia and Pinzari (2011b). By such symmetries, in 
particular, the averaged perturbation 
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P P
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S
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which is called the secular Hamiltonian, is even around the origin z 0  and its 
expansion in powers of z  has the form 
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where h , v  are suitable quadratic forms and 2u�  denotes the 2–indices contraction 

ij i ji j u u
�¦  ( ij , iu  denoting the entries of , u ). This shows that z 0  is an elliptic 

equilibrium for the secular dynamics (i.e., the dynamics generated by av
Pf ). The explicit 

expression of such quadratic forms can be found, e.g. in (36), (37) of Féjoz (2004) 
(revised version). 
 
The truncated averaged Hamiltonian 
 

2 2 2 2
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2 2h vh CP
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� / � / � � / �¨ ¸
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is integrable, with 3n  commuting integrals given by  
 

2 2 2 2η ξ p qr , (1 )
2 2

i i i i
i i i i nU
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the general trajectory fills a 3n–dimensional torus with n  fast frequencies K ( )ii h/w /  
and 2n  slow frequencies given by  
 

1 1( , ) ( , , )n nP P V 9 P V V 9 9:   � � � �  (19) 
 

iV  and i9  being the real eigenvalues of ( )h /  and ( )v / , respectively; such tori 
surround the n –dimensional elliptic tori given by { } {z 0}/ u  , corresponding to n –
coplanar and co–circular planets rotating around the Sun with Keplerian frequencies 

K ( )ii h/w / .  
 

 
 

Figure 2. The truncated averaged planetary dynamics 
 
3. Arnold’s Planetary Theorem 
 
In the following section, we report some of Arnold‟s statements concerning the 
existence of regular quasi–periodic motions for the planetary (1 )n� –body problem. We 
recall that, in general, a “quasi–periodic” (or “conditionally periodic”) orbit ( )t]  with 
(rationally independent) frequencies 1( ) d

dZ Z Z�����  �  is a solution of the Hamilton 

 266  



CELESTIAL MECHANICS - The Planetary N-Body Problem - Luigi Chierchia 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

equations of the form 1( ) ( )dt Z t t] Z Z �����  for a suitable smooth function 1( )dZ T T�����  
2S –periodic in each variable iT . 
 
3.1. Arnold’s Statements (1963) 
 
In p. 87 of Arnold (1963) says:  
 
Conditionally periodic motions in the many–body problem have been found. If the 
masses of n  “planets” are sufficiently small in comparison with the mass of the central 
body, the motion is conditionally periodic for the majority of initial conditions for which 
the eccentricities and inclinations of the Kepler ellipses are small. Further, the major 
semiaxis perpetually remains close to their original values and the eccentricities and 
inclinations remain small.  
 
Later, p. 125 of (Arnold, 1963):  
 
With the help of the fundamental theorem of Chapter IV , we investigate in this chapter 
the class of “planetary” motions in the three–body and many–body problems. We show 
that, for the majority of initial conditions under which the instantaneous orbits of the 
planets are close to circles lying in a single plane, perturbation of the planets on one 
another produces, in the course of an infinite interval of time, little change on these 
orbits provided the masses of the planets are sufficiently small.  
 
In particular, it follows from our results that in the n -body problem there exists a set of 
initial conditions having a positive Lebesgue measure and such that, if the initial 
positions and velocities of the bodies belong to this set, the distances of the bodies from 
each other will remain perpetually bounded.  
 
The “fundamental theorem” to which Arnold refers is a KAM (Kolmogorov–Arnold–
Moser) theorem for properly–degenerate nearly–integrable Hamiltonian systems: it will 
be discussed in Section 3.2 below. For generalities on KAM theory, see, e.g., (Arnold, 
Kozlov and Neishtadt, 2006) or (Chierchia, 2009).  
 
Finally, p. 127 of (Arnold, 1963):  
 
Our basic result is that if the masses, eccentricities and inclinations of the planets are 
sufficiently small, then for the majority of initial conditions the true motion is 
conditionally periodic and differs little from Lagrangian motion with suitable initial 
conditions throughout an infinite interval of time t�f � � �f .  
 
Arnold defines the “Lagrangian motions”, at p. 127 as follows: the Lagrangian motion 
is conditionally periodic and to the n  “rapid” frequencies of the Kepler motion are 
added n  (in the planar problem) or 2 1n�  (in the space problem) “slow” frequencies 
of the secular motions. This dynamics corresponds, essentially, to the above “truncated 
integrable planetary dynamics”; the missing frequency in the space problem is related to 
the fact that one of the spatial secular frequency, say, n9  vanishes identically; compare 
Section 3.5 below.  
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As mentioned in the introduction, Arnold provides a full detailed proof, checking the 
applicability (non–degeneracy conditions) of his fundamental theorem, only for the 
two–planet model ( 2n  ) in the planar regime. As for generalizations, he states (p. 139 
of (Arnold, 1963)):  
 
The plane problem of 2n !  planets. The arguments of Section2 and 3 easily carry 
over to the case of more than two planets. ( ) We shall not dwell on the details of the 
calculations which lead to the results of Sections 1, 4.  
 
As for the spatial general case (p. 142 of (Arnold, 1963)):  
 
The rather lengthy calculations involved in the solution of (3.5.9), the construction of 
variables satisfying conditions 1)–4), and the verification of non–degeneracy conditions 
analogous to the arguments of Section 4 will not be discussed here.  
 
In the next section we shall discuss Arnold‟s strategy.  
 
3.2. Proper Degeneracies and the “Fundamental Theorem” 
 
The main technical tool is a KAM theorem for properly degenerate systems.  
 
A nearly–integrable system with Hamiltonian  
 

( , ) ( ) ( , ) ( , ) d dH I h I f I IP M P M M� � � � u �  
 
for which h  does not depend upon all the actions 1I ,..., dI  is called properly degenerate. 
This is the case of the many–body problem since K ( )h /  in (14) depends only on n  
actions 1/ ,..., n/ , while the number of degrees of freedom is 3d n .  
 
In general, maximal quasi–periodic solutions (i.e., quasi–periodic solutions with d  
rationally–independent frequencies) for properly degenerate systems do not exist: 
trivially, any unperturbed properly–degenerate system on a 2d  dimensional phase space 
with 2d t  will have motions with frequencies not rationally independent over d . But 
they may exist under further conditions on the perturbation f .  
 
In Chapter IV of (Arnold, 1963) Arnold overcame for the first time this problem 
proving the following result, which he called “the fundamental theorem”.  
 
Let  denote the phase space 

^ `( , , , ) ( , )  and ( , )nI p q I V p q BM M� � � u � �  

 
where V  is an open bounded region in n  and B  is a ball around the origin in 2m ; 

 is equipped with the standard symplectic form  
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1 1

n m

i i i i
i i

dI d dp dq dI d dp dqM M
  

� � �  � � � �¦ ¦  

 
Let, also, HP  be a real-analytic Hamiltonian on  of the form 
 

( , , , ) ( ) ( , , , )H I p q h I f I p qP M P M� � �  
 
and denote by avf  the average of f  over the “fast angles” M : 
 

av ( , , ) ( , , , )
(2 )n n

df I q f I p q MM M
S

� �³  

 
Theorem 3.1 (Arnold, 1963) Assume that avf  is of the form  
 

2 2
av

0 4
1

1( ) ( ) ( )
2 2

m
j j

j j j
j

p q
f f I I r I r r o rW

 

�
 � : � � � � � �¦  (20) 

 
where W  is a symmetric ( )m mu –matrix and 4

( , ) 0 4lim ( , ) 0p q o p qo _ _ � _ _  . Assume, 
also, that 0I V�  is such that  
 

0det ( ) 0h Icc z �  (21) 
 

0det ( ) 0IW z �  (22) 
 
Then, in any neighborhood of 0{ } {(0,0)}dI u u �  there exists a positive measure 
set of phase points belonging to analytic “KAM tori” spanned by maximal quasi–
periodic solutions with n m�  rationally–independent (Diophantine) frequencies, 
provided P  is small enough.  
 
Recall that dZ�  is Diophantine if there exist positive constants J  and c  such that  
 

\{0}d
ck k

k
JZ_ � _t � � � �

_ _
 

 
Let us make some remarks.  
 

1. Actually, Arnold requires that avf  is in Birkhoff normal form up to order 6 , 
which means that  

 

     av
0 3 6

1

1( ) ( ) ( ) ( ; )
2

m

j j
j

f f I I r I r r P r I oW
 

 � : � � � �¦  
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where 3P  is a homogeneous polynomial of degree 3 in the variables ir  (with I – 
dependent coefficients); but such condition can be relaxed and (20) is sufficient:  
compare (Chierchia and Pinzari, 2010), where Arnold‟s properly degenerate  
KAM Theory is revisited and various improvements obtained.  

 
2. Condition (21) is immediately seen to be satisfied in the general planetary 

problem; the correspondence with the planetary Hamiltonian in Poincaré 
variables (14) being the following: 2m n , I  / , λM  , z ( , )p q , Kh h , 

Pf f .  
 

3. Condition (22) is a “twist” or “torsion” condition. It is actually possible to 
develop a weaker KAM theory where no torsion is required. This theory is due 
to Rüssmann (Rüßmann, 2001), Herman and Féjoz (Féjoz, 2004),where avf  is 
assumed to be in Birkhoff normal form up to order 2, 

av
0 21( ) ( )m

j jjf f I I r o
 

 � : �¦ , and the secular frequency map ( )I Io:  is 

assumed to be non–planar, meaning that no neighborhood of 0I  is mapped into 
a hyper plane.  

 
4. Indeed, the torsion assumption (22) implies stronger results. First, it is possible to 

give explicit bounds on the measure of the “Kolmogorov set”, i.e., the set 
covered by the closure of quasi–periodic motions; see (Chierchia and Pinzari, 
2010). Furthermore, the quasi–periodic motions found belong to a smooth 
family of non–degenerate Kolmogorov tori, which means, essentially, that the 
dynamics can be linearized in a neighborhood of each torus; see Section 6.1 for 
more information.  

 
On the base of Theorem 3.1, Arnold‟s strategy is to compute the Birkhoff normal form 
(20) of the secular Hamiltonian av

Pf  in (17) and to check the non–vanishing of the 
torsion (22). 
 
3.3. Birkhoff Normal Forms 
 
Before proceeding, let us recall a few known and less known facts about the general 
theory of Birkhoff normal forms. 
 
Consider as phase space a 2m  ball 2mBG  of radius G  around the origin in 2m  and a 
real–analytic Hamiltonian of the form  
 

� �2
0( ) rH w c o w �:� � �  

 
where  
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2
1 1

2 2

1

( )

r (r , ,r ), r .
2

m
m m

j j
m j

w u … u v … v

u v

�­  � � � � � �
°
® �

 }  °
¯

 

 
The components j:  of :  are called the first order Birkhoff invariants. The following 
is a classical result by G.D. Birkhoff.  
 
Proposition 3.1 Assume that the first order Birkhoff invariants j:  verify, for some 

0a !  and integer s , 
 

1
1

0 0 2
m

m
j

j
k a k k k s

 

:� t ! � � � � � � d �¦  (23) 

 
Then, there exists 0 G Gc� d  and a symplectic transformation 2 2: m mw B w BG GI c� o �  
which puts H  into Birkhoff normal form up to the order 2s , i.e., 
 

� �2
0

2
r (r) ,s

h
h s

H c P o wI
d d

º �:� � � »¼¦  (24) 

 
where hP  are homogeneous polynomials in 2 2 22 ( ) 2r j j j jw u v _ _ � � � �  of degree h .  
 
Less known is that the hypotheses of this theorem may be loosened in the case of 
rotation invariant Hamiltonians: this fact, for example, has been used neither in Arnold 
(1963) nor in Féjoz (2004).  
 
First, let us generalize the class of Hamiltonian function so as to include the secular 
Hamiltonian (18): let us consider an open, bounded, connected set nU �  and consider 
the phase space 2n mU BG� u u , endowed with the standard symplectic form 
dI d du dvM� � � .  
 
We say that a Hamiltonian ( , , )H I wM  on  is rotation invariant if gH H  for 
any g� , where g  is a symplectic rotation by an angle g�  on , i.e., a 
symplectic map of the form  
 

( , , ) ( , , ) with ( )g g
i i iiI w I w I I g w wM M MMcc c c cc� o  �  � �  �  

 
with g  defined in (16).  
 
Now, consider a M –independent real–analytic Hamiltonian  
 

( , , ) ( , )H I w H I wM� � o �  of the form  
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� �2
0( , ) ( ) ( ) r ;H I w c I I o w I �: � � �  

 

by � �2 ;f o w I  we mean that ( )f f I w �  and 2 0f w_ _ � _ _ o  as 0wo .  

 
Then, it can be proven the following  
 
Proposition 3.2. Assume that H  is rotation–invariant and that the first order Birkhoff 
invariants j:  verify, for all I U� , for some 0a !  and integer s   
 

1
1

0 0 0  and 2
n

m
i

i
k a k k k s

 

:� t ! � � z � �  d �¦  (25) 

 
Then, there exists 0 G Gc� d  and a symplectic transformation 

2: ( , , ) ( , , )n mI w U B I wGI M Mc� � u u o �  which puts H  into Birkhoff normal 
form up to the order 2s  as in (24) with the coefficients of hP  and the reminder 

depending also on I . Furthermore, I  leaves the I –variables fixed, acts as a M –
independent shift on M , is M –independent on the remaining variables and is such that 
 

g gI I  (26) 
 
We shall call (23) the Birkhoff non–resonance condition (up to order s ) and (25) the 
“reduced” Birkhoff non–resonance condition. The proof of Proposition 3.2 may be 
found in Section7.2 in (Chierchia and Pinzari, 2011 (c)). 
 
3.4. The Planar Three–Body Case (1963) 
 
In the planar case the Poincaré variables become simply  
 

2( λ,z) ( λ,η,ξ) n n n
�/� � /� � u u �  

with the / „s as in (9) and  
 

η 2( ) cosg
λ g , .

ξ 2( ) sing
i i i i

i i i
i ii i

­
°°
®
°
°̄

 / �*
 �

 � / �*
 

 
The planetary, planar Hamiltonian, is then given by  
 

2
P pln K P pln( λ,z) ( ) ( λ,z), z (η,p,ξ) nh fP� �/�  / � /� � �  

and  
 

� �
2 2

4av
P pln P pln 0

1 η ξ( ) ( ) O z
2(2 ) hnn f f C

S � �
�

 �  / � / � � �³  
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In Eq. (3.4.31), p.138 of (Arnold, 1963), Arnold computed the first and second order 
Birkhoff invariants finding, in the asymptotics 1 2a a :  
 

� �� �

21 1
1 1 2

2 2 1 2

2
2 1

2 2
2 2 2

22
1 21 5 41

1 2 23
2

2
1 2 2

3 1( ) 1 O
4

3 1 1 O
4

3 9
44

1 O
9 3

4

a am m
a a a

am
a a

am m a
a

W � �

­ § ·§ ·
:  � �° ¨ ¸¨ ¸¨ ¸/ © ¹° © ¹°
® § ·§ ·° ¨ ¸:  � � ¨ ¸° ¨ ¸/ © ¹° © ¹¯

§ ·�¨ ¸/ //¨ ¸ � �
¨ ¸
� �¨ ¸/ / /© ¹

 

 
which shows that the j: „s are non resonant up to any finite order (in a suitable / –
domain), so that the planetary, planar Hamiltonian can be put in Birkhoff normal form 
up to order 4 and that the second order Birkhoff invariants are non–degenerate in the 
sense that  
 

4
2 1

1 2 6 2
2 1 2

3
1

2 7
0 2

117det τ ( ) (1 (1))
16 ( )

117 1 (1 (1)) 0
16

am m o
a

a o
m a

 � �
/ /

 � � z �

 

 
actually, in (Arnold, 1963) the τij  are defined as 1 2�  of the ones defined here; 

moreover, 4
2a  in Eq. (3.4.31) of (Arnold, 1963) should be replaced 7

2a .  
 
This allow to apply Theorem 1 and to prove Arnold‟s planetary theorem in the planar 
three–body ( 2n  ) case.  
 
An extension of this method to the spatial three–body problem, exploiting Jacobi‟s 
reduction of the nodes and its symplectic realization, is due to P. Robutel (Robutel, 
1995). 
 
3.5. Secular Degeneracies 
 
In the general spatial case it is customary to call iV  the eigenvalues of ( )h /  and i9  
the eigenvalues of and ( )v / , so that ( , )V 9:  ; compare (19).  
 
It turns out that such invariants satisfy identically the following two secular resonances  

1
0 ( ) 0

n

n i i
i

9 V 9
 

 � �  ¦  (27) 

 273  



CELESTIAL MECHANICS - The Planetary N-Body Problem - Luigi Chierchia 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

and, actually, it can be shown that these are the only resonances identically satisfied by 
the first order Birkhoff invariants; compare Proposition 78, p. 1575 of (Féjoz, 2004).  
 
The first resonance was well known to Arnold, while the second one was apparently 
discovered by M. Herman in the 1990‟s and is now known as Herman resonance.  
 
Notice that both resonances violate the usual Birkhoff non–resonance condition (23) but 
do not violate the reduced Birkhoff condition (25).  
 
What is a more serious problem for Arnold‟s approach is that the matrix W  indeed is 
degenerate, as clarified in Chierchia and Pinzari (2011b), since  
 

0
0 0
W

W
§ ·

 ¨ ¸
© ¹

 (28) 

 
W  being a matrix of order (2 1)n � .  
 
3.6. Herman–Fejóz Proof (2004) 
 
In 2004 J. Fejóz published the first complete proof of a general version of Arnold‟s 
planetary theorem (Féjoz, 2004). As mentioned above (remark (ii), Section 3.2), in 
order to avoid fourth order computations (and also because M. Herman seemed to 
suspect the degeneracy of the matrix of the second order Birkhoff invariant; compare 
the Remark towards the end of p. 24 of (Herman, 2009)), Herman‟s approach was to use 
a first order KAM condition based on the non–planarity of the frequency map. But, the 
resonances (27) show that the frequency map lies in the intersection of two planes, 
violating the non–planarity condition. To overcome this problem Herman and Féjoz use 
a trick by Poincarè, consisting in modifying the Hamiltonian by adding a commuting 
Hamiltonian, so as to remove the degeneracy. By a Lagrangian intersection theory 
argument, if two Hamiltonian commute and  is a Lagrangian invariant transitive torus 
for one of them, then  is invariant (but not necessarily transitive) also for the other 
Hamiltonian; compare Lemma 82, p. 1578) of (Féjoz, 2004). Thus, the KAM tori 
constructed for the modified Hamiltonian are indeed invariant tori also for the original 
system. Now, the expression of the vertical component of the total angular momentum 

3C  has a particular simple expression in Poincaré variables, since  
 

� �2 2 2 2
3

1

1C η ξ p q
2

n

j j j j j
j 

§ ·� / � � � � �¨ ¸
© ¹

¦  

 
so that the modified Hamiltonian  
 

P 3( λ,z) CG G� /� �  
 
is easily seen to have a non–planar frequency map (first order Birkhoff invariants), and 
the above abstract remark applies. 
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3.7 Chierchia–Pinzari Proof (2011) 
 
In (Chierchia and Pinzari, 2011 (c)) Arnold‟s original strategy is reconsidered and full 
torsion of the planetary problem is shown by introducing new symplectic variables 
(called RPS–variables standing for Regularized Planetary Symplectic variables; see 
Section 4.1 below), which allow for a symplectic reduction of rotations eliminating one 
degree of freedom (i.e., lowering by two units the dimension of the phase space).  
 
In such reduced setting the first resonance in (27) disappears and the question about the 
torsion is reduced to study the determinant of τ  in (28), which, in fact, is shown to be 
non–singular; compare Section8 of (Chierchia and Pinzari, 2011 (c)) and (Chierchia and 
Pinzari, 2011 (b)) (where a precise connection is made between the Poincaré and the 
RPS–variables).  
 
The rest of this chapter is devoted to explain the main ideas beyond this approach.  
 
4. Symplectic Reduction of Rotations 
 
We start by describing the new set of symplectic variables, which allow us to have a 
new insight on the symplectic structure of the phase space of the planetary model, or, 
more in general, of any rotation invariant model.  
 
The idea is to start with action–angle variables having, among the actions, two 
independent commuting integrals related to rotations, for example, the Euclidean length 
of the total angular momentum C  and its vertical component 3C , and then (following 
Poincaré) to regularize around co–circular and co–planar configurations.  
 
The variables that do the job are an action–angle version of certain variables introduced 
by A. Deprit in 1983 (Deprit, 1983) (see also (Chierchia and Pinzari, 2011 (a))), which 
generalize to an arbitrary number of bodies Jacobi‟s reduction of the nodes; the 
regularization has been done in (Chierchia and Pinzari, 2011 (c)). 
 
4.1. The Regularized Planetary Symplectic (RPS) Variables 
 
Let 2n t  and consider the “partial angular momenta”  
 

( ) ( ) ( ) ( )

1 1
C , C C

i n
i j n j

j j
S S

  

�   � �¦ ¦  

 
and define the “Deprit nodes”  

( ) ( )

1 2
(3)

1

C 2

C

i i
i

n

S i n

k

Q
Q Q

Q Q�

­ � u � d d
°

� ®
° � u  � �¯

 

 
(recall the definition of the “individual” and total angular momenta in (7)).  
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Figure 3. The angle iJ  
 
The Deprit action–angle variables � �,J \/�*�<� �  are defined as follows. The 
variables / , *  and  are in common with the Delaunay variables (9), while  
 

( 1)

( ) (3)C
3

( 1) 2 1

(1)
(3)

| |,            1 1
: ( , ) :

C : C

( ) 1 1

( , )

i

i i i i i

i i iS
i

k

S i n
P

k i n

i n

k i n

J D Q

D Q Q
\

] D Q

�

� � �

­ d d �° <  ®
 �  °̄

� d d �­°� ®
�  °̄

 

 
Define also ( ): C nG S  . 

 
The “Deprit inclinations” iL  are defined through the relations  
 

( 1) ( 1)

( 1) ( 1)

(3)

C , 1 1,
C

cos
C ,                .

C

i i

i i

i

S i n
S

k i n

L

� �

� �

­ �
d d �°

°
� ®

�°
 °

¯

 

 
Similarly to the case of the Delaunay variables, the Deprit action–angle variables are not 
defined when the Deprit nodes iQ  vanish or (0 1)ie � � ; on the domain where they are 
well defined they define a real–analytic set of symplectic variables, i.e., 
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( ) ( )

1 1

n n
i i

i i i i i i
i i

dX dx d d d d d dJ \
  

�  / � � * � � < � �¦ ¦  for a proof, see Chierchia and  

 
Pinzari (2011a) or Section 3 of Chierchia and Pinzari (2011c).  
 

 
 

Figure 4. The angle i\  for 1 2i nd d �  
 

 
 

Figure 5. The angles 1n g\ �  �  and n\ ] �  
 

The RPS variables are given by ( , ) ( , , , , )z p qO O K [/� � /�  with (again) the / „s as in 
(9) and  
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1

1

1

2( ) cos( )

2( ) sin( )

n
i i i i

n
i i i i i

n
i i i i i

O J \

K J \

[ J \

�

�

�

 � �

­  / �* �°
®

 � / �* �°̄

 

1 1

1 1

2( ) cos

2( )sin

n
i i i i i

n
i i i i i

p

q

\

\

­
° � �°
®
°

� �°̄

 * �< �<

 � * �< �<
 

 
where  
 

0 1 1 00 0 n
n i j

i j n
\ \ \�

d d

< � * � * � � � � � �¦  

 
On the domain of definition, the RPS variables are symplectic 
 

1 1
n n

i i i i i i i i i i i ii id d d d d d d d d d dp dqJ \ O K [
  

/ � � * � � < �  / � � � � � �¦ ¦  
 
for a proof, see Section4 of Chierchia and Pinzari, 2011c).  
 
For the planetary problem, we shall restrict the phase space in the RPS variables to a set 
of the same form as in (12), (13), namely 
 
� � 6 4

RPS, , :n nz BO/ �  u u  (29) 
 
With B  a 4n-dimensional ball around the origin. 
 
The relation between Poincaré variables and the RPS variable is rather simple. Indeed if 
we denote by 
 

RPS
p ( , ) ( λ,z)zI O� /� o /�  (30) 

 
the symplectic transformation between the RPS and the Poincaré variables, one has the 
following 
 
Theorem 4.1 (Chierchia and Pinzari, 2011 (b))  
 
The symplectic map RPS

PI  in (30) has the form  
 
λ ( ) z ( )z zO M � /�  /�  
 
where ( 0) 0M /�   and, for any fixed / , the map ( )/��  is 1:1, symplectic (i.e., it 
preserves the two form d d dp dqK [� � � ) and its projections verify, for a suitable 

( ) SO( )n / � , where � �SO n  denotes the special orthogonal group of ( n nu ) 
matrices,  
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η 3 ξ 3 p 3 q 3p qO O O OK [3  � � 3  � � 3  � � 3  � �  

where � �3
3O O z , 

 
4.2 Partial Reduction of Rotations 
 
Recalling that  
 

( ) (1) (3)
1 1 3 (3)0 C C ( C)n

n n n n k
S k k\ D� �*  � <  _ _ _ _� <  �  � u  

 
one sees that  
 

3

3

2( C C ) cos

2( C C )sin
n n

n n

p

q

\

\

­  _ _ �°
®

 � _ _ � �°̄
 

 
showing that the conjugated variables np  and nq  are both integrals and hence both 
cyclic for the planetary Hamiltonian, which, therefore, in such variables, will have the 
form 
 

RPS K RPS( , ) ( ) ( , )z h f zO P O/�  / � /� �  (31) 
 
where z  denotes the set of variables  
 

1 1 1 1 1 1: ( , , , ) (( ) ( ) ( ) ( ))n n n nz p q … … p … p q … qK [ K K [ [ � � � � � � � � � � � � � � �  
 
In other words, the phase space 6

RPS
n  in (32) is foliated by (6 2)n � –dimensional 

invariant manifolds  
 

6 2 6
RPS const

n n
p q p qn n n n

�
� �  � _ �  (32) 

 
and since the restriction of the standard symplectic form on such manifolds is simply  
 

,d d d d dp dqO K [/ � � � � �  
 
such manifolds are symplectic and the planetary flow is the standard Hamiltonian flow 
generated by RPS  in (31). We shall call the symplectic, invariant submanifolds 6 2n

p qn n
�
�  

“symplectic leaves”. They depend upon a particular orientation of the total angular 
momentum: in particular, the leaf 6 2

0
n�  corresponds to the total angular momentum 

parallel to the vertical (3)k –axis. Notice, also, that the analytic expression of the 
planetary Hamiltonian RPS  is independent of the leaves.  
 
In view of these observations, it is enough to study the planetary flow of RPS  on, say, 
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the vertical leaf 6 2
0

n� . 
 
5. Planetary Birkhoff Normal Forms and Torsion 
 
The RPS variables share with Poincaré variables classical D’Alembert symmetries, i.e., 

RPS  is invariant under the transformations (15)  being as in (16); compare Remark 
3.3 of (Chierchia and Pinzari, 2011 (b)).  
 
This implies that the averaged perturbation  
 

av
RPS RPS

1
(2 ) nnf f dO
S

� ³  

 
also enjoys D‟Alembert rules and thus has an expansion analogous to (18), but 
independent of ( )n np q� :  
 

� �
2 22 2

4av
RPS 0 v( ) ( ) ( ) ( ) OQ

2 2h
p qf z C zK [� �

/�  / � / � � / � �  (33) 

 
with h  of order n  and vQ  of order ( 1)n � . Notice that the matrix h  in (33) is the 
same as in (18), since, when ( , ) 0np p p   and ( , ) 0nq q q  , Poincaré and RPS 
variables coincide.  
 
Using Theorem 4.1, one can also show that  
 

v
v

0QQ :
0 0

§ ·
 ¨ ¸
© ¹

 

 
is conjugated (by a unitary matrix) to v  in (21), so that the eigenvalues i9  of vQ  
coincide with 1 1( )n9 9 ������ , as one naively would expect.  
 
In view of the remark after (27), and of the rotation–invariant Birkhoff theory 
(Proposition 3.2), one sees that one can construct, in an open neighborhood of co–planar 
and co–circular motions, the Birkhoff normal form of av

RPSf  at any finite order.  
 
More precisely, for 0!  small enough, denoting  
 

^ `4 2 4 2 4 2n n n nB B z z� � �� u u � � � � � �  

 
an –neighborhood of the co–circular, co–planar region, one can find a real–analytic 
symplectic transformation  
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: ( , , ) ( , , )z zPI O O/ � o / �  
 
such that  
 

RPS K ( ) ( , )h f zPI P O�  / � /�  
 
with  
 

0av
1 1( ) ( ) R  R R ( )

2(2 ) nnz f d C zf O W
S

/� �  / �:� � � � /�³  

 
where  
 

� �
2 2 22

6

1 11

2 2

( , )

: ( , , , ) R ( , ) ( )

( ) ( )

i i i i

nn

ii
p q

z p q r z O z

r r r

r
K [

V 9

K [ U

U U U

U

�

� �

:  ­
°

 �  � /�  �°
°
®  � � �  � � �
°
°

� �  °
¯

 

 
With straightforward (but not trivial!) computations, one can then show full torsion for 
the planetary problem. More precisely, one finds (Proposition 8.1 of (Chierchia and 
Pinzari, 2011 (c)))  
 
Proposition 5.1. For 2n t  and *0 1G� �  there exist 0P ! ,  

110 nna aa a� � � � �  
 
such that, on the set  defined in (13) and for 0 P P� � , the matrix ( )ijW W  is non–
singular:  
 
det (1 )n ndW G � �  
 
where *nG G_ _�  with  
 

1 3 4
1 2 1

12
1 0 20

3 45 1 1( 1)
5 16

n
n

n
n kk n

m ad a
m m a am

�
�

d d

§ · § · § ·
 � �¨ ¸ ¨ ¸ ¨ ¸

© ¹ © ¹© ¹
�  (34) 

 
Incidentally, we remark that P  is taken small only to simplify (34), but a similar 
evaluation hold with 1P  .  
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6. Dynamical Consequences 
 
6.1 Kolmogorov Tori for the Planetary Problem 
 
At this point one can apply to the planetary Hamiltonian in normalized variables 

( )zO/� �  Arnold‟s Theorem 3.1 above completing Arnold‟s project on the planetary 
N –body problem.  
 
Indeed, by using the refinements of Theorem 3.1 as given in (Chierchia and Pinzari, 
2010), from Proposition 5.1 there follows  
 
Theorem 6.1. There exists positive constants 
 , c
  and C
  such that the following 
holds. If  
 

6

10 0
(log )cP
 � 


� � � � � �  

 
then each symplectic leaf 6 2n

p qn n
�
�  (32) contains a positive measure RPS –invariant 

Kolmogorov set ,p qn n
, which is actually the suspension of the same Kolmogorov set 

� , which is –invariant.  
 
Furthermore,  is formed by the union of (3 1)n � –dimensional Lagrangian, real–
analytic tori on which the –motion is analytically conjugated to linear Diophantine 
quasi–periodic motions with frequencies 2 1

1 2( ) n nZ Z �� � u  with 1 (1)OZ   and 

2 ( )OZ P .  
 
Finally,  satisfies the bound  
 
meas meas (1 )measC
t t � �  
 
In particular, 4 2meas measn� . 
 
6.2 Conley–Zehnder Stable Periodic Orbits 
 
Indeed, the tori �  form a (Whitney) smooth family of non–degenerate 
Kolmogorov tori, which means the following. The tori in  can be parameterized by 
their frequency 3 1nZ ��  (i.e., Z ) and there exist a real–analytic symplectic 
diffeomorphism  
 

: ( , ) ( , ; ) 3 1m my x B y x m nQ Q Z� u o � � � � �  
 
uniformly Lipschitz in Z  (actually Cf  in the sense of Whitney) such that, for each Z   
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(a) E y QQ Z � � � ; (Kolmogorov‟s normal form)  
(b) E�  (the energy of the torus); mZ�  is a Diophantine vector;  
(c) 2( )Q O y _ _   
(d) det (0 ) 0yym Q x dxw � z³  , (nondegeneracy)  

(e) (0 )m
Z Q � .  

 
Now, in the first paragraph of Conley and Zehnder (1983) the authors, putting together 
KAM theory (and in particular exploiting Kolmogorv‟s normal form for KAM tori) 
together with Birkhoff–Lewis fixed–point theorem show that long–period periodic 
orbits cumulate densely on Kolmogorov tori so that, in particular, the Lebesgue measure 
of the closure of the periodic orbits can be bounded below by the measure of the 
Kolmogorov set. Notwithstanding the proper degeneracy, this remark applies also in the 
present situation and as a consequence of Theorem 6.1 and of the fact that the tori in  
are non–degenerate Kolmogorov tori it follows that  
 
in the planetary model the measure of the closure of the periodic orbits in  can be 
bounded below by a constant times 4 2n� . For details, see Chierchia (2014). 
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Glossary 
 
Averaging : In a nearly–integrable Hamiltonian system (i.e., a small 

Hamiltonian perturbation of a completely integrable 
Hamiltonian system) the procedure of averaging over fast 
angle variables.  

Action–angle  
variables : 

A particular set of symplectic variables; half of them have the 
physical dimension of an action (energy times time).  

Birkhoff normal  
forms :  

Normal form in which, under suitable assumptions, a 
Hamiltonian having an elliptic equilibrium can be transformed, 
through a symplectic map, into a Hamiltonian depending only 
on polar action variables.  

Degenerate 
Hamiltonian systems : 

Integrable Hamiltonian systems that, when expressed in action 
variables, do not depend in a “general” way on the actions.  

Diophantine 
numbers : 

Irrational numbers or set of numbers badly (in a specific 
quantitative way) approximated by rational numbers.  

Elliptic equilibrium : A linearly stable equilibrium point for a Hamiltonian (i.e., a 
point where the gradient of the Hamiltonian vanishes)  

Hamiltonian  
equations : 

First order evolution equations ruling the dynamics of a 
conservative system.  

 283  



CELESTIAL MECHANICS - The Planetary N-Body Problem - Luigi Chierchia 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

Integrable 
Hamiltonian system : 

A Hamiltonian systems whose evolutions can be solved in 
terms of integrals (“quadratures”) and when all solutions are 
bounded can be put, through a symplectic transformation of 
action–angle variables, into a system with Hamiltonian 
depending only upon action variables.  

Invariant tori : Tori, embedded in a phase space, which are invariant under the 
Hamiltonian evolution.  

KAM Theory : The bulk of techniques and theorems, beginning with the 
contribution of Kolmogorov, Arnold and Moser, dealing with 
the problem of the stability of quasi–periodic motion in 
perturbation of integrable Hamiltonian systems.  

Keplerian ellipses : Ellipses described by a two–body system with negative 
energy.  

Kolmogorov tori : Invariant tori on which the Hamiltonian flow is symplectically 
conjugated to a Diophantine linear flow and which are non–
degenerate in a suitable sense.  

Linear and angular 
momentum : 

Physical characteristics of a system of many bodies.  

N –body problem : The mathematical problem of studying the motion of an N  
body system.  

N –body system : N  point–masses (“bodies”) mutually interacting only through 
gravitational attraction.  

Newton’s equations : The fundamental evolution equations of classical mechanics 
expressing the proportionality between forces and 
accelerations of a given body (the proportionality constant 
being the mass of the body).  

Node lines (or simply 
“nodes”) : 

Intersections of relevant planes (e.g., the intersection of the 
plane orthogonal to the total angular momentum and a fixed 
reference plane).  

Phase space : Classically, the space of positions and corresponding velocities 
(times masses); in modern and more general terms, the 
“symplectic manifold” (see below) of a Hamiltonian system.  

Planetary systems : A system of N –bodies where one body has mass much larger 
than the other bodies studied in nearly–coplanar and nearly 
co–circular regime.  

Quasi–periodic 
motions : 

Motions that can be described by a linear flow on a torus with 
incommensurate frequencies.  

Resonances : Commensurate relations.  
Secular Hamiltonian 
and secular 
degeneracies : 

In the planetary Hamiltonian problem, the Hamiltonian 
obtained by averaging over the mean anomalies.  

Small divisors : Linear combination (with rational coefficients) of frequencies 
appearing in the denominator of expansions arising in 
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averaging theory.  
Symplectic  
coordinates : 

Coordinates on a symplectic manifold allowing us to express 
in a standard way the associated symplectic form.  

Symplectic manifold : An even dimensional manifold endowed with a symplectic 
form, i.e., a non–degenerate, closed differential 2–form.  

Symplectic reduction : A mathematical process allowing us to lower the dimension of 
the phase space, which amounts to simplify significantly the 
original set of differential equations.  

Symplectic 
transformation : 

A diffeomorphism on a symplectic manifold preserving the 
symplectic form.  

Twist or torsion : A non–degeneracy condition of integrable Hamiltonian 
systems expressing the fact that the map between actions and 
frequencies is a local diffeomorphism.  
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