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Abstract

We show that, in general, averaging at simple resonances a real-analytic,

nearly-integrable Hamiltonian, one obtains a one-dimensional system with a

cosine-like potential; ‘in general’ means for a generic class of holomorphic

perturbations and apart from a �nite number of simple resonances with small

Fourier modes; ‘cosine-like’ means that the potential depends only on the

resonant angle, with respect to which it is a Morse function with one maxi-

mum and one minimum. Furthermore, the (full) transformed Hamiltonian is

the sum of an effective one-dimensional Hamiltonian (which is, in turn, the

sum of the unperturbed Hamiltonian plus the cosine-like potential) and a per-

turbation, which is uniformly exponentially small. As a corollary, under the

above hypotheses, if the unperturbed Hamiltonian is also strictly convex, the

effective Hamiltonian at any simple resonance (apart a �nite number of low-

mode resonances) has the phase portrait of a pendulum. The results presented

in this paper are an essential step in the proof (in the ‘mechanical’ case) of

a conjecture by Arnold–Kozlov–Neishdadt [Arnold V I, Kozlov V V and

Neishtadt A I 2006 Mathematical aspects of classical and celestial mechan-

ics Encyclopaedia of Mathematical Sciences 3rd edn vol 3 (Berlin: Springer),

remark 6.8, p 285], claiming that the measure of the ‘non-torus set’ in gen-

eral nearly-integrable Hamiltonian systems has the same size of the perturba-

tion; compare [Biasco L and Chierchia L 2015 On the measure of Lagrangian

invariant tori in nearly-integrable mechanical systems Rendiconti Lincei. Mat.

Appl. 26 1–10 and Biasco L and Chierchia L KAM Theory for Secondary Tori

(arXiv:1702.06480v1 [math.DS])].
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1. Introduction

1.1Consider a real-analytic, nearly-integrableHamiltonian given, in action-angle variables, by

Hε(y, x) = h(y)+ ε f (y, x), (y, x) ∈ M :=D× T
n, (1)

where D is a bounded domain in Rn, Tn = Rn/ (2πZn) is the usual �at n dimensional torus

and ε is a small parameter measuring the size of the perturbation ε f . The phase space M is

endowedwith the standard symplectic form dy ∧ dx so that the Hamiltonian �owφtHε (y0, x0) =:

(y(t), x(t)) governed by Hε is the solution of the standard Hamiltonian equations

{

ẏ = −∂xHε(y, x),

ẋ = ∂yHε(y, x),

{

y(0) = y0,

x(0) = x0,

(where t is time and dot is time derivative).

It is well known that, in general, the φtHε -dynamics is strongly in�uenced by resonances of the

(unperturbed) frequencies ω(y) := h′(y) = ∂yh(y), i.e., by rational relations

ω(y) · k =
n
∑

j=1

ω j(y)k j = 0,

with k ∈ Zn \ {0}; for general information, compare, e.g., [1].

Indeed, assuming a standard non-degeneracy assumption on h, e.g., that the frequency map

y ∈ D→ ω(y) is a real-analytic diffeomorphism of D onto the ‘frequency space’ Ω := h′(D),
then the action space D can be covered by three open sets

D ⊆ D0 ∪ D1 ∪ D2

so that the following holds. Roughly speaking,D0 × Tn is a completely non-resonant set which

is �lled, up to an exponentially (in 1/εc) small set, by primary KAM tori, namely, Lagrangian

tori φtHε -invariant on which the �ow is analytically conjugated to the linear �ow

θ ∈ T
n 7→ θ + ωt

with ω satisfying a Diophantine condition

|ω · k| > γ

|k|τ1
∀ k ∈ Z

n \ {0},

(for some γ, τ > 0); ω · k denoting the standard inner product
∑

ωiki and |k|1 :=
∑ |ki|.

Morevover, such tori are graphs over Tn and are analytic deformation of integrable tori. D1

is an open O(
√
ε)-neighbourhood of simple resonances (i.e., of regions where exactly one

independent resonance ω(y) · k = 0 holds) and D2 is a set of measure O(ε).
Indeed, such description (up to logarithmic corrections) follows easily by the covering

lemma below (proposition 2.1), by choosing suitably parameters (e.g., the ‘small divisor

constant’ α ∼ √
ε and ‘Fourier cutoffs’ K ∼ |log ε|a).

The region D2 contains double (and higher) resonances and, in general, in D2 × Tn there

are O(ε) regions where the dynamics is non-perturbative, being ‘essentially’ governed (after

suitable rescalings) by an ε-independent Hamiltonian, as the following quotation from [1]

clari�es:

‘It is natural to expect that in a generic system with three or more degrees of freedom the

measure of the ‘non-torus’ set has order ε. Indeed, the O(
√
ε)-neighbourhoods of two resonant
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surfaces intersect in a domain of measure∼ ε. In this domain, after the partial averaging taking

into account the resonances under consideration, normalizing the deviations of the “actions”

from the resonant values by the quantity
√
ε, normalizing time, and discarding the terms of

higher order, we obtain a Hamiltonian of the form 1
2
(Ap, p)+ V(q1, q2), which does not involve

a small parameter (see the de�nition of the quantity p above). Generally speaking, for this

Hamiltonian there is a set of measure∼ 1 that does not contain points of invariant tori. Return-

ing to the original variables we obtain a ‘non-torus’ set of measure ∼ ε.’ ([1, remark 6.8,

p 285]).

Incidentally, we mention that, from the above description, it follows, as it is well known,

that the measure of the complement of the KAM primary tori in phase space is in general of

O(
√
ε) ([2–4]). In fact, this result is optimal, as the following trivial example shows: the phase

region inside the separatrix of the pendulum 1
2
y2 + ε cos x, with y ∈ R and x ∈ T1, does not

contain any primary invariant torus (circle) which is a global graph over the angle x, and such

a region has measure 4
√
2ε; (of course, in this integrable case, such a region is �lled up by

secondary tori, corresponding to oscillations of the pendulum).

1.2 The dynamics in the simple-resonance region D1 × Tn is particularly relevant and inter-

esting. For example, it plays a major rôle in Arnold diffusion, as shown by Arnold himself

[5], who based his famous instability argument on shadowing partially hyperbolic trajectories

arising near simple resonances.

On the other hand, in D1 × Tn there appear secondary KAM tori, namely n-dimensional

KAM tori with different topologies, which depend upon speci�c characteristics of the pertur-

bation ε f . The appearance of secondary tori is a genuine non-integrable effect, since such tori
do not exist in the integrable regime.

In the announcement [6] it is claimed that, in the case of mechanical systems, namely sys-

tems governed by Hamiltonians of the form H(y, x) = |y|2/2+ ε f (x), and for generic poten-

tials f , primary and secondary tori �ll the region D1 × Tn up to a set of measure nearly

exponentially small, showing that the ‘non-torus set’ is essentially O(ε) as conjectured in [1]

and studied in [7].

Indeed, the main results presented here, namely theorem 2.1, is one of the building blocks

of the proof (in the mechanical case) of Arnold–Kozlov–Neishdadt conjecture. The idea of

such proof is the following (compare, also, [8]).

As mentioned above D0 is �lled, up to an exponentially small set, by KAM invariant

primary tori. On the other hand, the region D2 (which, according to Arnold, Kozlov and

Neishtadt, contains the main part of the non torus-set) has measure O(ε). It remains to inves-

tigate D1, which is union of O(
√
ε) neighbourhoods of simple resonances with Fourier modes

k, with |k| 6 K, where the Fourier cut-off K goes to in�nity as ε goes to zero (which is a

standard fact in any normal form or averaging theory). In a neighbourhood of any �xed res-

onance, by averaging theory, one can symplectically conjugate Hε to a Hamiltonian H̄k
ε of

the form

H̄k
ε := hk(y)+ εGk(y, k · x)+ εRk(y, x) (2)

with Rk a small remainder and θ→ Gk(y, θ) a periodic function of one single angle θ (and zero
average), making the ‘secular Hamiltonian’ hk + εGk an integrable systems (parameterized by

n− 1 action variables). The natural strategy is then to put H̄ε in the action-angle variables of the

integrable Hamiltonian hk + εGk and to apply KAM theory. However, in order to do this one

has to control an essentially in�nite number of singular change of coordinates in a quantitative

way (recall that K →∞ as ε→ 0), which is clearly a technically dif�cult task unless one has a

uniform way to deal with in�nitely many resonances. This is where theorem 2.1 below comes

in, as it shows that, under generiticity assumptions and up to a �nite and �xed number of low
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Fourier modes, all simple resonances lead to essentially the same pendulum-like system. The

proof of the conjecture will then follow by showing KAM nondegeneracy of H̄ε (this is a non

trivial task, which will be addressed elsewhere; compare [8]; for a related stronger conjecture

in two degrees of freedom, see [9]).

1.3 In the rest of this introduction we brie�y discuss the main ideas needed to make a uniform

quantitative analysis of nearly-integrable systems at simple resonances. For simplicity we focus

on the case of purely positional potentials; precise statements are given in section 2 below, and,

for the general (but more technical and implicit) case, in section 8. D1 is the union of suitable

regions D1,k, which are O(
√
ε)-close to exact simple resonances {y ∈ D|ω(y) · k = 0}, and

which are labelled by generators k of one dimensional, maximal sublattices of Zn (see (16)

below); ‘exact’ meaning that ω(y) does not verify double or higher resonant relations.
In averaging/normal form theory (see, e.g., [1, section 6] and references therein), one

typically considers a �nite but large (typically, ε-dependent) number of simple resonances.

More precisely, one considers generators k with |k|1 6 K, and K can be chosen accord-

ing to the application one has in mind. Typically, one chooses K ∼ 1/εa for a suitable

a > 0 (as in Nekhoroshev theorem [10, 11] or in the KAM theory for secondary tori in two

degrees of freedom [9]) or K ∼ |log ε|a (as in the general KAM theory for secondary tori of

[6, 8]).

Furthermore, in any �xed simple resonant region D1,k, one can remove the non-resonant

angle dependence, so as to symplectically conjugateHε, for ε small enough, to theHamiltonian

H̄k
ε in (2) where: hk is ε-close to h, θ→Gk(y, θ) is a function of one angle and Rk is a ‘very

small’ remainder, with mth Fourier coef�cient Rkm(y) vanishing when m = jk for some j ∈ Z.

Thus, up to the remainder Rk, the Hamiltonian depends effectively only on the ‘resonant angle’

θ := k · x and therefore the secular Hamiltonian hk + εGk is integrable: this is the starting point

for (‘a priori stable’) Arnold diffusion (compare, e.g., [5, 12–19]) or for the KAM theory for

secondary tori of [6, 8].

There are here two main issues to be clari�ed:

(a) What is the actual ‘generic form’ of Gk?

(b) How small (and compared to what) is the remainder Rk?

(a) According to averaging (or normal form) theory Gk is ‘close’ to the projection of the

potential f on the Fourier modes of the resonant maximal sublattice Zk:

p
Zk f (x) :=

∑

j∈Z
f jk e

i jk·x.

Now, since f is real-analytic on Tn, it is holomorphic in a complex strip Tn
s aroundT

n of width

s > 0 and its Fourier coef�cients decay exponentially fast, behaving typically as

| fk| ∼ ‖ f ‖ e−|k|1s . (3)

Hence, in general, one will have

∑

j∈Z
f jk e

i jk·x
= fk e

ik·x
+ f−k e

−ik·x
+ O

(

‖ f ‖ e−2|k|1s
)

which, by the reality condition f−k = f̄ k, can be written as

∑

j∈Z
f jk e

i jk·x
= 2| fk| cos

(

k · x+ θ(k)
)

+ O
(

‖ f ‖ e−2|k|1s
)

(4)
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for a suitable θ(k) ∈ [0, 2π). Thus,

pZk f (x) =
∑

j∈Z
f jk e

i jk·x
= 2| fk|

(

cos
(

k · x+ θ(k)
)

+ o(1)
)

(5)

provided the higher Fourier modes are smaller compared to | f k|, i.e.:

|k|1 '
1

s
. (6)

(precise statements, norms, etc, will be given in section 2). In other words, one expects (5) to

hold for generic real-analytic potentials and for all generators k’s satisfying (6). Indeed, this

is the case: we shall introduce certain classes of analytic potentials Hs,τ (de�nition 2.2), for

which (choosing suitably the ‘tail’ function τ ) (5) holds for generators k satisfying (6). The

classHs,τ is ‘generic’ in several ways (compare de�nition 2.2 and theorem 3.1 below):

(a) It contains an open dense set in the class of real-analytic functions having holomorphic

extension on a complex neighbourhood of size s of Tn (in the topology induced by a

suitably weighted Fourier norm);

(b) Its unit ball is of measure 1 (with respect to a natural probability measure);

(c) It is a ‘prevalent set’ (compare [20] or [21]).

Next, in order for Gk to be close to pZk f in (5), one needs to have a bound of the type

sup
D1,k×Tn

|Gk − pZk f | ≪ | fk| (3)∼ ‖ f ‖ e−|k|1s. (7)

As well known, analytic averaging methods involve an analyticity loss in complex domains.

In particular, the Hamiltonian in (2) and, therefore, Gk, can be analytically de�ned only in a

smaller complex strip Tn
s⋆
with s⋆ < s. Therefore, by analyticity arguments, the best one can

hope for is an estimate of the type

sup
D1,k×Tn

|Gk − pZk f | 6 c · ‖ f ‖ e−|k|1s⋆ , (8)

for a suitable constant c that can be taken to be smaller than any pre�xed positive number.

But then, for (8) and (7) to be compatible one sees that one must ‘essentially’ have s⋆ ∼ s and

that standard averaging theory is not enough (compare, e.g., [11], where s⋆ = s/6; for a more

detailed comparison with the averaging lemma of [11], see also remark 4.1(d) below; for other

re�ned normal forms, see also [22–25]). To overcome this problem, we provide (section 4) a

normal form lemma with small analyticity loss, ‘small’ meaning that one can take

s⋆ = s(1− 1/K) (9)

(compare, in particular, (70)). The value (9) is compatible with (7) for |k|1 6 K, showing that,

generically, one has that Gk(y, k · x) has the same form of the right hand side of (5). In partic-

ular we prove that: the ‘effective Hamiltonians’ hk + εGk, as k varies (c/s 6 |k|1 6 K), have

essentially the same cosine-like potential (up to a phase-shift) and, hence, the same topological

features (compare remark 2.2(a) below).

Notice also that for low modes this last property, in general, does not hold, as one

immediately sees by considering k = e1 = (1, 0, . . . , 0) and a potential f such that

pZe1 f (x) = cos x1 + cos 2x1,
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which is a Morse function with two maxima and two minima in T1. In fact, in the above men-

tioned proof of Arnold–Kozlov–Neishtadt conjecture ([8]), low modes need a ad hoc analysis

and, in particular, �ne analytic properties of the singular action-angle variables for general

Morse potential have to be used (compare, [26]).

(b) What we have just discussed gives also an indication of how small Rk needs to be in

order to be negligible. In fact, if (5) is the leading behaviour, one should have ‖Rk‖ ≪ | f k|.
But in order to perform averaging procedures, one has, typically, control on small divisors up

to the truncation order K, so that the remainder will be (by analyticity estimates) of order e−Ks

even using a re�ned normal fomal lemma as the one mentioned above. But this is not enough

since | f k| can get as small as e−Ks for large mode k (see (3)).

To overcome this problem, we introduce in section 5, at difference with standard geom-

etry of resonances in Nekhoroshev’s theory (compare, [10, 11, 27–31]), two Fourier cutoffs

K1 and K2 (with K2 > 3K1) in such a way that on the simple resonant regions D1,k one has

non-resonance conditions for double and higher resonances up to order K2, while K1, which is

introduced to make averaging theory in D0, is also the maximum value of the size of the gen-

erators k associated to simple resonances. Therefore, we will get an estimate of the remainder

Rk of the type

‖Rk‖ 6 constKa
2 e

−K2s/2 6 const e−K1s · e−K2s/8
(3)

6 const| fk| e−K2s/8 ; (10)

(where in the second inequalitywe usedK2 > 3K1 and ‖ f ‖ has been absorbed in the constants).
Notice that in the last inequality we are also using the generiticity of the potential f , which is

assumed to have a typical behaviour with respect to the Fourier modes corresponding to the

generators k (see, in particular, (32) below). The �nal upshot is that one can construct, via a

near-identity symplectic transformationΨk, a complete normal form

Hε ◦Ψk =: hk(y)+ 2| fk|ε
(

cos(k · x+ θ(k))+ G̃k(y, k · x)+ R̃k(y, x)
)

(11)

with ‖G̃k‖ ≪ 1 and ‖R̃k‖ 6 C′ e−K2s/8; compare theorem 2.1 below and, in particular, formula

(42).

Summarising: generically, for all k large enough, Gk in (2) is ‘cosine-like’, i.e., a Morse

function with one maximum and one minimum (compare remark 2.2(a) below) and Rk is

exponentially small with respect to the oscillations of Gk (see (42) and (44) below).

As a consequence we get that, if h(y) is strictly convex, the effective Hamiltonian has a

phase portrait of a pendulum (compare remark 2.2(b)) below).

The paper is organized as follows.

In section 2 (de�nitions andmain theorem) the principal de�nitions, assumptions and results

are given (KAM non-degeneracy, generators of 1D maximal lattices Gn1 , covering lemma and

the sets Di, the classes of generic potentialsHs,τ , and theorem 2.1, which is the main result of

the paper).

In section 3 (the generic classHs,τ ) the properties of the class of potentialsHs,τ are discussed

and proved.

Section 4 (normal form lemma) is a technical section devoted to a re�ned normal form

lemma, allowing for minimal analyticity loss in angle variables.

In section 5 (geometry of resonances and proof of the covering lemma) the proof of

proposition 2.1 (the ‘covering lemma’) on the geometry of resonances and their properties

is given.

In section 6 (averaging theory) the covering lemma and the normal form lemma are put

together so as to get the high-order averaging theory in the non-resonant region D0 × T
n and,
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especially, in the simple-resonant regionsD1,k × Tn; here a de�nite choice for the Fourier cut-

offs and the parameters controlling small divisors is done (assumption A).

In section 7 (proof of theorem 2.1) the proof of the main theorem is given.

In section 8 (general (y-dependent) potentials) themore general case of potentials depending

also on action variables is brie�y discussed.

Appendix A contains the proof of an elementary result in linear algebra needed in a linear

symplectic change of variables, clarifying the universal pendulum structure after normalization

in the case of mechanical systems.

2. Definitions and main theorem

Let n > 2 and D be a bounded domain in Rn. Assume that Hε in (1) admits, for some r, s > 0,

a holomorphic extension on the complex domain Dr × Tn
s ⊂ C2n, where

Dr :=
⋃

y∈D
{z ∈ C

n : |z− y| < r},

T
n
s := {x = (x1, . . . , xn) ∈ C

n : |Im x j| < s}/ (2πZn) ,

| · | denoting the standard Euclidean norm.

The integrable Hamiltonian h is supposed to be ‘KAM non-degenerate’ in the following

sense.

Definition 2.1 (KAM non-degeneracy). A real-analytic function

h : y ∈ D ⊂ R
n 7→ h(y) ∈ R , (n > 2) , (12)

D being a bounded domain of Rn, is said to be KAM non-degenerate if the frequency map

y ∈ D 7→ ω(y) :=∂yh(y) ∈ Ω :=ω(D) ⊆ BM(0) ⊂ R
n , M := sup

D

|ω(y)| ,

(13)

is a global diffeomorphism of D onto Ω with Lipschitz constants given by

|y− y0|L̄−1 6 |ω(y)− ω(y0)| 6 L|y− y0| , (∀ y, y0 ∈ D); (14)

BM(0) denotes the real Euclidean ball of radiusM centred in the origin.

Let Zn
⋆ denote the set of integer vectors k 6= 0 in Zn such that the �rst non-null component

is positive:

Z
n
⋆ := {k ∈ Z

n : k 6= 0 and k j > 0 where j = min{i : ki 6= 0}} , (15)

and denote by Gn1 the generators of 1D maximal lattices, namely, the set of vectors k ∈ Zn
⋆ such

that the greater common divisor (gcd) of their components is 1:

Gn1 := {k ∈ Z
n
⋆ : gcd(k1, . . . , kn) = 1} . (16)

Then, the list of one-dimensional maximal lattices is given by the sets Zk with k ∈ Gn1 . Given
K > 0 we set

Gn1,K := Gn1 ∩ {|k|1 6 K}. (17)
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Proposition 2.1 (Covering lemma). Let h be KAM non-degenerate and let ω denote

its gradient. Fix K2 > K1 > 2 and α > 0. Then, the domain D can be covered by three sets

Di ⊆ D,

D = D0 ∪ D1 ∪ D2 , (18)

so that the following holds.

(a) D0 is (α/2,K1) completely non-resonant (i.e., non-resonant modulus {0}), namely,

y ∈ D0
=⇒ |ω(y) · k| > α/2, ∀ 0 < |k|1 :=

∑

|k j| 6 K1. (19)

(b) D1 =
⋃

k∈Gn
1,K1

D1,k, where, for each k ∈ Gn1,K1 , D
1,k is a neighbourhood of a simple reso-

nance {y ∈ D :ω(y) · k = 0}, which is (2αK2/|k|,K2) non-resonant modulo Zk, namely,

y ∈ D1,k
=⇒ |ω(y) · ℓ| > 2αK2/|k|, ∀ℓ ∈ Z

n, ℓ /∈ Zk, |ℓ|1 6 K2. (20)

(c) D2 contains all the resonances of order two or more and has Lebesgue measure small with

α2: more precisely, there exists a constant c > 0 depending only on n such that

meas (D2) 6 c L̄nMn−2 α2 Kn+1
2 Kn−1

1 ; (21)

(L̄ and M being as in de�nition 2.1).

The proof is given in section 5.

The covering {Di} in (18) is the pull back of a covering in frequency space:

Di := {y ∈ D :ω(y) ∈ Ω
i}, (22)

where the Ωi’s are de�ned as follows.

Ω
0 := {ω ∈ BM(0) : min

k∈Gn
1,K1

|ω · k| > α/2} . (23)

To de�ne Ω1 and D1,k for k ∈ Gn1,K1 , let p
⊥
k denote the orthogonal projection on the subspace

perpendicular to k, i.e.,

p⊥k ω :=ω − 1

|k|2 (ω · k)k.

Then,

Ω
1,k :=

{

ω ∈ R
n : |ω · k| < α, | p⊥k ω| < M, and | p⊥k ω · ℓ| > 3αK2

|k| , ∀ℓ ∈ Gn1,K2 \Zk
}

D1,k := {y ∈ D :ω(y) ∈ Ω
1,k}, (24)

Ω
1 :=

⋃

k∈Gn
1,K1

Ω
1,k. (25)

Finally, the set Ω2 is the union of neighbourhoods of exact double resonances: if

Rk,ℓ := {ω · k = ω · ℓ = 0} , k ∈ Gn1,K1 , ℓ ∈ Gn1,K2 , ℓ /∈ Zk , (26)
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then

Ω
2
k,ℓ := {|ω · k| < α} ∩ {|p⊥k ω| < M} ∩ {| p⊥k ω · ℓ| 6 3αK2/|k|}, (27)

Ω
2
=

⋃

k∈Gn
1,K1

⋃

ℓ∈Gn
1,K2

ℓ/∈Zk

Ω
2
k,ℓ. (28)

Remark 2.1.

(a) The simply resonant regionsD1,k in (24) are labelled by generators of 1D maximal lattices

k ∈ Gn1 up to size |k|1 6 K1, however, the non-resonance condition (20) holds for integer

vectors ℓ with |ℓ|1 up to a (possibly) larger order K2. This generalization (with respect to

havingK2 = K1 as, e.g., in [11]) is technical but important if one wants to have sharp con-

trol over the averaged Hamiltonian in a normal form near simple resonances; in particular

in order to obtain (10) (compare, also, (150), (172), and (44)).

(b) The non-resonance relations (19) and (20) allow to apply averaging theory and to remove

the dependence upon the ‘non-resonant angle variables’ up to exponential order; for

precise statements, see theorem 6.1 in section 6.

We proceed, now, to describe the generic non-degeneracy assumption on periodic holo-

morphic functions, which will allow us to state the main theorem (in the case of positional

potentials).

If s > 0, we denote by Bn
s the Banach space of real-analytic functions on Tn

s having zero

average and �nite ℓ∞ weighted Fourier norm:

B
n
s :=











f =
∑

k∈Zn
k 6=0

fk e
ik·x : ‖ f ‖s <∞











, where‖ f ‖s := sup
k∈Zn

| fk| e|k|1s . (29)

Note that f ∈ Bn
s can be uniquely written as:

f (x) =
∑

k∈Gn
1

∑

j∈Z\{0}
f jk e

i jk·x . (30)

For functions (not necessarily holomorphic in y) f :Dr × Tn
s → C we will also use the

(stronger) norm

|| f ||D,r,s = || f ||r,s := sup
y∈Dr

∑

k∈Zn
| fk(y)| e|k|1s. (31)

Definition 2.2 (Non degenerate potentials). A tail function τ is, by de�nition, a non-

increasing, non-negative continuous function

τ : δ ∈ (0, 1] 7→ τ (δ) > 0.

Given s > 0 and a (possibly s-dependent) tail function τ , we de�ne, for δ ∈ (0, 1],Hs,τ (δ) as
the set of functions in Bn

s such that, for any generator k ∈ Gn1 , the following holds

if |k|1 > τ (δ), then | fk| > δ|k|−n1 e−|k|1s , (32)

The classHs,τ is the union over δ of the classesHs,τ (δ):

Hs,τ :=
⋃

0<δ61

Hs,τ (δ) . (33)
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In fact, one could substitute n in (32) with every n̄ > n/2; compare remark 3.2 below. The

‘weight’ |k|−n1 is necessary in order to show that Hs,τ (δ) in (33) has positive measure in a

suitable probability space; compare theorem 3.1(b) below.

The classes Hs,τ contain (if the tail is choosen properly) the non degenerate potentials for

which theorem 2.1 below holds and, as mentioned in the introduction, satisfy three generic-

ity properties, as shown in theorem 3.1 below (compare, also, remark 3.1). We remark that

such properties hold for any tail τ , which can be chosen differently according to the particular
problem at hand.

We are ready to the state the main result of this paper.

Theorem 2.1. Let n > 2, s > 0, 0 < δ, γ 6 1 such that

γδ <
29

sn
e−n

2/2. (34)

consider a Hamiltonian Hε(y, x) = h(y)+ ε f (x) as in (1) with h KAM non-degenerate

(de�nition 2.1) and f purely positional (i.e., independent of the y-variable) with

‖ f ‖s = 1. (35)

Assume that the potential is non-degenerate in the sense that

f ∈ Hs,τo(δ) (36)

with tail function

τo(δ; γ) :=
4

s
log

(

e+
29

snγδ

)

. (37)

Let K2 > 3K1 > 6 satisfy

K2ν−3n−3
2 > es+522n+11n2n

L

s2n+1

1

γδ
, for some ν >

3

2
n+ 2, (38)

L being de�ned in (14). Set

rk :=
√
ε
Kν
2

L|k| . (39)

Finally, assume that

ε 6
(Lr)2

K2ν
2

. (40)

Then, for any k ∈ Gn1,K1 with τo(δ; γ) 6 |k|1 6 K1, there exists θ
(k) ∈ [0, 2π) and a symplectic

change of variables de�ned in the neighbourhood of the simple resonance D1,k × Tn, with D1,k

de�ned in (24), such that the following holds:

Ψk :D
1,k
rk/2

× T
n
s(1−1/K2)

2 → D1,k
rk

× T
n
s(1−1/K2)

, (41)

and

(42)
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where Gk(y, ·) ∈ B1
2 for every y ∈ D1,k

rk/2
and

sup
D
1,k
rk/2

|hk − h| 6 γδε, ||Gk||D1,k ,rk/2,2
6 γ . (43)

Finally,

pZkf
k
= 0 and ||fk||D1,k ,rk/2,s(1−1/K2)/2

6
210nn3n

s3nδ
e−K2s/8. (44)

The proof of this theorem is given in section 7.

Remark 2.2.

(a) Morse structure of the ‘secular’ potentials.

Recalling (31), estimate (43) means

sup
y∈D1,k

rk/2

∑

j∈Z
|Gkj(y)| e2| j| 6 γ . (45)

This implies that for every y ∈ D1,k the 2π-periodic real function

θ 7→ cos(θ + θ(k))+ Gk(y, θ) (46)

behaves like a cosine in the sense that it is a Morse function with only one maximum and

one minimum and no other critical points. To prove this, notice that by (45) we have

sup
y∈D1,k ,x∈T1

|∂θGk(y, θ)| 6 γ/e2, sup
y∈D1,k ,x∈T1

|∂2θθGk(y, θ)| 6 γ/e2.

Therefore, denoting by ψ(θ) the derivative of the function in (46), we have that ψ(θ) > 0

for θ ∈ (−θ(k) + θ∗ , π − θ(k) − θ∗) and ψ(θ) < 0 for θ ∈ (π − θ(k) + θ∗ , 2π − θ(k) − θ∗),
where θ∗ := arcsin(γ/e2). Moreover in the interval (−θ(k) − θ∗ ,−θ(k) + θ∗ ) the function

ψ(θ) has a zero and is strictly increasing since ψ′(θ) >
√

1− γ/e2 − γ/e2 = : c > 0.

Finally in the interval (π − θ(k) − θ∗ , π − θ(k) + θ∗) it has a zero and is strictly decreasing
since ψ′(θ) 6 −c < 0.

As a consequence the phase portrait of the effective Hamiltonian

hk(y)+ 2| fk|ε
(

cos(k · x+ θ(k))+ Gk(y, k · x)
)

(47)

and that of the Hamiltonian hk(y)+ 2| f k|ε cos(k · x+ θ(k)) are topologically equivalent.

(b) The ‘pendulum structure’ of the secular Hamiltonian.

The secular Hamiltonian (47) is an integrable system as it depends only on one angle.

Fix k ∈ Zn\{0}with gcd(k1, . . . , kn) = 1, then, there exists a matrixAk ∈ Matn×n(Z) such
that

Ak =

(

Âk

k

)

∈ Matn×n(Z), Âk ∈ Mat(n−1)×n(Z), det Ak = 1, |Âk|∞ 6 K∞,

(48)

where | · |∞, as usual, denotes sup-norm (of matrices or vectors). The existence of such a

matrix is guaranteed by an elementary result of linear algebra based on Bezout’s lemma

(for completeness, we include the proof in appendix A; see lemma A.1).

Let us perform the linear symplectic change of variables

Φk : (Y,X) 7→ (y, x) := (AT
kY,A

−1
k X), (49)
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which is generated by the generating function S(Y, x) :=Y · Akx. Note that Φk does not

mix actions with angles, its projection on the angles is a diffeomorphism of Tn onto Tn,

and, most relevantly, Xn = k · x is the ‘secular angle’.
In the (Y,X)-variables, the secular Hamiltonian in (47) takes the form

hk(Y)+ 2| fk|ε
(

cos(Xn + θ(k))+ Gk(AT
kY,Xn)

)

, with hk(Y) := hk(AT
kY).

(50)

Fix y0 ∈ D1,k on the exact resonance, namely ∂yh
k(y0) · k = 0. Let Y0 be such that

y0 = AT
kY0. We have

∂Ynh
k(Y0)

(48)
= ∂yh

k(AT
kY0) · k = ∂yh

k(y0) · k = 0, ∂2YnYnh
k(Y0) = ∂2yyh

k(y0)k · k,

where ∂2yyh
k is the Hessian matrix of hk. By Taylor expansion the secular Hamiltonian in

(50) takes the form (up to an addictive constant)

1

2

(

∂2yyh
k(y0)k · k

)

(Yn − Y0n)
2
+ O

(

(Yn − Y0n)
3
)

+ 2| fk|ε
(

cos(Xn + θ(k))+ Gk(AT
kY,Xn)

)

.

(51)

In particular if the Hamiltonian h is convex the coef�cient ∂2yyh
k(y0)k · k = :mk is bounded

away from zero (for ε small enough independently of k) and the phase portrait of the

secular Hamiltonian in (51) is topologically equivalent, for |Yn − Y0n| small (in the region

D1,k × Tn in the original variables), to that of the pendulum

1

2
mk(Yn − Y0n)

2
+ 2| fk|ε cos(Xn + θ(k)).

(c) The y-dependent case.

Let us brie�y discuss the case in which f depends explicitly also on the actions y. First

we note that it can happen that, even if the potential f (y, x) satis�es the non-degeneracy

condition given in de�nition 2.2 at some point y0, there is no neighborhoud of y0 on which

the non-degeneracy condition holds. For example consider the potential

f (y, x) = f (y1, x) :=
1

2

∑

k 6=0

(

|k|−n1 − y1

r

)

e−|k|1s eik·x.

We have that ‖ f ‖D,r,s := supDr |f|s = 1 with D = {0} and

f (0, ·) ∈ Hs,0(1/2).

However, f k(r j
−n) = 0 for every |k| = j; in particular for every odd number j = 2h+ 1,

h > 1 and k := (h+ 1, h, 0, . . . , 0) ∈ Gn1 . Then for every δ > 0, tail function τ > 0 and

odd j > 3, we have

f (r j−n, ·) /∈ Hs,τ (δ).

However, one can prove that the non-degeneracy condition holds in a set of large measure.

In particular, we will prove that given µ > 0, if for a certain point y0 ∈ D the potential

f (y0, ·) ∈ Hs,τ∗ (δ) for a suitable τ ∗ = τ ∗(µ) and |k| > τ ∗(µ), then (42)–(44) holds (with

f k = f k(y) and for a suitable phase θ(k) = θ(k)(y)) for every y ∈ Br/2e(y0) up to a set of

relative measure smaller that µ. The precise statement is given in theorem 8.2, section 8.
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(d) On the choice of norms.

The space of functions f :Tn
s → Cm endowedwith the ℓ1-Fourier norm || · ||s is a Banach

algebra,while { f :Tn
s → Cm s.t. ‖ f ‖s <∞} is just a Banach space (not a Banach algebra).

However, the norm ‖ · ‖s is particularly suited to describe the space of potentials as a

probability space (see next section).

Of course, the norms ‖ · ‖s and || · ||s are not equivalent and, in general, as it is easy to

check, one has:

‖ f ‖r,s 6 || f ||r,s 6 (cothn(σ/2)− 1)‖ f ‖r,s+σ 6 (2n/σ)n‖ f ‖r,s+σ. (52)

3. The generic class Hs,τ

Here we discuss some properties of the classes Hs,τ of non-degenerate potentials introduced

in de�nition 2.2.

To a given f ∈ Bn
s and k ∈ Gn1 we associate a periodic function Fk as follows

f ∈ B
n
s 7→ Fk ∈ B

1
|k|1s where Fk(θ) :=

∑

j∈Z\{0}
f jk e

i jθ , (53)

( f jk being the Fourier coef�cient of f with Fourier index jk ∈ Zn), and notice that any f ∈ Bn
s

can be uniquely written as:

(54)

Notice also that, if k ∈ Gn1 and || f ||r,s <∞, then

||Fk||r,|k|1s 6 || f ||r,s. (55)

Next, we introduce a probability measure on the unit ball in Bn
s . Denote by ℓ

∞(Zn
⋆) the Banach

space of complex sequences (over Zn
⋆) given by

ℓ∞(Zn
⋆) :=

{

z ∈ C
Z
n
⋆ s.t. zk 6= 0 and |z|∞ := sup

k∈Zn⋆
|zk| < +∞

}

. (56)

Then, the map

j : f ∈ B
n
s →

{

fk e
|k|1s
}

k∈Zn⋆
∈ ℓ∞(Zn

⋆) (57)

is an isomorphism of Banach spaces, which allows to identify functions in Bn
s with points in

ℓ∞(Zn
⋆) and the Borellians of B

n
s with those of ℓ

∞(Zn
⋆); recall that since the functions in B

n
s are

real-analytic one has the reality condition fk = f̄ −k..
Denote by B1 the closed ball of radius one in B

n
s and by B the Borellians in B1.

On B1 we can introduce the following natural (product) probability measure. Consider,

�rst, the probability measure given by the normalized Lebesgue-product measure on the

unit closed ball of ℓ∞(Zn
⋆), namely, the unique probability measure µ on the Borellians of

{z ∈ ℓ∞(Zn
⋆) : |z|∞ 6 1} such that, given Lebesgue measurable sets Ak in the unit complex

disk Ak ⊆ D := {w ∈ C : |w| 6 1} with Ak 6= D only for �nitely many k, one has
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µ





∏

k∈Zn⋆

Ak



 =
∏

{k∈Zn⋆ :Ak 6=D}

1

π
meas(Ak)

where ‘meas’ denotes the Lebesgue measure on the unit complex disk D. Then, the isometry j

in (57) naturally induces a probability measure µs on the Borellians B, so that µs(B1) = 1.

Remark 3.1.

(a) Since f ∈ Bn
s , one has that | fk| 6 ‖ f ‖s e−|k|1s for all k’s and (32) says that, when k is a

generator of maximal 1d-lattices (later corresponding to simple resonances), the k-Fourier

coef�cient does not vanish and is controlled in a quantitiveway from below: |k|−n1 is a suit-

able weight (needed in the proof of theorem 3.1 below), while δ is any number satis�ying

inf
|k|1>τ (δ)

| fk||k|n1 e|k|1s > δ > 0 . (58)

(b) It is easy to construct functions inHs,τ (δ). For example let

f (x) := 2δ
∑

k∈Gn
1

|k|−n1 e−|k|1s cos(k · x) , (59)

which has Fourier coef�cients

fk =

{

δ|k|−n1 e−|k|1s, if ±k ∈ Gn1
0, otherwise

and 1d-Fourier projections

Fk(θ) = δ|k|−n1 e−|k|1s cos θ.

Then, f ∈ Hs,0(δ) and, also, f ∈ Hs,τ (δ) for any choice of tail function τ (δ).

Recall that a Borel set P of a Banach space X is called prevalent if there exists a compactly

supported probability measure ν on the Borellians of X such that ν(x+ P) = 1 for all x ∈ X;

compare, e.g., [20] or [21].

Theorem 3.1 (Properties of Hs,τ ). Let s > 0 and τ be a tail function. Then:

(a) The setHs,τ ⊆ Bn
s contains an open dense set.

(b) Hs,τ ∩ B1 ∈ B and µs(Hs,τ ∩ B1) = 1.

(c) Hs,τ is a prevalent set.

Proof.

(a) Hs,τ contains an open subset H′
s,τ which is dense in the unit ball of Bn

s .

Let us de�ne H′
s,τ as Hs,τ but with the difference that (32) is replaced by the stronger

condition

∃δ > 0 s.t. | fk| > δ e−|k|1s, ∀ k ∈ Gn1 , |k|1 > τ (δ) ; (60)

(note, however, that µs(H′
s) = 0).

Let us �rst prove thatH′
s,τ is open. Let f ∈ H′

s,τ .We have to show that there existsρ > 0

such that if ‖g‖s < ρ, then f + g ∈ H′
s,τ . Fix δ > 0 such that (60) holds and, by continuity

of τ (δ), choose ρ < δ small enough such that [τ (δ)] > τ (δ′)− 1, where δ′ := δ − ρ and

[·] denotes integer part. Then, since τ (δ) is not increasing, it is immediate to verify that

|k|1 > τ (δ) ⇐⇒ |k|1 > τ (δ′). Moreover
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| fk + gk|e|k|1s > | fk|e|k|1s − ‖g‖s > δ − ρ = δ′, ∀ k ∈ Gn1 , |k|1 > τ (δ′),

namely f + g satis�es (60) (with δ′ instead of δ).
Let us now show that H′

s,τ is dense in the unit ball of Bn
s . Take f in the unit ball of Bn

s

and 0 < λ < 1. We have to �nd f̃ ∈ H′
s,τ with ‖ f̃ − f ‖s 6 λ. Let δ :=λ/4 and denote by

f k and f̃ k (to be de�ned) be the Fourier coef�cients of, respectively, f and f̃ . We, then,

let f̃ k = fk unless k ∈ Gn1 , |k|1 > τ (δ) and | fk|e|k|1s < δ, in which case, f̃ k = δ e−|k|1s. It
is, now, easy to check that f̃ ∈ H′

s and is λ-close to f .

(b) Hs,τ ∩ B1 ∈ B and µs(Hs,τ ∩ B1) = 1

We shall prove that, for every δ > 0, the measure of the sets of potentials f that do not

satisfy (32) is O(δ2), the result will follow letting δ→ 0.

By the identi�cation (57), the measure of the set of potentials f that do not satisfy (32)

with a given δ is bounded by

δ2
∑

k∈Zn
|k|−2n

1 . (61)

(c) Hs,τ is prevalent.

Consider the following compact subset of ℓ∞(Zn
⋆): let

K :=
{

z = {zk}k∈Zn⋆ : zk ∈ D1/|k|1
}

, where D1/|k|1 := {w ∈ C : |w| 6 1/|k|1}, and let

ν be the unique probability measure supported on K such that, given Lebesgue

measurable sets Ak ⊆ D1/|k|1 , with Ak 6= D1/|k|1 only for �nitely many k, one has

ν





∏

k∈Zn⋆

Ak



 :=
∏

{k∈Zn⋆ :Ak 6=D1/|k|1}

|k|21
π

meas(Ak).

The isometry js in (57) naturally induces a probability measure νs on Bn
s with support

in the compact set Ks := j−1
s K. Reasoning as in the proof of µs(Hs,τ ) = 1, one can show

that νs(Hs,δ) > 1− const δ2. It is also easy to check that, for every g ∈ Bn
s , the translated

setHs,δ + g satis�es νs(Hs,δ + g) > νs(Hs,δ). Thus, one gets νs(Hs,τ + g) = νs(Hs,τ ) = 1,

∀ g ∈ Bn
s , which means thatHs,τ is prevalent. �

Remark 3.2. As mentioned above, one could impose the condition | fk| > δ|k|−n̄1 e−|k|1s in
(32). Then (61) would become δ2

∑

k∈Zn |k|−2n̄
1 , which is still �ne if n̄ > n/2.

4. Normal form lemma

In this section we describe an analytic normal form lemma for nearly-integrable Hamilto-

nians H(y, x) = h(y)+ f (y, x), which allows to average out non-resonant Fourier modes of

the perturbation f on suitable non-resonant regions, and allows for ‘very small’ analyticity

loss in the angle variables, a fact, which will be crucial in our applications. In fact, the main

point of the following normal form lemma is that the new averaged Hamiltonian is de�ned,

in the fast variable (angle) domain, in a region almost equal to the original domain, ‘almost

equal’ meaning a complex strip of width s(1− 1/K), if s is the width of the initial angle

analyticity.

We recall ([11, 29]) that, given an integrable Hamiltonian h(y), positive numbers α,K and

a lattice Λ ⊂ Zn, a (real or complex) domainU is (α,K) non-resonant moduloΛ (with respect

to h) if

|h′(y) · k| > α , ∀ y ∈ U, ∀ k ∈ Z
n \Λ, |k|1 6 K. (62)
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We need also the following notations. Given f (y, x) =
∑

k∈Zn fk(y)e
ik·x and a sublattice Λ of

Zn, we denote

pΛ f :=
∑

k∈Λ
fk(y)e

ik·x, p⊥Λ f :=
∑

k/∈Λ
fk(y)e

ik·x. (63)

Notice that:

|| pΛ f ||r,s, || p⊥Λ f ||r,s 6 || f ||r,s. (64)

Given N > 0, we let:

TN f (y, x) :=
∑

|k|16N

fk(y)e
ik·x, T⊥

N f (y, x) :=
∑

|k|1>N
fk(y)e

ik·x. (65)

Note that pΛ and TN commute and that

||TN f ||r,s, ||T⊥
N f ||r,s 6 || f ||r,s, (66)

||T⊥
N f ||r,s−σ 6 e−(N+1)σ|| f ||r,s, 0 < σ < s. (67)

Proposition 4.1 (Normal form with ‘small’ analyticity loss). Let r, s,α > 0, K ∈ N,

K > 2, D ⊆ Rn, and let Λ be a lattice of Zn. Let

H(y, x) = h(y)+ f (y, x) (68)

be real-analytic on Dr × Tn
s with || f ||r,s <∞. Assume that Dr is (α,K) non-resonant modulo Λ

and that

ϑ⋆ :=
211K2

αrs
|| f ||r,s < 1. (69)

Then, there exists a real-analytic symplectic change of variables

Ψ : (y′, x′) ∈ Dr⋆ × T
n
s⋆

7→ (y, x) ∈ Dr × T
n
s with r⋆ := r/2, s⋆ := s(1− 1/K) (70)

satisfying

|y− y′|1 6
ϑ⋆
27K

r, max
16i6n

|xi − x′i| 6
ϑ⋆

16K2
s, (71)

and such that

H ◦Ψ = h+ f ♭ + f⋆, f ♭ := pΛ f + T⊥
K p⊥Λ f (72)

with

|| f⋆||r⋆,s⋆ 6
1

K
ϑ⋆|| f ||r,s, ||TK p⊥Λ f⋆||r⋆,s⋆ 6 (ϑ⋆/8)

K 8

eK
|| f ||r,s. (73)

Moreover, re-writing (72) as

H ◦Ψ = h+ g+ f⋆⋆ where pΛg = g, pΛ f⋆⋆ = 0, (74)

one has

||g− pΛ f ||r⋆ ,s⋆ 6
1

K
ϑ⋆|| f ||r,s, || f⋆⋆||r⋆,s/2 6 2e−(K−2)̄s|| f ||r,s, (75)
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where

s̄ := min

{

s

2
, log

8

ϑ⋆

}

. (76)

Remark 4.1.

(a) The ‘novelty’ of this lemma is that the bounds in (73) and the �rst one in (75) hold on the

large angle domain Tn
s⋆
with s⋆ = s(1− 1/K). In particular the �rst estimate in (73) (or,

equivalently, in (75)) will be important in our analysis in order to obtain (150), (153) and,

therefore, (159), (166) and �nally (171), which is the key to prove (43) in theorem 2.1.

The drawback of the gain in angle-analyticity strip is that the power of K in the smallness

condition (69) is not optimal: for example in [11] the power of K is one (but s⋆ = s/6,
which would not work in our applications).

(b) Having information on non-resonant Fourier modes up to order K, the best one can do is

to average out the non-resonant Fourier modes up to order K, namely, to ‘kill’ the term

TK p
⊥
Λ f of the Fourier expansion of the perturbation. This explains the ‘�at’ term f ♭ =

pΛ f + T⊥
K p⊥Λ f surviving in (72) and which cannot be removed in general. Now, think of

the remainder term f ⋆ as

f⋆ = pΛ f⋆ +
(

T⊥
K p⊥Λ f⋆ + TK p

⊥
Λ f⋆
)

;

then, pΛ f ⋆ is a (ϑ⋆|| f ||r,s/K)-perturbation of the part in normal form (i.e., with Fourier

modes inΛ), while T⊥
K p⊥Λ f⋆ is, by (67), a term exponentially small withK (see also below)

and TK p
⊥
Λ f⋆ is a very small remainder bounded by 8(ϑ⋆/8)

K|| f ||r,s/eK.
(c) We note that (74) follows from (72). Indeed we take

g = pΛ f + pΛ f⋆, f⋆⋆ = T⊥
K p⊥Λ f + p⊥Λ f⋆ = TK p

⊥
Λ f⋆ + T⊥

K p⊥Λ( f⋆ + f ).

Then the �rst estimate in (75) follows by the �rst bound in (73) and (64). Regarding the

second estimate in (75), we �rst note by (73) and (67), (usedwith f , r, s, σ andN, replaced,
respectively, by f ⋆, r⋆, s⋆,

s
2
− s

K
and K, so that s⋆ − σ = s/2 and e−(K+1)σ 6 e−(K−2)s/2)

||T⊥
K f⋆||r⋆ ,s/2 = ||T⊥

K f⋆||r⋆ ,s⋆−σ 6 e−(K+1)σ|| f⋆||r⋆,s⋆ 6 e−(K−2)s/2ϑ⋆|| f ||r,s/K.

By (64), (73) and (67) we get

|| f⋆⋆||r⋆,s/2 6 ||TK p⊥Λ f⋆||r⋆ ,s/2 + ||T⊥
K f⋆||r⋆ ,s/2 + ||T⊥

K f ||r⋆,s/2

6 (ϑ⋆/8)
K 8

eK
|| f ||r,s + e−(K−2)s/2(ϑ⋆/K + e−3s/2)|| f ||r,s

6 2e−(K−2)̄s|| f ||r,s.

(d) Let us compare our results with more standard formulations, such as the normal form

lemma in section 2 of [11]. In that formulation, imposing the weaker smallness condition

|| f ||r,s 6 const αr/K, the normal form Hamiltonian writes h+ G+ f with f exponentially

small (of order || f ||r,se−Ks/6) and, regarding G one knows that

||g− TK pΛ f ||r/2,s/6 6 const .
K

αr
|| f ||2r,s. (77)
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For our purposes we need to prove that, when k ∈ Zn
⋆, |k|1 6 K1 6 K (k ∈ Zn

K1
indexes the

simple resonance we want to consider while l ∈ Zn
K indexes the second order resonance

beyond k) and | fk|/|| f ||r,s > δ|k|−n1 e−|k|1s, the quantity

1

| fk|
sup
y∈Dr/2

|gk(y)− fk|

is small. Indeed by (75) we have

1

| fk|
sup
y∈Dr/2

|gk(y)− fk| 6
ϑ⋆
K
|| f ||r,s

e−|k|1s⋆

| fk|
6
ϑ⋆
K

|k|n1 e(s−s⋆)|k|1
δ

=
ϑ⋆
K

|k|n1 es|k|1/K
δ

6
ϑ⋆
K

es
Kn
1

δ
, (78)

which is small when

K1 ≪
(

αrsδ

K|| f ||r,s

)1/n

. (79)

Consider, for example, the function f = ε f̂ with ε small and f̂ de�ned in (59). We have

that || f ||r,s = cδε, for a suitable constant c > 0. In this case (79) writes

K1 ≪
(αrs

Kε

)1/n

. (80)

On the other hand by estimate (77) one only have

1

| fk|
sup
y∈Dr/2

|gk(y)− fk| 6 const .
Kε

αr
|k|n1 e|k|1s e−|k|1s/6 6 const .

εK

αr
Kn
0 e

5
6K0s,

which is small only for

K1 ≪
6

5s
log

αr

Kε
, (81)

that is a considerably stronger bound than the one in (80).

Since we are considering simple resonances indexed by |k|1 6 K1, the non resonant

region will be non-resonant only up to order K1; therefore we have that the perturbation,

after normal form in the non-resonant region, will be of magnitude

εe−K1s/6 ≫ ε(Kε/αr)1/5,

when the bound (81) applies. This estimate is very bad. On the other hand, in our case,

the weaker bound (80) applies and we obtain that the perturbation is exponentially small.

Next, let us recall a techincal lemma from [11]. Given a function φ we denote by Xtφ the

Hamiltonian �ow at time t generated by φ and by ‘ad’ the linear operator

u 7→ adφu = {u,φ} :=
n
∑

i=1

(uxiφyi − uyiφxi )

and adℓ its iterates:

ad0φu := u, adℓφu := {adℓ−1
φ u,φ}, ℓ > 1,
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(as standard, {·, ·} denotes Poisson bracket).
Recall the identity (‘Lie series expansion’)

u ◦ X1
φ =

∑

ℓ>0

1

ℓ!
adℓφu =

∞
∑

ℓ=0

∂ℓt (u ◦ Xtφ)
ℓ!

|t=0, (82)

valid for analytic functions and small φ.

Lemma 4.1 (LemmaB.3 of [11]). For 0 < ρ < r, 0 < σ < s, D ⊆ Rn

sup
y∈Dr

∑

16i6n

||∂xiφ(y, ·)||s−σ 6
1

eσ
||φ||r,s, sup

y∈Dr−ρ
max
16i6n

||∂yiφ(y, ·)||s 6
1

ρ
||φ||r,s,

By lemma 4.1 we get (see also lemma B.4 of [11])

Lemma 4.2. For 0 < ρ < r̄ := {r0, r}, 0 < σ < s̄ := {s0, s},

||{ f , g}||̄r−ρ,̄s−σ 6
1

e

(

1

(r0 − r̄ + ρ)(s− s̄+ σ)
+

1

(r − r̄ + ρ)(s0 − s̄+ σ)

)

|| f ||r0 ,s0 ||g||r,s. (83)

Summing the Lie series in (82) (see lemma B5 of [11]) we get, also,

Lemma 4.3. Let 0 < ρ < r0 and 0 < σ < s0. Assume that

ϑ̂ :=
4e||φ||r0 ,s0
ρσ

6 1. (84)

Then for every ρ < r′ 6 r0, σ < s′ 6 s0, the time-1-�ow X1
φ of vector �eld Xφ de�ne a good

canonical transformation

X1
φ :Dr′−ρ × T

n
s′−σ → Dr′−ρ/2 × T

n
s′−σ/2 (85)

satisfying

|y− y′|1 6 ϑ̂
ρ

4e
, max

16i6n
|xi − x′i| 6 ϑ̂

σ

4
(86)

Moreover let r > ρ, s > σ and set

r̄ := min{r0, r}, s̄ := min{s0, s}.

Then for any j > 0

||u ◦ X1
φ −

∑

h6 j

adhφu||̄r−ρ,̄s−σ 6
∑

h> j

1

h!
||adhφu||̄r−ρ,̄s−σ

6 2(ϑ̂/2) j||{u,φ}||̄r−ρ/2,̄s−σ/2 (87)
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for every function u with ||u||r,s <∞.

In particular when r 6 r0, s 6 s0

||u ◦ X1
φ − u||r−ρ,s−σ 6

∑

h>1

1

h!
||adhφu||r−ρ,s−σ 6 2ϑ̂||u||r,s, (88)

||u ◦ X1
φ − u− {u,φ}||r−ρ,s−σ 6 ϑ̂2||u||r,s, (89)

Proof. We �rst note that by lemma 4.1 (applied with r and s replaced, respectively, by r0 and

s0) for every (y, x) ∈ Dr0−ρ × Tn
s0−σ we have

|∂xφ(y, x)|1 6
1

eσ
||φ||r0 ,s0 =

ϑ̂ρ

4e
6

ρ

4e
, max

16i6n
|∂yiφ(y, x)| 6

1

ρ
||φ||r0 ,s0 =

ϑ̂σ

4
6
σ

4
.

Then (85) holds.

For h > 1, set for brevity

|| · ||i := || · ||̄r− ρ
2−iρ̃,̄s−

σ
2−iσ̃, 0 6 i 6 h, ρ̃ :=

ρ

2h
, σ̃ :=

σ

2h
.

We get

||adiφ{u,φ}||i
(83)

6
1

e

(

1
˜
ρ(s0 − s̄+ iσ̃ + σ/2)

+
1

σ̃(r0 − r̄ + iρ̃+ ρ/2)

)

||φ||r0 ,s0 ||adi−1
φ {u,φ}||i−1

6
8h2

eρσ

1

h+ i
||φ||r0 ,s0 ||adi−1

φ {u,φ}||i−1,

and, iterating,

||adhφ{u,φ}||h 6
8h2

eρσ

h!

(2h)!
||φ||r0 ,s0 ||{u,φ}||r−ρ/2,s−σ/2 6 h!(ϑ̂/2)h||{u,φ}||r−ρ/2,s−σ/2

by Stirling’s formula. Then

∑

h> j

1

(h+ 1)!
||adh+1

φ u||̄r−ρ,̄s−σ 6
∑

h> j

1

h+ 1
(ϑ̂/2)h||{u,φ}||r−ρ/2,s−σ/2

proving (87) in view of (84).

Finally (88) and (89) follows by (87) and since ||{u,φ}||̄r−ρ/2,̄s−σ/2 6 2 e−1ϑ̂||u||r,s by (83). �

Given K > 2 and a lattice Λ, recall the de�nition of f ♭ in (72) and de�ne

f K := f − f ♭ = TK p
⊥
Λ f ,

so that we have the decomposition (valid for any f ):

f = f ♭ + f K , f ♭ :=PΛ f + T⊥
K p⊥Λ f , f K :=TK p

⊥
Λ f . (90)

Lemma 4.4. Let 0 < ρ < r and 0 < σ < s. Consider a real-analytic Hamiltonian

H = H(y, x) = h(y)+ f (y, x) analytic on Dr × T
n
s . (91)
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Suppose that Dr is (α,K) non-resonant modulo Λ for h (with K > 2). Assume that

ϑ̌ :=
4e

αρσ
|| f K||r,s 6 1. (92)

Then there exists a real-analytic symplectic change of coordinates

Ψ :=X1
φ :Dr+ × T

n
s+

∋ (y′, x′) → (y, x) ∈ Dr × T
n
s , r+ := r − ρ, s+ := s− σ,

generated by a function φ = φK = TK p
⊥
Λφ with

||φ||r,s 6 || f K ||r,s/α, (93)

satisfying

|y− y′|1 6 ϑ̌
ρ

4e
, max

16i6n
|xi − x′i| 6 ϑ̌

σ

4
, (94)

such that

H ◦Ψ = h(y′)+ f+(y
′, x′), f+ := f ♭ + f⋆ (95)

with

|| f⋆||r+ ,s+ 6 4ϑ̌|| f ||r,s. (96)

Notice that, by (90) and (96), one has

f K+ = f K⋆ , || f+||r+ ,s+ 6 || f⋆||r+ ,s+ + || f ||r,s 6 (1+ 4ϑ̌)|| f ||r,s . (97)

Notice also that

f ♭+ − f ♭
(95)
= f ♭⋆ ⇒ || f ♭+ − f ♭||r+ ,s+ 6 || f⋆||r+ .s+

(96)

6 4ϑ̌|| f ||r,s . (98)

Proof. Let us de�ne

φ = φ(y, x) :=
∑

|m|6K,m/∈Λ

fm(y)

ih′(y) · m eim·x,

and note that φ solves the homological equation

{h,φ}+ f K = 0. (99)

SinceDr is (α,K) non-resonantmoduloΛ the estimate (93) holds. We now use lemma 4.3 with

r0 and s0 replaced, respectively, by r and s. With these choices it is ϑ̂ = ϑ̌, and, by (92) ϑ̌ 6 1.

Thus, (84) holds and lemma 4.3 applies. (94) follows by (86). We have

H ◦Ψ = h+ f ♭ + f⋆

with

f⋆ = (h ◦Ψ− h− {h,φ})+ ( f ◦Ψ− f ).

Since

h ◦Ψ− h− {h,φ} =
∑

ℓ>2

1

ℓ!
adℓφh =

∑

ℓ>1

1

(ℓ+ 1)!
adℓφ{h,φ}

(99)
= −

∑

ℓ>1

1

(ℓ+ 1)!
adℓφ f

K ,
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we have

||h ◦Ψ− h− {h,φ}||r+,s+ 6
∑

ℓ>1

1

ℓ!
||adℓφ f K||r+ ,s+

(88)

6 2ϑ̌|| f K ||r,s 6 2ϑ̌|| f ||r,s.

Finally, applying again lemma 4.3 with u = f , by (88), we get || f ◦Ψ− f ||r+ ,s+ 6 2ϑ̌|| f ||r,s,
proving (96) and concluding the proof of lemma 4.4. �

As a preliminary step we apply lemma 4.4 to the Hamiltonian H = h+ f in (68) with

ρ = r/4 and σ = s/2K. By (64), (66), (90) and (69) hypothesis (92) holds, namely

ϑ−1 :=
25eK

αrs
|| f K ||r,s 6 1. (100)

Then there exists a real-analytic symplectic change of coordinates

Ψ−1 :Dr0 × T
n
s0
∋ (y(0), x(0)) → (y, x) ∈ Dr × T

n
s , r0 :=

3

4
r, s0 :=

(

1− 1

2K

)

s,

satisfying

|y− y(0)|1 6 ϑ−1

r

16e
, max

16i6n
|xi − x

(0)
i | 6 ϑ−1

s

8K
, (101)

such that

H ◦Ψ−1 = :H0 = h(y(0))+ f0(y
(0), x(0)), f0 = f ♭ + f⋆, f

♭ :=PΛ f + T⊥
K p⊥Λ f ,

(102)

with

|| f⋆||r0,s0 6 4ϑ−1|| f ||r,s. (103)

Recalling (90) and (102) we get

f K0 = f K⋆

and, by (103) and (100),

|| f K0 ||r0,s0 6 4ϑ−1|| f ||r,s 6
27eK

αrs
|| f ||2r,s. (104)

Then, setting

ϑ0 := δ|| f K0 ||r0,s0 with δ :=
25eK3

αrs
, (105)

we have

ϑ0 6

(

26eK2

αrs
|| f ||r,s

)2
(69)

6 (ϑ⋆/8)
2 6

1

26
. (106)

Finally, since f ♭0 − f ♭ = f ♭⋆ by (98) we get

|| f ♭0 − f ♭||r0,s0 6 4ϑ−1|| f ||r,s
(100)

6
27eK

αrs
|| f ||2r,s

(69)

6
1

4K
ϑ⋆|| f ||r,s. (107)
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The idea is to constructΨ by applying K times lemma 4.4.

Let

ρ :=
r

4K
, σ :=

s

2K2
,

ri :=
3

4
r − iρ, si :=

(

1− 1

2K

)

s− iσ, || · ||i := || · ||ri ,si , (108)

Fix 1 6 j 6 K and make the following inductive assumptions:

Assume that there exist, for 1 6 i 6 j, real-analytic symplectic transformations

Ψi−1 :=X1
φi−1

: Dri × T
n
si
∋ (y(i), x(i)) → (y(i−1), x(i−1)) ∈ Dri−1

× T
n
si−1

,

generated by a function φi−1 = φKi−1 with

||φi−1||i−1 6 || f Ki−1||i−1/α, (109)

satisfying

|y(i−1) − y(i)|1 6 ϑi−1

r

16eK
, max

16ℓ6n
|x(i−1)
ℓ − x

(i)
ℓ | 6 ϑi−1

s

8K2
, (110)

such that

Hi :=Hi−1 ◦Ψi−1 = : h+ fi = h+ f Ki + f ♭i (111)

satis�es, for 1 6 i 6 j, the estimates

ϑi 6

(

28K2|| f ||r,s
αrs

)i+1
(69)
=

(

ϑ⋆
8

)i+1

, || f ♭i − f ♭i−1||i 6
1

δ

(

ϑ⋆
8

)i+1

, (112)

where

ϑi := δ| f Ki |i. (113)

Let us �rst show that the inductive hypothesis is true for j = 1 (which implies i = 1). Indeed

by (106) we see that we can apply lemma 4.4 with f and ϑ̌ replaced, respectively, by f K0 and

ϑ0 = δ|| f K0 ||0. Thus, we obtain the existence ofΨ0 = X1
φ0
, generated by a functionφ0 = φK0 with

||φ0||r0,s0 6
1

α
|| f K0 ||r0,s0

(104)

6
27eK

α2rs
|| f ||2r,s, (114)

satisfying (109) and (110), so that (h+ f K0 ) ◦Ψ0 = : h+
˜

f 1 and, by (95) and (96),

|| f̃ 1||1 6 4ϑ0|| f K0 ||0
(106)

6
1

4
|| f K0 ||0

(104)

6
25eK

αrs
|| f ||2r,s; (115)

note that ( f K0 )
♭ = 0. We have that f1 = f̃ 1 + f ♭0 ◦Ψ0. Then, since ( f

♭
0 )
K = 0 and ( f ♭0 )

♭ = f ♭0 ,

one �nds

f K1 = f̃ K1 + ( f ♭0 ◦Ψ0 − f ♭0 )
K , f ♭1 − f ♭0 = f̃ ♭1 + ( f ♭0 ◦Ψ0 − f ♭0 )

♭. (116)

Write

f ♭0 ◦Ψ0 − f ♭0 = ( f ♭0 − f ♭) ◦Ψ0 − ( f ♭0 − f ♭)+ ( f ♭ ◦Ψ0 − f ♭ − { f ♭,φ0})+ { f ♭,φ0}.
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By (88) (with u, r and s replaced by f ♭0 − f ♭, r0 and s0) we have

||( f ♭0 − f ♭) ◦Ψ0 − ( f ♭0 − f ♭)||1 6 2ϑ0|| f ♭0 − f ♭||0 6
24eK

αrs
|| f ||2r,s

by (106) and (107). By (87) (with u, φ, j, r̄ and s̄ replaced, respectively, by f ♭, φ0, 1, r0 and s0)

|| f ♭ ◦Ψ0 − f ♭ − { f ♭,φ0}||1 6 2ϑ0||{ f ♭,φ0}||r0−ρ/2,s0−σ/2 6
29K3

α2r2s2
|| f ||3r,s

(69)

6
K

4αrs
|| f ||2r,s,

by (106), (114) and (83) (with f and g replaced by φ0 and f ♭). Analogously by (83) we get

||{ f ♭,φ0}||1 6
24K2

ers
||φ0||0 || f ||r,s

(114)

6
211K3

α2r2s2
|| f ||3r,s

(69)

6
K

αrs
|| f ||2r,s.

Summarising:

|| f ♭0 ◦Ψ0 − f ♭0 ||1 6
26K

αrs
|| f ||2r,s.

Then, by (115) and (116) we get

|| f K1 ||1 , || f ♭1 − f ♭0 ||1 6
27K

αrs
|| f ||2r,s (117)

checking (112) in the case j = i = 1.

Now take 2 6 j 6 K and assume that the inductive hypothesis holds true for 1 6 i 6 j and

let us prove that it holds also for i = j+ 1. By (112) and (69) we can apply lemma 4.4 (with

f and ϑ̌ replaced by f Kj and ϑ j). Thus, we obtain the existence of Ψ j = X1
φ j
, generated by a

function φ j = φKj with

||φ j|| j
(109)

6
1

α
|| f Kj || j

(113)
=

ϑ j

αδ
, (118)

so that (h+ f Kj ) ◦Ψ j = : h+ f̃ j+1 and, by (95) and (96),

|| f̃ j+1|| j+1 6 4ϑ j|| f Kj || j
(113)
=

4

δ
ϑ2j

(112)

6
4

δ
(ϑ⋆/8)

2 j+2
(69)

6
1

23 j−2δ
(ϑ⋆/8)

j+2 6
1

24δ
(ϑ⋆/8)

j+2,

(119)

since j > 2. We have that f j+1 = f̃ j+1 + f ♭j ◦Ψ j. Then (as above, ( f
♭
j )
K = 0 and ( f ♭j )

♭ = f ♭j )

f Kj+1 = f̃ Kj+1 + ( f ♭j ◦Ψ j − f ♭j )
K , f ♭j+1 − f ♭j = f̃ ♭j+1 + ( f ♭j ◦Ψ j − f ♭j )

♭.

(120)

Writing

f ♭j = f ♭ + ( f ♭0 − f ♭)+

j
∑

h=1

f ♭h − f ♭h−1
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we have

f ♭j ◦Ψ j − f ♭j = { f ♭,φ j}

+ f ♭ ◦Ψ j − f ♭ − { f ♭,φ j}

+ ( f ♭0 − f ♭) ◦Ψ j − ( f ♭0 − f ♭)

+

j
∑

i=1

(

( f ♭i − f ♭i−1) ◦Ψ j − ( f ♭i − f ♭i−1)
)

(121)

where Ψ j = X1
φ j
. By (83) (with f , g, r0 and s0 replaced, respectively, by φ j, f

♭, r j and s j) we

get, by (109) and (113),

||{ f ♭,φ j}|| j+1 6
24K2

ers
||φ j|| j|| f ||r,s 6

24K2ϑ j

eαrsδ
|| f ||r,s (69)=

1

e24δ
(ϑ⋆/8)ϑ j

(112)

6
1

e24δ
(ϑ⋆/8)

j+2

By (87) (with u, φ, j, r̄ and s̄ replaced, respectively, by f ♭, φ j, 1, r j and s j) reasoning as above

we get

|| f ♭ ◦Ψ j − f ♭ − { f ♭,φ j}|| j+1 6 ϑ j||{ f ♭,φ j}||r j−ρ/2,s j−σ/2 6
ϑ j

4eδ
(ϑ⋆/8)

j+2 6
1

26eδ
(ϑ⋆/8)

j+2

by (112) and (69). By (88) (with u, r and s replaced, respectively, by f ♭0 − f ♭, r j, s j) we have

||( f ♭0 − f ♭) ◦Ψ j − ( f ♭0 − f ♭)|| j+1 6 2ϑ j|| f ♭0 − f ♭|| j 6
28eK

αrs
|| f ||2r,sϑ j 6

1

4δ
(ϑ⋆/8)

j+2

by (107), (112), (105) and (69). Analogously, for 1 6 i 6 j, by (88) (with u replaced by

f ♭i − f ♭i−1)

||( f ♭i − f ♭i−1) ◦Ψ j − ( f ♭i − f ♭i−1)|| j+1 6 2ϑ j|| f ♭i − f ♭i−1|| j 6
2

δ
(ϑ⋆/8)

j+i+2

by (112). Then by (69)

||
j
∑

i=1

(

( f ♭i − f ♭i−1) ◦Ψ j − ( f ♭i − f ♭i−1)
)

|| j+1 6
2

7δ
(ϑ⋆/8)

j+2.

Whence:

|| f ♭j ◦Ψ j − f ♭j || j+1 6
4

7δ
(ϑ⋆/8)

j+2.

Then by (119) we get

|| f̃ j+1|| j+1 + || f ♭j ◦Ψ j − f ♭j || j+1 6
1

δ
(ϑ⋆/8)

j+2.

By (120) we get (112) with i = j+ 1. This completes the proof of the induction.

Now, we can conclude the proof of proposition 4.1. Set

Ψ :=Ψ−1 ◦Ψ0 ◦ · · · ◦ΨK−1.
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Notice that, by (108), rK = r/2 = r⋆ and sK = s(1− 1/K) = s⋆. By the induction, it is

H ◦Ψ = HK−1 ◦ΨK−1
(111)K
= h+ fK = : h+ f ♭ + f⋆, (122)

with f ♭ = pΛ f + T⊥
K p⊥Λ f (recall (72)). Note that by (112) and (106)

K
∑

i=1

ϑi−1 6
K
∑

i=1

(ϑ⋆/8)
i 6 ϑ⋆/7. (123)

Since (y′, x′) = (y(K), x(K)) by (101), (110) and triangular inequality we get

|y′ − y|1 6 |y− y(0)|1 +
K
∑

i=1

|y(i) − y(i−1)|1 6
rϑ−1

16e
+

r

16eK

K
∑

i=1

ϑi−1

(123)

6
r

16e

(

ϑ−1 +
ϑ⋆
7K

)

(100)

6
r

16e

(

ϑ⋆
8K

+
ϑ⋆
7K

)

,

then (71) follows (the estimate on the angle being analogous).

Since TKP
⊥
Λ f

♭ = ( f ♭)K = 0 (for any f , recall (90)) we have

||TKP⊥
Λ f⋆||r⋆,s⋆ = || f KK ||K

(113)
= δ−1ϑK

(112)

6 δ−1(ϑ⋆/8)
K+1

= (ϑ⋆/8)
K 8

eK
|| f ||r,s, (124)

proving the second estimates in (73).

Finally, (using that K > 2 and that ϑ⋆ 6 1)

| f⋆||r⋆ ,s⋆
(122)
= || fK − f ♭||K (90)

= || f KK + f ♭K − f ♭||K 6 || f KK ||K + || f ♭0 − f ♭||0 +
K
∑

i=1

|| f ♭i − f ♭i−1||i

(107),(112)

6 || f KK ||K +
1

4K
ϑ⋆|| f ||r,s +

1

δ

K
∑

i=1

(ϑ⋆/8)
i+1

(124),(123)

6 (ϑ⋆/8)
K 8

eK
|| f ||r,s +

1

4K
ϑ⋆|| f ||r,s +

ϑ2⋆
56δ
6

1

K
ϑ⋆|| f ||r,s,

which proves also the �rst estimate in (73). �

5. Geometry of resonances and proof of the covering lemma

We start by observing that from the de�nitions given in section 2 (in particular, (23) ÷ (28)),

it follows at once that

Ω
0 ∪ Ω

1 ∪ Ω
2 ⊃ BM(0) . (125)

Next, let us point out the non-resonance properties satis�ed by the frequencies in Ωi.

(a) If 0 6= |k|1 6 K1, then there exists k̄ ∈ Gn1,K1 and a 0 6= j ∈ Z such that k = j̄k and,

therefore,

ω ∈ Ω
0
=⇒ |ω · k| = | j‖ω · k̄| > |ω · k̄| > min

k∈Gn
1,K1

|ω · k| > α/2 . (126)
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(b) Let ω ∈ Ω1,k with k ∈ Gn1,K1 and let ℓ /∈ Zk, |ℓ|1 6 K2. Then, there exist j ∈ Z\{0} and

ℓ′ ∈ Gn1,K2 such that ℓ = jℓ′. Hence,

|ω · ℓ| = | j||ω · ℓ′| > |ω · ℓ′| = | (ω · k)(k · ℓ′)
|k|2 + p⊥k ω · ℓ′ |

> | p⊥k ω · ℓ′| − αK2

|k| >
3αK2

|k| − αK2

|k| =
2αK2

|k| . (127)

(c) It remains to evaluate the measure of Ω2. To do this, we �rst prove the following

Lemma 5.1. If ω ∈ Ω
2
k,ℓ with k ∈ Gn1,K1 , ℓ ∈ Gn1,K2 , ℓ /∈ Zk, then

dist(ω,Rk,ℓ) 6
√
10αK2|k||ℓ|. (128)

Moreover,

meas (Ω2
k,ℓ) 6 3 · 2nMn−2α2K2

|k| . (129)

Proof. Let v ∈ Rn be the projection of ω onto R⊥
k,ℓ, which is the plane generated by k and ℓ

(recall that, by hypothesis, k and ℓ are not parallel). Then,

dist (ω,Rk,ℓ) = dist (v,Rk,ℓ) = |v| (130)

and

|v · k| = |ω · k| < α, | p⊥k v · ℓ| = | p⊥k ω · ℓ| 6 3αK2/|k|. (131)

Set

h := p⊥k ℓ = ℓ− ℓ · k
|k|2 k. (132)

Then, v decomposes in a unique way as

v = ak+ bh

for suitable a, b ∈ R. By (131),

|a| < α

|k|2 , | p⊥k v · ℓ| = |bh · ℓ| 6 3αK2/|k|, (133)

and

|h · ℓ|(132)=
|ℓ|2|k|2 − (ℓ · k)2

|k|2 >
1

|k|2 ,

since |ℓ|2|k|2 − (ℓ · k)2 is a positive integer (recall, that k and ℓ are integer vectors not parallel).
Hence,

|b| 6 3αK2|k|, (134)

and (128) follows since |h| 6 |ℓ| and |v| =
√

a2|k|2 + b2|h|2 6
√
10αK2|k||ℓ|.
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To estimate the measure of Ω2
k,ℓ we write ω ∈ Rk,ℓ as ω = v + v⊥ with v⊥ in the orthogonal

complement of the plane generated by k and ℓ. Since |v⊥| 6 |ω| < M and v lies in a rectangle
of sizes of length 2α/|k|2 and 6αK2|k| (compare (133) and (134)) we �nd

meas (Ω2
k,ℓ) 6

2α

|k|2 (6αK2|k|)(2M)n−2
= 3 · 2nMn−2α2K2

|k| , (135)

�nishing the proof of lemma 5.1. �

From (28) and (135) it follows immediately (recall that n > 2) that

meas (Ω2) 6 cMn−2α2Kn+1
2 Kn−1

1 , (136)

for a suitable constant c depending only on n.

At this point the proof of proposition 2.1 follows at once: recalling the de�nition of L̄ in

de�nition 2.1, (125) implies (18), while (126), (127) and (136) imply immediately (19), (20)

and (21) respectively, proving proposition 2.1. �

6. Averaging theory

Putting together the normal form lemma (proposition 4.1) and the covering lemma

(proposition 2.1) there follows easily the following averaging theorem for non-resonant and

simply resonant zones.

Assumption A. Let r, s > 0 and let h be KAM non-degenerate (de�nition 2.1).

Let f :Dr × Tn
s → C be a holomorphic function with

‖ f ‖D,r,s = 1 (137)

and de�ne

Hε(y, x) := h(y)+ ε f (y, x) , (y, x) ∈ Dr × T
n
s , ε > 0 . (138)

Let K2, K1, ν and α be such that

K2 > 3K1 > 6, ν > n+ 2, α :=
√
εKν

2 . (139)

For k ∈ Gn1,K1 , de�ne

r0 :=
α

4LK1

=
√
ε
Kν
2

4LK1

; rk :=
α

L|k| =
√
ε
Kν
2

L|k| , (140)

ϑ̄ := 214n2n
L

s2n+1

1

K2ν−2n−3
2

; ϑ := 22n+10n2n
L

s2n+1

1

K2ν−2n−3
2

. (141)

For later use, we observe that (38) implies:

ϑ 6 γδ. (142)

Theorem 6.1. Let assumption A hold and assume that ε satis�es (40) and

K2ν−n−4
2 > 213+nnn

L es/2

sn+1
. (143)

Then the following holds.
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(a) There exists a symplectic change of variables

Ψ0 :D
0
r0/2

× T
n
s(1−1/K1)

2 →D0
r0
× T

n
s(1−1/K1)

, (144)

such that

Hε ◦Ψ0 = h(y)+ εgo(y)+ ε f o⋆⋆(y, x), 〈 f o⋆⋆〉 = 0, (145)

where 〈·〉 = p{0} denotes the average with respect to the angles x and

sup
D0
r0/2

|go − 〈 f 〉| 6 ϑ̄, || f o⋆⋆||D0 ,r0/2,s(1−1/K1)/2
6 2

(

2nK1

s

)n

e−(K1−3)s/2.

(146)

(b) D1 =
⋃

k∈Gn
1,K1

D1,k and for any k ∈ Gn1,K1 there exists a symplectic change of variables

Ψk :D
1,k
rk/2

× T
n
s⋆
→D1,k

rk
× T

n
s(1−1/K2)

, s⋆ := s(1− 1/K2)
2, (147)

such that

Hε ◦Ψk = h(y)+ εgk(y, x)+ ε f k⋆⋆(y, x) (148)

where

gk = pZkg
k, pZk f

k
⋆⋆ = 0, (149)

and

||gk − pZk f ||D1,k ,rk/2,s⋆
6 ϑ, || f k⋆⋆||D1,k ,rk/2,s(1−1/K2)/2

< 2

(

2nK2

s

)n

e−(K2−3)s/2.

(150)

Remark 6.1.

(a) The functions gk and pZk f depend, effectively, only on one angle θ ∈ T1: more precisely,

setting







Fkj(y) := f jk(y)

Gk
j(y) := gkjk(y)























Fk(y, θ) :=
∑

j∈Z, j6=0

Fkj(y)e
i jθ

Gk(y, θ) :=
∑

j∈Z, j6=0

Gk
j(y)e

i jθ

(151)

we have (recall (54))

( pZk f )(y, x) = Fk(y, k · x), gk(y, x) = gk0(y)+ Gk(y, k · x). (152)

From (150) and (55) (and recalling that f has zero average) it follows

sup
D
1,k
rk/2

|gk0| 6 ϑ, ||Gk − Fk||D1,k ,rk/2,|k|1s⋆ 6 ϑ. (153)
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The function θ ∈ T1
|k|1s⋆ →Gk(y, θ) is the ‘effective potential’ at the simple resonance k.

(b) We have assumed that ‖ f ‖r,s = 1 (see (137)), since this is the natural assumption in term

of genericity properties, however the normal form lemma is formulated in term of the

stronger norm || · ||. We need therefore to restrict slightly the angle-analyticity domain in

order to pass to the norm || · ||. This can be done through (52), which yields (for r = r0 or

r = rk and K = K1 or K2)

|| f ||r,s(1−1/K)

(52),(137)

6

(

2nK

s

)n

. (154)

(c) The choice of α in (139) is not restrictive (since it is done through the introduction of ν, a
new parameter) and it has the effect of making disappear ε from the smallness conditions

and from the de�nition of the smallness parameters ϑ̄ and ϑ.
According to the choice of K1 and K2 one will get different kind of statements.

Remark 6.2.

(a) Observe that r0 6 rk 6
√
εKν

2/L so that assumption (40) ensures the necessary condition:

r0 6 rk 6

√
εKν

2

L
6 r . (155)

(b) The hypotheses of the normal form lemma (proposition 4.1) concern a complex domain

Dr, while the non-resonance properties of the covering lemma (proposition 2.1) hold on

real domains. The following simple observation allows to use directly the covering lemma:

If a set D ⊆ R
n is (α,K) non-resonant modulo Λ for h, then the complex domain Dr

is (α− LrK,K) non-resonant modulo Λ, provided LrK < α, where L is the Lipschitz

constant of ω on the complex domain Dr.

Indeed, if y ∈ Dr there exists y0 ∈ D such that |y− y0| < r and |ω(y0) · k| > α for all

k ∈ Zn \Λ, |k|1 6 K. Thus, for such k’s, one has

|ω(y) · k| = |ω(y0) · k − (ω(y0)− ω(y)) · k| > |ω(y0) · k| − LrK > α− LrK .

�

Proof of theorem 6.1.

(a) By remark 6.2(b), (19) and the choice of r0 in (140), the domain D0
r0
is (α/4,K1) com-

pletely non-resonant (or non-resonant modulo the trivial lattice {0}) and, in view of (154)

and (143), one can apply proposition 4.1 toHε in (138) with f ,D, r,Λ,α,K and s replaced,

respectively, by ε f , D0, r0, {0}, α/4, K1 and s(1− 1/K1). Thus, using (140) and that

K1 > 2, one sees that

ϑ0 := 215
LK3

1 || f ||r0 ,s(1−1/K1)

K2ν
2 s(1− 1/K1)

(154),(139)
< 216

LK3
1

sK2ν
2

(

2nK1

s

)n

(139)

6 213nn
L

sn+1

1

K2ν−n−3
2

(143)

6 e−s/2 6 1, (156)
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showing that (69) holds (with ϑ⋆ replaced by ϑ0), together with (76) with s̄ replaced by

s(1− 1/K1)/2. Then, by (75) and (154), one has:

sup
D0
r0/2

|go − 〈 f 〉| 6 ϑ0
(

2nK1

s

)n (139)

6

(

nK2

s

)n

ϑ0
(156),(141)

6 ϑ̄,

|| f o⋆⋆||D0 ,r0/2,s(1−1/K1)/2
6 2 e−(K1−2)s(1−1/K1)/2

(

2nK1

s

)n

6 2

(

2nK1

s

)n

e−(K1−3)s/2,

from which (146) follows.

(b) By remark 6.2(b), the de�nition of rk in (140) and (20), the domain D1,k
rk

is

(2αK2/|k| − rkLK2,K2) = (αK2/|k|,K2)

non-resonant modulo Zk.

Using again (154), we can apply proposition 4.1 with f , D, r, Λ, α, K and s replaced,

respectively, by ε f , D1,k, rk, Zk, αK2/|k|, K2 and s(1− 1/K2). Then, since |k| 6 K1, one

�nds

ϑk := 211
LK2|k|2ε|| f ||rk ,s(1−1/K2)

α2s(1− 1/K2)

(139),(154)

6 2n+12nn
L

sn+1

1

K2ν−n−3
2

(143)

6 e−s/2 6 1, (157)

showing that (69) holds with ϑ⋆ replaced by ϑk, together with (76) with s̄ replaced by

s(1− 1/K2)/2. From (75), (157) and (154) there follows (150); indeed

||gk − pZk f ||D1,k ,rk/2,s⋆
6

1

K2

(

2nK2

s

)n

ϑk
(157),(141)

6 ϑ,

|| f k⋆⋆||D1,k ,rk/2,s(1−1/K2)/2
6 2 e−(K2−2)s(1−1/K2)/2

(

2nK2

s

)n

6 2

(

2nK2

s

)n

e−(K2−3)s/2. �

7. Proof of theorem 2.1

Under the above hypotheses, apart from a �nite number of simple resonances the effective

potential Gk at simple resonances is close to a (shifted) cosine:

Proposition 7.1. Let the assumptions of theorem 6.1 hold, let k ∈ Gn1,K1 and let G
k be as in

(151), (149). Then, if

|k|1 > 3/s , (158)

one has that

||Gk − T1F
k||D1,k ,rk/2,2

6 ϑ es+5 e−|k|1s + 28 e−2|k|1s . (159)

Proof. Recall (65) and observe that by de�nition of TN and T⊥
N ,

Gk − T1F
k
= T1G

k − T1F
k
+ T⊥

1 G
k . (160)
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Now, since 3/s < |k|1 6 K1 6 K2/3,

sup
D
1,k
rk/2

|Gk
±1 − Fk±1|

(153)

6 ϑe−|k|1s⋆
(147)

6 ϑe−|k|1s(1−2/K2) 6 ϑese−|k|1s

so that

||T1Gk − T1F
k||D1,k ,rk/2,2

= |Gk
1 − Fk1|e2 + |Gk

−1 − Fk−1| e2 < 2 e2 esϑ e−|k|1s .

(161)

Next, recalling (151), we have that

||T⊥
1 G

k||D1,k ,rk/2,2
=
∑

| j|>2
j∈Z

|g jk| e2| j| 6
∑

| j|>2

| f jk| e2| j| +
∑

| j|>2

|g jk − f jk| e2| j| . (162)

Let us estimate the two sums separately. Since ‖ f ‖s = 1, | fℓ| 6 e−|ℓ|1s so that | f jk| 6 e−| j||k|1s

and:

∑

| j|>2

| f jk|e2| j| 6
∑

| j|>2

e−| j||k|1s e2| j| = 2
e−2(|k|1s−2)

1− e−(|k|1s−2)
6 4e4 e−2(|k|1s) , (163)

where in the last inequality we used the assumption |k|1s > 3 > 2+ log 2.

Then (again, because |k|1s > 3), we see that

∑

| j|>2

|g jk − f jk|e2| j| =
∑

| j|>2

|g jk − f jk|e| j||k|1s⋆ e−| j||k|1s⋆+2| j|

(153)

6 sup
j>2

(

e− j(|k|1s⋆−2)
)

ϑ 6 e−2(|k|1s⋆−2) ϑ

6 e4e−2|k|1s(1−2/K2)ϑ 6 ϑ e2s+4e−2|k|1s. (164)

Putting (163) and (164) together, by (160) and (158), (159) follows. �

Proposition 7.2. Let the assumptions of theorem 6.1 hold; let s > 0, 0 < δ 6 1 and �x any

0 < γ 6 1. Assume (38) and (34). If k ∈ Gn1,K1 satis�es

|k|1 > τo(δ; γ) , (165)

(with τ o(δ; γ) de�ned in (37)) then,

||Gk − T1F
k||D1,k ,rk/2,2

6 γδk , (166)

where

δk := δ|k|−n1 e−|k|1s . (167)

Remark 7.1. Conditions (38) and (165) are stronger than the ones on ν in (139), (143) and

(158). In particular the assumptions of proposition 7.1 hold.
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Proof of proposition 7.2. As mentioned in the above remark, proposition 7.1 holds. Let

us estimate the two terms in (159) separately. Recalling the de�nition of ϑ in (141) (and that

|k|1 6 K1 6 K2/3), we �nd:

ϑ es+5 e−|k|1s (141)
= es+5 e−|k|1s22n+10n2n

L

s2n+1

1

K2ν−2n−3
2

= es+522n+11n2n
L

s2n+1

|k|n1
K2ν−2n−3
2

1

γδ

γδk
2

6 es+52n+11n2n
L

s2n+1

1

K2ν−3n−3
2

1

γδ

γδk
2

(38)

6
γδk
2
. (168)

To control second term in (159), one may use the following elementary calculus estimate

(whose simple proof is left to the reader):

a > 2 log 2, 0 < λ < e−a
2/2, t > 4 log λ−1 ⇒ e−tta < λ . (169)

Then, by (169) (with a, t and λ replaced, respectively, by n, s|k|1 and snγδ/29), and by (34)

and (165), one sees that

28 e−2|k|1s = (s|k|1)n e−|k|1s 29

snγδ
· γδk

2
<
γδk
2
. (170)

The claim, now, follows from (168) and (170). �

The quantity δk de�ned in (167) is a ‘Fourier-measure’ for the non-degeneracy of ana-

lytic potentials f holomorphic on Tn
s : indeed, such potentials will have, in general, Fourier

coef�cients fk ∼ e−s|k|1 .
We still need a lemma.

Lemma 7.1. Let s > 0, 0 < δ 6 1 and �x any 0 < γ 6 1. Let the assumptions of

theorem 6.1 hold; assume (38), (34) and that the positional potential f ∈ Hs,τo (δ) with the
tail function τo de�ned in (165). Then, for τo(δ; γ) 6 |k|1 6 K1 6 K2/3, one has

sup
y∈D1,k

rk/2

||Gk(y, ·)− T1F
k(·)||2

| fk|
6 γ (171)

and

1

| fk|
|| f k⋆⋆||D1,k ,rk/2,s(1−1/K2)/2

6
210nn3n

s3nδ
e−K2s/8. (172)

Proof. Since proposition 7.2 holds, by (166) and since f ∈ Hs,τo (δ) we get (171). By (150)

we get

1

| fk|
|| f k⋆⋆||D1,k ,rk/2,s(1−1/K2)/2

<
|k|n1 e|k|1s

δ
2

(

2nK2

s

)n

e−(K2−3)s/2

6
2n+1nn

snδ
Kn
1K

n
2 e

−(K2−2K1)s/2
(139)

6
nn

snδ
K2n
2 e−K2s/6.
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Then, observing that for α > 0 we have maxx>0x
αe−x = (α/e)α and

K2n
2 e−K2s/24 6

(

48n

se

)2n

6
210nn2n

sn
,

(172) follows. �
Finally, we may conclude the

Proof of theorem 2.1. Recalling the de�nition of TN given in (65), we have that

T1F
k(θ) = fke

iθ
+ f−ke

−iθ
= 2| fk| cos(θ + θ(k))

for a suitable constant θ(k). Recalling (148), (152) and setting

hk(y) := h(y)+ εgk0(y),

Gk(y, θ) :=
Gk(y, θ)− cos(θ + θ(k))

2| fk|
,

fk(y, x) :=
f k⋆⋆(y, θ)

2| fk|
,

we get (42). Finally theorem 2.1 follows from lemma 7.1, in particular (43) and (44) follow

from (153), (142), (171) and (172), respectively. �

8. General (y-dependent) potentials

In this section we discuss brie�y the generalization of the above analysis to the case of

potentials which depend also on the action variables y.

For k ∈ Zn\{0} let bk > 0 such that

∑

k 6=0

bk <∞.

For Z ⊆ Zn\{0} we set

bZ :=
∑

k∈Z
bk.

For de�niteness we will �x

bk := |k|− n
2 ,

but every other possible choice is �ne. As usual, we denote by Sn−1 the real unit ball in Rn:

Sn−1 = {y ∈ Rn| |y| = 1}.
Proposition 8.1. Let r,µ > 0 and Z ⊆ Zn\{0}. For any k ∈ Z let ϕk(y) be holomorphic
functions on the complex ball {y ∈ Cn : |y| < r} with

sup
|y|<r

|ϕk(y)| 6 1, and |ϕk(0)| > δ̂k > 0.

Then, for every y ∈ Rn with |y| < r/2e, up, at most, to a set of measure

1

2
meas n−1(S

n−1)bZ
( r

2e

)n

µ,
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we have

|ϕk(y)| > δ̂k
(

µbk
30 e3

)log 1/δ̂k

, ∀k ∈ Z. (173)

The proof relies on the following classical result in function theory (see, e.g., [32]):

Lemma 8.1 (Cartan’s estimate). Assume that f :C→ C is holomorphic and bounded by

M > 0 on the complex ball |z| < 2eR. If |f(0)| = 1 then, for 0 < η < 1

|f(z)| >
( η

15e3

)log M

(174)

for any z ∈ C, |z| < R up to a set of balls of radii r j satisfying

∑

j

r j 6 ηR.

Remark 8.1. Note that (174) holds in the complex ball |z| < R up to a set of measure smaller

than πη2R2. Moreover it holds on the real interval (−R,R) up to a set of (real) measure 2ηR.

Proof of proposition 8.1. Fix k ∈ Z . Fix ξ = (ξ1, . . . , ξn) ∈ Rn with |ξ| = 1 and ξ1 > 0.

We apply Cartan’s estimates simultaneously for every k ∈ Z with f(z), R, M and η replaced,

respectively, by

ϕk(zξ)

ϕk(0)
,

r

2e
,

1

δ̂k
and

µ

2
bk.

Recall remark 8.1 and observe that, by (174), for �xed k, estimate (173) holds on the segment

{yξ : y ∈ (−r/2e, r/2e)}, up to a set of measure at most µbkr/(2e). Integrating on the half-

sphere |ξ| = 1, ξ1 > 0, we get that (173) for the �xed k holds on the ball |y| < r/2e up, at
most, to a set of measure

1

2
meas n−1(S

n−1)
( r

2e

)n

µbk.

Summing on all k ∈ Z we get that (173) holds for all k ∈ Z . �

Fix 0 < µ, γ < 1. De�ne the following tail function

τ∗(δ; γ,µ) := (175)

26n2

s̃
max

{

log3
26n2

s̃
,

(

log
30e3

δµ

)

log2
(

4

s̃
log

30e3

δµ

)

, log
30e3

µ
log

1

δ
, log

210

δγ

}

,

where

s̃ := min{s, 1}.

Fix y0 ∈ D and assume that

f (y0, ·) ∈ Hs,τ∗ (δ).

Set

ϕk(y) := fk(y)e
|k|1s. (176)
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We have that

sup
y∈Cn ,|y−y0 |<r

|ϕk(y)|
(137)

6 1, |ϕk(y0)| > δ̂k := δ/|k|n1, ∀k ∈ Gn1 , |k|1 > τ∗(δ).

(177)

Let µ > 0. Then by proposition 8.1 (with ϕk(y) ϕk(y+ y0)) there exists real sets

D ⊆ Br/2e(y0) satisfying meas (Br/2e(y0)\D) 6
b

2
meas n−1(S

n−1)
( r

2e

)n

µ,

(178)

with

b :=
∑

|k|1>τ∗(δ;γ,µ)
|k|−n/21 6

∑

k 6=0

|k|−n/21 ,

such that

| fk(y)|e|k|1s = |ϕk(y)| > δk(µ) := δ̂k
(

µ

30 e3|k|n/21

)log 1/δ̂k

,

∀y ∈ D, k ∈ Gn1 , |k|1 > τ∗(δ). (179)

�

Theorem 8.1. Let the assumption of theorem 6.1 hold. Fix 0 < µ, δ < 1/e8 and 0 < γ < 1.

Assume that for some y0 ∈ D we have f (y0, ·) ∈ Hs,τ∗ (δ). Set

µ̃ :=µ/30 e3, ñ := 2ν − 2n− 3, κ := 22n+10n2n
L

s2n+1
. (180)

Assume that

K2 > max

{

K
2n2

ñ
logK1

1 , K
9
ñ
log 1

δµ̃

1 , e
4
ñ
log 1

δ log
1
µ̃ ,

(

4es+5κ

δγ

)
4
ñ

,
25

s
log2

1

δµ
,
214n4

s2

}

.

(181)

If k ∈ Gn1,K1 with |k|1 > τ∗(δ; γ,µ) then

sup
D
1,k
rk/2

|hk − h| 6 γδε, (182)

sup
y∈(D1,k∩D)̂rk

||Gk(y, ·)− T1F
k(y, ·)||2

| fk(y)|
6 γ, (183)

sup
y∈(D1,k∩D)̂rk

|| f k⋆⋆(y, ·)||s(1−1/K2)/2

| fk(y)|
<

4 e3s/2nn

δsn
e−K2s/8, (184)
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where D was de�ned in (178) and

r̂k :=
1

2
min{rk, δk(µ)}. (185)

Proof. First, note that by (155) r̂k 6 r/2. Observe, also, that, by (179), (177), (185) and

Cauchy estimates

|ϕk(y)| >
1

2
δk(µ), ∀y ∈ Dr̂k , k ∈ Gn1 , |k|1 > τ∗(δ). (186)

By (159), (176) and (186) we have that for every y ∈ D, k ∈ Gn1,K1

||Gk(y, ·)− T1F
k(y, ·)||2

| fk(y)|
6

2 es+5 ϑ + 29 e−|k|1s

δk(µ)
. (187)

Then, in order to prove (182), it is enough to show that

4 es+5ϑ

δk(µ)
6 γ,

210 e−|k|1s

δk(µ)
6 γ. (188)

Let us consider the �rst inequality in (188). Since by (180) and recalling (141) we have

ϑ = κ/K ñ
2 , then, recalling (177) and (179), for |k|1 6 K1

4 es+5ϑ

δk(µ)
6

4 es+5κKn
1

δK ñ
2

(

K
n/2
1

µ̃

)log Kn
1
δ−1

=
4 es+5κ

δ
eA,

where

A :=

(

n

2
log K1 + log

1

µ̃

)(

n log K1 + log
1

δ

)

+ n log K1 − ñ log K2.

Since

A 6 − ñ

4
log K2

by (181), we obtain that

4 es+5ϑ

δk(µ)
6

4 es+5κ

δ
e−

ñ
4 logK2

(181)

6 γ,

proving the �rst estimate in (188).

Regarding the second inequality in (188) we have

210 e−|k|1s

δk(µ)
=

210

δ
eB,

with

B :=

(

n

2
log |k|1 + log

1

µ̃

)(

n log |k|1 + log
1

δ

)

+ n log |k|1 − |k|1s.
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We note that

B 6 −1

4
|k|1s

by (175), indeed

2

s
n2 6

|k|1
log2|k|1

,
4n

s

(

1

2
log

1

δ
+ log

1

µ̃
+ 1

)

6
|k|1

log |k|1
,

where we have used the elementary estimates: x/log x > α if x > α log2 α and α > 5, and

x/log2 x > α if x > α log3 α and α > 26. Then

210

δ
e−

1
4
|k|1s

(175)

6 γ.

This proves (188) and, therefore, completes the proof of (182).

Let us now show (184). By (150) and (186) we get

sup
y∈(D1,k∩D)

ˆ
rk

|| f k⋆⋆(y, ·)||s(1−1/K2)/2

| fk(y)|
<

2 e|k|1s

δk(µ)
2

(

2nK2

s

)n

e−(K2−3)s/2

(179)
=

2 e|k|1s|k|n1
δ

(

30 e3|k|n/21

µ

)log(|k|n
1
/δ)

2

(

2nK2

s

)n

e−(K2−3)s/2

(139)

6
4 e3s/2nn

δsn

(

30 e3K
n/2
2

3n/2 µ

)log(Kn
2
/3nδ)

K2n
2 e−K2s/6

=
4 e3s/2nn

δsn
e−K2s/8 e−Q

where

Q :=
1

8
K2s−

(

n log
K2

3
+ log

1

δ

)(

n

2
log

K2

3
+ log

1

µ
+ log 30+ 3

)

− 2n log K2.

Then (184) follows if we prove that Q > 0. Recalling (139) and observing that log2 x 6
√
x

for x > 213, we get

Q >
1

8
K2s− 8n2 log2 K2 + 2 log2

1

δµ
> 0

by (181). �
We rewrite theorem 8.1 in the fashion of theorem 2.1.
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Theorem 8.2. Let n > 2, 0 < s 6 1. Fix 0 < µ, δ < 1/e8 and 0 < γ < 1. Consider a

Hamiltonian Hε(y, x) = h(y)+ ε f (y, x) as in (1) with h KAM non-degenerate (de�nition 2.1)

and f with norm one: ‖ f ‖D,r,s = 1. Assume that for some y0 ∈ D we have f (y0, ·) ∈ Hs,τ∗(δ),
with τ ∗ = τ ∗ (δ; γ,µ) de�ned in (175). Let K2 > 3K1 > 6 with K1 satisfying (181) and (143).

Let r̂k as in (185) and D as in (178). Finally assume that ε satis�es (40).
Then, for any k ∈ Gn1,K1 with τ∗(δ; γ,µ) 6 |k|1 6 K1, there exists a symplectic change of

variables Ψk as in (41) such that the following holds.

For every y ∈ (D1,k ∩ D)̂rk there exist a phase θ(k)(y) and functions Gk(y, ·) ∈ B1
2 and

fk(y, ·) ∈ Bn
s(1−1/K2)

2 satisfying

(189)

with

sup
y∈(D1,k∩D)̂rk

||Gk(y, ·)||2 6 γ (190)

and

sup
y∈(D1,k∩D)̂rk

||fk||s(1−1/K2)/2 6
4 e3s/2nn

δsn
e−K2s/8. (191)

Proof. The claim follows directly from theorem 8.1. We only note that θ(k)(y) is de�ned so

that

| fk(y)| cos(k · x+ θ(k)(y)) = T1F
k(y, x),

while

Gk(y, x) :=
Gk(y, ·)− T1F

k(y, ·)
| fk(y)|

,

fk(y, x) :=
f k⋆⋆(y, x)

| fk(y)|
.

Note that θ(k)(y), Gk(y, x) and fk(y, x) are not analytic in y (due to the presence of | f k(y)|), but,
obviously,Hε ◦Ψk is real-analytic in x and y. �
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Appendix A. An elementary result in linear algebra

First, let us recall the classical Bezout’s lemma (whose proof can be found in any elementary

book on number theory):
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Bezout’s lemma. Given two integers a and b not both zero, there exist two integers x and

y such that ax+ by = d := gcd(a, b), and such that max{|x|, |y|} 6 max{|a|/d, |b|/d}.
Then, the following simple result holds.

Lemma A.1. Given k ∈ Zn, k 6= 0 there exists a matrix A = (Ai j)16i, j6n with integer entries

such that An j = k j ∀1 6 j 6 n, det A = d := gcd(k1, . . . , kn), and |A|∞ = |k|∞.
Notice that the estimates on x and y are easily deduced from the well known fact that given

a solution x0 and y0 of the equation ax+ by = d, all other solutions have the form x = x0 +

k(b/d) and y = y0 − k(a/d) with k ∈ Z and by choosing k so as to minimize |x|.
Proof. The argument is by induction over n. For n = 1 the lemma is obviously true. For

n = 2, it follows at once from Bezout’s lemma: indeed, if x and y are as in Bezout’s lemma

with a = k1 and b = k2 one can take A =

(

y −x
k1 k2

)

. Now, assume, by induction for n > 3

that the claim holds true for (n− 1) and let us prove it for n. Let k̄ = (k1, . . . , kn−1) and d̄ =

gcd(k1, . . . , kn−1) and notice that gcd(d̄, kn) = d. By the inductive assumption, there exists a

matrix Ā =

(

Ã

k̄

)

∈ Mat(n−1)×(n−1)(Z) with Ã ∈ Mat(n−2)×(n−1)(Z), such that det Ā = d̄ and

|Ā|∞ = |k̄|∞. Now, let x and y be as in Bezout’s lemma with a = d̄, and b = kn. We claim that

A can be de�ned as follows:

A =















k̃ x̃

Ā











0
...
0

kn

























, k̃ = (−1)n y
k̄

d̄
, x̃ := (−1)n+1x . (192)

First, observe that since d̄ divides k j for j 6 (n− 1), k̃ ∈ Z
n−1. Then, expanding the determi-

nant of A from last column, we get

det A = (−1)n+1x̃ det Ā+ kn det

(

k̃

Ã

)

= (−1)n+1x̃d̄ + kn(−1)n−2 det

(

Ã

k̃

)

= (−1)n+1x̃d̄ + kn(−1)n−2(−1)n
y

d̄
det Ā

= xd̄ + kny = d.

Finally, by Bezout’s lemma, we have that max{|x|, |y|} 6 max{d̄/d, |kn|/d}, so that

|k̃|∞ = |y| |k̄|∞
d̄
6

|k̄|∞
d
6 |k|∞ , |x̃| = |x| 6 |kn|

d
6 K∞,

which, together with |Ā|∞ = |k̄|∞, shows that |A|∞ = K∞. �
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