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Abstract

This thesis will deal with small divisors in dynamics: in the introduction
we talk briefly about classical examples of dynamical systems where small
divisors gives obstructions and the techniques used to avoid these problems.
Then, we study in details the following problems: linearization of Gevrey
circle diffeomorphisms and the topology of Diophantine sets.

We explain at first the problem of the linearization:
The dynamics on the circle is characterized by an invariant, that is the

rotation number. The simplest diffeomorphisms of the circle are the rotations,
whose dynamics is clear.

Moreover, when the rotation number of the diffeomorphism is irrational,
and the logarithm of the derivative of the diffeomorphism is of bounded varia-
tion, by a classical theorem due to Denjoy, the diffeomorphism is conjugate to
a rotation by an homeomorphism. So, the problem is to study the regularity
of the diffeomorphism that conjugate to a rotation. This problem depends on
the arithmetic features of the rotation number, and it is completely studied
in the case in which the diffeomorphism is smooth or analytic.

Our results deals with an ultra-differentiable class of functions, the Gevrey
diffeomorphisms. They satisfy similar estimates of analytic functions, but
they are less rigid with respect to the analytic ones (for example, there exist
Gevrey functions with compact support). So, we show that Gevrey diffeo-
morphisms of the circle with the rotation number that satisfy a Diophantine
condition, are conjugate to a rotation by a Gevrey diffeomorphism. Moreover,
we show that, under an arithmetic condition that is weaker then Diophan-
tine, if a Gevrey diffeomorphism is C1 conjugate to a rotation, then it is C∞

conjugate to a rotation.
Now we explain the second problem:
Diophantine sets1 arise in a natural way in dynamics. From a topological

point of view, they are closed and totally disconnected. So, the only non-
trivial topological question is about isolated points, i.e. if there exist isolated
points in these sets.

Our aim is to show that, for any Diophantine number, there exists an
equivalent number (equivalent in the sense of continued fractions) that is
isolated in another Diophantine set. Moreover, we show that, for large pa-
rameters, almost all these sets are Cantor sets (almost all these sets have not
isolated points).

1Diophantine sets are sets of numbers that are ”badly” approximable by rationals.
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1 Introduction

In the first part of the introduction we give briefly some classical example of dy-
namical system in which small divisors gives obstruction.

Then, we concetrate on the topics that we study in the thesis, introducing the
results that we prove.

1.1 Stability and linearization: an overview

1.1.1 A brief historical survey

The simplest dynamical systems are the integrable ones, where we have a complete
description of the qualitative behavior of the motion.

However, in general, arbitrary perturbations of integrable Hamiltonian systems are
no more integrable. The first who studied dynamical systems form this viewpoint
was Poincaré:

In the last decade of the nineteenth century, Poincaré published his ”Les méthodes
nouvelles de la mécanique céleste”, where the concept of phase space was introduced
for the first time, and the interest to find individual solutions of the motion was
replaced by the aim to understand the features of all the possible invariants curves
(qualitative description of the motion).

The main object that contributed to the foundation of dynamical systems is of
course Celestial mechanics and, in particular, the ”n-body problem” that started
with the work of Newton.

So, in this Hamiltonian setting, Poincaré proved his triviality’s Theorems, which

show that in general, Hamiltonian systems are not integrable.

The main problem is that, to develop the Hamiltonian in power series with respect
to the perturbative parameter and with the coefficients that depends only on the
action variables, composing step by step by symplectic change of variables, one has
to solve an ”homological equation” that gives obstruction: in fact, the convergence
of these series is obstructed by the so called ”small divisors”. The first work to
overcome to this problem is due to Siegel in 1942 (see [69]).

1.1.2 Iteration of analytic maps

The problem is the stability around fixed points of holomorphic germs that, up
to the trivial case when the fixed point is attracting, is equivalent to conjugate
an holomorphic map of the disk which has an elliptic fixed point in the origin to
a rotation, that is of course the simplest dynamic. So, to overcome small divisors
problem, Siegel used for the first times Diophantine sets in dynamics.

These sets are defined as follows:
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Let γ > 0, τ ≥ 1, and define:

Dγ,τ :=

{
α ∈ R : |qα− p| ≥ γ

qτ
∀p ∈ Z, q ∈ N

}
.

Then, α is Diophantine if α ∈
⋃
γ>0,τ>1Dγ,τ .

In particular, a Diophantine number is a number that is not too close to rationals.

We explain briefly the problem of stability and the result of Siegel:

Let
f(z) :=

∑
k≥1

akz
k

be analytic in BR(0) for some R > 0 (with BR(0) the ball of radius R centered in
0). The fixed point 0 is called stable if, there exist 0 < r0 < r1 ≤ R such that, for
all n ∈ N:

fn(Br0(0)) ⊆ Br1(0),

with fn the composition of f n times.

By Schwarz’s lemma, it is clear that, for |a1| < 1, the fixed point is stable. Moreover,
for |a1| > 1, the fixed point is unstable. So, we can assume that |a1| = 1.

Then, the stability is equivalent to solve the homological equation:

φ(a1ζ) = f(φ(ζ))

for φ that is an holomorphic germ at 0.

If a1 is an nth root of unity, then: the fixed point is stable if and only if fn−1 = id.

So, we can assume that a1 = e2πiα, with α irrational. In this case, a formal solution
of the homological equation always exists:

In fact, suppose that φ satisfies the equation above and write φ as:

φ(ζ) = ζ +
∑
k≥2

bkζ
k.

So, we have:

∑
k≥2

bk(a
k
1 − a1)ζk =

∑
k≥2

ak

(
ζ +

∑
i≥2

biζ
i

)k

.

By our assumption (a1 = e2πiα with α irrational), for every k ∈ N, ak1 6= a1. In
particular, for all k, the equation on bk depends only on the coefficients bh with
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h < k (and the coefficients of f). So, we can define the coefficients of φ iteratively
such that φ is a formal solution of the homological equation.

In particular, the question is about the regularity of the solution. Siegel proved the

following:

Theorem (Siegel, [69]) Let f(z) := e2πiαz+O(z2) be an holomorphic germ, and
suppose that α is Diophantine. Then, it is linearizable in 0, i.e. there exists an
holomorphic germ h(z) = z +O(z2) such that:

f(h(z)) = h(e2πiαz).

As noted above, it is always possible to find a formal solution of the equation for

the linearization, so the arithmetic condition gives the regularity of the solution (in
this case, the convergence of the formal power series).

Note also, that this condition is verified for almost all real numbers. In fact, the
following simple Lemma holds:

Lemma Let µ be the Lebesgue measure on R. Then, for all N ∈ N, µ(D) ∩
(−N.N) = 2N .

Proof Let γ > 0, τ > 1. If α 6∈ Dγ,τ , then there exists p ∈ Z, q ∈ N such that
α ∈ (p

q
− γ

qτ+1 ,
p
q

+ γ
qτ+1 ). In particular, for all N ∈ N:

Dc
γ,τ ∩ (−N,N) ⊆

⋃
q∈N

⋃
|p|≤Nq

(
p

q
− γ

qτ+1
,
p

q
+

γ

qτ+1

)
.

Then:

µ(Dc
γ,τ ∩ (−N,N)) ≤

∑
q∈N

∑
|p|≤Nq

2γ

qτ+1
≤ (2N + 1)2γ

∑
q∈N

1

qτ
<∞

because of τ > 1. So, if γ is small, also µ(Dc
γ,τ ∩ (−N,N)) is small. Then, taking

the union over all γ, τ we get that the set of non Diophantine points has measure
zero.

However, the complement of these sets are Gδ dense, so they are topologically
non-trivial.

1.1.3 Diffeomorphisms of the circle

Let f be a diffeomorphism of the circle T := R/Z. The problem is to find a
diffeomorphism h that conjugates f to a rotation, i.e.:

h ◦ f ◦ h−1 = Rα, with Rα(x) := x+ α, (1)
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and to study the regularity of h, according to the regularity of f .

Let 2 Diffr
+(T) be the set of Cr orientation preserving diffeomorphisms of the circle.

The dynamics induced by f on the circle is characterized by the rotation number:

Let g ∈ Diff0
+(T), ḡ a lift of g over R; the rotation number of g is defined as3:

ρ(g) := lim
ḡn

n
(mod 1). (2)

In the same way, if f is an homeomorphism over R such that, for x ∈ R, f(x+1) =

f(x) + 1, we define the rotation number of f as:

ρ(f) := lim
fn

n
. (3)

A homeomorphism g ∈ Diff0
+(T) has a periodic orbit if and only if the rotation

number is rational and, in this case, it is topologically conjugate to the rotation
Rρ(g) if and only if gq = Rp, with ρ(g) = p

q
.

Moreover, suppose that: g ∈ Diffr
+(T) with r ≥ 1, ρ(g) is rational and g is conjugate

to a rotation. Then, the diffeomorphism h that conjugates g to a rotation (unique,
up to composition with a rotation) is of class Cr(T) (see [34], p.25). In fact, it is
easy to check that, in this case, the conjugating diffeomorphism is given by:

h :=
1

q

q−1∑
i=0

(
gi − ip

q

)
. (4)

In particular, in such a case, h ∈ Cr(T) and there is no loss of regularity. However,
in general, diffeomorphisms with rational rotation number are not conjugate to a
rotation (see [34], p. 31).

If the rotation number is irrational, g is topologically semi-conjugate to the rotation
Rρ(g) (i.e. there exists h ∈ C(T) that is non-decreasing and surjective, such that:
g ◦ h = Rρ(g) ◦ h).

The semi-conjugacy is a conjugacy if and only if the support of the unique invariant
probability measure with respect to g is T. Moreover, if we assume g ∈ Diff1

+(T) and
Dg of bounded variation, by a theorem by Denjoy (for a simple proof of Denjoy’s
Theorem, see [72]), g is conjugate to a rotation by an homeomorphism h, that is
unique up to composition with rotation.

For more regularity on h, we have to assume also some arithmetical condition on
ρ(g), to overcome the so-called small divisors problem.

2With r ≥ 1 or r ∈ {0,+∞, ω}, Diffω(T) is the set of analytic diffeomorphisms of the circle.
3Let f be an homeomorphism of R. For n > 0, fn = f ◦ ... ◦ f denote the composition of f n

times. f0 := id. For n < 0, fn := (f−1)−n.
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We recall the definition given above for the Diophantine sets.

Let γ > 0, β ≥ 0, and define:

Dγ,β :=

{
α ∈ R : |αq − p| ≥ γ

qβ+1
∀q ∈ N, p ∈ Z

}
, (5)

Dβ :=
⋃
γ>0

Dγ,β, D :=
⋃
β≥0

Dβ. (6)

We say that α is Diophantine if α ∈ D. Moreover, we define Dk(T) with k ≥ 1,

as the set of orientation preserving Ck diffeomorphisms of R that commutes with
T (x) := x+ 1.

For a ∈ R, define Ta(x) := x+ a (x ∈ R).

The first result related to local conjugacy of analytic circle diffeomorphism was
given by Arnold, who proved, by a KAM scheme, that analytic circle diffeomor-
phisms close enough to a rotation and with Diophantine rotation number are con-
jugate to a rotation by an analytic diffeomorphism.

Then, the first global Theorem (i.e. without assuming that the diffeomorphism is
close enough to a rotation) was proved by Herman:

Theorem (Herman, [34]) Let f ∈ Dk(T), k ≥ 3, and suppose that α := ρ(f) ∈⋂
β>0 Dβ. Then, f is conjugate to Tα by a diffeomorphism of class Ck−1−ε for every

ε > 0.

Yoccoz generalized Herman’s Theorem:

Theorem (Yoccoz, [73]) Let f ∈ Dk(T), k ≥ 3, and suppose that α := ρ(f) ∈ Dβ
with k > 2β+ 1. Then, f is conjugate to Tα by a diffeomorphism of class Ck−1−ε−β

for all ε > 0.

As a corollary of the Herman-Yoccoz Theorem, by reducing to the case in which f
is close to a rotation, and then, using the local Theorem of Arnold, one has:4

Theorem (Herman, Yoccoz, [34], [73]) Let f ∈ Dω(T), ρ(f) ∈ D. Then, the
diffeomorphism that conjugates f to a rotation is analytic.

The assumption k ≥ 3 is not really necessary, but it is needed to use Schwarzian

derivative to avoid technical difficulties. The first results to overcome to this prob-
lem were given by Khanin and Sinai who, in particular, proved the following:

Theorem (Khanin, Sinai, [72]) Let f(x) ∈ D2+ν(T), ν > 0, α := ρ(f) =
[a1, a2, ...] the continued fraction expansion of the rotation number.

• Suppose there exists a constant K > 0 such that |an| ≤ K. Then, f is
conjugate to Tα by a diffeomorphism of class C1+ν .

4The arithmetical condition of this Theorem is not the optimal one (for the optimal arithmeti-
cal condition, see (Yoccoz, [74])).
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• Suppose there exists a constant δ > 0 such that |an| ≤ nδ. Then, f is conju-
gate to Tα by a diffeomorphism of class C1+ν−ε for all ε > 0.

Finally, Katznelson and Ornstein generalized the Theorem of Khanin and Sinai:

Theorem (Katznelson, Ornstein, [40]) Let f ∈ Dk(T), k > β + 2, and
suppose that α := ρ(f) ∈ Dβ. Then, f is conjugate to Tα by a diffeomorphism
h ∈ Dk−1−ε−β(T) for all ε > 0.

The arithmetical conditions of this Theorem are the optimal ones (compare the

Appendix in [40]).

1.1.4 Vector fields on the Torus

Another example, is that induced by a vector field on Tn. If the vector field is
constant constant one:

Nω(θ) :=
n∑
j=1

ωj
∂

∂θj
,

with ω := (ω1, ..., ωn) ∈ Rn, the dynamical system is very clear:

it depends only on the arithmetical nature of ω. In fact, the flow is:

φtω(θ) = θ + tω̄,

with ω̄ the equivalence class of ω in Tn. If ω is non-resonant (i.e. ω · q 6= 0 for all
q ∈ Zn − {0}), then each orbit is minimal on the torus. More in general, if ω is
n− d resonant, with 1 ≤ d ≤ n− 1 (so, d is the dimension of the smallest rational
subspace of Rn that contains ω), each orbit is minimal on a d-dimensional torus
and, in particular, the flow induce a foliation of Tn by d-dimensional tori.

In our perturbative setting, consider a vector field that is a perturbation of Nω. So,
let:

X = Nω + P,

with ω that is non resonant and P small.

In it natural to try to conjugate X to a rotation, i.e. to search a diffeomorphism φ
such that:

φ∗X = Nω +Nλ,

with λ small. However, in general, it is not possible: in fact, for invariant measure
µ for the flow, we can associate an invariant that is:∫

Tn
Xdµ.
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Let Rot(X) be the set of such invariants, and note that Rot(X) is invariant by
conjugacy. In particular, a necessary condition to conjugate X to a rotation is that
Rot(X) contains only a constant while, in general, it is not true.

However, Arnold proved the following:

Theorem (Arnold, [1]) Assume X is real-analytic and ω is diophantine. Then,
if P is sufficiently close to zero, there exists a real-analytic diffeomorphism φ close
to the identity and λ ∈ Rn close to zero such that:

φ∗(X +Nλ) = Nω.

The arithmetic condition ω Diophantine is not the optimal one: in fact, Rüssmann

proved the same Theorem under the Bruno-Rüssmann condition (that is weaker
than Diophantine).

1.1.5 Twist maps

Let A := T× R be the annulus.

Let F = F (x, y) be a diffeomorphism of the annulus. Write F (x, y) = (X(x, y), Y (x, y)).
F is an area preserving monotone twist map of the annulus if the following condi-
tions are satisfied:

1. limy→+∞ Y (x, y) = +∞, limy→−∞ Y (x, y) = −∞ for all x ∈ T (i.e. F pre-
serves the boundary).

2. ∂F
∂y
> 0, that is the positive monotone twist condition.

3. detDF = 1, so F is area preserving.

4. Let f be a lift of F over R2, then f(x+ 1, y) = f(x, y) + 1.

In particular, the fact that F is area preserving implies that F preserves the stan-
dard symplectic form, so dY ∧ dX = dy ∧ dx.

The monotone twist condition simply tells us that F moves points in the upper

part faster than on the lower boundary.

Moreover, the twist condition implies that the map: (x, y) → (x,X) is an embed-
ding of the annulus in R2.

The fact that F preserves the boundary and the standard symplectic form, implies

that the flux of F is zero and, in particular, F has the intersection property, so
the intersection of a topologically non trivial closed curve of the annulus with its
image is non empty.
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Moreover, by these conditions, it is easy to show that F is also exact symplect, so
there exists a generating function S(x,X) such that:

dS = Y dX − ydx.

In particular: {
Y = ∂S

∂X

y = −∂S
∂x

(7)

Monotone twist maps are not an artificial construction. Let us show a simple ex-

ample:

Consider a mechanical system:

ẍ = −V ′(x),

where V is a periodic potential. In particular, the Hamiltonian is:

H(x, y) =
y2

2
+ V (x),

and the solutions solve the Hamilton’s equations:{
ẋ = Hy(x, y)
ẏ = −Hx(x, y)

(8)

Then:

∂x(t, x0, y0)

∂y0

=

∫ t

0

∂ẋ(s, x0, y0)

∂y0

ds =

∫ t

0

∂y(s, x0, y0)

∂y0

ds > 0,

if t is small enough. In particular, the time-t map φtH is a twist map.

On the other way, as proved by Moser (see [54]), every twist map can be viewed
as a time-1 map of the flux of an Hamiltonian system that satisfy the Legendre
condition.

So, it is quite natural to think twist maps as Poincaré sections.

The simplest example of twist map of the annulus is the map whose lift is:

f(x, y) = (x+ y, y), x, y ∈ R.

In fact, in this case, the map is integrable: each circle T×{y} is invariant, and the
dynamics on this circle is simply a rotation.

However, as we said at the beginning, the feature to be integrable in general is not
stable under small perturbations.

The simplest and most studied non integrable twist map is the standard family

12



Fε(x, y) = (x+ y − ε

2π
sin(2πx), y − ε

2π
sin(2πx)).

However, also in this case, many natural questions are open: for example it is known
that, there exists ε0 > 0 such that, for all ε > ε0 Fε has not invariant curves (see
[45]), but we don’t know what is the last invariant curve and, if it is isolated.

For every invariant curve, there is associated the rotation number, that characterize
the dynamics on this circle.

By KAM theory, one should expect that invariant curves with rotation number
that is more distant to the rationals (in terms of Diophantine condition), persist
with bigger perturbations.

In the case of the standard family, numerical evidences suggest that the last invari-
ant curve is the curve with rotation number that is the golden ratio, that is also
the Diophantine number most distant to the rationals.

In particular, it is quite natural to study the topology of Diophantine numbers,
because it should be related to the topology of the invariant curves: for example,
the golden ratio is the only point in Dγ,1 for γ sufficiently large (and smaller than
the best γ for the golden ratio), in particular, for these parameters, it is isolated.

The set of topologically nontrivial invariant curves is closed and, it is continuous
with respect the rotation number.

As we will prove later, there are many examples of isolated points in Diophantine
sets.

On the other hand, it seems that, until today, there are not examples of isolated
invariant curves for the standard family, or more in general, for twist maps.

So, the hope is that, a clearer view of the topology of these sets may help also to
understand better the dynamical point of view.

The other natural question is the regularity of the invariant curve. A classical
Theorem due to Birkhoff tell us that invariant curves are at least Lipschitz:

Theorem (Birkhoff, [46]) Let γ be a topologically non-trivial invariant curve for
a twist map of the annulus. Then, γ is the graph of a Lipschitz function.

Moreover, the regularity of the invariant curves and its topology are not two sepa-
rated problems. In fact, sufficiently smooth curves with Diophantine rotation num-
ber are never isolated (note that the only non trivial topological question is if the
invariant curve is isolated). In fact, the following holds:

Herman’s last Geometric Theorem ([26]) Let F be a smooth diffeomorphism
of the annulus having the intersection property. Then given a smooth curve Γ
invariant by F on which the rotation number of F is Diophantine, it holds that
is accumulated by a positive measure set of smooth invariant curves on which F is
smoothly conjugated to rotation maps.
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We recall that a map of the annulus has the intersection property if, every topo-
logically non trivial closed curve has non empty intersection with its image. As we
remarked previously, the twist maps have this property.

It is interesting to note that, as proved in [26], Herman’s last Geometric Theorem
implies Siegel’s Theorem. In particular, we have two different proves:

The first one, due to Siegel, is on the regularity of the formal diffeomorphism that
conjugate to a rotation, and the second one, due to Herman, from a topological
point of view.

In [51], Moser proved the same Theorem in the smooth category, providing that ω
is Diophantine. There is also a proof of Bounemoura, based on rational approxi-
mations (see [9], [10]).

1.1.6 The KAM theorem

In the perturbative Hamiltonian setting, the first result around the stability of
invariant Tori, was given by Kolmogorov in 1954, in the International Congress
of Mathematicians in Amsterdam, following a Newton like scheme. We fix the
notations:

Let B a ball in Rn, Tn := Rn/Zn, and consider a real analytic Hamiltonian:

(y, x, ε) ∈ B × Tn × (−ε0, ε0)→ H(y, x; ε) ∈ R,

with the phase space endowed of the standard symplectic form:

dy ∧ dx =
∑
i

dyi ∧ dxi.

The flow is generated by the Hamiltonian equations:{
ẋ = Hy(y, x; ε)
ẏ = −Hx(y, x; ε)

, (9)

where Hx, Hy are the partial derivatives of H.

If we have a Lagrangian invariant Torus, we can always suppose that, up to sym-
plectic changes of coordinates, the Hamiltonian is of the form:

K(y, x) = E + ω · y +O(|y|2).

In particular, in this form, Tn×{0} is an invariant Torus. Then, Kolmogorov proved
that, if ω is Diophantine, this Torus is stable under small perturbations.

Theorem (Kolmogorov, [41]) Let H(y, x; ε) be a real analyitic Hamiltonian as
above, and suppose that there exists E ∈ R, ω ∈ Rn such that, for ε=0:

H(y, x, 0) = E + ω · y +Q(y, x),

14



with Q(y, x) = O(|y|2), and the non-degeneracy condition5

det(< Qyy(0, .) >) 6= 0.

Suppose also that there exist γ, τ > 0 such that ω satisfies the Diophantine condi-
tion:

|ω ·m| ≥ γ

|m|τ
∀m ∈ Zn with m 6= 0.

Then, there exists ε∗ ≤ ε0, a ball B∗ ⊆ B with the center in the origin and a real
analytic symplectic transformation:

φ∗ : B∗ × Tn → B × Tn

analytic in ε ∈ (−ε∗, ε∗) such that φ∗ = id. for ε = 0 and, for ε < ε∗

H ◦ φ∗(y, x) = E∗(ε) + ω · y +O(|y|2).

So, Kolmogorov’s Theorem state that, an invariant Lagrangian Torus with Dio-

phantine frequency for an Hamiltonian that satisfy a non degeneracy condition, is
persistent under small perturbations.

However, the first complete proof of the Theorem was due to Arnold (see [1]):

in fact, in the paper of Kolmogorov missed the last part of the estimates for the
convergence. Then, the first Theorem of the persistence of invariant Tori for smooth
Hamiltonians was due to Moser, under the same Diophantine hypothesis.

The usuals KAM proofs are based on two steps:

The first one follows a Newton like scheme, in which we reduce the perturbation
from order ε to order ε2 solving the homological equation and by fixing the frequence
by a classical implicit funtion Theorem. In this step, the effect of small divisors in
the analytic case, is to reduce the domain of analicity.

In the second step, that is the iterative step, one has to control the growth of the
constants.

In the analytic case, the Diophantine condition is not the optimal one:

For the first part of the standard KAM theorem, one has to solve an homological
equation of the form:

Dωf = g− < g >,

with g a real analytic function on Tn, ω = (ω1, ..., ωn) ∈ Rn and Dω the operator:

Dω = ω1
∂

∂x1

+ ....+ ωn
∂

∂xn
.

5For a function f ∈ C(Tn,R), < f > denotes its average.
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To see where small divisors appear, let us develop g in Fourier series:

g(x) =
∑
ν∈Zn

ĝνe
2πix·ν .

If f is a solution of the equation above, writing f in Fourier series:

f(x) =
∑
ν∈Zn

f̂νe
2πix·ν ,

for ν 6= 0, the following equation holds:

f̂ν =
ĝν

ω · 2πiν
.

In particular, when ω is non-resonant (i.e. ω · ν 6= 0 if ν 6= 0), a formal solution
always exists.

However, if ω is only non-resonant, then ω · ν can be arbitrary small. So, in order
to avoid this problem, one has to impose arithmetic conditions on the frequencies.

The optimal arithmetical condition in the analytic setting to solve this equation is

the Rüssmann condition, that is weaker than Diophantine.

However, to have the controll for the convergence in the iteration step, one has to

assume a more stringent condition, the Bruno-Rüssmann condition, that is anyway
weaker than Diophantine.

The Theorem with this arithmetic conditions was proved by Rüssmann in [60].

However, it is not clear what are the best arithmetic conditions, that are known only
for the case of circle diffeomorphisms (so, for an Hamiltonian systems of dimension
n = 2, by Poincare section). For more details about the optimal condition, see [74].

Instead, in the smooth case, the optimal condition to solve the homological equation
is the Diophantine condition. So, in the smooth category, it should be the optimal
one.

Finally, in [11], Bounemoura and Fejoz proved the persistence of invariant Tori for
Hamiltonians in the Gevrey class:

This is a class of ultra-differentiable functions, where we have estimates of the
growth of the derivatives similar to the analytic functions, but with much less
rigidity with respect to the analytic ones: for example, in the Gevrey class there
exists functions with compact support.

The other positive feature in dynamics is that, not only invariant Tori with this
regularity persists under small perturbations (with the same regularity), but also
that the arithmetic condition is weaker than Diophantine (that is the condition in
the smooth class).
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In fact, in [11], Bounemoura and Fejoz proved the Theorem under an α-Rüssmann
condition (that is weaker than Diophantine).

For other proof of KAM theorem, see for example [12], [16], [17], [57], [58], [62],
[66], [65], [23], [29].

1.1.7 Schrödinger operators and cocycles

Finally, we give a classical example about the reducibility of a one dimensional
Schrödinger operator with quasiperiodic potential to a system with constant coef-
ficients.

Consider the Schrödinger operator:

Ly := −ÿ + q(ωt)y = Ey,

where q is a real-analytic quasi-periodic potential in a neighbourhood of |Imz| < r,
ω ∈ Td.

The problem is to extend to these nonlinear equations the Floquet Theory, i.e. to
search solutions to the form:

y(t) = ekt(p1(t) + tp2(t)),

with k that is a constant, and p1, p2 quasiperiodic with frequency ω or ω
2
.

Let X = (y, ẏ)t. Then:

Ẋ =

(
0 1

q(ωt)− E 0

)
X.

Let:

M :=
{ω · n

2
: n ∈ Zd

}
,

and let ρ = ρ(E) be the rotation number (for more information about the rotation
number, see ([38]). The rotation number ρ is said to be Diophantine with respect
to M, if there exist K, σ > 0 such that, ∀n ∈ Zd with n 6= 0:∣∣∣ρ− n · ω

2

∣∣∣ ≥ 1

K|n|σ

It is well known that, if E is in the resolvent of L, then the system is reducible
(see [53]). The first result for E that is not in the resolvent is due to Dinaburg and
Sinai, who proved that, there exists E0 ∈ R and a set R ⊆ (E0,+∞) for which the
system is reducible to a constant one. The set for which they proved the Theorem
is not of full measure and such that ρ(E) is Diophantine for all E ∈ R (see [22]).
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Then, Moser and Pöschel extended the Theorem to a set such that ρ(E) is rational
is E is in this set (see [53]).

Then, Eliasson proved the following:

Theorem (Eliasson, [24]) There exists a constant C = C(, r) such that if:

E0(s) =

{ (
s
C

)2
if s ≥ C

−∞ if s < C
, (10)

then the following hold for E > E0(|q|r):

• If ρ(E) is diophantine or rational, then there exists a matrix A = Λ(E) in
sl(2,R) and an analytic matrix valued function Y : Td → GL(2,R), also
depending on E, such that

X(t) = Y (
ω

2
t)eAt.

• If p(E) is neither diophantine nor rational, then:

lim inf
|t|→+∞

|X(t)−X(0)| < 1

2
|X(0)|,

lim
|t|→+∞

|X(t)|
t

= 0.

The idea of the proof is the following: up to a symplectic changes of variable
we can suppose that the equation is:

Ẋ = (A1 + F1)X,

with A1 constant, F1 small.

Then, we want to transform A1 + F1 to A2 + F2 with F2 smaller then F1. So, the
idea is to search a transformation that is not close to the identity, but to sum
exponential eBt. Finally. with the help of Diophantine condition, one can prove
that, iterating this process, the composition of these transformations converges on
compact subsets of R, and so proving the Theorem (with the Diophantine condition,
we need a transformation that is not close to the identity only for a finite number
of steps).

Now, we reformulate the problem in terms of cocycles in SL(2,R):

Let α ∈ R, A ∈ Cr(T, SL(2,R)). Then, a cocycle (α,A) is the skew-linear product:

(α,A) : T× R2 → T× R2

(x,w)→ (x+ α,A(x)w)

18



The cocycle (α,A) is said to be Cr reducible, if there existsB ∈ Cr(R/2Z, SL(2,R)),
C ∈ SL(2,R such that:

B(x+ α)A(x)B(x)−1 = C

A special class of cocycles are the Schrödinger cocycles:

Sv,E(x) :=

(
v(x)− E −1

1 0

)
,

where v ∈ Cr(T,R) is the potential, E ∈ R is the energy.

With a similar proof as in the Theorem above, the following holds6:

Theorem (Eliasson, [24]) Let v be a real-analytic potential, α Diophantine.
There exists λ0 = λ0(v, α) > 0 such that if 0 < λ < λ0, then for almost every
E ∈ R Sv,E is Cω-reducible.

The reducibility of cocycles is very close connected to their Lyapunov exponents,
that we now recall:

Let (α,A) be a SL(2,R) cocycle. Let:

An(x) := A(x+ (n− 1)α)...A(x).

Then, the Lyapunov exponent is:

L(α,A) := lim
n→+∞

∫
T

log ||An(x)||dx.

Define RDC as follows: α is in RDC if there exists infinitely many n ∈ N such
that Gn(α) is Diophantine, where G(α) := 1

{α} is the Gauss’s map.

The following dichotomy holds:

Theorem (Avila, Krikorian [5]) Let α ∈ RDC and let v be a Cr potential, with
r = +∞, ω. Then, for almost all E ∈ R, the cocycle (α, Sv,E) is either reducible or
non-uniformly hyperbolic.

1.2 Main results of the Thesis

The thesis is divided in two parts: in the first part we prove global conjugacy of
Gevrey circle diffeomorphisms and, in the second part, we study the topology of
Diophantine sets.

The motivation of the thesis to study the diffeomorphisms of the circle and the
topology of Diophantine sets is the following:

6It is essentially the analogous of the Theorem above reformulated for cocycles
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For the diffeomorphisms of the circle, they are the simplest example where the
dynamics depends on arithmetic conditions, and at the moment it is the only
one where something was done to the hard problem to find the best arithmetic
conditions.

For the topology of Diophantine sets, in addition to be a natural problem, it should
help to understand better the topology of invariant curves of twist maps of the
annulus.

1.2.1 Linearization of Gevrey circle diffeomorphisms

In the first part, our aim is to extend Herman’s Theorem on the linearization of
circle diffeomorphisms in the Gevrey class. Let us recall the definition of Gevrey
functions:

Let s ≥ 1, we say that a diffeomorphism f ∈ D∞(T) is s-Gevrey if there exists

A > 0 such that, for k ≥ 1:

|Dkf |0 := sup
x∈[0,1]

|Dkf(x)| ≤ Ak(k!)s, (11)

where Df is the derivative of f . So, we prove the global linearization of Gevrey
diffeomorphisms when the rotation number is Diophantine:

Theorem 1 Let s ≥ 1, f ∈ D∞(T) be an s-Gevrey diffeomorphism with α :=
ρ(f) ∈ D. Then, there exists a diffeomorphism h that is s + 1 + ε-Gevrey for all
ε > 0, such that:

h ◦ f ◦ h−1 = Tα. (12)

Note that, by [74], for an analytic diffeomorphism7 with rotation number satisfying
the Herman-Yoccoz condition (which is weaker than Diophantine), the diffeomor-
phism that conjugates to a rotation is also analytic. So, for s = 1, the term “1 + ε”
is not necessary: in particular, it is not clear what is the correct loss of regularity.

In the perturbative Hamiltonian setting, in [11], Bounemoura and Fejoz prove the

persistence of KAM tori with Gevrey regularity with frequencies satisfying a Bruno-
Rüssmann condition for small perturbations of integrable Gevrey Hamiltonians.

It seems that the problem of global conjugacy of the circle in the Gevrey class is
more similar to the smooth case than the analytic case.

In particular, it is not clear for Gevrey diffeomorphisms how to pass from a local
to a global Theorem as in the Herman-Yoccoz Theorem.

If we suppose that the Gevrey function is C1 conjugate to a rotation, then we can
prove the following:

7Observe that, for s = 1, the 1-Gevrey functions are the real analytic funtions that commute
with T .
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Theorem 2 Let f be a Gevrey diffeomorphism of the circle, and suppose that
α := ρ(f) is such that:

log qn+1 = O((log qn)s),

with some s < 2. Then, f is C∞ conjugate to a rotation.

The proof of Theorem 1,2 are based on the same ingredients involved in Yoccoz,
[73].

However, there are two main differences with respect to [73]:

The first difference is in the use of Hadamard’s inequality:

By the assumption that the diffeomorphism is not only finite differentiable, but
also C∞, we can use Hadamard’s inequality for the numbers of times we want, by
getting better estimate of the derivatives of the iterates of f in the convergents .
In particular, the assumption that f is smooth allow us to proceed by induction to
prove a ”good” upper-bound for the derivatives of the iterates in the convergents.

The second difference is in the way we get a priori estimates of the derivatives of

all iterates of f (Lemma 2), that permit also to control the growth of the constants
to prove Gevrey estimates on h (that will be the main difficulty).

The polynomials Ek
l (see our Lemma 1 in §2), that we use to get our estimates, are

defined also in (Yoccoz, [73]). However, Yoccoz does not use these polynomials to
estimate the derivatives of the iterates of f .

Theorem 2 is an improvement of the arithmetic condition: in fact, the Diophantine
condition is equivalent to:

log qn+1 = O(log qn).
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1.2.2 Topology of Diophantine sets

In the second part of the Thesis, we study the topology of Diophantine sets. These
sets play an important role in dynamical systems, in particular, in small divisors
problems with applications to KAM theory, Aubry-Mather theory, conjugation of
circle diffeomorphisms, etc. (see, for example, [4], [10], [14], [12], [16], [23], [25]).

The set Dγ,τ is compact and totally disconnected (since Dγ,τ ∩Q = ∅), however, it
is not clear whether, for some γ and τ , there exist isolated points in Dγ,τ .

In §6, we provide explicit examples ofDγ,τ with isolated points, giving, in particular,
a partial answer to a a question raised by Broer in [73] (see remark (iii) below).

In §7 we show that, for τ large enough and for almost all γ, Dγ,τ is a Cantor set.

Our main results are the following.

Proposition Let n ∈ N, n ≥ 2 and define

ᾱ :=

√
n2 + 4− n

2
, γ :=

1

ᾱ + n
, τ :=

log(ᾱ + n)

log n
. (13)

Then ᾱ is an isolated point of Dγ,τ .

Indeed, we can show that, for all Diophantine numbers, there exists an ‘equivalent
number’ that is isolated in some Diophantine set:

Theorem A Let γ ∈ (0, 1
2
), τ ≥ 1. Define the map:

Φγ,τ (z) :=
ηz + 1

(2η + 1)z + 2
(14)

with

η :=
[2τ3

γ

]
. (15)

Then Φ(Dγ,τ ) ⊆ Dτ :=
⋃
γ>0Dγ,τ . Moreover, for all α ∈ Φ(Dγ,τ ) there exists τα > τ

and γα > 0 such that α is isolated in Dγα,τα .

The isolated points constructed in Theorem A depend only on the first coefficients
of their continued fraction (that we can change up to an equivalent number).

Then, we show that a Diophantine number may be an isolated point “for infinitely
many τ”:

Theorem B Fix τ ≥ 1 and a strictly decreasing sequence {τn}n∈N with τn ↘ τ .
Then, there exist γ > 0, α ∈ Dγ,τ and sequences {τ̄n}n∈N, {γn}n∈N with, τ̄n ∈
(τn, τn+1), γn ↘ γ such that α is an isolated point of Dγn,τ̄n for all n.

In the second part we provide conditions such that Dγ,τ is a Cantor set.

Theorem C Let τ > 3+
√

17
2

. Then, for almost all γ > 0 Dγ,τ is a Cantor set.
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Remarks (i) The existence of isolated points of Diophantine sets may be related
to isolated tori and KAM stability in two degrees of freedom.

(ii) Our analysis is based on continued fractions and relations with dynamics in
higher dimensions are, therefore, not clear.

(iii) The paper [13] is entitled: “Do Diophantine vectors form a Cantor bouquet?”,
namely, is the set ∆N

γ,τ ∩ SN−1, where

∆N
γ,τ := {ω ∈ RN : |ω · n| ≥ γ

|n|τ
∀n ∈ ZN , n 6= 0} ,

and SN−1 denotes the unit sphere in RN , a Cantor set?

In dimension N = 2 it is clearly equivalent to consider the intersection of ∆2
γ,τ with

the line ω2 = 1, which, upon restricting to the unit interval, coincides with the set
Dγ,τ .

Our results, therefore, show that, in general, the answer to such a question is
negative, at least, in dimension N = 2.

(iv) Following the same proof of Theorem C, we can show that for τ > 3+
√

17
2

, for
almost all γ > 0 the following property holds: If α ∈ Dγ,τ , for all ε > 0:

µ(Dγ,τ ∩ (α− ε, α + ε)) > 0.

(v) The constant 3+
√

17
2

is not optimal. Probably a better constant should be ob-
tained putting a better inequality in Lemma 5. For τ = 1 and 1

3
< γ < 1

2
, Dγ,τ is a

finite set. So Theorem C does not hold for τ = 1. It should be reasonable that the
optimal lower bound τ̄ such that Theorem C holds satisfies the following property:
For every 1 ≤ τ < τ̄ there exists γ > 0 such that Dγ,τ is a non empty finite set.

(vi) In all our examples of isolated points the following holds: if α is an isolated
point of Dγ,τ , then γ is the best constant such that the Diophantine conditions with
exponent τ holds. By an amazing Theorem of Roth, for any algebraic numbers α,
given τ > 1 there exists γ > 0 such that α ∈ Dγ,τ (see, for example, [14]). We believe
that, for algebraic numbers of degree greater then 2, the statement of Theorem B
holds. So, information about isolated points may be in connection with continued
fraction properties of algebraic numbers.

23



2 Linearizarion of Gevrey circle diffeomorphisms

In this section we prove global linearization for Gevrey circle diffeomorphisms. We

prove at first some techincal lemmas that will be useful for the main Theorem.

2.1 Technical lemmas

From now on, if not specified, we suppose that f ∈ D∞(T).

To prove Therem 1, it is easier to show that logDh is (s + 1 + ε)-Gevrey (with
h the diffeomorphism that linearize f to a rotation), insteed of proving that h is
(s+ 1 + ε)-Gevrey. So, the aim of the first two lemmas is to show the equivalence
of such two problems.

Lemma 1 (see Yoccoz, [73]) For l ≥ 0:8

Dl+1f = Al(D logDf, ..., Dl logDf)Df, (16)

with Al(X1, ..., Xl), homogeneous of degree l if the variable Xi has weight i, that
are defined as follows:

A0 := 1, Al := X1Al−1 +
l−1∑
i=1

∂Al−1

∂Xi

Xi+1 for l ≥ 1. (17)

For l ≥ 1:

Dl logDf = Bl

(
D2f

Df
, ...,

Dl+1f

Df

)
, (18)

with Bl(X1, ..., Xl), homogeneous of degree l if the variable Xi has weight i, that
are defined as follows:

B1 := X1, Bl+1 :=
l∑

i=1

∂Bl

∂Xi

Xi+1 −
l∑

i=1

∂Bl

∂Xi

XiX1 for l ≥ 1. (19)

Lemma 2 Let f ∈ D∞(T), s ≥ 1. Then, the following are equivalent:

1. There exists A > 1 such that, for k ≥ 1:

|Dkf |0 := sup
x∈[0,1]

|Dkf(x)| ≤ Ak(k!)s.

2. There exists B > 1 such that, for k ≥ 0:

|Dk logDf |0 ≤ Bk(k!)s.

8We recall that Df is the derivative of f .
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Proof We prove the first implication, the other one can be proved in a similar way.
Let:

B := A max
x∈[0,1]

1

Df(x)
.

For h ≥ 0, define Yh := Bh(h!)s. We want to show by induction that, for k ≥ 1:

Ak(Y1, ..., Yk) ≤ 2kYk+1. (20)

The case k = 1 is trivial. So, suppose that, for 1 ≤ h ≤ k:

Ah(Y1, ..., Yh) ≤ 2hYh+1. (21)

We want to prove (21) for k → k + 1. Write:

Ak(X1, ..., Xk) =
∑

i1+....+kik=k

ai1,...,ikX
i1
1 ...X

ik
k ,

Ak+1(X1, ..., Xk+1) =
∑

i1+....+(k+1)ik+1=k+1

bi1,...,ik+1
X i1

1 ...X
ik+1

k+1 +X1Ak,

By (17):

bi1,...,ik+1
= (i1 + 1)ai1+1,i2−1,...,ik + ...+ (ik + 1)ai1,...,ik+1,

with the notation that, ai1,...,ik = 0 if: ij < 0 for some 1 ≤ j ≤ k or i1 + ...+kik > k.

Let:

ıj = ij + 1 if : ij+1 ≥ 1, 1 ≤ j ≤ k− 1,

ıj = 0 if : ij+1 = 0, 1 ≤ j ≤ k− 1.

ık = 1 if : ij = 0 for 1 ≤ j ≤ k,

ık = 0 otherwise.

It is easy to check by induction that:

2sı1 + ...+ ık(k + 1)s ≤ (k + 1)s.

Then:

bi1,...,ik+1
Y i1

1 · · ·Y ik+1

k+1 = 2s(i1 + 1)ai1+1,i2−1,...,ikY
i1+1

1 Y i2−1
2 ....Y ik

k + ....

+ (ik + 1)(k + 1)sai1,i2−1,...,ik+1Y
i1

1 ....Y ik+1
k

≤ (ı12s + ...+ ık(k + 1)s))(ai1+1,i2−1,...,ikY
i1+1

1 Y i2−1
2 ....Y ik

k

+ ai1,...,ik+1Y
i1

1 ....Y ik+1
k )

≤ (k + 1)s(ai1+1,i2−1,...,ikY
i1+1

1 Y i2−1
2 ....Y ik

k + ai1,...,ik+1Y
i1

1 ....Y ik+1
k ).

25



So, summing over all i1, ..., ik and, by the inductive hypothesis:

Ak+1(Y1, ..., Yk+1) ≤ 2(k + 1)sAk(Y1, ..., Yk−1) ≤ 2k+1Bk+2((k + 2)!)s = 2k+1Yk+2.

In particular, we get (21): for k → k + 1.

The basic technical result, which we will use in proving Theorem 1, is the following

”Main Lemma”:

Main Lemma Let C > 1, and suppose that f ∈ D∞(T) is such that:9

|Dp logDf |0 ≤ Cp(p!)s ∀p ∈ N, (22)

sup
n∈N
|Dfn|0 =: D < +∞. (23)

Let k, t ∈ N with k > 2t, α ∈ R−Q, A ≥ CD, and suppose that, for 1 ≤ m ≤ k,

n ∈ N:

|Dm logDfn|0 ≤ Am(m!)s+1+ε||nα||, ||nα|| := min
p∈N
|nα− p|. (24)

Then, there exists B = B(t, ε) such that, for 1 ≤ h ≤ t, n ≥ 0:

|Dk+h logDfn|0 ≤ BAk+h(k!)s+1+εnh(log k). (25)

Before proving the main Lemma, we give some useful estimates on the polynomials
Ek
l , that are introduced in the following Lemma:

Lemma 3 For k, n ≥ 1:

Dk logDfn =
k−1∑
l=0

n−1∑
i=0

Dk−l logDf ◦ f i(Df i)k−lEk
l (D logDf i, ...Dl logDf i), (26)

where the polynomials Ek
l = Ek

l (X1, ..., Xl) are defined in the following way:

E1
0 := 1. For k ≥ 1: Ek

k := 0, Ek
−1 := 0.

For k ∈ N, 1 ≤ l < k+1, Ek+1
l = Ek+1

l (X1, ..., Xl) are defined iteratively as follows:

Ek+1
l := Ek

l + (k − l)Ek
l−1X1 +

l−1∑
h=1

∂Ek
l−1

∂Xh

Xh+1. (27)

Moreover, giving weight i to Xi, each monomial of Ek
l has degree l (if 1 ≤ l < k).

9We recall that |f |0 is the sup-norm of f , Df is the derivative of f .
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Proof We prove Lemma 156 by induction. For k = 1:

D logDfn = D

(
n−1∑
i=0

logDf ◦ f i
)

=
n−1∑
i=0

D logDf ◦ f iDf i.

So, for k = 1, E1
0 = 1.

Now, suppose that the Lemma holds for some fixed k ≥ 1 and for all n ∈ N.

We want to prove (26),(27) for k + 1.

By inductive hypothesis, for all n ≥ 1:

Dk+1 logDfn =
k−1∑
l=0

n−1∑
i=0

Dk+1−l logDf ◦ f i(Df i)k+1−lEk
l (D logDf i, ..., Dl logDf i)

+
k−1∑
l=0

n−1∑
i=0

(k − l)Dk+1−(l+1) logDf ◦ f i(Df i)k+1−(l+1)D logDf iEk
l

+
k−1∑
l=0

n−1∑
i=0

Dk+1−(l+1) logDf ◦ f i(Df i)k+1−(l+1)

l−1∑
h=1

∂Ek
l

∂Xh

,

with:

Ek
l = Ek

l (D logDf i, ..., Dl logDf i).

So, we have:

Ek+1
l = Ek

l + (k − l)Ek
l−1X1 +

l−1∑
h=1

∂Ek
l−1

∂Xh

Xh+1.

In particular, by inductive hypothesis, Ek+1
l is homogeneus of degree l if the variable

Xi has weight i.

Let P (X1, ..., Xl) =
∑
ai1,...ilX

i1
1 ...X

il
l be a polynomial with real coefficients.

We define:
||P || := max

i1,...,il
|ai1,...,il |. (28)
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Lemma 4 For k ∈ N, 1 ≤ l ≤ k:

||Ek
l || ≤ k! (29)

Proof We prove Lemma 4 by induction.

For k = 1 we have: E1
1 = 0. So, in this case, the Lemma is trivial.

Now assume that: ||Eh
l || ≤ (h!) for all h such that 1 ≤ h ≤ k, and for 1 ≤ l ≤ h.

We want to prove Lemma 4 for k → k + 1, 1 ≤ l ≤ k + 1.

By Lemma 1, for 1 ≤ l ≤ k + 1:

Ek+1
l = Ek

l + (k − l)Ek
l−1X1 +

l−1∑
h=1

∂Ek
l−1

∂Xh

Xh+1.

Now, using that, for each term ai1,...,il−1
X i1

1 ...X
il−1

l−1 of Ek
l−1 holds:

i1 + ...+ (l − 1)il−1 = l − 1,

it is easy to check that:

||
l−1∑
h=1

∂Ek
l−1

∂Xh

Xh+1|| ≤ l||Ek
l−1||.

In particular:

||Ek+1
l || ≤ ||Ek

l ||+ (k − l)||Ek
l−1X1||+ ||

l−1∑
h=1

∂Ek
l−1

∂Xh

Xh+1||

≤ k! + (k − l)k! + l(k)!

≤ (k + 1)!

Lemma 5 Let A > 1, ε > 0. For h ∈ N define:

Yh := Ah(h!)s+1+ε. (30)

Then, for k ∈ N and 1 ≤ l ≤ k:

Ek
l (Y1, ..., Yl) ≤ Al(l!)s+εk! (31)
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Remark 1 If we estimate at first the growth of the coefficients of Ek
l and then we

use the Gevrey estimates, we get:

Ek
l (Y1, ..., Yl) ≤ Ah(h!)s+1+ε(k!).

The improvement that we get in Lemma 5 will be fundamental in the proof of the

estimates in the Main Lemma.

Proof We prove (31) by induction. If k = 1, the Lemma is trivial because of
E1

1 = 0,E1
0 = 1.

Now, suppose that the Lemma is true for some k ≥ 1, so we assume that (31) holds
for 1 ≤ l ≤ k. We want to prove (31) for 1 ≤ l ≤ k + 1.

For k ∈ N, 1 ≤ l ≤ k we denote:

Ek
l = Ek

l (Y1, ..., Yl),

Ek+1
l = Ek+1

l (Y1, ..., Yl),

Ek
l−1 = Ek

l−1(Y1, ..., Yl−1),

∂Ek
l−1

∂Xh

=
∂Ek

l−1

∂Xh

(Y1, ..., Yl−1) for 1 ≤ h ≤ l − 1.

We claim that:

Gk
l :=

l−1∑
h=1

∂Ek
l−1

∂Xh

Xh+1 ≤ Als+1+εEk
l−1. (32)

Write the polynomials Ek
l−1(X1, ..., Xl), G

k
l (X1, ..., Xl) (with the obvious definition

of Gk
l (X1, ..., Xl)) as:

Ek
l−1 =

∑
i1+...+(l−1)il−1=l−1

ai1,...,il−1
X i1

1 ...X
il−1

l−1 , (33)

with ai1,...,il−1
= 0 if ij < 0 for some 1 ≤ j ≤ l − 1 or i1 + ...+ (l − 1)il−1 > l − 1.

Gk
l =

∑
i1+...+lil=l

bi1,...,ilX
i1
1 ...X

il
l , (34)

with bi1,...,il = 0 if ij < 0 for some 1 ≤ j ≤ l.

Note that, by the condition:
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i1 + ....+ (l − 1)il−1 = l − 1,

if h > l
2
, then: ih = 0 or ih = 1.

We remark also, that for 1 ≤ h ≤ l − 1:

Yh+1

Yh
= A(h+ 1)s+1+ε. (35)

Then, by (33), (34), (61):

bi1,...,ilY
i1

1 ...Y il
l = AY i1

1 ...Y
il−1

l−1 (2s+1+ε(i1 + 1)ai1+1,i2−1,....,il−1
+ ...

+ ls+1+ε(il−1 + 1)ai1,....,il−1+1)

≤ AY i1
1 ...Y

il−1

l−1 (2s+1+εı1 + ...+ ls+1+εıl−1)

×

(
l−2∑
h=1

ai1,...,ih+1,ih+1−1,...,il−1
+ ai1,...il−1+1

)
,

with:

ıj = ij + 1 if : ij+1 ≥ 1, 2 ≤ j ≤ l− 2,

ıj = 0 if : ij+1 ≥ 0, 2 ≤ j ≤ l− 2,

ıl−1 = 1 if : ij = 0 for 1 ≤ j ≤ l− 1,

ıl−1 = 0 otherwise.

An easy proof by induction shows that:

2s+1+εı1 + ...+ ls+1+εıl−1 ≤ ls+1+ε. (36)

So, summing over all i1, ..., il and using (36) , the claim follows.

If l = k + 1, then: Ek+1
l = 0. In particular, the Lemma is trivial if l = k + 1. So,

we may assume that l < k + 1.

In this case:

Ek+1
l = Ek

l + (k − l)Ek
l−1X1 +

l−1∑
h=1

∂Ek
l−1

∂Xh

Xh+1

≤ Al(l!)s+εk! + (k − l)Alk!(l − 1)!s+ε + Als+1+εAl−1(l − 1)!s+εk!

= Alk!(l!)s+ε
(

1 +
k − l
ls+ε

+ l

)
≤ All!s+ε(k + 1)!.
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Lemma 6 Write Ek
l as:

Ek
l =

∑
i1+...+lil=l

ai1,...,ilX
i1
1 ...X

il
l . (37)

Suppose that, for some j > k
2
, ij 6= 0 (so, ij = 1). Then:

ai1,...,il ≤ 3k−j((k − j)!)k−j. (38)

Proof We prove (38) by induction over k.

For k = 1, (38) is trivial. So, suppose that (38) holds for 1 ≤ h ≤ k.

Write Ek
l , Ek+1

l , Ek−1
l as:

Ek−1
l =

∑
ai1,...,il−1

X i1
1 ...X

il−1

l−1 ,

Ek
l =

∑
bi1,...,ilX

i1
1 ...X

il
l ,

Ek+1
l =

∑
ci1,...,ilX

i1
1 ...X

il
l .

By (27), if l ≤ k − 1:

ci1...,il = bi1,...,il + (k − l)ai1,...,il−1
+ ī1ai1+1,i2−1...,il−1

+ ....+ ¯il−1ai1,...il−1+1.

Let ci1,...,il such that ij 6= 0 with j > k+1
2

. If j = l, then (38) follows directly by

(27). So, suppose that k+1
2
< j < l, then:

ci1,...,il = ci1,...,ij ,0,...,0 = bi1,...,ij ,0,...,0

+(k − l)ai1−1,...,ij ,0,...,0 + ī1ai1+1,i2−1...,ij ,0,...,0 + ....

+ai1,...ij−1,0,1,0,...,0 ≤ bi1,...,ij ,0,...,0 + (k − l)ai1−1,...,ij ,0,...,0

+(ı̄1 + ı̄2 + ....+ 1)3k−j((k − j)!)k−j

≤ 2(3)k−j((k − j)!)k−j(k − l) + (k − j + 1)((k − j)!)k−j

≤ 3k+1−j((k + 1− j)!)k+1−j.

We state also the following simple lemma:

Lemma 7 Let α ∈ R−Q, l ∈ N. Then:

1

n

n−1∑
i=0

||iα||l ≤ 1

2l
. (39)
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Proof It follows by ||αi||l ≤ 1
2l

.

We are now ready to prove the Main Lemmma.

Proof (Main Lemma) We prove at first (25) for h = 1:

By Lemma 3 and by (62) it follows that, for l,m, n ∈ N such that: 1 ≤ l ≤ m ≤ k+1,
l < k + 1:

|Em
l (D logDfn, ..., Dl logDfn)|0 ≤ Al(l!)s+εm!||nα||l (40)

So, for n ≤ k:

|Dk+1 logDfn|0 ≤
k∑
l=0

n−1∑
i=0

|Dk+1−l logDf |0|(Df i)k+1−l|0|Ek+1
l |0

≤ (k + 1)!
k∑
l=0

n−1∑
i=0

(k + 1− l)!sAk+1(l!)s+ε||iα||l,

So, if B1 = B1(ε) > 0 is such that, for all k ∈ N, 0 ≤ l < k:

(k!)((k + 1− l)!)s(l!)s+ε
(

1 +
1

k

)
≤
(
B1 − 1− 1

k

)
(k!)s+1+ε,

then:

((k + 1)!)
k∑
l=0

n−1∑
i=0

((k + 1− l)!)sAk+1(l!)s+ε||iα||l ≤ B1A
k+1(k!)s+1+εn

< B1A
k+1(k!)s+1+εn(log k),

so, we have proved the Lemma for h = 1.

Now, assume that the Lemma holds for some h with 1 ≤ h < t, i.e. we are assuming
that there exists Bh > 0 such that, for m,n ∈ N with 1 ≤ m ≤ h:

|Dk+m logDfn|0 ≤ BhA
k+mnm(k!)s+1+ε(log k). (41)

Then, we prove (25) for h+ 1.

By Lemma 3:

|Dk+h+1 logDfn|0 ≤
k+h∑
l=0

n−1∑
i=0

|Dk+h+1−l logDf |0|(Df i)k+h+1−l|0|Ek+h+1
l |0.

Moreover we remark that, for 1 ≤ m ≤ h, the term Dk+m logDf i appears at most
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once (and with exponent at most 1) in each monomial X i1
1 ...X

il
l of Ek+h+1

l (because
of 2t < k, i1 + ...+ lil = l ≤ k + h).

Write Ek+h+1
l as:

Ek+h+1
l (X1, ..., Xl) =

∑
i1+....+(k+h)ik+h=l

ai1,...,ik+hX
i1
1 ...X

ik+h
k+h ,

and define:

P k+h+1
l (X1, ..., Xk) :=

∑
i1+....+kik=l

ai1,...,ik,0,...,0X
i1
1 ...X

ik
k ,

Qk+h+1
l (X1, ..., Xk+h) := Ek+h+1

l − P k+h+1
l .

Observe that, for l ≤ k, Qk+h+1
l = 0. Moreover, for l > k, each monomial of Qk+h+1

l

has only one variable Xj that satisfy j > k (and with exponent ij = 1).

So, combining the estimates of Lemma 5 and the estimates in (41), for k < l ≤ k+h
we claim that:

|Qk+h+1
l (D logDf i, ..., Dl logDf i)|0 ≤ hBh(k!)s+1+εAlnh3h(h!)h+s+2+ε(log k).

(42)
We prove (42):

Observe that, Qk+h+1
l has at most h(h!) terms, and each term of Qk+h+1

l has the
form:

ai1,...,ik,0,...,1,...,0X
i1
1 ...X

ik
k Xj,

with k + 1 ≤ j < k + h+ 1.

For 1 ≤ m ≤ k + h, let Xm = Dm logDf i .

Then:

|ai1,...,ik,0,...,1,...,0X
i1
1 ...X

ik
k Xj|0 ≤ |ai1,...,ik,0,...,1,...,0X

i1
1 ...X

ik
k |0|Xj|0

≤ |ai1,...,ik,0,...,1,...,0X
i1
1 ...X

ik
k |0BhA

jnj(k!)s+1+ε(log k).

Moreover:

i1 + ...+ kik = l − j ≤ h,
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so, by Lemma 6:

|ai1,...,ik,0,...,1,...,0X
i1
1 ...X

ik
k |0 ≤ 3h(h!)h|X i1

1 ...X
ik
k |0 ≤ (h!)hAl−j(h!)s+1+ε.

In particular:

|Qk+h+1
l (D logDf i, ..., Dl logDf i)|0 ≤ h3h(h!)Bh(k)!s+1+εAlnh(h!)h(h!)s+1+ε(log k),

so, we have proved (42).

Now, we claim that there exists C = C(h, ε) > 0 such that:

|P k+h+1
l (D logDf i, ..., Dl logDf i)|0 ≤ CAl(k!)s+1+ε(log k). (43)

We prove (43):

The proof is by induction over k. So, the base step (k = 2h + 1) is trivial (it is
sufficient to choose a large enough C = C(h)). Then, suppose that (43) holds for
k. Similarly, as in Lemma 3:

P
(k+1)+1+h
l = P k+h+1

l + (k + h− l)P k+h+1
l−1 X1 +

k∑
j=1

∂P k+h+1
l−1

∂Xj

Xj+1

+
∑

ai1,...,ik,1,0...,0X
i1
1 ...X

ik
k Xk+1

+ (k + h− l)X1

∑
bi1,...,ik,1,0...,0X

i1
1 ...X

ik
k Xk+1,

with:

Ek+h+1
l =

∑
ai1,...,ik+h+1

X i1
1 ....X

ik+h+1

k+h+1 ,

Ek+h+1
l−1 =

∑
bi1,...,ik+h+1

X i1
1 ....X

ik+h+1

k+h+1 .

By Lemma 5, Lemma 6 and the Gevrey estimates:∣∣∣∑ ai1,...,ik,1,0...,0X
i1
1 ...X

ik
k Xk+1

∣∣∣
0
≤ 3h(h!)h+s+2+εAl(k + 1)!s+1+ε,∣∣∣∑ bi1,...,ik,1,0...,0X

i1
1 ...X

ik
k Xk+1

∣∣∣
0
≤ 3h(h!)h+s+2+εAl−1(k + 1)!s+1+ε.

Moreover, similarly as in Lemma 5:∣∣∣∣∣
k∑
j=1

∂P k+h+1
l−1

∂Xj

∣∣∣∣∣
0

≤ A((k + 1)s+1+ε + hs+1+ε
)
|P k+h+1
l−1 |0.
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Then:

|P (k+1)+1+h
l |0 ≤ |P k+h+1

l |0 + (k + h− l)|P k+h+1
l−1 X1|0

+

∣∣∣∣∣
k∑
j=1

∂P k+h+1

∂Xj

Xj+1

∣∣∣∣∣
0

+
∣∣∣∑ ai1,...,ik,1,0...,0X

i1
1 ...X

ik
k Xk+1

∣∣∣
0

+
∣∣∣(k + h− l)

∑
bi1,...,ik,1,0...,0X

i1
1 ...X

ik
k Xk+1

∣∣∣
0

≤ CAl(k!)s+1+ε + CAl(k + h− l)(k!)s+1+ε

+CAl((k + 1)!)s+1+ε + CAl((k)!)s+1+εhs+1+ε

+3h(h!)h+s+2+εAl((k + 1)!)s+1+ε((log k)

+(k + h+ 1− l)3h(h!)h+s+2+εAl((k + 1)!)s+1+ε

≤ CAl((k + 1)!)s+1+ε

×
(
k + h− l + 1 + hs+1+ε

(k + 1)s+1+ε
+ (2h3h(h!)h+s+2+ε) log(1 +

1

k
)

)
≤ Ck+1A

l((k + 1)!)s+1+ε log(k + 1)

and, because of:∏
k≥2h+1

(
2h+ 1 + hs+1+ε

(k + 1)s+1+ε
+ (2h3h(h!)h+s+2+ε) log(1 +

1

k
)

)
< +∞

we have proved (43) for all k ≥ 2h+ 1, for some C = Ch.

If l ≤ k, by Lemma 5 and (62):

|P k+h+1
l |0 ≤ Al(l!)s+ε(k + h+ 1)!||αi||l (44)
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Finally:

|Dk+h+1 logDfn|0 ≤
k+h∑
l=0

n−1∑
i=0

|Dk+h+1−l logDf |0|(Df i)k+h+1−l|0|Ek+h+1
l |0

≤
k+h∑
l=0

n−1∑
i=0

|Dk+h+1−l logDf |0|(Df i)k+h+1−l|0(|P k+h+1
l |0 + |Qk+h+1

l |0)

=
k+h∑
l=k+1

n−1∑
i=0

|Dk+h+1−l logDf |0|(Df i)k+h+1−l|0|P k+h+1
l |0

+
k∑
l=0

n−1∑
i=0

|Dk+h+1−l logDf |0|(Df i)k+h+1−l|0|P k+h+1
l |0

+
k+h∑
l=0

n−1∑
i=0

|Dk+h+1−l logDf |0|(Df i)k+h+1−l|0|Qk+h+1
l |0

≤
k+h∑
l=k+1

n−1∑
i=0

Ak+h+1(k + h+ 1− l)!s(k!)s+1+ε(log k)C(h)

+
k∑
l=0

n−1∑
i=0

Ak+h+1(k + h+ 1− l)!s(k + h+ 1)!(l!)s+ε||αi||l(log k)

+
k+h∑
l=k+1

n−1∑
i=0

Ak+h+1(k + h+ 1− l)!sBh(k + h+ 1)!(l!)s+εnh(log k)

≤ Bh+1A
k+h+1(log k)nh+1(k!)s+1+ε,

for some Bh+1 > Bh that depends only on h+ 1, ε.

Remark 2 In the proof of the main Lemma it is crucial to put the term ”1 + ε”
in the estimates. In fact, the term 1 + ε gives more weight on the terms of the
polynomials Ek

l .

Lemma 8 Let k, l ∈ N, 0 ≤ l ≤ k, and define the polynomials Gk
l (X1, ..., Xl) as

follows:

Gk
0 = Gk

k := 0,

Gk+1
l = Gk

l + (k − l)X1G
k
l−1 +

l−1∑
h=1

∂Gk
l−1

∂Xh

Xh+1
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for 1 ≤ l ≤ k.

Fix k,Q ∈ N, A > 1, t ≥ 1 with Q > k and define for h ≤ k:

Yh :=
Ah

Q
(h!)t.

Then, there exists C > 0 that does not depend on k such that, for l ≤ m ≤ k:

Gm
l (Y1, ..., Yh) ≤

C(log k)

Q
Ah(h!)t. (45)

Proof The case m = 1 is trivial (because of G1
1 = Y1). So, suppose that, for some

m ∈ N, with m < k, l ≤ m holds:

Gm
l (Y1, ..., Yl) ≤ Cm

Al

Q
(l!)t. (46)

Then, for m→ m+ 1, if l = m the inequality of the Lemma is trivial. So, suppose
l < m:

Gm+1
l (Y1, ..., Ym) = Gm

l + (m− l)A
Q
Gm
l−1 +

l−1∑
h=1

∂Gm
l−1

∂Xh

Yh+1

≤ 1

Q
CmA

l(l!)t + (m− l)ACm
Q2

Al−1((l − 1)!)t

+Cm
1

Q2
Al(l!)t,

where, the estimate

l−1∑
h=1

∂Gm
l−1

∂Xh

Yh+1 ≤ Cm
1

Q2
Al(l!)t

can be proved in the same way of the estimates in Lemma. In particular, it suffices
to define:

Cm+1 := Cm

(
1 +

m+ 1− l
Q

)
,

and C1 := 1. In particular, for m = k:

Gk
l (Y1, ..., Yk−1) ≤ 1

Q

(
k−1∏
j=l

(
1 +

j + 1− l
Q

))
Ak(l!)k ≤ C(log k)

1

Q
Ak(l!)k

for some C > 0 that does not depend on k,Q.
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Lemma 9 Let k, l ∈ N, 0 ≤ l ≤ k, and let Gk
l (X1, ..., Xl) the polynomials defined

in Lemma 13. Fix k,Q, h0 ∈ N, A > 1, t ≥ 1 with Q > k, 4h0 < k. Define:

Yh :=
Ah

Q
(h!)t if h ≤ k,

Yh := AhQ(h!)t if h > k,

(48)

Then, there exists C = C(h0) such that, for h ≤ h0, 1 ≤ l ≤ k + h:

Gk+h
l (Y1, ..., Yk+h) ≤

C(h0)(log k)(k)h

Q
Ak+h(k!)t. (49)

Proof We consider at first the case h = 1. For l = k, Gk+1
k = Xk. In particular

(49) is trivial for l = k, h = 1. For l < k:

Gk+1
l ≤ (log k)

1

Q
CAl(l!)t

(
1 +

k + 1− l
Q

)
≤ 2C(log k)

1

Q
Al(l!)t,

because of Q > k. In particular, we have proved (49) for h = 1. Now, it is easy
to prove iteratively (49) for h ≤ h0, starting by the case h = 1 (that we have just
proved). In fact, because of 2h0 < k, in each monomial of Gk+h

l , the term Ym with
m > k appears at most once and the Gk+h

l satisfy estimates similar to that of
Lemma 6.

Next, we list some results that will be used to prove our Theorem:

Theorem 3 ([34], p. 52, Theorem 6.3.4) Let r ≥ 1 and define:

Hr(f) := sup
n∈Z
|Dfn|Cr−1 (50)

with:

|g|Cr−1 :=
r−1∑
l=0

|Dlg|0 (51)

if r ∈ N, while, if r 6∈ N:10

|g|Cr−1 := |g|C[r−1] + supx 6=y
|D[r−1](g(x)− g(y))|

|x− y|{r}
. (52)

Then, the following are equivalent:

10[r] is the integral part of r, {r} is the fractional part of r.
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• f is Cr conjugate to Tα

• Hr(f) < +∞

• supn∈N | logDfn|Cr−1 < +∞

Theorem 4 ([34], p. 127) Suppose that f ∈ D∞(T), α := ρ(f) ∈ D. Then, f is
C∞ conjugate to Tα.

The proof of Theorem 4 is divided in two parts: in the first part the C1 conjugacy is
proved and, in the second one, it is proved that C1 conjugacy implies C∞ conjugacy.

In the Appendix we give a simple prove of the second part (C1 conjugacy implies
C∞ conjugacy). This proof follows the same scheme of the proof in the Gevrey
class.

Let α be the rotation number of f ∈ D∞(T). We denote with q the denominator of
some convergent of the continued fraction of α and with Q the denominator of the
subsequent convergent. Moreover, we denote with h ∈ C∞(T) the diffeomorphism
(unique up to composition by a translation) that conjugate f to Tα, i.e.:

h ◦ f ◦ h−1 = Tα. (53)

Lemma 10 For all k ≥ 0, there exists C = C(k) > 0 such that, for all n ∈ Z:

|Dk(fn − id− nα)|0 ≤ C(k)||nα||, ||nα|| := min
h∈Z
|nα− h|. (54)

In particular, for all k ≥ 0 there exists C(k) > 0 such that:

|Dk logDf q|0 ≤
C(k)

Q
. (55)

Proof Let k ≥ 0,

|Dk(h ◦ Tnα − h− nα)|0 ≤ |Dk+1h|0||nα||. (56)

By the identity:
fn − id− nα = (h ◦ Tnα − h− nα) ◦ h−1 (57)

and, using Faa di Bruno formula, we get (28).

To prove (15), it suffices to note that there exist polynomials Ak(X1, ..., Xk) homo-
geneous of degree k if the variable Xi has weight i such that:

Dk logDg = Ak

(
D2g

Dg
, ....,

Dk+1g

Dg

)
. (58)

Moreover, by Theorem 3, |Dfn|0 are bounded uniformly in n.

In particular, as a corollary of (15) we have:
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Corollary 1 There exists C > 0 such that, for q a convergent to α = ρ(f), Q the
subsequent convergent, k ∈ N with k ≤ Q:

(Df q)k ≤
(

1 +
Ck

Q

)
(59)

Finally, we state Hadamard’s inequality, that will be crucial in the subsequent
section.

Theorem 5 (Hadamard’s inequality) ([36], Appendix A) Let g ∈ Ck([0, 1]).
For h, l, s, k ∈ N with: 0 ≤ h ≤ l ≤ s ≤ k, s 6= h, there exists C = C(k) > 0 such
that:

|Dlg|0 ≤ C|Dhg|
s−l
s−h
0 |Dsg|

l−h
s−h
0 . (60)

2.2 Proof of Theorem 1

For n ∈ N, define:

fn :=
1

n

n−1∑
i=0

(f i − iα).

By Theorem 2 and Ascoli-Arzela Theorem, for all k ∈ N:

|Dkfn −Dkh|0 → 0, (61)

with h the diffeomorphism that conjugates f to a rotation (we recall that h is
unique up to a rotation). In particular, if we prove that for ε > 0 there exists
C = Cε > 0 such that, for k ∈ N, i ∈ N0:

|Dkf i|0 ≤ Ck(k!)s+1+ε, (62)

then, for k, n ∈ N:

|Dkfn|0 ≤
1

n

n−1∑
i=0

|Dkf i|0 ≤ Ck(k!)s+1+ε.

In particular, by (61), the diffeomorphism h is s+ 1 + ε Gevrey with constant Cε.
So, it suffice to prove (62).

By Lemma 2, it is also equivalent to prove that, there exists B = Bε > 0 such that,
for k, i ∈ N:

|Dk logDf i|0 ≤ Ck(k!)s+1+ε. (63)

So, we will prove (63).

The proof of (63) is based on the following six steps:
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1. Fix ε > 0. By Lemma 7, for every k ∈ N, there exists A = A(k) > 0 such
that, for l ≤ k, n ≥ 0:

|Dl logDfn|0 ≤ Al(l!)s+1+ε||nα||, (64)

This follows from (15), providing that A(k) is large enough (at this point the
factor (l!)s+1+ε is irrelevant, in fact it suffices to take A(k) = C(k), with C(k)
as in (28)).

2. We fix k0 ∈ N with k0 > 8(β + 2) (with α := ρ(f) ∈ Dβ) and take A = A(k0)
big enough, such that equation (64) holds for 0 < l ≤ k0.

By the Main Lemma , if h0 ∈ N with 2h0 < k0 , there exists B = B(h0, ε) > 0
such that, for h ≤ h0, n ∈ N:

|Dk0+h logDfn|0 ≤ BAk0+h(k0!)s+1+ε(log k0)(n)h. (65)

3. In the third step, using (65), we prove the following estimates:

|Dk0+h logDfaq|0 ≤ C1BA
k0+h(k0!)s+1+ε(k0)h−1aq(log k0), (66)

with11 h < h0 := [k0
4

], C = C(h0, α), a ≤ Q
q

.

4. Using Hadamard’s inequality, we show that, for h = 1, 2:

|Dk0+h logDfaq|0 ≤ C2B
Ak0+ha

Q1−δ (k0!)s+1+ε(k0)h(log k0), (67)

with C2 = C2(k0, ε, α) > C1 that depend also on the constant of Hadamard’s
inequality, a < Q

q
, 1
δ
> 2τ + 1.

5. By good estimates on the convergents we obtain estimates for all the iter-
ates of f . This is the only step where we use that the rotation number is
Diophantine.

In particular, we prove the following:

|Dk0+h logDfn|0 ≤ C3BA
k0+h(k0!)s+1+ε(k0)h(log k0), (68)

for h = 1, 2.

6. With the help of equations (57), (68) and, up to chose A ≥ C we get estimates
of step 1 for h = k0 + 1 (using that k2 log k ≤ C(ε)(k + 1)s+1+ε, because of
s ≥ 1). Then we proceed by induction.

11For t ∈ R, [t] is the integral part of t.
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In fact, we have proved that, if (64) holds for l = k ≥ k0, A > C = C(ε, α),
then:

|Dk+1 logDfn|0 ≤ CAk((k + 1)!)s+1+ε ≤ Ak+1((k + 1)!)s+1+ε||nα||. (69)

So, by induction, we prove (64), for all l ∈ N (for l < k0 the estimate are
trivial for a sufficently large A). In particular, Theorem 1 follows.

Remark 3 The loss of regularity of 1+ ε appear in the last step, in which we have
to use also estimates on the k + 1 derivative, but, actually the loss of regularity is
hidden in the Main Lemma.

Remark 4 The choice of h0 depends only on ε.

Step 1: It is a consequence of Theorem 3, Theorem 4, Lemma 7.

Step 2: Step 2 follows directly by the Main Lemma.

Step 3: We will use the following identity:

For a, b, k ∈ N:

Dk logDf (a+b) = Dk logDfa ◦ f b +Dk logDf b

+
k−1∑
l=1

Dk−l logDfa ◦ f b(Df b)k−lGk
l (D logDf b, ..., Dl logDf b),

with Gk
l (X1, ..., Xl) homogeneous of degree l if the variable Xi has weight i. More-

over, we recall that the polynomials Gk
l satisfy the following relation:

Gk+1
l = Gk

l + (k − l)X1G
k
l−1 +

l−1∑
h=1

∂Gk
l−1

∂Xh

Xh+1,

with:

Gk
0 = Gk

k := 0 ∀k ∈ N.

The proof of this identity is the same of the proof of Lemma 3, so it is omitted.

By (65), for h ≤ h0, n ≤ k0:

|Dk0+h logDfn|0 ≤ BAk0+h(k0!)s+1+ε(log k0)(k0)h−1n.

We show at first that, there exists C > 0 such that, if q ∈ N is a convergent of α,
then:

|Dk0+1 logDf q|0 ≤ CAk0+1(k0!)s+1+ε(log k0)q. (70)
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Let {qn}n∈N0 be the convergents to α = [a0, a1, ...] := a0 + 1
a1+ 1

a2+...

, so that

qn+1 = an+1qn + qn−1. If q = qn ≤ k0, then (70) follows by (65).

Now, suppose that for i < n:

|Dk0+1 logDf qi |0 ≤ BAk0+h(k0!)s+1+ε(log k0)qi,

and qn > k.

Then, for i < n, qi+1 > k, 1 < a ≤ qi+1

qi
:

|Dk0+1 logDfaqi |0 = |Dk0+1 logDf (a−1)qi ◦ f qi +Dk0+1 logDf qi

+

k0∑
l=1

Dk0+1−l logDf (a−1)qi ◦ f qi(Df qi)k+1−lGk0+1
l |0

≤ |Dk0+1 logDf (a−1)qi |0 + |Dk0+1 logDf qi|0

+

k0∑
l=1

a− 1

qi+1

Ak0+1−l((k0 + 1− l)!)s+1+ε

(
1 +

C(k + 1− l)
qi+1

)
|Gk0+1

l |0

where, in the last sums, we have used that for 1 ≤ l ≤ k0:

|Dk0+1−l logDf (a−1)qi |0 ≤
a− 1

qi+1

Ak0+1−l((k0 + 1− l)!)s+1+ε,

(Df qi)k+1−l ≤ 1 +
C(k + 1− l)

qi+1

.

The first inequality follows by (64), the second by Corollary 1 and by qi > k. Then,
by Lemma 9:

|Gk0+1
l |0 ≤ (log k)

C

qi+1

Al((l)!)s+1+ε

So:

k0∑
l=1

a− 1

qi+1

Ak0+1−l((k0 + 1− l)!)s+1+ε

(
1 +

C(k + 1− l)
qi+1

)
|Gk0+1

l |0

≤ C(log k0)

k0∑
l=1

a− 1

q2
i+1

Ak0+1((k0 + 1− l)!)s+1+ε

×
(

1 +
C(k + 1− l)

qi+1

)
(l!)s+1+ε

≤ C
(a− 1)k0

q2
i+1

Ak0+1((k0)!)s+1+ε(log k)
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So, iterating, we have:

|Dk0+1 logDfaqi |0 ≤ a|Dk0+1 logDf qi |0
(

1 +
Ck

qi+1

)a
+C

a(a− 1)k0

q2
i+1

Ak0+1((k0)!)s+1+ε(log k0)

≤ CaqiA
k0+1((k0)!)s+1+ε(log k0)

(
1 +

Cak

qi+1

)
Moreover: ∏

i≥n

(
1 +

Caik

qi+1

)
≤
∏
i≥n

(
1 +

Ck

qi

)
≤
∏
i≥0

(
1 +

C

2i

)
,

that is a constant that does not depend on k.

Then, write qn as: q = qn = anqn−1 + qn−2:

Dk0+1 logDf qn = Dk0+1 logDf (anqn−1+qn−2) = Dk0+1 logDfanqn−1 ◦ f qn−2(Df qn−2)k0+1

+Dk0+1 logDf qn−2

+

k0∑
l=1

Dk0+1−l logDfanqn−1 ◦ f qn−2(Df qn−2)k+1−lGk0+1
l ,

with

Gk0+1
l = Gk0+1

l (D logDf qn−2 , ..., Dl logDf qn−2).

By Lemma 8:

|Dk0+1 logDf qn|0 ≤ |Dk0+1 logDfanqn−1 ◦ f qn−2 |0(|Df qn−2|0)k0+1

+|Dk0+1 logDf qn−2|0

+|
k0∑
l=1

Dk0+1−l logDfanqn−1 ◦ f qn−2(Df qn−2)k+1−lGk0+1
l |0

≤ C(anqn−1)Ak0+1((k0)!)s+1+ε(log k0)k0

(
1 +

Ck

qn−1

)
+C(qn−2)Ak0+1((k0)!)s+1+ε(log k0)k0

+

(
Ck

qn−1

)
C(anqn−1)Ak0+1((k0)!)s+1+ε(log k0)k0

≤ C(qn)Ak0+1((k0)!)s+1+ε(log k0)

(
1 +

Ck

qn−1

)
.

In particular, we have proved (70). Finally, we want to show that, for h ≤ h0,
q > k:

|Dk0+h logDf q|0 ≤ BAk0+h(k0!)s+1+ε(log k0)(k0)h−1q.
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So, we suppose that for 1 ≤ h < h0, q > k, a < Q
q

holds:

|Dk0+h logDfaq|0 ≤ BAk0+h(k0!)s+1+ε(log k0)(k0)h−1aq. (71)

Note that we have just proved the case h = 1. We prove (71) for h+1. So, suppose
that (71) is true for all qi < qn with qn+1 > k0. Then:

|Dk0+h+1 logDf qn|0 = |Dk0+h+1 logDf (anqn−1+qn−2)|0
≤ |Dk0+h+1 logDf qn−2 ◦ fanqn−1(Dfanqn−1)k0+h+1|0

+|Dk0+h+1 logDfanqn−1|0

+|
k0+h∑
l=1

Dk0+h+1−l logDf qn−2 ◦ fanqn−1(Dfanqn−1)k0+h+1−lGk0+h+1
l |0

≤
(

1 +
C(k0 + h)

qn

)
BAk0+h+1(k0!)s+1+ε(log k0)(k0)hqn−2

+BAk0+h+1(k0!)s+1+ε(log k0)(k0)han−1qn−1

+|
k0+h∑
l=1

Dk0+h+1−l logDf qn−2 ◦ fanqn−1(Dfanqn−1)k0+h+1−lGk0+h+1
l |0.

We estimate the last term: note that, by Lemma 8, for k0 < l ≤ h:

|Gk0+h+1
l (D logDfanqn−1, ..., D

l logDfanqn−1)|0(log(k)0)(k0)lanqn−1A
k+l(k!)s+1+ε,

while, for l ≤ k0:

|Gk0+h+1
l (D logDfanqn−1, ..., D

l logDfanqn−1)|0 ≤ C(k0)l
1

anqn−1

Ak+l(l!)s+1+ε.

Moreover, for l ≥ h+ 1:

|Dk0+h+1−l logDf qn−2|0 ≤
1

qn−1

Ak0+h+1−l((k0 + h+ 1− l)!)s+1+ε,

and, for l < h+ 1:

|Dk0+h+1−l logDf qn−2 |0 ≤ Cqn−2A
k0+h+1−lkh+1−l

0 ((k0 + h+ 1− l)!)s+1+ε(log k0).

In paricular:

|
k0+h∑
l=1

Dk0+h+1−l logDf qn−2 ◦ fanqn−1(Dfanqn−1)k0+h+1−lGk0+h+1
l |0 ≤

2hanCA
k0+h(k0!)s+1+ε(log k0)(k0)h +

k

anq2
n−1

CAk0+h(k0!)s+1+ε(log k0)(k0)h.
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In particular:

|Dk0+h+1 logDf qn|0 ≤ C(log(k)0)(k0)lanqn−1A
k+l(k!)s+1+ε.

Step 4: Let n ∈ N. Following Herman, we can write:

n =
s∑
i=0

bsqs, (72)

with qi the denominators of the convergents of α, n ≤ qs+1, bs ≤ qs+1

qs
.

Using (72) we get, for i = 1, 2:

|Dk+i logDfn|0 ≤ CAk+i(k!)s+1+εki
∑
s≥0

bs

q1−ε
s+1

≤ CAk+i(k!)s+1+εki
∑
s≥0

qεs+1

qs
.

Because α is Diophantine, we have:

qs+1 ≤
qτs
γ

for some γ > 0, τ ≥ 1. In particular, for ε small enough we get the convergence of
the series (in fact it converges for ε small enough if and only if α is Diophantine).
So, there exists C > 0 such that, for i = 1, 2:

|Dk+i logDfn|0 ≤ CAk+i(k!)s+1+εki.

Step 5: We use the following identity (the proof follows easily by induction):

Dk+1 logDf q = Dk+1 logDh−1 −
(
Dk+1 logDh−1 ◦ f q

)
(Df q)k+1

−
k∑
l=1

Dk+1−l logDh−1 ◦ f q(Df q)k+1−lEk+1
l (D log f q, ..., Dl logDf q),

with Gk+1
l (X1, ..., Xl) polynomials homogeneous of degree l if Xi has weight i. By

this identity we get:

|Dk+1 logDf q|0 ≤ |Dk+1 logDh−1 −Dk+1 logDh−1 ◦ f q|0
+|Dk+1 logDh−1 ◦ f q

(
1− (Df q)k+1

)
|0

+
k∑
l=1

|Dk+1−l logDh−1 ◦ f q(Df q)k+1−lEk+1
l (D log f q, ..., Dl logDf q)|0.
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We recall that:

fn :=
1

n

n−1∑
i=0

f i. (73)

Observe that:

fn ◦ f ◦ f−1
n = id+

fn − id
n

◦ f−1
n . (74)

So, by our assumption on f we know that fn converges to h in norm Cr for all
r ∈ N and f−1

n converges to h−1 in norm Cr for all r ∈ N.

In particular, for some C > 0 we get the estimates:

|Dk+1 logDh−1|0 ≤ CAk+1(k!)s+1+εk log k,

|Dk+2 logDh−1|0 ≤ CAk+2(k!)s+1+εk2 log k.

In particular:

|Dk+1 logDh−1 −Dk+1 logDh−1 ◦ f q|0 ≤ |Dk+2 logDh−1|0|Df q − 1|0

≤ C|Dk+2 logDh−1|0| logDf q|0 ≤
C

Q
Ak+2(k!)s+1+εk2 log k

≤ C

Q
Ak+1((k + 1)!)s+1+ε.

|Dk+1 logDh−1 ◦ f q
(
1− (Df q)k+1

)
|0 ≤ C(k + 1)Ak+1(k!)s+1+εk log k| logDf q|0

≤ C

Q
Ak+1(k!)s+1+εk2 log k ≤ C

Q
Ak((k + 1)!)s+1+ε.

It remains to estimate the third term. Observe that:

|(Df q)k+1−l|0 ≤
C

Q
(k + 1).

Moreover, similarly as in Lemma 5 we have:

|Gk+1
l (D log f q, ..., Dl logDf q)|0 ≤ Ck!Al(l!)s+ε.

Putting together all these estimates:

k∑
l=1

|Dk+1−l logDh−1 ◦ f q(Df q)k+1−lGk+1
l |0 ≤

C

Q
Ak((k + 1)!)s+1+ε,

so, also:

|Dk+1 logDf q|0 ≤
C

Q
Ak(k + 1)!s+1+ε.

Choosing A > C we have proved the estimate for k+1. Then, the proof of Theorem
1 follows by induction.
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2.3 Sketch of the proof of Theorem 2

Here we give a sketch of the proof of Theorem 2. We proceed by induction as in
Theorem 1. So, suppose that we have that f is a s-Gevrey function that is Ck

conjugate to a rotation: we want to prove that f is Ck+1 conjugate to a rotation.
In particular, we want to prove by induction that for k ≥ 1:

sup
n∈N
|Dk+1 logDfn|0 ≤ Ck+1||αn||, (75)

for some C > 0 and with α = ρ(f). So, the proof can be divided in four steps:

Step 1 Suppose that (75) holds for some k ∈ N. Then, in a similar way of the
Main Lemma, there exist A > 0, t > 0 such that, for h ∈ N:

|Dk+h logDfn|0 ≤ Ak+h((k + h)!)t+hnh.

Step 2 In Step 2 we improve in the estimate of Step 1, the growth of the part that
depends on the iterates of f . In particular, if q is a convergent of α, then there
exist C > 0, ν > t such that, for h ≥ 1:

|Dk+h logDf q|0 ≤ Ak+h((k + h)!)ν+hq
h
4 .

To prove this, note that for h small this is true: in fact, we have proved above
that, for h < k

2
, the term q

h
4 can be replaced by the term q in the inequality. The

inequality is true also for q < k2 (it suffices to choose ν big enough).

Then, we prove that, if the inequality is true for l < h, and if it is true for l = h,
qi < qn for some n ∈ N, then it is true also for qn.

It follows by:

Dk+h logDf qn = Dk+h logDfanqn−1+qn−2

= Dk+h logDfanqn−1 ◦ f qn−2(Df qn−2)k+h +Dk+h logDf qn−2

+
k+h−1∑
l=1

Dk+h−l logDfanqn−1 ◦ f qn−2(Df qn−2)k+h−lGk+h
l ,

and by the usual estimates for the polynomials Gk+h
l and for Dk+h logDfaqn−1 .

Step 3 Let s < 1, and define δn := s log qn+1

log qn
. Using Hadamard’s inequality, we prove

that, for h = 1, 2:

|Dk+h logDf qn|0 ≤ Ak+h((k + h)!)ν+h 1

q1−δn
n+1

2(log 1
δn

)2 . (76)

In fact, let tn ∈ N such that 2tn = [ 1
δn

] + 1. Then, by Hadamard’s inequality and
Step 2:

|Dk+2tn logDf qn|0 ≤ 4tAk+2tn ((k + 2tn)!)ν+2tn q
2tn
4
n

q
1
2
n+1

,
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|Dk+2tn−1

logDf qn|0 ≤ 4tn+(tn−1)Ak+2tn ((k + 2tn)!)ν+2tn q
2tn−1

4
n

q
1
2

+ 1
4

n+1

,

and so, iterating we prove (76).

Step 4 By the assumption

log qn+1 = O((log qn)s)

with s < 2, we have:

sup
n∈N

1

q1−δn
n+1

2(log 1
δn

)2 < +∞, (77)

∑
n≥0

qδn+1

qn
< +∞. (78)

Let n ∈ N, and write n as:

n =
∑

0≤i≤j

biqi,

with bi <
qi+1

qi
, n < qj+1. Then, similarly as in Theorem 1, for h = 1, 2, by (77) and

(78):

|Dk+h logDfn|0 ≤ C
∑
i≥0

qi|Dk+h logDf qi |0 <∞

In particular, f is Ck+2 conjugate to a rotation.

Step 5 As in Theorem 1, the fact that f is Ck+2 conjugate to a rotation, implies
that:

sup
n∈N
|Dk+1 logDfn|0 ≤ Ck+1||αn||.

Then, we proceed by induction.
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2.4 Questions

We prove the theorem using a Diophantine arithmetical condition. Moreover, using
the existence of Gevrey functions of compact support, proceeding as in [39], it is
easy to find arithmetical conditions such that in general the C1 conjugacy does
not hold (for example imposing lim sup log qn+1

qn
=∞). However, a natural question

regard the best arithmetical condition.

In the proof we have a loss of regularity of type 1 + ε. However, we don’t know if it
is the optimal one. For example, in the analytic case the term 1+ ε is not necessary
(the diffeomorphism h is also analytic).

3 Topology of Diophantine sets

In this second part, we study the topolgy of Diophantine sets, constructing many
examples of isolated points in these sets, and showing that, for large parameters,
Diophantine sets are Cantor sets.

3.1 Basic definitions and remarks

3.1.1 Definitions

• N := {1, 2, 3, ...}, N0 := {0, 1, 2, 3, ...}

• Given a, b ∈ Z − {0}, we indicate with (a, b) the maximum common divisor
of a and b.

• Let α be a real number. We indicate with [α] the integral part of α, with {α}
the fractional part of α .

• Given E⊆ R, we indicate with I(E) the set of isolated points of E.

• Given E⊆ R, we indicate with A(E) the set of accumulation points of E.

• We say that E⊆ R is perfect if A(E)=E.

• Given a Borel set E⊆ R we denote with µ(E) the Lebesgue measure of E.

• A topological space X is a totally disconnected space if the points are the
only connected subsets of X.

• X ⊆ R is a Cantor set if it is closed, totally disconnected and perfect.

• For E ⊆ Rn, dimH E is the Hausdorff dimension of E.
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• Given α ∈ R we define:
||α|| := min

p∈Z
|α− p|

• Given γ > 0, τ ≥ 1, we define the (γ, τ) Diophantine points in (0; 1) as the
numbers in the set:

Dγ,τ := {α ∈ (0; 1) : ||qα|| ≥ γ

qτ
∀q ∈ N}

•
DR
γ,τ := {α ∈ R : ||qα|| ≥ γ

qτ
∀q ∈ N},

Dτ :=
⋃
γ>0

Dγ,τ , D :=
⋃
τ≥1

Dτ .

We call D the set of Diophantine numbers.

• Given τ ≥ 1, α ∈ R, we define:

γ(α, τ) := inf
q∈N

qτ ||qα||

• Given α ∈ R we define:

τ(α) := inf{τ ≥ 1 : γ(α, τ) > 0}

• Given an irrational number α = [a0; a1, ...] := a0 + 1
a1+ 1

a2+...

, we denote with

{pn
qn
}n∈N0 the convergents of α, αn := [an; an+1, ...]

12.

• We indicate with [a1, a2, a3, ...] := 1
a1+ 1

a2+
1

a3+...

.

• Let α be an irrational number. We define:

γn(α, τ) := qτn||qnα|| = qτn|qnα− pn|

• Let τ ≥ 1,
γ−(α, τ) := inf

n∈2N0

γn(α, τ),

γ+(α, τ) := inf
n∈2N0+1

γn(α, τ),

Dτ := {α ∈ Dτ : τ(α) = τ},

Iτ := {α ∈ Dτ : ∃n 6≡ m (mod2), γn(α, τ) = γm(α, τ) = γ(α, τ)}.

I := ∪τ≥1Iτ
12for information about continued fractions see [4],[8],[15]

51



• Let p ∈ Z, q ∈ N, γ > 0, τ ≥ 1. We define: Iγ,τ (p, q) :=
(
p
q
− γ

qτ+1 ; p
q

+ γ
qτ+1

)
.

• Let τ ≥ 1,
Dτ := {α ∈ Dτ : τ(α) = τ},

I1
γ,τ := {α ∈ Dγ,τ : ∃n 6≡ m (mod2), γn(α, τ) = γm(α, τ) = γ(α, τ)},

I2
γ,τ := {α ∈ Dγ,τ : ∃n ∈ N0, γn(α, τ) = γ(α, τ)} ∩ (I1

γ,τ )
c,

I3
γ,τ := I(Dγ,τ ) ∩ (I1

γ,τ ∪ I2
γ,τ )

c,

I1
τ :=

⋃
γ>0

I1
γ,τ ,

I2
τ :=

⋃
γ>0

I2
γ,τ ,

I3
τ :=

⋃
γ>0

I3
γ,τ .

3.1.2 Remarks

(a) α ∈ Dγ,τ ⇐⇒ 1− α ∈ Dγ,τ .

(b) γ(α, τ) ≤ min{α, 1− α}.
(c) Fixed τ ≥ 1, γ(., τ) : Dτ → (0, 1

2
).

(d) DR
γ,τ =

⋃
n∈Z(Dγ,τ + n), thus we can restrict to study the Diophantine

points in (0, 1).

(e) {
γn(α, τ) = qτn

αn+1qn+qn−1
,

1
γn(α,τ)

= qn+1

qτn
+ 1

αn+2q
τ−1
n

(79)

(f) γ(α, τ) = infn∈N0 γn(α, τ).

(g) If τ < τ(α), then γ(α, τ) = 0; if τ > τ(α) then γ(α, τ) > 0. Moreover,
for τ > τ(α) the inf is a minimum.

(h) α ∈ Dτ ⇐⇒ τ(α) = τ and γ(α, τ) > 0.

(i) If α ∈ Iτ , then α is an isolated point of Dγ,τ .

(j) The cardinality of Iτ is at most countable.

(k) µ(Dτ ) = 0 for all τ ≥ 1.

(l) γ0(α, τ) = {α}, in particular γ0(α, τ) does not depend on τ .
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(m) Let p
q

a rational number.

α ∈ Dτ ⇐⇒
{
α +

p

q

}
∈ Dτ , (80)

α ∈ Dτ ⇐⇒
{
α +

p

q

}
∈ Dτ . (81)

(n) If τ > τ(α), γ−(α, τ) = γ+(α, τ), then α ∈ Iτ .
(o) α ∈ Dτ ⇐⇒ qn+1 = O(qτn).

(p) Let α be an irrational number. We define:

γn(α, τ) := qτn||qnα|| = qτn|qnα− pn|

Proof (a), (d) are clear, (b) follows by definition of γ(α, τ) and by remark (a). (c)
follows by (b) (α is in (0; 1)).

(e): the first formula follows by properties of continued fractions, moreover:

1

γn(α, τ)
=
αn+1qn + qn−1

qτn
=

(an+1qn + qn−1) + qn
αn+2

qτn
=
qn+1

qτn
+

1

αn+2qτ−1
n

. (82)

(f): follows by:
||qnα|| = min

1≤q≤qn
||qα|| (83)

and by definition of γ(α, τ).

(g): The first part is clear. To prove that for τ > τ(α) the inf is a minimum, take
τ(α) < τ ′ < τ , then γ(α, τ ′) > 0 and

lim
n→+∞

qτn||qnα|| = lim
n→+∞

qτ−τ
′

n qτ
′

n ||qnα|| ≥ lim
n→+∞

γ(α, τ ′)qτ−τ
′

n = +∞. (84)

By (84) there exists N ∈ N such that for all n ≥ N ,

γn(α, τ) > γ(α, τ). (85)

Therefore the inf is reached and it is a minimum.

(h): It is obvious.

(i): If α is in Iτ , there exist n even and m odd such that:

γ(α, τ) = γn(α, τ) = γm(α, τ). (86)

So α is separated by the two intervals Iγ,τ (pn, qn) and Iγ,τ (pm, qm). Then, noting
that Iγ,τ (p, q) ⊆ Dc

γ,τ for all p ∈ Z, q ∈ N, we get (i).
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(j): If γn(α, τ) = γm(α, τ) = γ(α, τ), with n even, m odd, then:

α =
pn
qn

+

pm
qm
− pn

qn

1 + ( qn
qm

)τ+1
, (87)

γ =

pm
qm
− pn

qn
1

qτ+1
n

+ 1
qτ+1
m

, (88)

so Iτ is at most countable.

(k): µ(D1) = 0 (D1 is the set of numbers with bounded coefficients of the continued
fraction). Moreover µ(Dτ ) = 1 for all τ > 1 (because of µ(Dc

γ,τ ) = O(γ)). For
1 < τ ′ < τ we have Dτ ⊆ Dc

τ ′ . So, for τ > 1: µ (Dτ ) = 0.

(l), (m): They are obvious.

(n): Because of τ > τ(α), as in the proof of (g) we get that γ−(α, τ) and γ+(α, τ)
are reached, so there exist n even and m odd with γ−(α, τ) = γn(α, τ), γ+(α, τ) =
γm(α, τ). Now (n) follows by definition of Iτ and by γ−(α, τ) = γ+(α, τ) = γ(α, τ).

(o): It follows by (e) and (f).

3.2 Basic properties of Diophantine sets

Let us recall some simple facts about Diophantine sets. The case τ = 1 is quite
different to the others.

Remark 5 If 0 < γ′ ≤ γ, τ ′ ≥ τ ≥ 1, then Dγ,τ ⊆ Dγ′,τ ′ . Moreover, Dγ,τ is
compact and totally disconnected (because of Dγ,τ ∩Q = ∅).

Remark 6 D1 is the set of irrational numbers with bounded coefficients of their
continued fractions.

Proof It follows by (79).

Theorem 6 (Hurwitz)(see [39]) Let α be an irrational number. There exist in-
fitely many q ∈ N such that

q||qα|| < 1√
5q
. (89)

Theorem 7 (Borel)(see [34]) Given a function ψ : N→ N, define

A(ψ) := {[a0; a1, ..., an, ...] : 0 < an < ψ(n)}.

Then: ∑
n∈N

1

ψ(n)
<∞⇒ µ(A) > 0, (90)

∑
n∈N

1

ψ(n)
=∞⇒ µ(A) = 0. (91)
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Remark 7 By Hurwitz’s theorem, if γ > 1√
5
, then Dγ,1 = ∅.

Remark 8 For all γ ∈ (0, 1
2
) we have µ(Dγ,1) = 0. In particular µ(D1) = 0.

Proof It follows by (79) and Borel’s theorem.

Unless D1 has zero measure, it has positive Hasdorff dimension. In fact, the follow-
ing holds:

Theorem 8 (Jarnik)(see [71]) dimH(D1) = 1.

Theorem 9 (see [36]) Let γ > 1
3
. Then the set:

{α ∈ (0, 1) : lim inf q||qα|| ≥ γ} (92)

is at most countable. In particular, for γ > 1
3
Dγ,1 is at most countable.

The case τ > 1 is quite different.

Remark 9 Let τ > 1. Then, for γ > 0 we have

µ(Dc
γ,τ ) = O(γ). (93)

In particular, µ(Dτ ) = 1 for all τ > 1.

Proof For τ > 1:

µ(Dc
γ,τ ) ≤

∑
q∈N

∑
0≤p≤q−1

2γ

qτ+1
= 2γ

∑
q∈N

1

qτ
= O(γ). (94)

Corollary 2

µ

(⋂
τ>1

Dτ

)
= 1. (95)
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3.3 Isolated points of Diophantine sets

In this section we give the proof of the results. We start by proving the Proposition
we state in the introduction.

Proof Fix α := ᾱ + n. It is easy to verify that α is such that:



α =
1

α
+ n , nτ = α ,

α = [n;n, n, n, ....] := n+
1

n+ 1
n+...

,

p0 = n, q0 = 1, p1 = n2 + 1, q1 = n, αk = α ∀k ≥ 1, qk+1 = pk (∀k ≥ 0) .
(96)

For k = 0: ∣∣∣α− p0

q0

∣∣∣ (96)
= α− n (96)

=
1

α
= γ. (97)

For k ≥ 1, from (96) and the fact that pk/qk ≤ p1/q1 and qk ≥ q1, we obtain:

qk+1

qτk
+

1

ak+2q
τ−1
k

=
pk
qk

1

qτ−1
k

+
1

αqτ−1
k

≤ p1

q1

1

qτ−1
1

+
1

αqτ−1
1

=
n2 + 1

nτ
+

1

nτ−1α

=
n2 + 1

α
+

n

α2
=

1

α

(
n2 + 1 +

n

α

)
=

1

α
(αn+ 1) = n+

1

α
= α

=
1

γ
,

that, togheter with (97), it shows that α ∈ Dγ,τ + n.
From (96), ∣∣∣α− p1

q1

∣∣∣ =
p1

q1

− α =
n2 + 1

n
− α =

1

n
+ n− α

=
1

n
− 1

α
=

1

nα2
=

1

α

1

q1nτ
=

1

αqτ+1
1

=
γ

qτ+1
1

,
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that shows, togheter with (97), that α divides the two intervals Iγ,τ (p0, q0) and

Iγ,τ (p1, q1), with Iγ,τ (p, q) :=
(
p
q
− γ

qτ+1 ; p
q

+ γ
qτ+1

)
. So α ∈ Dγ,τ + n implies that α

is an isolated point of Dγ,τ + n, i.e. ᾱ is an isolated point of Dγ,τ .

Before proving Theorem A we need some simple lemma. So we prove at first the
continuity of the functions γ(α, τ), γ−(α, τ), γ+(α, τ) as functions of τ .

Lemma 11 Let a ∈ R, fn ≥ 0 be continuous and increasing functions in [a,+∞)
such that:

∀x > a, lim
n→+∞

fn(x) = +∞. (98)

Define
f(x) := inf

n∈N
fn(x). (99)

If f is bounded, then f ∈ C([a,+∞)).

Proof Observe that f is increasing because fn are increasing. Let C > 0 be such
that f(x) ≤ C for all x ∈ [a,+∞). Take x ∈ R such that a < x. By (29) there exists
N ∈ N such that for all n ≥ N , fn(x) > C > 0. For y ≥ x, f(y) = min0≤n<N fn(y),
so f is continuous and increasing in (x,+∞) and f ∈ C((a,+∞)). It remains to
show that f is continuous in a, i.e. f(a) = limx→a f(x). In fact, for all ε > 0 there
exists n ∈ N such that

0 < fn(a)− f(a) < ε (100)

and by continuity of fn there exists δ > 0 such that for 0 < x− a < δ we have:

0 < fn(x)− fn(a) < ε. (101)

So, for 0 < x− a < δ:

0 ≤ f(x)− f(a) ≤ fn(x)− fn(a) + fn(a)− f(a) < 2ε, (102)

that proves the continuity in a.

Corollary 3 Fixed α ∈ D, the functions γ(α, τ), γ−(α, τ), γ+(α, τ) are continuous
and increasing for τ ≥ τ(α).

Proof We prove the corollary for γ(α, τ) (the proof for γ−(α, τ), γ+(α, τ) are sim-
ilar). Observe that γn(α, τ) ≤ 1

2
. Consider the γn(α, τ) as functions of τ . For

τ > τ(α) we have
lim

n→+∞
γn(α, τ) = +∞ (103)

Moreover the γn(α, τ) are increasing with respect to τ , so the hypothesis of Lemma
12 are satisfied.

Now we give a simple sufficient condition such that a Diophantine number belongs
to Iτ for some τ ≥ τ(α).
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Lemma 12 Let α ∈ D ∩ (0; 1
2
) be such that there exists τ ′ > τ(α) with:

γ−(α, τ ′) ≥ γ+(α, τ ′) (104)

Then there exists τ ≥ τ ′ such that α ∈ Iτ

Proof If:
γ−(α, τ ′) = γ+(α, τ ′) (105)

then α ∈ Iτ ′ by remark (g) and because of τ ′ > τ(α). Now consider the case:

γ−(α, τ ′) > γ+(α, τ ′) (106)

Observe that:
γ−(α, τ) ≤ γ0(α, τ) ≤ max{α, 1− α}. (107)

Moreover
lim

τ→+∞
γ+(α, τ) = +∞ (108)

because it is an increasing function and because of α ∈ (0, 1
2
). So, by continuity

of γ−(α, τ), γ+(α, τ) and by (107), (108) there exists τ > τ ′ such that γ−(α, τ) =
γ+(α, τ), so α ∈ Iτ by remark (g).

Remark 10 Note that the condition (104) is satisfied for ᾱ defined in the Propo-
sition. Moreover, for this ᾱ there exists a unique τ such that γ−(ᾱ, τ) = γ+(ᾱ, τ).

Proof (Theorem A) Fixed τ ≥ 1, γ ∈ (0; 1
2
), consider the map Φγ,τ defined in

the statement of Teorem A. Let α ∈ Dγ,τ . Observe that, if α = [a1, a2, ...] then:

Φ(α) = [2,

[
2τ

3

γ

]
, a1, a2, ...] =: [b1, b2, b3, ...]. (109)

We denote with qn the denominator of the n-th convergent to Φ(α), with βn the
n-th residue of Φ(α) and with q′n the denominator of the n-th convergent to α. We
recall that:

1

γn(Φ(α), τ)
=
qn+1

qτn
+

1

βn+2qτ+1
n

, (110)

and
qn+1

qτn
+

1

βn+2qτ+1
n

=
qn−1

qτn
+
bn+1

qτ−1
n

+
1

βn+2qτ+1
n

. (111)

So, by (111): 

1

γ0(Φ(α), τ)
<
[3

γ

]
1

γ1(Φ(α), τ)
>
[3

γ

]
1

γn(Φ(α), τ)
<

2

γ
for n ≥ 2.

(112)
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In fact:
1

γ0(Φ(α), τ)
= q1 +

1

β2

= 2 +
1

β2

< 3 <
[3

γ

]
, (113)

1

γ1(Φ(α), τ)
>
q2

qτ1
=

2
[
2τ 3

γ

]
+ 1

2τ
≥
[3

γ

]
, (114)

while, for n ≥ 2:

1

γn(Φ(α), τ)
=
qn−1

qτn
+
an−1

qτ−1
n

+
1

αn−2qτ+1
n

< (115)

< 1 +
an−1

q
′(τ−1)
n−2

< 1 +
1

γ
<
[3

γ

]
, (116)

by qn > q′n−2. By (112), for all α ∈ Dγ,τ , Φ(α) satisfies the hypothesis of Lemma
15. In fact the first coefficient of Φ(α) is greater then 1, moreover:

γ−(Φ(α), τ) >
[γ

3

]
> γ+(Φ(α), τ). (117)

So, given α ∈ Dγ,τ , Φ(α) is a Diophantine number equivalent to α that is in Iτ ′ for

some τ ′ > τ . From the arbitrariness of γ, τ , Theorem A follows.

Corollary 4 For all τ ≥ 1 we have:

µ
( ⋃
τ ′≥τ

Iτ ′
)
> 0. (118)

Proof It suffices to note that for all γ ∈ (0, 1
2
), τ ≥ 1, the map: Φγ,τ : Dγ,τ → D is

Lipschitz and that µ(Dγ,τ ) > 0 for small γ.

Remark 11 Suppose that α ∈ D such that γ−(α, τ) = γ+(α, τ) for some τ > τ(α).
Then α is an isolated point of Dγ(α,τ),τ .

Proof In fact, for τ > τ(α) γ−(α, τ) and γ+(α, τ) are achieved for some n even
and m odd.

Remark 12 If γ−(α, τ) = γ+(α, τ) with α ∈ D and τ = τ(α), in general α is not
an isolated point of Dγ(α,τ),τ .
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Proof For example, take τ = 2, γ = 1
4
. We define α = [a1, a2, ...] iteratively. a1 := 2,

and for n ≥ 1:

an+1 :=
qτ−1
n

γ
− 3 (119)

with q−1 = 0, q0 = 1, qn = an−1qn−1 + qn−2 for n ≥ 1. Then it is easy to check that
the an are strictly increasing, moreover τ(α) = τ = 2, γ(α, τ(α)) = γ = 1

4
. For

n ≥ 2 define:
δn := [a1, a2, ..., an−1, an + 1, 1, 1, 1, ...]. (120)

We show that δk ∈ Dγ,τ and δk → α. For n < k − 1 we have:

1

γn(δk, τ)
<
an+1

qτ−1
n

+
qn−1

qτn
+

1

qτ−1
n

=
1

γ
+
qn−1

qτn
− 2

qτ−1
n

<
1

γ
(121)

For n > k − 1 it is clear that
1

γn(δk, τ)
< 2. (122)

For n = k − 1:

1

γn(δk, τ)
<
an+1 + 1

qτ−1
n

+
qn−1

qτn
+

1

qτ−1
n

=
1

γ
+
qn−1

qτn
− 1

qτ−1
n

<
1

γ
(123)

So we have proved that δk ∈ Dγ,τ for all k ≥ 2. Moreover δk → α, so α is not an
isolated point of Dγ,τ .

The number constructed in the proof of Remark (12) is not an isolated point
because the sequence 1

γn(α,τ)
converges too slowly to 1

γ
. Moreover, observe that

γ(α, τ) is not achieved (γn(α, τ) < γ for all n).

Proof (Theorem B) We construct α = [a1, a2, ...] with an defined iteratively. We
fix: 

a1 = 3, a2 =
[
3τ1+1

]
,

q0 = 1, q1 = a1, q2 = a1a2 + 1

(124)

Define:
C1 := max

k=0,1

qk+1

qτ2k
=

q2

qτ21

> 3. (125)

For n ≥ 3 let:

b(1)
n :=

[
(C1

2qn−1)τ2−1
]
. (126)

As long as n is even or

b
(1)
n

qτ1−1
n−1

≥ C1 − 1, (127)

define
an = 1. (128)
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Because of qn−1 > 2n−1 and τ1 > τ2, there exists n1 such that:

b
(1)
n1

qτ1−1
n1−1

< C1 − 1. (129)

For such n1, define
an1 = bn1 . (130)

Define:
C2 := max

k≤n1

ak

qτ3−1
k−1

=
an1

qτ3−1
n1−1

> C1
2 − 1 (131)

For n > n1, define:

b(2)
n :=

[
(C2

2qn−1)τ3−1]. (132)

As long as n is odd or

b
(2)
n

qτ2−1
n−1

≥ C2 − 1 (133)

or
b

(2)
n

qτ1−1
n−1

≥ C1 − 1, (134)

define an := 1. define an = 1. Because of qn > 2n and τ3 < τ2 < τ1, there exists
n2 > n1 such that all these condition are not satisfied For this n2 define

an2 = bn2 . (135)

So, iterating this costruction, we define α := [a1, a2, ...]. By definition of an we get
that, for n even:

γ−(α, τn) < γ+(α, τn), (136)

and for n odd:
γ−(α, τn) > γ+(α, τn). (137)

In fact, for n even we have:

γ(α, τn) = γ−(α, τn) ≥ Cn−1 > γ+(α, τn) (138)

and, for n odd:
γ(α, τn) = γ+(α, τn) ≥ Cn−1 > γ−(α, τn) (139)

Moreover, it is easy to verify that τ(α) = τ (using remark (o)), so α ∈ Dτ̄ for
all τ̄ > τ . By Lemma 15, there is a sequence {τ̄n}n∈N with τn+1 < τ̄n < τn with
α ∈ Iτ̄n .

As an immediate consequence of Theorem B we have the following:
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Corollary 5 The set

T :=
{
τ ≥ 1 : Iτ 6= ∅

}
(140)

is dense in [1,+∞).

Remark 13 Iτ = ∅ for all τ ∈ Q.

Proof It follows by (87).

Remark 14 I is strictly contained in D.

Proof Define α := [3, 1, 1, 1, ...], so α ∈ D1. For τ ≥ 1, n ≥ 1:

1

γ0(α, τ)
=

1

γ0(α, 1)
> 3, (141)

1

γn(α, τ)
=

1

qτ−1
n

+
qn−1

qτn
+

1

αn+2qτ−1
n

<
3

qτ−1
n

(142)

because of qn < qn−1. So, for τ ≥ 1 we have:

γ−(α, τ) <
1

3
≤ γ+(α, τ) (143)

Then, for all τ ≥ 1 we have α 6∈ Iτ .

Remark 15 Given α ∈ D, the set:

E(α) := {τ ≥ 1 : α ∈ Iτ} (144)

is discrete.

Proof Suppose τ ∈ E(α). Let n := min{h ∈ N0 : γh(α, τ) = γ(α, τ)} Because of
γ+(α,−), γ−(α,−) ∈ C([τ(α),+∞)), it is easy to verify that there exists δ > 0
such that

γ(α, τ ′) = γn(α, τ ′) < γk(α, τ
′) (145)

for all τ ′ ∈ (τ, τ + δ), k 6= n. If τ = τ(α), then it is clear that α 6∈ Iτ ′ for all τ ′ < τ .
If τ > τ(α), it is well defined also:

m := max {h ∈ N0 : γh(α, τ) = γ(α, τ)} . (146)

Then, it is easy to check that there exists δ′ > 0 such that:

γ(α, τ ′) = γm(α, τ ′) < γk(α, τ
′) (147)

for all τ ′ ∈ (τ − δ′, τ), k 6= m. So, by definition of Iτ we have α 6∈ Iτ ′ for all
τ ′ ∈ (τ − δ′, τ) ∪ (τ, τ + δ).

Remark 16 If α ∈ D, τ = τ(α) and there exists a strictly decreasing sequence
{τn}n∈N with τn ↘ τ and with α ∈ Iτn for all n ∈ N, then α 6∈ Iτ .

Proof It follows directly by Remark (15).
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3.4 Diophantine sets in general are Cantor sets

In the first part of this section, we suppose without loss of generality that n is
always even. In fact, for n odd it suffices to consider 1 − α We want to prove
Theorem C, i.e. for τ > 3+

√
17

2
:

µ

({
0 < γ <

1

2
: I(Dγ,τ ) 6= ∅

})
= 0.

By Remark (j) it is enough to prove it for I2
γ,τ and I3

γ,τ . Observe that the isolated
points of type 2,3 are obtained by infinitely many intersections of intervals centered
in rational numbers p

q
with length 2γ

qτ+1 . Thus, the first step is to show that, given

α ∈ Dγ,τ , it is enough (up to a set of measure zero and for τ big enough) to control
the intersection of intervals centred in the convergents. The second step will be to
show that, if intervals centred in the convergents intersects, then the coefficients
of the continued fractions cannot grow too. In the final step we prove that, when
intervals centred in the convergents do not intersect and for big convergents, the
interval between two subsequent convergentes (with the same parity) contains a
diophantine subset with positive mesure.

Lemma 13 Let γ > 0, τ > 1, α ∈ Dγ,τ , pn
qn

the convergents to α,

In :=

(
pn
qn
,
pn+2

qn+2

)
.

Suppose that ∃N ∈ N such that, for all n > N even:

pn
qn

+
γ

qτ+1
n

<
pn+2

qn+2

− γ

qτ+1
n+2

. (148)

For n > N define

An :=

(
pn
qn

+
γ

qτ+1
n

,
pn+2

qn+2

− γ

qτ+1
n+2

)
.

Moreover, suppose that for every n (even):

α− pn
qn

>
γ

qτ+1
n

(149)

Then, there exists N1 ∈ N such that, for all n > N1:

p

q
6∈ In =⇒ p

q
+

γ

qτ+1
,
p

q
− γ

qτ+1
6∈ An.

Proof Note that it is enough to verify the inequality when p
q
< α. In fact the

inequality is trivial if p
q
> α (because of α ∈ Dγ,τ implies p

q
− γ

qτ+1 ≥ α > pn+2

qn+2
+ γ

qτ+1
n+2

by (12)). By (148) it follows that An ∩Am = ∅ for n 6= m, with n,m > N even. By

α− pn
qn

>
γ

qτ+1
n
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for n even, we get

max
2n≤N

p2n

q2n

+
γ

qτ+1
2n

=: C < α,

from which it follows that there exists N1 ∈ N such that for n even, n > N1:

pn
qn
− γ

qτ+1
n

> C.

If p
q

= pm
qm
6∈ In is an even convergent to α with n > N2 := max{N,N1} then, for

m ≤ N even:
pm
qm

<
pn
qn
.

Moreover, by definition of N1 it follows that:

pm
qm

+
γ

qτ+1
m

≤ C <
pn
qn
− γ

qτ+1
n

,

from which it follows that the Lemma holds if p
q

= pm
qm

is an even convergent to α
with m ≤ N . If m > N and n > m is even:

pm
qm

+
γ

qτ+1
m

<
pm+2

qm+2

− γ

qτ+1
m+2

≤ pn
qn

+
γ

qτ+1
n

while, for n < m even:

pm
qm
− γ

qτ+1
m

>
pm−2

qm−2

+
γ

qτ+1
m−2

≥ pn+2

qn+2

+
γ

qτ+1
n+2

.

So Lemma 13 is true if p
q

is an even convergent to α. Thus, Lemma 13 remains
to be verified when p

q
is not a convergent to α. It is no restrictive to suppose that

there exists m 6= n even for which p
q
∈ Im, otherwise Lemma 13 is trivial. Now we

show that, for m big enough:

p

q
+

γ

qτ+1
,
p

q
− γ

qτ+1
∈
(
pm
qm
− γ

qτ+1
m

,
pm+2

qm+2

+
γ

qτ+1
m+2

)
from which Lemma 13 follows immediately by (12). By the properties of Farey
sequence, for the rationals p

q
∈ Im we have q > qm, so the inequality:

p

q
− γ

qτ+1
>
pm
qm
− γ

qτ+1
m

holds. It remains to show that:

p

q
+

γ

qτ+1
<
pm+2

qm+2

+
γ

qτ+1
m+2

.

This inequality holds for q ≥ qm+2

2
and m big enough. In fact, in that case:

pm+2

qm+2

− p

q
≥ 1

qqm+2

>
γ

qτ+1
− γ

qτ+1
m+2

,
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that is true for m big enough (because of τ > 1). So, we can assume that qm < q <
qm+2

2
. Because we have assumed that p

q
is not a convergent, by Legendre’s Theorem

(see [39]), we have:

α− p

q
>

1

2q2
,

while, because pm
qm

is a convergent, we have:

α− pm+2

qm+2

<
1

q2
m+2

.

So, putting together the two inequalities, if q < qm+2

2
:

pm+2

qm+2

− p

q
=
pm+2

qm+2

− α + α− p

q
>

1

2q2
− 1

q2
m+2

> − γ

qτ+1
m+2

+
γ

qτ+1
⇐⇒

1

2q2
− γ

qτ+1
>

1

q2
m+2

− γ

qτ+1
m+2

,

that is true for m big enough (it follows by qm < q < qm+2

2
). So Lemma 13 is proved.

We know by Farey’s sequence that for p
q
∈ In, q > qn+1. So, there are a finite

numbers of p
q
∈ In with q < qn+2. In the next Lemma we want to control the

distance between these numbers and pn+2

qn+2
− γ

qτ+1
n+2

.

Lemma 14 Let γ > 0, τ > 3, α ∈ Dγ,τ ,
pn
qn

the convergents to α. There exists
N1 ∈ N such that, for n > N1:

p

q
∈ In, q < qn+2 =⇒ p

q
+

γ

qτ+1
<
pn+2

qn+2

− γ

qτ+1
n+2

− 2γ

qτ−1
n+2

.

Proof Let n > N , p
q
∈ In, so by definition of convergents and the fact that

pn
qn
< p

q
< pn+2

qn+2
we get that p

q
is not a convergent. If q ≥ qn+2

2
we get:

pn+2

qn+2

− p

q
≥ 1

qqn+2

≥ 1

q2
n+2

>
γ2τ+1

qτ+1
n+2

+
γ

qτ+1
n+2

+
2γ

qτ−1
n+2

≥ γ

qτ+1
+

γ

qτ+1
n+2

+
2γ

qτ−1
n+2

for n big enough (because of τ > 3). So, for n big enough, the inequality remain to
be proved for q < qn+2

2
. In that case:

pn+2

qn+2

− p

q
=
pn+2

qn+2

− α + α− p

q
>

1

2q2
− 1

q2
n+2

>
γ

qτ+1
+

γ

qτ+1
n+2

+
2γ

qτ−1
n+2

⇐⇒

1

2q2
− γ

qτ+1
>

1

q2
n+2

+
γ

qτ+1
n+2

+
2γ

qτ−1
n+2

.
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From the fact that

G(x) :=
1

2x2
− γ

xτ+1

is a decreasing function for x big enough, it is enough to show the inequality for
q = [ qn+2

2
]. In this case we get:

1

2q2
− 1

q2
n+2

≥ 2

q2
n+2

− 1

q2
n+2

=
1

q2
n+2

>
γ

qτ+1
+

γ

qτ+1
n+2

+
2γ

qτ−1
n+2

for n big enough (for τ > 3), so ∃N1 ∈ N such that, when n > N1 is even the
inequality is verified.

Lemma 15 Let τ > 3 , α = [a1, a2, ...] ∈ Dγ,τ ,
pn
qn

the convergents to α, then
∃N ∈ N such that for all n > N even:

µ

 ⋃
p
q
∈In,q≥qn+2

(
p

q
− γ

qτ+1
,
p

q
+

γ

qτ+1

) <
2γ

qτ−1
n+2

Proof

µ

 ⋃
p
q
∈In,q≥qn+2

(
p

q
− γ

qτ+1
,
p

q
+

γ

qτ+1

)
<
∑

q≥qn+2

∑
q pn
qn
<p<q

pn+2
qn+2

2γ

qτ+1
< 2γ

(
pn+2

qn+2

− pn
qn

) ∑
q≥qn+2

1

qτ

< 2γC

(
pn+2

qn+2

− pn
qn

)
1

qτ−1
n+2

= o

(
2γ

qτ−1
n+2

)
for some constant C > 0.

Lemma 16 Let τ > 1, γ > 0, α = [a1, a2, ...] ∈ Dγ,τ ,
pn
qn

be the convergents to α.
Then:

pn
qn

+
γ

qτ+1
n

<
pn+2

qn+2

− γ

qτ+1
n+2

⇐⇒ (150)

an+2 >
qn

γqn+1

1

( 1
γ
− qn+1

qτn
)− qnqn+1

qτ+1
n+2

− qn
qn+1

(151)
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Proof (150) is true if and only if:

pn+2

qn+2

− pn
qn

=
pn+2

qn+2

− pn+1

qn+1

+
pn+1

qn+1

− pn
qn

=

1

qnqn+1

− 1

qn+1qn+2

>
γ

qτ+1
n+2

+
γ

qτ+1
n

⇐⇒

1

qn+2qn+1

<
1

qnqn+1

− γ

qτ+1
n

− γ

qτ+1
n+2

⇐⇒

1

qn+2qn+1

<
γ

qnqn+1

(
1

γ
− qn+1

qτn
)− γ

qτ+1
n+2

⇐⇒

1

qn+2

<
γ

qn
(
1

γ
− qn+1

qτn
)− qn+1

γ

qτ+1
n+2

⇐⇒


1

γ
− qn+1

qτn
>
qnqn+1

qτ+1
n+2

,

qn+2 >
qn
γ

1

( 1
γ
− qn+1

qτn
)− qnqn+1

qτ+1
n+2

(152)

The first inequality is always true because of:

1

γ
− qn+1

qτn
>

1

αn+2qτ−1
n

>
qnqn+1

qτ+1
n+2

.

So Lemma 16 follows from the fact that qn+2 = an+2qn+1 + qn.

Lemma 17 Let τ > 1, for almost all γ ∈ (0, 1
2
) (for γ ≥ 1

2
Dγ,τ = ∅), given ε > 0

there exists C = C(ε, γ) > 0 such that:∣∣∣∣1γ − p

qτ

∣∣∣∣ ≥ C

qτ+1+ε

for all p
q
∈ Q.

Proof Define BC,k :=
{
α : |α− p

qτ
| ≥ C

qk
∀p
q
∈ Q

}
, so α ∈ Bc

C,k ⇐⇒ there exists

p
q

such that α ∈
(
p
q
− C

qk
, p
q

+ C
qk

)
. So, given N ∈ N we get:

µ
(
Bc
C,k ∩ (−N,N)

)
<
∑
q>0

∑
−Nqτ<p<Nqτ

2C

qk
<
∑
q>0

4NC

qk−τ
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and for k > τ + 1, C that tends to zero, also

µ
(
Bc
C,k ∩ (−N,N)

)
goes to zero. From the arbitrariness of N we obtain:

µ

(⋂
C>0

Bc
C,k

)
= 0

for k > τ + 1, from which follows Lemma 17.

Lemma 18 Let τ > 1, α = [a1, a2, ...] ∈ Dγ,τ , pn
qn

the convergents to α. The
inequality:

pn
qn

+
γ

qτ+1
n

<
pn+2

qn+2

− γ

qτ+1
n+2

− 2γ

qτ−1
n+2

(153)

is definitively verified if and only if definitively:

an+2 >
qn

γqn+1

1

( 1
γ
− qn+1

qτn
)− qnqn+1

qτ+1
n+2

− 2qnqn+1

qτ−1
n+2

− qn
qn+1

(154)

Remark 17 Observe that (154) is definitively true if:

lim sup
qn+1

qτn
<

1

γ
,

because in that case:

lim sup
qn

γqn+1

1

( 1
γ
− qn+1

qτn
)− qnqn+1

qτ+1
n+2

− 2qnqn+1

qτ−1
n+2

− qn
qn+1

< 1.

Thus, if for infinitely many n even (154) is not verified, for this n, with n big
enough:

qn+1

qτn
∼ 1

γ
,

so qn+1 ∼ qτn
γ

.

Proof
In a similar way of Lemma 16, (153) is verified if and only if:

1

γ
− qn+1

qτn
>
qnqn+1

qτ+1
n+2

+
2qnqn+1

qτ−1
n+2

,

qn+2 >
qn
γ

1

( 1
γ
− qn+1

qτn
)− qnqn+1

qτ+1
n+2

− 2qnqn+1

qτ−1
n+2

(155)
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Because of α ∈ Dγ,τ , the first of the two conditions is definitively verified, in fact,
for n big enough:

qnqn+1

qτ+1
n+2

+
2qnqn+1

qτ−1
n+2

<
1

αn+2qτ−1
n

<
1

γ
− qn+1

qτn

So, from the fact that qn+2 = an+2qn+1 + qn we are done.

Lemma 19 Let τ > 3+
√

17
2

. For almost all γ ∈ (0, 1
2
), if α = [a0, a1, ...] ∈ Dγ,τ ,for

n even big enough: (150) is true if and only if (153) is true.

Proof If (153) is true, then trivially (150) is true. So we have to show that for

almost all γ ∈ (0, 1
2
) and for all α ∈ Dγ,τ (with τ > 3+

√
17

2
) holds the converse.

So, suppose by contradiction that exists A ⊆ (C1, C2), with 0 < C1 < C2 <
1
2
,

µ(A) > 0 such that, for all γ ∈ A there exists α ∈ Dγ,τ that satisfies (150) but not
(153) for infinitely many n even. By Lemma 16 and Lemma 18 it follows that for
all γ in A there exists α ∈ Dγ,τ such that for infinitely many n even:

qn
γqn+1

1

( 1
γ
− qn+1

qτn
)− qnqn+1

qτ+1
n+2

− 2qnqn+1

qτ−1
n+2

− qn
qn+1

≥ an+2 >
qn

γqn+1

1

( 1
γ
− qn+1

qτn
)− qnqn+1

qτ+1
n+2

− qn
qn+1

,

and by Remark 17 it follows that, for this n:

qn+1 ∼
qτn
γ
.

So, for n big enough such that (150) holds but (153) doesn’t hold we get:

qτn
C2

< qn+1 <
qτn
C1

.

Moreover:

an+2 >
qn

γqn+1

1

( 1
γ
− qn+1

qτn
)− qnqn+1

qτ+1
n+2

− qn
qn+1

⇐⇒

an+2qn+1

qn
+ 1 =

qn+2

qn
>

1

1− γqn+1

qτn
− γqnqn+1

qτ+1
n+2

⇐⇒

1− γqn+1

qτn
− γqnqn+1

qτ+1
n+2

>
qn
qn+2

⇐⇒

γ <
1− qn

qn+2

qn+1

qτn
+ qnqn+1

qτ+1
n+2

In a similar way:

qn
γqn+1

1

( 1
γ
− qn+1

qτn
)− qnqn+1

qτ+1
n+2

− 2qnqn+1

qτ−1
n+2

− qn
qn+1

≥ an+2 ⇐⇒
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γ ≥
1− qn

qn+2

qn+1

qτn
+ qnqn+1

qτ+1
n+2

+ 2qnqn+1

qτ−1
n+2

.

Thus:
1− qn

qn+2

qn+1

qτn
+ qnqn+1

qτ+1
n+2

+ 2qnqn+1

qτ−1
n+2

≤ γ <
1− qn

qn+2

qn+1

qτn
+ qnqn+1

qτ+1
n+2

for infinitely many n even, so for all γ ∈ A there exist infinitely many q ∈ N such
that:

1− q
Np+q

p
qτ

+ qp
(Np+q)τ+1 + 2qp

(Np+q)τ−1

≤ γ <
1− q

Np+q
p
qτ

+ qp
(Np+q)τ+1

for some N ∈ N and some qτ

C2
< p < qτ

C1
. So for all M ∈ N:

A ⊆
⋃
q>M

⋃
qτ

C2
<p< qτ

C1

⋃
N>0

(
1− q

Np+q

p
qτ

+ qp
(Np+q)τ+1 + 2qp

(Np+q)τ−1

,
1− q

Np+q
p
qτ

+ qp
(Np+q)τ+1

)
,

moreover:
1− q

Np+q
p
qτ

+ qp
(Np+q)τ+1

−
1− q

Np+q

p
qτ

+ qp
(Np+q)τ+1 + 2qp

(Np+q)τ−1

<

2qp

(Np+ q)τ−1

(
1

p
qτ

+ qp
(Np+q)τ+1

)2

<
2qC2

2

N τ−1pτ−2

so we obtain:

m(A) ≤
∑
q>M

∑
qτ

C2
<p< qτ

C1

∑
N>0

2qC2
2

N τ−1pτ−2
<

β
∑
q>M

qτ+1

qτ2−2τ
= β

∑
q>M

1

qτ2−3τ−1

for some constant β > 0. From the hypothesis (τ > 3+
√

17
2

) we have that the series
converge, so for M that goes to infinity we get that µ(A) = 0, that contradicts the
hypothesis µ(A) > 0. Thus, for almost all γ ∈ (C1, C2) we have that: if (150) holds,
then (153) holds, and from the arbitrariness of C1, C2 Lemma 19 follows.

Proposition 1 Let τ > 3+
√

17
2

. For almost every 0 < γ < 1
2
: if α ∈ Dγ,τ , pn

qn
are

the convergents to α, α− pn
qn
> γ

qτ+1
n

, and definitively:

pn
qn

+
γ

qτ+1
n

<
pn+2

qn+2

− γ

qτ+1
n+2

,
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then α is an accumulation point of Dγ,τ and in particular, for n even big enough:

µ

(
Dγ,τ ∩

(
pn
qn
,
pn+2

qn+2

))
> 0

Proof By Lemma 13 it follows that ∃N1 ∈ N such that for n > N1 even:

p

q
6∈ In =⇒ p

q
+

γ

qτ+1
,
p

q
− γ

qτ+1
6∈ An,

and by Lemma 19 for almost all γ ∈ (0, 1
2
):

pn
qn

+
γ

qτ+1
n

<
pn+2

qn+2

− γ

qτ+1
n+2

=⇒ pn
qn

+
γ

qτ+1
n

<
pn+2

qn+2

− γ

qτ+1
n+2

− 2γ

qτ−1
n+2

,

therefore, up to a set of measure zero we can suppose that γ satisfies this property.
Moreover, by Lemma 14, for n even big enough, if p

q
∈ In, q < qn+2 then:

p

q
+

γ

qτ+1
<
pn+2

qn+2

− γ

qτ+1
n+2

− 2γ

qτ−1
n+2

.

So, if we define:

cn := max
p
q
∈[ pn
qn
,
pn+2
qn+2

),q<qn+2

p

q
+

γ

qτ+1
,

we obtain:

cn <
pn+2

qn+2

− 2γ

qτ−1
n+2

− γ

qτ+1
n+2

.

By Lemma 13, if n > N1 is even and p
q
6∈ In, then

p

q
+

γ

qτ+1
,
p

q
− γ

qτ+1
6∈ An,

so, if
p

q
<
pn
qn

=⇒ p

q
+

γ

qτ+1
<
pn
qn

+
γ

qτ+1
n

≤ cn,

while for p
q
> pn+2

qn+2
we get q > qn+2, so:

p

q
− γ

qτ+1
>
pn+2

qn+2

− γ

qτ+1
n+2

,

but from:

β ∈ Dc
γ,τ ⇐⇒ ∃p

q
∈ (0, 1) : β ∈

(
p

q
− γ

qτ+1
,
p

q
+

γ

qτ+1

)
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we get that for n > N1 even, holds:

µ
(
Dc
γ,τ ∩ In

)
≤ µ

 ⋃
p
q
∈[ pn
qn
,
pn+2
qn+2

),q<qn+2

(
p

q
− γ

qτ+1
,
p

q
+

γ

qτ+1

)
∩ In



+µ

 ⋃
p
q
∈In,q≥qn+2

(
p

q
− γ

qτ+1
,
p

q
+

γ

qτ+1

)+ µ

(
pn+2

qn+2

− γ

qτ+1
n+2

,
pn+2

qn+2

)
.

So by Lemma 15:

µ(Dc
γ,τ ∩ In) ≤ cn −

pn
qn

+
2γ

qτ−1
n+2

+
γ

qτ+1
n+2

< µ(In) =
pn+2

qn+2

− pn
qn
⇐⇒

cn <
pn+2

qn+2

− γ

qτ+1
n+2

− 2γ

qτ−1
n+2

,

that follows from the definition of cn.

So, given τ > 3, for almost all γ > 0: if α ∈ Dγ,τ is not an isolated point of the
first type and definitively the intervals centered in the convergents have an empty
intersection, then α is an accumulation point in Dγ,τ . The second step is to show
that: if τ > 3, γ > 0, α ∈ Dγ,τ but α is not an isolated point of the first type and
τ > τ(α), then α is an accumulation point in Dγ,τ .

Lemma 20 Let τ > 3. For almost all γ ∈ (0, 1
2
): given α ∈ Dγ,τ , if for infinitely

many n even:
pn
qn

+
γ

qτ+1
n

>
pn+2

qn+2

− γ

qτ+1
n+2

,

then there exists C > 0 such that for this n:

an+2 ≤ Cq2+ε
n ,

with ε > 0 arbitrarily small.

Proof By Lemma 16 it follows that, given α ∈ Dγ,τ that satisfies the hypothesis
of Lemma 20, for n even big enough:

an+2 ≤
qn

γqn+1

1

( 1
γ
− qn+1

qτn
)− qnqn+1

qτ+1
n+2

− qn
qn+1

,

so, up to a set of measure zero, by Lemma 17 we can suppose that there exist
ε > 0, C > 0 such that 1

γ
∈ BC,τ+1+ε with τ + 1 + ε < τ 2 − 1, from which it follows

that:

qn
γqn+1

1

( 1
γ
− qn+1

qτn
)− qnqn+1

qτ+1
n+2

− qn
qn+1

≤ qn
γqn+1

1
C

qτ+1+ε
n

− qnqn+1

qτ+1
n+2

− qn
qn+1

,

72



moreover, by Remark 17 it follows that qn+1 ∼ qτn
γ

, from which we obtain:

qnqn+1

qτ+1
n+2

<
qn
qτn+1

∼ γτ

qτ2−1
n

,

so, if n is big enough, by τ + 1 + ε < τ 2 − 1 we have:

C

qτ+1+ε
n

− qnqn+1

qτ+1
n+2

>
C

2qτ+1+ε
n

.

So we obtain:

an+2 <
qn
qn+1

2qτ+1+ε
n

C
∼ 2γ

C
q2+ε
n <

4γ

C
q2+ε
n = C ′q2+ε

n

definitively, from which we get Lemma 20.

Lemma 21 Let τ > 3+
√

17
2

, γ > 0, α ∈ Dγ,τ . If for infinitely many m even, for
n < m even holds:

pn
qn

+
γ

qτ+1
n

<
pm
qm
− γ

qτ+1
m

− 2γ

qτ−1
m

, (156)

and α− pn
qn
> γ

qτ+1
n

for all n even, then α is in A(Dγ,τ ).

Proof Let pn
qn
< p

q
< pn+2

qn+2
with n even and n < m− 2, for qn+2

2
≤ q:

p

q
+

γ

qτ+1
<
pn+2

qn+2

+
γ

qτ+1
n+2

is definitively true, while for q < qn+2

2
:

pn+2

qn+2

− p

q
=
pn+2

qn+2

− α + α− p

q
>

1

2q2
− 1

q2
n+2

>
γ

qτ+1
− γ

qτ+1
n+2

⇐⇒

1

2q2
− γ

qτ+1
>

1

q2
n+2

− γ

qτ+1
n+2

,

that is true for q big enough, so ∃T ∈ N such that the inequality is verified for q ≥ T
(from the fact that G(x) := 1

2x2
− γ

xτ+1 is definitively decreasing and τ > 3 > 1).
From the hypothesis that α− pn

qn
> γ

qτ+1
n

for all n even:

v := max
p
q
<α,q≤T

p

q
+

γ

qτ+1
< α,
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so there exists T1 ∈ N such that for n > T1:

pn
qn

+
γ

qτ+1
n

> v.

By Lemma 14, for m big enough, p
q
∈ In, with n < m− 2 even:

p

q
+

γ

qτ+1
≤ max

{
pn+2

qn+2

+
γ

qτ+1
n+2

, v

}
≤ pm−2

qm−2

+
γ

qτ+1
m−2

<
pm
qm
− γ

qτ+1
m

− 2γ

qτ+1
m

,

while by Lemma 14, for m big enough:

p

q
∈ Im−2, q < qm−2 =⇒ p

q
+

γ

qτ+1
<
pm
qm
− γ

qτ+1
m

− 2γ

qτ−1
m

,

so if we define:

cm := max

{
max

p
q
∈Im−2,q<qm

(
p

q
+

γ

qτ+1

)
, max
p
q
≤ pm−2
qm−2

(
p

q
+

γ

qτ+1

)}
,

for m even big enough:

cm <
pm
qm
− γ

qτ+1
m

− 2γ

qτ−1
m

.

Moreover, by Lemma 15, from τ > 3 > 2, for m even big enough:

µ

 ⋃
p
q
∈Im−2,q≥qm

(
p

q
− γ

qτ+1
,
p

q
+

γ

qτ+1

) <
2γ

qτ−1
m

.

Finally, if p
q
> pm

qm
, by the properties of continued fractions we obtain q > qm, so

p
q
− γ

qτ+1 >
pm
qm
− γ

qτ+1
m

. Thus:

µ

(
Dc
γ,τ ∩

(
pm−2

qm−2

,
pm
qm
− γ

qτ+1
m

))
< cm −

pm−2

qm−2

+
2γ

qτ−1
m

<
pm
qm
− pm−2

qm−2

− γ

qτ+1
m

= µ(
pm−2

qm−2

,
pm
qm
− γ

qτ+1
m

),

then

Dγ,τ ∩
(
pm−2

qm−2

,
pm
qm
− γ

qτ+1
m

)
6= ∅,

and from the fact that this holds for infinitely many m even, then α is an accumu-
lation point of Dγ,τ .
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Remark 18 Let τ >
√

17+3
2

, γ > 0, α ∈ Dγ,τ , if α ∈ I2
γ,τ or I3

γ,τ , then τ(α) = τ . In
fact if this doesn’t hold, from α 6∈ I1

γ,τ we get that for all n even or for all n odd:∣∣∣∣α− pn
qn

∣∣∣∣ > γ

qτ+1
n

.

Suppose for example that this property holds for all n even. If on the contrary
τ(α) < τ , by Remark 17, the hypothesis of Proposition 1 are satisfied, so α ∈
A(Dγ,τ ), contradiction.

Corollary 6 If τ > 3+
√

17
2

:

µ
({
γ > 0 : I2

γ,τ 6= ∅
})

= 0.

Proof Observe that, if α ∈ I2
γ,τ , then there exists n ∈ N such that∣∣∣∣α− pn

qn

∣∣∣∣ =
γ

qτ+1
n

.

Suppose for example that n is even, thus:

α =
pn
qn

+
γ

qτ+1
n

.

Moreover, for almost all γ ∈ (0, 1
2
):

τ

(
p

q
+

γ

qτ+1

)
= τ

(
γ

qτ+1

)
= 1.

Taking the union on all the p
q

we obtain that for almost all γ ∈ (0, 1
2
) and for all

p
q
∈ Q,

τ

(
p

q
+

γ

qτ+1

)
= 1.

So Corollary 6 follows by Remark 18.

It remains the last one step, in which we get the Theorem.

Lemma 22 Let τ > 3. For almost all γ > 0, if α ∈ I(Dγ,τ ), there exists N ∈ N
such that, for all m > N even there is some n < m even with:

pn
qn

+
γ

qτ+1
n

≥ pm
qm
− γ

qτ+1
m

− 2γ

qτ−1
m

.
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Proof By Corollary 6 and Remark (j) it follow that, up to a set of measure zero,
we can suppose that I1

γ,τ = I2
γ,τ = ∅, so observe that if the Lemma were not true,

it would exist α ∈ I3
γ,τ with the even convergents that satisfy the hypothesis of

Lemma 21, that implies α ∈ A(Dγ,τ ), contradiction.

Theorem C Let τ > 3+
√

17
2

. Then, for almost all γ > 0 Dγ,τ is a Cantor set.

Proof By Corollary 6 and Remark (j) it follows that, up to a set of measure zero,
we can suppose that I1

γ,τ = I2
γ,τ = ∅. Suppose by contradiction that the statement

doesn’t hold, and take 0 < C1 < C2 such that:

µ ({C1 < γ < C2 : I(Dγ,τ ) 6= ∅}) > 0,

and define A := {C1 < γ < C2 : I(Dγ,τ ) 6= ∅}. By Lemma 22, for almost all γ > 0
there exists α ∈ I(Dγ,τ ) and there exists N ∈ N such that for all m > N even,
there is some n < m even, with:

pn
qn

+
γ

qτ+1
n

≥ pm
qm
− γ

qτ+1
m

− 2γ

qτ−1
m

.

Now we want to show that, for almost all chosen of γ ∈ A we have:

lim sup
q2k+2

qτ2k+1

<
1

γ
.

In fact if it doesn’t hold, by Remark 17 we get that for infinitely many m even:

qm ∼
qτm−1

γ
,

and for m > N exists n < m even, with:

pn
qn

+
γ

qτ+1
n

≥ pm
qm
− γ

qτ+1
m

− 2γ

qτ−1
m

By Lemma 19, up to a set of measure zero in A:

pn
qn

+
γ

qτ+1
n

≥ pm
qm
− γ

qτ+1
m

− 2γ

qτ−1
m

⇐⇒ pn
qn

+
γ

qτ+1
n

≥ pm
qm
− γ

qτ+1
m

.

By the properties of convergents:

α− pm
qm

<
1

q2
m

,

from which we get:
1

q2
m

> α− pn
qn
− γ

qτ+1
n

− γ

qτ+1
m

.
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Moreover:

α− pn
qn

=
1

qn(qn+1 + αn+2

qn
)
,

so:
1

q2
m

>
1

qn(qn+1 + αn+2

qn
)
− γ

qτ+1
n

− γ

qτ+1
m

For m big enough:
1

q2
m

+
γ

qτ+1
m

<
2

q2
m

,

so:
2

q2
m

>
1

qn(qn+1 + αn+2

qn
)
− γ

qτ+1
n

⇐⇒

γ >
qτn

qn+1 + αn+2

qn

− 2qτ+1
n

q2
m

,

moreover:

γ ≤ qτn
qn+1 + αn+2

qn

.

So we obtain:
qτn

qn+1 + αn+2

qn

− 2qτ+1
n

q2
m

< γ ≤ qτn
qn+1 + αn+2

qn

From
pn
qn

+
γ

qτ+1
n

≥ pm
qm
− γ

qτ+1
m

− 2γ

qτ−1
m

,

we get:
pn
qn

+
γ

qτ+1
n

≥ pn+2

qn+2

− γ

qτ+1
n+2

,

moreover, from α− pn
qn
> γ

qτ+1
n

for all n even, when m increase, also n increase, and

by the last inequality and Remark 17 we get that qn+1 ∼ qτn
γ

. So

qm ∼
qτm−1

γ
≥
qτn+1

γ
∼ qτ

2

n

γτ
≥ qτ

2

n

Cτ
2

.

So we obtain:
qτn

qn+1 + αn+2

qn

− C

q2τ2−τ−1
n

< γ ≤ qτn
qn+1 + αn+2

qn

with a constant C > 0. By Lemma 20, up to a set of measure zero, we can suppose
that there exists ε > 0 arbitrarily small such that, for n big enough:

an+2 < q2+ε
n .
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So, up to a set of measure zero, we can suppose that for all γ ∈ A, there exists
infinitely many q > 0, qτ

2C2
< p < 2

C1qτ
, N < q2+ε such that:

qτ

p+ N
q

− C

q2τ2−τ−1
< γ ≤ qτ

q + N
q

.

So, for all M ∈ N:

A ⊆
⋃
q>M

⋃
qτ

2C2
<p< 2qτ

C1

⋃
N<q2+ε

(
qτ

p+ N
q

− C

q2τ2−τ−1
,

qτ

q + N
q

)
,

Thus:

µ(A) <
∑
q>M

∑
qτ

2C2
<p< 2qτ

C1

∑
N<q2+ε

C

q2τ2−τ−1

< β
∑
q>M

1

q2τ2−2τ−3−ε

with some constant β > 0. Because of τ > 3+
√

17
2

, for ε small enough the series
converge, so for M that tends to infinity we obtain µ(A) = 0, contradiction. So we
have proved that:

lim sup
q2k+2

qτ2k+1

<
1

γ
.

But, by Remark 17 and Proposition 1 (used with n odd) we have that α ∈ A(Dγ,τ ),
contradiction. So µ(A) = 0.

The estimate τ > 3+
√

17
2

can be improved putting a better inequality in Lemma 5.

Probably the Proposition holds also with τ > 3.

3.5 Final observations and questions

We have seen that, up to an equivalent number, every Diophantine point is isolated
in some Diophantine set. However, there exist Diophantine points that are always
accumulation points (for example, the point defined in Remark 8). Moreover, a
Diophantine number may be an isolated point for infinitely many τ . Indeed, by
Corollary 3 it is reasonable to expect that the statement of Theorem B holds for
almost every Diophantine number. We list here some natural questions.

• We have seen that T is dense in [1,+∞) and that T ∩ Q = ∅. What are
the τ ≥ 1 such that Iτ 6= ∅? In particular, is it true that T is the set of
Diophantine points in [1,+∞)?

• Let N ≥ 3 and define ∆N
γ,τ := {ω ∈ RN : |ω · n| ≥ γ

|n|τ ∀n ∈ ZN , n 6= 0}.
What can we say about isolated points of ∆N

γ,τ ∩ SN−1?
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• Isolated points of type 3 exist for τ = 1, in fact, for 1
3
< γ < 1

2
Dγ,τ is a finite

set and, when it is not empty in general all its points are in I3
γ,τ . We ask if

the following holds: if I3
γ,τ is not empty then Dγ,τ is a finite set.

We have shown that in general Diophantine sets are not Cantor sets, however we
believe that the following hold:

• For all τ ≥ 1 there exists γτ ∈ (0, 1
2
) such that Dγ,τ is a Cantor set for almost

all γ ∈ (0, γτ ).

We belive also that, for any algebraic number α with degree greater then 2, there
exist sequences τn ↘ 1, γn ↘ 0 such that α is an isolated point of Dγn,τn for all n
(note that, if such sequences exist, by Roth Theorem τn ↘ 1).

4 Appendix

4.1 C1 conjugacy implies C∞ conjugacy (Diophantine case)

In this section we show a simple proof that, for smooth diffeomorphisms of the
circle with Diophantine rotation number, C1 conjugacy implies C∞ conjugacy.

We use the following notation as in [73]: q is a denominator of some convergent to
α = ρ(f) and Q is the denominator of the subsequent convergent.

So, we want to prove the following:

Proposition 2 Let f ∈ D∞(T) with α = ρ(f) ∈ D. Suppose that the homeomor-
phism h that conjugate f to a rotation is of class C1. Then, h is smooth.

To prove the proposition we need some lemma:

Lemma 23 There exists C > 0 such that, for all n ∈ Z:

|fn − id− nα|0 ≤ C||nα||.

Proof By Lagrange’s Theorem:

|(h ◦Rnα − h− nα)|0 ≤ |Dh|0||nα||.

So, by the identity:

fn − id− nα = (h ◦Rnα − h− nα) ◦ h−1

and the preceding inequality, Lemma 7 follows.

We restate also the Denjoy’s inequality.
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Lemma 24 (Denjoy’s inequality) Let C := Var(log Df). Then:

| logDf q|0 ≤ C. (157)

Lemma 25 ([73], lemma 5) For k ≥ 2 there exists Ck > 0 such that:

|Dk logDf q|0 ≤ CkQ
k
2

The following Lemma is the main point to prove in an easy way the smoothness of
h.

Lemma 26 For k ≥ 0, ε > 0 there exists C(k, ε) > 0 such that:

|Dk logDf q|0 ≤
C(k, ε)

Q1−ε .

Proof The proof of this Lemma is analogous of the Step 3 in Theorem 1.

Proof (Proposition 2) For n ∈ N, write n as:

n =
s∑
i=0

biqi, n ≤ qs+1, bi ≤
qi+1

qi

Using the Diophantine condition over α, we have for ε small enough:

|Dk logDfn|0 ≤ C(k, ε)
∑
i≥0

qεi+1

qi
< C = C(k, ε, α).

In particular, the derivatives of the iterates of f are bounded in norm Ck for all
k ≥ 1. So, we have h ∈ C∞ (Theorem 2).

4.2 Continued fractions

We recall some basic Theorem:

Theorem 10 (Cantor, [74]) Every subset E of R can be written as union of
a countable set and a perfect set, moreover this decomposition is unique. So the
isolated points of E are at most countable.

Theorem 11 (Dirichlet box principle) Let n > m ∈ N, if n elements are

contained in m sets, then there are two distinct elements contained in the same
set.
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Theorem 12 (Dirichlet, [67]) Let α ∈ R, Q ∈ N with Q > 1, then there exist
q ∈ N, p ∈ Z, with q < Q, such that:

|qα− p| < 1

Q
.

Remark 19 If α is an irrational number, by Theorem 3 there are infinitely many
solutions of:

0 < |qα− p| < 1

q

with q > 1.

Definition 1 We define the finite continued fractions:

[a0; a1, ..., an] := a0 +
1

a1 + 1
a2+... 1

aN

,

[a1, ...an] :=
1

a1 + 1
a2+... 1

aN

.

as functions respectively of the variables a0, ...aN and a1, ...aN . We call a0, .., aN
the partial quotients of the continued fraction.

Remark 20 [a0; a1, ..., aN ] = [a0; a1, ..., aN−1 + 1
aN

].

Definition 2 Given α = [a0; a1, ..., aN ], 0 ≤ n ≤ N we call [a0; ..., an] the n-th
convergent to α.

Theorem 13 (see [32]) Define:
p0 := a0, q0 := 1,

p1 := a0a1 + 1, q1 := a1,

pn+1 := an+1pn + pn−1, qn+1 := an+1qn + qn−1 ∀1 ≤ n < N,

(158)

then pn
qn

= [a0; a1, ..., an] for all 0 ≤ n ≤ N .

Remark 21 Observe that for n ≥ 2:

pn+1qn − pnqn+1 = (an+1pn + pn−1)qn − pn(an+1qn + qn−1)

= −(pnqn−1 − qnpn−1),

so by induction we get:
pn+1qn − pnqn+1 = (−1)n. (159)
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Now we recall some property of continued fractions. For more details see [32],
where all Theorems cited below are treated.

Notations 1 In the rest of the text we always suppose that a0 ∈ Z, an ∈ N for
n ≥ 1.

Definition 3 If α := [a0; a1, ..., aN ] = pN
qN

we say that the rational number α is
represented as continued fraction.

Remark 22 Observe that the representation of a rational number α as continued
fraction is not unique. In fact, if aN > 1, then:

α := [a0; ..., aN ] = [a0; ..., aN − 1, 1],

while for aN = 1, N ≥ 1:

[a0; a1, ...aN−1, 1] = [a0; a1, ..., aN−1 + 1].

Remark 23 Observe that q1 ≥ q0 and qn+1 > qn for all n ≥ 1. Moreover, by (159),
for all n ≤ N we have (pn, qn) = 1. So, if n ≤ N is even:

pn
qn
≤ α,

while for n ≤ N odd:
pn
qn
≥ α.

Observe also that by Remark 22 we can choose the parity of N .

Theorem 14 For all n ≥ 2 we get:

pn+2qn − qn+2pn = (−1)nan+2 (160)

Corollary 7 The even convergents p2n
q2n

increase strictly with n, while the odd con-

vergents p2n+1

q2n+1
decrease strictly with n.

Definition 4 Given α = [a0; a1, ..., aN ], n ≤ ùN , we define the n-th complete
quotient of [a0; a1, ..., aN ] as:

αn := [an; an+1, ..., aN ].

Remark 24 Given α := [a0; a1, ..., aN ], for all n < N :

α =
αn+1pn + pn−1

αn+1qn + qn−1

. (161)

Remark 25 Given α = [a0; a1, ..., aN ], then an = [αn] for all n ≤ N .
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Infinite simple continued fractions

Definition 5 Given a0 ∈ Z, an ∈ N for all n ≥ 1, we define:

[a0; a1, a2, ...] := lim
n→∞

[a0; ...an].

Remark 26 Observe that the limit exists, in fact:

|[a0; a1, ...an+1]− [a0; a1, ..., an+1]| =
∣∣∣∣pn+1

qn+1

− pn
qn

∣∣∣∣ (159)
=

1

qnqn+1

.

Thus, because of qn ≥ n, we get that the limit exists.

Definition 6 Given α = [a0; a1, a2, ...], we say that [a0; a1, ..., an] is the n-th con-
vergent to α, αn := [an; an+1, ...] is the n-th complete quotient of α.

In the rest of the text α will always denote a number [a0; a1, a2, ...] and pn
qn

=

[a0; a1, ..., an] (with (pn, qn) = 1) the convergents to α.

Remark 27 Given α = [a0; a1, ...], then for all n ≥ 0: an = [αn].

Corollary 8 By Remark 27 it follows that the representation of an irrational num-
ber as continued fraction is unique. Moreover, given an irrational number, it can
be represented as continued fraction. In fact, given an irrational number α, if we
define: 

a0 := [α], α1 :=
1

{α}
,

an := [αn], αn+1 :=
1

{αn}
∀n ≥ 1,

(162)

then it is easy to verify that α = [a0; a1, ...].

Remark 28 By definition of n-th complete quotient and of convergent we have:

α = [a0; a1, ..., an, αn+1] =
αn+1pn + pn−1

αn+1qn + qn−1

.

Theorem 15 Given α = [a0; a1, ...], then:∣∣∣∣α− pn
qn

∣∣∣∣ =
1

qn(αn+1qn + qn−1)
(163)

Corollary 9

||qnα|| <
1

qn+1

,

moreover for n ≥ 1:
||qn+1α|| < ||qnα||.
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Definition 7 Let α, β ∈ R. We say that α is equivalent to β if there exist a, b, c, d ∈
N with |ad− bc| = 1 such that:

β =
aα + b

cα + d
.

It is easy to check that this is an equivalent relation on the real numbers and that
any two rational numbers are equivalent.

Theorem 16 Two irrational numbers α, β are equivalent if and only if:

α = [a0; a1, ..., an, c0, c1, ...], β = [b0; b1, ..., bm, c0, c1, ...].

Farey sequence

Definition 8 Let n be a natural number, then the Farey sequence of order n Fn
is the ordered sequence of all the rational numbers p

q
≥ 0 with q ≤ n .

Despite of the name, the proof of the following properties of this sequence are not
due to the geologist John Farey. In fact he simply conjectured this property and
then Chauchy proved it. Moreover before Farey’s conjecture, another mathemati-
cian, Charles Haros, had published similar result.

Thus the name “Farey sequence” is unjustified, but nevertheless for convention we
follow the tradition.

Theorem 17 Let n be a natural number, if p1
q1
< p2

q2
with 0 < q1, q2 ≤ n are two

subsequent terms of Fn, then:

p2q1 − p1q2 = 1

Moreover, all the fractions p
q
∈ (p1

q1
, p2
q2

) are of the form:

p

q
=
ap1 + bp2

aq1 + bq2

for some a, b ∈ N. In particular q ≥ qn + qn+1.

Remark 29 If p1
q1
< p2

q2
are two subsequent terms of Fn, then q1 < n or q2 < n. In

fact, if q1 = q2 = n, then:

p1

n
<

p1

n− 1
<
p1 + 1

n
<
p2

n
,

and we get a contradiction. So, no two subsequent terms of the Farey sequence
have the same denominator.
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Theorem 18 For all n ≥ 1, given q < qn+1 we have:

||qα|| ≥ ||qnα||.

Theorem 19 (Legendre) Given a real number α, if p
q

satisfies:∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
,

then p
q

is a convergent to α.

Theorem 20 (Borel)(see [36]) Given A(ψ) := {[a0; a : 1, ..., an, ...] : 0 < an <
ψ(n)}, ∑

n∈N

1

ψ(n)
<∞⇒ m(A) > 0,

∑
n∈N

1

ψ(n)
=∞⇒ m(A) = 0.
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