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Chapter 0

Introduction to the problem

0.0.1 The inhomogeneous incompressible Navier-Stokes equa-
tions

Let Ω a bounded domain in R3 with smooth boundary. The motion of a nonhomoge-
neous incompressible viscous fluid in Ω is governed by the inhomogeneous incompressible
Navier-Stokes equations (INSE, briefly); solving the partial differential equation asso-
ciated to this problem consists in finding a triple of functions (ρ, u, P ) which satisfies
the system of equations

ρt(x, t) +∇ · (ρu)(x, t) = 0

(ρu)t(x, t) +∇ · (ρu⊗ u)(x, t)− µ∆u(x, t) +∇P (x, t) = 0

∇ · u(x, t) = 0

(1)

together with the standard mathematical data given by the initial value problem and
the boundary value problem, that is{

ρ(x, 0) = ρ0(x)

u(x, 0) = u0(x)
∀ x ∈ Ω (2)

u(x, t) = 0 ∀ (x, t) ∈ ∂Ω× (0, T ) (3)

where ∂Ω is the boundary of Ω.
Before specifying the historical process of the study of these equations, the actual

aims of the present thesis, and, consequently, the hypothesis we will require on the
initial data, we briefly point out the physical interpretation of the functions involved in
the INSE.

Physical interpretation of the problem. In a physical interpretation the function
ρ that appears in (1) denotes the density of the fluid that we are considering, and it is
a scalar function ρ : Ω × I → R≥0, where I ⊆ R is an interval of time; in the case of
a global solution, it coincides with R. On the other hand, u is the velocity field, and
assumes values in R3, u : Ω × I → R3. Finally P : Ω × I → R denotes the pressure
of the fluid, it is a scalar function, to which is associated a gradient pressure term
∇P : Ω× I → R3. Finally µ > 0 is the positive constant of viscosity.
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The first equation in (1) is called mass equation (and it is a transport equation).
This equation has a simple physical interpretation. We explain this with a formal argument.
Consider in fact the density function ρ(x, t) over a domain Ω. The amount of fluid at time t
in a subdomain V of Ω is given by ∫

V
ρ(x, t) dx

However, if we introduce a function F (x, t) that describes the flux of the fluid, we can consider
this flux through the surface of V , that is given by∫

∂V
F (x, t) dσ(x)

It is well known in physics that the variation in time of the amount of fluid equals the opposite
of the flux through the surface, that is

d

dt

∫
V
ρ(x, t) dx = −

∫
∂V
F (x, t) dσ(x) (4)

If the functions involved in (4) are regular enough, we can rewrite∫
V
ρt(x, t) dx = −

∫
V
∇ · F (x, t) dx

By the arbitrariness of the subdomain, where this physical interpretation holds, we can deduce
that

ρt(x, t) = −∇ · F (x, t) over Ω

It is physically reasonable to define the flux as F (x, t) = ρ(x, t)u(x, t), a vectorial function
with module given by the product of density and velocity, that has the same direction and
verse of the velocity (since ρ ≥ 0). The equation assumes the form

ρt = −∇ · (ρu) = −ρ (∇ · u)− u · ∇ρ

If we assume the incompressibility condition ∇ · u = 0 for the velocity, we have

ρt + u · ∇ρ = 0

that is the so called transport equation. It is clear that the mass equation is a scalar equation.

The second equation of the system is named momentum equation, while the latter is
the solenoidal condition or incompressibility equation. The momentum equation is a
vectorial equation, while the solenoidal condition is clearly scalar.

Consider for a moment the two equations together, to outline a part the story of the
Navier Stokes equations (whose nature is located in the momentum equation, that
expands the physical description of the motion of a fluid merely given by the law of
conservation).

What today is known as Navier-Stokes System was proposed for the first time by
the French engineer C.L.M.H. Navier in 1822, [21, p. 414], in the formρ

(
∂
∂t
v + v · ∇v

)
= µ∆v −∇π − ρf(x, t)

∇ · v = 0
(5)
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on the basis of a suitable molecular model. Nevertheless, the problem was known, in
a very different stamp, before the formalization actualized by Navier. It is well repre-
sented by the following comment of Truesdell [30, p. 455]:

“Such models were not new, having occurred in philosophical or qualitative specula-
tions for millennia past. Navier’s magnificent achievement was to put these notions
into sufficiently concrete form that he could derive equations of motion for them.”

Notice that here the pressure is not a thermodynamic variable; rather it represents
the “reaction force” that must act on the fluid in order to leave any material volume
unchanged, in contrast to the compressible scheme, where the pressure is a thermody-
namic variable.

Even though the problem has been known before Navier, it was only later, by the
efforts of Poisson (1831), de Saint Venant (1843), and mainly by the clarifying work
of Stokes (1845), that equations (5) found a completely satisfactory justification on
the basis of the continuum mechanics approach. Nowadays, equations (5) are usually
referred to as Navier–Stokes equations.

Today is accepted to relate the nature of the Navier-Stokes equations to the New-
tonian nature of the fluid. A Newtonian fluid is, in the language of modern rational
mechanics, a fluid that respect the dynamical equation

T = −πI + 2µD (6)

where T is the so called Cauchy stress tensor, that define the state of stress at a point
inside a material (in this case, a fluid) in the deformed configuration; the tensor I is
the identity; D = {Dij} is defined by

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(7)

and π is the pressure introduced above.
In words, the relation (6) states that the stress in a viscous liquid produces a gradient

of velocity that is proportional to the stress. In Newton’s words: “The resistance,
arising from the want of lubricity in the parts of a fluid is, cæteris paribus, proportional
to the velocity with which the parts of the fluid are separated from each other”; see [22,
Book 2, Sect. IX, p. 373]. However, the deduction of the Navier-Stokes equations
starting from their rational mechanics model is not one of the aims of this thesis.
These brief historical references are a summary of [12, Chap. 1].

Finally, we focus on the latter equation, that is the incompressibility condition.
The third equation is strictly related to the transport equation: the incompressibility
condition, as we will see in section 8.1.1, will ensure that the volume occupied by the
fluid (i.e., the mass associated to the density-solution of the first equation1) will not

1If ρ(x, t) is the density at time t and position x ∈ Ω, the mass of the fluid in Ω at time t is

M(t) =

∫
Ω

ρ(x, t) dx

3



change, remarking the incompressible nature of the fluid.
The notions of solution that will be involved here are various and to be clarified. In

particular, we are going to introduce new functional spaces to solve the problem.

0.1 Results presented in this thesis

As typical in PDEs, solving the Navier-Stokes equations is not a well posed problem if we
do not clarify what “kind of solution” we are searching for. Fixed the class of functions
in which we want to find some solutions, the problem requires suitable hypothesis on
the initial data to be resolved. The variety of possible situations splits the present
problem into several subproblems: in particular, the existence of smooth solutions to
the Navier Stokes equations is a problem that has never been proved or disproved. This
particular version of the Navier Stokes problem is, from May 2000, one of the so called
Millennium problems, since the study of these equations in applied sciences has revealed
to be fundamental, in particular in applied physics and engineering. So, NSEs deserved
four points (existence and breakdown questions) in the Clay Institute’s list of prize.
The matter is perfectly exposed in Fefferman’s [11]. Another unsolved problem related
to the Navier Stokes equations is the Euler equation (µ = 0), although this particular
problem is not on the Clay Institute’s list.

Apart from this general introduction, in the present thesis we focus our attention on
local strong solutions to the Inhomogeneous Incompressible Navier Stokes Equations.
While the adjective local has a clear meaning (i.e. we are looking for a local time
T ∈ (0,∞] of existence of the solutions), the word strong is less explicit. In fact the
meaning of the terms strong and weak, especially dealing with PDE problems, have
different facets. We will clarify this point in chapter 10. Other words involved in
the heading of the problem are incompressible and inhomogeneous : the incompressible
nature of the fluid has already been introduced in section 0.0.1, while the inhomogeneity
of the problem is a consequence of the presence of the non linear term ∇ · (ρu⊗ u).

To understand the hypothesis we will require later and the aims of this thesis, it is
necessary to do a little history of the strong theory2 for the Navier Stokes equations,
overlooking the results that deal with the problem from a different point of view.

The following brief excursus is taken from [4]. The existence of strong solutions3

has been proved until the ’80s for initial densities ρ0 with a positive lower bound. In
particular, in three dimensions, Ladyhzenskaya and Solonnikov proved that for initial
data satisfying

ρ0 ∈ C1(Ω), inf
Ω
ρ0 > 0, u0 ∈ W 2−2/r,r(Ω), ∇ · u0 = 0 (8)

and, eventually, the presence of an external force f ∈ Lr
(
Ω × (0, T )

)
for some r > 3,

there exists a time T∗ ∈ (0, T ) and a unique solution (ρ, u, p) to the initial boundary
value problem, such that

u ∈ Lr(0, T∗;W 2,r(Ω)), ut ∈ Lr(Ω× (0, T∗)) (9)

2In the sense of strong solutions.
3As before, chapter 10 will clarify what kind of strong solutions we are searching for.
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ρ ∈ C1(Ω× [0, T∗]), p ∈ Lr(0, T∗;W 1,r(Ω)) (10)

Clearly here we are requiring very restrictive conditions on the initial data, from a
physical point view.

In 1987, Kim improved the regularity of the unique solution, without weakening the
requests on the initial data; however, the physical validity of the model could not be
confirmed since so far the class of admissible initial data, that guarantee the solvability
of the problem, remains unchanged.

In 1990 Padula proved the existence of a unique strong solution for initial densities
ρ0 ∈ L1(Ω) ∩W 1,∞(Ω) satisfying the additional property∫

Ω′
ρ0 dx > 0 for any Ω′ ⊂ Ω with positive measure (11)

(in which case, it is obvious that ρ0 can only vanish on sets of measure zero).
Hypothesis (11) is again a limitation for a correct physical interpretation of the natural
model: we also have to consider the case in which the fluid does not occupy the whole
(accessible) space, i.e. cases in which the density is zero in some regions of the space.
Indeed, this is a valid request observing physical problems suggested by our reality.
The main difficulty of achieving the existence and the higher regularity of solutions
in the case of vacuum is that it seems difficult to derive a priori estimates for ut in
appropriate norms, since ut in the momentum equation is multiplied by ρ, possibly
vanishing in some regions.

In the present thesis, following [4], we will overcome this difficulty by estimating ∇ut
in L2 norm first, then applying Sobolev inequality and finally avoiding the restrictive
hypothesis on the initial density: this is the key point of the work of Choe and Kim
[4], and also one of the key points of this thesis, as we will see below. This method
requires rather higher regularity assumption and a compatibility condition on the initial
data: given a bounded domain Ω, we will consider initial densities 0 ≤ ρ0 ∈ L∞(Ω)
and initial velocity fields u0 ∈ H1

0 (Ω) ∩ H2(Ω) satisfying the compatibility condition
µ∆u0−∇p0 =

√
ρ0g, for some (p0, g) ∈ H1(Ω)×L2(Ω), and the natural incompressibility

condition on the initial velocity field ∇ · u0 = 0 in Ω.
Through the work of Choe and Kim, assuming these hypothesis, we will prove the

existence of a positive time T∗ > 0 and of a weak solution (ρ, u) to the initial boundary
value problem (1), together with some estimates.

Moreover, improving the regularity of the initial density, i.e. assuming also ρ0 ∈
H1(Ω), we will prove the existence of a strong solution (ρ, u, p) to the initial boundary
value problem (1), together with other regularity properties, as we will specify in the
statements of the main theorems [See 0.1.1].

Now we list all the key points of the present thesis.

• The first goal is to revise and reformulate the resolution of the local problem for
system (1) as presented in [4], collecting in a single place the theorems spread in
literature4.

• In their beautiful but short paper [4], Choe and Kim claim that, after using
techniques and results based on the fundamental paper by DiPerna and Lions

4See, in particular, the beautiful paper [16] by Kim and the references therein.
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[8] on transport theory, published in Inventiones in 1989, one can deduce the
existence of a weak solution to the original problem (1), which satisfies some
regularity estimates. Quoting Choe and Kim:

”Therefore, adapting the arguments in Lions (1996), we can easily deduce that

the limit (ρ, u) is a weak solution of the original Eqs. (1)-(3) with the initial

data (ρ0, u0) and satisfies [...] [some] regularity estimates [...]”

(12)

The reference “Lions (1996)” is the paper [20] in the bibliography. The “adapta-
tion” cited above occupies in the present thesis the sections 11.6.4 - 11.14 (about
50 pages). In fact in [4] essentially are omitted the technical details hidden in the
assertion (12). Lions’ paper [20] provides the devices and the strategies to deal
with the problem; however these tools are spread along the pages, and employed
with different aims.

• Another purpose consists in collecting, in a unique chapter, the development over
the centuries of the Stokes theory, concering the Steady State Stokes equation,
together with the related Stokes operator. Such a theory is used in order to study
the regularity of a basis of functions, i.e. the sequence {φm}m, that is the starting
point of the Galerkin method, widely employed in chapter 11. Chapter 9 gathers
results from [12], [19] and [27].

• In chapter 11 a critical reading of Simon’s [26] provides the devices to understand
the non trivial estimates deduced in Kim’s [16].

• Chapter 8 summarizes the main results concerning transport theory. This chap-
ter is in particular focused on the fundamental Inventiones paper by Di Perna
and Lions [8], that provides a complete (and arduous) inspection of the problem.
We propose a critical approach to the problem, considering the case of bounded
domain assuming the typical hypothesis of the transport equation on a bounded
domain (i.e. incompressibility and zero boundary conditions). Moreover we pro-
vide a rigorous approach to the formal proofs produced in the paper.

0.1.1 Structure of the thesis

The structure of this thesis is composed by four blocks:

(i) The introductive block, to which belongs this chapter, contains the presentation of
the matter (Chapter 0) and a brief chapter where are collected well-known (and
useful) devices of mathematical analysis (Chapter 1);

(ii) The part I collects the basis of fluid mechanics, with definition of fundamental
spaces of functional analysis and some tools typical of PDE theory.
Chapter 2 is a brief summary of the main results about Banach and Hilbert spaces.
The approach becomes more specific in chapters 3, 4 and 5, that concern, respec-
tively, Lp spaces, Sobolev spaces and Lp spaces involving time.
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Chapter 6 is dedicated to the Helmoltz decomposition, fundamental in fluid me-
chanics and in particular in the present thesis. On the other hand, chapter 7 deals
with weak and strong compactness of Lp(0, T ;X), where X is a Banach space.
In chapter 10 we finally specify what weak and strong solutions are in the present
context. Chapter 8 takes on the transport theory and the compactness results of
DiPerna and Lions [8], that play an important role in the Navier-Stokes theory
(as revealed by the presence of a transport equation in the Navier-Stokes system).
Finally chapter 9 summarizes almost a century of fluid mechanincs theory, from
the results of Lorentz concerning the whole space Stokes problem (with the in-
troduction of a concrete fundamental solution, analogous to the work of Laplace
in the case of the Laplacian equation) [12, Ch. IV], to the work of Ladyženskaja
regarding the Stokes equation [19].
The results of this compilative part will be stated and proved (the most of them)
in details, even if the proof of some of them will only be sketched, with references
from inside5 and outside the present thesis.

(iii) The core of the thesis is placed in part II: this part of the work has the purpose of
proving the existence of a local time solution to the INSEs, following the article by
Kim and Choe [4]. This section also takes inspiration from Simon’s [26] to obtain
some useful estimates, and from Kim’s [16] to acquire some useful propositions
and an ODE approach to the problem, in order to build the approximate solutions.

In this part we will prove the following main theorems.

Theorem 0.1. Let Ω be a bounded domain in R3 with smooth boundary, and assume
the data ρ0, u0 satisfy the regularity

0 ≤ ρ0 ∈ L∞(Ω), u0 ∈ H1
0 (Ω) ∩H2(Ω) (13)

and the compatibility condition

µ∆u0 −∇p0 =
√
ρ0g, ∇ · u0 = 0 in Ω (14)

for some (p0, g) ∈ H1(Ω) × L2(Ω). Let T > 0 a fixed local time. Then, there exists a
time T∗ ∈ (0, T ) and a weak solution (u, ρ) ∈ L∞(0, T∗;H

2(Ω)) × L∞(0, T∗;L
∞(Ω)) to

the initial boundary value problem
(ρu)t +∇ · (ρu⊗ u)− µ∆u+∇p = 0

ρt +∇ · (ρu) = 0, ρ ≥ 0 (x, t) ∈ Ω× (0, T∗)

∇ · u = 0


ρ(x, 0) = ρ0(x) x ∈ Ω

u(x, 0) = u0(x) x ∈ Ω

u(x, t) = 0 (x, t) ∈ ∂Ω× (0, T∗)

(15)
such that for a.e. t ∈ (0, T∗) we have the estimates

‖∇u(t)‖2
2 ≤ C, ‖ρ(t)‖q = ‖ρ0‖q (16)

5In example, if a result follows from a well known functional analysis result referred in the text, a
referenced note will connect the two statements, together with a few lines comment.
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sup
0<s≤t

(
‖∇u‖2

H1 + ‖√ρut‖2
2

)
+

∫ t

0

(
‖∇u‖2

W 1,6 + ‖ut‖2
D1,2

0

)
ds ≤ C exp

(
C

∫ t

0

‖∇u‖4
2 ds

)
(17)

and

sup
(0,t]

(
‖∇u‖2

H1 + ‖√ρut‖2
2

)
+

∫ t

0

‖∇ut‖2
2 ds+

∫ t

0

‖∇u‖2
W 1,6 ds ≤

≤ Q exp

(
Q

∫ t

0

‖∇u‖4
2 ds

)
+QC(ρ0, u0, p0) (18)

where
C(ρ0, u0, p0) ≡ ‖g‖2

2 (19)

Here the local existence time T∗ and the positive constant C,Q depend only on ‖ρ0‖L∞,
‖∇u0‖2, ‖g‖2 and the time T ; but it is independent of the lower bound of ρ0.

We now state a theorem that assures us, under stronger hypothesis on the initial
density, the existence of strong solutions.

Theorem 0.2. Let Ω be a bounded domain in R3 with smooth boundary, and assume
the data ρ0, u0 satisfy the regularity

0 ≤ ρ0 ∈ H1(Ω), u0 ∈ H1
0 (Ω) ∩H2(Ω) (13)

and the compatibility condition

µ∆u0 −∇p0 =
√
ρ0g, ∇ · u0 = 0 in Ω (14)

for some (p0, g) ∈ H1(Ω) × L2(Ω). Let T > 0 a fixed local time. Then, there exists a
time T∗ ∈ (0, T ) and a strong solution (ρ, u, p) that satisfies (15) in the sense of section
10.2. Moreover, the solutions satisfy

ρ ∈ L∞(0, T∗;H
1(Ω)), ρt ∈ L∞(0, T∗;L

2(Ω)) (20)

∇p ∈ L∞(0, T∗;L
2(Ω)) ∩ L2(0, T∗;L

6(Ω)) (21)

Remark 0.1. Weak and strong solutions have to be meant in a sense that will be precised
in chapter 10. �
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Chapter 1

Classical analysis prerequisites

1.1 Notations

The whole PDE theory is based on which kind of domain we are considering. We start
giving the definition of domain that we will adopt in the present thesis.

Definition 1.1. A domain of Rn is a subset Ω of Rn that is open and connected. If
this subset is also bounded, we will call it bounded domain.

Remark 1.1. The symbol C∞c (Ω) represents the smooth functions with compact support
in the domain Ω. Sometimes, the symbol is replaced by C∞0 (Ω), especially when we use
this set combined with the divergence-free condition, i.e. C∞0,σ(Ω). �

1.1.1 Vectors, matrices and tensors

Writing the name of a vector, we will always mean the column representation of the
vector. The row representation will be represented with uT . So, the juxtaposition
represents the matricial product.

Definition 1.2. Let u, v ∈ Rn and A ∈ Mn a n × n-matrix. Then we define the dot
product

u · v := uTv

The dot product is also called inner product. Moreover, we use the symbol · also to
represent the application between matrices and vectors, that is

u · A · v := uTAv, A · v ≡ Av

Definition 1.3. It is also defined an outer product

u⊗ v := uvT

This product is a matrix.

Remark 1.2. We will frequently use

ρu⊗ u = (ρu)uT (1.1)

i.e. the product with the transpose. �
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Remark 1.3. The canonical euclidean norm, or 2- norm, of vectors, matrices and tensors
will be represented with the simple symbol | · |: the lack a the number 2 as a pedex
has the purpose of avoiding to get confused with the L2 norm, ‖ · ‖2, that will be used
massively in the future. Clearly the meaning of the symbol | · | is dued to the context:
if v is a vector, |v| is the euclidean norm of a vector; if A is a matrix, |A| is the 2-norm
of a matrix. This matricial norm is the norm induced by the Frobenious inner product
for matrices1

〈A,B〉 = Tr(ATB)

For semplicity, we will use the notation

A ·B := Tr(ATB) (1.2)

The · distinguishes this scalar product from the matrix product AB.

Remark 1.4. Sometimes this scalar product is represented with the notation A : B.
However, despite the ambiguity, we prefer to maintain the usual notation of the scalar
product. �

So,

|A| ≡
√
A · A ≡

√
Tr(ATA) ≡

√√√√ n∑
i=1

m∑
j=1

a2
ij

With these devices, the Cauchy–Schwarz inequality assumes the form

|u · v| ≤ |u||v| ∀ u, v ∈ Rn

where at the first member | · | represent the absolute value.

It is useful to recall also that, if A ∈Mn,m and B ∈Mm,l, it holds

|AB| ≤ |A||B| (1.3)

An application of (1.3) concerns the outer product. In fact, if u, v ∈ Rn, we have

|u⊗ v| ≡ |uvT | ≤ |u||vT | = |u||v| (1.4)

since u ∈Mn,1 and vT ∈M1,n.

However, when p 6= 2, the vectorial (or, more in general, tensorial) p-norm will be
represented with | · |p. So, for example, if v is a vector in Rn we have

|v|p :=

( n∑
i=1

vpi

) 1
p

The definition is generalized to all the components in the case of tensors of bigger di-
mension.

1Remember that
Tr(ATB) = Tr(BAT ) = Tr(BTA) = Tr(ABT )
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In future pages, tensors will play an important role: in fact, since INSE involve some
vectorial quantities, their second derivatives will be represented by tensors. Differently
from a vector or a matrix, it is difficult, if not impossible, to represent a tensor graphi-
cally on a paper. However, the representation of a tensor is not useful: we will, mainly,
deal with its norms. So, if T is a n× n× n tensor, we will write

|T |2 =
n∑
i=1

n∑
j=1

n∑
k=1

T 2
ijk

In the same way, we have

|T |pp =
n∑
i=1

n∑
j=1

n∑
k=1

|Tijk|p

The definitions can be adapted in the case of tensors of bigger dimension. �

1.1.2 Remarks on the vectorial nature of the INSE

Definition 1.4. The divergence of a matrix is a vector, in this case a three-dimensional
vector, defined as

(
∇ · (ρu⊗ u)

)
j

:=
3∑
i=1

∂[(ρu⊗ u)ij]

∂xi
j ∈ {1, 2, 3}

Definition 1.5. Another useful vectorial definition is the Laplacian of a vector that is

∆u :=

∆u1

∆u2

∆u3

 (1.5)

Remark 1.5. For future computations, we recall here other definitions. Being u (or in
general, another velocity field) a vector, we define ∇u as the Jacobian matrix of u. The
same symbol is also used for the gradient of a scalar function, in example the pressure
P . �

Remark 1.6. As it will be proved in (1.10), the momentum equation can be rewritten
in a slightly different way. In particular

∇ · (ρu⊗ u) =
(
∇ · (ρu)

)
u+ ρ (∇u) · u

So, using the mass equation, we have

∂t(ρu) +∇ · (ρu⊗ u)− µ∆u+∇P = ρut + ρ (∇u) · u− µ∆u+∇P

that is an alternative way to write Navier-Stokes equations. This formulation will be
very useful in order to find approximate solutions; the limit of this sequence of solutions
will satisfy the weak formulation of the original momentum equation (ρu)t +∇ · (ρu⊗
u)− µ∆u+∇P = 0. �
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1.2 Topological prerequisites

Definition 1.6. Let (X, d) a metric space, with the topology τd induced by the distance.
Let Y ⊆ X a subset. We will write Y to mean the closure of Y in X.

Definition 1.7. Let (X, dX) and (Y, dY ) metric spaces. A function f : (X, dX) →
(Y, dY ) is called Lipschitz (or Lipschitz continuous) if there exists L > 0 such that

dY (f(x1), f(x2)) ≤ L dX(x1, x2) ∀ x1, x2 ∈ X

L = Lf is called Lipschitz constant.

Definition 1.8. A bounded domain Ω, with boundary ∂Ω, is called a Lipschitz domain
if for every x0 ∈ ∂Ω there exist an hyperplane Hn−1 3 x0, a Lipschitz function f , and
two numbers r, δ > 0 such that

Ω ∩ A = {x+ yν| x ∈ Br(x0) ∩Hn−1, −δ < y < f(x)}

and
∂Ω ∩ A = {x+ yν| x ∈ Br(x0) ∩Hn−1, y = f(x)}

where ν is a unitaty normal to Hn−1 and

A := {x+ yν| x ∈ Br(x0) ∩Hn−1, |y| < δ}

Definition 1.9. A bounded domain Ω, with boundary ∂Ω, is called a Ck domain if for
each x0 ∈ ∂Ω there exist r > 0 and a Ck function f : Rn−1 → R such that

U ∩Br(x0) = {x ∈ Br(x0)| xn > f(x1, ..., xn−1)}

Moreover, it is called a smooth domain if f ∈ C∞.

We list now some lemmas that will be useful in future proofs.

Lemma 1.1. Let Ω a bounded domain. Then it is defined

d(Ω) := sup
x,y∈Ω

|x− y|

It is called diameter of the set.

Definition 1.10. If A,B are two subset of a domain Ω, with A ∩B = ∅, we define

dist(A,B) := inf
x∈A,y∈B

|x− y|

Lemma 1.2. Let Ω ⊆ Rn a domain with n ≥ 2. Then there exist a sequence {Ωj}j∈N
of bounded Lipschitz subdomain of Ω and a sequence {εj}j∈N, with εj > 0, such that

• Ωj ⊆ Ωj+1 ∀ j ∈ N;

• dist(∂Ωj+1,Ωj) ≥ εj+1 ∀ j ∈ N;
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• lim
j→+∞

εj = 0;

• Ω =
∞⋃
j=1

Ωj.

Definition 1.11. Let (X, τ) a topological space and Y a subspace of X. We say that
Y is relatively compact in X if its closure Y in X is a compact subset of X.

We state here also the Ascoli-Arzelà theorem, that will be very useful in a compactness
argument.

Theorem 1.1 (Ascoli-Arzelà). Let an ∈ C([0, T ]) such that exists C > 0 and K > 0
such that

|an(t)| ≤ C ∀n ∈ N, t ∈ [0, T ] (1.6)

|an(t)− an(τ)| ≤ K|t− τ | ∀ t, τ ∈ [0, T ], ∀ n ∈ N (1.7)

Then exists a subsequence {ank}k∈N and a ∈ C([0, T ]) such that

lim
k→+∞

max
[0,T ]
|ank(t)− a(t)| = 0

1.3 Useful vectorial and matricial calculus identities

We collect here some useful estimates that, going on, we will use in the calculations in
the present thesis.

(i) If F is a C1 vector field and ϕ is a C1 scalar function, we have the divergence rule

∇ · (ϕF ) = ϕ ∇ · F + F · ∇ϕ (1.8)

(ii) If w = w(x, t) is a C2 vector field we have (using Schwarz theorem for partial
derivatives interchainging)

1

2

d

dt
|∇w|2 =

1

2

d

dt
∇w · ∇w =

1

2

d

dt

{
|∇w1|2 + |∇w2|2 + |∇w3|2

}
=

=
3∑
j=1

∇wj · ∇(∂twj) =
3∑
j=1

∇ · (∂twj∇wj)−∆w · ∂tw (1.9)

where in the last equality has been used the previous point.

(iii) If a, b are two sufficiently regular vectorial fields, then

∇ · (a⊗ b) = (∇ · a) b+∇b · a (1.10)

This is a formula for the divergence of outer product. By definition, we have

(∇ · (a⊗ b))j :=
3∑
i=1

∂[(a⊗ b)ij]
∂xi

=
3∑
i=1

∂ (aibj)

∂xi
=

3∑
i=1

(∂xiaibj + ai∂xibj) =
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= (∇ · a)bj +∇bj · a

Bracketing these elements in a column vector we get

∇ · (a⊗ b) = (∇ · a) b+∇b · a

that is our assertion.

(iv) It holds

∆u · u =
3∑
i=1

∇ · (ui∇ui)− |∇u|2 (1.11)

In fact, by definition,

(∆u) · u =
3∑
i=1

(∆ui)ui =
3∑
i=1

∇ · (∇ui)ui

But, according to the first point, we have

∇ · (ui∇ui) = ui∇ · (∇ui) +∇ui · ∇ui = ui∇ · (∇ui) + |∇ui|2

Otherwise2

|∇u|2 = |∇uT |2 = |(∇u1,∇u2,∇u3)|2 = |∇u1|2 + |∇u2|2 + |∇u3|2

So

(∆u) ·u =
3∑
i=1

∇· (∇ui)ui =
3∑
i=1

∇· (ui∇ui)−
3∑
i=1

|∇ui|2 =
3∑
i=1

∇· (ui∇ui)−|∇u|2

So, the assertion is proved.

(v) If u ∈ C3 is a vector field, we have

∆(∇ · u) = ∇ · (∆u) (1.12)

Remember that the laplacian of a vector field is a vector field. We now prove the
identity. We have, using Schwarz’s theorem,

∆(∇ · u) ≡
n∑
i=1

∂2
xi

( n∑
j=1

∂xjuj

)
=

n∑
i=1

n∑
j=1

∂xj∂
2
xi
uj =

n∑
j=1

n∑
i=1

∂xj∂
2
xi
uj =

=
n∑
j=1

∂xj

(
n∑
i=1

∂2
xi
uj

)
=

n∑
j=1

∂xj∆uj = ∇ · (∆u)

2The Frobenious norm of a matrix has the property that

|A|2 = |A1|2 + ...+ |Am|2

if Ak are the columns of the matrix.
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(vi) If u is a C1 vector field and η is a C1 scalar function, then

∇(uη) = η∇u+ u⊗∇η (1.13)

In fact we have

(∇(ηu))ij = ∂xj(ηui) = (∂xjη) ui + η (∂xjui) = (u⊗∇η)ij + η(∇u)ij

(vii) If u and v are two regular verctor field we have

∇u · ∇v =
3∑
i=1

∇ · (ui∇vi)− u ·∆v (1.14)

In fact we have that (
(∇u)(∇v)T

)
ii

=
3∑
j=1

∂xjui∂xjvi

and so

∇u · ∇v = Tr

(
(∇u)(∇v)T

)
=

3∑
i=1

3∑
j=1

∂xjui∂xjvi

Using that
∂xj(ui∂xjvi) = ∂xjui∂xjvi + ui∂

2
xj
vi

it follows

∇u · ∇v =
3∑
i=1

3∑
j=1

∂xj(ui∂xjvi)−
3∑
i=1

3∑
j=1

ui∂
2
xj
vi =

=
3∑
i=1

∇ · (ui∇vi)−
3∑
i=1

ui∆vi =
3∑
i=1

∇ · (ui∇vi)− u ·∆v

1.4 Useful well-known estimates

1. Young’s Inequality. Let q, p ∈ R such that p, q > 1 and 1
p

+ 1
q

= 1. Then

ab ≤ ap

p
+
bq

q
∀a, b ≥ 0

In fact, remembering that ϕ(t) := et is a convex function, we have

ab = ϕ
(

ln a+ ln b
)

= ϕ

(
1

p
ln ap +

1

q
ln bq

)
≤ 1

p
ϕ
(

ln ap
)

+
1

q
ϕ
(

ln bq
)

=
ap

p
+
bq

q

2. Parametric Young’s Inequality. Let q, p ∈ R such that p, q > 1 and 1
p

+ 1
q

= 1
and ε > 0. Then

ab ≤ εap + Cεb
q ∀ a, b ≥ 0

where Cε ≡ (εp)
− qp

q
. In fact, it is sufficient to write ab =

(
(εp)

1
pa

)(
b

(εp)
1
p

)
and

apply the previous inequality.
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3. Discrete Minkowski’s inequalities. Let a, b ∈ Rn and p ∈ [1,+∞). Then( n∑
k=1

|ak + bk|p
) 1

p

≤
( n∑

k=1

|ak|p
) 1

p

+

( n∑
k=1

|ak|p
) 1

p

(1.15)

1.5 ODEs

Definition 1.12. A function f : D ⊆ Rn → Rm is uniformly lipschitz if exists a costant
L > 0 such that

|f(x)− f(y)| ≤ L|x− y| ∀x, y ∈ D

Definition 1.13. A function f : D ⊆ Rn → Rm is locally uniformly lipschitz if for all
x ∈ D exists a neighborhood U(x) such that f is uniformly lipschitz in U(x).

Remark 1.7. If D is open, a function f ∈ C1(D) is locally uniformly lipschitz. In fact,
if x ∈ D, then we can consider Br(x) ⊆ D, and

|f(z)− f(y)| ≤ L|z − y| ∀ z, y ∈ Br(x)

where ξ = ξx,z ∈ [x, z] := {tx+ (1− t)z| t ∈ [0, 1]} and L := sup
Br(x)

∥∥∥∥∂f∂x (ξ)

∥∥∥∥.

Remark 1.8. We are in this situation if we choose as f the velocity field u(x, t). In fact,
u ∈ C2(Ω× [0,+∞),R3), which means that u ∈ C2(A,R3), where A is an open set that
cointains Ω× [0,+∞). �

We recalled these definitions to recall the following proposition.

Theorem 1.2. Let f : D × I ⊆ Rn × R→ Rn a locally uniformly lipschitz function in
(x0, t0) ∈ D× I with lipschitz constant L = L(x0, t0) in the neighborhood U(x0, t0). Let
r > 0 and T0 > 0 such that Br(x0)× [t0 − T0, t0 + T0] ⊆ U(x0, t0). Let δ > 0 such that

δ <
1

L
and δ < min{r, M

r
}

with M := max
Br(x0)×[t0−T0,t0+T0]

|f(x, t)|. Then the Cauchy problem

{
ẋ(t) = f(x(t), t)

x(t0) = x0

has a unique solution x(t) defined for all t ∈ [t0 − δ, t0 + δ].

Theorem 1.3. Let f ∈ C1(D × I;Rn), (x0, t0) ∈ D × I. Let x(t) a solution of{
ẋ(t) = f(x(t), t)

x(t0) = x0

Then exists a maximal extension of x(t), we say x(t), which solves the problem in an
open set J ⊆ I.
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Theorem 1.4. Let f ∈ C1(D × I;Rn), (x0, t0) ∈ D × I. Let x(t) a solution of{
ẋ(t) = f(x(t), t)

x(t0) = x0

for t, t0 ∈ (t1, t2). Let {tk}k∈N ⊆ R such that tk → t1 as k →∞ and

lim
k→+∞

x(tk) = x ∈ Rn

Then, exists a > 0 such that x(t) is solution of the Cauchy problem for all t ∈ (t1−a, t2).

Theorem 1.5. Let A an open set in Rn and let f(ϕ, t) ∈ Ck(A × [0, T ]) be a force,
with k ≥ 1. Consider ϕ0 ∈ A and the problem{

ϕ̇(t) = f(ϕ(t), t)

ϕ(0) = ϕ0

Then there exists a time τ > 0 and a unique solution ϕ ∈ Ck+1([0, τ), A) to the problem.
Moreover, we can choose τ > 0 as the maximal time of existence of the solution. The
maximal interval of existence of the solution is an open set.

1.5.1 Gronwall’s lemmas

Lemma 1.3. Let f, g ∈ C([a, b]), with g ≥ 0. Suppose that f(t) ≤ f0 +

∫ t

a

g(s)f(s) ds

where f0 is a constant. Then

f(t) ≤ f0 exp

(∫ t

a

g(s) ds

)
Lemma 1.4. Let v : [0, T )→ R+ continuous such that

v(t) ≤ V0 +

∫ t

0

ψ(s)ω(v(s)) ds ∀t ∈ [0, T )

where V0 ≥ 0, ψ : [0, T )→ R+ is continuous and ω : [0,+∞)→ (0,+∞) is continuous
and monotone strictly-increasing. Then

v(t) ≤ φ−1

(
φ(V0) +

∫ t

0

ψ(s) ds

)
∀ t ∈ [0, T )

where

φ(u) :=

∫ u

u0

ds

ω(s)

Remark 1.9. This lemma is due to Bihari, and we provide the proof in [1, p. 23, Prop.
1.1]. �
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Proof. We define

y(t) :=

∫ t

0

ω(v(s))ψ(s)ds ∀ t ∈ [0, T )

So, it follows by the hypothesis that

v(t) ≤ V0 + y(t)

Moreover

y′(t) = ω(v(t))ψ(t) ≤ ω(V0 + y(t))ψ(t) =⇒ y′(s)

ω (V0 + y(s))
≤ ψ(s) (1.16)

and so, integrating over [0, t], with t ∈ [0, T ), we have

φ(y(t) + V0)− φ(V0) =

∫ y(t)+V0

0

dτ

ω(τ)
−
∫ V0

0

dτ

ω(τ)
=

=

∫ y(t)+V0

V0

dτ

ω(τ)
=

∫ t

0

y′(s) ds

ω(V0 + y(s))
≤
∫ t

0

ψ(s) ds

So

φ(v(t)) ≤ φ(y(t) + V0) ≤ φ(V0) +

∫ t

0

ψ(s) ds

By the monotony3 of φ−1 we have v(t) ≤ φ−1

(
φ(V0) +

∫ t

0

ψ(s) ds

)
, ∀ t ∈ [0, T ).

We now provide a useful Gronwall’s integral lemma.

Lemma 1.5. Let I be an interval of the real line. Let α, β, u be real valued functions
defined on I. Assume that β and u are continuous and that the negative part of α is
integrable on every closed and bounded subinterval of I. If, moreover, β is non negative
and if u satisfies the inequality

u(t) ≤ α(t) +

∫ t

a

β(s)u(s) ds ∀t ∈ I

where a is the left extreme of I, and α is non decreasing, then

u(t) ≤ α(t) exp

(∫ t

a

β(s) ds

)
∀t ∈ I

1.5.2 Time evolution opeator and flow of an ODE

Definition 1.14. Consider an ordinary differential equation{
ẋ(t) = f(x(t), t)

x(t0) = x0

3In fact φ′(x) = 1
ω(x) > 0, and so x1 < x2 ⇐⇒ φ(x1) < φ(x2).
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where each term satisfies the right condition of solvability mentioned above. We define

ϕ(t; t0, x0) := x(t)

where x(t) is the solution of the equation. Here ϕ is called flow at time t with starting
data (x0, t0) of the ODE above.

Remark 1.10. If we fix t and t0, φ(x0) := ϕ(t; t0, x0) is a transformation φ : Rn → Rn.
�

Remark 1.11. If t0 ∈ [0, T ], x0 ∈ Rn, f ∈ C1(Rn × [0, T ],Rn) and |f(x, t)| ≤ M for all
(x, t) ∈ Rn × [0, T ], then the solution exists in the interval of time [0, T ]. So we can
consider ϕ(t; t0, x0) for all t ∈ [0, T ]. Because both t, t0 ∈ [0, T ], we can also consider
ϕ(t0; t, x0). It follows that

ϕ(t0; t, ϕ(t; t0, x0)) = x0, ϕ(t; t0, ϕ(t0; t, x0)) = x0

because of unicity of solution of an ODE (level curves never cross; if they do, then the
curves coincide). In this way, we have found the inverse of the trasformation. �

Lemma 1.6. Let f ∈ Ck(Rn × [0, T ],Rn), with |f | ≤M . Let ϕ the flow associtated to
the velocity field f . Let t0 ∈ [0, T ]. Then

ϕ(t; t0, x) ≡ g(x, t) ∈ Ck(Rn × [0, T ],Rn)

Theorem 1.6. Let f ∈ C3(Rn × [0, T ],Rn) a velocity field such that ∇x · f = 0 and
|f | ≤M . Let t0 ∈ [0, T ] and let

Mt(x) := Dxϕ(t; t0, x)

with ϕ the flow associated to f . Then det(Mt(x)) ≡ det(Mt0(x)) = det I = 1.

Remark 1.12. It is a theorem of volume conservation, a generalization of the Liouville
theorem for the Hamiltonian flow. �

Remark 1.13. This result is important, and justifies the name incompressibility equation
for the divergence free equation of a flow, ∇ · f = 0. As we will see later, this theorem
says that in a change of varibles, where the change is a time evolution operator solution
of a divergence free equation, the Jacobian term is unimportant, because it is costanly
unitary. �

1.6 Other classical results: surface integrals and di-

vergence theorems

1.6.1 Integrals over manifolds

We first introduce some topological notions.

Definition 1.15. Let V ⊆ Rn a connected subset of the whole space. We say that V
is a k-manifold if for every x0 ∈ V exists an open neighborhood Ax0 of x0 such that
V ∩ Ax0 = ϕ(U) where the pair (ϕ,U) satisfies the followings:
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(i) U is open, connected and bounded in Rk, so that U is a compact subspace of Rk;

(ii) mk(∂U) = 0, where mk is the Lebesgue measure in Rk;

(iii) ϕ ∈ C1(U ;Rn);

(iv) ϕ is an injective function;

(v) ∂uϕ(u) has maximal rank for every u ∈ U .

So, we have the next definitions.

Definition 1.16. Let V a k-manifold, and let (ϕ,U) its representation. We define the
area element of this manifold as

σk(u) :=

√√√√ ∑
(i1,...,ik)∈Ikn

∣∣∣∣det
∂(ϕi1 , ..., ϕik)

∂(u1, ..., uk)
(u)

∣∣∣∣2
where Ikn := {(i1, ..., ik) ∈ {1, ..., n}k : i1 ≤ i2 ≤ ... ≤ ik}.

Finally we can introduce the most operational definition, that is the integral.

Definition 1.17. Let f ∈ C(V ,R). We define∫
V

f dσ ≡
∫
V

f dσk :=

∫
U

f(ϕ(u)) σk(u) du ≡
∫
U

f(ϕ(u)) σk(u) du

Remark 1.14. The definition is well posed because ∂U has zero measure, so it holds the
latter equality in the definition. Morevoer, f ◦ ϕ and σk are continuous function over
the compact U , so the product of the two functions is continuous over the compact and
so integrable. �

Definition 1.18. If V =
m⋃
i=1

Vi, where Vi is a k-manifold with representation (ϕi, Ui),

we define ∫
V

f dσ :=
m∑
i=1

∫
Vi

f dσ ≡
m∑
i=1

∫
U i

f(ϕi(u)) σk,i(u) du (1.17)

for every4 f ∈ C(V ,R).

1.6.2 Divergence theorem for regular domains

Theorem 1.7. Let n ≥ 2 and A ⊆ Rn an open, bounded and connected set such that

A = {x ∈ Rn : φ(x) < 0}, ∂A = {x ∈ Rn : φ(x) = 0}, ∇φ(x) 6= 0 ∀x ∈ ∂A

with φ ∈ C1(Rn;R). Let F ∈ C1(A;Rn). Then∫
A

(∇ · F ) dx =

∫
∂A

F · ν dσn−1 (1.18)

where ν is the normal vector of ∂A.

Remark 1.15. It is sufficient that A is a C1 domain of Rn. �

4And being V i ⊆ V , f ∈ C(V i,R).
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Functional spaces in fluid mechanics
and PDEs
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Chapter 2

Banach and Hilbert spaces: weak
and strong convergences

2.1 Hilbert spaces

Definition 2.1. A real Hilbert space is a vector space, equipped with a scalar product,
that is complete with respect the norm induced by the inner product.

Theorem 2.1. Let H a Hilbert space. Let C 6= ∅ a closed and convex vector subspace
of H. If v /∈ C, then ∃ v0 ∈ C such that

|v − v0| = inf
w∈C
|v − w| (2.1)

Definition 2.2. Let v ∈ H and C as above. We define the projection of v over C as

pC(v) :=

{
v0 if v /∈ C
v otherwise

Definition 2.3. If W is a vector subspace of H, we define

W⊥ := {v ∈ H| 〈v, w〉 = 0 ∀ w ∈ W}

Corollary 2.1. Let H a Hilbert space and W a closed and convex linear subspace. Let
v ∈ H. Then v0 := pWv ∈ W is the unique element of W such that

〈v − v0, w〉 = 0 ∀ w ∈ W

It follows that v = (v − v0) + v0 ≡ v′ + v0 with v′ ∈ W⊥.

2.2 Banach spaces

The notion of Banach space is more general then the one of Hilbert space (i.e. every
Hilbert space is a Banach space). Definitions and statements are inspired by [10].

Definition 2.4. A Banach space is a linear normed space (X, ‖·‖) such that is complete
respect with the norm ‖ · ‖.
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Definition 2.5. Let X, Y be Banach spaces. A bounded operator from X to Y is a
function f : X → Y such that exists C > 0

‖f(x)‖Y ≤ C‖x‖X

For every Banach space X we can define the dual space of X.

Definition 2.6. If X is a Banach space, then we define the dual space of X as

X∗ := {f : X → R such that f is a bounded linear operator}

Remark 2.1. For a linear opeator between normed spaces, boundness and continuity
are equivalent. �

Proposition 2.1. The space X∗ equipped with the norm

‖f‖ := sup
‖x‖≤1

|f(x)| (2.2)

is a Banach space.

Definition 2.7. We say that a Banach space X is reflexive if (X∗)∗ = X. More
precisely, this means that for each u∗∗ ∈ (X∗)∗, there exists u ∈ X such that

〈u∗∗, u∗〉 = 〈u∗, u〉 u∗ ∈ X∗

where the symbol 〈u∗, u〉 denotes the real number u∗(u). In other words, the symbol
〈·, ·〉 denotes the pairing of X∗ and X.

Theorem 2.2. Every Hilbert space is reflexive; more precisely, for every f ∈ H∗ there
exists a unique element xf ∈ H such that

f(y) = 〈x, y〉 ∀y ∈ H

Moreover, the map f → xf is a linear isomorphism of H∗ onto H.

2.3 Strong and weak convergences

Definition 2.8. Let (X, ‖·‖) a Banach space. We say that a sequence xk ∈ X converges
to x ∈ X (in strong sense) if

lim
k→+∞

‖xk − x‖ = 0

We use one of the following notations

lim
k→+∞

xk = x, xk → x

Definition 2.9. Let (X, ‖ · ‖) a Banach space and let X∗ its dual space. We say that
xk ∈ X converges weakly to x ∈ X if

lim
k→+∞

f(xk) = f(x) ∀f ∈ X∗

In this case we write
xk ⇀ x
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Proposition 2.2. Let (X, ‖ · ‖) be a Banach space. Let {xk}k∈N ⊂ X and x ∈ X. The
following statements hold:

(i) If xk → x, then xk ⇀ x;

(ii) If xk ⇀ x, then
‖x‖ ≤ lim inf

k→+∞
‖xk‖ (2.3)

(iii) If X is reflexive and xk ∈ X is such that ‖xk‖ ≤ C for every k ∈ N, then there
exist a subsequence xkj and an element x ∈ X such that xkj ⇀ x.

The latter property is called weak compactness.

We can also introduce a notion of convergence in the dual space X∗.

Definition 2.10. Let (X, ‖ · ‖) a Banach space, and let X∗ its dual space. Consider a
sequence fk ∈ X∗. We say that fk is weak star (or weak *) convergent to an element
f ∈ X∗ if

lim
k→+∞

fk(x) = f(x) ∀x ∈ X

In this case we write
fk

∗
⇀ f

Lemma 2.1. Let (X, ‖ · ‖) be a Banach space and X∗ its dual. Suppose that fk ∈ X∗
is such that fk

∗
⇀ f with f ∈ X∗. Then

‖f‖ ≤ lim inf
k→+∞

‖fk‖

Remark 2.2. While the proof of (2.3) is often provided, we prove here lemma 2.1 since
it is less usual. �

Proof. Define M := ‖f‖ = sup{|f(x)| : x ∈ X, ‖x‖ ≤ 1}. By the definition of
supremum we have that for every ε > 0 exists x ∈ X, ‖x‖ = 1 such that

|f(x)| > M − ε

Since x ∈ X, by the weak-* convergence we have that

lim
k→+∞

|fk(x)| = |f(x)|

So, exists a K ∈ N such that

|fk(x)| > M − ε ∀ k ≥ K

Since x is an element in the unitaty disc of X we have that

‖fk‖ ≥ |fk(x)| ∀ k ∈ N

It follows that
lim inf
k→+∞

‖fk‖ ≥M − ε

Since the inequality holds for every ε > 0 we have lim inf
k→+∞

‖fk‖ ≥M = ‖f‖.

It also holds the following theorem from [18, part 4.9, problem 10, pag. 269].
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Theorem 2.3. (Banach-Alaoglu) Let Y a separable Banach space and let M ⊆ Y ∗ a
bounded subset of the dual space. Then, every sequence in M has a subsequence that
converges in weak star to an element of Y ∗.

Definition 2.11. A Banach space (X, ‖ · ‖) is weakly complete if every weak Cauchy
sequence1 is weakly convergent to some x ∈ X.

Theorem 2.4. Let (X, ‖ · ‖) a Banach space. Then

(i) The closed unit ball {x ∈ X| ‖x‖X ≤ 1} is weakly compact if and only if X is
reflexive.

(ii) If X is reflexive, then X is also weakly complete.

Remark 2.3. The theorem is [12, Th. II.1.3, pg. 32]. �

Theorem 2.5. Let (X, ‖ · ‖) a reflexive Banach space and consider a bounded sequence
{uk} ⊆ X. Then there exists a subsequence ukh and u ∈ X such that ukh ⇀ u. In other
words, bounded sequences in a reflexive Banach space are weakly precompact.

Theorem 2.6. Let (X, ‖ · ‖) a reflexive Banach space. Suppose that xn
∗
⇀ x in X∗.

Then xn ⇀ x in X.

2.4 Compact operators on Hilbert spaces

Definition 2.12. Let X1, X2 be two Banach space, and let T be an operator T : X1 →
X2 linear and bounded. We say that T is compact if for every {xn} ⊆ X1 bounded =⇒
{Txn} has a subsequence that converges in X2.

Lemma 2.2. Let (H, 〈·, ·〉) be an Hilbert space and consider T ∈ L(H). Then there
exists a unique linear bounded operator T ∗ ∈ L(H) such that

〈x, Ty〉 = 〈T ∗x, y〉 ∀ x, y ∈ H

We say that T ∗ is the adjoint of T .

Lemma 2.3. If T ∈ L(H) is compact, then also T ∗ is compact.

Theorem 2.7. Let (H, 〈·, ·〉) an Hilbert space. Let B : H → H a bounded, compact and
self-adjoint operator. Then there exists a sequence {λk}k∈N such that λk 6= 0 for every
k ∈ N and

|λk+1| ≤ |λk| ∀ k ∈ N, lim
k→+∞

λk = 0

Associated to this sequence, there exists a complete orthonormal basis, {ϕk}k∈N ⊆ H,
such that

Bϕk = λkϕk ∀ k ∈ N
1i.e., xk is weak Cauchy if the following property holds, for all l ∈ X∗: given ε > 0, there is

n = n(l, ε) ∈ N such that
|l(xk − xk′)| < ε ∀k, k′ ≥ n
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Proof. The proof is provided in [23, Th. IV.16, pg. 203].

Remark 2.4. Thanks to the self-adjointness of the operator we have that the eigenvalues
are real. If B is furthermore a positive operator, in the sense of 〈Bϕ,ϕ〉 > 0 ∀ϕ 6= 0,
we have λk > 0 for every k ∈ N. In fact, for ϕk 6= 0,

λk =
〈λkϕk, ϕk〉
‖ϕk‖2

=
〈Bϕk, ϕk〉
‖ϕk‖2

> 0

that is, the eigenvalues are positive. �

Lemma 2.4. Let (H, 〈·, ·〉) be an Hilbert space, with norm ‖·‖ = 〈·, ·〉 1
2 . Let S a closed,

positive, symmetric bilinear form with dense domain D = D(S) ⊆ H, equipped with the

norm
(
‖ · ‖2 + S(·, ·)

) 1
2 . Then there exists a uniquely determinded positive symmetric

operator B : D(B)→ H with dense domain D(B) ⊆ D, that satisfies{
D(B) = {u ∈ D : S(u, v), ∀ v ∈ D, is continuous in ‖ · ‖}
S(u, v) = 〈Bu, v〉 ∀u ∈ D(B), v ∈ D

(2.4)

Remark 2.5. As underlined in [27, pg. 94], a proof is provided in [14, VI, Theorem 2.6]
or [31, Satz 5.37]. The proof rests on the Riesz representation theorem. �

2.5 A fixed point theorem

The following theorem will help us in future chapters to find a solution to a coupled
system.

Theorem 2.8 (Schauder fixed-point theorem). Let X be a Banach space and M ⊆ X
a closed, bounded and convex subset of X. Let T : M →M be a completely continuous
operator. Then T has a fixed point in M .

This theorem is a corollary of a well known fixed point theorem.

Theorem 2.9 (Fixed point theorem). If M is a convex, compact subset of a Banach
space X, and T : M →M is continuous, then T has a fixed point in M .

Remark 2.6. Statements and proofs of these theorems are provided in [15, pg. 10]. �
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Chapter 3

Lp spaces and kernels

3.1 Lebesgue spaces

Consider the measure space (R3,B(R3), µ), where B(R3) is the Borelian σ-algebra in
R3 and dµ ≡ dx is the Lebesgue measure in the 3D space.

Definition 3.1. For every Ω ⊆ R3 measurable set and p ∈ [1,∞) we define

Lp ≡ Lp(Ω) := {f | f is a B(Rn)-measurable function and

∫
Ω

|f(x)|pdx < +∞} (3.1)

It is well known that Lp is a vector space. Morover, it is a normed space with the norm

‖f‖p :=

(∫
Ω

|f(x)|p dx
) 1

p

(3.2)

With this norm, the space is complete, so it is a Banach space.

We can also consider the limit case p =∞. We have

L∞ ≡ L∞(Ω) := {f : Ω→ R| f is a B(Ω)-measurable function and sup
Ω
|f | <∞}

(3.3)
where sup

Ω
|f | is the essential supremum of |f |. Also L∞(Ω) is a Banach space, with

norm

‖f‖∞ := sup
Ω
|f | (3.4)

We claim now two important inequalities, that are Hölder’s generalized inequality and
the interpolation inequality.

Lemma 3.1. Let Ω be a domain. Let p, q, r be such that
1

p
+

1

q
+

1

r
= 1 and let be

f ∈ Lp(Ω), g ∈ Lq(Ω) and h ∈ Lr(Ω). Then fgh ∈ L1(Ω) and

‖fgh‖1 ≤ ‖f‖p‖g‖q‖h‖r (3.5)
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Lemma 3.2. Let Ω be a domain. Let 1 ≤ q ≤ γ ≤ r ≤ ∞ and α ∈ [0, 1] be such that
1

γ
=
α

q
+

1− α
r

. Let f ∈ Lq(Ω) ∩ Lr(Ω). Then f ∈ Lγ(Ω) and

‖f‖γ ≤ ‖f‖αq ‖f‖1−α
r (3.6)

Lemma 3.3. Let I be an interval in R. Let fn, f ∈ Lp(I). If fn → f in Lp(I), then
there exists a subsequence fnk such that

(i) fnk(t)→ f(t) a.e. in I;

(ii) Exists h ∈ Lp(I) such that |fnk(t)| ≤ h(t) for every k ∈ N and for almost every
t ∈ I.

Now we state a theorem about differentiation under integral sign for convolutions.

Theorem 3.1. Let Ω a domain in Rn. Let g(x, ·) ∈ C1(Ω) and 0 ≤ G a measurable
function such that

|∇xg(x, y)| ≤ G(y) ∀ x, y ∈ Ω

Let f : Ω→ R a measurable function, and suppose that

Fx(y) := f(y)g(x, y) ∈ L1(Ω) ∀ x ∈ Ω and also |f(y)|G(y) ∈ L1(Ω)

Then

φ(x) :=

∫
Ω

f(y)g(x, y) dy ∈ C1(Ω)

3.1.1 The vectorial case

If u : Ω ⊆ Rn → Rn we want to define the Lp for vectorial functions, say Lp(Ω)n. If | · |
is the Euclidean norm, we define

‖u‖p :=

(∫
Ω

|u|pdx
) 1

p

Another possible choice is to define the norm as

‖u‖′p :=

( n∑
i=1

‖ui‖pp
) 1

p

However the two norms are equivalent. In fact, if we look at the second one, we have

‖u‖′p =

( n∑
i=1

∫
Ω

|ui|p
) 1

p

=

(∫
Ω

n∑
i=1

|ui|p
) 1

p

=

(∫
Ω

|u|pp
) 1

p

(3.7)

Since the norms | · | and | · |p are equivalent in Rn, we have that also the Lp norms are
equivalent. A similar argument holds for the matrices.
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3.2 Convolutions and mollifications

Definition 3.2. Let u : Ω→ R, with Ω a bounded domain, a function locally integrable
and let Ωε0 := {x ∈ Ω| dist(x, ∂Ω) > ε0}. Let η ∈ C∞c (Ω) with compact support in
B(0, ε0). Then, we define the convolution(

u ∗ η)(x) :=

∫
B(0,ε0)

u(x− y)η(y)dy, ∀x ∈ Ωε0

Theorem 3.2. Let Ω a bounded domain. Let u : Ω → R a function such that u ∈
L2(Ω) and u′ ∈ L∞(Ω). Let η ∈ C∞c (Ω), with compact support in B(0, ε0). Then, the
convolution u ∗ η has the derivative D(u ∗ η) = Du ∗ η for every x0 ∈ Ωε0.

Remark 3.1. If we prove the theorem in an interval I ⊆ R, then the theorem holds for
the partial derivatives. So, in particular, it holds in Rn.

Proof. Consider I ⊆ R. Let x0 ∈ Iε0 . By definition, we have

lim
h→0

(
u ∗ η

)
(x0 + h)−

(
u ∗ η

)
(x0)

h
= lim

h→0

∫ ε0

−ε0

u(x0 + h− y)− u(x0 − y)

h
η(y)dy

Since u ∈ W 1,2(I), by theorem [3, Th. VIII, pg. 122], we have that exists ũ ∈ C(I)
such that u = ũ almost everywhere in I, and

ũ(z)− ũ(w) =

∫ z

w

u′(t)dt, ∀z, w ∈ I (3.8)

Since the convolution does not change if u changes on a zero measure set, and if h is
small enough to have x0 + h− y, x0 − y ∈ I, we have

ũ(x0 + h− y)− ũ(x0 − y) =

∫ x0+h−y

x0−y
u′(t)dt

so that

|ũ(x0 + h− y)− ũ(x0 − y)|
h

≤ 1

h

∫ x0+h−y

x0−y
|u′(t)|dt ≤ 1

h

∫ x0+h−y

x0−y
‖u′‖∞,Idt = ‖u′‖∞,I

(3.9)
Since ‖u′‖∞,I is a constant and η ∈ L1((−ε0, ε0)), we have that the incremental ratio
has an integrable bound. It follow that

lim
h→0

(
u ∗ η

)
(x0 + h)−

(
u ∗ η

)
(x0)

h
= lim

h→0

(
ũ ∗ η

)
(x0 + h)−

(
ũ ∗ η

)
(x0)

h
=

=

∫ ε0

−ε0
ũ′(x0 − y)η(y)dy =

∫ ε0

−ε0
u′(x0 − y)η(y)dy = (u′ ∗ η)(x0)

Remark 3.2. Since it holds (3.8), we have, throught the fundamental theorem of Lebesgue
integral calculus, that ũ has derivative ũ′ almost everywhere and that ũ′ = u′ almost
everywhere. �

So we have the thesis.
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3.2.1 Mollifiers

Consider an open set Ω ⊂ Rn. We define, for ε > 0,

Ωε := {x ∈ Ω| dist(x, ∂Ω) > ε}

Moreover we define the function η ∈ C∞(Rn) by

η(x) :=

C exp

(
1

|x|2−1

)
|x| < 1

0 |x| ≥ 1

The constant C > 0 is selected so that

∫
R3

η(x) dx = 1. Then, for every ε > 0, we set

ηε(x) =
1

εn
η
(x
ε

)
The functions ηε are C∞ and satisfy∫

Rn
ηε dx = 1, supp(ηε) ⊂ B(0, ε)

Definition 3.3. If u : Ω→ R is locally integrable, we define its mollification

uε(x) :=

∫
Ω

ηε(x− y)u(y) dy =

∫
B(0,ε)

ηε(y)u(x− y) dy, ∀ x ∈ Ωε

We have the following theorem.

Theorem 3.3. Let Ω be a domain. Let ε > 0 and consider Ωε. Consider uε the
mollification of u ∈ L1

loc(Ω). The the following properties hold.

(i) uε ∈ C∞(Ωε);

(ii) uε → u almost everywhere as ε→ 0;

(iii) If f ∈ C(Ω), then uε → u uniformly on compact subsets of Ω;

(iv) If 1 ≤ p <∞ and u ∈ Lploc(Ω), then uε → u in Lploc(Ω).

(v) If 1 ≤ p < ∞, u ∈ Lploc(Ω), Ω is bounded and V,W are open set such that
V ⊂⊂ W ⊂⊂ Ω, then

‖uε‖Lp(V ) ≤ ‖u‖Lp(W )

Proof. We only prove the latter point, since it allows us to remark an aspect of the
convolution. The theorem is [10, Th. 7, pg. 714].

Consider, as above, V ⊂⊂ W ⊂⊂ Ω. Observe, in particular, that the closures of
these three sets are compact set. In particular, the distance of V from the boundary
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∂W is finite and positive. If d is this distance, we define ε0 := d
2
. Obviously, ε0 only

depends on the three sets. So, let x ∈ V , and consider that

|uε(x)| = |
∫
B(x,ε)

ηε(x− y)u(y) dy| ≤
∫
B(x,ε)

η
1− 1

p
ε (x− y)η

1
p
ε (x− y)|u(y)| dy ≤

≤
(∫

B(x,ε)

ηε(x−y) dy

)1− 1
p
(∫

B(x,ε)

ηε(x−y)|u(y)|pdy
) 1

p

=

(∫
B(x,ε)

ηε(x−y)|u(y)|pdy
) 1

p

since

∫
B(x,ε)

ηε(x− y) dy = 1. So, we have that

‖uε‖pLp(V ) =

∫
V

|uε(x)|pdx ≤
∫
V

(∫
B(x,ε)

ηε(x− y)|u(y)|pdy
)
dx ≤

and, if ε < ε0, we have that B(x, ε) ⊂ W , since x ∈ V and the distance d > ε0,

≤
∫
V

(∫
W

ηε(x− y)|u(y)|pdy
)
dx =

∫
W

|u(y)|p
(∫

V

ηε(x− y)dx

)
dy ≤

≤
∫
W

|u(y)|p
(∫

Rn
ηε(x− y)dx

)
dy =

∫
W

|u(y)|pdy = ‖u‖pLp(W )

where the latter equality holds since∫
Rn
ηε(x− y)dx =

∫
B(y,ε)

ηε(x− y)dx = 1

being ηε(x− y) = 0 if |x− y| ≥ ε. This is the thesis.

Remark 3.3. We remark that we only required ε < ε0, and ε0 is independent of u, but
only depends on the domains. �

3.3 Approximation results

We list some density results about Lp spaces, that can be found in [24, Th. 3.14, pg.
69].

Theorem 3.4. Let Ω be a domain. For 1 ≤ p <∞, the set Cc(Ω) is dense in Lp(Ω).

Corollary 3.1. Let Ω be a domain. Then, for 1 ≤ p < ∞, the set C∞c (Ω) is dense in
Lp(Ω).

3.4 Lp spaces as functional spaces

Theorem 3.5. Let fn, f ∈ Lp(Ω). Suppose that

lim
n→∞

‖fn‖p = ‖f‖p, fn ⇀ f in Lp(Ω)

Then fn → f in Lp(Ω).
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Remark 3.4. It is an application to the Lp spaces of the theorem [3, Proposition III.30,
pg. 52]. �

Theorem 3.6. Let fn ∈ Lp(Ω) and f ∈ Lp(Ω) such that, for every ϕ ∈ C∞c (Ω),

lim
n→∞

∫
Ω

fn(x)ϕ(x) dx =

∫
Ω

f(x)ϕ(x) dx

Suppose moreover that exists C > 0 such that ‖fn‖p ≤ C for every n ∈ N. Then
fn ⇀ f , that is

lim
n→∞

∫
Ω

fn(x)g(x) dx =

∫
Ω

f(x)g(x) dx ∀ g ∈ Lq(Ω)

Proof. Let g ∈ Lq(Ω) and ε > 0. Then we fix ϕε ∈ C∞c (Ω) such that ‖g − ϕε‖q < ε.
It follows that∣∣∣∣ ∫

Ω

(fn − f)g dx

∣∣∣∣ =

∣∣∣∣ ∫
Ω

(fn − f)ϕε dx+

∫
Ω

(fn − f)(g − ϕε) dx
∣∣∣∣ ≤

≤
∣∣∣∣ ∫

Ω

(fn − f)ϕε dx

∣∣∣∣+ ‖fn − f‖p‖g − ϕε‖q ≤
∣∣∣∣ ∫

Ω

(fn − f)ϕε dx

∣∣∣∣+

(
C + ‖f‖p

)
ε

that is small for n large enough, using the hypothesis on the test functions.

Theorem 3.7. Let fn ∈ Lp(Ω) a sequence of function in Lp(Ω) such that sup
n
‖fn‖p <

∞. Then, for every ε > 0 exists Mε > 0 such that

sup
n∈N

{∫
{x∈Ω: |fn(x)|>Mε}

|fn(x)| dx
}
< ε

Proof. Let M ∈ (0,∞). Then

χ{x∈Ω: |fn(x)|>M}(x)|fn(x)|Mp−1 ≤ |fn(x)|p

for every x ∈ Ω. Integrating the expression, we have that

Mp−1

∫
{x∈Ω: |fn(x)|>M}

|fn(x)| dx ≤ ‖fn‖pp =⇒
∫
{x∈Ω: |fn(x)|>M}

|fn(x)| dx ≤M1−p
(

sup
n
‖fn‖p

)p
and the thesis follows since p > 1.

3.5 Convergence in measure

Definition 3.4. Let (Ω,M, µ) a finite measure space. Let fn, f measurable functions
over Ω. Then we say that fn → f in measure if and only if, for every ε > 0

lim
n→∞

µ({x ∈ Ω : |fn(x)− f(x)| ≥ ε}) = 0
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We have the following properties of convergence in measure.

Proposition 3.1. Let (Ω,M, µ) a measure space, with µ(Ω) <∞. Let fn, f measurable
functions over Ω. Then the following properties hold.

(i) Let ε > 0. If for every δ > 0 there exists Nδ ∈ N such that

µ({x ∈ Ω : |fn(x)− fm(x)| ≥ ε}) ≤ δ ∀ n,m ≥ Nδ (3.10)

then exists a measurable function f such that fn → f in measure.

Conversely, if fn → f in measure, then equation (3.10) holds.

(ii) If fn → f almost everywhere in Ω, then fn → f in measure.

(iii) Suppose that fn → f in Lp(Ω). Then fn → f in measure.

(iv) If fn → f in measure, then there exists a subsequence nk such that fnk(x)→ f(x)
for almost every x ∈ Ω.

(v) On the other hand, if fn → f in measure and exists g ∈ Lp(Ω) such that |fn| ≤ g,
then fn → f in Lp(Ω).

(vi) If fn → f in measure and β is a continuous function over R, then β(fn)→ β(f)
in measure.

(vii) Let fn a sequence of measurable functions, such that for every βk piecewise dif-
ferentiable such that

βk(t) :=


βk(t) = 0 |t| ≤ 1

k

β′k(t) > 0 |t| > 1
k

βk, β
′
k are bounded

exists vk measurable function such that

βk(fn)→ vk in measure as n→∞

If moreover fn ∈ Lp(Ω), with sup
n∈N
‖fn‖Lp(Ω) <∞, it follows that exists f measur-

able function such that

fn → f in measure as n→∞

Proof. We only prove the point (vii). We consider the family of functions

βk(t) :=


βk(t) = 0 |t| ≤ 1

k

βk(t) = 1 |t| ≥ 1
k

β′k(t) = 1 t ∈ Ak
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where Ak := [−k,− 1
k
] ∪ [ 1

k
, k] and βk is continuous. The function βk defined above is

piecewise differentiable. This is less than the hypothesis required above; however it is
not a problem. We prove the proposition in this case. It is clear that

R = (−∞,−k] ∪ Ak ∪ [−1

k
,

1

k
] ∪ [k,∞)

Using point (i), we have that βk(fn) is a Cauchy sequence in measure. So, if we consider
the set

En
m(ε) := {x ∈ Ω : |fn(x)− fm(x)| > ε}

it can be decomposed in a finite number of subsets, depending on the subset [− 1
k
, 1
k
],

Ak or [−∞, k] ∪ [k,∞] where un(x) and um(x) live. We also define

Bk := [−1

k
,

1

k
], Ck := (−∞,−k] ∪ [k,∞)

In particular, we define now the set

En,D
m,D′(ε) := {x ∈ Ω : |fn(x)− fm(x)| > ε, fn(x) ∈ D, fm(x) ∈ D′}

where D,D′ ∈ {Ak, Bk, Ck}. It follows that

En
m(ε) =

⋃
D,D′∈{Ak,Bk,Ck}

En,D
m,D′(ε)

We now show that, as n,m are large enough, and k ∈ N is large but fixed, the set En,D
m,D′

has small measure.

(i) We first consider En,Bk
m,Ak

(ε). In this set we have

ε < |fn(x)−fm(x)| ≤ |fn(x)−βk(fn(x))|+|βk(fn(x))−βk(fm(x))|+|βk(fm(x))−fm(x)|

and so it follows that1

En,Bkm,Ak
(ε) ⊆ {|fn(x)−βk(fn(x))| ≥ ε

3
}∪{|βk(fn(x))−βk(fm(x))| ≥ ε

3
}∪{|βk(fm(x))−fm(x)| ≥ ε

3
}

The first set is empty if k is large enough, since |fn(x)| ≤ 1
k
. The second set has

small measure, thanks to the convergence in measure. The latter set is empty,
since βk(fm(x)) = fm(x) for fm(x) ∈ Ak. Clearly En,Ak

m,Bk
(ε) can be studied in the

same way.

(ii) On the other hand we can consider the set

En,Ak
m,Ak

:= {x ∈ Ω : |fn(x)− fm(x)| > ε, fn(x), fm(x) ∈ Ak} ⊆

⊆ {x ∈ Ω : |βk(fn(x))− βk(fm(x))| > ε}

and so the measure is small.

1If a, b, c ≥ 0 and a+ b+ c > ε, then a element in the set {a, b, c} is > ε. In fact, if every element
is ≤ ε

3 , we have a contradiction.
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(iii) Moreover in every set of the form En,D
m,D′(ε), with D = Ck or D′ = Ck, we have, if

in example D = Ck,

En,D
m,D′(ε) ⊆ {x ∈ Ω : |fn(x)| > k}

and so

|En,D
m,D′(ε)| ≤ |{x ∈ Ω : |fn(x)| > k}| ≤ 1

kp

(
sup
n∈N
‖fn‖p

)
So the measure is small if k is large enough.

(iv) Finally, the term

En,Bk
m,Bk

:= {x ∈ Ω : |fn(x)− fm(x)| > ε, |fn(x)|, |fm(x)| < 1

k
}

has small measure if k is large enough and n goes to infinity. In fact

ε < |fn(x)−fm(x)| ≤ |fn(x)−βk(fn(x))|+|βk(fn(x))−βk(fm(x))|+|βk(fm(x))−fm(x)|

and so

En,Bk
m,Bk

⊆ {|fn(x)−βk(fn(x))| ≥ ε

3
}∪{|βk(fn(x))−βk(fm(x))| ≥ ε

3
}∪{|βk(fm(x))−fm(x)| ≥ ε

3
}

The first and the latter term are empty if k is large enough. The measure of the
second term vanishes if n→∞, thanks to the hypothesis.

So we have that fn is Cauchy convergent in measure. Then, thanks to point (i), there

exists a measurable function f such that fn → f in measure.

3.6 Lebesgue’s Differentiation Theorem

Theorem 3.8. Let Ω be an open subset of Rn. Suppose that f ∈ L1
loc(Ω). Then, for

almost every x0 ∈ Ω it holds

lim
r→0

1

|B(x0, r)|

∫
B(x0,r)

f(x) dx = f(x0) (3.11)

A point x0 at which (3.11) holds is called a Lebesgue point of f .

Corollary 3.2. Let I be an open interval of R. Suppose that f ∈ L1
loc(I). Let ψt0n ∈

C∞c (I) be a sequence of test functions over I such that

∫
I

ϕt0n (t) dt ≡ 1 for every n ∈ N

and supp(ϕx0
n ) ⊂ (− 1

n
+ t0, t0 + 1

n
). Then, for almost every t0 ∈ I,

lim
n→∞

∫
I

ϕt0n (t)f(t) dt = f(t0) (3.12)
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3.7 Further integration theory: kernels

We start this further integration theory with a fundamental definition.

Definition 3.5. A Calderón-Zygmund kernel is a function K ∈ L1
loc(Rn/{0}) such that

exists a constant B ≥ 0 with the following properties:

(i) |K(x)| ≤ B

|x|n
∀ x 6= 0;

(ii)

∫
{x∈Rn:|x|>2|y|}

|K(x− y)−K(x)| dx ≤ B ∀ y 6= 0;

(iii)

∫
r1<|x|<r2

K(x) dx = 0 ∀ r1, r2 > 0.

Remark 3.5. Keep in mind that a compact subset C of Rn/{0} is far enough from the
origin 0. In fact if for every r > 0 there is a point x0 ∈ B(0, r) that is a point of C,
then we can build a sequence xn ∈ C such that xn → 0. But also every subsequence of
xn converges to 0, so we have find a sequence in C such that it hasn’t a subsequence
that converges in C. This contradicts the compactness of C. So there exists a r > 0
such that each point of B(0, r) is not a point of C. So, if K ∈ C(Rn/{0}) and C is a
compact subset of Rn/{0}, we have that K, and |K|, are continuous on C. So, |K| is
summable on C. This means that K ∈ L1

loc(Rn/{0}). �
Remark 3.6. Except for the second condition, the other requests seem natural. This
second condition is called Hormander condition. The following lemma gives us a more
operational formulation. �

Lemma 3.4. Suppose that exists B ≥ 0 such that

|K(x)| ≤ B

|x|n
∀ x 6= 0,

∫
r1<|x|<r2

K(x)dx = 0 ∀ r1, r2 > 0 (3.13)

Suppose moreover that K ∈ C1(Rn/{0}) and it holds

|∇K(x)| ≤ B

|x|n+1
∀ x 6= 0 (3.14)

Then it holds also the Hormander condition.

Proof. Since ∂tK(x− ty) = −∇K(x− ty) · y, by the Fundamental Calculus theorem
we have

K(x)−K(x− y) = −
∫ 1

0

∇K(x− ty) · y dt

Now if 2|y| < |x| we have2

|K(x)−K(x− y)| ≤ B|x− ty|−n−1|y| ≤ 2n+1B

|x|n+1
|y|

2Observe that the previous expression makes sense if x− ty 6= 0. But with the last assumption, if
x = ty for a t ∈ [0, 1],

|x| = t|y| ≤ |y| < |x|
2

that is an absurd.
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where has been used that

|x|
2
< |x| − |y| ≤ |x| − t|y| ≤ ||x| − t|y|| ≤ |x− ty|

Now we integrate and∫
{x: |x|>2|y|}

|K(x)−K(x− y)| dx ≤ 2n+1B|y|
∫
{x: |x|>2|y|}

|x|−n−1dx

Writing the latter integral in polar coordinates we have∫
{x: |x|>2|y|}

|x|−n−1dx =
C

2|y|

Substituting B with a costant B′ (and eventually taking the maximum between B and

B′ to have the same constant in the two inequalities), we have the thesis.

The following proposition will be very useful in a moment.

Proposition 3.2. Let f : Rn/{0} → R a function in C1(Rn/{0}). Suppose that f is
homogeneous of exponent α. Then

(i) ∂xif(x) is homogeneous of exponent α− 1 for every i ∈ {1, ..., n};

(ii) |f(x)| ≤ C|x|α ∀ x 6= 0, where C = max
|x|=1
|f(x)|.

Proof. By definition, we have

∂xif(tx) = lim
h→0

f(tx+ hêi)− f(tx)

h
= tα lim

h→0

f(x+ h
t
êi)− f(x)

h
= tα−1∂xif(x)

On the other side |f(x)| =
∣∣∣∣f( x

|x|
|x|
)∣∣∣∣ = |x|α

∣∣∣∣f( x

|x|

)∣∣∣∣ ≤ |x|α max
|x|=1
|f |.

Remark 3.7. If f is sufficiently regular in Rn/{0}, then |f(x)| ≤ C0|x|α and moreover,
being |∂xif(x)| ≤ Ci|x|α−1, we have

|∇f(x)| =
( n∑

i=1

|∂xif(x)|2
) 1

2

≤
√
n C|x|α−1

where C := maxiCi. �

The following lemma paves the way to the hypothesis of the Calderón-Zygmund theo-
rem.

Lemma 3.5. Let K be a Caldeòn-Zygmund kernel and let f ∈ C∞0 (Rn). Then the
function

φ(x) := lim
ε→0

∫
|x−y|≥ε

K(x− y)f(y)dy (3.15)

is defined for every x ∈ Rn.
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Proof. Let B the constant provided by the definition of Calderón-Zygmund kernel.
With a change of coordinates (namely a translation), we have∫

|x−y|≥ε
K(x− y)f(y)dy =

∫
|y|≥ε

K(y)f(x− y)dy =

=

∫
1≥|y|≥ε

K(y)f(x− y)dy +

∫
|y|≥1

K(y)f(x− y)dy −
∫

1≥|y|≥ε
K(y)f(x)dy

where ε < 1 and it has been used a property of a Calderón-Zygmynd kernel. We can
rewrite this expression as∫
|x−y|≥ε

K(x− y)f(y)dy =

∫
1≥|y|≥ε

K(y)[f(x− y)− f(x)]dy +

∫
|y|≥1

K(y)f(x− y)dy

The first integral can be estimated as follows:

|K(y)[f(x− y)− f(x)]| ≤ B‖∇f‖∞|y|1−n

using the Lagrange theorem3 and the estimate for K. So∫
1≥|y|≥ε

|K(y)[f(x− y)− f(x)]|dy ≤ B‖∇f‖∞
∫

1≥|y|≥ε

1

|y|n−1
dy

But the function |y|1−n is integrable near the origin (since n− 1 < n) and so the limit

lim
ε→0

1

|y|n−1
dy

exists. So also the limit

lim
ε→0

∫
1≥|y|≥ε

|K(y)[f(x− y)− f(x)]|dy

exists. This imply the existence of the limit of the integral of positive and negative part
of the integrand, and so of the limite of the whole function, that is the difference of the
two limites mentioned above.
So, being∫
|x−y|≥ε

K(x− y)f(y)dy =

∫
1≥|y|≥ε

K(y)[f(x− y)− f(x)]dy +

∫
|y|≥1

K(y)f(x− y)dy

we have that the left side is equal to the sum of two integrals with existing limit. It
follows that also exists the limit of the left side.

3We have

|f(x+ h)− f(x)| = |
∫ 1

0

d

dt
f(x+ th)dt| = |

∫ 1

0

∇f(x+ th) · h dt| ≤ ‖∇f‖∞|h|

and we choose h = −y.
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Remark 3.8. If the kernel is such that the integral∫
R3

K(x− y)f(y)dy

is well defined, i.e. the product |K(x − y)||f(y)| is summable over R3 for every x, we
have in particular that, for a fixed x,

u(x) :=

∫
R3

K(x− y)f(y)dy = lim
ε→0

∫
|x−y|≥ε

K(x− y)f(y)dy

using the Lebesgue dominated convergence theorem. The Calderón-Zygmund theorem
will provide us information about the integrability of the function u. In particular, as
we will see in a moment, if |K(x− y)||f(y)| ∈ L1(R3) for every x ∈ R3 and f ∈ L2(R3),
we will have

‖u‖2 ≤ C‖f‖2

i.e. also u ∈ L2. �

3.8 The Calderón-Zygmund theorem

Theorem 3.9. Let K ∈ L1
loc(Rn/{0}) a Calderón-Zygmund kernel. Let p ∈ (1,∞) and

consider the operator

Tε(f) :=

∫
|y|≥ε

f(x− y)K(y) dy

for f ∈ Lp(Rn). Then there exists a constant Cp depending only on B, n, p, and
independent of ε, such that

‖Tε(f)‖ ≤ Cp‖f‖p (3.16)

Moreover, for every f ∈ Lp(Rn) exists the strong limit

TK(f) := lim
ε→0

Tε(f) in Lp(Rn)

The operator TK is bounded in Lp(Rn) and obeys to the same bound (3.16).

The rest of this section is committed to prove this Calderón-Zygmund theorem.

3.8.1 The Calderón-Zygmund decomposition

Definition 3.6. In the following claims, a cube Q with sides parallel to the axes in Rn

will be the closed cube

Q := {x ∈ Rn : xi ∈ [ai, bi], |ai − bi| ≡ l ∀ i = 1, ..., n}

with measure |Q| = ln. By
◦
Q we will mean the interior of the cube Q.
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A daughter of the cube Q is a cube Q′ of side l
2

obtained dividing Q into 2n sub-cubes,

i.e. dividing Ii ≡ [ai, bi] =

[
ai, ai +

l

2

]
∪
[
ai +

l

2
, bi

]
≡ I1

i ∪ I2
i ,

Q′(k1,...,kn) :=
{
x ∈ Rn : xi ∈ Ikii , ki ∈ {1, 2}, ∀ i = 1, ..., n

}
The cube Q is said to be the father of all the cubes Q′(k1,...,kn).

Theorem 3.10. Let f ∈ L1(Rn) and α > 0. Then there exists a countable collection
of cubes with sides parallel to the axes, say {Qj}j∈N, with disjoint interiors such that

α <
1

|Qj|

∫
Qj

|f(x)| dx ≤ 2nα

Moreover we can decompose the function f . In particular, consider

Ω :=
⋃
j∈N

Qj, F := Rn/Ω

Then, we have the following:

(i) |Ω| ≤ α−1‖f‖L1(Rn);

(ii) ∃ E ⊆ Rn, |E| = 0 such that |f(x)| ≤ α for every x ∈ F/E;

(iii) There exists two functions g and b such that

f(x) = g(x) + b(x)

such that |g(x)| ≤ 2nα almost everywhere and for every p ∈ [1,∞]

‖g‖Lp(Rn) ≤ α
p−1
p (1 + 2np)

1
p‖f‖

1
p

L1(Rn)

and b(x) = 0 for all x ∈ F . Finally∫
Qj

b(x) dx = 0 ∀ j ∈ N, ‖b‖L1(Rn) ≤ (1 + 2n)‖f‖L1(Rn) (3.17)

Proof. First of all, we can write Rn as the union of a countable collection of cubes
with disjoint interiors such that

‖f‖L1(Rn) ≤ α|Q|

for every cube Q of the family. Each cube can be divided into 2n daughters, with sides
parallel to the axes. For each daughter Q′ of a cube Q, we can compute the number

1

|Q′|

∫
Q′
|f(x)| dx. At this point we ask if this number is larger or smaller that α. We

have two possibilities.
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• If
1

|Q′|

∫
Q′
|f(x)| dx ≤ α, we consider the daughters of the cube Q′, now considered

as a father;

• If
1

|Q′|

∫
Q′
|f(x)| dx > α then we retain to this cube a special role.

This ”sketched” algorithm allows us to construct a countable sequence of cubes.

Let {Qj}j a first countable family of cubes, with the property

‖f‖L1(Rn) ≤ α|Qj| (3.18)

Dividing each cube Qj we obtain a new countable sequence of cubes. In particular, to
each father cube Qj they are related

Qj −→



Q
(1)
j

...

Q
(k)
j

...

Q
(2n)
j

The relation with the father is important in view of the next step. If now

1

|Q(k)
j |

∫
Q

(k)
j

|f(x)| dx ≤ α

we subdivide Q
(k)
j into 2n daughters. On the orher hand. if

1

|Q(k)
j |

∫
Q

(k)
j

|f(x)| dx > α

we retain the cube as one of the {Ch}h.
Remark 3.9. Observe that

‖f‖L1(Rn) ≤ α|Qj| =⇒ 1

|Qj|

∫
Qj

|f(x)| dx ≤ α

So the original cubes Qj have to be divided into daughters. �

So, we have described a first pass of the construction. Starting from the original cubes
Qj we have obtained some daughters that have been retained in the {Ch}h, and some
daughters that have been subdivided into other sub-cubes. At the end of this step we
have a countable number of cubes retained and a countable number of cubes to which
we will apply again this process. Since the number of steps is ”scanned” by the sepa-
ration of the cubes (that is a countable process), and each steps produces a countable
number of cubes to retain, we have that the family {Ch}h of set to retain is countable,
since countable union of countable sets.

43



Define now Ω :=
⋃
h∈N

Ch. Observe that the interior
◦
Ch are disjoint by construction,

since we have started with disjoint interiors and the construction mantained the prop-
erty. In particular, we have that, if Ph is the father of Ch, then |Ph| = 2n|Ch| and

1

|Ph|

∫
Ph

|f(x)| dx ≤ α

since otherwise we would have already stopped the process at Ph. So

α <
1

|Ch|

∫
Ch

|f(x)| dx ≤ 2nα (3.19)

being
1

2n|Ch|

∫
Ch

|f(x)| dx ≤ 1

|Ph|

∫
Ph

|f(x)| dx ≤ α. Furthermore observe that

|Ω| ≤
∑
h∈N

|Ch| ≤
∑
h∈N

α−1

∫
Ch

|f(x)| dx = α−1

(∑
h∈N

∫
◦
Ch

|f(x)| dx
)

= α−1

∫
⋃
h∈N

◦
Ch

|f(x)| dx ≤

≤ α−1‖f‖L1(Rn) (3.20)

Now, by the Lebesgue differentiation theorem we have that exists E ⊆ Rn, |E| = 0
such that

f(x) = lim
Q→x

1

|Q|

∫
Q

f(y) dy ∀ x ∈ Rn/E

where Q is a family of cubes that contain x and Q → x means that their diamters
converge to zero.

Let now x ∈ F/E. We have that x /∈ Ω, so that x /∈ Ch for every h ∈ N. So,
there exists a subsequence of cubes Q′m containing x whose diameters converge to zero
and which are not elements of the family {Ch}h, thanks to what we have just said. So,
in particular,

1

|Q′m|

∫
Q′m

|f(x)| dx ≤ α

It follows that |f(x)| ≤ α. We now define

g(x) :=

f(x) x ∈ F
1

|Ch|

∫
Ch

f(x) dx x ∈
◦
Ch

This defines g almost everywhere. Moreover, using that |f(x)| ≤ α over F , equation
(3.19) and that 2n ≥ 1, we have

|g(x)| ≤ 2nα almost everywhere

Moreover, we have that∫
F

|g(x)|p dx =

∫
F

|f(x)|p dx ≤ αp−1‖f‖L1(Rn)
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and, using (3.20), ∫
Ω

|g(x)|p dx ≤ 2npαp|Ω| ≤ αp−12np‖f‖L1(Rn)

We now consider the function b(x) := f(x) − g(x), that is defined almost everywhere
and, by definition, it vanishes on F . Moreover∫

Ch

b(x) dx =

∫
Ch

(f(x)− g(x)) dx = 0

Finally, being |b| ≤ |f |+ |g|, we have∫
Ω

|b(x)| dx ≤ ‖f‖L1(Rn) + ‖g‖L1(Ω) ≤ ‖f‖L1(Rn) + 2nα|Ω| ≤ ‖f‖L1(Rn)(1 + 2n)

and this completes the proof.

3.8.2 The Marcinkiewicz Interpolation

Definition 3.7. An real operator T over a vector space V is said to be sublinear if

(i) T (γv) = γT (v) for every γ > 0;

(ii) T (v + w) ≤ T (v) + T (w) for every v, w ∈ V .

Definition 3.8. A sublinear operator is said to be weak type (p, q), with q <∞, if for
every f ∈ Lp(Rn)

|{x ∈ Rn| |Tf(x)| > α}| ≤
(
C‖f‖Lp(Rn)

α

)q
(3.21)

for every α > 0, with C independent of α and f .

Remark 3.10. If ‖Tf‖Lq(Rn) ≤ C‖f‖Lp(Rn) holds, then by the Chebyshev’s inequality
we have that it is weak type (p, q). �

Remark 3.11. If p ∈ (p1, p2), then

Lp(Rn) ⊂ Lp1(Rn) + Lp2(Rn)

In fact, let f ∈ Lp(Rn) and choose γ > 0. Define

fγ(x) :=

{
f(x) |f(x)| > γ

0 |f(x)| ≤ γ

and

fγ(x) :=

{
0 |f(x)| > γ

f(x) |f(x)| ≤ γ
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Obviously f = fγ + fγ. Moreover

‖fγ‖p1

Lp1 (Rn) ≤ γp1−p‖f‖pLp(Rn), ‖fγ‖p2

Lp2 (Rn) ≤ γp2−p‖f‖pLp(Rn)

In fact, observe that

‖fγ‖p1

Lp1 (Rn) =

∫
{x∈Rn: |f(x)|>γ}

|f(x)|p1 dx =

∫
{x∈Rn: |f(x)|>γ}

|f(x)|p1−p|f(x)|p dx =

=

∫
{x∈Rn: |f(x)|>γ}

|f(x)|p 1

|f(x)|p−p1
dx ≤ γp1−p

∫
Rn
|f(x)|p dx

and analogously we have

‖fγ‖p2

Lp2 (Rn) =

∫
{x∈Rn: |f(x)|≤γ}

|f(x)|p2 dx =

∫
{x∈Rn: |f(x)|≤γ}

|f(x)|p|f(x)|p2−p dx ≤ γp2−p‖f‖pLp(Rn)

and these are the desired estimates. �

Theorem 3.11. Let r ∈ (1,∞]. Assume that T is subadditive and weak type (1, 1) and
weak type (r, r). Then, for every p ∈ (1, r), there exists a constant Cp such that

‖Tf‖Lp(Rn) ≤ Cp‖f‖Lp(Rn) (3.22)

Proof. Fist consider r <∞. We take α > 0 and denote

λ(α) := |{x ∈ Rn : |Tf(x)| > α}|

Decompose now f = fα + fα. Observe moreover that

{x ∈ Rn : |Tf(x)| > α} ⊆ {x ∈ Rn : |Tfα(x)| > α

2
} ∪ {x ∈ Rn : |Tfα(x)| > α

2
}

since |T (f)| = |T (fα + fα)| ≤ |T (fα)|+ |T (fα)| by sublinearity. It follows that

λ(α) ≤ |{x ∈ Rn : |Tfα(x)| > α

2
}|+ |{x ∈ Rn : |Tfα(x)| > α

2
}| ≤

≤
C1‖fα‖L1(Rn)

α
+

(
C2‖fα‖Lr(Rn)

α

)r
=
C1

α

∫
Rn
|fα(x)| dx+

Cr
2

αr

∫
Rn
|fα(x)|r dx =

=
C1

α

∫
{x∈Rn: |f(x)|>α}

|f(x)| dx+
Cr

2

αr

∫
{x∈Rn: |f(x)|≤α}

|f(x)|r dx (3.23)

using the hypothesis on T as a weak operator. Now, we multiply by pαp−1 and integrate
for α ∈ (0,∞). The first term becomes∫ ∞

0

αp−1α−1

(∫
|f |>α

|f | dx
)
dα =

∫
Rn
|f(x)|

(∫ |f(x)|

0

αp−2 dα

)
dx =

1

p− 1

∫
Rn
|f(x)|p dx

and the second∫ ∞
0

αp−1α−r
(∫

|f |≤α
|f(x)|r dx

)
dα =

∫
Rn
|f(x)|r

(∫ ∞
|f(x)|

αp−1−rdα

)
dx =

1

r − p

∫
Rn
|f(x)|p dx
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where Fubini’s theorem can be employed since the second iterated integral is finite,
being f ∈ Lp(Rn). Moreover∫ ∞

0

αp−1|{x ∈ Rn : |Tf(x)| > α}|dα =

∫ ∞
0

αp−1

(∫
{x∈Rn: |Tf(x)|>α}

dx

)
dα =

and so, if f ∈ Lp(Rn), we have, looking at the inequality (3.23) that the latter integral
is finite. So, using Fubini’s Theorem we have that the integrals can be interchanged,
and thus, continuing the chain of equality,

=

∫
Rn

(∫ |Tf(x)|

0

αp−1 dα

)
dx =

1

p

∫
Rn
|Tf(x)|p dx =

1

p
‖Tf‖pLp(Rn)

It follows that Tf ∈ Lp(Rn). So, we have the thesis in this case. If r = ∞ the proof

can be adapted.

3.8.3 Fourier transform

Definition 3.9. Let u ∈ L1(Rn). We define the Fourier transform of u as

û(y) :=
1

(2π)
n
2

∫
Rn
e−ix·yu(x) dx

On the other hand, the inverse Fourier transform of u is

ǔ(y) :=
1

(2π)
n
2

∫
Rn
eix·yu(x) dx

Remark 3.12. Since |e±ix·y| = 1 and u ∈ L1(Rn), then the integrals converge.

The following theorems list some important theorems.

Theorem 3.12. Let u ∈ L1(Rn) ∩ L2(Rn). Then û, ǔ ∈ L2(Rn) and

‖û‖L2(Rn) = ‖ǔ‖L2(Rn) = ‖u‖L2(Rn) (3.24)

Definition 3.10. Fourier transform in L2(Rn). Let u ∈ L2(Rn). Then there exists
uk ∈ L1(Rn) ∩ L2(Rn) such that

lim
k→∞
‖uk − u‖L2(Rn) = 0

Using equation (3.24), we have that

‖ûk − ûj‖L2(Rn) = ‖ûk − uj‖L2(Rn) = ‖uk − uj‖L2(Rn)

so that ûk is a Cauchy sequence in L2(Rn). We define û has its limit in L2(Rn). Similarly
we can define ǔ.

Remark 3.13. If u ∈ L2(Rn), we have that û is defined and

‖u‖L2(Rn) = lim
k→∞
‖uk‖L2(Rn) = lim

k→∞
‖ûk‖L2(Rn) = ‖û‖L2(Rn)

where uk ∈ L1(Rn) ∩ L2(Rn). So, the equality (3.24) holds also in L2(Rn). �
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Theorem 3.13. Assume u, v ∈ L2(Rn). Then the following properties hold:

•
∫
Rn
uv dx =

∫
Rn
ûv̂ dx;

• ˆDαu = (iy)αû for each multiindex α such that Dαu ∈ L2(Rn);

• (̂u ∗ v) = (2π)
n
2 ûv̂;

• u = ˇ̂u.

The following theorem let us finally introduce a generalization of Sobolev spaces.

Theorem 3.14. Let k ≥ 0 be an integer. Then a function u ∈ L2(Rn) belongs to
Hk(Rn) if and only if

(1 + |y|k)û ∈ L2(Rn)

In addition, there exists a positive constant C such that

1

C
‖u‖Hk(Rn) ≤ ‖(1 + |y|k)û‖L2(Rn) ≤ C‖u‖Hk(Rn)

for each u ∈ Hk(Rn).

3.8.4 Properties of singular kernels

We now list some properties of the Calderón-Zygmund kernels introduced at the begin-
ning of section 3.7.

Definition 3.11. Let K be a Calderón-Zygmund kernel. For every ε > 0 we define

(Cε(K)) (x) :=

{
K(x) |x| ≥ ε

0 |x| < ε

Moreover, we consider

(τεK)(x) := ε−nK
(x
ε

)
and for f ∈ Lp(Rn) we set (δεf)(x) := f(εx).

Definition 3.12. Moreover, we define the convolution operator

TK(f)(x) =

∫
Rn
K(x− y)f(y) dy

Proposition 3.3. The following properties hold.

(i) If K is a Calderón-Zygmund kernel, then also τεK is a Calderón-Zygmund kernel
with the same constant B, for every ε > 0;

(ii) For any ε > 0
Cε(K) = τε(C1(τ 1

ε
(K)))
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(iii) If K is a Calderón-Zygmund kernel, then C1(K) is also a Calderón-Zygmund
kernel, with a constant B1 > 0 depending on B and the dimension of the space
only;

(iv) Suppose that f , K and ε are such that the image TτεKf has sense. Then(
δ 1
ε
TKδε

)
f = TτεKf

(v) If T : Lp(Rn) → Lp(Rn) is a bounded linear operator, then the family δ 1
ε
Tδε

satisfies the uniform bound

sup
ε>0
‖δ 1

ε
Tδε‖L(Lp(Rn),Lp(Rn)) ≤ C

(vi) It holds F (Cε(K)) (ξ) = F
(
C1(τ 1

ε
K)
)

(εξ), where Fg is the Fourier transform

of g.

Remark 3.14. Since Cε(K) ≡ τε(C1(τ 1
ε
(K))), we have, thanks to (i) that τ 1

ε
K is a

Calderón-Zygmund kernel, so that, thanks to (iii), C1(τ 1
ε
K) is a Calderón-Zygmund

kernel. Finally, using again (i), we have that Cε(K) is a Calderón-Zygmund kernel. �

Proof. We first prove that τεK is a Calderón-Zygmund kernel with constant B. In
fact,

|(τεK)(x)| := |ε−nK
(x
ε

)
| ≤ ε−nB

∣∣∣x
ε

∣∣∣−n = B|x|−n

Moreover∫
|x|>2|y|

|(τεK)(x− y)− (τεK)(x)| dx = ε−n
∫
|x|>2|y|

∣∣∣∣K (x− yε
)
−K

(x
ε

)∣∣∣∣ dx =

z=x
ε= ε−n

∫
|z|> 2|y|

ε

∣∣∣K (z − y

ε

)
−K(z)

∣∣∣ εn dz ≤ B

Finally∫
r1<|x|<r2

(τεK)(x) dx = ε−n
∫
r1<|x|<r2

K
(x
ε

)
dx

z=x
ε= ε−n

∫
r1
ε
<|z|< r2

ε

K(z) εn dz = 0

We now compute, in order to prove the second point, the composition τε(C1(τ 1
ε
(K))).

First of all
(τ 1

ε
K)(x) = εnK(εx)

So, it follows that (
C1

(
τ 1
ε
K
))

(x) =

{
εnK(εx) |x| ≥ 1

0 |x| < 1

Finally (
τε

(
C1

(
τ 1
ε
K
)))

(x) =

{
K(x) |x| ≥ ε

0 |x| < ε
=: (Cε(K)) (x)
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We now prove the third point. Consider a Calderón-Zygmund kernel K. By definition,
for every x 6= 0,

|C1(K)(x)| :=

{
|K(x)| |x| ≥ 1

0 |x| < 1
≤ B|x|−n

Fix now λ > 1 and ρ > 0. Then∫
ρ≤|x|≤λρ

|K(x)| dx ≤ B

∫
ρ≤|x|≤λρ

|x|−n dx = ωnB log λ (3.25)

where ωn is the area of the unit sphere Sn−1 in Rn. Using this estimate, we have∫
|x|>2|y|, |x−y|>1, |x|<1

|K(x− y)| dx ≤ ωnB log
3

2

choosing ρ = 1 and λ = 3
2
, since 1 < |x− y| ≤ |x|+ |x|

2
< 3

2
. On the other hand∫

|x|>2|y|, |x−y|<1, |x|>1

|K(x)| dx ≤ ωnB log 2

since we can choose ρ = 1 and λ = 2, being 1 < |x| ≤ |x − y| + |y| < 1 + |x|
2

, that is
|x| < 2. So, the constant B1 can be choosen as B1 := (1 + ωn log 3)B.

We now prove the fourth point. Remember that

(δεf)(x) := f(εx)

and thus we have

TK(δεf)(x) :=

∫
Rn
K(x− y)f(εy) dy

Then it follows that

δ 1
ε

(TK(δεf)) (x) =

∫
Rn
K
(x
ε
− y
)
f(εy) dy =

∫
Rn
K

(
1

ε
(x− εy)

)
f(εy) dy

z=εy
=

=

∫
Rn
K

(
x− z
ε

)
f(z)

dz

εn
= (TτεKf) (x)

Let now T : Lp(Rn)→ Lp(Rn) be a bounded linear operator. In particular

‖T‖Lp(Rn),Lp(Rn) := sup
06=f∈Lp(Rn)

‖Tf‖Lp(Rn)

‖f‖Lp(Rn)

≡ C <∞

Consider now the operator

f(x)
δε−→ f(εx)

T−→ T (f(ε·)) = g(·)
δ 1
ε−→ g(

x

ε
)

So, we have

‖
(
δ 1
ε
Tδε

)
f‖Lp(Rn) = ‖δ 1

ε
g‖Lp(Rn) =

(∫
Rn
|g
(x
ε

)
|p dx

) 1
p y=x

ε=

(∫
Rn
|g(y)|pεn dy

) 1
p

=
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= ε
n
p ‖T (δεf)‖Lp(Rn) ≤ ε

n
pC‖δεf‖Lp(Rn) = ε

n
pC

(∫
Rn
|f(εx)|p dx

) 1
p

=

y=εx
= ε

n
pC

(∫
Rn
|f(y)|pε−n dy

) 1
p

= C‖f‖Lp(Rn)

that is the conclusion of this point.
For the following final point, remember that

Ff(ξ) :=

∫
Rn
e−ix·ξf(x) dx

Since

(Cε(K))(x) :=

{
K(x) |x| ≥ ε

0 |x| < ε

So, by definition ,we have

F (Cε(K)) (ξ) :=

∫
Rn
e−ix·ξ(Cε(K))(x) dx =

∫
|x|≥ε

e−ix·ξK(x) dx
y=x

ε= εn
∫
|y|≥1

e−iεy·ξK(εy) dy =

=

∫
|y|≥1

e−iy·(εξ)(τ 1
ε
K)(y) dy =

∫
Rn
e−iy·(εξ)C1(τ 1

ε
)(y) dy = F(C1(τ 1

ε
))(εξ)

and this concludes the proof of the proposition.

Concerning the Fourier transform, we also have this lemma.

Lemma 3.6. Let K be a Calderón-Zygmund kernel with constant B. Then, there exists
a constant γ depending only on dimension of space so that

sup
ε>0

sup
ξ∈Rn
|FCεK(ξ)| ≤ γB (3.26)

Proof. Let K be a Calderón-Zygmund kernel with constant B. Then, define

K1 := C1(K)

and remember that, for every ε > 0, τ 1
ε
K is a Calderón-Zygmund kernel with constant

B. Then, by proposition 3.3, we have that

F(Cε(K))(ξ) = F
(
C1(τ 1

ε
K))

)
(εξ)

and so it is enought to prove that |K̂1(ξ)| ≤ γB, if K is a Calderón-Zygmund kernel
with constant B (and we apply this to K ←→ τ 1

ε
K).

We remark first of all that C1(K)(x) = χ|x|≥1(x)K(x), with |K(x)| ≤ B
|x|n for every

x 6= 0. It follows that

|C1(K)(x)| ≤ χ|x|≥1(x)
B

|x|2n
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that is in L1(Rn), since 2n > n, being n ∈ N. By definition of Fourier transform we
have

K̂1(ξ) := lim
R→∞

∫
|x|≤R

e−ix·ξK1(x) dx

Fix 0 6= ξ ∈ Rn, and consider R > 3π
|ξ| . Then we can write∫

|x|≤R
e−ix·ξK1(x) dx =

∫
|x|≤ 2π

|ξ|

e−ix·ξK1(x) dx+

∫
2π
|ξ|≤|x|≤R

e−ix·ξK1(x) dx ≡ I1(ξ) + I2(ξ)

We now estimate I1 and I2. We first deal with I1. Consider r1 < 1. Then∫
|x|≤ 2π

|ξ|

K1(x) dx =

∫
r1≤|x|≤ 2π

|ξ|

K1(x) dx = 0

and so

|I1(ξ)| =

∣∣∣∣∣
∫
|x|≤ 2π

|ξ|

(
e−ix·ξ − 1

)
K1(x) dx

∣∣∣∣∣ ≤
∫
|x|≤ 2π

|ξ|

|x||ξ|B|x|−n dx = 2πωnB

We now deal with the other integral. Choose η := πξ
|ξ|2 . Then it follows that |η| = π

|ξ|
and e−iξ·η = −1. So, we can use the equality

I2(ξ) =

∫
2π
|ξ|≤|x|≤R

e−ix·ξ (K1(x)−K1(x− η)) dx+

∫
2π
|ξ|≤|x|≤R

e−ix·ξK1(x− η) dx

Observe that∫
2π
|ξ|≤|x|≤R

e−ix·ξK1(x− η) dx =

∫
2π
|ξ|≤|x|≤R

e−i(x−η)·ξ+η·ξK1(x− η) dx =

x′=x−η
=

∫
2π
|ξ|≤|x′+η|≤R

e−ix
′·ξ+η·ξK1(x′) dx′ = −

∫
2π
|ξ|≤|x′+η|≤R

e−ix
′·ξK1(x′) dx′ =

= −
∫

2π
|ξ|≤|x′|≤R

e−ix
′·ξK1(x′) dx′+

{∫
2π
|ξ|≤|x′|≤R

e−ix
′·ξK1(x′) dx′−

∫
2π
|ξ|≤|x′+η|≤R

e−ix
′·ξK1(x′) dx′

}
≡

≡ −I2(ξ) + E(ξ)

where

E(ξ) :=

∫
2π
|ξ|≤|x|≤R

e−ix·ξK1(x) dx−
∫

2π
|ξ|≤|x+η|≤R

e−ix·ξK1(x) dx =

=

∫
A

e−ix·ξK1(x) dx−
∫
B

e−ix·ξK1(x) dx

where

A :=

{
2π

|ξ|
≤ |x| ≤ R

}
/

{
2π

|ξ|
≤ |x+ η| ≤ R

}
, B :=

{
2π

|ξ|
≤ |x+ η| ≤ R

}
/

{
2π

|ξ|
≤ |x| ≤ R

}
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It follows that

2I2(ξ) =

∫
2π
|ξ|≤|x|≤R

e−ix·ξ (K1(x)−K1(x− η)) dx+ E(ξ)

Consider now x ∈ A. Then

|x+ η| < 2π

|ξ|
or |x+ η| > R

In the first situation we have |x| < 3π
|ξ| , while in the second |x| > R − π

|ξ| . With these
considerations, we have

A ⊂
{

2π

|ξ|
≤ |x| ≤ 3π

|ξ|

}
∪
{
R− π

|ξ|
≤ |x| ≤ R

}
Similarly, we have

B ⊂
{
π

|ξ|
≤ |x| ≤ 2π

|ξ|

}
∪
{
R ≤ |x| ≤ R +

π

|ξ|

}
Thus, it follows that

|E(ξ)| ≤
∫
A

|K1(x)| dx+

∫
B

|K1(x)| dx ≤

≤
∫

2π
|ξ|≤|x|≤

3π
|ξ|

|K1(x)| dx+

∫
π
|ξ|≤|x|≤

2π
|ξ|

|K1(x)| dx+

∫
R− π
|ξ|≤|x|≤R+ π

|ξ|

|K1(x)| dx

Using now (3.25), we have that the integral only depends on the ratio of the boundary
values on the ring domain. So, we have that∫

2π
|ξ|≤|x|≤

3π
|ξ|

|K1(x)| dx ≤ ωnB log
3

2
,

∫
π
|ξ|≤|x|≤

2π
|ξ|

|K1(x)| dx ≤ ωnB log 2

and ∫
R− π
|ξ|≤|x|≤R+ π

|ξ|

|K1(x)| dx ≤ ωnB log

(
R + π

|ξ|

R− π
|ξ|

)
≤ ωnB log 2

since
R + π

|ξ|

R− π
|ξ|

=
1 + π

R|ξ|

1− π
R|ξ|

= f(
π

R|ξ|
)

where f(t) := 1+t
1−t and

R >
3π

|ξ|
=⇒ 1

3
>

π

R|ξ|
> 0

so that
1 + π

R|ξ|

1− π
R|ξ|
≤ 2 = max

t∈[0, 1
3

]
f(t)
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So we have

|E(ξ)| ≤ cωnB

Moreover, observe that since |x| ≥ 2π
|ξ| = 2|η|, we have∫

2π
|ξ|≤|x|≤R

|K1(x)−K1(x−η)| dx ≤
∫
|x|≥2|η|

|K1(x)−K1(x−η)| dx
Prop. 3.3

≤ (1+ωn log 3)B

so that the proof is complete.

3.8.5 The Calderón-Zygmund operator

In this conclusive section we prove two theorems concerning the Calderón-Zygmund
operator.

Theorem 3.15. Let K be a Calderón-Zygmund kernel with constant B. Then

sup
ε>0

sup
ξ∈Rn
|K̂ε(ξ)| ≤ γB (3.27)

for some γ > 0, where Kε(y) := K(y)χ|y|≥ε(y). Then, for each p ∈ (1,∞), the operator

Tε(f)(x) :=

∫
Rn
Kε(x− y)f(y) dy

is defined for f ∈ Lp(Rn). Moreover Tε(f) ∈ Lp(Rn) and exists a constant Cp =
Cp(n, p,B) such that

‖Tε‖L(Lp(Rn),Lp(Rn)) ≤ Cp

uniformly in ε > 0.

Proof. First of all, we underline that Tε(f) ≡ Kε ∗ f . Moreover, since f ∈ Lp(Rn),
the convolution is defined. In fact, if q ∈ (1,∞) is the conjugate of p, we have∫

|y|≥ε
|f(x− y)||K(y)| dy =

∫
Rn
|f(x− y)||K(y)|χ|y|≥ε(y) dy ≤

≤
(∫

Rn
|f(x− y)|p dy

) 1
p
(∫

|y|≥ε
|K(y)|q dy

) 1
q

≤ ‖f‖p
(∫

|y|≥ε

Bq

|y|nq
dy

) 1
q

<∞

since nq > n. So, the definition of the operator is well-posed in every space Lp(Rn).

Remark 3.15. However, we want the integrability condition to be inherited by Tε(f). To
do this, we have to proceed in steps. We first control the L2(Rn) integrability, starting
from a smaller space. �

Remark 3.16. We want to obtain a uniform bound, independent of ε. In order to do
this, we have to deduce the estimate in the space L1(Rn) ∩ L2(Rn). The definition can
be extended by density. �
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Definition over L1(Rn) ∩ L2(Rn). Let f ∈ L1(Rn) ∩ L2(Rn). By Young’s inequality
for convolutions, we have that

‖Tε(f)‖2 = ‖Kε ∗ f‖2 ≤ ‖Kε‖2‖f‖1 <∞

So, if f ∈ L1(Rn) ∩ L2(Rn), then Tε(f) ∈ L2(Rn). In this case, we have, moreover,

‖Tε(f)‖2 = ‖F(Tε(f))‖2 = (2π)
n
2 ‖K̂εf̂‖2

(3.27)

≤ (2π)
n
2 γB‖f̂‖2 = γB‖f‖2 (3.28)

where the bound (3.27) is assured by theorem 3.6. So, the operator is defined in
L2(Rn) ∩ L1(Rn). Since this subset of L2(Rn) is dense in L2(Rn), we can extend the
operator to the whole L2(Rn): if f ∈ L2(Rn), we can find fk ∈ L2(Rn) ∩ L1(Rn) such
that

lim
k→∞
‖fk − f‖2 = 0

So, since Tε(af + bg) = aTε(f) + bTε(g), we have

‖Tε(fm)− Tε(fh)‖2 = ‖Tε(fm − fh)‖2 ≤ γB‖fm − fh‖2 → 0

as m,h → ∞. So the sequence Tε(fm) converges to a function v in L2(Rn). So, we
define

Tε(f) := lim
m→∞

Tε(fm)

where the limit has to be meant in L2(Rn). On the other hand, if f ∈ L2(Rn), we have
already seen that it is defined∫

Rn
Kε(x− y)f(y) dy =: Λf(x)

It is now clear that if fm → f in L2(Rn), we have∣∣∣∣∫
Rn
Kε(x− y)fm(y) dy −

∫
Rn
Kε(x− y)f(y) dy

∣∣∣∣ ≤ ∫
Rn
|Kε(x− y)||fm(y)− f(y)| dy ≤

≤
(∫

Rn
|Kε(x− y)|2 dy

) 1
2

‖fm − f‖L2(Rn) → 0 as m→∞

This means that

lim
m→∞

∫
Rn
Kε(x− y)fm(y) dy =

∫
Rn
Kε(x− y)f(y) dy (3.29)

pointwise. Since Tε(fm) converges to Tε(f) in L2(Rn) by definition, there exists a
subsequence Tε(fmk) such that Tε(fmk)(x) → Tε(f)(x) for almost every x ∈ Rn. But
Tε(fmk)(x) → Λf(x), thanks to (3.29), and so Λf = Tε(f) almost everywhere in Rn.
So the extention of Tε

∣∣
L1(Rn)∩L2(Rn)

to the space L2(Rn) coincides with the convolution

of the space L2(Rn) with the kernel Kε. That is, if f ∈ L2(Rn),

Tε(f) =

∫
Rn
Kε(x− y)f(y) dy
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It follows that

‖Tε(f)‖L2(Rn) = lim
m→∞

‖Tε(fm)‖L2(Rn)

(3.28)

≤ lim
m→∞

(
γB‖fm‖L2(Rn)

)
= γB‖f‖L2(Rn) (3.30)

So the thesis holds in the case p = 2, that is Tε is a bounded operator in L(L2(Rn), L2(Rn)).

We now want to prove that Tε is also a weak type (1, 1) operator, so that, using theorem
3.11, we can conclude that Tε is bounded in Lp(Rn) for p ∈ (1, 2).

Let α > 0 and f ∈ L1(Rn). We consider the Calderón-Zygmund decomposition at
height α. We have

Tε(f) = Tε(g) + Tε(b)

It follows that

|{x ∈ Rn : |Tε(f)(x)| > α}| ≤ |{x ∈ Rn : |Tε(g)(x)| > α

2
}|+|{x ∈ Rn : |Tε(b)(x)| > α

2
}|

We will estimate these two pieces separately. From theorem 3.10 we know that

‖g‖2
L2(Rn) ≤ (1 + 22n)α‖f‖L1(Rn)

Therefore we have

|{x ∈ Rn : |Tε(g)(x)| > α

2
}| ≤ 4

α2
‖Tε(g)‖2

L2(Rn)

(3.30)

≤ cB2α−2‖g‖2
L2(Rn) ≤ c′Bα−1‖f‖L1(Rn)

It remains to estimate Tε(b). In order to do so, remember the cubes Qj in the Calderón-
Zygmund decomposition, that is theorem 3.10. To each cube Qj we associate a larger
cube Q∗j , concentric with Qj, with diameter 2

√
n times larger. Thus, we define

Ω∗ :=
⋃
j∈N

Q∗j

and F ∗ = Rn/Ω∗. Observe now that, since |Q∗j | = λ|Qj|, with λ independent of j and
dipending only on n,

|Ω∗| ≤
∑
j∈N

|Q∗j | = λ
∑
j∈N

|Qj| = λ|Ω|
(3.20)

≤ λα−1‖f‖L1(Rn)

Moreover, denote with yj the common center of Qj and Q∗j . Then, if x /∈ Q∗j , we have
that |x− yj| ≥ 2|y − yj| for all y ∈ Qj. In fact,

|x− yj| ≥ Rj = 2rj ≥ 2|y − yj|

where Rj is the radius of the ball inscribed in Q∗j , while rj is the radius of the ball
circumscribing Qj. Observe that 2rj = Rj by elementary geometry considerations. So,
we define

bj(x) :=

{
b(x) x ∈ Qj

0 otherwise
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Observe that b(x) =
∑
j∈N

bj(x). Moreover, since Qj have mutually disjoint intersiors nad

b(x) = 0 on F , we have that the sum reduces to one term only for almost every x ∈ Rn.
Observe moreover that

Tε(bj)(x) :=

∫
Qj

Kε(x− y)b(y) dy =

∫
Qj

(Kε(x− y)−Kε(x− yj)) b(y) dy

since

∫
Qj

b(y) dy = 0. Remember now that

F ∗ = Rn/Ω∗ =
⋂
j∈N

(Rn/Q∗j)

and so

‖Tε(b)‖L1(F ∗) :=

∫
F ∗
|Tεb(x)| dx ≤

∑
j∈N

∫
F ∗
|Tεbj(x)| dx ≤

≤
∑
j∈N

∫
{x/∈Q∗j}

(∫
Qj

|Kε(x− y)−Kε(x− yj)||b(y)| dy
)
dx =

=
∑
j∈N

∫
Qj

|b(y)|
(∫

{x/∈Q∗j}
|Kε(x− y)−Kε(x− yj)| dx

)
dy ≤

≤
∑
j∈N

∫
Qj

|b(y)|
(∫

|x−yj |≥2|y−yj |
|Kε(x− yj − (y − yj))−Kε(x− yj)|

)
dy ≤

using the properties of the Calderón-Zygmund kernel and remark 3.14,

≤ B1

∑
j∈N

∫
Qj

|b(y)| dy = B1‖b‖L1(Rn)

(3.17)

≤ B1(1 + 2n)‖f‖L1(Rn)

By Chebyshev we have

|{x ∈ F ∗| |Tεb(x)| > α

2
}| ≤ 2α−1

∫
F ∗
|Tεb(x)| dx ≤ 2α−1B1(1 + 2n)‖f‖L1(Rn)

It follows that

|{x ∈ Rn| |Tεb(x)| > α

2
}| ≤ |{x ∈ F ∗| |Tεb(x)| > α

2
}|+ |Ω∗| ≤

≤ 2α−1B1(1 + 2n)‖f‖L1(Rn) + λα−1‖f‖L1(Rn)

This means that Tε is a weak type (1, 1). The Marcinkiewicz interpolation theorem
implies the result for p ∈ (1, 2), as explained above.

We want now to deduce the thesis for p > 2. Let p ∈ (2,∞). Its conjugate expo-
nent is p′ ∈ (1, 2). The adjoint operator of Tε is computed convolving with Kε(−x)
instead of Kε(x). Also the reflexed kernel Kε(x) := Kε(−x) satisfies the properties of
the theorem. Since the convolution with Kε is the adjoint operator of Tε, we have that
the thesis also holds for p ∈ (2,∞).
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Theorem 3.16. Let K be a Calderón-Zygmund kernel, with constant B. Fix p ∈
(1,∞). Consider the operator

Tε(f)(x) :=

∫
|y|≥ε

f(x− y)K(y) dy

There exists a constant Cp = Cp(p, n,B) such that

‖Tεf‖Lp(Rn) ≤ Cp‖f‖Lp(Rn)

holds uniformly for all ε > 0. Moreover, for each f ∈ Lp(Rn), the strong limit

TK(f) := lim
ε→0

Tε(f)

exists in the norm Lp(Rn). The operator TK is bounded in Lp(Rn) with operator norm
bounded by Cp.

Proof. We first of all do some well-posedness considerations.

Remark 3.17. Tε is defined for every f ∈ Lp(Rn). If p ∈ (1,∞) and q ∈ (1,∞) is its
conjugate, we have that, for every f ∈ Lp(Rn),∫

|y|≥ε
|f(x− y)||K(y)| dy =

∫
Rn
|f(x− y)||K(y)|χ|y|≥ε(y) dy ≤

≤
(∫

Rn
|f(x− y)|p dy

) 1
p
(∫

|y|≥ε
|K(y)|q dy

) 1
q

≤ ‖f‖p
(∫

|y|≥ε

Bq

|y|nq
dy

) 1
q

<∞

since f ∈ Lp(Rn) and nq > n. �

The operators Tε are nothing but convolution operators with kernels Cε(K). Thanks
to proposition 3.3, it is a Calderón-Zygmund kernel with constant B. So, using lemma
3.6, we are in the hypothesis of theorem 3.15, since moreover4 Cε(K) is in L2(Rn). So
we have

‖Tε(f)‖Lp(Rn) ≤ Cp‖f‖Lp(Rn) (3.31)

We now prove the convergence. We first focus our attention on a dense subset of Lp(Rn).

Definition and convergence over C∞c (Rn). Consider the dense subset C∞c (Rn) of
Lp(Rn). Let f ∈ C∞c (Rn). Then

(Tεf)(x) =

∫
|y|≥1

K(y)f(x− y) dy +

∫
ε≤|y|≤1

K(y) (f(x− y)− f(x)) dy

The first integral is a fixed function in Lp(Rn) since it is the convolution (Kχ|y|≥1) ∗ f
and by Young’s convolution inequality

‖(Kχ|y|≥1) ∗ f‖Lp(Rn) ≤ ‖Kχ|y|≥1‖Lp(Rn)‖f‖L1(Rn) (3.32)

4In fact, ∫
|y|≥ε

|K(y)|2 dy ≤
∫
|y|≥ε

B2

|y|2n
dy <∞
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since Kχ|y|≥1 ∈ Lp(Rn) for every p ∈ (1,∞). Looking at the second integral, we have
that the convergence is even uniform. In fact, let Cf := supp(f), a compact set in Rn.
Remember first of all that

|f(x− y)− f(x)| =
∣∣∣∣(∫ 1

0

∇f(x− ty) dt

)
· (−y)

∣∣∣∣ ≤ sup
ξ∈Rn
|∇f(ξ)||y| (3.33)

Define m(ε, η) := min{ε, η} and M(ε, η) := max{ε, η}. So we have∣∣∣∣∫
ε≤|y|≤1

K(y) (f(x− y)− f(x)) dy −
∫
η≤|y|≤1

K(y) (f(x− y)− f(x)) dy

∣∣∣∣ =

=

∣∣∣∣∫
m(ε,η)≤|y|≤M(ε,η)

K(y) (f(x− y)− f(x)) dy

∣∣∣∣ ≤ ∫
m(ε,η)≤|y|≤M(ε,η)

|K(y)||f(x−y)−f(x)| dy ≤

using the property of Calderón-Zygmynd kernels with constant B and (3.33)

≤ B sup
ξ∈Rn
|∇f |

∫
m(ε,η)≤|y|≤M(ε,η)

|y|
|y|n

dy = B sup
ξ∈Rn
|∇f |

∫
m(ε,η)≤|y|≤M(ε,η)

dy

|y|n−1
≤

≤ B sup
ξ∈Rn
|∇f |

∫ M(ε,η)

m(ε,η)

ρn−1

ρn−1
dρ = B sup

ξ∈Rn
|∇f | (M(ε, η)−m(ε, η))→ 0

as ε, η → 0, since also 0 < m(ε, η) ≤M(ε, η)→ 0.

Since the Cauchy convergence is uniform in x ∈ Rn, we have that the sequence∫
ε≤|y|≤1

K(y) (f(x− y)− f(x)) dy converges uniformly to a continuous function in Rn.

This means that exists F ∈ Rn such that

lim
ε→0

sup
x∈Rn

∣∣∣∣∫
ε≤|y|≤1

K(y) (f(x− y)− f(x)) dy − F (x)

∣∣∣∣ = 0

Remark 3.18. Let R > 0 such that Cf ⊆ B(0, R). Let x ∈ Rn such that |x| > R+ 1. It
follows that |x| > R and, since |y| ≤ 1,

|x− y| ≥ |x| − |y| ≥ |x| − 1 > R

It follows that f(x) = f(x− y) = 0, so that, if |x| > R + 1∫
ε≤|y|≤1

K(y) (f(x− y)− f(x)) dy = 0

for every ε > 0. Then, this function is compactly supported, with support contained
in B(0, R + 1). Since the uniform limit of functions with compact support in a fixed
compact is supported in the same compact, we have that F is supported in B(0, R+1).
So F ∈ Lp(Rn) for every p ∈ (1,∞). �

Obviously the uniform convergence implies that

lim
ε→0

∥∥Tεf − F∥∥Lp(Rn)
= 0

where now F ∈ Lp(Rn) also consider the integral over |y| ≥ 1. We use the estimate
(3.32) to say that the sum belongs to Lp(Rn). So we can define

TKf := lim
ε→0

Tεf in the sense of Lp(Rn) (3.34)

Remember also that ‖Tεf‖Lp(Rn) ≤ Cp‖f‖Lp(Rn), as proved above.
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Definition and convergence over Lp(Rn). Let f ∈ Lp(Rn). Then we can consider
a sequence {fm}m∈N ⊆ C∞c (Rn) such that ‖fm − f‖Lp(Rn) → 0 as m → ∞. By the
argument above it is defined TKf

m for every m ∈ N, in the sense that

lim
ε→0
‖TKfm − Tεfm‖Lp(Rn) = 0

So we have
‖TKfm‖Lp(Rn) = lim

ε→0
‖Tεfm‖Lp(Rn) ≤ Cp‖fm‖Lp(Rn) (3.35)

Obsiously the operator TK is linear, since if a, b ∈ R and g1, g2 ∈ C∞c (Rn)

TK(ag1 + bg2) := lim
ε→0

Tε(ag1 + bg2) = aTKg1 + bTKg2

It follows that

‖TK(fm)− TK(fh)‖Lp(Rn) = ‖TK(fm − fh)‖Lp(Rn) ≤ Cp‖fm − fh‖Lp(Rn) → 0

where fm− fh ∈ C∞c (Rn) and fm, fh → f in Lp(Rn). So TK(fm) is a Cauchy sequence
in Lp(Rn). It follows that we can define

TK(f) := lim
m→∞

TK(fm) in the sense of Lp(Rn)

Now they hold two limits. At first

‖TK(f)‖Lp(Rn) = lim
m→∞

‖TK(fm)‖Lp(Rn)

(3.35)

≤ Cp lim
m→∞

‖fm‖Lp(Rn) = Cp‖f‖Lp(Rn) (3.36)

Moreover
TK(f) ≡ lim

ε→0
Tε(f) in the sense of Lp(Rn) (3.37)

In fact, let δ > 0. Fix N = N(δ) ∈ N such that ‖fN − f‖Lp(Rn) <
δ
Cp

. Then, we can

find ε0 = ε0(fN) = ε0(N(δ)) = ε0(δ), such that if ε < ε0

‖TK(fN)− Tε(fN)‖Lp(Rn) < δ

since, being fN ∈ C∞c (Rn), (3.34) holds. So we have5

‖TK(f)−Tε(f)‖Lp(Rn) = ‖TK(f)−TK(fN)+TK(fN)−Tε(fN)+Tε(f
N)−Tε(f)‖Lp(Rn) ≤

≤ ‖TK(f)− TK(fN)‖Lp(Rn) + ‖TK(fN)− Tε(fN)‖Lp(Rn) + ‖Tε(fN)− Tε(f)‖Lp(Rn) ≤
≤ Cp‖f − fN‖Lp(Rn) + ‖TK(fN)− Tε(fN)‖Lp(Rn) + Cp‖fN − f‖Lp(Rn) ≤

≤ δ + ‖TK(fN)− Tε(fN)‖Lp(Rn) + δ < 3δ

if ε < ε0(δ). This says that (3.37) holds. Thus we have

‖TK(f)‖Lp(Rn) ≡
∥∥∥lim
ε→0

Tε(f)
∥∥∥
Lp(Rn)

≤ Cp‖f‖Lp(Rn)

that is the thesis of the Calderón-Zygmund theorem.
5Since fN , f ∈ Lp(Rn), we have

‖TK(f)− TK(fN )‖Lp(Rn) = ‖TK(f − fN )‖Lp(Rn) ≤ Cp‖f − fN‖Lp(Rn)

using linearity (since TK is linear on smooth function and the limit conserves the linearity) and using
(3.36). Similarly, we have that

‖Tε(fN )− Tε(f)‖Lp(Rn) = ‖Tε(fN − f)‖Lp(Rn) ≤ Cp‖f − fN‖Lp(Rn)

using the linearity of Tε and the bound (3.31).
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Chapter 4

Sobolev spaces

Definition 4.1. Let Ω ⊆ Rn an open subset. We define

L1
loc(Ω) :=

{
f : Ω→ R

∣∣∣∣ ∫
K

|f(x)| dx < +∞ ∀ K compact subset of Ω

}
Definition 4.2. A multiindex of lenght k is a vector

α = (α1, ..., αm)

such that αi ∈ N and |α| := α1 + ...+ αm = k.

Definition 4.3. Let U an open subset of Rn. A test function on U is an element of
the space

C∞c (U) := {φ : U → R| φ ∈ C∞(U) and supp(φ) is a compact subset of U}

Definition 4.4. Let U an open subset of Rn and u ∈ L1
loc(U). We say that u admits

the αth-weak partial derivative if exists a function v ∈ L1
loc(U) such that∫

U

uDαφ dx = (−1)|α|
∫
U

vφ dx ∀φ ∈ C∞c (U)

In this situation, we write
Dαu = v or ∇αu = v

If k ∈ N, it is often used the notation

∇ku := {Dαu| |α| = k}

where in this situation the symbol means a whole class of derivatives.

Remark 4.1. The two integral in the definition are well-posed, because a test function
can be dominated by its maximum and the characteristical function of its (compact)
support. �

Lemma 4.1. If a function u ∈ L1
loc(U) admists two αth-weak partial derivatives, say

v, ṽ, then
v = ṽ a.e.
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Remark 4.2. If v is the αth-weak derivative of u on the open set U , then it is the αth-
weak derivative of u in all the open subsets V ⊆ U . In fact, obviously u, v ∈ L1

loc(V )
and for every φ ∈ C∞c (V ) ⊆ C∞c (U), we have∫

V

uDαφ dx =

∫
U

uDαφ dx = (−1)|α|
∫
U

vφ dx = (−1)|α|
∫
V

vφ dx

where has been used that φ and its deriviatives vanish outside V . The central equality
follows from the fact that v is the αth-weak derivative of u on U . �

4.0.1 Definition of Sobolev spaces

Definition 4.5. Let p ∈ [1,∞] and k ≥ 0 an integer. We define the Sobolev space as

W k,p(U) := {u ∈ L1
loc(U)|Dαu exists in the weak sense andDαu ∈ Lp(U) ∀α : |α| ≤ k}

Finally we define
Hk(U) := W k,2(U)

Sobolev norms:

Remark 4.3. Sobolev spaces W k,p are normed spaces. In fact, for u ∈ W k,p(U), we can
define

‖u‖Wk,p(U) :=


(∑
|α|≤k

∫
U

|Dαu|pdx
) 1

p

=

( ∑
|α|≤k

‖Dαu‖pp
) 1

p

if 1 ≤ p < +∞∑
|α|≤k

sup
U
|Dαu| if p =∞

(4.1)

These naturally induce a distance and so a topology. �

Morover, it is called homogeneous Sobolev space the set

Dk,p(U) := {u ∈ L1
loc(U)|Dαu exists in the weak sense andDαu ∈ Lp(U) ∀α : |α| = k}

It can be equipped with the seminorm

|u|Dk,p(U) :=

( ∑
|α|=k

∫
U

|Dαu|pdx
) 1

p

When k = 1 it actually coincides with the p-norm of the gradient. Let also be

Dk,p
0 (U) := {u ∈ Dk,p(U)| ∃ {um} ⊆ C∞c (U) such that lim

m→+∞
|um − u|Dk,p(U) = 0}

Definition 4.6. We also define the so called Sobolev space with zero boundary values1

W k,p
0 (U) := {u ∈ W k,p(U)| ∃ {um} ⊆ C∞c (U) such that lim

m→+∞
‖um − u‖Wk,p(U) = 0}

Remark 4.4. We can equip the space with the norm

‖u‖Wk,p
0 (U) := lim

n→+∞
‖un‖Wk,p(U) = ‖u‖Wk,p(U)

where the last identity holds because |‖un‖Wk,p(U) − ‖u‖Wk,p(U)| ≤ ‖un − u‖Wk,p(U) →
0 as n→ +∞. �

1In a sense that will be specified in subsection 4.3.
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Equivalent norms and vector valued functions. In the following chaptes, we will
use mainly vectorial functions; moreover, it will be very useful to introduce an equiva-
lent Sobolev norm that helps in inequalities and estimates.

Let u : Ω ⊆ Rn → Rn. We say that u is in W k,p(Ω)n if it is true for every ui,
i ∈ {1, ..., n}. In this case we can consider the p- norm of each derivative.
In the future we will represent

‖u‖Wk,p :=

(∫
Ω

|u|pdx+

∫
Ω

|∇u|pdx+ ...+

∫
Ω

|∇ku|pdx
) 1

p

≡
(∫

Ω

k∑
j=0

|∇ju|pdx
) 1

p

where ∇ju is the tensor of the j-th derivatives.
Since a tensor space is a finite dimensional normed space, we have the equivalence of
all the norms. So

Cp
1,1|u|pp ≤ |u|p ≤ Cp

2,1|u|pp, ..., Cp
1,k|∇

ku|pp ≤ |∇ku|p ≤ Cp
2,k|∇

ku|pp
and for an h-dimensional tensor

|T |pp =
∑
|Ti1,...,ih|p

we have the equivalence of the norms:

‖u‖Wk,p ≤
(∫

Ω

k∑
j=0

Cp
2,j|∇ju|pp

) 1
p

≤
(∫

Ω

k∑
j=0

Cp
2,j∗|∇ju|pp

) 1
p

= C2,j∗

(∫
Ω

k∑
j=0

|∇ju|pp
) 1

p

where C2,j∗ := max{C2,1, ..., C2,k}. Since |∇ju|pp =
3∑
i=1

∑
|α|=j

|Dαui|p, we have

‖u‖Wk,p ≤ C2,j∗

(∫
Ω

3∑
i=1

∑
|α|≤k

|Dαui|pdx
) 1

p

= C2,j∗

( 3∑
i=1

∑
|α|≤k

‖Dαui‖pp
) 1

p

and the latter one is the vectorial version of the norm introduced in (4.1). Since the
other inequality is similar, we have the equivalence of the norms.

From now on, we will consider

‖u‖Wk,p :=

(∫
Ω

k∑
j=0

|∇ju|pdx
) 1

p

It is of course a norm. From Minkowsky’s inequality it follows the triangular inequality.
In fact

‖u+ v‖Wk,p =

( k∑
j=0

‖∇j(u+ v)‖pp
) 1

p

≤
( k∑

j=0

(
‖∇ju‖p + ‖∇jv‖p

)p) 1
p

≤

(1.15)

≤
( k∑

j=0

‖∇ju‖pp
) 1

p

+

( k∑
j=0

‖∇jv‖pp
) 1

p

= ‖u‖Wk,p + ‖v‖Wk,p
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4.1 Sobolev spaces in the case Ω = Rn

Important properties of Sobolev spaces dipend on the nature of the domain where the
space is defined.

Definition 4.7. If n ∈ N and 1 ≤ p < n we define the Sobolev conjugate of p as

p∗ :=
np

n− p

Remark 4.5. We have
1

p∗
=

1

p
− 1

n

and p∗ > p. �

Theorem 4.1. Let n ∈ N and 1 ≤ p < n. Let p∗ the Sobolev conjugate of p.
Then

‖u‖Lp∗ (Rn) ≤ C|u|D1,p(Rn) ≡ C‖∇u‖Lp(Rn) ∀u ∈ C∞c (Rn)n

with C only depending on n, p. Here

C∞c (Rn)n := {u : Rn → Rn| u ∈ C∞c (Rn)}

Remark 4.6. The proof that we are going to show follows the steps of the proof of the same
theorem in [10]. However, we repeat the steps since we are in the case of u vectorial function
and there are some differences. �

Proof. We first assume p = 1. By the regularity of u, applying the fundamental theorem
of calculus component by component, we have

u(x) =

∫ xi

−∞
∂xiu(x1, ..., xi−1, yi, xi+1, ..., xn) dyi

Remember ∂xiu is a vector. Using integral inequality for vectors we have

|u(x)| ≤
∫ xi

−∞
|∂xiu(x1, ..., xi−1, yi, xi+1, ..., xn)| dyi ≤

≤
∫ +∞

−∞
|∂xiu(x1, ..., xi−1, yi, xi+1, ..., xn)| dyi

Remembering now that

|∇u| =
√
|∂x1u|2 + ...+ |∂xnu|2 ≥ |∂xiu| ∀i = 1, ..., n

So

|u(x)| ≤
∫ +∞

−∞
|∇u(x1, ..., xi−1, yi, xi+1, ..., xn)| dyi

If we multiply the inequality for i = 1, ..., n, after raising both sides to 1
n−1 , we get

|u(x)|
n
n−1 ≤

n∏
i=1

(∫ ∞
−∞
|∇u(x1, ..., xi−1, yi, xi+1, ..., xn)| dyi

) 1
n−1
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Hence∫ +∞

−∞
|u(x)|

n
n−1dx1 ≤

∫ ∞
−∞

n∏
i=1

(∫ ∞
−∞
|∇u(x1, ..., xi−1, yi, xi+1, ..., xn)|dyi

) 1
n−1

dx1 =

=

∫ ∞
−∞

(∫ ∞
−∞
|∇u(y1, ..., xn)|dy1

) 1
n−1

n∏
i=2

(∫ ∞
−∞
|∇u(x1, ..., xi−1, yi, xi+1, ..., xn)|dyi

) 1
n−1

dx1

=

(∫ ∞
−∞
|∇u(y1, ..., xn)|dy1

) 1
n−1

∫ ∞
−∞

n∏
i=2

(∫ ∞
−∞
|∇u(x1, ..., xi−1, yi, xi+1, ..., xn)|dyi

) 1
n−1

dx1

Now, by Hölder inequality∫ ∞
−∞

n∏
i=2

(∫ ∞
−∞
|∇u(x1, ..., xi−1, yi, xi+1, ..., xn)|dyi

) 1
n−1

dx1 ≤

≤
( n∏

i=2

∫ +∞

−∞

∫ ∞
−∞
|∇u(x1, ..., xi−1, yi, xi+1, ..., xn)|dyidx1

) 1
n−1

So we can define

I1 :=

∫ ∞
−∞
|∇u(y1, ..., xn)|dy1

Ii :=

∫ +∞

−∞

∫ ∞
−∞
|∇u(x1, ..., xi−1, yi, xi+1, ..., xn)|dyidx1

So ∫ +∞

−∞
|u(x)|

n
n−1dx1 ≤

≤
(∫ ∞
−∞
|∇u(y1, ..., xn)|dy1

) 1
n−1
( n∏

i=2

∫ +∞

−∞

∫ ∞
−∞
|∇u(x1, ..., xi−1, yi, xi+1, ..., xn)|dyidx1

) 1
n−1

=

= I
1

n−1

1

n∏
i=2

I
1

n−1

i =
n∏
i=1

I
1

n−1

i

Integrating this expression with respect x2 we get∫ ∞
−∞

∫ +∞

−∞
|u(x)|

n
n−1dx1dx2 ≤

∫ ∞
−∞

I
1

n−1

2

n∏
i=1,i 6=2

I
1

n−1

i dx2 = I
1

n−1

2

∫ ∞
−∞

n∏
i=1,i 6=2

I
1

n−1

i dx2 =

=

(∫ +∞

−∞

∫ ∞
−∞
|∇u(x1, y2, ..., xn)|dy2dx1

) 1
n−1

∫ ∞
−∞

n∏
i=1,i 6=2

I
1

n−1

i dx2

At this point we can apply Hölder to the latter term, so that∫ ∞
−∞

n∏
i=1,i 6=2

I
1

n−1

i dx2 ≤
n∏

i=1,i 6=2

(∫ ∞
−∞

Ii dx2

) 1
n−1

=

=

(∫ ∞
−∞

∫ ∞
−∞
|∇u(y1, ..., xn)|dy1dx2

) 1
n−1

n∏
i=3

(∫ ∞
−∞

Ii dx2

) 1
n−1
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So we have ∫ ∞
−∞

∫ +∞

−∞
|u(x)|

n
n−1dx1dx2 ≤

≤
(∫ +∞

−∞

∫ ∞
−∞
|∇u(x1, y2, ..., xn)|dy2dx1

) 1
n−1
(∫ ∞
−∞

∫ ∞
−∞
|∇u(y1, ..., xn)|dy1dx2

) 1
n−1

n∏
i=3

(∫ ∞
−∞

Ii dx2

) 1
n−1

Iterating the process, we get∫
Rn
|u(x)|

n
n−1dx ≤

n∏
i=1

(∫ ∞
−∞

...

∫ ∞
−∞
|∇u(x1, ..., xi−1, yi, xi+1, ..., xn)|dx1...dyi...dxn

) 1
n−1

=

=

(∫
Rn
|∇u(x)|dx

) n
n−1

This is the thesis if p = 1. Let now 1 < p < n. Let

γ :=
p(n− 1)

n− p
> 1

Applying the previous result to v := |u|γ we have∫
Rn
|u|

γn
n−1dx ≤

(∫
Rn
|∇|u|γ |dx

) n
n−1

But
∇|u|γ = γ|u|γ−1 u

|u|
∇u

using the homogeneity of y → |y|γ with γ > 1 to extend the derivative to the whole space.
With the norm, we have

|∇|u|γ | ≤ γ|u|γ−1|∇u|
So(∫

Rn
|u|

γn
n−1dx

)n−1
n

≤ γ
∫
Rn
|u|γ−1|∇u|dx ≤ γ

(∫
Rn
|u|(γ−1) p

p−1dx

) p−1
p
(∫

Rn
|∇u|pdx

) 1
p

where Hölder inequality has been used again.
By the definition of γ we have

(γ − 1)
p

p− 1
=

γn

n− 1
= p∗

It follows that (∫
Rn
|u|p∗dx

)n−1
n
− p−1

p

≤ γ‖∇u‖Lp(Rn)

But
n− 1

n
− p− 1

p
=

1

p∗

and so
‖u‖Lp∗ (Rn) ≤ γ‖∇u‖Lp(Rn)

where γ = p(n−1)
n−p =: C(n, p) ≡ C.

Remark 4.7. It is sufficient to ask u ∈ C1
0 (Rn)n, since only the first derivative is used in the

proof. �

Theorem 4.2. 2 Let 1 ≤ p < n and let p∗ :=
pn

n− p
. Then, W 1,p

0 (Rn) ⊆ Lp
∗
(Rn) and

2From ”Analyse Fonctionnelle”- H. Brezis, Th. IX.9.
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exists C = C(n, p) such that

‖u‖Lp∗ (Rn) ≤ C‖∇u‖Lp(Rn) ∀ u ∈ W 1,p
0 (Rn)

Proof. We know by previous theorem that

‖φ‖Lp∗ (Rn) ≤ C‖∇φ‖Lp(Rn) ∀φ ∈ C∞c (Rn)

Now, being u ∈ W 1,p
0 (Rn), we have {um} ⊆ C∞c (Rn) such that

lim
m→+∞

|um − u|D1,p(Rn) = 0

and
lim

m→+∞
‖um − u‖Lp(Rn) = 0

So, even if currently we don’t know that the Lp
∗

norm is well-posed, we have

‖u‖Lp∗ ≤ ‖u−um‖Lp∗+‖um‖Lp∗ ≤ ‖u−um‖Lp∗+C‖∇um‖Lp = ‖u−um‖Lp∗+C‖∇um‖Lp ≤

≤ ‖u− um‖Lp∗ + C
(
‖∇um −∇u‖Lp + ‖∇u‖Lp

)
Remembering that C is independent by um, note that

‖∇um −∇u‖Lp = ‖∇(um − u)‖Lp = |um − u|D1,p → 0 as m→ +∞

Morover, since ‖um − u‖Lp → 0, we have that the convergence um → u is in Lp and
hence pointwise a.e. along a subsequence. Note that ui − uj is a sequence in C∞0 (Rn)
and

‖ui − uj‖Lp∗ ≤ C‖∇ui −∇uj‖Lp ≤ C
(
‖∇ui −∇u‖Lp + ‖∇uj −∇u‖Lp

)
using Gagliardo-Nirenberg-Sobolev inequality for smooth functions with compact sup-
port. So we have that {um} is a Cauchy sequence in Lp

∗
. Being this space complete,

∃v ∈ Lp∗ such that um → v in Lp
∗
. So, there exists a subsequence of um converging to

v pointwise a.e. Being a subsequence of a sequence converging a.e. to u, we have that
v = u a.e. So

‖u− um‖Lp∗ = ‖v − um‖Lp∗ → 0 as m→ +∞

So the thesis holds.

Moreover, thanks to the following theorem, the above lemma hols also for u ∈ W 1,p(Rn).

Theorem 4.3. Let p ∈ [1,∞). Then W 1,p
0 (Rn) = W 1,p(Rn).

Remark 4.8. We will prove it for u : Rn → Rn. The scalar case is analogous. �

Proof. ObviouslyW 1,p
0 (Rn) ⊆ W 1,p(Rn). Let now u ∈ W 1,p(Rn) and let ηk ∈ C∞c (Bk+1(0))

such that
ηk|Bk(0) ≡ 1, ηk ∈ [0, 1], ∂xiηk ≤ 2

Notice that it is sufficient to construct a such function in R, then generalize it to a
n-dimensional function via radial extension.
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Then we have that uηk ∈ W 1,p
0 (Rn), as it will be proved in the following lemma. More-

over
uηk → u in W 1,p(Rn) as k → +∞

In fact
‖uηk − u‖W 1,p(Rn) ≤ ‖uηk − u‖Lp(Rn) + ‖∇(uηk − u)‖Lp(Rn) =

=

(∫
Rn
|uηk − u|pdx

) 1
p

+

(∫
Rn
|(1− ηk)∇u− u⊗Dηk|pdx

) 1
p

≤

≤
(∫

Rn
|uηk − u|pdx

) 1
p

+

(∫
Rn
|(1− ηk)∇u|pdx

) 1
p

+

(∫
Rn
|u⊗Dηk|pdx

) 1
p

Clearly uηk → η almost everywhere when k → +∞. Morover

|u(ηk − 1)|p ≤ |u|p

is a integrable majorant, being u ∈ Lp(Rn). So by Lebesgue theorem∫
Rn
|u(ηk − 1)|pdx→ 0 as k → +∞

Moreover ∇u ∈ Lp(Rn), so also∫
Rn
|∇u(ηk − 1)|pdx→ 0 as k → +∞

Finally(∫
Rn
|u⊗Dηk|pdx

) 1
p

=

(∫
Rn
|
√∑

i,j

u2
j(∂xiηk)

2|pdx
) 1

p

≤ 2

(∫
Bk+1(0)/Bk(0)

|u|pdx
) 1

p

Using again Lebesgue theorem, we have that also this term goes to zero as k → +∞.

This implies that uηk ∈ W 1,p
0 (Rn) is a Cauchy sequence in the W 1,p

0 (Rn) norm. Be-
ing this space complete, we have that exists v ∈ W 1,p

0 (Rn) such that

‖uηk − v‖W 1,p
0 (Rn) → 0 as k → +∞

But W 1,p
0 (Rn) is equipped with the same norm of W 1,p(Rn). So

‖u− v‖W 1,p(Rn) ≤ ‖u− uηk‖W 1,p(Rn) + ‖uηk − v‖W 1,p
0 (Rn) → 0

So u = v up to a null measure set. It follows that ‖u−vk‖W 1,p(Rn) = ‖v−vk‖W 1,p(Rn) → 0
if vk ∈ C∞c (Rn) is a sequence that approaches v in the norm ‖ · ‖W 1,p(Rn). So u ∈
W 1,p

0 (Rn).

This lemma, used in the previous proof, holds for all the domains.

Lemma 4.2. Let Ω open and let w ∈ W 1,p(Ω) such that supp(w) is a compact subset
of Ω. Then w ∈ W 1,p

0 (Ω).

Remark 4.9. If Ω = Rn open set, and w = uηk with u ∈ W 1,p(Rn), we have that
supp(w) ⊆ Bk+1(0) and w ∈ W 1,p(Rn) because u ∈ W 1,p(Rn) and ηk is bounded. This
is exactly what we used in the previous proof. �

Proof. See [17, Lemma 1.23, pg. 19].
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4.2 Sobolev spaces in the case of bounded domains

The main inequality of this case is the following.

Lemma 4.3. Let Ω ⊆ Rn a bounded domain. Let q ∈ (1,+∞) and

d(Ω) := sup
x,y∈Ω

|x− y|

Then

‖u‖Lq(Ω)n ≤ C(q, d)‖∇u‖Lq(Ω)n2 ∀ u ∈ W 1,q
0 (Ω)

This is called Poincaré inequality.

We have seen that W 1,p
0 (Rn) = W 1,p(Rn). However, the equality does not hold for a

bounded domain Ω. In fact, if we consider Ω = BR(0) with R > 0 and u ≡ 1 ∈ W 1,p(Ω)
a scalar function3, it follows from previous lemma that if, for absurd, u ∈ W 1,p

0 (Ω),
then, taking in example q = 2 and being d(Ω) = 2R,

πR2 = µ(Ω) =

∫
Ω

dx ≤ C(2, 2R)

∫
Ω

0 dx = 0

That’s obviously absurd4.

This tells us that W 1,p
0 (U) 6= W 1,p(U). However, we will deduce a characterization

of the set W 1,p
0 (U): this coincides with the set of the functions of W 1,p(U) those ”van-

ish on the boundary”, in a sense that will be formalized by the so called trace operator.
This operator, roughly speaking, map a function to its values at the boundary: for
C(U) functions, it will coincide with the restriction to the boundary.

Sobolev Inequalities in bounded domain. We have two main theorems from [10].

Theorem 4.4. Let Ω a bounded and open subset of Rn, with ∂Ω ∈ C1. Assume
1 ≤ p < n, and let p∗ := np

n−p . Assume u ∈ W 1,p(Ω) a real valued function. Then

u ∈ Lp∗(Ω) and

‖u‖Lp∗ (Ω) ≤ C‖u‖W 1,p(Ω)

where C depends only on p, n and Ω.

Theorem 4.5. Let Ω a bounded open subset of Rn. Suppose u ∈ W 1,p
0 (Ω) a real valued

function, with 1 ≤ p < n. Then we have the estimate

‖u‖Lq(Ω) ≤ C‖∇u‖Lp(Ω) ∀q ∈ [1, p∗]

where the constant C depends only on p, q, n,Ω.

3The inequality also holds for scalar functions.
4The function u is here actually a regular function on an open set. So, the weak derivative coincides

with the classical derivative.
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Remark 4.10. We will be particulary intrerested in functions u ∈ W 1,p(Ω)n or W 1,p
0 (Ω)n,

i.e. Rn- vector valued functions. The estimates above continue to hold. In fact, if we
write u = (u1, ..., un), we have5

‖ui‖Lp∗ (Ω) ≤ C‖ui‖W 1,p(Ω) ‖ui‖Lq(Ω) ≤ C‖∇ui‖Lp(Ω)

So, using the equivalence of the norms as in (3.7),

‖u‖qLq(Ω) :=

∫
Ω

|u|qdx ≤ K

∫
Ω

n∑
i=1

|ui|qdx = K

n∑
i=1

‖ui‖qLq(Ω) ≤ KCq

n∑
i=1

‖∇ui‖qLp(Ω) =

= KCq

n∑
i=1

(∫
Ω

|∇ui|p dx
) q

p

≤ KCq(K ′)q
( n∑

i=1

∫
Ω

|∇ui|p dx
) q

p

using that, if y = (y1, ..., yn), ‖y‖qq =
n∑
i=1

|yi|q ≤ (K ′)q‖y‖qp = (K ′)q
( n∑

i=1

|yi|p
) q

p

, since

on vectors q-norm and p-norm are equivalent. We have used yi =

(∫
Ω

|∇ui|pdx
) 1

p

.

Remember that | · | is the vectorial Euclidean norm, while | · |p is the vectorial p-norm.
Since, using again norm equivalence, we have |∇ui|p ≤ Cp

1 |∇ui|pp it follows

‖u‖qLq(Ω) ≤ KCq(K ′)q
(∫

Ω

n∑
i=1

Cp
1 |∇ui|pp dx

) q
p

= KCq(K ′)qCq
1

(∫
Ω

|∇u|pp dx
) q

p

≤

≤ KCq(K ′)qCq
1

(∫
Ω

Cp
2 |∇u|pdx

) q
p

where C2 is such that |∇u|p ≤ C2|∇u| for the equivalence of matricial norms.
We have proved that

‖u‖Lq ≤ K ′′‖∇u‖Lp

where K ′′ depends on the same parameters as before.

A similar argument holds when u is a matrix. It will be proved in the special case
p = 2 in (11.40). �

5If u ∈W 1,p
0 (Ω)n we have exists ϕm ∈ C∞c (Ω)n such that

0 = lim
m→+∞

‖u− ϕm‖W 1,p = lim
m→+∞

( ∑
|α|≤1

∫
Ω

|Dα(u− ϕm)|pdx
) 1

p

≥

≥ lim
m→+∞

(∫
Ω

|u− ϕm|p dx
) 1

p

≥ lim
m→+∞

(∫
Ω

|ui − (ϕm)i|p dx
) 1

p

so that each component is in W 1,p
0 (Ω).
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4.2.1 General Sobolev inequalities

Definition 4.8. We say u∗ is a version of a given function u provided u = u∗ almost
everywhere.

Theorem 4.6. Let U be a bounded domain, open subset of Rn, and suppose that ∂U
is C1. Assume that n < p ≤ ∞ and u ∈ W 1,p(U). Then u has a version u∗ ∈ C0,γ(U),
for γ = 1− n

p
, with the estimate

‖u∗‖C0,γ(U) ≤ C‖u‖W 1,p(U)

The constant C depends only on p, n and U .

Theorem 4.7. Let U ba a bounded open subset of Rn, with a C1 boundary. Assume

u ∈ W k,p(U). If k > n
p
, then u ∈ Ck−

[
n
p

]
−1,γ(U), where

γ :=

{[
n
p

]
+ 1− n

p
, n

p
is not an integer

any positive number < 1, n
p

is an integer

In addition, it holds the estimate

‖u‖
C
k−[np ]−1,γ

(U)
≤ C‖u‖Wk,p(U)

the constant C depending only on k, p, n, γ and U .

Theorem 4.8. Let Ω a bounded domain with C1 boundary. Let u ∈ W k,p(Ω).

If k > n
p

then u ∈ Ck−[n
p

]−1,γ(Ω), where

γ :=

{
[n
p
] + 1− n

p
, if n

p
is not an integer

any positive number < 1, if n
p

is an integer

4.3 Trace operator

Traces concern the possibility of assigning boundary balues along ∂Ω to a function
u ∈ W 1,p(Ω), assuming ∂Ω ∈ C1. We have the following (trace) Theorem.

Theorem 4.9. Assume Ω is bounded and ∂Ω is C1. Then, there exists a bounded linear
operator

T : W 1,p(Ω)→ Lp(∂Ω)

such that

(i) Tu = u|∂Ω if u ∈ W 1,p(Ω) ∩ C(Ω);

(ii) ‖Tu‖Lp(∂Ω) ≤ C‖u‖W 1,p(Ω) for each u ∈ W 1,p(Ω) with the constant C depending
only on p and Ω.

Definition 4.9. We call Tu the trace of u on ∂Ω.

We examine now what it means for a function to have zero trace.

Theorem 4.10. Assume Ω is bounded and ∂Ω is C1. Suppose furthermore that u ∈
W 1,p(Ω). Then

u ∈ W 1,p
0 (Ω) ⇐⇒ Tu = 0 on ∂Ω
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4.4 Compactness in Sobolev Spaces

Definition 4.10. Let X and Y be Banach spaces, with X ⊂ Y . We say that X is
compactly embedded into Y , written X ⊂⊂ Y if

(i) exists a constant C > 0 such that ‖x‖Y ≤ C‖x‖X for every x ∈ X;

(ii) for every {xk}k∈N bounded sequence in X, i.e. ‖xk‖X ≤ C ′ for every k ∈ N, exist
a subsequence xkh and y ∈ Y such that lim

h→∞
‖xkh − y‖Y = 0.

Theorem 4.11. Assume U is bounded open subset of Rn, and ∂U is C1. Suppose
1 ≤ p < n. Then

W 1,p(U) ⊂⊂ Lq(U)

for every 1 ≤ q < p∗ := np
n−p .

Remark 4.11. A Banach space Z embeds continuously into another Banach space X if
holds only the first condition in definition 4.10. We write Z → X. So, if we have the
chain

Z → X ⊂⊂ Y

then Z ⊂⊂ Y . In fact, let zk a bounded sequence in Z. We have that

‖zk‖X ≤ C‖zk‖Z ≤ CC ′

So, there exists a subsequence zkh and y ∈ Y such that

lim
h→∞
‖zkh − y‖Y = 0

So Z ⊂⊂ Y . �

Corollary 4.1. Let U be a bounded open subset of Rn. Then, for every q ∈ (1,∞), we
have

W 1,q(U) ⊂⊂ Lq(U)

Proof. If q < n, then we can use p = q in theorem 4.11, observing that p∗ = nq
n−q > q.

If q ≥ n, since lim
p→n−

np

n− p
= +∞, we can find p < n such that

np

n− p
> q ≥ n

So theorem 4.11 says that
W 1,p(U) ⊂⊂ Lq(U)

But since U is bounded, and q > p, we have that W 1,q(Ω) → W 1,p(Ω). In fact, if
u ∈ W 1,q(Ω),

‖u‖W 1,q(U) =
(
‖u‖qq + ‖∇u‖qq

) 1
q ≤ ‖u‖q + ‖∇u‖q ≤ |U |

1
r ‖u‖p + |U |

1
r ‖∇u‖p

with r such that 1
p

= 1
r

+ 1
q
. So

‖u‖W 1,q(U) ≤ 2|U |
1
r ‖u‖W 1,p(U)

So, by remark 4.11, we have
W 1,q(U) ⊂⊂ Lq(U)

that is the thesis.
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4.5 The Homogeneous Sobolev Spaces Dm,q

For m ∈ N and 1 ≤ q <∞ we define

Dm,q(Ω) := {u ∈ L1
loc(Ω)| Dlu ∈ Lq(Ω), |l| = m}

In Dm,q we introduce the seminorm

|u|m,q :=

( ∑
|l|=m

∫
Ω

|Dlu|q
) 1

q

(4.2)

We can also define other spaces, starting from the homogeneous sobolev space.

Let Pm the class of all the polynomials of degree ≤ m− 1. For u ∈ Dm,q we set

[u]m := {w ∈ Dm,q| w = u+ p, for some p ∈ Pm}

We set
Ḋm,q := {[u]m| u ∈ Dm,q}, |[u]m]|m,q := |u|m,q

Lemma 4.4. Let Ω an arbitrary domain of Rn, n ≥ 2. Then Ḋm,q(Ω) is a Banach
space. In particular, if q = 2, then it is an Hilbert space with scalar product

〈[u]m, [v]m〉m :=
∑
|l|=m

∫
Ω

DluDlv

Remark 4.12. The proof of this classical result can be found in [12, Lemma II.6.2, pg.
83]. �

Remark 4.13. The functional (4.2) induces a norm in the space C∞0 (Ω). We define Dm,q
0

as the completion of the space C∞0 (Ω) with the norm | · |m,q. �
We state now a weak-compactness result, that is propesed in [12] as Exercise II.6.2, pg.
85.

Proposition 4.1. The space Ḋm,q is separable for 1 ≤ q < ∞ and reflexive for q ∈
(1,∞). Thus, for q ∈ (1,∞) the space is weakly complete and the unit ball is weakly
compact.

Proof. Once one has proved separability and reflexivity, the weakly compactness follows
from theorem 2.4. We focus our argument on the case m = 1, since it is simplier and
equivalent to the others. We have that the set

W := {w ∈
(
Lq
)n

: w =

(
∂u

∂x1

, ...,
∂u

∂xn

)
∃ u ∈ Ḋ1,q}

It is clearly isomorphic to Ḋ1,q. Moreover, being Ḋ1,q complete, it is a closed subset of(
Lq
)n

thus that is separable if q ≥ 1 and reflexive if q > 1. This gives the properties

for Ḋ1,q.

We also have the following lemma, that is [12, Lemma II.6.1].
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Lemma 4.5. Let Ω an arbitrary domain of Rn, n ≥ 2, and let u ∈ Dm,q(Ω), with
m ≥ 0 and q ∈ (1,∞). Then u ∈ Wm,q

loc (Ω) and the following inequality holds

‖u‖m,q,ω ≤ c

∑
|l|=m

‖Dlu‖q,ω + ‖u‖1,ω

 (4.3)

where ω is an arbitrary bounded locally lipschitz domain with ω ⊂ Ω.

Sketch. The inequality (4.3) follows from the Gagliardo-Nirenberg interpolation inequal-
ity on bounded domain, together with the Young’s inequality: in fact, the Gagliardo-
Nirenberg inequality allows to control the inequalities of smaller degree in terms of the
norm L1 and the norm Lq of the m-th derivative. The Young’s inequality convert the
product into a sum.

4.6 Sobolev spaces with negative degree

Definition 4.11. Let q ∈ (1,+∞) an exponent and k ∈ N a positive integer degree.
Let q′ := q

q−1
. Let Ω ⊆ Rn a domain. Then we define

W−k,q(Ω) :=
(
W k,q′

0 (Ω)
)∗
≡ {F : W k,q′

0 (Ω)→ R : F is a linear and continuous operator}

i.e. the dual space of W k,q′

0 (Ω). This space can be equipped with the following norm:

‖F‖W−k,q(Ω) := sup
06=ϕ∈Wk,q′

0

|F (ϕ)|
‖ϕ‖

Wk,q′
0 (Ω)

Remark 4.14. The definitions can be adapted to vectorial functions. �

Remark 4.15. If q = 2 (and so q′ = 2), every f ∈ L2(Ω) can be seen as an element of
this space:

Ff (ϕ) :=

∫
Ω

f · ϕ dx

In fact, linearity is obvious, while

|Ff (ϕ)| ≤
∫

Ω

|f ||ϕ|dx ≤ ‖f‖2‖ϕ‖2

This inequality says that Ff is a well-posed operator and it is continuous6. So Ff ∈
W−k,2(Ω). �

Definition 4.12. Let q ∈ (1,+∞) an exponent and k ∈ N a positive integer degree.
Let q′ := q

q−1
. Let Ω ⊆ Rn a domain. Then we say that

F ∈ W−k,q
loc (Ω) ⇐⇒ F |Ω0 ∈ W−k,q(Ω0) ∀ Ω0 bounded subdomain of Ω such that Ω0 ⊆ Ω

6If ϕn → ϕ in W k,2
0 , then ‖ϕn − ϕ‖2 → 0
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Remark 4.16. If F ∈ W−k,q
loc (Ω), then for every Ω0 as above the functional F has a norm

defined locally as above. �

Lemma 4.6. Let Ω ⊆ Rn, n ≥ 2, be a bounded Lipschitz domain and let q ∈ (1,∞).
Then

‖u‖Lq(Ω) ≤ C
(
‖∇u‖W−1,q(Ω) + ‖u‖W−1,q(Ω)

)
for every u ∈ Lq(Ω) where C = C(q,Ω) > 0 is a constant.

Remark 4.17. The proof is provided in [27, Lemma 1.1.3, pg. 45]. �

Theorem 4.12. Let Ω be a bounded Lipschitz domain in Rn, with n ≥ 2. Let Ω0 6= ∅
any subdomain, and let q ∈ (1,∞). Then exists C = C(q,Ω,Ω0) > 0 such that

‖u‖Lq(Ω) ≤ C‖∇u‖W−1,q(Ω)

for all u ∈ Lq(Ω) such that

∫
Ω0

u dx = 0.

Remark 4.18. The proof is provided in [27, Lemma 1.5.4, pg. 58]. �

Proof. We define, first of all,

Fu(v) := −
∫

Ω

u (∇ · v) dx

where u ∈ Lq(Ω), v ∈ W 1,q′

0 (Ω) and q′ = q
q−1

.

We now prove the estimate. Suppose, by contrary, that 6 ∃C > 0 such that

‖u‖Lq(Ω) ≤ C‖∇u‖−1,q

for every u ∈ Lq(Ω) such that

∫
Ω0

u dx = 0. This means that for every j ∈ N, exists

uj ∈ Lq(Ω) such that

∫
Ω0

uj dx = 0 and

‖uj‖Lq(Ω) > j‖∇uj‖−1,q

We define ũj := ‖uj‖−1
q uj and consider the sequence {ũj}j∈N. Then

‖ũj‖Lq(Ω) = 1,

∫
Ω0

ũj dx = 0, ‖∇ũj‖−1,q <
1

j

Since Lq(Ω) is reflexive, and {ũj}j∈N is bounded, we have that exists ũjk such that ũjk ⇀
u ∈ Lq(Ω). We rename ũj this subsequence. In particular it holds that ‖∇ũj‖−1,q → 0,
as j →∞. Moreover

|Fu(v)| = |〈u,∇ · v〉| = lim
j→∞
|〈ũj,∇ · v〉| = 0
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for every v ∈ W 1,q′

0 (Ω). This implies that ‖∇u‖−1,q = 0. Observe that furthermore

|〈ũj,∇ · v〉| ≤ ‖∇ũj‖−1,q‖v‖1,q′ → 0 as j →∞

Thus, in the sense of distributions, we have ∇u = 0. This implies u ≡ c, and being∫
Ω0
u dx = 0, we have c = 0.

On the other hand, lemma 4.6 says that

‖ũj‖q = 1 ≤ C
(
‖∇ũj‖W−1,q(Ω) + ‖ũj‖W−1,q(Ω)

)
(4.4)

Since ũj is bounded in Lq(Ω) and the embedding Lq(Ω) ⊆ W−1,q(Ω) is compact, we have
that exists a subsequence ũjk that converges to some ũ ∈ Lq(Ω). Since the convergence
is in particular a weak convergence, we have that ũ = u = 0, since the limit is unique.
This means that

lim
j→∞
‖ũj‖−1,q = 0

So equation (4.4) becomes 1 ≤ 0, that is an absurd. So the thesis in proved.

4.7 A generalized divergence theorem

The following theorem is a generalization of the divergence theorem [32, Th. 6.3.4, pg.
125]

Theorem 4.13. Let Ω ⊆ Rn an open set of class C1 with bounded boundary Γ. Let
v ∈ W 1,1(Ω). Then ∫

Ω

∇ · v dx =

∫
Γ

(Tv) · η dσ (4.5)

where T is the trace operator and η the outward normal vector.

4.7.1 An application of the trace operator

This application is useful in the integration by parts: this tell us when we can get rid of
the boundary piece. In future, we will often use this device to simplify our calculations.

Remark 4.19. Let w, v ∈ H2(Ω) scalar functions, with Tv = 0 on ∂Ω. Moreover suppose
v ∈ C1(Ω). Then we have ∫

∂Ω

T (v∇w) · η dσ = 0 (4.6)

In fact, being w ∈ H2(Ω) ≡ W 2,2(Ω), in particular ∇w ∈ W 1,2(Ω). Being Ω bounded
with regular boundary, there exists a sequence {ϕn} ⊆ C∞(Ω) such that

lim
n→+∞

‖∇w − ϕn‖W 1,2(Ω) = 0

Consider now the sequence {vϕn}n ⊆ C1(Ω). We have that

‖v∇w − vϕn‖2
W 1,2(Ω) = ‖v∇w − vϕn‖2

2 + ‖∇(v∇w − vϕn)‖2
2
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In particular

∇[v(∇w − ϕn)] = (∇v)(∇w − ϕn) + v∇(∇w − ϕn)

So

‖∇[v(∇w − ϕn)]‖2
2 ≤

(
‖(∇v)(∇w − ϕn)‖2 + ‖v∇(∇w − ϕn)‖2

)2 ≤

≤ 2
(
‖(∇v)(∇w − ϕn)‖2

2 + ‖v∇(∇w − ϕn)‖2
2

)
using that (a+ b)2 ≤ 2(a2 + b2). Finally

‖v∇w − vϕn‖2
W 1,2(Ω) ≤ ‖v∇w − vϕn‖2

2 + 2‖(∇v)(∇w − ϕn)‖2
2 + 2‖v∇(∇w − ϕn)‖2

2

Observe now that each piece vanishes as n→ +∞. In fact∫
Ω

|v∇w − vϕn|2 dx ≤ max
Ω
|v|2‖∇w − ϕn‖2

2 (4.7)

∫
Ω

|(∇v)(∇w − ϕn)|2 dx ≤ max
Ω
|∇v|2‖∇w − ϕn‖2

2 (4.8)

and ∫
Ω

|v∇(∇w − ϕn)|2 dx ≤ max
Ω
|v|2‖∇(∇w − ϕn)‖2

2 (4.9)

since v ∈ C1(Ω). Using that

‖∇w − ϕn‖2
2, ‖∇(∇w − ϕn)‖2

2 ≤ ‖∇w − ϕn‖2
W 1,2(Ω) → 0 as n→ +∞

we have that vϕn approaches v∇w in norm W 1,2(Ω). We have moreover that vϕn ∈
C1(Ω) and

v(x)ϕn(x) = 0 ∀x ∈ ∂Ω

since v ≡ 0 in ∂Ω. So

T (v∇w) := lim
n→+∞

T (vϕn)

where the limit is taken in L2(∂Ω). Since the trace T (vϕn) is constanly zero, also the
limit in L2(∂Ω) is zero. So the trace of v∇w is zero and the integral above is zero too.
�

4.8 Weak derivatives and mollifications

The following theorem is a different version of theorem 3.2, that generalizes the thesis
in the case of weak derivatives.

Theorem 4.14. Let u ∈ W k,p(Ω), with Ω domain in Rn. Consider uε the mollification
of u. Then

Dαuε = (Dαu) ∗ ηε over Ωε

for every α multi-index such that |α| ≤ k.
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Proof. The derivative of uε over Ω has to be intended in classical sense, being uε ∈
C∞(Ωε). So, let ε > 0 fixed and ϕ ∈ C∞c (Ωε). First of all observe that, if α is a
multi-index, for every x ∈ Ωε we have

Dαuε(x) =

∫
Ω

u(y) (Dαηε) (x− y) dy = (−1)|α|
∫

Ω

(−1)|α|u(y) (Dαηε) (x− y) dy =

= (−1)|α|
∫

Ω

u(y)Dα
y (ηε(x− y)) dy =

∫
Ω

Dαu(y)ηε(x− y) dy

since if x ∈ Ωε is fixed, then ηε(x − y) is smooth with compact support in Ω. So we
have that∫

Ωε

(
(Dαu) ∗ ηε

)
(x)ϕ(x) dx =

∫
Ωε

(∫
Ω

Dαu(y)ηε(x− y) dy

)
ϕ(x) dx =

=

∫
Ωε

Dαuε(x)ϕ(x) dx = (−1)|α|
∫

Ωε

uε(x)Dαϕ(x) dx

since ϕ has compact support in Ωε. This is the thesis.
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Chapter 5

Spaces involving time

5.1 Bochner Integral

Often we deal with function of the form u = u(x, t) with (x, t) ∈ Ω × I and Ω ⊆ R3,
I = [a, b] ⊆ R. This function, fixed the time, is a function of the only x-variable. In
particular, it can happen that u(x, t0) is B(R3)-misurable for a.e. t0 ∈ I and that for
those t0 ∈ I we have ∫

Ω

|u(x, t0)|p dx < +∞

In other words, u(·, t0) ∈ Lp for a.e. t0 ∈ I, i.e. u maps the interval [a, b] to element of
the functional space Lp. This justify the following definition.

Definition 5.1. A Banach space valued function is a function

u : [a, b]→ X

where (X, ‖ · ‖) is a Banach space.

Example 5.1. The simplest example is that of a function f ∈ C([a, b]× [c, d],R).
For every x0 ∈ [a, b], f(x0, y) is a continuous function for y ∈ [c, d]. So it belongs to the
space (C([c, d],R), ‖ · ‖∞), where ‖ · ‖∞ is the usual maximum in an interval. �

We can also introduce a notion of measurability for Banach valued functions. First of
all

Definition 5.2. A Banach valued function s : [a, b] → X is called simple if ∃ m ∈ N
and {Ei}mi=1 ⊆ B([a, b]) and si ∈ X for i = 1, ...,m such that

s(t) =
m∑
i=1

siχEi(t)

The integral of a simple function is soon defined. We define∫ b

a

s(t)dt :=
m∑
i=1

si|Ei|
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So we have

Definition 5.3. A Banach valued function u : [a, b] → X is measurable if there exists
a sequence {sk(t)}k∈N of simple functions such that

sk(t)→ u(t) for a.e. t ∈ [a, b]

(i.e. for a.e. t ∈ [a, b] the limit ‖sk(t)− u(t)‖ → 0 for k → +∞).

Definition 5.4. We say that a Banach valued function is summable, or Bochner inte-
grable, if

(i) lim
k→+∞

‖sk(t)− u(t)‖ = 0 for a.e. t ∈ [a, b];

(ii) lim
k→+∞

∫ b

a

‖sk(t)− u(t)‖ dt = 0.

Here ‖ · ‖ is always the norm in the Banach space X. In this case we define∫ b

a

u(t) dt := lim
k→+∞

∫ b

a

sk(t) dt

Remark 5.1. The definition is well-posed. First of all, being u and sk strong measurable1

(the first can be approximed with simple functions; the latter is a simple function, so
constantly approximed with simple functions), we have that ‖sk(t)−u(t)‖ is measurable2

in3 ([a, b],B([a, b]), dt) . Morover, we have∥∥∥∥∫ b

a

sk(t) dt−
∫ b

a

sh(t) dt

∥∥∥∥ =

∥∥∥∥∫ b

a

(
sk(t)− sh(t)

)
dt

∥∥∥∥ ≤ ∫ b

a

‖sk(t)− sh(t)‖ dt→ 0

for k, h→ +∞, since∫ b

a

‖
(
sk(t)− u(t)

)
−
(
sh(t)− u(t)

)
‖ dt ≤

∫ b

a

‖sk(t)− u(t)‖ dt+

∫ b

a

‖sh(t)− u(t)‖ dt

Being X a Banach space (hence complete), we have that the limit exists in X. �

Remark 5.2. Oftern we deal with Banach spaces of the form Xn, that is the cartesian
product of n identical Banach spaces. This space can be equipped with the natural
norm ‖(x1, ..., xn)‖Xn =

√
‖x1‖2 + ...+ ‖xn‖2, with ‖ · ‖ = ‖ · ‖X .

So, if f : [0, T ]→ Xn, and it is a measurable function, we have that, if sk(t) =

mk∑
i=1

ski χEki ,

‖sk(t)− f(t)‖Xn → 0 a.e. t ∈ [0, T ]

Moreover, ski and f have n components in X. It follows that each component of sk(t) =
mk∑
i=1

ski χEki converges, in X to the respective component of f . The same holds for the

1Here is required the property of strong measurability to define (Bochner) integrability.
2This is proved, in example, in [33, Proof of Pettis Theorem, 6th edition, pg. 132].
3Here B([a, b]) is the Borel-Algebra on [a, b].
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summability condition. So, it is defined the Bochner integral of each component.
In particular, we have

lim
k→∞

(∫ T

0

sk(t) dt

)
j

=

∫ T

0

(
f(t)

)
j
dt

in the sense of the space X. So, we can consider the collection of the n integrals as an
element of Xn.

By the definition of the norm, also

∫ T

0

sk(t) converges to this vector of Xn, since, if I

is a vector of Xn such that Ij =

∫ T

0

(
f(t)

)
j
dt, for j = 1, ..., n,

‖
∫ T

0

sk(t) dt− I‖Xn ≡

√√√√ n∑
j=1

∥∥∥∥(∫ T

0

sk(t) dt

)
j

− Ij
∥∥∥∥2

→ 0

as k →∞.

By the uniquess of the limit in the Banach space Xn, we have that

∫ T

0

f(t) dt is the

collection I of the Bochner integral of each component.

Observe that, ifX = L2(Ω), with Ω a domain, and if f ∈ L2(Ω)n, so that f = (f1, ..., fn),
with fi ∈ L2(Ω), it holds that

‖f‖Xn =
√
‖f1‖2

2 + ...+ ‖fn‖2
2

using that ‖ · ‖X = ‖ · ‖2. Since ‖fi‖2
2 =

∫
Ω

|fi|2dx, we have

‖f‖Xn =

(∫
Ω

n∑
i=1

|fi|2dx
) 1

2

≡
(∫

Ω

|f |2dx
) 1

2

since |f |2 =
∑n

i=1 |fi|2 is the Euclidean norm in Rn. So it is the usual norm in L2(Ω)n.
If p 6= 2, then we have an equivalence of the norms, since the Euclidean norm in Rn is
equivalence to the p−norm in Rn. �

The definition can be generalized, replacing the Lebesgue time-measure with a general
measure. But we are interested to very particular examples of this spaces, i.e. the Lp

spaces involving time.

5.2 Lp spaces involving time

Definition 5.5. For T > 0 and p ≥ 1 we define the space

Lp(0, T ;X)
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as the set of all strongly measurable functions

u : [0, T ]→ X

such that ∫ T

0

‖u(t)‖pdt < +∞

In this case, we define

‖u‖Lp(0,T ;X) :=

(∫ T

0

‖u(t)‖p dt
) 1

p

Remark 5.3. The strongly measurability of u implies, as underlined above, that ‖u(t)‖
is measurable in the Lebesgue sense in [0, T ]. So, the integral is a well-posed integral
of a non-negative measurable function. �

If p =∞ we define

‖u‖L∞(0,T ;X) := sup
t∈[0,T ]

‖u(t)‖ < +∞

Talking about Navier-Stokes equations, it is foundamental the case X = Lq. So

‖u‖Lp(0,T ;Lq) :=

(∫ T

0

‖u(t)‖pLq dt
) 1

p

Remark 5.4. Moreover it holds the following proposition.

Proposition 5.1. Let u : [a, b] → X a summable function, with u ∈ Lp(a, b;X) and
p ≥ 1. Then exists sk(t) such that

lim
k→+∞

∫ b

a

‖sk(t)− u(t)‖pX dt = 0

Proof. We know, by definition, that exists a sequence sk(t) of simple functions such
that

lim
k→+∞

∫ b

a

‖sk(t)− u(t)‖dt = 0

and that this sequence also has limit u(t) almost everywhere. Here we use, for sake of
simplicity, ‖ · ‖ for ‖ · ‖X . We can change slightly the structure of sk to pass the limit
under the integral sign. We define

ŝk(t) :=


sk(t)
‖sk(t)‖min

{
i(k)
k
, ‖sk(t)‖

}
t ∈

k2⋃
i=0

Ωk,i

0 otherwise

where Ωk,i := {t ∈ [a, b] : i
k
≤ ‖u(t)‖ ≤ i+1

k
}, for i ∈ {0, ..., k2}.

Remember that the sk are simple functions, so they take a finite number of values.
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So it is also ŝk. These values are taken over measurable sets, since these domains are
intersections of domain of sk and Ωk,i. Observe moreover that

‖ŝk(t)‖ ≤
∥∥∥∥ sk(t)

‖sk(t)‖
min

{
i(k)

k
, ‖sk(t)‖

}∥∥∥∥ =
‖sk(t)‖
‖sk(t)‖

∣∣∣∣min

{
i(k)

k
, ‖sk(t)‖

}∣∣∣∣ ≤ i(k)

k
≤ ‖u(t)‖

Finally we show that ‖sk(t)‖ → ‖u(t)‖ as k → +∞. In fact

t ∈ Ωk,i ⇐⇒ ‖u(t)‖ ∈
[
i

k
,
i+ 1

k

]
⇐⇒ ‖u(t)‖k ∈ [i, i+1] ⇐⇒ ‖u(t)‖k−1 ≤ i ≤ ‖u(t)‖k ⇐⇒

⇐⇒ ‖u(t)‖ − 1

k
≤ i(k)

k
≤ ‖u(t)‖

So we have

1

‖sk(t)‖
min

{
i(k)

k
, ‖sk(t)‖

}
:=

1 min{ i(k)
k
, ‖sk(t)‖} = ‖sk(t)‖

i(k)
k

‖sk(t)‖ ∈
[
‖u(t)‖
‖sk(t)‖ −

1
k‖sk(t)‖ ,

‖u(t)‖
‖sk(t)‖

]
min{ i(k)

k
, ‖sk(t)‖} = i(k)

k

Since lim
k→+∞

‖sk(t)‖ = ‖u(t)‖, we have that, for every ε > 0, exists K1 = K1(t) such

that

1− ε ≤ ‖u(t)‖
‖sk(t)‖

≤ 1 + ε ∀k ≥ K1(t)

It also exists K2 = K2(t) such that4

−ε ≤ 1

k‖sk(t)‖
≤ ε ∀k ≥ K2(t)

So, if k ≥ max{K1, K2}, we have

1− 2ε ≤ ‖u(t)‖
‖sk(t)‖

− 1

k‖sk(t)‖
≤ ‖u(t)‖
‖sk(t)‖

≤ 1 + ε

For those k such that it holds the condition min{ i(k)
k
, ‖sk(t)‖} = ‖sk(t)‖ we have that

the function is simply 1. So, for k large enough, we have that

1

‖sk(t)‖
min

{
i(k)

k
, ‖sk(t)‖

}
− 1→ 0

So5

lim
k→+∞

‖ŝk(t)− sk(t)‖ = lim
k→+∞

∥∥∥∥sk(t)( 1

‖sk(t)‖
min

{
i(k)

k
, ‖sk(t)‖

}
− 1

)∥∥∥∥ =

= ‖sk(t)‖
∣∣∣∣ 1

‖sk(t)‖
min

{
i(k)

k
, ‖sk(t)‖

}
− 1

∣∣∣∣→ ‖u(t)‖ · 0 = 0

4Where the step of sk is zero, so it is also the step of ŝk.
5Since for k large enough t is in Ωi,k for some i.
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Obviously

‖ŝk(t)− u(t)‖ ≤ ‖ŝk(t)− sk(t)‖+ ‖sk(t)− u(t)‖ → 0 as k → +∞

Finally
‖ŝk(t)− u(t)‖p ≤

{
‖ŝk(t)‖+ ‖u(t)‖

}p ≤ 2p‖u(t)‖p

Since u ∈ Lp(a, b;X), we have that

lim
k→+∞

∫ b

a

‖ŝk(t)− u(t)‖pdt =

∫ b

a

(
lim

k→+∞
‖ŝk(t)− u(t)‖p

)
dt = 0

This means that ŝk(t) is a sequence of step functions which limit is u(t) in Lp(a, b;X),

that is the thesis.

Theorem 5.1. Let X be a Banach space and let p ∈ [1,∞). Then the collection of the
functions

fn(t) :=
n∑
k=1

ckφk(t) ck ∈ X, φk(t) ∈ C∞c (0, T )

is dense in Lp(0, T ;X); that is, for every f ∈ Lp(0, T ;X) and ε > 0 exists K ∈ N such
that

‖f − fk‖Lp(0,T ;X) < ε ∀k ≥ K

Observe that fk(t) ∈ C∞c (0, T ;X).

Proof. Let f ∈ Lp(0, T ;X). By proposition 5.1 we know that exists a sk(t) =
mk∑
i=1

ski χEki (t), with Ek
i measurable in [0, T ] and ski ∈ X, such that

lim
k→+∞

(∫ T

0

‖sk(t)− f(t)‖pX dt

) 1
p

= 0

Now, for every i, k ∈ N, we can find a function ϕki ∈ C∞c (0, T ) such that

‖ϕki − χEki ‖p <
ε

2i‖ski ‖X

since if ‖ski ‖X = 0, then ski = 0 and we can rename the sequence. Then we can define

fk(t) :=

mk∑
i=1

skiϕ
k
i (t)

Then we have

‖f−fk‖Lp(0,T ;X) ≡
(∫ T

0

‖f(t)−fk(t)‖pX dt

) 1
p

≤ ‖f−sk‖Lp(0,T ;X) +‖sk−fk‖Lp(0,T ;X) =

=

(∫ T

0

‖f(t)− sk(t)‖pX dt

) 1
p

+
∥∥ mk∑
i=1

ski
(
χEki (t)− ϕki (t)

)∥∥
Lp(0,T ;X)

≤
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≤
(∫ T

0

‖f(t)− sk(t)‖pX dt

) 1
p

+

mk∑
i=1

∥∥ski (χEki (t)− ϕki (t)
)∥∥

Lp(0,T ;X)
=

=

(∫ T

0

‖f(t)− sk(t)‖pX dt

) 1
p

+

mk∑
i=1

(∫ T

0

‖ski
(
χEki (t)− ϕki (t)

)
‖pX dt

) 1
p

=

=

(∫ T

0

‖f(t)− sk(t)‖pX dt

) 1
p

+

mk∑
i=1

‖ski ‖X
(∫ T

0

|χEki (t)− ϕki (t)|p dt
) 1

p

=

=

(∫ T

0

‖f(t)− sk(t)‖pX dt

) 1
p

+

mk∑
i=1

‖ski ‖X‖χEki − ϕ
k
i ‖p ≤

≤
(∫ T

0

‖f(t)− sk(t)‖pX dt

) 1
p

+

mk∑
i=1

ε

2i
≤
(∫ T

0

‖f(t)− sk(t)‖pX dt

) 1
p

+
∞∑
i=1

ε

2i
=

=

(∫ T

0

‖f(t)− sk(t)‖pX dt

) 1
p

+

mk∑
i=1

ε

2i
≤
(∫ T

0

‖f(t)− sk(t)‖pX dt

) 1
p

+ ε

If K is such that

(∫ T

0

‖sk(t)− f(t)‖pX dt

) 1
p

< ε for every k ≥ K, then we have

‖f − fk‖Lp(0,T ;X) ≤ 2ε ∀k ≥ K

that is the thesis.

We now focus our attention to the case X = Lq(Ω), with q ∈ [1,∞).

Corollary 5.1. Let p, q ∈ [1,∞) and f ∈ Lp(0, T ;Lq(Ω)). Then, for every ε > 0, there
exists fε ∈ C∞c ((0, T )× Ω) such that

‖f − fε‖Lp(0,T ;Lq(Ω)) < ε

Proof. Let be ε > 0. By theorem 5.1 there exists gε(t) =
Nε∑
k=1

φεk(t)c
ε
k with cεk ∈ Lq(Ω)

and φk ∈ C∞c (0, T ) such that

‖f − gε‖Lp(0,T ;Lq(Ω)) < ε

By density of C∞c (Ω) in Lq(Ω), we can find ϕεk ∈ C∞c (Ω) such that

‖cεk − ϕεk‖Lq(Ω) <
ε

TCεNε

where

Cε := max
k=1,...,Nε

(
sup
(0,T )

|φεk|
)
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Define fε(x, t) :=
Nε∑
k=1

φεk(t)ϕ
ε
k(x) ∈ C∞c ((0, T )× Ω). Then

‖f − fε‖Lp(0,T ;Lq(Ω)) ≤ ‖f − gε‖Lp(0,T ;Lq(Ω)) + ‖gε − fε‖Lp(0,T ;Lq(Ω)) ≤

≤ ε+

∥∥∥∥ Nε∑
k=1

φk
(
cεk − ϕεk

)∥∥∥∥
Lp(0,T ;Lq(Ω))

≤ ε+
Nε∑
k=1

∥∥φk(cεk − ϕεk)∥∥Lp(0,T ;Lq(Ω))

On the other hand

∥∥φk(cεk−ϕεk)∥∥Lp(0,T ;Lq(Ω))
=

(∫ T

0

‖φεk(t)(cεk−ϕεk)‖
p
Lq(Ω) dt

) 1
p

=

(∫ T

0

|φεk(t)|p‖cεk−ϕεk‖
p
Lq(Ω) dt

) 1
p

≤

≤ T

(
sup
(0,T )

|φεk|
)
‖cεk − ϕεk‖Lq(Ω) ≤ CεT‖cεk − ϕεk‖Lq(Ω) ≤

ε

Nε

It follows that ‖f − fε‖Lp(0,T ;Lq(Ω)) ≤ 2ε, that is the thesis.

5.3 Important functional spaces results

In fluid dynamics the temporal variable t plays a very important role. It is very com-
mon that the regularity of a certain function, or field, is different with respect to the
temporal variable and the other variables.

We start with a basic proposition, inspired by [6, p. 248].

Proposition 5.2. Let X a Banach space. If X is separable and p ∈ [1,+∞), then
Lp(0, T ;X) is separable. Moreover if p ∈ [1,+∞) and p′ is its cojugate, then

(Lp(0, T ;X))∗ = Lp
′
(0, T ;X∗)

The dual pairing is explicetely given by

〈u, v〉Lp′ (0,T ;X′),Lp(0,T ;X) =

∫ T

0

〈u(t), v(t)〉X′,Xdt ∀u ∈ Lp
′
(0, T ;X ′), v ∈ Lp(0, T ;X)

In particular, if p = 2 and (X, 〈, 〉X) is an Hilbert space, then L2(0, T ;X) is an Hilbert
space with scalar product given by

〈u, v〉L2(0,T ;X) :=

∫ T

0

〈u, v〉Xdt ∀u, v ∈ L2(0, T ;X)

If p ∈ (1,+∞) and X is reflexive, then Lp(0, T ;X) is reflexive.

Remark 5.5. The proof follows from the real case X = R. �

Moreover, the inclusion in Lp spaces involving times is the following.
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Lemma 5.1. Let X ⊆ Y continuously embedded. Then also

Lp(0, T ;X) ⊆ Lp(0, T ;Y )

is a continuous embedding.

Proof. Thanks to the continuity of the injection X → Y , we have that exists C > 0
such that ‖x‖Y ≤ C‖x‖X for every x ∈ X. It follows that if f ∈ Lp(0, T ;X), we have

‖f‖Lp(0,T ;Y ) :=

(∫ T

0

‖f‖pY dt

) 1
p

≤ C

(∫ T

0

‖f‖pX dt

) 1
p

=: C‖f‖Lp(0,T ;X)

that is the cointinuity of the embedding.

We focus now our attention to the Banach spaces X that are spaces of functions.
In particular Sobolev spaces (including Lp spaces). So a function u in Lp(0, T ;X), with
X = W k,p(Ω), is a function in X at every time t, i.e.

u : [0, T ]→ W k,p(Ω)

In this way, we can look at u as a function

u = u(t)(x)

More precisely, for those pairs (x, t) where u is defined, we can write

u = u(x, t)

We have now a question: since in particular u(t) ∈ Lp(Ω), can we think to u as a
function in L2(Ω× (0, T )), that is a function defined almost everywhere in the 4D set
Ω× (0, T )? The answer is ”yes” in a very special case. It is explained by the following
proposition.

Proposition 5.3. Let p ∈ [1,∞). Let Ω a bounded domain and T > 0. Then there
exists an identification

Lp(0, T ;Lp(Ω)) ' Lp(Ω× (0, T ))

Proof. An inclusion is easy. In fact, if u(x, t) ∈ Lp(Ω × (0, T )), we can consider,
for almost every t0 ∈ (0, T ), u(t0)(x) := u(x, t0) ∈ Lp(Ω). Moreover, since in particular
|u|p ∈ L1(Ω× (0, T )), by the Fubini theorem we have∫

Ω×(0,T )

|u(x, t)|p d(x, t) =

∫ T

0

(∫
Ω

|u(x, t)|p dx
)
dt

Conversely, let u ∈ Lp(0, T ;Lp(Ω)).
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Remark 5.6. The interval [0, T ) can be subdivided into a finite number of sub-intervals
of constant lenght 1

n
. In particular, for every t ∈ [0, T ) and n ∈ N, exists a unique

j = j(n, t) such that t ∈ [ j
n
, j+1

n
). So, by Lebesgue theorem, for almost every t ∈ [0, T ],

if f ∈ Lploc(0, T ),

n

∫ j(t,n)+1
n

j(t,n)
n

f(s) ds→ f(t)

This will be useful in a moment. �

We now consider the sequence

Lp(Ω) 3 un(t, ·) := n

∫ j+1
n

j
n

u(s, ·) ds if t ∈ [0, T ] ∩ [
j

n
,
j + 1

n
)

Then un ∈ Lp(Ω× [0, T ]) ⊆ Lp(0, T ;Lp(Ω)). If we show that

lim
n→∞

∫ T

0

(∫
Ω

|un − u|p dx
)
dt = 0 (5.1)

then

lim
m,n→∞

∫ T

0

(∫
Ω

|un − um|p dx
)
dt = 0 (5.2)

In other words, {un}n∈N is a Cauchy sequence in Lp(Ω × [0, T ]). By the completeness
of the space Lp(Ω× [0, T ]), we have that exists u ∈ Lp(Ω× [0, T ]) such that

un → u in Lp(Ω× [0, T ])

Moreover, (5.1) and (5.2) imply that ‖u‖Lp(Ω×[0,T ]) = ‖u‖Lp(0,T ;Lp(Ω)).

So, we have only to show that (5.1) holds. First of all, observe that

‖un(t, ·)− u(t, ·)‖p =

∥∥∥∥n∫ j+1
n

j
n

(
u(s, x)− u(t, x)

)
ds

∥∥∥∥
p

≤ n

∫ j+1
n

j
n

‖u(s, ·)− u(t, ·)‖p ds

(5.3)
This estimate, together with remark 5.6, implies that un(t)→ u(t) in Lp(Ω) for almost

every t ∈ [0, T ]. So, the thesis follows.

5.3.1 The case of Lp(0, T ;Lq(Ω))

Let p, q ≥ 1 and Ω bounded. When X = Lq(Ω), we have, as said above, a function of
two variables. Moreover, by the definition of Bochner integral we know that the integral
of a function that takes values in X is an element of X. The definiton of summability
in this case leads to

lim
k→+∞

‖sk(t)− u(t)‖ = 0 for a.e. t ∈ [a, b]

Clearly, at almost every t ∈ (a, b), is defined

f(t) :=

∫
Ω

u(x, t)dx
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since u(t) ∈ Lq(Ω) ⊆ L1(Ω). But is the function f(t) measurable over (a, b)? Observe
that∣∣∣∣∫

Ω

u(x, t)dx−
∫

Ω

sk(x, t)dx

∣∣∣∣ ≤ ∫
Ω

|u(x, t)−sk(x, t)|dx ≤ |Ω|
1
q′ ‖u(t)−sk(t)‖q → 0 as k → +∞

So for almost every t ∈ (a, b) we have that ck(t) :=

∫
Ω

sk(x, t)dx is a simple function

ck(t) =

∫
Ω

sk(x, t)dx =

mk∑
i=1

∫
Ω

dki (x)χEki (t)dx =

mk∑
i=1

dk,iχEki (t)

where dki (x) ∈ Lq(Ω) e dk,i :=

∫
Ω

dki (x)dx.

So f is the pointwise limit of simple functions ck, that are measurable. So, f is mea-
surable. This means that we can consider the integral of the absolute value (also the
absolute value is measurable), i.e.∫ b

a

|f(t)| dt =

∫ b

a

∣∣∣∣∫
Ω

u(x, t) dx

∣∣∣∣ dt
Since, at almost every fixed t ∈ (a, b), u(x, t) ∈ Lq(Ω), we have that

∣∣∣∣∫
Ω

u(x, t) dx

∣∣∣∣ ≤∫
Ω

|u(x, t)| dx. It follows that, since also6 |u(x, t)| ∈ Lq(Ω),

∫ b

a

|f(t)|dt ≤
∫ b

a

∫
Ω

|u(x, t)|dx ≤ |Ω|
1
q′

∫ b

a

‖u(t)‖qdt ≤ (b−a)
1
p′ |Ω|

1
q′

(∫ b

a

‖u(t)‖pqdt
) 1

p

< +∞

So we can consider the integral with sign∫ b

a

f(t)dt =

∫ b

a

∫
Ω

u(x, t) dx dt

On the other hand, since we have, by definition,

∫ b

a

u(x, t)dt ∈ Lq(Ω), we can consider∫
Ω

∫ b

a

u(x, t) dt dx

and ∣∣∣∣∫
Ω

∫ b

a

u(x, t) dt dx

∣∣∣∣ ≤ ∫
Ω

∣∣∣∣∫ b

a

u(x, t) dt

∣∣∣∣ dx =

∥∥∥∥∫ b

a

u(t) dt

∥∥∥∥
1

≤

≤
∫ b

a

‖u(t)‖1 dt =

∫ b

a

(∫
Ω

|u(x, t)| dx
)
dt

since u : [0, T ]→ Lq(Ω) ⊆ L1(Ω).

6And

|
∫

Ω

|u(x, t)|dx−
∫

Ω

|sk(x, t)|dx| ≤
∫

Ω

||u(x, t)| − |sk(x, t)||dx ≤
∫

Ω

|u(x, t)− sk(x, t)|dx

so that the measurability holds also for

∫
Ω

|u(x, t)|dx.
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An integral interchange. We may ask if in this case is possible to interchange the
integrals. Again, the definition of summability leads to

lim
k→+∞

‖sk(t)− u(t)‖q = 0 for a.e. t ∈ [a, b]

As above, we have that

lim
k→∞

∫
Ω

sk(x, t)dx =

∫
Ω

u(x, t)dx

for almost every t ∈ (a, b). As in proposition 5.1, we can redefine the sequence so that
‖sk(t)‖q ≤ ‖u(t)‖q. In particular, we have

lim
k→+∞

∫ b

a

(∫
Ω

sk(x, t)dx

)
dt =

∫ b

a

(∫
Ω

u(x, t)dx

)
dt

since ∣∣∣∣∫
Ω

sk(x, t) dx

∣∣∣∣ ≤ ‖sk(t)‖1 ≤ |Ω|1−
1
q ‖sk(t)‖q ≤ |Ω|1−

1
q ‖u(t)‖q ∈ L1(a, b)

we can use the Lebesgue dominated convergence. On the other hand we have that∫ b

a

(∫
Ω

sk(x, t)dx

)
dt =

∫ b

a

(∫
Ω

mk∑
i=1

dki (x)χEki (t)dx

)
dt =

=

∫
Ω

(∫ b

a

mk∑
i=1

dki (x)χEki (t)dt

)
dx =

∫
Ω

(∫ b

a

sk(x, t)dt

)
dx

and ∣∣∣∣∫
Ω

(∫ b

a

(
sk(x, t)− u(x, t)

)
dt

)
dx

∣∣∣∣ ≤ ∥∥∥∥∫ b

a

(
sk(x, t)− u(x, t)

)
dt

∥∥∥∥
1

≤

≤ |Ω|1−
1
q

∥∥∥∥∫ b

a

(
sk(x, t)− u(x, t)

)
dt

∥∥∥∥
q

≤ |Ω|1−
1
q

∫ b

a

‖sk(x, t)− u(x, t)‖q dt→ 0

as k →∞, thanks to the definition 5.4. By the uniqueness of the limit, we have that∫ b

a

(∫
Ω

u(x, t)dx

)
dt =

∫
Ω

(∫ b

a

u(x, t)dt

)
dx (5.4)

The case p = q = 2. We know by the Proposition 5.3 that L2(0, T ;L2(Ω)) '
L2((0, T )× Ω). So in this case we have that

u ∈ L2((0, T )× Ω) =⇒ u ∈ L1((0, T )× Ω)

since the measure of (0, T )× Ω is finite. So, by the Fubini theorem, we have7∫
Ω

∫ b

a

u(x, t) dt dx =

∫ b

a

∫
Ω

u(x, t) dx dt

7And since u ∈ L1((0, T )× Ω) means |u| ∈ L1((0, T )× Ω) we also have the formula∫
Ω

∫ b

a

|u(x, t)| dt dx =

∫ b

a

∫
Ω

|u(x, t)| dx dt
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Product of functions. It is very usefull to consider f ∈ Lp1(0, T ;Lp) and g ∈
Lq1(0, T ;Lq), where q is the conjugate of p, and q1 the conjugate of p1. Since f and g
are measurable, also f · g is measurable: in fact, if sk(t) and vj(t) are such that

lim
k→+∞

‖sk(t)− f(t)‖p = 0 a.e. t, lim
j→+∞

‖vj(t)− g(t)‖q = 0 a.e. t

it follows that

lim
k→+∞

‖sk(t)·vk(t)−f(t)·g(t)‖1 ≤ lim
k→+∞

‖sk(t)·(vk(t)−g(t))‖1+‖(sk(t)−f(t))·g(t)‖1 = 0

and is a simple function in that takes values in L1(Ω). The summability follows from
an analogous calculation. The same argument holds for a greater number of functions,
provided that these functions are in the right class in order to use the Hölder inequality.

Theorem 5.2. Let (H, ‖·‖) an Hilbert space. Then L2(0, T∗)⊗H is dense in L2(0, T∗;H),
where

L2(0, T∗)⊗H := {g = g(t) ∈ H : g(t) =
M∑
j=1

fj(t)hj, fj ∈ L2(0, T∗), hj ∈ H}

Remark 5.7. Here the symbol⊗ is inappropriately used; it usually means tensor product,
that is a more complex algebraic structure. However, the density above holds.

Proof. Let f ∈ L2(0, T∗;H). Then there exists a sequence of simple functions, say

sk(t) :=

mk∑
i=1

χEi(t)hi

with Ei measurable subset of [0, T∗] and hi ∈ H, such that [see section 5.2]

lim
k→+∞

∫ T∗

0

‖sk(t)− f(t)‖2dt = 0

Since sk(t) ∈ L2(0, T∗)⊗H, we have in other words that, for every ε > 0, exists K such
that

‖sK − f‖L2(0,T∗;H) < ε

that is the required density.

5.4 Sobolev spaces involving time

The basic results of this sections are inspired by the fundamental Evans’ work [10].

Definition 5.6. Let X be a Banach space. The Sobolev space W 1,p(0, T ;X) consists
of all the functions u ∈ Lp(0, T ;X) such that u′ exists in the weak sense and belongs
to Lp(0, T ;X). Furthermore, we set

‖u‖W 1,p(0,T ;X) :=


(∫ T

0
‖u(t)‖p + ‖u′(t)‖p dt

) 1
p

1 ≤ p <∞

sup
0≤t≤T

(
‖u(t)‖+ ‖u′(t)‖

)
p =∞
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We have the following theorem.

Theorem 5.3. Let u ∈ W 1,p(0, T ;X) for some p ∈ [1,∞]. Then u ∈ C([0, T ];X)
(after possibly being redefined on a set of measure zero). Moreover it holds

u(t) = u(s) +

∫ t

s

u′(τ) dτ ∀0 ≤ s ≤ t ≤ T

Furthermore, we have the estimate

max
t∈[0,T ]

‖u(t)‖ ≤ C‖u‖W 1,p(0,T ;X)

where C only depends on T .
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Chapter 6

Helmholtz decomposition in L2

spaces

Given a measure space (Ω,M, µ), the space L2(µ) ≡ L2(Ω) ≡ L2 stands out other Lp

spaces because of it is equipped of an inner product. Remember in fact that

L2(Ω) := {f : Ω→ R measurable functions such that

∫
Ω

|f |2 dµ < +∞}

So, we can introduce

〈f, g〉 :=

∫
Ω

fg dµ

which is well-posed because of Hölder inequality.

Definitions above can be generalized to n-dimensional vectorial field simply replacing
absolute value with Euclidian norm and defining the integral component by component.
The product between f and g become the Euclidian inner product. With these devices,
we can continue our speech.
We define

C∞0,σ(Ω) := {f ∈ C∞c (Ω)n : ∇ · f = 0}

where the superscript n remembers us, at least in this chapter, that the functions take
vectorial values in Rn.

Definition 6.1. We define the closed space

L2
σ(Ω) := C∞0,σ(Ω)

‖·‖L2

that can be equipped with the standard inner product in L2(Ω).

Remark 6.1. Remember that

L2
loc(Ω) := {p : Ω→ R :

∫
K

|p|2 dµ < +∞ ∀ K ⊆ Ω compact subset}

is the classical local L2 space over Ω. �
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Definition 6.2. Let Ω a domain in Rn, n ≥ 2. We define

G(Ω) := {f ∈ L2(Ω)n : ∃p ∈ L2
loc(Ω) such that f

d
= ∇p}

where, by definition,

f
d
= ∇p def⇐⇒

∫
Ω

f · ϕ dx = −
∫

Ω

p ∇ · ϕ dx ∀ ϕ ∈ C∞c (Ω)n

Remark 6.2. Note that both members make sense, the first because integral of the
product of L2 functions, the latter because ∇ · ϕ vanishes out of a compact, so we can
use Hölder inequality inequality thanks to the fact that p ∈ L2

loc(Ω) (and also ∇ · ϕ
because of its regularity). �

Remark 6.3. Similarly, for F ∈ W−1,q
loc (Ω)n we say

F d
= p

def⇐⇒ 〈F , ϕ〉 = −
∫

Ω

p ∇ · ϕ dx ∀ ϕ ∈ C∞c (Ω)n

where 〈·, ·〉 is the dual pairing for functionals in W−1,q
loc (Ω)n. �

6.0.1 Preliminary lemmas

The aim of this section is to prove the Helmholtz’s theorem 6.1. We have first to prove
some lemmas.

Lemma 6.1. Let Ω ⊆ Rn with n ≥ 2 and let Ω0 6= ∅ a bounded subdomain of Ω such
that Ω0 ⊆ Ω. Let f ∈ W−1,2

loc (Ω)n such that

f(v) = 0 ∀v ∈ C∞0,σ(Ω)n

Then there exists a unique weak potential p ∈ L2
loc(Ω) such that f

d
= ∇p and∫

Ω0

p dx = 0

Remark 6.4. Let q ∈ (1,∞) and q′ its conjugate. Then, every f ∈ Lq(Ω) induces an
element in W−1,q(Ω)n. In fact, consider

〈Ff , ϕ〉 :=

∫
Ω

f · ϕ dx

In fact, linearity is obvious, while

|〈Ff , ϕ〉| ≤
∫

Ω

|f ||ϕ|dx ≤ ‖f‖q‖ϕ‖q′

So, the inequality says that Ff is a well-posed operator and it is continuous, since if

ϕk → ϕ in W 1,q′

0 (Ω)n, then in particular ‖ϕk − ϕ‖q′ → 0. So Ff ∈ W−1,q(Ω)n. �
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Proof. Using advanced functional analysis, the proof would follows easily, using the
Banach closed range theorem. However, in order to follow this way, one would prove
the surjectivity of the divergence operator and theorems about unbounded operator,
that will distract us from our aim. So, we follow the proof of [27, Lemma 2.2.1, pg. 73],
that is less elegant but effective. Thus, we start with the proof.

The idea is to use the classical method to construct potential strarting from the work of
a fixed force. First of all, keep in mind lemma 1.2. Fix Ω0 ⊂ Ω, and choose a bounded
and lipschitz domain Ω1 such that Ω0 ⊆ Ω1 ⊆ Ω1 ⊆ Ω. We want to show that exists a

unique p ∈ Lq(Ω) such that ∇p = f in distributional sense over Ω1 and

∫
Ω0

p dx = 0.

We proceed as follows. Consider a further domain such that Ω1 ⊆ Ω2 ⊆ Ω2 ⊆ Ω.

Remark 6.5. Let f ∈ W−1,2(Ω2)n be a functional, with Ω2 bounded domain. Consider

D := {∇v ∈ L2(Ω2)n
2

: v ∈ W 1,2
0 (Ω2)} ⊆ L2(Ω2)n

2

Then we can define the functional f̃ : D −→ R such that ∇v 7→ f̃(∇v) := f(v). Then

|f̃(∇v)| = |f(v)| ≤ ‖f‖−1,2‖v‖1,2 ≤ C‖f‖−1,2‖∇v‖2

since ‖v‖2
1,2 = ‖v‖2

2+‖∇v‖2
2 ≤ (C2+1)‖∇v‖2

2, using Sobolev estimates over the bounded

domain Ω2. So, the functional is continuous over D ⊆ L2(Ω2)n
2
, if this set is equipped

with the ‖·‖2 norm. So, by the Hahn-Banach theorem, the functional f̃ can be extended
to the whole L2(Ω2)n

2
with the same operator norm. In particular, exists F ∈ L2(Ω2)n

2

such that ∫
Ω2

F · ∇v dx = f(v)

but F represent the whole element of the dual
(
L2(Ω2)n

2
)∗

. If v ∈ C∞c (Ω2), then

∇ · (−F ) = f in the distributional sense. At this point we can redefine F ←→ −F . �

So, roughly speaking, every functional of W−1,2(Ω2) on a bounded domain can be writ-
ten as the divergence of a matricial functional in L2(Ω2).

At this point we define F ε as the mollification of F ∈ L2(Ω2)n
2
, where 0 < ε <

dist(∂Ω2,Ω1). In particular F ε ∈ C∞(Ω1)n
2
. We want to prove that exists Uε ∈ C∞(Ω1)

such that
∇ · F ε = ∇Uε in Ω1

To do this, we use the following remark.

Remark 6.6. Let w : τ 7→ w(τ), with τ ∈ [0, 1], a continuous function from [0, 1]
to Ω1. Suppose that w′ exists on [0, 1] piecewise continuous. We say that w is the
parametrization of a curve. It is a closed curve if w(0) = w(1). Moreover, if g ∈
C∞(Ω1)n, we define the work of g along w as∫ 1

0

g(w(τ)) · w′(τ) dτ :=

∫ 1

0

( n∑
j=1

gj(w(τ))w′j(τ)

)
dτ

95



It is a well known result of classical analysis that if for every closed curve w∫ 1

0

g(w) · w′ dτ = 0

then exsits u ∈ C∞(Ω1) such that g = ∇U . The scalar function U is called scalar
potential of the force g. �

If we show that for every closed curve w∫ 1

0

(∇ · F ε) (w(τ)) · w′(τ) dτ = 0

then remark 6.6 provides us a potential Uε over Ω1. To show this, we consider the
function

Vw,ε(x) :=

∫ 1

0

ηε(x− w(τ))w′(τ) dτ

for every x ∈ Ω2, where ηε is the usual mollificator. Clearly, Vw,ε ∈ C∞c (Ω2)n, if
w([0, 1]) ⊆ Ω1, with w fixed1. Moreover,

(
∇ · Vw,ε

)
(x) =

∫ 1

0

n∑
j=1

(
Djηε

)
(x− w(τ))w′j(τ) dτ = −

∫ 1

0

d

dτ
ηε(x− w(τ)) dτ =

= ηε(x− w(0))− ηε(x− w(1)) = 0

since w(0) = w(1), being the curve closed. So Vw,ε ∈ C∞0,σ(Ω2). Then, by the hypothesis

0 = f(Vw,ε) =

∫
Ω2

F · ∇Vw,ε dx =

=
n∑

j,l=1

∫
Ω2

Fjl(x)

(∫ 1

0

Djηε(x− w(τ))w′l(τ) dτ

)
dx =

and so, since ηε is smooth on the domain, w′ is piecewise continuous and F ∈ L2(Ω2)n
2
,

by Fubini theorem we have

=
n∑

j,l=1

∫ 1

0

w′l(τ)

(∫
Ω2

Djηε(x−w(τ))Fjl(x) dx

)
dτ = −

n∑
j,l=1

∫ 1

0

w′l(τ)Dj(F
ε
jl)(w(τ)) dτ =

= −
∫ 1

0

(∇ · F ε)(w(τ)) · w′(τ) dτ

1In fact, we have choosen ε < dist(∂Ω2,Ω1), so that ε ≡ dist(∂Ω2,Ω1)− δ, with δ < dist(∂Ω2,Ω1).
So, if x is such that dist(x, ∂Ω2) < δ, we can consider y ∈ B(x, ε). Then y /∈ Ω1. In fact,

dist(y, ∂Ω2) ≤ |y − x|+ dist(x, ∂Ω2) < ε+ δ ≡ dist(Ω1, ∂Ω2) = dist(∂Ω1, ∂Ω2)

So, if y ∈ Ω1, then |x− y| ≥ ε. Then, if w(τ) ∈ Ω1 for every τ ∈ [0, 1], we have |x− w(τ)| ≥ ε, and so
ηε(x− w(τ)) = 0, if dist(x, ∂Ω2) < δ. So Vε,w is compactly supported.
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It follows that, for every w closed curve contained in Ω1,∫ 1

0

(∇ · F ε)(w(τ)) · w′(τ) dτ = 0

that is what we wanted. So, exists a potential Uε ∈ C∞(Ω1) such that ∇ · F ε = ∇Uε
over Ω1, determined up to a constant. In particular, we can choose a constant cε(Ω0)
such that ∫

Ω0

Uε dx = 0

We now have to deduce some estimates. Using theorem 4.12, we have

‖Uε‖L2(Ω1) ≤ C‖∇Uε‖W−1,2(Ω1) ≡ C sup
06=v∈C∞c (Ω1)

|〈∇Uε, v〉2,2|
‖v‖W 1,2(Ω1)

= C sup
06=v∈C∞c (Ω1)

|〈Fε,∇v〉2,2|
‖v‖W 1,2(Ω1)

since, being v ∈ C∞c (Ω1),

〈∇Uε, v〉2 = 〈∇ · Fε, v〉2 = 〈Fε,∇v〉2

Being moreover ‖v‖W 1,2(Ω1) ≥ ‖∇v‖L2(Ω1), we have

‖Uε‖L2(Ω1) ≤ C‖F ε‖L2(Ω1) (6.1)

Here C is independent of ε. By the properties of mollifications, see theorem 3.3, we
have

lim
ε→0
‖F − F ε‖L2(Ω1) = 0

Replacing Uε with Uε − Uη in (6.1), we have

‖Uε − Uη‖L2(Ω1) ≤ C‖F ε − F η‖Lq(Ω1) → 0

as ε, η → 0. So, by completeness of L2(Ω1) we have that exists U ∈ L2(Ω1) such that

lim
ε→0
‖U − Uε‖L2(Ω1) = 0

Furthermore ∫
Ω0

Uε dx = 0, Ω0 ⊆ Ω1 =⇒
∫

Ω0

U dx = 0

So, we have defined locally on Ω1 a potential pressure

p
∣∣
Ω1

:= U

such that ∇p
∣∣
Ω1

= ∇U = ∇ · F = f in the weak sense. Moreover

∫
Ω0

p
∣∣
Ω1
dx = 0.

Let now Ω′1 be another with the same properties of Ω1. We have that, in the in-
tersection of the domains, p

∣∣
Ω1

and p
∣∣
Ω′1

have the same gradient. So p
∣∣
Ω1
− p
∣∣
Ω′1

= c

over Ω1 ∩ Ω′1. Moreover, Ω0 ⊆ Ω1 ∩ Ω′1 and so

0 =

∫
Ω0

(
p
∣∣
Ω1
− p
∣∣
Ω′1

)
dx = c|Ω0|
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that is c = 0. So, the local pressure p
∣∣
Ω1

is well-posed with respect to the change of the
local domain. Using the decomposition of the domain provided by lemma 1.2, we have
that p can be defined over the whole Ω, and so we obtain a pressure2 p ∈ L2

loc(Ω) with

the required properties.

6.1 Helmholtz decomposition theorem

There is now this fondamental theorem.

Theorem 6.1. Let Ω ⊆ Rn an open subset, with n ≥ 2. Then

• It holds
G(Ω) = {f ∈ L2(Ω)n : 〈f, g〉 = 0 ∀g ∈ L2

σ(Ω)}

• For all f ∈ L2(Ω)n there exist unique f0 ∈ L2
σ(Ω) and f1 ∈ G(Ω) such that

f = f0 + f1 〈f0, f1〉 = 0

where there exists p ∈ L2
loc(Ω) such that f1

d
= ∇p. Consequently

‖f‖2
L2 = ‖f0‖2

L2 + ‖f1‖2
L2

• The operator
P : L2(Ω)n → L2

σ(Ω)

f → Pf := f0

is well-defined, is linear, bounded with ‖P‖ ≤ 1. Moreover, the following proper-
ties hold: if f, g ∈ L2(Ω)n then

(i) P (f1) = 0;

(ii) (I − P )f = f1;

(iii) P 2f = Pf ;

(iv) (I − P )2f = (I − P )f ;

(v) 〈Pf, g〉 = 〈f, Pg〉;
(vi) ‖f‖2

L2 = ‖Pf‖2
L2 + ‖(I − P )f‖2

L2.

Remark 6.7. Observe that the property ‖P‖ ≤ 1 tell us that

‖Pf‖L2 ≤ ‖f‖L2 ∀f ∈ L2(Ω)n

This would be fundamental for future estimates. �

Remark 6.8. Thanks to the theorem, we can write G(Ω) = (L2
σ(Ω))⊥. �

Remark 6.9. The property (v) says that P is a self-adjoint operator. �

2Since the sequence of domains is ”swarming”, every compact in Ω is containded in an element of
the sequence.

98



Proof. First of all, we prove that G(Ω) = L2
σ(Ω)⊥. Let f ∈ L2

σ(Ω)⊥. In particular,
by definition, f ∈ L2(Ω)n. Hence, we can consider the functional, defined in remark
6.4,

Ff : v → Ff (v)

for every v ∈ W 1,2
0 (Ω)n ⊆ L2(Ω)n. In particular, if Ω0 is a bounded subdomain of Ω,

we have ∣∣∣∣ ∫
Ω0

f · v dx
∣∣∣∣ ≤ ‖f‖L2(Ω0)n‖v‖L2(Ω0)n

But, if vh, v ∈ W 1,2
0 (Ω)n are such that lim

h→∞
‖vh − v‖W 1,2

0 (Ω)n = 0, then

‖vh−v‖L2(Ω0)n ≤ ‖vh−v‖L2(Ω)n ≤ ‖vh−v‖W 1,2(Ω)n ≡ ‖vh−v‖W 1,2
0 (Ω)n → 0 as h→ +∞

So, the functional

FΩ0
f (v) :=

∫
Ω0

f · v dx

is a well-defined, linear and continuous operator. It follows that Ff ∈ W−1,2
loc (Ω)n.

Moreover, if v ∈ C∞0,σ(Ω)n, ∫
Ω

f · v dx = 0

because f ∈ L2
σ(Ω)⊥ ≡ {f ∈ L2(Ω)n : 〈f, g〉 = 0 ∀g ∈ L2

σ(Ω)n} and v ∈ C∞0,σ(Ω)n ⊆
L2
σ(Ω)n. But now we are in the hypothesis of lemma 6.1. So, there exists a p ∈ L2

loc(Ω)

such that f
d
= ∇p. This means that f ∈ G(Ω).

Viceversa, let f ∈ G(Ω). Than there exists a locally L2 distributional potential, say p.
If v ∈ C∞0,σ(Ω)n, we have ∫

Ω

f · v dx = −
∫

Ω

p ∇ · v dx = 0

using the definition of f
d
= ∇p. Let now v ∈ L2

σ(Ω)n. This means that v ∈ L2(Ω)n and
exists vh ∈ C∞0,σ(Ω) such that

‖v − vh‖L2(Ω)n → 0 as h→ 0

Then ∫
Ω

|f · (v − vh)|dx ≤
∫

Ω

|f ||v − vh|dx ≤ ‖f‖L2(Ω)n‖v − vh‖L2(Ω)n

So, being f, v ∈ L2(Ω)n,∣∣∣∣ ∫
Ω

f · v dx
∣∣∣∣ =

∣∣∣∣ ∫
Ω

f · (v − vh) dx
∣∣∣∣ ≤ ‖f‖L2(Ω)n‖v − vh‖L2(Ω)n → 0 as h→ +∞

Finally, for every v ∈ L2
σ(Ω)n, ∫

Ω

f · v dx = 0
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This means that f ∈ L2
σ(Ω)⊥. So the equality of sets holds.

We now have to use Hilbert theory to deduce the existence of the decomposi-
tion. If we show that L2

σ(Ω)n is a closed and convex subspace of L2(Ω)n, then from
Hilbert’s spaces main theorem 2.1, we have that for every f ∈ L2(Ω)n there exist unique
f0 ∈ L2

σ(Ω) and f1 ∈ L2
σ(Ω)⊥ ≡ G(Ω) such that

f = f0 + f1, 〈f0, f1〉 = 0 (6.2)

Convexity: let f, g ∈ L2
σ(Ω)n. We want to show that tf + (1− t)g ∈ L2

σ(Ω)n for every
t ∈ [0, 1]. Clearly the linear interpolation tf + (1− t)g is in L2. Moreover, both f, g are
approximed in L2 by fh, gh ∈ C0,σ(Ω)n. Also3 tfh + (1− t)gh ∈ C0,σ(Ω)n. Finally

‖t(f − fh) + (1− t)(g − gh)‖L2 → 0 as h→ +∞

So tf + (1− t)g ∈ L2
σ(Ω).

Closure: the L2(Ω)n space is equipped with the distance d‖·‖2 induced by the norm
‖ · ‖2. The space C∞0,σ(Ω) is a subspace of L2(Ω)n. By definition L2

σ(Ω)n is the closure
of C∞0,σ(Ω) in the metric space (L2(Ω)n, d‖·‖2), so it is a closed subset of L2(Ω)n.

So, by the theorem about Hilbert spaces mentioned above, we have that it is possi-
ble to decompose f in the sum of two orthogonal functions, as in (6.2). So we define

Pf := f0 ∀ f ∈ L2(Ω)n

This decomposition immediately tell us that the operator P defined above is well posed.
In fact, the decomposition is unique, and the following properties hold.

• Linearity: It is an immediate consequence of the uniqueness, since, if f, g ∈
L2(Ω)n and a, b ∈ R, then af0 + bg0 satisfies (6.2).

• Boundedness: Observe that

‖f‖2
L2(Ω)n = ‖f0 + f1‖2

L2(Ω)n = ‖f0‖2
L2(Ω)n + ‖f1‖2

L2(Ω)n + 2〈f0, f1〉

= ‖f0‖2
L2(Ω)n + ‖f1‖2

L2(Ω)n ≥ ‖f0‖2
L2(Ω)n

and so
‖Pf‖L2

σ(Ω) = ‖f0‖L2(Ω)n ≤ ‖f‖L2(Ω)n

It follows that the operator P is bounded and ‖P‖ ≤ 1.

• P (f1) = 0: The unique decomposition of f1 ∈ G(Ω) is f1 = 0+f1, so the property
follows by uniqueness.

3Smoothness and divergence free property are clear. Moreover, if v, w has compact support,

{x ∈ Ω : (v + w)(x) 6= 0} ⊆ {x ∈ Ω : v(x) 6= 0} ∪ {x ∈ Ω : w(x) 6= 0}

It follows that supp(v+w) ⊆ supp(u)∪ supp(v). Because the union of two compacts is a compact and
a closed subset of a compact set is a compact set, also v + w has compact support.
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• (I − P )f = f1: We have that

(I − P )f = f − Pf = f0 + f1 − f0 = f1

• P 2f = Pf : We have
P 2f = P (Pf) = Pf0 = f0

since the unique decomposition of f0 is f0 = f0 + 0.

• (I − P )2f = (I − P )f : Calculating, we have

(I − P )2f =
(
I − P

)
((I − P )f) =

(
I − P

)
(f1) = f1 − P (f1) = f1 = (I − P )f

• Self-adjointness: We have

〈Pf, g〉 = 〈f0, g〉 = 〈f0, g0 + g1〉 = 〈f0, g0〉+ 〈f0, g1〉 =

since f1, g1 ∈ G(Ω),

= 〈f0, g0〉+ 〈f1, g0〉 = 〈f, g0〉 = 〈f, Pg〉

• L2 norm decomposition: it follows from the fact that Pf = f0 and (I−P )f =
f1, together with (6.2).

So, the proof of the theorem is complete.
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Chapter 7

Weak and strong compactness of
Lp(0, T ;X) spaces

We start with some fundamental issues in weak topology theory. In these pages, a space
X will always be a Banach space.

Definition 7.1. A sequence {uk}k ⊆ X converges weakly to u ∈ X, written uk ⇀ u is

lim
k→+∞

Λuk = Λu ∀Λ ∈ X∗

An important issues is also what means for a space to be compact in another.

Definition 7.2. Let X, Y Banach spaces, with X ⊆ Y . We say that X is compactly
embedded in Y , and we write

X ⊂⊂ Y

if
‖u‖Y ≤ C‖u‖X ∀u ∈ X

and for every bounded sequence {uk}k ⊆ X there exists a subsequence ukh and u ∈ Y
such that

lim
j→+∞

‖ukh − u‖Y = 0

Remark 7.1. The inclusion can be substituted with another embedding. In particular,
if j(X) ⊆ Y , where j is an embedding, the two properties of the definition become
‖u‖Y ≤ C‖j(u)‖X and lim

h→+∞
‖j(ukh)− u‖Y = 0.

The following theorem about weak compactness holds for every reflexive Banach
space, in particular for Hilbert spaces.

Theorem 7.1. Let X a reflexive Banach space and consider a bounded sequence {uk} ⊆
X. Then there exists a subsequence ukh and u ∈ X such that ukh ⇀ u.
In other words, bounded sequences in a reflexive Banach space are weakly precompact.

Definition 7.3. Let X a Banach space and consider the dual space X∗. A sequence
{fn}n ⊆ X∗ in the dual space is said to be weak-* convergent in X∗ if there exists
f ∈ X∗ such that

lim
n→+∞

fn(x) = f(x) ∀x ∈ X
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In this case we write

fn
∗
⇀ f

Definition 7.4. A space X is weakly compactly embedded in Y if the embedding of the
first in the latter satisfies the two properties above with the weak convergence.

The following propositions summarises some well known facts about compactness, weak
compactness and compact embeddings.

Proposition 7.1. Let U a bounded open set in Rn with ∂U ∈ C1. Let p ∈ [1, n). Then

W 1,p(U) ⊂⊂ Lq(U)

for every q ∈ [1, p∗).

Proposition 7.2. Let X, Y Banach spaces and T : X → Y a linear operator. Then

T is compact ⇐⇒ T ∗ is compact

Moreover, the equivalence holds with weak compactness.

The following is taken from Evans, [10, p. 466].

Theorem 7.2. Let q ∈ (1,+∞). Let {uh} a bounded sequence in W k,p(Ω). Then there

exists a subsequence {uhj} and u ∈ W k,p(Ω) such that uhj
∗−→ u in W k,p(Ω).

Moreover if {uh} ⊆ W k,p
0 (Ω), then u ∈ W k,p

0 (Ω).

7.0.1 Further well-known compactness results

By a theorem above, we know that H1(U) ⊂⊂ L2(U), if ∂U is C1. Without assuming
∂U to be C1, we have H1

0 (U) ⊂⊂ L2(U). The inclusion is the canonical one. So we
have the linear inclusion operator

j : H1
0 (U) ↪→ L2(U)

u→ j(u) = u

that is a compact operator, in particular bounded and linear. Remember that

Theorem 7.3. Let T : H1 → H2 a linear bounded operator. So there exists a unique
bounded adjoint operator

T ∗ : H2 → H1

such that

〈Th1, h2〉h2 = 〈h1, T
∗h2〉h1 ∀h1 ∈ H1, h2 ∈ H2

So, the adjoint operator

j∗ : (L2(U))∗ ↪→ (H1
0 (U))∗
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exists and it is also compact. Since L2(U) is reflexive and H−1(U) := (H1
0 (U))∗, we

have that the embedding1

j∗ : L2(U) ↪→ H−1(U)

is compact. Moreover we have weak compacness of Sobolev spaces. Consider infact
a bounded sequence {uk} ⊆ H2

0 (Ω). Then in particular we have that {uk} ⊆ H1
0 (Ω).

So there esists a subsequence {ukj} and u ∈ H1
0 (Ω) such that ukj

∗−→ u. Moreover
‖u‖H1 ≤ ‖u‖H2 for all the u ∈ H2

0 (Ω). So the embedding H2
0 (Ω) ↪→ H1

0 (Ω) is weakly
compact. So, also the embedding H−1(Ω) ↪→ H−2(Ω) is compact. The injectivity is
provided from the fact that H2

0 (Ω) is dense2 in H1
0 (Ω).

7.0.2 Covergence in C([a, b];X)

Before inspecting the compactness of Lp spaces involving time, we focus our attention
to the following generalization of a real analysis result.

Lemma 7.1. Let X a Banach space, and let −∞ < a < b < ∞. Let fn ∈ C([a, b];X)
a sequence such that, for every t0 ∈ [a, b] and for every [a, b] 3 tn → t0

lim
n→∞

‖fn(tn)− f(t0)‖X = 0 (7.1)

with f ∈ C([a, b];X). Then fn → f in C([a, b];X).

Proof. The thesis can be rewritten as

lim
n→∞

sup
t∈[a,b]

‖fn(t)− f(t)‖X = 0

By contrary, suppose that the thesis does not hold. Then, there exists ε > 0 such that,
for every N ∈ N exists n ≥ N such that

sup
t∈[a,b]

‖fn(t)− f(t)‖X > ε

Then, we can find a subsequence nk such that

sup
t∈[a,b]

‖fnk(t)− f(t)‖X > ε ∀k ∈ N

1Also j∗ is injective (and this means that the image of j∗(L2(U)) can be seen as a subset of H−1(U)).
In fact, suppose that j∗(u) = 0. Then

〈j(v), u〉2 = 0 ∀v ∈ H1
0 , u ∈ L2

Then if R(j) is dense in L2(U) we have that u, so that j∗ is injective.
But R(j) = H1

0 (U) that is dense in L2(U) since

C∞0 (U) ⊆ H1
0 (U) ⊆ L2(U)

and C∞0 (U) is dense in L2(U).
2Quickly C∞0 (Ω) ⊆ H2

0 (Ω) ⊆ H1
0 (Ω), so taking the closure in ‖ · ‖H1 we have the thesis.

In other words, we can take φn ∈ C∞0 (Ω) ⊆ H2
0 (Ω) that approaches a function u ∈ H1

0 (Ω) in the norm

‖ · ‖H1 , since H1
0 (Ω) ≡ C∞0 (Ω)

‖·‖H1
.

105



This means, in particular, that there exists a real t ∈ [a, b] such that

‖fnk(t)− f(t)‖X > ε

In order to remark the dependence on nk, we define tnk ≡ t. It follows that, for every
k ∈ N,

‖fnk(tnk)− f(tnk)‖X > ε

The sequence tnk ∈ [a, b] is bounded, so, there exists a subsequence tnkh and t0 ∈ [a, b]
such that

lim
h→∞

tnkh = t0

So, by the fact that f ∈ C([a, b];X), we can find H is such that

‖f(tnkh )− f(t0)‖X <
ε

2
∀h ≥ H

We have that

‖fnkh (tnkh )− f(t0)‖ ≥ ‖fnkh (tnkh )− f(tnkh )‖ − ‖f(tnkh )− f(t0)‖ > ε

2

for every h ≥ H. But this is in contradiction with (7.1). Thus, this is the thesis.

7.1 Compactness in Banach spaces involving time

Lp(0, T ;X)

In [26] it is stated the following lemma.

Lemma 7.2. Let X ⊆ E ⊆ Y Banach spaces, such that the embedding X ↪→ E is
compact. Then the embedding

L2(0, T ;X) ∩ {ϕ : ∂tϕ ∈ L1(0, T ;Y )} ↪→ L2(0, T ;E)

is also compact.

Nevertheless, we state and prove the following more general theorem, that is fur-
nished in [25].

Theorem 7.4. Let X ⊂ B ⊂ Y Banach spaces, and suppose that the embedding X → B
is compact, and let p ∈ (1,∞). Let F a family bounded in Lp(0, T ;X) and suppose that

∂F
∂t

:= {∂f
∂t

: f ∈ F}

is bounded in L1(0, T ;Y ). Then F is relatively compact in Lp(0, T ;B).

The proof is long and it is exposed in the following subsections.
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7.1.1 Relative compactness

We have introduced in definition 1.11 the relative compactness. The following definition
is equivalent.

Proposition 7.3. Let X ⊂ Y two Banach spaces. Then X is relatively compact in Y
if and only if

∀ε > 0 ∃ {xi : i = 1, ..., n} ⊂ X : ∀x ∈ X ∃ xi such that ‖x− xi‖Y ≤ ε (7.2)

Proof. Suppose that (7.2) holds. Let xk a sequence in X. If we show that xk has a
subsequence converging to a point x ∈ Y , then we have the thesis. Let h ∈ N ∪ {0}
and, with ε = 1

2h
in (7.2), consider

Pk := {x1, ..., xnk}

We start with h = 0. There exists y0 ∈ P0 such that the ball B(y0, 1) of Y contains
infinite points of {xk}, being the sequence infinite. So, we define

I0 := {k ∈ N : xk ∈ B(y0, 1)}

Now, if h = 1, there exists y1 ∈ P1 such that B(y1,
1
2
) contains infinite points of I0,

being this set infinite. So we can consider

I1 := {k ∈ I0 : xk ∈ B(y1,
1

2
)}

Iterating the process, we have that yh is such that B(yh,
1

2h
) contains infinite points of

the sequence Ah−1. We define

Ih := {k ∈ Ih−1 : xk ∈ B(yh,
1

2h
)}

We choose now a sequence kh, strictly increasing, such that kh ∈ Ih for every h.
Then xkh is a Cauchy sequence. In fact, kh ∈ Il for every h ≥ l. This means that, if
h,m ≥ l, we have kh, km ∈ Il, and so

‖xkh − xkm‖ ≤ ‖xkh − yl‖+ ‖yl − xkm‖ ≤
1

2l−1

If l→∞, we have that xkh is a Cauchy sequence. So, being Y complete, we have that
exists x ∈ Y such that

lim
h→∞
‖xkh − x‖Y = 0

This is the thesis.

Conversely, suppose that (7.2) doesn’t hold. So, exists ε > 0 such that X can not
be covered with a finite number of balls (of Y ) of radius ε. So let x1 ∈ X arbitrary. We
can find x2 such that ‖x1 − x2‖Y > ε (otherwise X ⊂ B(x1, ε)).
So, given some points {x1, ..., xk}, we can find xk+1 /∈ {x1, ..., xk} such that ‖xh −
xk+1‖Y > ε for every h ∈ {1, ..., k} (otherwise for every x ∈ X/{x1, ..., xk} it would
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exist h(x) ∈ {1, ..., k} such that ‖x − xh(x)‖Y ≤ ε and so X ⊂ ∪ki=1B(xi, ε) that is a
contradiction.). So we have a sequence {xk} such that

‖xk − xm‖Y > ε

for every k 6= m (since for sure k > m or k < m). So, it is impossible for the sequence
xk to have a Cauchy subsequence. So, xk can not have a subsequence converging in Y .
But xk is a sequence in X ⊂ X and X is compact in Y . This is a contradiction.

7.1.2 Statement of the main theorem

Definition 7.5. Given a function f defined over [0, T ] we define, for every h > 0,

(τhf)(t) := f(t+ h) on [−h, T − h]

We first prove the following theorem.

Theorem 7.5. Let X ⊂ B ⊂ Y be Banach spaces, withe the embedding X → B
compact3. Let p ∈ (1,∞). Suppose that

F is bounded in Lp(0, T ;X) (7.3)

‖τhf − f‖Lp(0,T−h;Y ) → 0 as h→ 0, uniformly in f ∈ F (7.4)

Then F is relatively compact in Lp(0, T ;B).

Remark 7.2. Theorem 7.5 implies theorem 7.4. In fact, observe that for every g ∈
L1(0, T ;Y ) we have

g(t) =
d

dt

∫ t

0

g(s) ds

So, if we choose g = ∂f
∂t

we get

d

dt

(
f(t)−

∫ t

0

∂f

∂t
(s) ds

)
= 0

and so f −
∫ t

0

∂f

∂t
(s) ds ≡ c, that is f ∈ C(0, T ;Y ). Moreover

f(t+ h)− f(t) =

∫ t+h

t

∂f

∂t
(s) ds ∀t ∈ [0, T − h]

Then

‖τhf − f‖Lp(0,T−h;Y ) =

∥∥∥∥∫ t+h

t

∂f

∂t
(s) ds

∥∥∥∥
Lp(0,T−h;Y )

Moreover, Young’s convolution inequality says that, if g ∈ L1(0, T ;Y ) and ϕ ∈ Lp(0, a),
then ∥∥∥∥∫ a

0

g(t+ λ)ϕ(λ) dλ

∥∥∥∥
Lp(0,T−a;Y )

≤ ‖g‖L1(0,T ;Y )‖ϕ‖Lp(0,a)

3Moreover, B ⊂ Y will always be considered a continuous embedding.
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So, choosing a = h, ϕ ≡ 1 and g(s) = ∂f
∂t

(s), we have∥∥∥∥∫ t+h

t

∂f

∂t
(s) ds

∥∥∥∥
Lp(0,T−h;Y )

≤ h
1
p

∥∥∥∥∂f∂t
∥∥∥∥
L1(0,T ;Y )

≤ Ch
1
p

If

∥∥∥∥∂f∂t
∥∥∥∥
L1(0,T ;Y )

≤ C uniformly in f . So we obtain the second hypothesis of theorem

7.5.

Now we have to prove theorem 7.5. To do this, we need to prove some lemmas.

7.1.3 Lemmas used in the proofs

Lemma 7.3. Let X ⊂ B ⊂ Y be Banach spaces, with the embedding X → B compact.
Then, for every η > 0, esists N such that

∀v ∈ X, ‖v‖B ≤ η‖v‖X +N‖v‖Y (7.5)

Proof. Let η > 0. Define the set

Vn := {v ∈ B : ‖v‖B < η + n‖v‖Y }

First of all, observe that Vn is open. In fact, if v0 ∈ Vn, then the function ‖ · ‖B−n‖ · ‖Y
is a continuous function4. So, by continuity, we can find a neighbourhood of v0 such
that it holds ‖ · ‖B − n‖ · ‖Y < η.

Moreover, obviously Vn ⊂ Vn+1 and5B ⊂
⋃
n∈N

Vn. So, we can consider S := {x ∈

X : ‖x‖X = 1}. So we have S ⊂ B ⊂
⋃
n∈N

Vn. Moreover

S ⊂ X ⊂ B

where X is compact in B, by the hypothesis. Since S is closed in the compact X of B,
also S is compact in B. Since {Vn} is a cover of B, we have that there exist n1, ..., nm
such that

S ⊂ S ⊂ Vn1 ∪ ... ∪ Vnm ≡ Vmax{n1,...,nm}

Let N := max{n1, ..., nm}. Then, for every v ∈ X, with ‖v‖X = 1, we have

‖v‖B < η‖v‖X +N‖v‖Y

Normalizing v ∈ X we have the thesis.

Moreover, we have the following lemma.

4In fact, we have

|(‖v‖B−n‖v‖Y )− (‖v0‖B−n‖v0‖Y )| ≤ |‖v‖B−‖v0‖B |+n|‖v‖Y −‖v0‖Y | ≤ ‖v−v0‖B +n‖v−v0‖Y ≤

≤ ‖v − v0‖B + nC‖v − v0‖B
since B continuously embeds into Y , that is ‖v‖Y ≤ C‖v‖B .

5If v ∈ B, then, if v 6= 0, we can choose n such that n‖v‖Y > ‖v‖B , so that v ∈ Vn.
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Lemma 7.4. Let X ⊂ B ⊂ Y be Banach spaces, with the embedding X → B compact.
Let F bounded in Lp(0, T ;X) and relatively compact in Lp(0, T ;Y ). Then F is relatively
compact in Lp(0, T ;B).

Proof. Let ε > 0 and M such that ‖f‖Lp(0,T ;X) ≤M for every f ∈ F . By the hypothesis,
we have F relatively compact in Lp(0, T ;Y ). So, there exists {fi : i = 1, ..., n} ⊂ F
such that

∀f ∈ F, ∃ fi ∈ F : ‖fi − f‖Lp(0,T ;Y ) ≤ ε

So, by lemma 7.3, we have that, if f ∈ F , exists fi ∈ F such that for every η, with
N = N(η),

‖f − fi‖Lp(0,T ;B) ≤ η‖f − fi‖Lp(0,T ;X) +N‖f − fi‖Lp(0,T ;Y ) ≤ Cη +Nε

where C := 2M .
So, if ε′ > 0, and we set η := ε′

2C
and ε = ε′

2N
, with N = N(η) = N(ε′), we have

‖f − fi‖Lp(0,T ;B) ≤ ε′

This is the equivalent definition of relatively compact. So F is relatively compact also
in Lp(0, T ;B).

The following lemma is an important theorem by Ascoli and Arzelà.

Lemma 7.5. Let Y be a Banach space. A subset F of C(0, T ;Y ) is relatively compact
if and only if

• F (t) = {f(t) : f ∈ F} is relatively compact in Y , for every 0 < t < T ;

• F is uniformly continuous, that is ∀ε > 0, ∃η > 0 such that

∀0 ≤ t1 ≤ t2 ≤ T : |t1 − t2| ≤ η =⇒ ‖f(t2)− f(t1)‖Y ≤ ε (7.6)

7.1.4 Proof of the theorem

We finally prove theorem 7.5. If we show that, with the hypothesis of theorem 7.5, F
is relatively compact in Lp(0, T ;Y ), then, since F is bounded in Lp(0, T ;X) we have,
through lemma 7.4 that F is also relatively compact in Lp(0, T ;B).

We first show that, in this context,

IF :=

{∫ t2

t1

f(t) dt : f ∈ F
}

is relatively compact in Y , ∀ 0 < t1 < t2 < T (7.7)

To see this, consider

∫ t2

t1

f(t) dt ∈ X. We have, if M is such that ‖f‖Lp(0,T ;X) ≤M for

every f ∈ F ,∥∥∥∥∫ t2

t1

f(t) dt

∥∥∥∥
X

≤
∫ t2

t1

‖f(t)‖X dt ≤ (t2 − t1)
1
p‖f‖Lp(0,T ;X) ≤M(t2 − t1)

1
p
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So, every sequence in Ik ∈ IF , with

Ik =

∫ t2

t1

fk(t) dt

is a bounded sequence in X. Being X compactly embedded into B, we have that exists
a subsequence kh and an element I ∈ B such that

lim
h→∞
‖Ikh − I‖B = 0

But B continuously embeds into Y , so that I ∈ Y and

‖Ikh − I‖Y ≤ C‖Ikh − I‖B → 0

as h→∞.

We define now

(Maf)(t) :=
1

a

∫ t+a

t

f(s) ds

So, clearly, Maf ∈ C(0, T − a;Y ) and, for every 0 ≤ t1 ≤ t2 ≤ T − a we have∥∥(Maf)(t2)−(Maf)(t1)
∥∥
Y

=
∥∥1

a

∫ t1+a

t1

(
τt2−t1f−f

)
(s) ds

∥∥
Y
≤ 1

a

∥∥τt2−t1f−f∥∥L1(0,T−(t2−t1);Y )

since t1 + a ≤ T − (t2− t1) ⇐⇒ a ≤ T − t2. Observe that, thanks to condition (7.4),
for every ε > 0 we can find η such that

‖τt2−t1f − f
∥∥
L1(0,T−(t2−t1);Y )

≤ aε

for every t1 ≤ t2 such that |t2 − t1| ≤ η, and for every f ∈ F . By definition (7.6) this
means that the set

MaF := {Maf : f ∈ F}
in C(0, T − a;Y ). Moreover we have already proved that

(MaF )(t) :=

{
1

a

∫ t+a

t

f(s) ds : f ∈ F
}

is relatively compact in Y , thanks to (7.7). So, using lemma 7.5, we have that MaF is
relatively compact in C(0, T − a;Y ).

Moreover, consider the function τhf : [0, a] → Lp(0, T − a;Y ) that maps h 7→ τhf .
Thanks to (7.4) we have that this function is continuous in h.
So, using that

(Maf)(t) =
1

a

∫ t+a

t

f(s) ds =
1

a

∫ a

0

f(t+ h) dh =
1

a

∫ a

0

τhf(t) dh

we have (
Maf − f

)
(t) =

1

a

∫ a

0

(τhf(t)− f(t)) dh
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so that∥∥Maf − f
∥∥
Lp(0,T−a;Y )

≤ 1

a

∫ a

0

‖τhf − f‖Lp(0,T−a;Y ) dh ≤ sup
h∈[0,a]

‖τhf − f‖Lp(0,T−a;Y )

We remark that condition (7.4) can be rewritten as

∀ε > 0 ∃ η > 0 such that ‖τhf − f‖Lp(0,T−h;Y ) ≤ ε

for every h ≤ η and f ∈ F ; if δ ≤ h ≤ η we have ‖τδf − f‖Lp(0,T−h;Y ) ≤ ε. So

sup
δ∈[0,h]

‖τδf − f‖Lp(0,T−h;Y ) ≤ ε

This means that
lim
a→0

sup
h∈[0,a]

‖τhf − f‖Lp(0,T−a;Y ) = 0

uniformly in f ∈ F . If a < T − T1, that is T1 < T − a, we have∥∥Maf − f
∥∥
Lp(0,T1;Y )

≤
∥∥Maf − f

∥∥
Lp(0,T−a;Y )

≤ sup
h∈[0,a]

‖τhf − f‖Lp(0,T−a;Y ) (7.8)

So Maf converges to f in Lp(0, T1;Y ) if a→ 0, uniformly in f ∈ F .
Moreover, MaF is relatively compact in C(0, T − a;Y ). So in particular it is relatively
compact in Lp(0, T1;Y ). In fact, if Mafk is a sequence in MaF , we have that exists a
subsequence Mafkh and g ∈ C(0, T − a;Y ) such that

lim
h→∞
‖Mafkh − g‖C(0,T−a;Y ) = 0

Clearly in particular g ∈ Lp(0, T1;Y ). Moreover

‖Mafkh−g‖Lp(0,T1;Y ) ≡
(∫ T1

0

‖Mafkh(s)−g(s)‖pY ds
) 1

p

≤ T
1
p

1 max
s∈[0,T−a]

‖Mafkh(s)−g(s)‖Y = 0

So MaF is relatively compact in Lp(0, T1;Y ). This implies that also F is relatively
compact in Lp(0, T1;Y ). In fact, using (7.8), for every ε > 0 exists η > 0 such that

‖Maf − f‖Lp(0,T1;Y ) ≤ ε

for every a ≤ η and f ∈ F . Since MaF is relatively compact in Lp(0, T1;Y ), there exists
{Mafi : i = 1, ..., n} such that, for every Maf ∈MaF exists i ∈ {1, ..., n} such that

‖Maf −Mafi‖Lp(0,T1;Y ) ≤ ε

Then

‖f−fi‖Lp(0,T1;Y ) ≤ ‖f−Maf‖Lp(0,T1;Y )+‖Maf−Mafi‖Lp(0,T1;Y )+‖Mafi−fi‖Lp(0,T1;Y ) ≤ 3ε

So, by the correspondence F ←→ MaF we have that also F is relatively compact in
Lp(0, T1;Y ).

If now we consider f̃(t) := f(T − t) and define

F̃ := {f̃ : f ∈ F}
we have that the same discussion above continues to hold. So, F̃ is relatively compact
in Lp(0, T1;Y ). Looking at the definition of F̃ this means that F is relatively compact
in Lp(T − T1;T ;Y ). So, if we choose T1 = T

2
we have that F is relatively compact over

the whole Lp(0, T ;Y ). This implies the thesis, as explained above.
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Chapter 8

The transport equation

8.1 Classical transport theory

Definition 8.1. By transport equation we mean the following problem. Let Ω ⊆ Rn

a domain and let I ⊆ R bounded. Let u(x, t) ∈ C(I;C1(Ω)). The transport equation
associated to the velocity u is the Cauchy problem{

ρt(x, t) + u(x, t) · ∇ρ(x, t) = 0

ρ(x, 0) = ρ0(x)
(8.1)

where ρ0 ∈ C1(Ω) and we search for ρ ∈ C1([0, T ]× Ω).

Remark 8.1. We have the following theorem, from [16], that summarizes the theory of
the regular transport equation. �

Theorem 8.1 (Classical transport equation). Let Ω a bounded domain. Let u(x, t) ∈
C([0, T ];C1(Ω)) with ∇ · u = 0 and u = 0 for all (x, t) ∈ ∂Ω× [0, T ]. Let ρ0 ∈ C1(Ω).
Then the problem (8.1) has a unique solution ρ ∈ C1([0, T ]×Ω). Furthermore, we have:

• if exist α, β ∈ R such that α ≤ ρ0(x) ≤ β for every x ∈ Ω, then

ρ(x, t) ∈ [α, β] ∀(x, t) ∈ [0, T ]× Ω

• thanks to the condition ∇ · u = 0, the density solution of the transport equation
satisfies a property of mass incompressibility, that is

‖ρ(t)‖q = ‖ρ0‖q

for every q > 0.

Proof. The fact that u ∈ C([0, T ];C1(Ω)) means that there exists an open set E such
that u(x, t) ∈ C([0, T ];C1(E)). We can consider the ODE associated to the velocity u,
that is,

ẋ(t) = u(x(t), t) x(0) = y ∈ Ω

with y fixed. Then, by locally existence of ODE we have a unique solution

x(t, y) ∈ C1([0, T̃ ];C1(Ω))
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The function x is nothing but the flow x(t, y) = ϕ(t; 0, y). It is a regular function, as
specified above. Moreover, x(t, y) ∈ C1([0, T̃ ] × Ω). In fact, x = x(t, y) is C1 in both
the variables separately, and this regularity is also uniform in x, so that it follows that
the function is regular also looking at x as function of two variables.1 Furthermore, the
time T̃ can be replaced with T . In fact

|u(x, t)| ≤ ‖u(·, t)‖C1(Ω) ≤ max
t∈[0,T ]

‖u(·, t)‖C1(Ω) < +∞

where ‖u(·, t)‖C1(Ω) is continuous because so it is v(·, t). So the velocity is bounded and
we have global existence in [0, T ] of the solution to the ODE.
Moreover, from ∇ · u = 0, it follows, as previously seen, that the Jacobian determinant
of the transformation

St : Ω→ Ω

y → x(t, y)

is constantly 1 for every fixed t. Notice that the codomain is Ω. In fact, if we consider
the flow ϕ with the velocity v and we take an initial datay ∈ ∂Ω, then x(t, y) ≡ y, since

0 = ẋ(t, y) = u(x(t, y), t) = 0

is solution.
If otherwise y ∈ Ω, the solution can’t cross the boundary, since, by unicity of the
solution, it might remain on the boundary for all the times, including past times. So
the solution remains in Ω. Clearly y → x(t, y) admits an inverse, that is

x→ ϕ(0; t, x) := y(x, t)

by the unicity of the solution, where ϕ is always the flow associated to the velocity v.
As above, for initial data x ∈ Ω, the solution y remains in Ω. So the inverse is global.
Then, since the Jacobian determinant is non zero and St is injective (since the in-
verse has been found), then St is invertible with inverse in C1. That is, St is a C1-
diffeomorfism of Ω onto itself. We call S−1

t its inverse, and define

ρ(x, t) := ρ0(S−1
t (x)) (8.2)

that is in C1([0, T ]×Ω), since2 y(x, t) ∈ C1([0, T ]×Ω). The first point in the statement
follows obviously. The second point follows from the arguments explained in section
1.5.2, as already remarked.

1In fact, if (t0, y0) ∈ [0, T̃ ]× Ω, then

|x(t, y)−x(t0, y0)| ≤ |x(t, y)−x(t0, y)|+|x(t0, y)−x(t0, y0)| ≤ max
y∈Ω
|x(t, y)−x(t0, y)|+|x(t0, y)−x(t0, y0)|

and the latter is small if |y − y0| is small, thanks to the continuity respect with the initial data, while
the first is small if |t− t0| is small because, by definition of C1([0, T̃ ];C1(Ω)),

max
y∈Ω
|x(t, y)− x(t0, y)| ≤ ‖x(t, ·)− x(t0·)‖C1(Ω) → 0 as t→ t0

2More precisely, we can define
S : (y, t)→ (x(t, y), t)
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8.1.1 Temporal invariant property of the q-norm of the density
ρ

We now consider solutions of the transport equation to deduce important properties of
the density appearing in the INSE.

Theorem 8.2 (q-norm conservation). Let Ω a bounded domain in R3. Moreover con-
sider a velocity field u ∈ C2([0, T ];C1(Ω)) such that ∇·u = 0 in Ω and such that the vari-
bles (x, t) appear in the expression of u as separated variables. Let ρ ∈ C1([0, T ], C1(Ω)),
for some T > 0, a solution of the transport equation{

ρt + u · ∇ρ = 0

ρ(x, 0) = ρ0(x)
(8.3)

with ρ0 ∈ C1(Ω). Then, for every q > 0, we have

‖ρ(t)‖q = ‖ρ0‖q ∀ t ∈ [0, T ]

where ρ(t) ≡ ρ(x, t).

Proof. We want to use the Theorem 1.6. In the hypothesis of this theorem we have
supposed that the force term f is in C3. However, looking critically at the proof of
this theorem, one can notice that our u satisfies the hypotesis since it has separated
variables. As above, we know that

ρt + u · ∇ρ = 0

So we can consider the solutions of the system{
ẋ(t) = u(x(t), t)

x(t0) = x0

These give us the vectorial transformation

y = ϕ(t; t0, x)

i.e. a vectorial function that reaches the values of the solution of the system at time t,
with starting point (x, t0). The flow ϕ is defined in the whole interval [0, T ] provided

and since x(t, y) ∈ C1([0, T ]× Ω), S is a C1-diffeomorfism, since the inverse is

S−1 : (x, t)→ (y(x, t), t)

and so it is injective, and moreover

∂(y,t)S =

(
∂yx(t, y) ∂tx(t, y)

0 1

)
and its determinant is equal to the determinant of ∂ySt with t fixed. So it is 1 for every t and
every y. So, we are in the situation above again, and it follows that S is a C1 diffeomorfism. So
y(x, t) ∈ C1([0, T ]× Ω).
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that u is bounded and regular. But u ∈ C2([0, T ], C1(Ω)), with separated variables,
and so regularity and boundness in [0, T ]× Ω are immediate.

Fixed t and t0, we can change x. The dependence of ϕ on the variable x is C1, since
u is in the class C1. Moreover ϕ is invertible in x and its inverse is obtained simply
interchanging the position of t0 and t; so, being the inverse a solution with different
data, it is also C1. So we can use φ(x) := ϕ(t; t0, x) as a change of coordinates.
Thus ∫

Ω

|ρ(y, t)|q dy =

∫
Ω

|ρ(ϕ(t; t0, x), t)|q|det(Dφ(x))| dx

But ρ(ϕ(t; t0, x), t) = ρ(x, t0) as previously remarked, and

det(Dφ(x)) = det(∂xϕ(t; t0, x)) = det(∂xϕ(t0; t0, x)) = det(∂xx) = det(I) = 1

using Theorem 1.6 as outlined above. Observe that ϕ and its inverse map Ω in itself.
So

‖ρ(t)‖qq =

∫
Ω

|ρ(y, t)|q dy =

∫
Ω

|ρ(x, t0)|q dx = ‖ρ(t0)‖qq

This in true for every q ∈ (0,+∞). But

‖ρ(t)‖∞ = lim
q→+∞

‖ρ(t)‖q = lim
q→+∞

‖ρ(t0)‖q = ‖ρ(t0)‖∞

that is exactly what we wanted to prove.

Remark 8.2. The above result holds for every q > 0 in this regular case. �

8.2 Weak transport theory (aprés DiPerna-Lions)

In this section we will follow the work [8] by DiPerna and Lions to prove existence and
uniqueness of weak solution to the transort equation, together a fundamental stability
result that will help us in future considerations.

Remark 8.3. The work [8] by DiPerna and Lions studies the transport equation in the
whole space Rn. In this article there is no trace of the bounded domain case. We
consider here only this ”new” case, that is fundamental for future arguments. We also
require the velocity field to be divergence-free. Who write did not manage to find a
similar discussion in literature. All the statements and proofs are written using the weak
formulations, avoiding the formal notations of the enlightening paper by DiPerna-Lions.
�

8.2.1 Linear transport equation

Definition 8.2. Let Ω be a bounded domain in Rn and let T > 0. Let p ∈ [1,∞] be an
exponent, and q such that 1

p
+ 1

q
= 1, its conjugate exponent. Let u ∈ L1(0, T ;W 1,q

0 (Ω))

be a velocity field over (0, T )×Ω, with ∇ · u = 0, i.e. the divergence-free property. Let
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ρ0 ∈ Lp(Ω) be the initial density. We say that the density ρ ∈ L∞(0, T ;Lp(Ω)) satisfies
the equation {

∂tρ− u · ∇ρ = 0 in (0, T )× Ω

ρ(0) = ρ0
(8.4)

if it is a solution of (8.4) in distributional sense, that is

−
∫ T

0

(∫
Ω

ρ ∂tφ dx

)
dt−

∫
Ω

ρ0(x)φ(0, x) dx+

∫ T

0

(∫
Ω

ρ (u · ∇φ) dx

)
dt = 0 (8.5)

for all test functions φ ∈ C∞([0, T ]×Ω) with compact support in [0, T )×Ω. This space
can also be denoted by D([0, T )× Ω).

Remark 8.4. On a bounded domain, as in the case of classical transport theory, it is
necessary to assume ∇ · u = 0 in the weak sense. �

So, we have a first existence theorem.

Theorem 8.3. Let p ∈ (1,∞], ρ0 ∈ Lp(Ω). Let q be its conjugate exponent. Assume

u ∈ L1(0, T ;W 1,q
0 (Ω)) (8.6)

with ∇ · u = 0, where q is the conjugate of p. Then there exists a solution of (8.4) in
L∞(0, T ;Lp(Ω)) corresponding to the initial condition ρ0.

Proof. The proof is based over a classical regularization argument, as in section
11.14.3. Consider the Banach space3

Y := {v ∈ W 1,q
0 (Ω) : ∇ · v = 0}

equipped with the norm ‖ · ‖Y := ‖ · ‖W 1,q(Ω). So, we can find a sequence un ∈
C∞c (0, T∗;Y ) such that

lim
n→∞

‖u− un‖L1(0,T∗;Y ) = 0 (8.7)

Since un(t) ∈ W 1,q
0 (Ω), each element of the sequence can be extended to be zero outside

Ω. Moreover the initial density ρ0 can be approached in Lp(Ω) with a sequence ρ0
n ∈

C∞c (Ω) (by the density results in Lp(Ω)). We now set

Am := {x ∈ Ωc : dist(x, ∂Ω) >
1

m
}

and Ωm := Acm. We define

um,n(x, t) :=

∫
Ωm

ηm(x− y)un(y, t) dy

3It is clearly a Banach space. In fact, give a Cauchy sequence vk ∈ Y , by the completeness of
W 1,q

0 (Ω), we have that exists v ∈W 1,q
0 (Ω). Moreover, for every ϕ ∈ C∞c (Ω),∫

Ω

v · ∇ϕ dx = lim
k→∞

∫
Ω

vk · ∇ϕ dx = 0

that is ∇ · v = 0 in the weak sense.
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This convolution is smooth in x at t ∈ [0, T ] fixed. Moreover, it is continuous as a
function of two variables, In fact, if (x0, t0) ∈ Ωm × [0, T ] we have that

|um,n(x, t)− um,n(x0, t0)| ≤ |um,n(x, t)− um,n(x0, t)|+ |um,n(x0, t)− um,n(x0, t0)| ≤

≤
∣∣∣∣ ∫

Ωm

(
ηm(x−y)−ηm(x0−y)

)
un(t, y) dy

∣∣∣∣+∣∣∣∣ ∫
Ωm

ηm(x0−y)
(
un(t, y)−un(t0, y)

)
dy

∣∣∣∣ ≤
≤
∣∣∣∣ ∫

Ωm

(
ηm(x− y)− ηm(x0 − y)

)
un(t, y) dy

∣∣∣∣+ ‖ηm(x0 − ·)‖p,Ωm‖un(t, ·)− un(t0, ·)‖q

Since un ∈ C∞([0, T ];X), we can find δ1 > 0 such that ‖un(t, ·) − un(t0, ·)‖q < ε
2
. On

the other hand, since ηm(r) is uniformly continuos on R, there exists δ2 > 0 such that

|x− x0| = |(x− y)− (x0 − y)| < δ2 =⇒ |ηm(x− y)− ηm(x0 − y)| < ε

2

it follows that

|um,n(x, t)−um,n(x0, t0)| ≤ ε

2
‖un(t, ·)‖q+

ε

2
‖ηm(x0−·)‖p,Ωm ≤

ε

2

(
max
t∈[0,T ]

‖un(t, ·)‖q+‖ηm(x0−·)‖p,Ωm
)

Moreover, thanks to the convolution properties, the x-derivative is continuos over Ωm,
and, thanks to the theorem 3.2,

|∇um,n(x, t)| =
∣∣∣∣ ∫

Ωm

ηm(x− y)∇un(y, t) dy

∣∣∣∣ ≤ (∫
Ωm

|ηm(x− y)|p dy
) 1

p

‖∇un(·, t)‖q ≤

≤
(∫

R3

|ηm(x− y)|p dy
) 1

p

max
t∈[0,T ]

‖∇un(·, t)‖q ≡
(∫

R3

|ηm(z)|p dz
) 1

p

max
t∈[0,T ]

‖∇un(·, t)‖q

so that

sup
t∈[0,T ]

‖∇um,n(t)‖∞ ≤
(∫

R3

|ηm(z)|p dz
) 1

p

max
t∈[0,T ]

‖∇un(·, t)‖q

so um,n ∈ C([0, T∗];C
1(Ωm)) and the continuity of ∇um,n in (x0, t0) ∈ Ωm×[0, T ] follows

from the same argument above.
Finally we underline other two properties of the field um,n. In particular, if x ∈ ∂Ωm,
we have

um,n(x, t) =

∫
Ωm

ηm(x− y)un(y, t) dy = 0

since un(y, t) = 0 if y ∈ B(x, 1
m

). Moreover,

∇ · um,n(x, t) =

∫
Ωm

ηm(x− y)∇ · un(y, t) dy = 0

since ∇ · un(y, t) = 0 by the definition of un. So, we can use this velocity field to solve
the transport problem {

∂tρ− um,n · ∇ρ = 0 in [0, T ]× Ωm

ρ(0, x) = ρn0
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We can name ρm,n the solution of this classical transport equation. We know, according
to the classical theory studied above, that

‖ρm,n(t)‖p = ‖ρn0‖p ≤ ‖ρ0‖p + 1 ≡ C0 p ∈ [1,∞]

It follows that ‖ρm,n‖L∞(0,T ;Lp(Ω)) ≤ C0. Suppose now p ∈ (1,∞]. Observe that
L∞(0, T ;Lp(Ω)) = (L1(0, T ;Lq(Ω))∗, where q is such that 1

p
+ 1

q
= 1, thanks to proposi-

tion 5.2. Moreover Lq(Ω) is separable, since q ∈ [1,∞). So, always thanks to proposition
5.2, L1(0, T ;Lq(Ω)) is separable. Then, thanks to theorem 2.3, we have that exists a
subsequence weak-star converging to some ρ ∈ L∞(0, T ;Lp(Ω)), that is

ρmk,n
∗
⇀ ρn

in L∞(0, T ;Lp(Ω)) = (L1(0, T ;Lq(Ω))∗. In particular, the sequence satisfies, for every
ϕ ∈ C∞c (Ω× [0, T )),

−
∫

Ω

(ρmk,nϕ)(0) dx−
∫ T

0

∫
Ω

ρmk,nϕt dx dt =

∫ T

0

∫
Ω

ρmk,numk,n · ∇ϕ dx dt

Observe that ∫
Ω

(
ρmk,nϕ

)
(0) dx ≡

∫
Ω

ρn0 (x)ϕ(x, 0) dx

and ∫ T

0

∫
Ω

ρmk,nϕt dx dt→
∫ T

0

∫
Ω

ρnϕt dx dt

as k →∞, thanks to the weak convergence. Furthermore∣∣∣∣ ∫ T

0

∫
Ω

ρmk,numk,n · ∇ϕ dx dt−
∫ T

0

∫
Ω

ρnun · ∇ϕ dx dt

∣∣∣∣ =

=

∣∣∣∣ ∫ T

0

∫
Ω

(ρmk,n − ρn)un · ∇ϕ dx dt−
∫ T

0

∫
Ω

ρmk,n(un − umk,n) · ∇ϕ dx dt

∣∣∣∣ ≤
≤
∣∣∣∣ ∫ T

0

∫
Ω

(ρmk,n − ρn)un · ∇ϕ dx dt

∣∣∣∣+ C

(∫ T

0

‖ρmk,n‖p‖un − umk,n‖q dt
)
≤

≤
∣∣∣∣ ∫ T

0

∫
Ω

(ρmk,n − ρn)un · ∇ϕ dx dt

∣∣∣∣+ C

(
sup
(0,T )

‖ρmk,n‖p
)(∫ T

0

‖un − umk,n‖q dt
)
≤

≤
∣∣∣∣ ∫ T

0

∫
Ω

(ρmk,n − ρn)un · ∇ϕ dx dt

∣∣∣∣+ CC0‖un − umk,n‖L1(0,T ;Lq(Ω)

Observe now that ‖un−umk,n‖L1(0,T ;Lq(Ω) → 0 as k →∞, thanks to (8.7), and, moreover∫ T

0

‖un · ∇ϕ‖q dt ≤ C

∫ T

0

‖un‖q dt <∞

that is un ·∇ϕ ∈ L1(0, T ;Lq(Ω)) and so the weak star convergence of ρmk,n implies that∫ T

0

∫
Ω

(ρmk,n − ρn)un · ∇ϕ dx dt→ 0
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as k →∞. It follows that

−
∫

Ω

ρn0 (x)ϕ(x, 0) dx−
∫ T

0

∫
Ω

ρnϕt dx dt =

∫ T

0

∫
Ω

ρnun · ∇ϕ dx dt (8.8)

Moreover, by the weak convergence property, we have

‖ρn‖L∞(0,T ;Lp(Ω)) ≤ lim inf
k→∞

‖ρmk,n‖L∞(0,T ;Lp(Ω)) ≤ C0 (8.9)

We let now n→∞ in (8.8). Clearly∣∣∣∣ ∫
Ω

(ρn0 (x)− ρ0(x))ϕ(x, 0) dx

∣∣∣∣ ≤ C‖ρn0 − ρ0‖p → 0

By the bound (8.9), we have that there exists a subsequence nh and ρ ∈ L∞(0, T ;Lp(Ω))
such that, as h→∞,

ρnh
∗
⇀ ρ

It follows that ∣∣∣∣ ∫ T

0

∫
Ω

ρnhunh · ∇ϕ dx dt−
∫ T

0

∫
Ω

ρu · ∇ϕ dx dt

∣∣∣∣ =

=

∣∣∣∣ ∫ T

0

∫
Ω

(ρ− ρnh)u · ∇ϕ dx dt−
∫ T

0

∫
Ω

ρnh(unh − u) · ∇ϕ dx dt

∣∣∣∣ ≤
≤
∣∣∣∣ ∫ T

0

∫
Ω

(ρ− ρnh)u · ∇ϕ dx dt

∣∣∣∣+ C

∫ T

0

‖ρnh‖p‖unh − u‖q dt ≤

≤
∣∣∣∣ ∫ T

0

∫
Ω

(ρ− ρnh)u · ∇ϕ dx dt

∣∣∣∣+ C

(
sup
(0,T )

‖ρnh‖p
)∫ T

0

‖unh − u‖q dt ≤

≤
∣∣∣∣ ∫ T

0

∫
Ω

(ρ− ρnh)u · ∇ϕ dx dt

∣∣∣∣+ CC0‖unh − u‖L1(0,T ;Lq(Ω))

Since ∫ T

0

‖u · ∇ϕ‖q dt ≤ C

∫ T

0

‖u‖q dt <∞ =⇒ u · ∇ϕ ∈ L1(0, T ;Lq(Ω))

and so, since ρnh converges weakly star to ρ,∫ T

0

∫
Ω

(ρ− ρnh)u · ∇ϕ dx dt→ 0

It follows that

−
∫

Ω

ρ0(x)ϕ(x, 0) dx−
∫ T

0

∫
Ω

ρϕt dx dt =

∫ T

0

∫
Ω

ρu · ∇ϕ dx dt

So we have found ρ ∈ L∞(0, T ;Lp(Ω)) such that is a weak solution to the trasport

equation with velocity u and initial density ρ0.

Another important result of this section is the following: under appropriate condi-
tions on u, weak solutions of (8.4) can be approached by smooth solution of (8.4) with
small error terms. In particular, we have the following approximation theorem.
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Theorem 8.4. Let p ∈ (1,∞], and let ρ ∈ L∞(0, T ;Lp) be a solution of (8.4) with
intial density ρ0 ∈ Lp(Ω) and assume that u ∈ L1(0, T ;W 1,α(Ω)) for some α ≥ q,
∇ · u = 0. Let ηε = ηε(x) a regularizer kernel over Ω. In particular, if Ωε := {x ∈ Ω :
dist(x, ∂Ω) > ε}, we set

ηε(x) :=
1

εn
η

(
x

ε

)
with C∞c (Rn) 3 η ≥ 0, supp(η) ⊂ B(0, 1). Let ρε(x, t) :=

(
ρ(·, t) ∗ ηε

)
(x, t). Let

φ ∈ C∞c ([0, T ) × Ω) and suppose that φ(x, ·) = 0 for every x ∈ Ωc
0, with Ω0 compact.

Then, if ε < dist(Ω0, ∂Ω),

−
∫ T

0

(∫
Ωε

ρε
∂φ

∂t
dx

)
dt−

∫
Ωε

ρ0
ε φ(0, x) dx+

∫ T

0

(∫
Ωε

ρεu·∇φ dx
)
dt =

∫ T

0

(∫
Ω

rεφ dx

)
dt

(8.10)
where

rε(x, t) =

∫
Ω

ρ(y, t)(u(y, t)− u(x, t)) · ∇ηε(y − x) dy

Moreover, rε converges to zero in L1(0, T ;Lβloc(Ω)) as ε→ 0, where β is such that

1

β
=

1

α
+

1

p

Finally ρ0
ε(x) := (ρ0 ∗ ηε)(x).

Remark 8.5. The convergence to zero of rε in L1(0, T ;Lβloc(Ω)) assures that∣∣∣∣ ∫ T

0

(∫
Ω

rεφ dx

)
dt

∣∣∣∣ =

∣∣∣∣ ∫ T

0

(∫
Ω0

rεφ dx

)
dt

∣∣∣∣ ≤ |Ω|β−1
β

(
sup

[0,T ]×Ω

|φ|
)∫ T

0

‖rε‖Lβ(Ω0) dt→ 0

as ε→ 0. �

Proof. First of all, consider the integral∫ T

0

(∫
Ωε

ρε(x, t)
∂φ

∂t
(x, t) dx

)
dt =

∫ T

0

{∫
Ωε

(∫
Ω

ρ(y, t)ηε(x−y) dy

)
∂φ

∂t
(x, t) dx

}
dt =

=

∫ T

0

{∫
Ω

(∫
Ωε

ηε(x−y)
∂φ

∂t
(x, t) dx

)
ρ(y, t) dy

}
dt =

∫ T

0

{∫
Ω

∂

∂t
φε(y, t) ρ(y, t) dy

}
dt

since ηε(x−y) = ηε(y−x) by definition, and, being ε < dist(Ω0, ∂Ω), we have φ(x, t) ≡ 0
in Ω/Ωε, so that ∫

Ωε

ηε(x− y)
∂φ

∂t
(x, t) dx =

∫
Ω

ηε(x− y)
∂φ

∂t
(x, t) dx

In the same way, we have∫
Ωε

ρ0
ε(x)φ(0, x) dx =

∫
Ω

φε(0, y)ρ0(y) dy
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So, we can rewrite equation (8.10) as

0 = −
∫ T

0

(∫
Ω

ρ
∂φε
∂t

dx

)
dt−

∫
Ω

ρ0 φε(0, x) dx+

∫ T

0

(∫
Ω

ρu · ∇φε dx
)
dt =

= −
∫ T

0

(∫
Ωε

ρε
∂φ

∂t
dx

)
dt−

∫
Ωε

ρ0
εφ(0, x) dx+

∫ T

0

(∫
Ωε

ρεu · ∇φ dx
)
dt+

+

{∫ T

0

(∫
Ω

ρu · ∇φε dx
)
dt−

∫ T

0

(∫
Ωε

ρεu · ∇φ dx
)
dt

}
If we define

Iε :=

{∫ T

0

(∫
Ω

ρu · ∇φε dx
)
dt−

∫ T

0

(∫
Ωε

ρεu · ∇φ dx
)
dt

}
we have

Iε =

∫ T

0

(∫
Ω

{
ρ(x, t) u(x, t) ·

(∫
Ω

φ(y, t)∇ηε(x− y) dy

)}
dx

)
dt−

−
∫ T

0

(∫
Ωε

u(x, t) · ∇φ(x, t)

(∫
Ω

ρ(y)ηε(x− y) dy

)
dx

)
dt

Remark 8.6. Notice that φ ∈ C∞c (Ω) is defined on the whole Rn; so also its convolution
is defined in the whole space. �

We now remark that∫ T

0

(∫
Ωε

ρε(x, t)u(x, t) · ∇φ(x, t) dx

)
dt =

=

∫ T

0

(∫
Ωε

(∫
Ω

ρ(y, t)ηε(x− y) dy

)
u(x, t) · ∇φ(x, t) dx

)
dt =

=

∫ T

0

{∫
Ω

ρ(y, t)

(∫
Ωε

ηε(x− y)u(x, t) · ∇φ(x, t) dx

)
dy

}
dt =

and being φ(x, t) ≡ 0 on Ωc
ε,

=

∫ T

0

{∫
Ω

ρ(y, t)

(∫
Ω

ηε(x− y)u(x, t) · ∇φ(x, t) dx

)
dy

}
dt =

=

∫ T

0

{∫
Ω

ρ(y, t)

(∫
Ω

ηε(x− y)∇ ·
(
u(x, t) · φ(x, t)

)
dx

)
dy

}
dt =

= −
∫ T

0

{
ρ(y, t)

(∫
Ω

φ(x, t)u(x, t) · ∇ηε(x− y) dx

)
dy

}
dt =

since ∇ηε(x− y) = −∇ηε(y − x)

=

∫ T

0

{
ρ(y, t)

(∫
Ω

φ(x, t)u(x, t) · ∇ηε(y − x) dx

)
dy

}
dt
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So we have, changing the name of the variables in the first block of the integral,

Iε =

∫ T

0

(∫
Ω

{∫
Ω

ρ(y, t)φ(x, t)u(y, t) · ∇ηε(y − x) dx

}
dy

)
dt−

−
∫ T

0

(∫
Ω

{∫
Ω

ρ(y, t)φ(x, t)u(x, t) · ∇ηε(y − x) dx

}
dy

)
dt

It is clear that this term has the structure of the integral∫
Ω

w(y){(B(y)−B(x)) · ∇ηε(y − x)} dy (8.11)

integrated over Ω and over (0, T ). So we finally have

rε(x, t) =

∫
Ω

ρ(y, t)(u(y, t)− u(x, t)) · ∇ηε(y − x) dy

If we show that (8.11) goes to zero in the right norm as ε→ 0, then we have the thesis.

Remark 8.7. Let B ∈ L1(0, T ;W 1,α
loc ) and w ∈ L∞(0, T ;Lploc). Then

(B · ∇w) ∗ ηε −B · ∇(w ∗ ηε)→ 0 in L1(0, T ;Lβloc)

We now prove this fact. Consider a compact set Ω0 ⊂ Ω. Then, from now, we take
0 < ε < dist(Ω,Ω0). We set

|r1
ε(x)| =

∣∣∣∣ ∫
Ω

w(y){(B(y)−B(x)) · ∇ηε(x− y)} dy
∣∣∣∣ ≤

≤
∫

Ω

|w(y)||B(y)−B(x)|1
ε

∣∣∇η(x− y
ε

)∣∣ 1

εn
dy ≤

≤ C

∫
Ω

|w(y)|
χB(x,ε)(y)

εn

{
|B(y)−B(x)|

ε

}
χB(x,ε)(y) dy

If 1 ≤ s, t, such that 1
s

+ 1
t

= 1, then

|r1
ε(x)| ≤ C

(∫
B(x,ε)

{
|B(y)−B(x)|

ε

}s
dy

) 1
s
(∫

B(x,ε)

|w(y)|tdy
εn

) 1
t

=

= C

(∫
B(x,ε)

{
|B(y)−B(x)|

ε

}s
dy

) 1
s
(∫

Rn
|w(y)|t

χB(0,ε)(x− y)

εn
dy

) 1
t

=

= C

(∫
B(x,ε)

{
|B(y)−B(x)|

ε

}s
dy

) 1
s (
|w|t ∗ χε

) 1
t

where χε(z) :=
χB(0,ε)(z)

εn
. Observe that we can consider s = q, so that t = p. Thus, we

have

|r1
ε(x)| ≤ C

(∫
B(x,ε)

{
|B(y)−B(x)|

ε

}q
dy

) 1
q (
|w|p ∗ χε

) 1
p
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Since α ≥ q, we have that

|r1
ε(x)| ≤ C

(∫
B(x,ε)

{
|B(y)−B(x)|

ε

}α
dy

) 1
α (
|w|p ∗ χε

) 1
p

So, at the power of β, we have

|r1
ε(x)|β ≤ Cβ

(∫
B(x,ε)

{
|B(y)−B(x)|

ε

}α
dy

) β
α (
|w|p ∗ χε

)β
p

So, integrating over Ω0, we have∫
Ω0

|r1
ε(x)|β dx ≤ Cβ

∫
Ω0

{(∫
B(x,ε)

{
|B(y)−B(x)|

ε

}α
dy

) β
α (
|w|p ∗ χε

)β
p (x)

}
dx

Observe now that β

(
1
α

+1
p

)
= 1, and so, using Hölder’s inequality again, with exponents

α
β

and p
β
, we have

∫
Ω0

|r1
ε(x)|β dx ≤ Cβ

(∫
Ω0

{∫
B(x,ε)

{
|B(y)−B(x)|

ε

}α
dy

}
dx

) β
α
(∫

Ω0

(|w|p∗χε) dx
)β

p

So, we have

‖r1
ε‖Lβ(Ω0) ≤ C

(∫
Ω0

{∫
B(x,ε)

{
|B(y)−B(x)|

ε

}α
dy

}
dx

) 1
α
(∫

Ω0

(|w|p ∗ χε) dx
) 1

p

Using Young’s convolution inequality, we have∫
Ω0

(|w|p ∗ χε) dx ≤ ‖χε‖L1(Ω0)

∫
Ω0

|w|p dx = ‖w‖pLp(Ω0)

So, we have finally

‖r1
ε‖Lβ(Ω0) ≤ C

(∫
Ω0

{∫
B(x,ε)

{
|B(y)−B(x)|

ε

}α
dy

}
dx

) 1
α

‖w‖Lp(Ω0)

On the other hand(∫
Ω0

{∫
B(x,ε)

{
|B(y)−B(x)|

ε

}α
dy

}
dx

) 1
α

=

(∫
Ω0

∫
|z|≤1

(∫ 1

0

|∇B(x+tεz)| dt
)α

dz dx

) 1
α

≤

≤ C‖∇B‖Lα(Ω)

So, if we integrate over (0, T ),∫ T

0

‖r1
ε‖Lβ(Ω0) dt ≤ C sup

t∈(0,T )

‖w‖Lp(Ω0)

∫ T

0

‖∇B‖Lα(Ω0)
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This density property allows us to prove the theorem in the only case of smooth func-
tions. In a smooth scenario, we have that∫

Ω

w(y){(B(y)−B(x))·∇ηε(y−x)} dy =

∫
Ω

w(y)B(y)·∇ηε(y−x) dy−B(x)·
∫

Ω

w(y)∇ηε(y−x) dy →

→ −∇ · (wB) +B · ∇w in Lβloc(Ω)

thanks to the properties of convolutions. But, in this regular case ∇· (wB) = B ·∇w+
w∇ · B, and so, if ∇ · B = 0, exactly as ∇ · u = 0 in the hypothesis, we have the
convergence to zero. This is the thesis. �

8.2.2 Uniqueness of the solution

The reformulation provided by theorem 8.4 allows us to prove some important results,
concerning the weak transport equation. In particular we discuss now unieuqness of the
solutions. However, before obtaining the uniqueness main result, we have an important
lemma, that will introduce us to the renormalized solutions.

Lemma 8.1. Let p ∈ (1,∞], and let ρ ∈ L∞(0, T ;Lp) be a solution of (8.4) with
intial density ρ0 ∈ Lp(Ω) and assume that u ∈ L1(0, T ;W 1,α(Ω)) for some α ≥ q,
∇ · u = 0. Let ηε = ηε(x) a regularizer kernel over Ω. In particular, if Ωε := {x ∈ Ω :
dist(x, ∂Ω) > ε}, we set

ηε(x) :=
1

εn
η

(
x

ε

)
with C∞c (Rn) 3 η ≥ 0, supp(η) ⊂ B(0, 1). Let ρε(x, t) :=

(
ρ(·, t) ∗ ηε

)
(x, t). Let

φ ∈ C∞c ([0, T ) × Ω) and suppose that φ(x, ·) = 0 for every x ∈ Ωc
0, with Ω0 compact.

Let β ∈ C1(R) a function, with β′ bounded and such that β vanishes near the origin.
Then, if ε < dist(Ω0, ∂Ω), equation (8.10) holds, and implies that

−
∫ T

0

(∫
Ωε

β(ρε)
∂φ

∂t
dx

)
dt−

∫
Ωε

β(ρ0
ε) φ(0, x) dx+

∫ T

0

(∫
Ωε

β(ρε)u · ∇φ dx
)
dt =

=

∫ T

0

(∫
Ωε

rεβ
′(ρε)φ dx

)
dt

where, as above,

rε(x, t) =

∫
Ω

ρ(y, t)(u(y, t)− u(x, t)) · ∇ηε(y − x) dy

Proof. Consider (8.10), that is, for every φ ∈ C∞c ([0, T ) × Ω) such that φ(x, ·) = 0
for every x ∈ Ωc

0, with Ω0 compact, if ε < dist(Ω0, ∂Ω),

−
∫ T

0

(∫
Ωε

ρε
∂φ

∂t
dx

)
dt−

∫
Ωε

ρ0
ε φ(0, x) dx+

∫ T

0

(∫
Ωε

ρεu·∇φ dx
)
dt =

∫ T

0

(∫
Ω

rεφ dx

)
dt

(8.12)
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In particular, being ρεuφ ≡ 0 on ∂Ωε, it follows that∫
Ωε

ρε ∇ · (uφ) dx = −
∫

Ωε

φu · ∇ρε dx+

∫
Ωε

∇ · (ρεuφ) dx

so that, using the weak divergence theorem,∫
Ωε

ρε ∇ · (uφ) dx = −
∫

Ωε

φu · ∇ρε dx (8.13)

We choose now φ(x, t) := ϕ(x)ψ(t), with ψ ∈ C∞c (0, T ) and ϕ to be fixed. Then we
have

−
∫ T

0

(∫
Ωε

ρεψ
′(t)ϕ(x) dx

)
dt =

∫ T

0

ψ(t)

(∫
Ωε

(u · ∇ρε + rε) ϕ(x)

)
dt

If we choose as ϕ the unitary mass sequence

ϕny (x) := η 1
n
(y − x)

it follows that

−
∫ T

0

ρε(y) ψ′(t) dt =

∫ T

0

ψ(t)(u · ∇ρε + rε)(y) dt

that is, in the sense of weak derivatives,

∂

∂t
ρε(y, t) = u(y, t) · ∇ρε(y, t) + rε(y, t)

In particular, the equation is true for every y ∈ Ωε. In particular, we have ρε(y, ·) ∈
W 1,1(0, T ). On the other hand choosing, instead of ψ, the function

ηt0δ (t) :=

{
1 t ∈ [0, t0]

0 t ∈ [t0 + δ, T )
(8.14)

such that ∫ T

0

(ηt0δ )′(t) dt = −1 (8.15)

using the Lebesgue differentiation theorem, we have that, from (8.12) and (8.13) it
follows that, for almost every t0 ∈ (0, T ),

ρε(t0) = ρ0
ε +

∫ t0

0

(
u · ∇ρε + rε

)
dt (8.16)

This means that ρε(y, ·) is absolutely continuous and its continuos version is the right
side of (8.16).

Consider now β ∈ C1(R) with β′ bounded. The weak chain rule says that

∂

∂t
β(ρε) = β′(ρε)

∂ρε
∂t

= β′(ρε)(u · ∇ρε + rε) = u · ∇(β(ρε)) + β′(ρε)rε
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since ρε has classical regularity in space. So, in particular, being β′ bounded, β(ρε) ∈
W 1,1(0, T ) and so, moreover,

β(ρε)(t) = β(ρ0
ε) +

∫ t

0

(
u · ∇(β(ρε)) + β′(ρε)rε

)
dτ

In terms of weak derivatives we have∫ T

0

β(ρε)ψ
′(t) dt = −

∫ T

0

ψ(t)
(
u · ∇(β(ρε)) + β′(ρε)rε

)
dt

for every ψ ∈ C∞c (0, T ).

Consider now φ ∈ C∞c ([0, T )× Ω), so that φ(T, x) = 0. We know that

∂t(β(ρε)φ) = ∂t(β(ρε))φ+ β(ρε)∂tφ

so that β(ρε)φ ∈ W 1,1(0, T ). Moreover we have

0 = β(ρε(T ))φ(T ) = β(ρ0
ε)φ(0) +

∫ T

0

∂t(β(ρε))φ dt+

∫ T

0

β(ρε)∂tφ dt

Then we have ∫ T

0

(∫
Ωε

β(ρε)∂tφ dx

)
dt =

∫
Ωε

(∫ T

0

β(ρε)∂tφ dt

)
dx =

= −
∫

Ωε

β(ρ0
ε)φ(0) dx−

∫
Ωε

(∫ T

0

(u · ∇(β(ρε)) + β′(ρε)rε)φ dt

)
dx =

= −
∫

Ωε

β(ρ0
ε)φ(0) dx+

∫ T

0

(∫
Ωε

β(ρε)u · ∇φ dx
)
dt−

∫ T

0

(∫
Ωε

β′(rε)rεφ dx

)
dt

that is the thesis.

Theorem 8.5. Let p ∈ (1,∞], and let ρ ∈ L∞(0, T ;Lp(Ω)) be a solution of (8.4) for
the initial condition ρ0 ≡ 0, with u ∈ L1(0, T ;W 1,q

0 (Ω)) and ∇ · u = 0, being q the
conjugate of p. Then, ρ ≡ 0.

Proof. Letting ε → 0 in the statement of lemma 8.1, with β ∈ C1(R) bounded,
vanishing at the origin, and with β′ bounded, we have that

−
∫ T

0

(∫
Ω

β(ρ)
∂φ

∂t
dx

)
dt−

∫
Ω

β(ρ0)φ(x, 0) dx+

∫ T

0

(∫
Ω

β(ρ)u·∇φ dx
)
dt = 0 (8.17)

where we used that ρ0 ≡ 0 and rε → 0 in L1(0, T ;Lβloc(Ω)).

Let now M ∈ (0,∞). We would choose β(t) := (|t|p∧M), where a∧b := min{a, b}. The
function is clearly bounded, but it is not in C1(R). However, it is possible to choose
βk(t) a sequence such that βk ∈ C1(R) for every k, βk(t) ≤ β(t) for every k ∈ N and
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t ∈ R and finally, for every t ∈ R, βk(t) ≤ βk+1(t), with βk(t) → β(t) as k → ∞, for
almost every t ∈ R. So (8.17) implies that

−
∫ T

0

(∫
Ω

βk(ρ)
∂φ

∂t
dx

)
dt−

∫
Ω

βk(ρ0)φ(x, 0) dx+

∫ T

0

(∫
Ω

βk(ρ)u · ∇φ dx
)
dt = 0

(8.18)
for every k ∈ N. It is clear that βk(t) ≤ β(t) ≤ M . By the hypothesis, we have that
u ∈ L1(0, T ;Lq(Ω)). So, using corollary 5.1, we have that if δ > 0, there exists Nδ ∈ N
such that

‖u− uNδ‖L1(0,T ;Lq(Ω)) < δ (8.19)

We now choose φ in a precise way. In particular, we choose a sequence ϕh ∈ C∞c (Ω)
such that ϕh ≡ 1 over Ω 1

h
(so that |∇ϕh| ≡ 0 over Ω 1

h
) and such that∫

Ω

|∇ϕh|q
′
dx = 1 ∀h ∈ N

where q′ is such that 1
q

+ 1
q′

= 1. So, if δ > 0 is fixed, and Nδ is such in (8.19), we

have that uNδ(x, ·) ≡ 0 if x ∈ Kc
δ , with Kδ a compact set in Ω, and exists H = Hδ,

depending on δ such that Ω 1
h
⊃ Kδ for every h ≥ Hδ. Then∫

Ω

|∇ϕh|
(∫ T

0

|uNδ | dt
)
dx = 0

for every h ≥ Hδ. Let φh(x, t) = ψ(t)ϕh(x), with ψ ∈ C∞c ([0, T )). It follows that∣∣∣∣ ∫ T

0

ψ(t)

(∫
Ω

βk(ρ) u · ∇ϕh dx
)
dt

∣∣∣∣ ≤M

(
max
[0,T )
|ψ|
)∣∣∣∣ ∫ T

0

∫
Ω

|u||∇ϕh| dx dt
∣∣∣∣ =

= M

(
max
[0,T )
|ψ|
)∣∣∣∣ ∫

Ω

∫ T

0

|u||∇ϕh| dx dt−
∫

Ω

|∇ϕh|
∫ T

0

|uNδ | dt dx
∣∣∣∣ =

= M

(
max
[0,T )
|ψ|
)∣∣∣∣ ∫

Ω

∫ T

0

(
|u| − |uNδ |

)
|∇ϕh| dx dt

∣∣∣∣ ≤
≤M

(
max
[0,T )
|ψ|
)(∫

Ω

∫ T

0

∣∣|u| − |uNδ |∣∣|∇ϕh| dx dt) ≤
≤M

(
max
[0,T )
|ψ|
)(∫ T

0

∫
Ω

∣∣u− uNδ ∣∣|∇ϕh| dx dt) ≤
≤M

(
max
[0,T )
|ψ|
)(∫ T

0

‖u− uNδ‖q‖∇ϕh‖q′ dt
)

= M

(
max
[0,T )
|ψ|
)(∫ T

0

‖u− uNδ‖q dt
)

(8.20)
since ‖∇ϕh‖2 = 1. Finally∣∣∣∣ ∫ T

0

ψ(t)

(∫
Ω

βk(ρ) u · ∇ϕh dx
)
dt

∣∣∣∣ ≤M

(
max
[0,T )
|ψ|
)
δ
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for every h ≥ Hδ. This means that, for every k ∈ N and ψ ∈ C∞c ([0, T ))

lim
h→∞

∫ T

0

ψ(t)

(∫
Ω

βk(ρ) u · ∇ϕh dx
)
dt = 0

So, equation (8.18) becomes

−
∫ T

0

ψ′(t)

(∫
Ω

βk(ρ)ϕh dx

)
dt−

∫
Ω

β(ρ0)ψ(0) dx+

∫ T

0

ψ(t)

(∫
Ω

βk(ρ)u·∇ϕh dx
)
dt = 0

(8.21)
Since ψ′ and βk are bounded, and ψh → χΩ as h→∞, letting h→∞ we have

−
∫ T

0

ψ′(t)

(∫
Ω

βk(ρ) dx

)
dt−

∫
Ω

βk(ρ0)ψ(0) dx = 0

We suppose ψ(0) = 1. Using again the boundedness of ψ′ and the fact that βk has been
taken increasing, letting k →∞ we have, choosing M = n ∈ N fixed

−
∫ T

0

ψ′(t)

(∫
Ω

|ρ|p ∧ n dx
)
dt−

∫
Ω

|ρ0|p ∧ n dx = 0

Choosing now ψ as in (8.14), (8.15), we have that for every t0 ∈ (0, T )/En , with
|En| = 0, ∫

Ω

|ρ(t0)|p ∧ n dx ≡
(∫

Ω

|ρ|p ∧ n dx
)

(t0) =

∫
Ω

|ρ0|p ∧ n dx (8.22)

Since the sequence |ρ|p ∧ n is increasing in n, and |ρ|p ∧ n → |ρ|p when n → ∞, and

(8.22) is defined for every t0 ∈ (0, T )/
⋃
n

En, we have that for almost every t0 ∈ (0, T )

‖ρ(t0)‖p = ‖ρ0‖p (8.23)

Since, by the hypothesis ρ0 ≡ 0, this means that for almost every t0 ∈ (0, T ), ρ(t0) = 0

almost every x ∈ Ω. This means that ρ is zero in L∞(0, T ;Lp(Ω)), that is the thesis.

Remark 8.8. If now p =∞, observe that in particular ρ ∈ L∞(0, T ;Lp(Ω)), with p <∞.
So ρ ≡ 0 by the case above. �

The next corollary follows from the proof of theorem 8.5.

Corollary 8.1. Let u ∈ L1(0, T ;L1(Ω)) and ρ0 ∈ Lp(Ω). Let ρ be a measurable function
over Ω× (0, T ) such that, for every β admissible function,

−
∫ T

0

(∫
Ω

β(ρ)
∂φ

∂t
dx

)
dt−

∫
Ω

β(ρ0)φ(x, 0) dx+

∫ T

0

(∫
Ω

β(ρ)u · ∇φ dx
)
dt = 0

for every φ ∈ C∞c (Ω× [0, T )). Then, for almost every t0 ∈ (0, T ) we have

‖ρ(t0)‖p = ‖ρ0‖p
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8.2.3 Renormalized solutions

Definition 8.3. Let Ω be a bounded domain in Rn, and T > 0 a time. Let p ∈ (1,∞],
q its conjugate and ρ0 ∈ Lp(Ω) an initial density. Let u ∈ L1(0, T ;W 1,q

0 (Ω)), ∇ · u = 0
be a velocity field. We say that ρ ∈ L∞(0, T ;Lp(Ω)) is a renormalized solution of{

∂tρ+ u · ∇ρ = 0 in (0, T )× Ω

ρ(0) = ρ0
(8.24)

if, for every β ∈ C1(R), with β and β′

1+|t| bounded and β such that vanishes near 0, it
holds

−
∫ T

0

(∫
Ω

β(ρ)
∂φ

∂t
dx

)
dt−

∫
Ω

β(ρ0(x))φ(x, 0) dx+

∫ T

0

(∫
Ω

β(ρ)u · ∇φ dx
)
dt = 0

(8.25)
for every φ ∈ C∞c ([0, T )× Ω).

Lemma 8.2. Let Ω be a bounded domain in Rn and T > 0 a positive time. Let
p ∈ (1,∞] and ρ ∈ L∞(0, T ;Lp(Ω)) a solution of (8.4) with intial density ρ0 ∈ Lp(Ω)
and assume that u ∈ L1(0, T ;W 1,q

0 (Ω)), ∇ · u = 0. The ρ ∈ L∞(0, T ;Lp(Ω)) is a
renormalized solution to the problem for admissible function β with β′ bounded.

Proof. By theorem 8.1 we know that

−
∫ T

0

(∫
Ωε

β(ρε)
∂φ

∂t
dx

)
dt−

∫
Ωε

β(ρ0
ε) φ(0, x) dx+

∫ T

0

(∫
Ωε

β(ρε)u · ∇φ dx
)
dt =

=

∫ T

0

(∫
Ωε

rεβ
′(ρε)φ dx

)
dt

with rε → 0 in L1(0, T ;Lγloc(Ω)), with
1

γ
=

1

q
+

1

p
= 1 =⇒ γ = 1. So, letting ε → 0,

being β bounded and |β′(ρε)| ≤ Cβ, we have that the thesis follows.

8.2.4 Classical regularity of the solution

Before starting the conclusive section of the chapter about stability, we focus our at-
tention on the regularity of the solutions to the weak transport equation.

Lemma 8.3. Let p ∈ (1,∞) and ρ0 ∈ Lp(Ω). Assume that u ∈ L1(0, T ;W 1,q
0 (Ω)) with

∇ · u = 0. Then ρ ∈ C([0, T ];Lp(Ω)).

Remark 8.9. This theorems are Theorem II.3, Theorem II.4 and Corollary II.2 of paper
[8]. �

Proof. By equation (8.23) we have that ‖ρ(t)‖p has a continuous version ‖ρ(t)‖p =
‖ρ0‖p ∈ C([0, T ]). If we show that, moreover, for every [0, T ] 3 tn → t0 ∈ [0, T ] it holds

lim
n→∞

∫
Ω

(
ρ(x, tn)− ρ(x, t0)

)
· ϕ(x) dx = 0 ∀ϕ ∈ Lq(Ω) (8.26)
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this means that ρ(tn) ⇀ ρ(t0) in Lp(Ω), that is ρ(tn) converges weakly to ρ(t0) in Lp(Ω).
Since moreover ‖ρ(tn)‖p → ‖ρ(t0)‖p by continuity of the norm, we have, by theorem
3.5, that

lim
n→∞

‖ρ(tn)− ρ(t0)‖p = 0

that is the continuity in C([0, T ];Lp(Ω)). So, we only have to prove (8.26). We proceed
as follows. If in equation (8.5) we choose φ(x, t) = ψ(t)ϕ(x) it follows that

−
∫ T

0

ψ(t)

(∫
Ω

ρ(x, t)ϕ(x) dx

)
dt−

∫
Ω

ρ0(x)ψ(0)ϕ(x) dx+

+

∫ T

0

ψ(t)

(∫
Ω

ρ(x, t)
(
u(x, t) · ∇ϕ(x)

)
dx

)
dt = 0

So, if ψ(t) is choosen as in (8.14), (8.15), we have, for almost every t0 ∈ [0, T ],∫
Ω

ρ(x, t0)ϕ(x) dx =

∫
Ω

ρ0(x)ϕ(x) dx−
∫ t0

0

(∫
Ω

ρ(x, t)
(
u(x, t) ·∇ϕ(x)

)
dx

)
dt (8.27)

The continuity of the right side implies that

∫
Ω

ρ(x, t0)ϕ(x) dx can be defined in the

whole [0, T ].

Consider now h > 0. Then, for every ϕ ∈ C∞c (Ω) we have∣∣∣∣ ∫
Ω

ρ(x, t0+h)ϕ(x) dx−
∫

Ω

ρ(x, t0)ϕ(x) dx

∣∣∣∣ =

∣∣∣∣ ∫ t0+h

t0

(∫
Ω

ρ(x, t)
(
u(x, t)·∇ϕ(x)

)
dx

)
dt

∣∣∣∣ ≤
≤Mϕ

∫ t0+h

t0

‖ρ(t)‖p‖u(t)‖q dt ≤Mϕ‖ρ‖L∞(0,T ;Lp(Ω))‖u‖L1(0,T ;Lq(Ω))h

where Mϕ := max
Ω
|∇ϕ|. It follows that for every ϕ ∈ C∞c (Ω)

lim
h→0

∫
Ω

ρ(x, t0 + h)ϕ(x) dx =

∫
Ω

ρ(x, t0)ϕ(x) dx

But moreover ‖ρ(t0 + h)‖p ≤ max
t∈[0,T ]

‖ρ(t)‖p. So, by theorem 3.6 we have that

lim
h→0

∫
Ω

ρ(x, t0 + h)g(x) dx =

∫
Ω

ρ(x, t0)g(x) dx

for every g ∈ Lq(Ω). This implies (8.26) and thus the thesis.

8.2.5 Stability

We now prove some consistency and stability results.
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Consistency.

Lemma 8.4. Let ρ ∈ L∞(0, T ;Lp(Ω)) and u ∈ L1(0, T ;Lq(Ω)) with p ∈ (1,∞]. If
ρ is a renormalized solution, then ρ is a solution. Moreover, if ρ is a solution and
u ∈ L1(0, T ;W 1,q(Ω)), with ∇ · u = 0, then ρ is a renormalized solution.

Proof. We already know that if u ∈ L1(0, T ;W 1,q(Ω)) and ∇ · u = 0, then ρ ∈
L∞(0, T ;Lp(Ω)) is a renormalized solution, thanks to 8.2. We have to prove the converse
implication. Suppose that ρ ∈ L∞(0, T ;Lp(Ω)) is a weak solution to the problem. We
want to prove that it is a renormalized solution. We can consider a sequence βn of
admissible solution such that

|βk(t)| ≤ |t|, βk(t)→ t uniformly on compacts of R

In particular, one can consider at first βk(t) := |t| ∧ k, and then a C1 approximation of
this function from above, with bounded derivative. So we have

−
∫ T

0

(∫
Ω

βk(ρ)
∂φ

∂t
dx

)
dt−

∫
Ω

βk(ρ0)φ(x, 0) dx+

∫ T

0

(∫
Ω

βk(ρ)u · ∇φ dx
)
dt = 0

We have now the bounds∫ T

0

(∫
Ω

|βk(ρ)|
∣∣∂φ
∂t

∣∣ dx) dt ≤
∫ T

0

(∫
Ω

|ρ|
∣∣∂φ
∂t

∣∣ dx) dt <∞

since ρ ∈ L∞(0, T ;Lp(Ω)). Similarly, we have∫
Ω

|βk(ρ0)||φ(x, 0)| dx ≤
∫

Ω

|ρ0||φ(x, 0)| dx <∞

∫ T

0

(∫
Ω

|βk(ρ)||u||∇φ| dx
)
dt ≤

∫ T

0

(∫
Ω

|ρ||u||∇φ| dx
)
dt <∞

Since βk(t) → t as k → ∞ for every t ∈ R, letting k → ∞, we have equation 8.5 that

is the weak formulation.

Stability. The following theorem is the main result of this section, that in turn is one
of the fundamental results of the thesis. As usual, provided a uniqueness result, as that
of theorem 8.5, one expects a stability result of the solutions. We will use this fact in
proposition 11.20.

Theorem 8.6. Let p ∈ (1,∞). Let un ∈ L1(0, T ;L1(Ω)) be such that converges to u in
L1(0, T ;L1(Ω)). Let ρn a bounded sequence in L∞(0, T ;Lp(Ω)), i.e. sup

n∈N
‖ρn‖L∞(0,T ;Lp(Ω)) <

∞, such that ρn is a renormalized solution of the transport equation with velocity field
un, corresponding to an initial condition ρ0

n ∈ Lp(Ω). Assume that ρ0
n converges in

Lp(Ω) to some ρ0 ∈ Lp(Ω). Suppose moreover that for every β admissible function
β(ρ0

n) → β(ρ0) in L1(Ω). Then ρn converges to ρ ∈ L∞(0, T ;Lp(Ω)), renormal-
ized solution of the transport equation with velocity field u and inital density ρ0, in
L∞(0, T ;Lp(Ω)).
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Remark 8.10. To prove these theorems, we will use the following lemma by basic real
analysis. See lemma 7.1. �

Proof. Now we want to prove the stability. We start with pointwise stability. Let
β an admissible function, and define vn := β(ρn), where ρn is renormalized solution to
the transport equation with velocity filed un and initial density ρn0 . Then, since β is
bounded, we have that vn ∈ L∞(0, T ;L∞(Ω)). Moreover, observe that, since ρn is a
renormalized solution,

−
∫ T

0

(∫
Ω

β(ρn)
∂φ

∂t
dx

)
dt−

∫
Ω

β(ρ0
n)φ(x, 0) dx+

∫ T

0

(∫
Ω

β(ρn)un · ∇φ dx
)
dt = 0

and this can be rewritten as

−
∫ T

0

(∫
Ω

vn
∂φ

∂t
dx

)
dt−

∫
Ω

v0
nφ(x, 0) dx+

∫ T

0

(∫
Ω

vn
(
un · ∇φ

)
dx

)
dt = 0

where β(ρ0
n) =: v0

n. On the other hand, the function β2 is admissible yet, and, as above,
wn := v2

n ∈ L∞(0, T ;L∞(Ω)). Moreover, as above,

−
∫ T

0

(∫
Ω

wn
∂φ

∂t
dx

)
dt−

∫
Ω

w0
nφ(x, 0) dx+

∫ T

0

(∫
Ω

wn
(
un · ∇φ

)
dx

)
dt = 0

and w0
n := (v0

n)2. Since the sequences are bounded in L∞(0, T ;L∞(Ω)), we have that
exist v, w ∈ L∞(0, T ;L∞(Ω)) such that, up to extract a subsequence,

vn
∗
⇀ v, wn

∗
⇀ w in L∞(0, T ;L∞(Ω))

In particular
‖v‖L∞(0,T ;L∞(Ω)) ≤ lim inf

n→∞
‖vn‖L∞(0,T ;L∞(Ω)) ≤ Cβ

where β(s) ≤ Cβ for every s ∈ R. Observe that, up to extract a subsequence, we can
suppose that ρ0

n converges to ρ0 almost everywhere in Ω.

Since un → u in L1(0, T ;L1(Ω)), we have that, considering in example the case of
vn (that of wn is analogous),∫ T

0

(∫
Ω

vn
∂φ

∂t
dx

)
dt→

∫ T

0

(∫
Ω

vn
∂φ

∂t
dx

)
dt,

∫
Ω

v0
nφ(0, x) dx→

∫
Ω

v0φ(0, x) dx

since ∂tφ ∈ L1(0, T ;L1(Ω)) and φ(0, x) ∈ L1(Ω). Moreover∣∣∣∣ ∫ T

0

(∫
Ω

vn
(
un · ∇φ

)
dx

)
dt−

∫ T

0

(∫
Ω

v
(
u · ∇φ

)
dx

)
dt

∣∣∣∣ ≤
≤
∣∣∣∣ ∫ T

0

(∫
Ω

vn
(
(un − u) · ∇φ

)
dx

)
dt−

∫ T

0

(∫
Ω

(v − vn)
(
u · ∇φ

)
dx

)
dt

∣∣∣∣ ≤
≤
∫ T

0

∫
Ω

|vn||un − u||∇φ| dx dt+

∣∣∣∣ ∫ T

0

(∫
Ω

(v − vn)
(
u · ∇φ

)
dx

)
dt

∣∣∣∣ ≤
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≤M‖vn‖L∞(0,T ;L∞(Ω))‖un − u‖L1(0,T ;L1(Ω)) +

∣∣∣∣ ∫ T

0

(∫
Ω

(v − vn)
(
u · ∇φ

)
dx

)
dt

∣∣∣∣
where M is such that |∇φ| ≤ M . Since ‖vn‖L∞(0,T ;L∞(Ω)) is bounded and un → u in
L1(0, T ;L1(Ω)), we only have to prove that also the other term vanishes. But∫ T

0

∫
Ω

|u||∇φ| dx dt ≤M‖u‖L1(0,T ;L1(Ω)) <∞

that is u · ∇φ ∈ L1(0, T ;L1(Ω)), and since vn
∗
⇀ v in L∞(0, T ;L∞(Ω)), we have that

also this term vanishes. So finally

−
∫ T

0

(∫
Ω

v
∂φ

∂t
dx

)
dt−

∫
Ω

v0(x) φ(x, 0) dx+

∫ T

0

(∫
Ω

v
(
u ·∇φ

)
dx

)
dt = 0 (8.28)

and, in the same way,

−
∫ T

0

(∫
Ω

w
∂φ

∂t
dx

)
dt−

∫
Ω

w0(x) φ(x, 0) dx+

∫ T

0

(∫
Ω

w
(
u · ∇φ

)
dx

)
dt = 0

Remark 8.11. Observe that, since ρn0 → ρ0 almost everywhere and β is bounded, we
have βα(ρn0 )→ βα(ρ0) in L1(Ω), with α ∈ {1, 2}. �
Equation (8.28) says that v is a weak solution, with initial condition v0; by the previous
lemma it is a renormalized solution.

Choosing α(t) = t2, approaching this function with admissible αk(t) such that αk(t) ≤ t2

and αk(t)→ t2 as k →∞, for every t ∈ R. So we have that

−
∫ T

0

(∫
Ω

αk(v)
∂φ

∂t
dx

)
dt−

∫
Ω

αk(v
0(x)) φ(x, 0) dx+

∫ T

0

(∫
Ω

αk(v)
(
u·∇φ

)
dx

)
dt = 0

implies, letting k →∞,

−
∫ T

0

(∫
Ω

v2∂φ

∂t
dx

)
dt−

∫
Ω

(v0)2(x) φ(x, 0) dx+

∫ T

0

(∫
Ω

v2
(
u · ∇φ

)
dx

)
dt = 0

since |v(x, t)|2 ≤ ‖v‖2
L∞(0,T ;L∞(Ω)) ≤ C2

β and v0 = β(ρ0) ≤ Cβ, so that the integrals are
well-posed.

So, v2 is a weak solution to the transport equation with initial condition (v0)2. But
also w is a weak solution to the same transport equation with initial condition (v0)2.
By uniqueness theorem 8.5, we have v2 ≡ w.

This means that
v2
n
∗
⇀ v2 in L∞(0, T ;L∞(Ω))

Moreover, notice that

‖vn − v‖2
L2(0,T ;L2(Ω)) =

∫ T

0

(∫
Ω

|vn − v|2 dx
)
dt = 〈vn − v, vn − v〉L2(0,T ;L2(Ω)) =
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= 〈vn, vn〉L2(0,T ;L2(Ω)) − 2〈vn, v〉L2(0,T ;L2(Ω)) + 〈v, v〉L2(0,T ;L2(Ω))

Observe that

〈vn, v〉L2(0,T ;L2(Ω)) → 〈v, v〉L2(0,T ;L2(Ω))

since v ∈ L∞(0, T ;L∞(Ω)) ⊂ L1(0, T ;L1(Ω)) and vn
∗
⇀ v. Moreover, if we choose the

function φ ≡ 1 on (0, T )× Ω, that is in L1(0, T ;L1(Ω)), we have

‖vn‖2
L2(0,T ;L2(Ω)) = 〈vn, vn〉L2(0,T ;L2(Ω)) =

∫ T

0

(∫
Ω

|vn|2 dx
)
dt ≡

∫ T

0

(∫
Ω

v2
n φ dx

)
dt→

→
∫ T

0

(∫
Ω

v2 φ dx

)
dt =

∫ T

0

(∫
Ω

v2 dx

)
dt = ‖v‖2

L2(0,T ;L2(Ω)) (8.29)

as n → ∞, since φ ∈ L1(0, T ;L1(Ω)) and v2
n
∗
⇀ v2 in L∞(0, T ;L∞(Ω)). This means

that vn → v in L2(0, T ;L2(Ω)).

Remark 8.12. We can choose α(t) = |t|p, with p ∈ (1,∞), and obtain the same result

in Lp(0, T ;Lp(Ω)). In fact, this choice implies that |vn|p
∗
⇀ |v|p in L∞(0, T ;L∞(Ω)).

Moreover, Lp(0, T ;Lp(Ω)) is the dual of Lq(0, T ;Lq(Ω)), with q and q conjugate expo-
nents. So, for every ν ∈ Lq(0, T ;Lq(Ω)), we have 〈vn, ν〉p,q → 〈v, ν〉p,q, as n → ∞,
where 〈·, ·〉p,q ≡ 〈·, ·〉Lp(0,T ;Lp(Ω)),Lq(0,T ;Lq(Ω)) is the dual pairing between Lp(0, T ;Lp(Ω))
and Lq(0, T ;Lq(Ω)). In fact

〈vn, ν〉p,q =

∫ T

0

(∫
Ω

vn · ν dx
)
dt→

∫ T

0

(∫
Ω

v · ν dx
)
dt = 〈v, ν〉p,q

as n→∞, since vn
∗
⇀ v in L∞(0, T ;L∞(Ω)) and ν ∈ Lq(0, T ;Lq(Ω)) ⊂ L1(0, T ;L1(Ω)),

being q > 1. This means that vn
∗
⇀ v in Lp(0, T ;Lp(Ω)). Since, choosing φ ≡ 1 as

in (8.29), |vn|p
∗
⇀ |v|p in L∞(0, T ;L∞(Ω)) implies ‖vn‖Lp(0,T ;Lp(Ω)) → ‖v‖Lp(0,T ;Lp(Ω)) as

n→∞, the generalized version of theorem 3.5 (see remark 3.4) implies that vn → v in
Lp(0, T ;Lp(Ω)) in the strong sense. �

We now want to show that v = β(ρ), for some ρ ∈ L∞(0, T ;Lp(Ω)), so that we have
the convergence (in Lp(0, T ;Lp(Ω))) of β(ρn) to v; this implies (since v satisfies the
weak transport equation) that ρ is a renormalized solution, and so, by theorem 8.4, a
(unique) solution.

We know that vn = β(ρn) converges to v ∈ L2(0, T ;L2(Ω)) in L2(0, T ;L2(Ω)). This
implies that vn converges to v in measure, that is β(ρn) converges in measure to v.
Since |Ω× (0, T )| <∞ and

‖ρn‖Lp(0,T ;Lp(Ω) ≤ C‖ρn‖L∞(0,T ;Lp(Ω)) ≤ C

(
sup
n∈N
‖ρn‖L∞(0,T ;Lp(Ω))

)
<∞

using propistion 3.1, we have that exists ρ, measurable function on Ω × (0, T ), such
that ρn → ρ in measure4. But, if β ∈ C1(R) is an admissible function, we have, by

4The convergence of β(ρn) holds for every β ∈ C1(R). However, proposition 3.1 holds in this case.
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proposition 3.1, that vn ≡ β(ρn)→ β(ρ) in measure. It follows that v = β(ρ). In fact,
we have

‖β(ρ)− v‖L2(0,T ;L2(Ω)) ≤ ‖β(ρ)− β(ρn)‖L2(0,T ;L2(Ω)) + ‖β(ρn)− v‖L2(0,T ;L2(Ω))

We know from above that ‖β(ρn) − v‖L2(0,T ;L2(Ω)) → 0 as n → ∞. On the other
hand, β(ρn) converges to β(ρ) in measure and |β(ρn)| ≤ Cβ implies that β(ρn) has a
uniform integrable bound in L2(0, T ;L2(Ω)). So, again by proposition 3.1, ‖β(ρn) −
β(ρ)‖L2(0,T ;L2(Ω)) → 0 as n→∞. So, β(ρ) = v ∈ L2(0, T ;L2(Ω)).

Remark 8.13. The same argument holds with L2(0, T ;L2(Ω)) replaced by Lp(0, T ;Lp(Ω)).
�

So, the measurable function ρ is a renormalized solution of the weak transport equation,
since v = β(ρ) is a solution. Now, using the arguments in the proof of theorem 8.5 (see
corollary 8.1), with q = 1 (where only the measurability of ρ is used), we deduce that
‖ρ(t0)‖p = ‖ρ0‖p for almost every t0 ∈ (0, T ). So ρ ∈ L∞(0, T ;Lp(Ω)), and this implies
that ρ is a solution to the weak transport equation with initial density ρ0.

Remark 8.14. The aim of the theorem is to prove that ρn → ρ in C([0, T ];Lp(Ω)),
where ρ is a renormalized solution of the weak transport equation with velocity field u
and initial density ρ0. If we know a priori that ρn

∗
⇀ ρ in L∞(0, T ;L∞(Ω)) to some

ρ ∈ L∞(0, T ;Lp(Ω)), with ρ weak solution to the transport equation with field u and
initial density ρ0, then by uniqueness theorem ρ ≡ ρ, and so ρn → ρ in C([0, T ];Lp(Ω)).
In this spirit we will use this stability theorem. �

We have finally that ρ ∈ L∞(0, T ;Lp(Ω)) is a renormalized solution, that is, if β is an
admissible function, with M > 0 such that |β(s)| ≤M for every s ∈ R, we have

−
∫ T

0

(∫
Ω

β(ρ) ∂tφ dx

)
dt−

∫
Ω

β(ρ0(x))φ(0, x) dx+

∫ T

0

(∫
Ω

β(ρ) (u ·∇φ) dx

)
dt = 0

Choosing φ ∈ C∞c ([0, T ) × Ω) as in (8.27), we have, for every t0 ∈ [0, T ] (eventually
redefining the function out of a zero measure set)∫

Ω

β(ρ(t0, x))ϕ(x) dx =

∫
Ω

β(ρ0(x))ϕ(x)−
∫ t0

0

(∫
Ω

β(ρ(x, t))u(x, t) · ∇ϕ(x) dx

)
dt

Moreover, by the hypothesis, ρn is renormalized solution to the transport equation with
velocity field un and initial density ρ0

n. It follows that, if t0 ∈ [0, T ], we have∫
Ω

β(ρn(t0, x))ϕ(x) dx =

∫
Ω

β(ρ0
n(x))ϕ(x)−

∫ t0

0

(∫
Ω

β(ρn(x, t))un(x, t) ·∇ϕ(x) dx

)
dt

Let now [0, T ] 3 tn → t0 ∈ [0, T ] and consider that∫
Ω

β(ρn(tn, x))ϕ(x) dx =

∫
Ω

β(ρ0
n(x))ϕ(x)−

∫ tn

0

(∫
Ω

β(ρn(x, t))un(x, t) ·∇ϕ(x) dx

)
dt

We want to show that

lim
n→∞

∫
Ω

β(ρn(tn, x))ϕ(x) dx =

∫
Ω

β(ρ(t0, x))ϕ(x) dx (8.30)

F
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for every ϕ ∈ C∞c (Ω). But this is true. In fact∫
Ω

(
β(ρn(tn, x))− β(ρ(t0, x))

)
ϕ(x) dx =

∫
Ω

(
β(ρ0

n(x))− β(ρ0(x))
)
ϕ(x) dx−

−
{∫ tn

0

(∫
Ω

β(ρn(x, t))un(x, t)·∇ϕ(x) dx

)
dt−

∫ t0

0

(∫
Ω

β(ρ(x, t))u(x, t)·∇ϕ(x) dx

)
dt

}
=

=

∫
Ω

(
β(ρ0

n(x))−β(ρ0(x))
)
ϕ(x) dx−

∫ t0

0

(∫
Ω

β(ρn)un ·∇ϕ dx−
∫

Ω

β(ρ)u ·∇ϕ dx
)
dt−

−
∫ tn

t0

∫
Ω

β(ρn)un · ∇ϕ dx dt

Observe, first of all, that∣∣∣∣ ∫
Ω

(
β(ρ0

n(x))− β(ρ0(x))
)
ϕ(x) dx

∣∣∣∣ ≤ ‖ϕ‖∞‖β(ρ0
n)− β(ρ0)‖1 → 0

as n→∞. Furthermore∣∣∣∣ ∫ t0

0

(∫
Ω

β(ρn)un·∇ϕ dx−
∫

Ω

β(ρ)u·∇ϕ dx
)
dt

∣∣∣∣ =

∣∣∣∣ ∫ t0

0

(∫
Ω

(
β(ρn)un−β(ρ)u

)
·∇ϕ dx

)
dt

∣∣∣∣ =

=

∣∣∣∣ ∫ t0

0

(∫
Ω

β(ρn)
(
un − u

)
· ∇ϕ dx

)
dt+

∫ t0

0

(∫
Ω

(
β(ρn)− β(ρ)

)
u · ∇ϕ dx

)
dt

∣∣∣∣ ≤
≤M‖∇ϕ‖∞

∫ T

0

∫
Ω

|un − u| dx dt+

∣∣∣∣ ∫ t0

0

(∫
Ω

(
β(ρn)− β(ρ)

)
u · ∇ϕ dx

)
dt

∣∣∣∣→ 0

as n→∞, since un → u in L1(0, T ;L1(Ω)) and β(ρn)
∗
⇀ v = β(ρ) in L∞(0, T ;L∞(Ω))

and χ(0,t0)u · ∇ϕ ∈ L1(0, T ;L1(Ω)).

Moreover, we have∣∣∣∣ ∫ tn

t0

∫
Ω

β(ρn)un · ∇ϕ dx dt

∣∣∣∣ ≤ ∣∣∣∣ ∫ tn

t0

(∫
Ω

β(ρn)un · ∇ϕ dx−
∫

Ω

β(ρ)u · ∇ϕ dx

)
dt

∣∣∣∣+
+

∣∣∣∣ ∫ tn

t0

(∫
Ω

β(ρ)u·∇ϕ
)
dt

∣∣∣∣ ≤ ∣∣∣∣ ∫ T

0

χ(t0,tn)(t)

(∫
Ω

β(ρn)un·∇ϕ dx−
∫

Ω

β(ρ)u·∇ϕ dx
)
dt

∣∣∣∣+
+M‖∇ϕ‖∞

∫ tn

t0

‖u‖1 dt ≤
∣∣∣∣ ∫ T

0

χ(t0,tn)(t)

(∫
Ω

β(ρn)(un−u)·∇ϕ dx+

∫
Ω

(β(ρn)−β(ρ))u·∇ϕ dx
)
dt

∣∣∣∣+
+M‖∇ϕ‖∞

∫ tn

t0

‖u‖1 dt ≤M‖∇ϕ‖∞‖un−u‖L1(0,T ;L1(Ω)) +3M‖∇ϕ‖∞
∫ tn

t0

‖u‖1 dt→ 0

as n → ∞, since tn → t0, un → u in L1(0, T ;L1(Ω) as n → ∞. So we have proved
(8.30). Starting from this point, we want to show that also

lim
n→∞

∫
Ω

ρn(tn, x)ϕ(x) dx =

∫
Ω

ρ(t0, x)ϕ(x) dx (8.31)

for every ϕ ∈ C∞c (Ω) and tn → t0.
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Remark 8.15. If (8.31) holds, then it is true for every ϕ ∈ Lq(Ω). Moreover, we have
that

‖ρn(tn)‖p = ‖ρn0‖p → ‖ρ0‖p = ‖ρ0(t0)‖p
thanks to the convergence of ρn0 → ρ0 in Lp(Ω) and using corollary 8.1, since un, u ∈
L1(0, T ;L1(Ω)) and ρ, ρn are renormalized solutions. So, it follows that ρn(tn)→ ρ(t0)
in Lp(Ω). �

So we have to prove (8.31). Given M ∈ (0,∞), consider the function

βM(s) :=

{
s |s| ≤M

M |s| > M

We have to fix this M in a precise way. Let tn → t0 ∈ [0, T ] and a consider the sequence
{ρn(tn)}n∈N ∪ {ρ(t0)} ⊂ Lp(Ω). Moreover, this sequence is bounded in Lp(Ω), since

‖ρn(tn)‖p, ‖ρ(t0)‖p ≤ ‖ρ(t0)‖+ sup
n
‖ρn‖L∞(0,T ;Lp(Ω))

since ‖ρn(tn)‖p ≤ sup(0,T ) ‖ρn(t)‖p ≡ ‖ρn‖L∞(0,T ;Lp(Ω)) ≤ C by the hypothesis. So, using
theorem 3.7, we have that for every ε > 0 exists Mε > 0 such that∫
{x∈Ω: |ρ(t0,x)|>Mε}

|ρ(t0, x)| dx,
∫
{x∈Ω: |ρn(tn,x)|>Mε}

|ρn(tn, x)| dx < ε ∀ n ∈ N (8.32)

Remark 8.16. Notice that (8.32) implies that

Mε|{x ∈ Ω : |ρ(t0, x)| > Mε}|, Mε|{x ∈ Ω : |ρn(tn, x)| > Mε}| < ε ∀ n ∈ N

that will be useful in the future. �

Fix ε > 0 and choose Mε > 0 as above. Then we can consider βMε . Moreover, let βkMε

an admissible functions that coincides with βMε outside a neighbourhood of Mε, and
such that

|βkεMε
(s)| ≤ |βMε(s)| ≤Mε, sup

s∈R
|βkMε

(s)− βMε| <
1

k

If we now consider the admissible function |βkεMε
| ≤ Mε, from We can choose kε ∈ N

such that
|Ω|‖ϕ‖∞

kε
< ε. So, we can write

∫
Ω

ρn(tn, x)ϕ(x) dx =

∫
Ω

βMε(ρn(tn, x))ϕ(x) dx+

∫
Ω

{ρn(tn, x)−βMε(ρn(tn, x))}ϕ(x) dx

(8.33)
We, at first, focus our attention to the second addend. We have∣∣∣∣ ∫

Ω

{ρn(tn, x)−βMε(ρn(tn, x))}ϕ(x) dx

∣∣∣∣ =

∣∣∣∣ ∫
{x∈Ω: |ρn(tn,x)|≤Mε}

{ρn(tn, x)−βMε(ρn(tn, x))}ϕ(x) dx+

+

∫
{x∈Ω: |ρn(tn,x)|>Mε}

{ρn(tn, x)− βMε(ρn(tn, x))}ϕ(x) dx

∣∣∣∣ =
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=

∣∣∣∣ ∫
{x∈Ω: |ρn(tn,x)|>Mε}

{ρn(tn, x)−Mε}ϕ(x) dx

∣∣∣∣ ≤
≤ ‖ϕ‖∞

(∫
{x∈Ω: |ρn(tn,x)|>Mε}

|ρn(tn, x)| dx+Mε|{x ∈ Ω : |ρn(tn, x)| > Mε}|
)
< 2ε‖ϕ‖∞

If in equation (8.33) we subtract the term

∫
Ω

ρ(t0, x)ϕ(x) dx, we have also to consider

∣∣∣∣ ∫
Ω

βMε(ρn(tn, x))ϕ(x) dx−
∫

Ω

ρ(t0, x)ϕ(x) dx

∣∣∣∣ ≤
≤
∣∣∣∣ ∫

Ω

(
βMε(ρn(tn, x))− βMε(ρ(t0, x))

)
ϕ(x) dx

∣∣∣∣+
+

∣∣∣∣ ∫
Ω

(
βMε(ρ(t0, x))− ρ(t0, x)

)
ϕ(x) dx

∣∣∣∣
We deal at first with the second addend. Following the steps above, we have again∣∣∣∣ ∫

Ω

(
βMε(ρ(t0, x))− ρ(t0, x)

)
ϕ(x) dx

∣∣∣∣ ≤
≤
∣∣∣∣ ∫
{x∈Ω: |ρ(t0,x)|≤Mε}

(
βMε(ρ(t0, x))− ρ(t0, x)

)
ϕ(x) dx

∣∣∣∣+
+

∣∣∣∣ ∫
{x∈Ω: |ρ(t0,x)|>Mε}

(
βMε(ρ(t0, x))− ρ(t0, x)

)
ϕ(x) dx

∣∣∣∣ =

=

∣∣∣∣ ∫
{x∈Ω: |ρ(t0,x)|>Mε}

(
Mε − ρ(t0, x)

)
ϕ(x) dx

∣∣∣∣ ≤
≤ ‖ϕ‖∞

(∫
{x∈Ω: |ρ(t0,x)|>Mε}

|ρ(t0, x)| dx+Mε|{x ∈ Ω : |ρ(t0, x)| > Mε}|
)
≤ 2ε‖ϕ‖∞

The other term can be written as∣∣∣∣ ∫
Ω

(
βMε(ρn(tn, x))− βMε(ρ(t0, x))

)
ϕ(x) dx

∣∣∣∣ =

=

∣∣∣∣ ∫
Ω

(
βMε(ρn(tn, x))−βkεMε

(ρn(tn, x))
)
ϕ(x) dx+

∫
Ω

(
βkεMε

(ρn(tn, x))−βkεMε
(ρ(t0, x))

)
ϕ(x) dx+

+

∫
Ω

(
βkεMε

(ρ(t0, x))− βMε(ρ(t0, x))
)
ϕ(x) dx

∣∣∣∣ ≤
≤ ‖ϕ‖∞

∫
Ω
|βMε(ρn(tn, x))−βMε(ρ(t0, x))| dx+

∣∣∣∣ ∫
Ω

(
βkεMε

(ρn(tn, x))−βkεMε
(ρ(t0, x))

)
ϕ(x) dx

∣∣∣∣+
+‖ϕ‖∞

∫
Ω
|βMε(ρ(t0, x))− βMε(ρ(t0, x))| dx ≤

≤ 2‖ϕ‖∞|Ω|
kε

+

∣∣∣∣ ∫
Ω

(
βkεMε

(ρn(tn, x))− βkεMε
(ρ(t0, x))

)
ϕ(x) dx

∣∣∣∣
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We have that, for every admissible function, (8.30), there exists N = N(βkεMε
) ≡ Nε

such that, for every n ≥ Nε,∣∣∣∣ ∫
Ω

ρn(tn, x)ϕ(x) dx−
∫

Ω

ρ(t0, x)ϕ(x) dx

∣∣∣∣ ≤ 4ε‖ϕ‖∞ +
2‖ϕ‖∞|Ω|

kε
+ ε ≤ 4ε‖ϕ‖∞ + 3ε

that is

lim
n→∞

∫
Ω

ρn(tn, x)ϕ(x) dx =

∫
Ω

ρ(t0, x)ϕ(x) dx

Using remark 8.15, we have that ρn(tn)→ ρ(t0) in Lp(Ω). From theorem 7.1 it follows
that

ρn → ρ in C([0, T ];Lp(Ω))

that is the thesis.
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Chapter 9

Stationary Stokes System and the
Stokes operator

The Stokes equation is a stationary PDE, i.e. the equation does not involve the temporal
variable t. The study of this system of equations will be useful in future discussions.
We will deal with the equation in the whole space and the Stationary stokes system on
a domain Ω.
The theory of the Stokes equation in the whole space will concern both homogeneous
and inhomogeneous Stokes equation: in the latter case we will deal with an external
force in the class C∞c , following the ideas of Galdi’s An introduction to the Mathematical
Theory of the Navier-Stokes equations [12], that is, introducing a fundamental solution
to the equations and obtaining solutions to the Stokes equations by convolution. A
uniqueness theorem will be prove in the case of homogeneous equation. The whole
Stokes theory is developed in the classical paper [19]. However, as mentioned before,
this compilative chapter is based on Galdi’s work [12].
To this purpose, it is fundamental to introduce the main tools of classical harmonic
analysis, which will be useful in the future dissertation.
On the other hand, we will prove fundamental existence and regularity results in the
case of the Stationary Stokes System in a bounded domain Ω.

9.1 Stokes equation: solution and regularization

Definition 9.1. In a bounded domain Ω, the Stokes equation is the stystem{
∆v = ∇p+ f

∇ · v = 0
in Ω (9.1)

with the adherence condition v = v∗ over ∂Ω.

Remark 9.1. The system (9.1) can obviously be understood in classical sense, that is
v ∈ C2(Ω) ∩ C(Ω), p ∈ C1(Ω) ∩ C(Ω), f ∈ C(Ω) and v∗ ∈ C(∂Ω). However, in a little
while we will propose a weak interpretation of the equation. �

Remark 9.2. If Ω = Rn, the space is not bounded and the adherence is useless. We will
find solution with a certain decay at the infinity. �
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Remark 9.3. Observe that, if Ω is bounded and regular enough, we have, formally,

0 =

∫
Ω

∇ · v dx =

∫
∂Ω

v∗ · ν dσ

where ν is the outer normal of Ω. According to this, we have the following definition.
�

Definition 9.2. An adherence condition is compatible if∫
∂Ω

v∗ · ν dσ = 0

Remark 9.4. In example, v∗ ≡ 0 over ∂Ω is compatible.

We also define the following space, that will be fundamental in the next sections.

Definition 9.3. We set the space of divergence-free test functions as

D(Ω) := {u ∈ C∞0 (Ω) : ∇ · u = 0 in Ω}

The next definition introduce the weak version of the problem disclosed in remark
9.1.

Definition 9.4 (Weak solution). A field v : Ω→ Rn is called a q-weak (or q-generalized)
solution of (9.1) if and only if

(i) v ∈ D1,q(Ω);

(ii) v is weakly divergence free1 in Ω;

(iii) v = v∗ in trace sense, or, if v∗ ≡ 0, v ∈ D1,q
0 (Ω);

(iv) v satisfies
〈∇v,∇ϕ〉 = −〈f, ϕ〉 ϕ ∈ D(Ω) (9.2)

Remark 9.5. In the practice, that is in the application to the problem at the core of the
present thesis, we will obtain v ∈ W 1,q(Ω) or W 1,q

0 (Ω). �

Apparently, in this definition it doesn’t appear the pressure term. However, it holds
the following lemma.

Lemma 9.1 (Pair of weak solutions). Let Ω be a domain in Rn, with n ≥ 2 and

let2 f ∈ W−1,q(Ω′), with q ∈ (1,∞), for any Ω′ bounded and Ω
′ ⊂ Ω. A vector field

v ∈ W 1,q
loc (Ω) satisfies

〈∇v,∇ϕ〉 = −〈f, ϕ〉 ϕ ∈ D(Ω) (9.3)

1i.e. divergence free in the sense of distributions, that is∫
Ω

v · ∇φ dx = 0 ∀φ ∈ C∞c (Ω)

2This lemma is [12, Lemma IV.1.1 pg. 235]. In this book, the author asks that f ∈ W−1,q
0 (Ω′).

However, in the same book, page 60, Theorem II.3.5, the author consider W−1,q
0 (Ω′) as the dual

space of W 1,q′

0 (Ω′), that in our notation is, differently, defined with W−1,q(Ω′), as we have written in
definition 4.11.
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if and only if exits p ∈ Lqloc(Ω) such that

〈∇v,∇ψ〉 = −〈f, ψ〉+ 〈p,∇ · ψ〉 ψ ∈ C∞0 (Ω) (9.4)

The pair (u, p) is often called weak solution pair.

Proof. If we suppose that (9.4) holds for some p ∈ Lqloc(Ω), for every ψ ∈ C∞0 (Ω). So, if
ψ ∈ C∞0,σ(Ω), clearly, being ∇ · ψ = 0, the pressure therm vanishes and we have (9.3).

Now we have to show the other implication. We define the the functional

F(ψ) := 〈∇v,∇ψ〉+ 〈f, ψ〉

We now show two properties of this functional: it belongs to W−1,q(Ω′) and F(v) = 0 for

every v ∈ C∞0,σ(Ω′). Obviously, being W−1,q(Ω′) ≡ (W 1,q′

0 (Ω)′)∗, if ψk → ψ in W 1,q′

0 (Ω′)
we have

|F(ψk − ψ)| ≤ ‖∇v‖q‖∇ψk −∇ψ‖q′ + ‖f‖q‖ψk − ψ‖q′ → 0 as k →∞

where ‖ · ‖p ≡ ‖ · ‖p,Ω′ . So F ∈ W−1,q
loc (Ω). Moreover, if v ∈ C∞0,σ(Ω), (9.3) implies that

F(v) = 0.

So, lemma 6.1, we have that exists p ∈ Lqloc(Ω) such that F d
= ∇p, that is

F(ϕ) = −
∫

Ω

p ∇ · ϕ dx ∀ϕ ∈ C∞0 (Ω)

that is the thesis.

Moreover, it can be proved an existence and uniquess theorem for a weak solution
q = 2.

Theorem 9.1. Let Ω ⊆ Rn, n ≥ 2, be a bounded and locally Lipschitz domain. For
any f ∈ D−1,2

0 (Ω) and v∗ ∈ W 1/2,1(∂Ω) that satisfies the compatibility condition, there
exists one and only one weak solution v to (9.1). Moreover, if p is the pressure filed
associated to v by Lemma 9.1,

‖v‖1,2 + ‖p‖2 ≤ c
(
‖f‖−1,2 + ‖v∗‖ 1

2
,2(∂Ω)

)
with c = c(n,Ω).

Remark 9.6. This existence theorem in the case q = 2 is fundamental to start consid-
ering the problem, but it is different from our aims: we want to regularize solution that
we already know that exist. So we omit the proof. �

Weak and strong solutions to the Stokes problem. In the lines above we have
defined generalized weak solution (see definition 9.4) and pairs of weak solution (see
lemma 9.1). Moreover, we have a strong definition of solution for the Stokes system.
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Definition 9.5 (Strong solutions). Let Ω a domain in Rn, with n ≥ 2. A strong
solution of the Stokes system (9.1) with f ∈ L2(Ω) and v∗ ∈ L2(∂Ω) is a pair of
functions (u, f1) ∈ W 2,2(Ω)×G(Ω) sucht that the equalities

−µ∆u+ f1 = f, ∇ · u = 0, Tu = v∗

hold a.e. in Ω.

Remark 9.7. If v∗ ≡ 0 on ∂Ω, the zero boundary conditions is satisfied if we require
u ∈ H1

0 (Ω). �

The following proposition shows the duality between strong and weak solution.
It also simplifies the implication ”regular weak solution” =⇒ ”strong solution for an
associtated pressure term”.

Proposition 9.1. Let Ω ⊆ Rn a bounded domain, with n ≥ 2. Consider the Stokes
problem (9.1) over Ω. Then:

• A strong solution (u, f1) of the Stokes problem is also a weak solution in the sense
of definition 9.4, with q = 2.

• Moreover, for a 2-weak solution u ∈ W 2,2(Ω) of definition 9.4, with f ∈ L2(Ω),
there exists a pressure term f1 ∈ G(Ω) such that the pair (u, f1) is a strong solution
in the sense of definition 9.5.

• Finally, if (u, p) is a weak solution pair in the sense of lemma 9.1, with f ∈ L2(Ω),
and, in addiction, u ∈ H2(Ω) and ∇p ∈ L2(Ω) then (u,∇p) is a strong solution
in the sense of definition 9.5.

Proof. Let (u, f1) a strong solution, so that u ∈ H2(Ω) and f1 ∈ G(Ω). Then, if
v ∈ C∞0,σ(Ω) we have

−µ
∫

Ω

∆u · v dx =

∫
Ω

(−µ∆u+ f1) · v dx =

∫
Ω

f · v

since f1 ∈ G(Ω). It also holds, using integration by parts3 and a result about traces,

−µ
∫

Ω

∆u · v dx = µ

∫
Ω

∇u · ∇v dx

that is equation (9.2). Moreover, u ∈ H2(Ω) ⊆ D1,2(Ω), u = v∗ in trace sense and, for
every ϕ ∈ C∞0 (Ω), we have∫

Ω

u · ∇ϕ dx = −
∫

Ω

(
∇ · u

)
ϕ dx = 0

So u is a 2-weak solution.

3Thanks to the fact that v ∈ C1(Ω) and v = 0 at the boundary.
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Conversely, let u a weak solution in the sense of definition 9.4, that also belongs to
H2(Ω). By equation (9.2) we have

µ

∫
Ω

∇u · ∇v dx =

∫
Ω

f · v dx ∀v ∈ C∞0,σ(Ω)

Again, as in the note above, we have the equality

−µ
∫

Ω

∆u · v dx = µ

∫
Ω

∇u · ∇v dx

and so ∫
Ω

(−µ∆u− f) · v dx = 0 ∀v ∈ C∞0,σ(Ω)

Thanks to lemma 6.1, being f ∈ L2(Ω), we have

−µ∆u− f = f1

with f1 ∈ G(Ω). Moreover, Tu = v∗ in the hypothesis and for every ϕ ∈ C∞0 (Ω),

0 =

∫
Ω

u · ∇ϕ dx = −
∫

Ω

(
∇ · u)ϕ dx

so tha, by a classical measure theory result, ∇ · u = 0 almost everywhere in Ω.

Finally, let (u,∇p) as in the hypothesis. Then, using (9.4), ∀ϕ ∈ C∞0 (Ω) we have∫
Ω

(µ∇u · ∇ϕ− f · ϕ) dx =

∫
Ω

p ∇ · ϕ dx = −
∫

Ω

∇p · ϕ dx

So, being also u ∈ H2(Ω), then

−µ
∫

Ω

∆u · ϕ dx−
∫

Ω

f · ϕ dx = −
∫

Ω

∇p · ϕ dx

So for every ϕ ∈ C∞0 (Ω), we have∫
Ω

(−µ∆u− f +∇p) · ϕ dx = 0

where −µ∆u− f +∇p ∈ L2(Ω). But, for classical measure theory results, we have that
the integrand is zero a.e., since it is zero the integral against any test function over Ω,
so that4

−µ∆u+∇p = f a.e. in Ω

Moreover, as above, since u ∈ H2(Ω) we have∇·u = 0 almost everywhere. Furthermore,

Tu = v∗ in trace sense by definition.

4Here all the terms have three components. One can so apply the measure theory result for real
valued functions considering ϕ = (ϕ1, 0, 0) and so on. In this way one gets the result for the three
components separately, and then we put the pieces togheter.

145



9.2 Existence, uniquess and estimates in Ω = Rn

In this section we focus our attention to the Stokes problem on the whole space, with
particular interest to the inhomogeneous problem.

Definition 9.6. Let f, g ∈ C∞c (Rn) a vector and a scalar field, respectively. The Stokes
problem in the whole space associated to these fields is the system{

∆v = ∇p+ f

∇ · v = g
in Rn (9.5)

and we search for v ∈ C2(Rn) and p ∈ C1(Rn) with suitable decay properties at infinity.

9.2.1 Solution to the problem

We simplify the problem. Consider a field F ∈ C∞c (Rn). Then, we define

u(x) :=

∫
Rn
U(x− y)F (y) dy, π(x) := −

∫
Rn
q(x− y)F (y) dy (9.6)

where U and π have to be fixed. In the following subsections we fix the kernels U, q. In order
to do this, we collect some basic results.

Harmonic functions. Here we briefly review the main definitions and result in harmonic
theory.
Let Ω ⊆ Rn.

Definition 9.7. A function u ∈ C2(Ω) is called harmonic in Ω if

∆u(x) = 0 ∀x ∈ Ω

Definition 9.8. A function u ∈ C4(Ω) is called biharmonic in Ω if

∆2u(x) ≡ ∇4u(x) :=

n∑
i=1

n∑
j=1

∂2
xi∂

2
xju(x) = 0 ∀x ∈ Ω

The operator ∇4 is called biharmonic or bilaplacian operator.

Theorem 9.2. Let Ω ⊆ Rn a domain and let u ∈ C2(Ω) an harmonic function. Then, for
every BR(y) ⊂⊂ Ω it holds

u(y) =
1

ωnRn

∫
BR(y)

u(x)dx

where ωn is the area of the unit sphere in Rn.

Theorem 9.3. Let Ω ⊆ Rn a connected domain and let u ∈ C2(Ω) an harmonic function.
If exists y0 ∈ Ω such that u(y0) = sup

Ω
u, then u ≡ const.

Corollary 9.1. Let Ω ⊆ Rn a bounded and connected domain. Let u ∈ C2(Ω) ∩ C(Ω). Then

max
Ω

u = max
∂Ω

u
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Fundamental solution of the biharmonic equation. By biharmonic equation we
mean the PDE

∇4u = 0

Remark 9.8. We see immediately that applying the biharmonic operator to a C4 function is
equivalent to applying the laplacian operator twice. In fact, if u is C4 in a neighborhood of x,

∇4u(x) =

n∑
i=1

n∑
j=1

∂2
xi∂

2
xju(x) =

n∑
i=1

∂2
xi

n∑
j=1

∂2
xju(x) =

n∑
i=1

∂2
xi(∆u)(x) = ∆(∆u)(x)

Definition 9.9. We call fundamental solution of the biharmonic equation the function

Γ(x) ≡ φ(|x|) :=
|x|
8π

(9.7)

Lemma 9.2. For every x 6= 0 we have ∇4Γ(x) = 0.

Proof. It is an easy computation. Let x 6= 0. We have

∂xi |x| =
xi
|x|
, ∂xi

xi
|x|

=
1

|x|
− x2

i

|x|3

so that

∆|x| =
3∑
i=1

(
1

|x|
− x2

i

|x|3

)
=

2

|x|

using the previous remark, thanks to the fact that |x| is smooth in Rn/{0}. Going on we have

∂xi
2

|x|
= − 2xi
|x|3

, ∂xi

(
− 2xi
|x|3

)
= −2[

1

|x|3
− 3

x2
i

|x|5
]

Thus

∆
2

|x|
= −2

(
3

|x|3
− 3
|x|2

|x|5

)
= 0

that is the thesis.

9.2.2 Lorentz’s fundamental solutions

To the purpose of solving the Stokes equation, it will be useful to introduce other fundamental
solutions, with the fundamental solution of Laplace’s equation Γ as a model. In particular,
thinking to the Stokes equation, it will be useful to find function (or, as we will say, kernels),
say U, q, such that

−∆U(z) + ∂ziq(z) = 0

To this aim, we can define, given real variable function φ(t) smooth for t 6= 0,

Uij(z) := (δij∆− ∂zi∂zj )φ(|z|)

qj(z) := −∂zj∆[φ(|z|)]

for every z 6= 0, we have

−∆Uij(z) + ∂ziqj(z) = −∆(δij∆[φ(|z|)]− ∂zi∂zj [φ(|z|)])− ∂zi∂zj∆[φ(|z|)] =
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using that φ(|z|) is smooth far from the origin and so using the Schwarz lemma

= −δij∇4[φ(|z|)] + ∂zi∂zj∆[φ(|z|)]− ∂zi∂zj∆[φ(|z|)] = −δij∇4[φ(|z|)]

So if

φ(t) :=
t

8π
=⇒ φ(|z|) =

|z|
8π
≡ Γ(z)

It follows that, for every z 6= 0,

−∆Uij(z) + ∂ziqj(z) = 0

We now can write explicitly the expression for the kernels: using the equalities of the previous
proof, we have

Uij(z) =
δij

4π|z|
− 1

8π

δij
|z|

+
1

8π

zizj
|z|3

=
δij

8π|z|
+

1

8π

zizj
|z|3

qj(z) =
1

4π

zj
|z|3

Remark 9.9. Notice first of all that
3∑
i=1

∂xiUij(x− y) = 0. In fact, if i = j

∂xiUij(x− y) =
1

8π

(
− xj − yj
|x− y|3

+ 2
xj − yj
|x− y|3

− 3
(xj − yj)3

|x− y|5

)
and, if i 6= j,

∂xiUij(x− y) =
1

8π

(
(xj − yj)(

1

|x− y|3
− 3

(xi − yi)2

|x− y|5
)

)
So

3∑
i=1

∂xiUij(x− y) =
1

8π

(
−3(xj − yj)

|x− y|2

|x− y|5
+ 3

(xj − yj)
|x− y|3

)
= 0

9.2.3 Classical results about Stokes equation

Definition 9.10. Thanks to the arguments in the previous subsection, we define the so called
Lorentz’s fundamental solutions, for every x 6= y, as

Uij(x− y) :=
1

8π

(
δij
|x− y|

+
(xi − yi)(xj − yj)

|x− y|3

)
(9.8)

qj(x− y) :=
1

4π

xj − yj
|x− y|3

(9.9)

Remark 9.10. We will now build solutions to the Stokes problem by convolution of the external
force against the kernels defined above. As we will see, the convolution has no problems of
definition: however, we have to do some work to derive the function we’re going to define. �

Remark 9.11. If we consider the kernels U and q, these are homogenous function of degree,
respectively, −1 and −2. This means that the origin is a summable singularity.
However, deriving once the kernels, we get homoegenous functions of degrees −2 and −3. The
kernel obtained deriving q is thus no more summable in the origin. The same thing happens
if we derive another time U . This suggests that we have to deal with these functions carefully.
�
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So, we have the following theorem.

Theorem 9.4 (Classical Stokes problem in R3). Let f ∈ C∞c (R3) be a test external force.
We define

V (x) :=
1

µ

∫
R3

U(x− y) f(y) dy, Π(x) :=

∫
R3

q(x− y) · f(y) dy (9.10)

The pair (V,Π) is a solution of the Stokes equation{
−µ∆V +∇Π = f

∇ · V = 0
(9.11)

in the class C∞(R3). Moreover this pair of solutions (V,Π) satisfies the estimates

|V (x)| ≤ W

|x| −R
∀ x : |x| > R

and

|Π(x)| ≤ Q

(|x| −R)2
∀ x : |x| > R

where R > 0 is such that supp(f) ⊆ B(0, R).

Proof. We proceed proving the theorem by steps.

1. Well-posedness and smoothness. Well-posedness and regularity follow from a
simple consideration: we can consider the integral

1

µ

∫
R3

U(z) f(x− z) dz

where U represent one of the Uij and f a component fl of f . This integral is well-posed for
every x. In fact, let x0 ∈ R3 and consider B(x0, δ), for δ > 0, i.e. we choose an arbitrary open
ball in the space. If R > 0 is such that supp(f) ⊆ B(0, R) and if C0 := |x0|+ δ, we have, for
x ∈ B(x0, δ),

|z| ≥ R+ C0 =⇒ |x− z| ≥ ||x| − |z|| ≥ |z| − |x| ≥ R+ C0 − |x| ≥ R

since |x| = |x− x0|+ |x0| ≤ δ + |x0| ≡ C0. So, if |z| ≥ R + C0, then f(x− z) = 0. It follows
that we can rewrite ∫

R3

U(z) f(x− z) dz =

∫
B(0,R+C0)

U(z) f(x− z) dz

So, being
|U(z) f(x− z)χB(0,R+C0)(z)| ≤ ‖f‖∞|U(z)|χB(0,R+C0)(z)

and ∫
B(0,R+C0)

|U(z)|dz < +∞

since U has an integrable singularity in the origin, being U homoegenous of exponent α = −1.
So, the integral is well posed and

V (x) ≡ 1

µ

∫
R3

U(x− y)f(y)dy =
1

µ

∫
R3

U(z)f(x− z)dz
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thanks to a change of variable. Moreover, since we have also the estimate5

|U(z) ∂xf(x− z)χB(0,R+C0)(z)| ≤ ‖∂xf‖∞|U(z)|χB(0,R+C0)(z)

we can pass the derivative under the integral sign, and get

∂xV (x) =
1

µ

∫
B(0,R+C0)

U(z) ∂xf(x− z) dz =

=
1

µ

∫
R3

U(z) (∂xf)(x− z) dz =
1

µ

∫
R3

U(x− y) ∂xf(y) dy

using that, being f ≡ 0 if |z| ≥ R+ C0, so it is also ∂xf .

The continuity follows from the same argument and the fact that f ∈ C∞. In fact, the
same estimate, with ‖∂xf‖∞ gives a summable bound, so we have the continuity in x0.
From the arbitrariness of x0 and δ > 0, we have that V ∈ C∞(R3). The same method says
Π ∈ C∞(R3).

2. Estimates and asymptotic behaviour. Now we deduce the estimates. We start
with Π. Let R > 0 such that supp(f) ⊆ B(0, R). Then

|Π(x)| =
∣∣∣∣∫

R3

q(x− y) · f(y) dy

∣∣∣∣ =

∣∣∣∣∣
∫
B(0,R)

q(x− y) · f(y) dy

∣∣∣∣∣ ≤
∫
B(0,R)

|q(x− y) · f(y)| dy ≤

≤
∫
B(0,R)

|q(x− y)||f(y)|dy

Remember now that each component of q, i.e. qi, is an homogeneous function of exponent
α = −2. It follows that

|q(x− y)| ≤ 1

|x− y|2
max
|z|=1

|q(z)| ≡ M

|x− y|2

If |x| > R we have

|x− y| ≥ ||x| − |y|| ≥ |x| − |y| > |x| −R

for every y ∈ B(0, R). So
1

|x− y|2
≤ 1

(|x| −R)2

and hence for every x such that |x| > R

|Π(x)| ≤
∫
B(0,R)

M

(|x| −R)2
|f(y)|dy =

Q

(|x| −R)2

where Q := M

∫
B(0,R)

|f(y)|dy. The estimate for V is similar. We have

|V (x)| =
∣∣∣∣ 1µ
∫
R3

U(x− y)f(y) dy

∣∣∣∣ =

∣∣∣∣∣ 1µ
∫
B(0,R)

U(x− y)f(y) dy

∣∣∣∣∣ ≤ 1

µ

∫
B(0,R)

|U(x−y)||f(y)|dy

5Since also supp(∂xf) ⊆ B(0, R).
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The kernel U is such that each component is an homogeneous function of exponent α = −1.
So

|U(x− y)| =
∣∣∣∣U ( x− y

|x− y|
|x− y|

)∣∣∣∣ =
1

|x− y|

∣∣∣∣U ( x− y
|x− y|

)∣∣∣∣ ≤ 1

|x− y|
max
|z|=1

|U(z)| ≡ M ′

|x− y|

Again, for |x| > R, we have
|x− y| ≥ |x| −R

and
1

|x− y|
≤ 1

|x| −R
for every y ∈ B(0, R). So

|V (x)| ≤ 1

µ

∫
B(0,R)

M ′

|x− y|
|f(y)|dy ≤ 1

µ

∫
B(0,R)

M ′

|x| −R
|f(y)|dy =

W

|x| −R

where W := M ′
∫
B(0,R)

|f(y)|dy. These are the estimates that we expected.

3. Further derivatives and check that are solutions. Finally we find the deriva-
tives of V and Π and we prove that the functions solve the equation of Stokes. Even if we have
proved that V,Π are smooth, we can’t pass the derivative under the integral sign, because of
the remarks done before the theorem. The proof of smoothness itself use the smootheness of
the force f , so that’s what we will use again. In order to verify that

−µ∆V +∇Π = f

we have to remember that this is a vector equality. So we have to prove it component by
component. For the sake of simplycity, we will prove the equality of the first component: the
others are similar. So, we want to prove

−µ∆V1 + ∂x1Π = f1

Remember that

V1(x) =
1

µ

∫
R3

3∑
l=1

U1l(x− y)fl(y)dy

We start immediately deriving the expression twice. Let x ∈ B(x0, δ) fixed, for x0 ∈ R3 and
δ > 0. We have

∂2
xiV1(x) =

1

µ

3∑
l=1

∂2
xi

∫
R3

U1l(z)fl(x− z)dz =
1

µ

3∑
l=1

∫
R3

U1l(z)∂
2
xi [fl(x− z)]dz

Using that ∂2
xi [fl(x− z)] = ∂2

zi [fl(x− z)], we have

∂2
xiV1(x) =

1

µ

3∑
l=1

∫
R3

U1l(z)∂
2
zi [fl(x− z)]dz

We now fix ε > 0. So, we can split

∂2
xiV1(x) =

1

µ

3∑
l=1

∫
|z|<ε

U1l(z)∂
2
zi [fl(x− z)]dz +

1

µ

3∑
l=1

∫
|z|≥ε

U1l(z)∂
2
zi [fl(x− z)]dz
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Notice at once that the first piece is oε(1) ≡ o(1), since the integrand is summable in the
whole space thanks to the singularity of U1l and the compactness of the support of fl (and
the fact that x is banished in a fixed neighborhood). Moreover, observe that

∂zi [U1l(z)∂zi(fl(x− z))] = ∂ziU1l(z)∂zi(fl(x− z)) + U1l(z)∂
2
zi(fl(x− z))

So we have

∂2
xiV1(x) =

1

µ

3∑
l=1

∫
|z|≥ε

∂zi [U1l(z)∂zi(fl(x−z))]dz−
1

µ

3∑
l=1

∫
|z|≥ε

∂ziU1l(z)∂zi(fl(x−z))dz+o(1)

The first addend can be reduced to a surface integral. We prove this. We have∫
|z|≥ε

∂zi [U1l(z)∂zi(fl(x− z))]dz = lim
R→+∞

∫
R≥|z|≥ε

∂zi [U1l(z)∂zi(fl(x− z))]dz

thanks to the fact that the integrand, as we can see looking at the equality above regarding
this term, is the sum of two integrable addend on |z| ≥ ε (thanks to the compactness of the
support of f). By the divergence theorem for annulus we have∫

R≥|z|≥ε
∂zi [U1l(z)∂zi(fl(x− z))]dz =

=

∫
|z|=R

U1l(z)∂zi(fl(x− z))νi(z)dσ(z)−
∫
|z|=ε

U1l(z)∂zi(fl(x− z))νi(z)dσ(z)

If R is large enough, we have already seen that fl(x−z) ≡ 0, for x fixed in its neighbourhood.
So it is its partial derivative. Hence, this piece vanishes as R→ +∞. It follows that

∂2
xiV1(x) =

= − 1

µ

3∑
l=1

∫
|z|=ε

U1l(z)∂zi(fl(x− z))νi(z)dσ(z)− 1

µ

3∑
l=1

∫
|z|≥ε

∂ziU1l(z)∂zi(fl(x− z))dz+o(1) =

= − 1

µ

3∑
l=1

∫
|z|≥ε

∂ziU1l(z)∂zi(fl(x− z))dz + o(1)

Remark 9.12. We have included one more piece in the o(1) (in particular the first of the
second line) since changing the variable z ←→ εy we get∫

|z|=ε
U1l(z)∂zi(fl(x− z))νi(z)dσ(z) =

∫
|z|=1

U1l(εz)∂zi(fl(x− εz))νi(εz)ε2dσ(z) =

and U1l is homogeneous of degree −1

= ε

∫
|z|=1

U1l(z)∂zi(fl(x− εz))νi(z)dσ(z)→ 0 as ε→ 0

since we can pass the limit under the integral if the integrand is continuous on the compat
set over which the integral is done. �
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Now, as before, we have

∂zi [∂ziU1l(z)fl(x− z)] = ∂2
ziU1l(z)fl(x− z) + ∂ziU1l(z)∂zi [fl(x− z)]

and so ∫
|z|≥ε

∂ziU1l(z)∂zi(fl(x− z))dz =

=

∫
|z|≥ε

∂zi [∂ziU1l(z)fl(x− z)]dz −
∫
|z|≥ε

∂2
ziU1l(z)fl(x− z)dz

As above, the first addend can be reduced to a surface integral, that is∫
|z|≥ε

∂zi [∂ziU1l(z)fl(x− z)]dz = −
∫
|z|=ε

∂ziU1l(z)fl(x− z)νi(z)dσ(z)

We get

∂2
xiV1(x) = − 1

µ

3∑
l=1

(
−
∫
|z|=ε

∂ziU1l(z)fl(x− z)νi(z)dσ(z)−
∫
|z|≥ε

∂2
ziU1l(z)fl(x− z)dz

)
+o(1) =

=
1

µ

3∑
l=1

∫
|z|=ε

∂ziU1l(z)fl(x− z)νi(z)dσ(z) +
1

µ

3∑
l=1

∫
|z|≥ε

∂2
ziU1l(z)fl(x− z)dz + o(1)

This gives an expression for the second derivatives of V1 in x. We can now sum over i and get

∆V1(x) =
1

µ

3∑
l=1

∫
|z|=ε
∇U1l(z) · ν(z)fl(x− z)dσ(z) +

1

µ

3∑
l=1

∫
|z|≥ε

∆U1l(z)fl(x− z)dz + o(1)

We can now pass to ∂x1Π(x). With the same x and ε, we have

∂x1Π(x) = ∂x1

∫
R3

3∑
l=1

ql(x−y)fl(y)dy = ∂x1

∫
R3

3∑
l=1

ql(z)fl(x−z)dz =
3∑
l=1

∫
R3

ql(z)∂x1 [fl(x−z)]dz =

and using that ∂x1 [fl(x− z)] = −∂z1 [fl(x− z)] we have

= −
3∑
l=1

∫
R3

ql(z)∂z1 [fl(x− z)]dz

So if we use ∂z1 [ql(z)fl(x− z)] = ∂z1ql(z)fl(x− z) + ql(z)∂z1 [fl(x− z)], we get

∂x1Π(x) = −
3∑
l=1

∫
|z|<ε

ql(z)∂z1 [fl(x− z)]dz −
3∑
l=1

∫
|z|≥ε

ql(z)∂z1 [fl(x− z)]dz =

= −
3∑
l=1

∫
|z|≥ε

∂z1 [ql(z)fl(x− z)]dz +
3∑
l=1

∫
|z|≥ε

∂z1ql(z)fl(x− z)dz + o(1)

where again the term over |z| < ε vanishes as ε→ 0, thanks to the integrability of ql(z) in the
origin (being homogeneous of degree −2 and being compact the support of f). Now, again,
we want to replace the first term with a surface integral. In particular∫

|z|≥ε
∂z1 [ql(z)fl(x− z)]dz = −

∫
|z|=ε

ql(z)fl(x− z)ν1(z)dσ(z)
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So

∂x1Π(x) =
3∑
l=1

∫
|z|=ε

ql(z)fl(x− z)ν1(z)dσ(z) +
3∑
l=1

∫
|z|≥ε

∂z1ql(z)fl(x− z)dz + o(1)

We now can sum the two expression, checking if they solve the equation. So, for x and ε as
above, we have

−µ∆V1(x) + ∂x1Π(x) =

= −
3∑
l=1

∫
|z|=ε
∇U1l(z) · ν(z)fl(x− z)dσ(z)−

3∑
l=1

∫
|z|≥ε

∆U1l(z)fl(x− z)dz+

+
3∑
l=1

∫
|z|=ε

ql(z)fl(x− z)ν1(z)dσ(z) +
3∑
l=1

∫
|z|≥ε

∂z1ql(z)fl(x− z)dz + o(1) =

=

3∑
l=1

∫
|z|≥ε

(−∆U1l(z) + ∂z1ql(z)) fl(x−z)dz+
3∑
l=1

∫
|z|=ε

(−∇U1l(z) · ν(z) + ql(z)ν1(z)) fl(x−z)dσ(z)+o(1)

Observe that ε > 0, so if |z| ≥ ε we are far away from the origin. But

−∆U1l(z) + ∂z1ql(z) = 0 ∀z 6= 0

so the first integral is zero. We have to consider∫
|z|=ε

(−∇U1l(z) · ν(z) + ql(z)ν1(z)) fl(x− z)dσ(z) =

=

∫
|z|=1

(−∇U1l(εz) · ν(εz) + ql(εz)ν1(εz)) fl(x− εz)ε2dσ(z) =

=

∫
|z|=1

(−∇U1l(z) · ν(z) + ql(z)ν1(z)) fl(x− εz)dσ(z)

using that ν and ν1 are homogeneous of degree 0, while ∇U1l and ql are homogeneous of
degree −2. It will be useful in a moment to know which value has the integral∫

|z|=1
[−∇U1l(z) · ν(z) + ql(z)ν1(z)]dσ(z)

for l = 1, 2, 3. Let first l = 1. Then

U11(z) =
1

8π

1

|z|
+

1

8π

z2
1

|z|3
q1(z) =

1

4π

z1

|z|3

It follows that, for |z| = 1,

∂z1U11(z) =
1

8π

(
z1 − 3z3

1

)
and, for j 6= 1,

∂zjU11(z) =
1

8π

(
−zj − 3zjz

2
1

)
So, if |z| = 1,

−∇U11(z) · ν(z) + q1(z)ν1(z) = − 1

8π

(
z2

1 − 3z4
1 − z2

2 − 3z2
2z

2
1 − z2

3 − 3z3
3z

2
1

)
+

1

4π
z2

1
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It is straightforward to calculate the following integrals∫
|z|=1

z2
1 dσ(z) =

∫
|z|=1

z2
2 dσ(z) =

∫
|z|=1

z2
3 dσ(z) =

4π

3∫
|z|=1

z4
1 dσ(z) =

4π

5
,

∫
|z|=1

z2
i z

2
j dσ(z) =

4π

15
i 6= j

It follows that ∫
|z|=1

(−∇U11(z) · ν(z) + q1(z)ν1(z)) dσ(z) = 1

Let now l 6= 1. We have

U1l(z) =
1

8π

z1zl
|z|3

It follows that, for |z| = 1,

∂z1U1l(z) =
1

8π

(
zl − 3z2

1zl
)
, ∂zjU1l(z) =

1

8π
(−3z1zlzj) j 6= l, 1, ∂zlU1l(z) =

1

8π

(
z1 − 3z1z

2
l

)
So, if |z| = 1,

−∇U1l(z) · ν(z) + ql(z)ν1(z) = − 1

8π

(
zlz1 − 3z3

1zl − 3z1zlz
2
j + z1zl − 3z1z

3
l

)
+

1

4π
zlz1

Again, it is straightforward that∫
|z|=1

zizk dσ(z) =

∫
|z|=1

z3
i zk dσ(z) =

∫
|z|=1

zizkz
2
h dσ(z) = 0 i, j, k distinct

So ∫
|z|=1

(−∇U1l(z) · ν(z) + ql(z)ν1(z)) dσ(z) = 0

Now, we consider the term∫
|z|=1

(−∇U1l(z) · ν(z) + ql(z)ν1(z)) fl(x− εz) dσ(z)

The integrand is continuous on the compact sphere |z| = 1, and so sending ε→ 0 we have∫
|z|=1

(−∇U1l(z) · ν(z) + ql(z)ν1(z)) fl(x−εz)dσ(z)→ fl(x)

∫
|z|=1

(−∇U1l(z) · ν(z) + ql(z)ν1(z)) dσ(z) =

=

{
f1(x) if l = 1

0 otherwise

so that

3∑
l=1

∫
|z|=ε

(−∇U1l(z) · ν(z) + ql(z)ν1(z)) fl(x− z)dσ(z)→ f1(x) as ε→ 0

Now, if x is fixed as above, for every ε > 0 we have

−µ∆V1(x) + ∂x1Π(x) =
3∑
l=1

∫
|z|=ε

(−∇U1l(z) · ν(z) + ql(z)ν1(z)) fl(x− z)dσ(z) + oε(1)

Since the equality holds for every ε > 0 and the left side is indipendent by ε we have

−µ∆V1(x) + ∂x1Π(x) = f1(x)

that is what we want.
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4. Incompressibility condition. It misses to prove that V satisfies the incompress-
ibility equation ∇ · V = 0. The method is similar to the previous. Let x ∈ R3 in an open
neighbourhood and ε > 0. We have

∂xiVi(x) = ∂xi

∫
R3

3∑
l=1

Uil(x− y)fl(y)dy =

3∑
l=1

∂xi

∫
R3

Uil(z)fl(x− z)dz =

=

3∑
l=1

∫
R3

Uil(z)∂xi [fl(x− z)]dz = −
3∑
l=1

∫
R3

Uil(z)∂zi [fl(x− z)]dz

As above
∂zi [Uil(z)fl(x− z)] = ∂ziUil(z)fl(x− z) + Uil(z)∂zi [fl(x− z)]

So

∂xiVi(x) = −
3∑
l=1

∫
|z|<ε

Uil(z)∂zi [fl(x− z)]dz −
3∑
l=1

∫
|z|≥ε

Uil(z)∂zi [fl(x− z)]dz =

= −
3∑
l=1

∫
|z|≥ε

∂zi [Uil(z)fl(x− z)]dz +

3∑
l=1

∫
|z|≥ε

∂ziUil(z)fl(x− z)dz + o(1) =

=
3∑
l=1

∫
|z|=ε

Uil(z)fl(x− z)νi(z)dσ(z) +

3∑
l=1

∫
|z|≥ε

∂ziUil(z)fl(x− z)dz + o(1) =

=
3∑
l=1

∫
|z|≥ε

∂ziUil(z)fl(x− z)dz + o(1)

where the surface integral has been included in the o(1) since∫
|z|=ε

Uil(z)fl(x− z)νi(z)dσ(z) =

∫
|z|=1

Uil(εz)fl(x− εz)νi(εz)ε2dσ(z) =

= ε

∫
|z|=1

Uil(z)fl(x− εz)νi(z)dσ(z)→ 0 as ε→ 0

where has been used that Uil is an homogeneous function of degree −1 and we have passed the
limit under the integral sign because the integral is continuous on a compact set. It follows
that

∇ · V (x) =
3∑
i=1

∂xiVi(x) =
3∑
i=1

3∑
l=1

∫
|z|≥ε

∂ziUil(z)fl(x− z)dz + o(1) =

=

3∑
l=1

∫
|z|≥ε

3∑
i=1

∂ziUil(z)fl(x− z)dz + o(1)

Using that, as noticed at the beginning,

3∑
i=1

∂ziUij(z) = 0 ∀z 6= 0, j ∈ {1, 2, 3}

we have, since ε > 0,
∇ · V (x) = o(1)
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being the other integrals zero because so it is the integrand far from the origin. Being x fixed,
and ε > 0 arbitrary, we can send ε→ 0 and get

∇ · V (x) = 0

This completes the proof.

Remark 9.13. We now have build a solution to the problem in the very special case of incom-
pressible fluid. The following paragraph generalizes the problem to the case ∇ · v = g 6≡ 0.
�

Reduction to the original problem. What we solved at this point is the incompressible
Stokes problem, that is {

µ∆v = ∇p+ f

∇ · v = 0
(9.12)

We want to generalize the proof to the case{
µ∆v = ∇p+ f

∇ · v = g
(9.13)

with g ∈ C∞c (Rn). In order to solve (9.13), we shall look for a solution{
v = u+ h

p = π

where u and π are volume potensials introduced above corresponding to F := f − µ∆h, with

h = ∇(E ∗ g)

where

E(x) :=

{
(2π)−1 ln |x− y| n = 2

[n(n− 2)ωn]−1|x− y|2−n n ≥ 3

that is the fundamental solution of the Laplace’s equation. By the properties of the Laplace’s
solution and some calculus, we have

∆h = ∇g ∈ C∞c (Rn), ∇ · h = g ∈ C∞c (Rn)

At this point, it is clear that

µ∆v = µ∆u+ µ∆h = ∇π + F + µ∆h = ∇p+ f

and
∇ · v = ∇ · u+∇ · h = g

9.3 Estimates of the solution on the whole space

We now need some estimates over this integral solutions. In order to do so, we will use
theorems about integration of kernels and some applications. So, in the next section, keep in
mind the results of section 3.7.

Remark 9.14. For sake of semplicity, we will prove the results with only two derivatives. With
the same devices one can prove the results stated in susection 9.3.3: however the calculations
are prohibitive and distract us from our aims. �

157



9.3.1 Estimates over the velocity field

We now deduce some estimates concerning the velocity field. First of all observe that

uk(x) = − 1

µ

∫
R3

3∑
l=1

Ukl(x− y)fl(y)dy =

= − 1

µ

∫
|x−y|<ε

3∑
l=1

Ukl(x− y)fl(y)dy − 1

µ

∫
|x−y|≥ε

3∑
l=1

Ukl(x− y)fl(y)dy (9.14)

if ε > 0 is arbitrarly fixed. Deriving with respect the variable x, remembering that Dij =
∂xj∂xi and using the differentiation under integral sign previously discussed, we have

Dijuk(x) = − 1

µ
Dij

∫
|x−y|≥ε

3∑
l=1

Ukl(x− y)fl(y)dy − 1

µ
Dij

∫
|z|<ε

3∑
l=1

Ukl(z)fl(x− z)dz =

So, we have to deal with two pieces, that is

(I) Dij

∫
|x−y|≥ε

3∑
l=1

Ukl(x− y)fl(y)dy, (II) Dij

∫
|z|<ε

3∑
l=1

Ukl(z)fl(x− z)dz

Considerations about the (I) piece. For the first term notice that

Dij

∫
|x−y|≥ε

Ukl(x− y)fl(y)dy = Dij

∫
|z|≥ε

Ukl(z)fl(x− z)dz =

∫
|z|≥ε

Ukl(z)Dij [fl(x− z)]dz =

=

∫
|z|≥ε

Ukl(z)D
z
ij [fl(x− z)]dz

since ∂xj∂xi [fl(x− z)] = ∂zj∂zi [fl(x− z)]. But

Dz
j [Ukl(z)D

z
i (fl(x− z))] = Dz

jUkl(z)D
z
i (fl(x− z)) + Ukl(z)D

z
jD

z
i (fl(x− z))

and
Dz
i [D

z
jUkl(z)fl(x− z)] = Dz

iD
z
jUkl(z)fl(x− z) +Dz

jUkl(z)D
z
i [fl(x− z)]

so that

Ukl(z)D
z
ij [fl(x− z)] = Dz

j [Ukl(z)D
z
i (fl(x− z))]−Dz

jUkl(z)D
z
i (fl(x− z)) =

= Dz
j [Ukl(z)D

z
i (fl(x− z))]−Dz

i [D
z
jUkl(z)fl(x− z)] +Dz

iD
z
jUkl(z)fl(x− z)

Integrating on B(0, ε)c we have∫
|z|≥ε

Ukl(z)D
z
ij [fl(x− z)]dz =

=

∫
|z|≥ε

Dz
j [Ukl(z)D

z
i (fl(x−z))]dz −

∫
|z|≥ε

Dz
i [D

z
jUkl(z)fl(x−z)]dz +

∫
|z|≥ε

Dz
iD

z
jUkl(z)fl(x−z)dz

The first piece is∫
|z|≥ε

Dz
j [Ukl(z)D

z
i (fl(x− z))]dz = lim

R→+∞

∫
R≥|z|≥ε

Dz
j [Ukl(z)D

z
i (fl(x− z))]dz
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and by divergence theorem over an annulus (avoiding the singularity for ε > 0), we have∫
R≥|z|≥ε

Dz
j [Ukl(z)D

z
i (fl(x− z))]dz =

=

∫
|z|=R

Ukl(z)D
z
i (fl(x− z))νj(z)dσ(z) −

∫
|z|=ε

Ukl(z)D
z
i (fl(x− z))νj(z)dσ(z)

We have fixed x ∈ R3, and so, if x ∈ B(x0, δ), we have if R > R0 + C0, with C0 = |x0| + δ
and R0 such that supp(f) ⊆ B(0, R0), then, as previously seen, f ≡ 0, togheter with its
derivatives. So for such R the first piece vanishes. Concerning the second, we have∫

|z|=ε
|Ukl(z)Dz

i (fl(x− z))νj(z)|dσ(z) ≤M
∫
|z|=ε
|Ukl(z)|dσ(z)

and ∫
|z|=ε
|Ukl(z)|dσ(z) =

∫
|y|=1

|Ukl(εy)|ε2dσ(y) = ε

∫
|y|=1

|Ukl(y)|dσ(y)

since Ukl is homogeneous of degree α = −1. So this piece vanishes as ε→ 0. Thus the whole
first term vanishes. Now we consider∫

|z|≥ε
Dz
i [D

z
jUkl(z)fl(x− z)]dz = lim

R→+∞

∫
R≥|z|≥ε

Dz
i [D

z
jUkl(z)fl(x− z)]dz

where again we can write the integral as limit of integrals since Dz
i [D

z
jUkl(z)fl(x − z)], is

integrable over |z| ≥ ε thanks to the regularity of fl and the compactness of its support.
Again by divergence theorem over an annulus we have∫

R≥|z|≥ε
Dz
i [D

z
jUkl(z)fl(x− z)]dz =

=

∫
|z|=R

Dz
jUkl(z)fl(x− z)νi(z)dσ(z)−

∫
|z|=ε

Dz
jUkl(z)fl(x− z)νi(z)dσ(z)

For the surface integral over ∂B(0, R) it holds the same argument about the support of fl. So

lim
ε→0

Dij

∫
|x−y|≥ε

Ukl(x− y)fl(y)dy = lim
ε→0

∫
|z|≥ε

Ukl(z)D
z
ij [fl(x− z)]dz =

= lim
ε→0

(∫
|z|=ε

Dz
jUkl(z)fl(x− z)νi(z)dσ(z) +

∫
|z|≥ε

Dz
iD

z
jUkl(z)fl(x− z)dz

)
=

= lim
ε→0

(∫
|x−y|=ε

DjUkl(x− y)fl(y)νi(y)dσ(y) +

∫
|x−y|≥ε

DiDjUkl(x− y)fl(y)dy

)
(9.15)

where νi(y) is the i-th component of ± x−y
|x−y| but the dipendence by x is hidden (also νi(z) =

± zi
|z|).

Consideration about the (II) piece. Notice that∣∣∣∣∣Dij

∫
|z|<ε

Ukl(z)fl(x− z)dz

∣∣∣∣∣ =

∣∣∣∣∣
∫
|z|<ε

Ukl(z)Dijfl(x− z)dz

∣∣∣∣∣ ≤
≤ ‖Dijfl‖∞

∫
|z|<ε
|Ukl(z)|χKdz → 0 as ε→ 0

since Ukl(z) has an integrable singlularity at the origin, being homogenous of degree α = −1,
and K is such that if z /∈ K then f(x− z) = 0. So |Ukl|χK is summable near the origin.
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Considerations about the two pieces. Remembering equation (9.14), we have to
study the sum obtained in (9.15)

− 1

µ

∫
|x−y|≥ε

3∑
l=1

DijUkl(x− y)fl(y)dy − 1

µ

∫
|x−y|=ε

3∑
l=1

DiUkl(x− y)fl(y)νj(y)dσ(y) (9.16)

as ε → 0. In fact, every other term vanishes, as proved. Remember that as x 6= y, Ukl is
regular and so Dij = Dji.

We want first to estimate the second term of (9.16). For this aim, it is necessary to remark
that, reading the explicit forms for DiUkl, we see that

|DiUkl(α(x− y))| = 1

α2
|DiUkl(x− y)| ∀α > 0

So∣∣∣∣∣
3∑
l=1

∫
|x−y|=ε

Di[Ukl(x− y)]fl(y)νj(y) dσ(y)

∣∣∣∣∣ ≤
3∑
l=1

∫
|x−y|=ε

|Di[Ukl(x−y)]||fl(y)||νj(y)| dσ(y) ≤

≤
3∑
l=1

∫
|x−y|=ε

|Di[Ukl(x− y)]||fl(y)| dσ(y)

where has been used that |νj(y)| ≤ |ν(y)| = 1. Being, for every ε > 0, |Di[Ukl(x − y)]| ≥ 0
integrable, since the only singulatiry is when x = y, and being fl cointinous because of the
hypothesis about f , we have that∫

|x−y|=ε
|Di[Ukl(x− y)]||fl(y)| dσ(y) = |fl(yε)|

∫
|x−y|=ε

|Di[Ukl(x− y)]| dσ(y)

where yε is a point in ∂Bε(x) ≡ {y ∈ Rn : |x − y| = ε}. With a change of coordinates, we
have6 ∫

|x−y|=ε
|Di[Ukl(x− y)]| dσ(y) =

∫
|x−y|=1

|Di[Ukl(ε(x− y))]|ε2 dσ(y) =

=

∫
|x−y|=1

1

ε2
|Di[Ukl(x− y)]|ε2 dσ(y) =

∫
|x−y|=1

|Di[Ukl(x− y)]| dσ(y)

The last integral is well-defined because x 6= y on |x − y| = 1. Observe moreover that
|yε − x| = ε→ 0 as ε→ 0. So lim

ε→0
yε = x. By the continuity of fl we have

lim
ε→0
|fl(yε)| = |fl(x)|

Furthemore we have that∫
|x−y|=1

|Di[Ukl(x− y)]|dσ(y) =

∫
|z|=1

|DiUkl(z)|dσ(z)

6 ∫
|x−y|=ε

|Di[Ukl(x− y)]|dσ(y) =

∫
|z|=ε

|Di[Ukl(z)]|dσ(z) =

= ε2

∫
|z|=1

|Di[Ukl(εz)]|dσ(z) = ε2

∫
|x−y|=1

|Di[Ukl(ε(x− y))]|dσ(y)
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so this is simply a number that does not depend on x or y. Hence we define

Aikl :=

∫
|z|=1

|DiUkl(z)|dσ(z) (9.17)

So the limit exists, and it is

lim
ε→0

∫
|x−y|=ε

|Di[Ukl(x− y)]||fl(y)|dσ(y) = Aikl|fl(x)|

Finally we get

lim
ε→0

3∑
l=1

∫
|x−y|=ε

|Di[Ukl(x− y)]||fl(y)|dσ(y) =
3∑
l=1

Aikl|fl(x)| ≤

≤ Cik[|f1(x)|+ |f2(x)|+ |f3(x)|] ≤ 3Cik|f(x)| (9.18)

where Cik := max
l=1,2,3

Aikl and f(x) = (f1(x), f2(x), f3(x)).

We want now to say something about the other piece of (9.16), that is

lim
ε→0

∫
|x−y|≥ε

3∑
l=1

Dij [Ukl(x− y)]fl(y)dy

Remark 9.15. We have that

Ukl(z) = − 1

8π

(
δkl
|z|

+
zkzl
|z|3

)
is an homogeneous function with exponent α = −1. �

Remark 9.16. Being Ukl homogenous of order −1, we have that ∂xiUkl is homogeneous with
order −2. So, ∂xj∂xiUkl is homogeneous of order −3 and finally ∇(∂xj∂xiUkl) is homogeneous
of order −4 and so the Hormander condition holds, since the proposition 3.2 says

|∇DijUkl(z)| ≡ |∇(∂xj∂xiUkl)(z)| ≤
C

|z|4
∀z 6= 0

On the other hand we know that

|DijUkl(z)| ≡ |∂xj∂xiUkl(z)| ≤
C ′

|z|3
∀z 6= 0

The maximum between C and C ′ satisfies both the inequalities. If DijUkl also is such that∫
r1<|x|<r2

DijUkl(x)dx = 0

then we are in the hypothesis of the Calderón-Zygmund theorem. But by the divergence
theorem in an annulus we have∫

r1<|x|<r2
DijUkl(x)dx =

∫
|x|=r2

∂xiUkl(x)
xj
|x|
dx−

∫
|x|=r1

∂xiUkl(x)
xj
|x|
dx =

=

∫
|x|=1

∂xiUkl(r2x)
r2xj
|r2x|

r2
2dx−

∫
|x|=1

∂xiUkl(r1x)
r1xj
r1|x|

r2
1dx =

=

∫
|x|=1

∂xiUkl(x)
xj
|x|
dx−

∫
|x|=1

∂xiUkl(x)
xj
|x|
dx = 0

using a change of variable and the fact that ∂xiUkl is homogeneous of degree −2. So we can
apply the Calderón-Zygmund theorem. �
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Application of Calderón-Zygmund theorem. Since in remark 9.16 we just proved
that DijUkl is a Calderón-Zygmund kernel, we can apply theorem 3.16 to deduce that∥∥∥∥∥lim

ε→0

∫
|x−y|≥ε

DijUkl(x− y)fl(y)dy

∥∥∥∥∥
Lp(R3)

≤ Cp,l‖fl‖Lp(R3) (9.19)

and so∥∥∥∥∥lim
ε→0

3∑
l=1

∫
|x−y|≥ε

1

µ
Dij [Ukl(x− y)]fl(y)dy

∥∥∥∥∥
Lp(R3)

≤ 1

µ

3∑
l=1

∥∥∥∥∥lim
ε→0

∫
|x−y|≥ε

Dij [Ukl(x− y)]fl(y)dy

∥∥∥∥∥
Lp(R3)

≤

(9.19)

≤ 1

µ

3∑
l=1

Cp,l‖fl‖Lp(R3) ≤
1

µ
‖f‖Lp(R3)

3∑
l=1

Cp,l ≡
Cp
µ
‖f‖Lp(R3) (9.20)

since for every l ∈ {1, 2, 3} we have |fl(x)|2 ≤ |f1(x)|2 + |f2(x)|2 + |f3(x)|2 = |f(x)|2 and so

‖fl‖Lp(R3) =

(∫
R3

|fl(x)|p dx
) 1
p

≤
(∫

R3

|f(x)|p dx
) 1
p

= ‖f‖Lp(R3)

Above we have defined Cp ≡
3∑
l=1

Cp,l.

Estimates (9.3.1) and (9.20) will be helpful in a moment. We now underline where we were.
For every ε > 0 we found

Dijuk(x) = − 1

µ

∫
|x−y|≥ε

3∑
l=1

Dij [Ukl(x−y)]fl(y)dy +

∫
|x−y|=ε

3∑
l=1

Di[Ukl(x−y)]fl(y)νj(y)dσ(y)

with

lim
ε→0

∣∣∣∣∣
3∑
l=1

∫
|x−y|=ε

Di[Ukl(x− y)]fl(y)νj(y)dσ(y)

∣∣∣∣∣ ≤ 3Cik|f(x)| (9.3.1)

Remark 9.17. We remark that

‖∇2u‖pp =

∫
R3

|∇2u|p dx =

∫
R3

∑
|α|=2

|Dαu|p dx ≤ C ′p
∫
R3

∑
|α|=2

3∑
k=1

|Dαuk|p dx =

= C ′p
∑
|α|=2

3∑
k=1

∫
R3

|Dαuk|p dx (9.21)

Clearly, being |α| = 2, we can write Dα = Dij with i, j ∈ {1, 2, 3}. �
In order to simplify the notation, we set

Dijuk(x) ≡ Aεijk(x) +

∫
|x−y|=ε

3∑
l=1

Di[Ukl(x− y)]fl(y)νj(y)dσ(y)

where obviously

Aεijk(x) := − 1

µ

∫
|x−y|≥ε

3∑
l=1

Dij [Ukl(x− y)]fl(y)dy
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Moreover we define

Bε
ijk(x) :=

3∑
l=1

∫
|x−y|=ε

|Di[Ukl(x− y)]fl(y)|dσ(y)

So

|Dijuk(x)| ≤ |Aεijk(x)|+ |
∫
|x−y|=ε

3∑
l=1

Di[Ukl(x− y)]fl(y)νj(y)dσ(y)| ≤

≤ |Aεijk(x)|+
3∑
l=1

∫
|x−y|=ε

|Di[Ukl(x− y)]fl(y)|dσ(y) ≡ |Aεijk(x)|+ |Bε
ijk(x)|

Then
|Dijuk(x)|p ≤

(
|Aεijk(x)|+ |Bε

ijk(x)|
)p ≤ 2p

(
|Aεijk(x)|p + |Bε

ijk(x)|p
)

Since the inequality holds for every ε > 0 we can send ε→ 0 and obtain

|Dijuk(x)|p ≤ 2p
(
| lim
ε→0

Aεijk(x)|p + | lim
ε→0

Bijk(x)|p
)

using the continuity of | · | and of the power. Remembering now that7

lim
ε→0
|Bε

ijk(x)| = lim
ε→0

3∑
l=1

∫
|x−y|=ε

|Di[Ukl(x− y)]fl(y)|dσ(y) ≤ 3Cik|f(x)|

we can write
|Dijuk(x)|p ≤ 2p

(
| lim
ε→0

Aεijk(x)|p + 3pCpik|f(x)|p
)

Integrating over R3 these positive functions we get∫
R3

|Dijuk(x)|p dx ≤ 2p
∫
R3

| lim
ε→0

Aεijk|p dx+2p3pCpik

∫
R3

|f(x)|p dx = 2p
∫
R3

| lim
ε→0

Aεijk|p dx+6pCpik‖f‖
p
Lp(R3)

In equation (9.20) we have seen that∫
R3

| lim
ε→0

Aεijk(x)|p dx ≡

∥∥∥∥∥lim
ε→0

1

µ

∫
|x−y|≥ε

3∑
l=1

DijUkl(x− y)fl(y) dy

∥∥∥∥∥
p

Lp(R3)

≤ Cpp
µp
‖f‖p

Lp(R3)

So, putting together the pieces, we have∫
R3

|Dijuk(x)|p dx ≤
(

2pCpp
µp

+ 6pCpik

)
‖f‖p

Lp(R3)

But

‖∇2u‖pLp(Rn)

(9.21)
=

3∑
i,j,k=1

∫
R3

|Dijuk(x)|p dx ≤

 3∑
i,j,k=1

(
2pCpp
µp

+ 6pCpik

) ‖f‖p
Lp(R3)

7Also remember that

lim
ε→0

3∑
l=1

∫
|x−y|=ε

|Di[Ukl(x− y)]||fl(y)|dσ(y) =

3∑
l=1

Aikl|fl(x)|

It means that the limit exists, so the expression makes sense.
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We can moreover define the constant

C0 :=
3∑

i,j,k=1

(
2pCpp
µp

+ 6pCpik

)
and get

‖∇2u‖p
Lp(R3)

≤ C0‖f‖pLp(R3)
(9.22)

that is the estimate that we want to prove.

9.3.2 Estimates over the pressure term

A similar estimate also holds for the pressure gradient ∇p. In fact, we have first of all

∂xi

∫
R3

ql(x− y)fl(y)dy = ∂xi

∫
R3

ql(z)fl(x− z)dz

and we can split the integral as∫
R3

ql(z)fl(x− z)dz =

∫
|z|≥ε

ql(z)fl(x− z)dz +

∫
|z|<ε

ql(z)fl(x− z)dz

Deriving we have

∂xi

∫
R3

ql(x− y)fl(y)dy =

∫
|z|≥ε

ql(z)∂xifl(x− z)dz +

∫
|z|<ε

ql(z)∂xifl(x− z) dz (9.23)

Since∣∣∣∣∣
∫
|z|<ε

ql(z)∂xifl(x− z) dz

∣∣∣∣∣ ≤
∫
|z|<ε
|ql(z)∂xifl(x−z)| dz ≤ ‖∇f‖∞

∫
|z|<ε
|ql(z)|χK dz → 0 as ε→ 0

(9.24)
having ql an integrable singularity in z = 0, we have to say something about the first addend
in (9.23). We have

ql(z)∂xifl(x− z) = ql(z) (∇fl(x− z))i = −ql(z)∂zi (fl(x− z))

Moreover
∂zi (ql(z)fl(x− z)) = ∂ziql(z)fl(x− z) + ql(z)∂zi (fl(x− z))

This means that∫
|z|≥ε

ql(z)∂xifl(x− z)dz =

∫
|z|≥ε

∂ziql(z)fl(x− z)dz −
∫
|z|≥ε

∂zi (ql(z)fl(x− z)) dz

We’ll deal with the first addend using the Calderón-Zygmund theorem. But at first we study
the latter term. We have∫

|z|≥ε
∂zi [ql(z)fl(x− z)]dz = lim

R→+∞

∫
R≥|z|≥ε

∂zi [ql(z)fl(x− z)]dz

where we can write this limit since the integrand is summable on |z| ≥ ε thanks to regularity
of fl and the compactness of its support, for x fixed in a certain neighbourhood. So∫
R≥|z|≥ε

∂zi [ql(z)fl(x−z)]dz =

∫
|z|=R

ql(z)fl(x−z)νi(z)dσ(z) −
∫
|z|=ε

ql(z)fl(x−z)νi(z)dσ(z)
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The term integrated over ∂B(0, R) vanishes for R large enough, in particular R > |x0|+δ+R0,
where x ∈ B(x0, δ) and supp(f) ⊆ B(0, R0). So∫

|z|≥ε
∂zi [ql(z)fl(x− z)]dz = −

∫
|z|=ε

ql(z)fl(x− z)νi(z)dσ(z)

Sending ε→ 0∣∣∣∣∣
∫
|z|=ε

ql(z)fl(x− z)νi(z) dσ(z)

∣∣∣∣∣ ≤
∫
|z|=ε
|ql(z)fl(x− z)νi(z)| dσ(z) ≤

≤
∫
|z|=ε
|ql(z)||fl(x− z)| dσ(z) = |fl(x− zε)|

∫
|z|=ε
|ql(z)| dσ(z)

where zε ∈ ∂B(0, ε) and has been used the mean value property of the integral. Moreover∫
|z|=ε
|ql(z)|dσ(z) = ε2

∫
|y|=1

|ql(εy)| dσ(y) =

∫
|y|=1

|ql(y)|dσ(y)

since ql is an homogeneous function of exponent α = −2. Thus it follows that∣∣∣∣∣
∫
|z|≥ε

ql(z)∂xifl(x− z) dz

∣∣∣∣∣ =

∣∣∣∣∣
∫
|z|≥ε

∂ziql(z)fl(x− z) dz +

∫
|z|=ε

ql(z)fl(x− z)νi(z) dσ(z)

∣∣∣∣∣ ≤
≤

∣∣∣∣∣
∫
|z|≥ε

∂ziql(z)fl(x− z) dz

∣∣∣∣∣+ |fl(x− zε)|
∫
|y|=1

|ql(y)| dσ(y)

So, it follows that

lim
ε→0

∣∣∣∣∣
∫
|z|≥ε

ql(z)∂xifl(x− z) dz

∣∣∣∣∣ ≤ lim
ε→0

∣∣∣∣∣
∫
|z|≥ε

∂ziql(z)fl(x− z) dz

∣∣∣∣∣+Al|fl(x)|

thanks to the continuity of fl, where Al :=

∫
|y|=1

|ql(y)| dσ(y). Moreover

lim
ε→0

∣∣∣∣∣
∫
|z|≥ε

∂ziql(z)fl(x− z) dz

∣∣∣∣∣ =

∣∣∣∣∣limε→0

∫
|z|≥ε

∂ziql(z)fl(x− z) dz

∣∣∣∣∣
where the limit without the absolute value exists thanks to the Calderón-Zygmund theorem8;
in particular

ψi,l(x) := lim
ε→0

∫
|z|≥ε

∂ziql(z)fl(x− z)dz = lim
ε→0

∫
|x−y|≥ε

∂xiql(x− y)fl(y)dy

exists for all x ∈ R3 thanks to the C-Z theorem, since ∂ziql is an homogeneous function of
exponent α = −3; moreover, ∇(∂ziql) is homogeneous of degree α = −4 and∫

r1<|x|<r2
∂ziql(z)dz =

∫
|z|=r2

ql(z)
zi
|z|
dσ(z)−

∫
|z|=r1

ql(z)
zi
|z|
dσ(z) =

8Notice that ∂xiql(x− y) = (∇ql(x− y))i = ∂ziql(z)|z=x−y.
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=

∫
|z|=1

ql(r2z)
r2zi
|r2z|

r2
2dσ(z)−

∫
|z|=1

ql(r1z)
r1zi
|r1z|

r2
1dσ(z) =

=

∫
|z|=1

ql(z)
zi
|z|
dσ(z)−

∫
|z|=1

ql(z)
zi
|z|
dσ(z) = 0

since ql is homoegenous of degree α = −2. So, by Calderón-Zygmund theorem, we have

‖ψi,l‖Lp(R3) ≤ Cp‖fl‖Lp(R3)

Now we remember that (9.23) holds for every ε > 0, and so, by the arbitrariety of ε,∣∣∣∣∣∂xi
∫
R3

3∑
l=1

ql(x− y)fl(y) dy

∣∣∣∣∣ ≤
≤

3∑
l=1

(
lim
ε→0

∣∣∣∣∣
∫
|z|≥ε

ql(z)∂xifl(x− z) dz

∣∣∣∣∣+ lim
ε→0

∣∣∣∣∣
∫
|z|<ε

ql(z)∂xifl(x− z) dz

∣∣∣∣∣
)

(9.24)
=

=
3∑
l=1

lim
ε→0

∣∣∣∣∣
∫
|z|≥ε

ql(z)∂xifl(x− z) dz

∣∣∣∣∣ =
3∑
l=1

∣∣∣∣∣limε→0

∫
|z|≥ε

ql(z)∂xifl(x− z) dz

∣∣∣∣∣ =
3∑
l=1

|ψi,l(x)|

Since we know that

‖∇p‖p
Lp(R3)

=

∫
R3

|∇p(x)|p dx =

∫
R3

(
3∑
i=1

|∂xip(x)|p
)
dx

where

p(x) =

∫
R3

3∑
l=1

ql(x− y)fl(y)dy =

3∑
l=1

∫
R3

ql(x− y)fl(y)dy

and so

∂xip(x) =

3∑
l=1

∂xi

∫
R3

ql(x− y)fl(y) dy, |∂xip(x)| ≤
3∑
l=1

|ψi,l(x)|

We use9 and thus we get

|∂xip(x)|p ≤ (|ψi,1(x)|+ |ψi,2(x)|+ |ψi,3(x)|)p ≤ 4p
3∑
l=1

|ψi,l(x)|p

Hence we finally have

‖∇p‖p
Lp(R3)

=

∫
R3

(
3∑
i=1

|∂xip(x)|p
)
dx ≤

∫
R3

3∑
i=1

(
4p

3∑
l=1

|ψi,l(x)|p
)
dx = 4p

3∑
i=1

3∑
l=1

∫
R3

|ψi,l(x)|p dx =

9We can see this, in example, applying

(x+ y)p ≤ 2p(xp + yp)

so that, if a, b, c ≥ 0, we have

(a+ b+ c)p ≤ 2p ((a+ b)p + cp) = 2p(a+ b)p + 2pcp ≤ 4p(ap + bp) + 2pcp
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= 4p
3∑
i=1

3∑
l=1

‖ψi,l‖pLp(R3)
≤ 4p

3∑
i=1

3∑
l=1

C2
p,i,l‖fl‖

p
Lp(R3)

But

‖fl‖pLp(R3)
=

∫
R3

|fl(x)|p dx ≤
∫
R3

|f(x)|p dx = ‖f‖p
Lp(R3)

since |fl(x)|2 ≤ |f1(x)|2 + |f2(x)|2 + |f3(x)|2 = |f(x)|2 for l ∈ {1, 2, 3}. So we finally get

‖∇p‖p
Lp(R3)

≤ 4p
3∑
i=1

3∑
l=1

Cpp,i,l‖f‖
p
Lp(R3)

≡ C ′p‖f‖
p
Lp(R3)

Together with the estimate (9.22) above, we have

‖∇2u‖Lp(R3) + ‖∇p‖Lp(Rn) ≤ C‖f‖Lp(R3) (9.25)

Remark 9.18. In the incompressible case f ≡ F with the notations introduced above (g ≡ 0).
In the case g 6≡ 0, we have f ←→ f −∆h, and so

|F | ≤ |f |+ |∆h| = |f |+ |∇g|

that is, by the Minkowski inequality,

‖F‖q ≤ ‖f‖q + ‖∇g‖q = ‖f‖q + |g|1,q

This provide the estimate in the case g 6≡ 0. �

9.3.3 Summary of the estimates

By the structur of h as integration of a kernel and the Calderón-Zygmund theorem, we
have that

|h|l+1,q ≤ c|g|l,q ∀l ≥ 0 (9.26)

with c = c(n, q). Moreover, in the previous sections we have proved that

|u|2,q ≤ c1(‖f‖q + |g|1,q), |π|1,q ≤ c2(‖f‖q + |g|1,q)

for every q > 1. The same calculus as above, with more difficulties, tell us that{
|u|l+2 ≤ c1 (|f |l,q + |g|l+1,q)

|π|l+1,q ≤ c2 (|f |l,q + |g|l+1,q)
l ≥ 0, q > 1 (9.27)

Since v = u+ h and p = π, using (9.26),

|v|l+2,q + |p|l+1,q ≤ c(|f |l,q + |g|l+1,q)

with c = c(n, q).
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9.4 Stokes fundamental solution in Rn: Existence,

uniquess and estimates

The main aim of this section is to prove the following theorem, by [12, Theorem IV.2.1,
pg. 243].

Theorem 9.5. Given

f ∈ Wm,q(Rn), g ∈ Wm+1,q(Rn), m ≥ 0, 1 < q <∞, n ≥ 2

there exists a pair of functions v, p such that v ∈ Wm+2,q(BR), p ∈ Wm+1,q(BR) for any
R > 0, satisying almost everywhere the equation{

∆v = ∇p+ f

∇ · v = g
in Rn (9.28)

Moreover, for all l ∈ [0,m], |v|l+2,q and |p|l+1,q are finite and we have

|v|l+2,q + |p|l+1,q ≤ c(|f |l,q + |g|l+1,q)

In the above inequalities, c = c(n, q, l).

It also can be proved a uniqueness result.

Lemma 9.3. In the hypothesis of theorem 9.5, if v1, p1 is another solution corresponding
to the data f, g with |v1|l+2,q finite for some l ∈ [0,m], then |v1 − v|l+2,q = 0 and
|p1 − p|l+1,q = 0.

9.4.1 Proof of theorem 9.5

We start the proof remembering that Wm′,q(Rn) = Wm′,q
0 (Rn). This result is well

known when m′ = 1 and it can be generalized to m′ ∈ N. It follows that there exist twi
sequences {fk}, {gk} ⊂ C∞0 (Rn) such that

lim
k→∞
‖fk − f‖m,q = lim

k→∞
‖gk − g‖m+1,q = 0 (9.29)

So, we can consider the problem{
∆vk = ∇pk + fk

∇ · vk = gk
in Rn (9.30)

We can solve this system thanks to the previous sections. So, the pair of solutions
(vk, pk) satisfies the inequality

|vk|l+2,q + |pk|l+1,q ≤ c(n, q)(|fk|l,q + |gk|l+1,q) ∀l ∈ [0,m] (9.31)

This implies that the left side term is bounded. In fact, we have |fk|l,q ≤ ‖fk‖m,q ≤ C
and |gk|l+1,q ≤ ‖gk‖m+1,q ≤ C ′, thanks to the convergences in (9.29). We now define
the class

[u]m := {w ∈ Dm,q(Rn) : w = u+ P , ∃P ∈ Pm}
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where Pm is the set of the polynomials with degree ≤ m− 1.
So we can define

Ḋm,q(Rn) := {[u]m| u ∈ Dm,q(Rn)}

We can equip this set with the norm

‖[u]m‖ := |u|m,q

It can be proved that this space is a well defined Banach space. All the properties are
listed in proposition 4.1. Morover, in the proposition we have proved that the set is
reflexive Banach space. So we have [vk]l+2 ∈ Ḋl+2,q(Rn), and [pk]l+2 ∈ Ḋl+1,q(Rn), for
every l ∈ [0,m]. Moreover, we have seen in (9.31), that the sequences are bounded in
this space.
But sequences in a reflexive Banach space converges weakly to a limit, thanks to [10, Th.
3, pg. 639]. This means that for every T ∈ (Ḋl+2,q(Rn))∗, there exists a subsequence kj
such that

lim
j→∞

T (vkj) = T (v)

So, consider ψ ∈ Lq′(Rn), with 1
q

+ 1
q′

= 1. Define

Tψ(u) := 〈Dαu, ψ〉

with |α| = l + 2 ∈ [2,m + 2]. So, if u ∈ Ḋl+2,q(Rn), we have u = w + P ∈ Dl+2,q(Rn).
So,

|Tψ(u)| = |〈Dα(w+P), ψ〉|
10

= |〈Dαw,ψ〉| ≤ ‖Dαw‖q‖ψ‖q′ = ‖Dαu‖q‖ψ‖q′ ≤ |u|l+2,q‖ψ‖q′

So Tψ ∈ (Ḋl+2,q(Rn))∗. This means that

lim
j→∞
〈Dαvkj , ψ〉 = 〈Dαv, ψ〉 ∀ψ ∈ Lq′(Rn)

Analogously, one proves

lim
j→∞
〈Dβ∇pkj , ψ〉 = 〈Dβ∇p, ψ〉 ∀ψ ∈ Lq′(Rn)

for every |β| ∈ [0,m]. So, choosing l = 0 and |β| = 0, we find v ∈ D2,q(Rn) and
p ∈ D1,q(Rn) such that

〈∆v −∇p, ψ〉 = 〈f, ψ〉 ∀ψ ∈ Lq′(Rn) (9.32)

since fk → f in Wm,q(Rn), so the convergence is in particular weakly.
Now we have to do some remarks. First of all, remember lemma 4.5. Then we have
that v ∈ W 2,q(BR) and p ∈ W 1,q(BR) for every R > 0, where BR ≡ BR(0).

Notice now that ψ ∈ C∞0 (Rn) ⊂ Lq
′
(Rn). So, writing Rn =

⋃
k∈N

B(0, k), for every k ∈ N

we have
〈∆v −∇p− f, ψ〉 = 0 ∀ψ ∈ C∞0 (B(0, k)) ⊂ C∞0 (Rn)

10We have that the degree of P is ≤ l + 2− 1 = l + 1, so that DαP = 0.
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It follows that ∆v = ∇p+ f almost everywhere in B(0, k), that is in B(0, k)/Ek, with

|Ek| = 0. So, if E :=
⋃
k∈N

Ek, we have that |E| = 0 and ∆v = ∇p + f in Rn/E, that is

almost everywhere in Rn. In the same way we have ∇ · v = g.
Observe that, since (X ∩ Y )∗ ' X∗ + Y ∗, we have that the classes of vk are in the
intersections of the spaces Ḋl+2,q(Rn), so that the weak convergence holds with the sum
of operators in the dual spaces; in particular, it holds in every dual space, choosing the
null operator in the other spaces. So we have that

|v|l+2,q + |p|l+1,q ≤ lim inf
k→∞

|vk|l+2,q + lim inf
k→∞

|pk|l+1,q (9.33)

So, since lim
k→∞
|fk − f |l,q = lim

k→∞
|gk − g|l+1,q = 0 for every l ∈ [0,m], we have, using

(9.31),
|v|l+2,q + |p|l+1,q ≤ 2c(n, q)(|f |l,q + |g|l+1,q)

that is what we wanted.

9.5 Stokes theory on bounded domains

We finally start to consider bounded domains. First of all, we have the following
introductive lemma that is inspired by [12, Lemma IV.4.2].

Lemma 9.4. Let Ω ⊆ Rn, with n ≥ 2 a bounded domain. Let v, p such that v ∈
W 1,1
loc (Ω), ∇ · v = 0 and p ∈ L1

loc(Ω). Let f ∈ L1
loc(Ω) and suppose that

〈∇v,∇ψ〉 = −〈f, ψ〉+ 〈p,∇ · ψ〉 ∀ψ ∈ C∞c (Ω) (9.34)

Then, if vε is the regularization of v, in the sense of definition 3.3, and pε is the
regularization of p, we have {

∆vε = ∇pε + fε

∇ · vε = 0
in Ω0 (9.35)

for every domain Ω0 such that Ω0 ⊂ Ω.

Proof. Let Ω0 ⊂ Ω. Let ϕ ∈ C∞c (Ω0). Observe that, then, ϕε ∈ C∞c (Ω) if ε <
dist (Ω0, ∂Ω). By hypothesis (9.34), we have

〈∇v,∇ϕε〉 = −〈f, ϕε〉+ 〈p,∇ · ϕε〉

Remark 9.19. Let h, g ∈ L2(Ω), Ω bounded and g such that supp(g) ⊂ Ω0 ⊂ Ωε. Then

〈gε, h〉 :=

∫
Ω

gε(x)h(x) dx ≡
∫

Ω

(∫
Ω

ηε(x− y)g(y) dy

)
h(x) dx =

=

∫
Ω

(∫
Ω

ηε(x− y)g(y)h(x) dx

)
dy

11

=

∫
Ω0

g(y)

(∫
Ω

ηε(y − x)h(x) dx

)
dy = 〈g, hε〉Ω0

that will be useful in the future. �
11Since η(x) = η(−x), then ηε(x− y) = ηε(y − x).
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Applying remark 9.19, we have

〈∇v,∇ϕε〉 = 〈∇v, (∇ϕ)ε〉 = 〈(∇v)ε,∇ϕ〉Ω0 = 〈∇vε,∇ϕ〉Ω0 = −〈∆vε, ϕ〉Ω0

thanks to the fact that now vε ∈ C∞(Ω0) and supp(ϕ) ⊂ Ω0. Moreover, we have
〈f, ϕε〉 = 〈fε, ϕ〉Ω0 , and

〈p,∇ · ϕε〉 = 〈p, (∇ · ϕ)ε〉 = 〈pε,∇ · ϕ〉Ω0 = −〈∇pε, ϕ〉Ω0

So, we have that
〈∆vε, ϕ〉Ω0 = 〈fε, ϕ〉Ω0 + 〈∇pε, ϕ〉Ω0

This means that ∫
Ω0

(
∆vε − fε −∇pε

)
· ϕ dx = 0

for every ϕ ∈ C∞c (Ω0). This clearly implies that ∆vε = ∇pε + fε almost everywhere in

Ω0 and, being the functions involved continuous in Ωε ⊃ Ω0, in the whole Ω0.

We can finally prove the following theorem, that is [12, Th. IV.4.1].

Theorem 9.6. Let Ω ⊂ Rn a bounded domain, with n ≥ 2. Let v a velocity field such
that12 ∇v ∈ Lqloc(Ω), q ∈ (1,∞) and it is weakly divergence free. Moreover, suppose
that

〈∇v,∇ϕ〉 = −〈f, ϕ〉 ∀ϕ ∈ D(Ω)

If f ∈ Wm,q
loc (Ω), with m ≥ 0, it follows that

v ∈ Wm+2,q
loc (Ω), p ∈ Wm+1,q

loc (Ω)

where p is the pressure filed of lemma 9.1. Moreover, if Ω′,Ω′′ ⊂ Ω are bounded and
such that Ω

′ ⊂ Ω′′ ⊂ Ω
′′ ⊂ Ω, we have

|v|m+2,q,Ω′ + |p|m+1,q,Ω′ ≤ c
(
‖f‖m,q,Ω′′ + ‖v‖1,q,Ω′′−Ω′ + ‖p‖q,Ω′′−Ω′

)
(9.36)

where c = c(n, q,m,Ω′,Ω′′).

Proof. Keep in mind lemma 9.1. Then, the proof is essentially a corollary of the
previous theorem. Consider a cut-off functions, that is ϕ ∈ C∞(Ω) with ϕ ≡ 1 over Ω

′

and ϕ ≡ 0 over (Ω′′)c. Let Ω0 ⊃ Ω
′′

and consider the equation(
∆vε

)
ϕ =

(
∇pε)ϕ+ fεϕ

Now, we define u := ϕvε and π = ϕpε. We have

∆u = vε∆ϕ+ 2
(
∇ϕ · ∇)vε + ϕ∆vε = vε∆ + 2

(
∇ϕ · ∇)vε −∇ϕpε +∇π + fεϕ

using that ∇π = ∇ϕpε + ϕ∇pε. Defining

fc := vε∆ϕ+ 2
(
∇ϕ · ∇)vε −∇ϕpε, f1 := fεϕ

12Lemma 4.5 implies that also v ∈ Lqloc(Ω), so that v ∈W 1,q
loc (Ω) just using hypothesis.
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It follows that
∆u = ∇π + fc + f1

and
∇ · u = ∇ ·

(
ϕvε
)

=
(
∇ · vε

)
ϕ+ vε · ∇ϕ = vε · ∇ϕ =: g

where ∇ · vε = 0 since v is weakly divergence free. So the pair (u, π) solves{
∆u = ∇π + fc + f1

∇ · u = g

in Rn. Observe that, since ϕ ∈ C∞c (Ω0) and vε, pε, fε ∈ C∞(Ωε), with Ωε ⊃ Ω0 if ε is
small enough, we have u, π, g ∈ C∞c (Rn) if extended as zero outside. So in particular
their integral norms and those of their derivative are finite.
So, using lemma 9.3, since fc, f1 ∈ Wm,q(Rn) and g ∈ Wm+1,q(Rn), and since |u|2,q and
|π|1,q are finite, we have, with l = m = 0, that also this solutions satisfy

|u|2,q + |π|1,q ≤ c
(
‖f1 + fc‖q + |g|1,q

)
In other words, the inequality is

‖∇2u‖q + ‖∇π‖q ≤ c
(
‖fεϕ‖q + ‖vε∆ϕ‖q + 2‖(∇ϕ · ∇)vε‖q + ‖∇ϕpε‖q + ‖∇(vε · ∇ϕ)‖q

)
(9.37)

Observe now that ∇
(
∇ϕ · vε

)
=
(
∇2ϕ)vε +∇ϕ · ∇vε. So, looking at the right member

of (9.37), we notice that ∇ϕ,∇2ϕ are bounded in Ω′′ − Ω′ and zero outside. At the
same time, ϕ is bounded and zero outside Ω′′. So we have

‖∇2u‖q + ‖∇π‖q ≤ C
(
‖fε‖q,Ω′ + ‖vε‖q,Ω′′−Ω′ + ‖∇vε‖q,Ω′′−Ω′ + ‖pε‖q,Ω′′−Ω′

)
≤ C ′

(
‖fε‖q,Ω′ + ‖vε‖1,q,Ω′′−Ω′ + ‖pε‖q,Ω′′−Ω′

)
(9.38)

On the other side, observe that

∂xiu = ∂xiϕvε + ϕ∂xivε

and so
∂2
xi
u = ∂2

xi
ϕvε + 2∂xiϕ∂xivε + ϕ∂2

xi
vε

So, by inverse triangular inequality, we have that

‖∂2
xi
u‖q = ‖∂2

xi
ϕvε + 2∂xiϕ∂xivε + ϕ∂2

xi
vε‖q ≥

∣∣‖∂2
xi
ϕvε + 2∂xiϕ∂xivε‖q − ‖ϕ∂2

xi
vε‖q

∣∣ ≥
≥ ‖ϕ∂2

xi
vε‖q − ‖∂2

xi
ϕvε + 2∂xiϕ∂xivε‖q

So, we have that

‖ϕ∂2
xi
vε‖q ≤ ‖∂2

xi
u‖q+‖∂2

xi
ϕvε+2∂xiϕ∂xivε‖q ≤ C ′′

(
‖fε‖q,Ω′+‖vε‖1,q,Ω′′−Ω′+‖pε‖q,Ω′′−Ω′

)
Since ‖ϕ∂2

xi
vε‖q ≥ ‖ϕ∂2

xi
vε‖q,Ω′ ≡ ‖∂2

xi
vε‖q,Ω′ , being ϕ constantly 1 over Ω′, we have that

‖∂2
xi
vε‖q,Ω′ ≤ C ′′

(
‖fε‖q,Ω′ + ‖vε‖1,q,Ω′′−Ω′ + ‖pε‖q,Ω′′−Ω′

)
Since the same inequality holds for ∂xiπε and the other second derivatives, we have

‖∇2vε‖q,Ω′ + ‖∇pε‖q,Ω′ ≤ C
(
‖fε‖q,Ω′ + ‖vε‖1,q,Ω′′−Ω′ + ‖pε‖q,Ω′′−Ω′

)
Using the pointwise convergence of mollifications, we have, as ε→ 0,

‖∇2v‖q,Ω′ + ‖∇p‖q,Ω′ ≤ C
(
‖f‖q,Ω′ + ‖v‖1,q,Ω′′−Ω′ + ‖p‖q,Ω′′−Ω′

)
that is the thesis.
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9.5.1 Lq-Estimates near the boundary

The main theorem of this subsection is the following. It is theorem [12, Th. IV.5.1].

Theorem 9.7. Let Ω be an arbitrary domain in Rn, with n ≥ 2, with a boundary portion
σ of class Cm+2, m ≥ 0. Let Ω0 be any bounded subdomain of Ω with ∂Ω0 ∩ ∂Ω = σ.
Further, let

v ∈ W 1,q(Ω0), p ∈ Lq(Ω0), 1 < q <∞
be such that

〈∇v,∇ψ〉 = −〈f, ψ〉+ 〈p,∇ · ψ〉, ψ ∈ C∞0 (Ω0)

〈v,∇ϕ〉 = 0 ∀ψ ∈ C∞0 (Ω0)

v = v∗ at σ

Then, if
f ∈ Wm,q(Ω0), v∗ ∈ Wm+2−1/q,q(σ)

we have
v ∈ Wm+2,q(Ω′), p ∈ Wm+1,q(Ω′)

for any Ω′ satisfying

• Ω′ ⊂ Ω0;

• ∂Ω′ ∩ ∂Ω is a strictly interior subregion of σ.

Finally, the following estimate holds

‖v‖m+2,q,Ω′ + ‖p‖m+1,q,Ω′ ≤ c
(
‖f‖m,q,Ω0 + ‖v∗‖m+2−1/q,q(σ) + ‖v‖1,q,Ω0 + ‖p‖q,Ω0

)
where c = c(m,n, q,Ω′,Ω0).

Remark 9.20. The proof is very technical and it is apart from our purposes. It is
completely exposed in [12, Th. IV.5.1, pg. 276]. �

9.5.2 Proof of the main theorem

In order to prove the main theorem, we have to prove a uniqueness lemma.

Lemma 9.5. Let Ω be a bounded, C2-smooth domain on Rn. If v is a q-weak solution
to the Stokes problem, corresponding to zero data f ≡ 0, v∗ ≡ 0, then v ≡ 0 and p ≡ c
a.e. in Ω, where p is the pressure field associated to v.

Proof. We deal with the proof in two cases. First of all, suppose q ≥ 2. Let v, v1 two
solutions, and define u := v − v1. Then u satisfies, for every ϕ ∈ C∞0,σ(Ω),

〈∇u,∇ϕ〉 = 〈∇v,∇ϕ〉 − 〈∇v1,∇ϕ〉 = 0

since v and v1 are solution associated to the same data. Also the trace is zero, since T
is a linear operator. So, we have that, for every ϕ ∈ C∞0,σ(Ω),

0 =

∫
Ω

∇u · ∇ϕ dx
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It follows, by regularizing the euqation, that ∆uε = 0, with zero boundary conditions.
It follows that u ≡ 0.

We finally prove the main theorem.

Definition 9.11. In the following we set

‖w‖k,q/R := inf
c∈R
‖w + c‖k,q

Theorem 9.8. Let v be a q-generalized solution of the Stokes problem in a bounded
domain Ω of Rn, n ≥ 2, of class Cm+2, m ≥ 0, corresponding to

f ∈ Wm,q(Ω), v∗ ∈ Wm+2−1/q,q(∂Ω) (9.39)

Then

v ∈ Wm+2,q(Ω), p ∈ Wm+1,q(Ω)

where p is the pressure field associated to v by lemma 9.1. Moreover, the following
inequality holds:

‖v‖m+2,q + ‖p‖m+1,q/R ≤ c
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

)
with c = c(m,n, q,Ω).

Proof. Being Ω a bounded domain, we can consider the closure Ω. It is a compact
set. By definition, we can cover this compact with a finite number of open balls. Using
theorem 9.6 and 9.7, sectioning the domain as in 1.2, we find functions v ∈ Wm+2,q(Ω)
and p ∈ Wm+1,q(Ω) such that

|v|m+2,q + |p|m+1,q ≤ c
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω) + ‖v‖1,q + ‖p‖q

)
So, summing the Lq norms of all the derivatives of all the orders up to m+ 1, we finally
get

‖v‖m+2,q + ‖p‖m+1,q/R ≤ c2

(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω) + ‖p‖q/R + ‖v‖q

)
(9.40)

Moreover, we know that, given data as in (9.39), a q-weak solution of the problem is
such that v ∈ Wm+2,q(Ω), p ∈ Wm+1,q(Ω).

We now show that, provided that the solution is unique, we can prove the existence of
a constant c3 > 0 such that, for every f ∈ Wm,q(Ω), v∗ ∈ Wm+2−1/q,q(∂Ω), a weak solu-
tion v ∈ Wm+2,q(Ω) of the Stokes system with associated pressure field p ∈ Wm+1,q(Ω)
satisfies

‖v‖q + ‖p‖q/R ≤ c3

(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

)
(9.41)

Clearly, this result, together with (9.40), gives us the the final estimate.

If (9.41) were not true, then for every ck > 0 there exists fk ∈ Wm,q(Ω), vk∗ ∈
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Wm+2−1/q,q(∂Ω) and a weak solution vk ∈ Wm+2,q(Ω) of the problem, with associated
pressure field pk ∈ Wm+1,q(Ω), such that

‖vk‖q + ‖pk‖q/R > ck
(
‖fk‖m,q + ‖vk∗‖m+2−1/q,q(∂Ω)

)
(9.42)

We can choose ck = k ∈ N. Moreover, without less of generality, we can suppose13

‖vk‖q + ‖pk‖q/R = 1 for all k ∈ N (9.43)

Since k →∞, then
lim
k→∞

(
‖fk‖m,q + ‖vk∗‖m+2−1/q,q(∂Ω)

)
= 0 (9.44)

By equation (9.40), we have that

‖vk‖m+2,q + ‖pk‖m+1,q/R ≤ c2

(
‖fk‖m,q + ‖vk∗‖m+2−1/q,q(∂Ω) + ‖pk‖q/R + ‖vk‖q

)
≤ C

So the sequence is uniformly bounded. Now we use corollary 4.1. In fact, we have that
m ≥ 0, and so m+ 2 ≥ 2. So in particular ‖vk‖2,q ≤ C, that implies

‖vk‖1,q ≤ C, ‖∇vk‖1,q ≤ C

Since W 1,q(Ω) ⊂⊂ Lq(Ω) for every q ∈ (1,∞), we have that exist kh and u ∈ Lq(Ω)
such that

lim
h→∞
‖vkh − u‖q = 0

Since now ‖∇vkh‖1,q ≤ C, being a subsequence, we have that exist hhl and w ∈ Lq(Ω)
such that

lim
l→∞
‖∇vkhl − w‖q = 0

In particular lim
l→∞
‖vkhl − u‖q = 0, being a subsequence. So, it follows that ∇u = w ∈

Lq(Ω). In fact, for every ϕ ∈ C∞0 (Ω),∫
Ω

u ∂xiϕ dx = lim
l→∞

∫
Ω

vkhl ∂xiϕ dx = − lim
l→∞

∫
Ω

∂xivkhl ϕ dx = −
∫

Ω

wi ϕ dx

If we rename the sequence to be vk, we have that

‖vk − u‖1,q =
(
‖vk − u‖q + ‖∇vk −∇u‖q

) 1
q → 0

13In fact, if vk ∈ Wm+2,q(Ω) is a q-weak solution of the problem with data fk ∈ Wm,q(Ω), vk∗ ∈
Wm+2−1/q,q(∂Ω), with associated pressure field pk ∈Wm+1,q(Ω), we have that

v′k :=
vk

‖vk‖q + ‖pk‖q/R
, p′k :=

pk
‖vk‖q + ‖pk‖q/R

is a q-weak solution to the problem with data

f ′k :=
fk

‖vk‖q + ‖pk‖q/R
, (v′∗)k :=

vk∗
‖vk‖q + ‖pk‖q/R

Moreover, we have
1 > k

(
‖f ′k‖m,q + ‖(v′∗)k‖m+2−1/q,q(∂Ω)

)
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as k → ∞. Similarly, we can find π ∈ Lq(Ω) such that lim
k→∞
‖pk − π‖q/R = 0. So we

have
‖u‖q + ‖π‖q/R = 1

passing to the limit equation (9.43). Moreover it holds that u is a q-generalized solution
to the Stokes problem in Ω. In fact

〈∇vk,∇v〉 = 〈fk, v〉

for every v ∈ C∞0,σ(Ω). Since fk → 0 in Wm,q(Ω) thanks to (9.44), we have that
〈∇u,∇v〉 = 0. Moreover, u is weakly divergence free, since so it is vk. Finally, since
vk → u in Wm,q(Ω), and so in particular vk → v in W 1,q(Ω), Tvk → Tu in Lq(∂Ω),
using the estimate in theorem 4.9. Since Tvk = vk∗ converges to zero, thanks to (9.44),
we have Tu = 0. So u is a weak solution of the Stokes problem with external force
f = 0 and boundary data v∗ = 0. But, thanks to the uniqueness of the solution, we
have u ≡ 0, π ≡ const. So ‖u‖q +‖π‖q/R = 0, that is a contraddiction. So, the theorem

is proved.

9.6 The Stokes operator on a bounded domain

In the application of the Galerkin scheme it is fundamental the study of the eigenvalues
and the eigenfunctions of a linear operator, named Stokes operator. The properties of
this operator are strictly related to the results about the Stokes equation deduced above.
We start with the definition of some spaces.

Definition 9.12. Let Ω be a bounded domain of Rn, with n ≥ 2. In the following, we
define these spaces. Remembering that D(Ω) = C∞0,σ(Ω), we set

L2
σ(Ω) := C∞0,σ(Ω)

‖·‖2

with the scalar product

〈u, v〉Ω ≡ 〈u, v〉 :=

∫
Ω

u · v dx

and clearly ‖u‖2 = 〈u, u〉 1
2 .

On the other hand, we set W 1,2
0,σ (Ω) := C∞0,σ(Ω)

‖·‖W1,2(Ω) ⊆ L2
σ(Ω), with the scalar

product
〈u, v〉+ 〈∇u,∇v〉

and the norm
(
‖u‖2

2 + ‖∇u‖2
2

) 1
2 .

Remark 9.21. Observe that also 〈∇u,∇v〉 is a scalar product over W 1,2
0,σ (Ω). In fact,

linearity, positivity and simmetry are immediate. Moreover, if ‖∇u‖2 = 0, it follows
that ∇u ≡ 0 and so u ≡ c almost everywhere on Ω, and so the constant c is the
continuous version of u. Since Tc = c|∂Ω, we have c = 0. �

Remark 9.22. It also holds that W 1,2
0,σ (Ω) complactly embeds into L2

σ(Ω). In symbols,

W 1,2
0,σ (Ω) ⊂⊂ L2

σ(Ω). In fact, by the Sobolev theorem about (compact) embeddings we
have tha H1

0 (Ω) ⊂⊂ L2(Ω). This means that
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(i) ∃C > 0 such that ‖u‖2 ≤ C‖u‖H1 for every u ∈ H1
0 (Ω);

(ii) if {uk}k∈N is a bounded sequence in H1
0 (Ω), then there exists a subsequence {ukj}

and u ∈ L2(Ω) such that
lim

j→+∞
‖ukj − u‖2 = 0

Since the norms in W 1,2
0,σ (Ω), L2

σ(Ω) are the same of H1
0 (Ω), L2(Ω), the first property

holds for sure. So, let now {uk}k∈N inW 1,2
0,σ (Ω) a bounded sequence. Since it in particular

lives in H1
0 (Ω), we can find a subsequence {ukj}j∈N that converges to some u ∈ L2(Ω)

in the sense
‖ukj − u‖2 → 0 as j → +∞

It remains to prove that moreover u ∈ L2
σ(Ω). Since ukj ∈ W

1,2
0,σ (Ω), then there exists

a sequence u
kj
h ∈ C∞0,σ(Ω) such that lim

h→∞
‖ukjh − ukj‖H1 = 0. We can choose, for every

kj, the index hj := h(kj) such that ‖ukjhj − ukj‖2 ≤ ‖u
kj
hj
− ukj‖H1 <

1

kj
. It follows that

{ukjhj}j∈N ⊆ C∞0,σ(Ω) is a sequence such that

‖ukjhj − u‖2 ≤ ‖u
kj
hj
− ukj‖2 + ‖ukj − u‖2 → 0 as j → +∞

This show that u ∈ L2
σ(Ω). This is the thesis. �

Definition 9.13 (Stokes operator). We want to define an operator

A : D(A)→ L2
σ(Ω)

with domain D(A) ⊆ L2
σ(Ω) and range R(A) := {Au : u ∈ D(A)}.

We define D(A) ⊆ W 1,2
0,σ (Ω) to be the set of the functions u ∈ W 1,2

0,σ (Ω) such that

∃f ∈ L2
σ(Ω) : µ〈∇u,∇v〉 = 〈f, v〉 ∀ v ∈ C∞0,σ(Ω) (9.45)

If Λu(v) := µ〈∇u,∇v〉 for every v ∈ C∞0,σ(Ω), by the Riesz representation, we have

D(A) := {u ∈ W 1,2
0,σ (Ω) : the functional Λu(v) is continuous in ‖ · ‖2} (9.46)

For every u ∈ D(A), the image Au ∈ L2
σ(Ω) is defined by

µ〈∇u,∇v〉 = 〈Au, v〉 ∀ v ∈ C∞0,σ(Ω)

In other words, Au := f , with f defined in (9.45). The operator A = AΩ is said Stokes
operator on the domain Ω.

Remark 9.23. Since, if u1, u2 ∈ D(A) and fi is given by (9.45) with u = ui, i ∈ {1, 2},
we have

µ〈∇(u1 + u2),∇v〉 = 〈f1 + f2, v〉 ∀v ∈ C∞0,σ(Ω)

and so A(u1 + u2) = f1 + f2, that is A is linear. �

Remark 9.24. For the future, remember that P : L2(Ω) → L2
σ(Ω) is the Helmholtz

projection. �
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9.6.1 Properties of the Stokes operator

The following theorem prove the existence and collects some properties of the Stokes
operator.

Theorem 9.9. Let Ω ⊆ Rn, with n ≥ 2 a bounded domain. Then there exists A = AΩ,
the Stokes operator defined above, A : D(A)→ L2

σ(Ω), with the following properties:

• A is a positive, symmetric operator, with domain D(A) ⊆ L2
σ(Ω), and C∞0,σ(Ω) ⊆

D(A) ⊆ W 1,2
0,σ (Ω).

Moreover
N(A) := {u ∈ D(A) : Au = 0} = {0}

and the inverse operator A−1 : D(A−1)→ L2
σ(Ω) with domain D(A−1) = R(A) =

L2
σ(Ω) is a positive, self-adjoint operator on the Hilbert space L2

σ(Ω).

• Let u ∈ W 1,2
0,σ (Ω), f ∈ L2

σ(Ω). Then u is a weak solution to the problem
−µ∆u+∇p = f

∇ · u = 0

u|∂Ω ≡ 0

(9.47)

on Ω if and only if u ∈ D(A) and Au = f ; moreover, the latter claim holds if and
only if there exists p ∈ L2

loc(Ω) such that

−µ∆u+∇p = f

in the sense of distributions.

• The inverse operator A−1 is bounded; in particular, if C is the Poincaré constant
on the bounded domain Ω, we have

‖A−1‖ ≤ C2µ−1

Here ‖ · ‖ is the operator norm.

• Finally, if Ω is a C2 domain, then

D(A) = L2
σ(Ω) ∩W 1,2

0,σ (Ω) ∩W 2,2(Ω) (9.48)

and p ∈ L2(Ω). Moreover

‖u‖W 2,2(Ω) + µ−1‖∇p‖2 ≤ Cµ−1‖Au‖2 (9.49)

for every u ∈ D(A).

Proof. The existence is based on lemma 2.4. In our context, we set H ≡ L2
σ(Ω),

equipped with the norm ‖ · ‖2. Since

C∞0,σ(Ω) ⊆ W 1,2
0,σ (Ω) ⊆ L2

σ(Ω)
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then W 1,2
0,σ (Ω) is dense in (H, ‖ · ‖2). So, we can set D(S) := W 1,2

0,σ (Ω), and

S : D(S)×D(S)→ R

S(u, v) := µ〈∇u,∇v〉

Clearly, S is symmetric. Moreover S(u, u) = µ‖∇u‖2
2 ≥ 0 and is zero in D(S) if and

only if u ≡ 0. D = D(S) is here equipped with the norm(
‖u‖2

2 + ‖∇u‖2
2

) 1
2 = ‖u‖H1

So, according to lemma 2.4, there exists a uniquely determined operator with the proper-
ties (2.4). Observe that, by continuity, S satisfies these properties. In fact, if u ∈ D(A)
and v ∈ D = W 1,2

0,σ (Ω), we can approach v in norm ‖ · ‖H1 with a sequence vk ∈ C∞0,σ(Ω).
So we have

S(u, v) = lim
k
µ〈∇u,∇vk〉 = lim

k
µ〈Au, vk〉 = µ〈Au, v〉

and if ‖v‖2 < δ, then ‖vk‖2 < δ for k sufficiently large, say k ≥ K. Then, by definition
(9.46) of D(A), for every ε > 0 exists δ such that, for every k ≥ K,

|S(u, vk)| < ε

So we have

|S(u, v)| = lim
k
|S(u, vk)| ≤ ε

since vk → v in H1. So v → S(u, v), for every v ∈ D, is continuous with respect to the
norm ‖ · ‖2. So, the operator A satisfies the required properties, and so B = A.
We start remarking some properties. Let u, v ∈ D(A). We have that

〈Au, v〉 =
1

µ
S(u, v) =

1

µ
S(v, u) = 〈Av, u〉 (9.50)

So, we have that A is symmetric. Moreover, if u ∈ D(A),

〈Au, u〉 =
1

µ
S(u, u) ≥ 0 (9.51)

and if S(u, u) = 0, then u = 0 in W 1,2
0,σ (Ω).

Moreover, if u ∈ D(A) and Au = 0, we have

µ〈∇u,∇v〉 = 0 ∀v ∈ W 1,2
0,σ (Ω)

But u ∈ D(A) ⊆ W 1,2
0,σ (Ω), and so ‖∇u‖2 = 0, that implies u ≡ 0 in W 1,2

0,σ (Ω). So, we
finally have

N(A) = {u ∈ D(A) : Au = 0} = {0}

This fact allows us to define an inverse operator. In fact, consider

R(A) = {f ∈ L2
σ(Ω) : ∃u ∈ D(A) f = Au}
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So, for every f ∈ L2
σ(Ω), it is possible to define A−1f = u. This operator is well posed.

In fact, if f1, f2 ∈ L2
σ(Ω), we have fi = Aui, ∃ui ∈ D(A). So, if f1 = f2, we have

0 = f1 − f2 = A(u1 − u2)

and so u1 = u2 in W 1,2
0,σ (Ω).

So we have the operator

A−1 : R(A)→ D(A) ⊆ L2
σ(Ω)

with A−1(f) = u, if Au = f .

We can now prove that R(A) = L2
σ(Ω) . We now that R(A) ⊆ L2

σ(Ω) by definition.

So, let f ∈ L2
σ(Ω). Then, if v ∈ W 1,2

0,σ (Ω), we have, using the Poincaré inequality

‖v‖2 ≤ C‖∇v‖2 over14 W 1,2
0,σ (Ω),

|µ〈f, v〉| ≤ µ‖f‖2‖v‖2 ≤ µC‖f‖2‖∇v‖2

So, if we consider the Hilbert space (W 1,2
0,σ (Ω), 〈·, ·〉1), where, for every u, v ∈ W 1,2

0,σ (Ω),

〈u, v〉1 := 〈∇u,∇v〉

with norm 〈v, v〉
1
2
1 = ‖∇v‖2, the operator λf : W 1,2

0,σ (Ω)→ R, defined by λf (v) := µ〈f, v〉,
is continuous over W 1,2

0,σ (Ω) equipped with 〈·, ·〉1.

Since λf is clearly linear, it belongs to the dual space (W 1,2
0,σ (Ω), 〈·, ·〉1)∗. By Riesz

representation theorem for Hilbert spaces, it follows that there exists a unique f̃ ∈
W 1,2

0,σ (Ω) such that

µ〈f, v〉 = λf (v) = 〈f̃ , v〉1 ≡ 〈∇f̃ ,∇v〉 ∀v ∈ W 1,2
0,σ (Ω) (9.52)

So, by definition , f̃ ∈ D(A), and Af̃ = f . This means that f ∈ R(A), that is what we
wanted to prove.

With these devices, we can deduces the claimed properties of the operator A−1. For
every f, g ∈ R(A) = L2

σ(Ω), we have that exist u, v ∈ D(A) such that f = Au and
g = Av. So,

〈A−1f, g〉 = 〈u,Av〉 (9.50)
= 〈Au, v〉 = 〈f, A−1g〉

since u, v ∈ D(A). Similarly, if f ∈ R(A), and so f = Au with u ∈ D(A), we have

〈A−1f, f〉 = 〈u,Au〉
(9.51)

≥ 0

with u ∈ D(A). So we have proved that

A−1 : R(A) = L2
σ(Ω)→ L2

σ(Ω)

14Thanks to the fact that the domain is bounded.
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is a positive and self-adjoint operator over the Hilbert space L2
σ(Ω).

We now prove the second claim of the theorem. Let u ∈ W 1,2
0,σ (Ω) and f ∈ L2

σ(Ω).
Let u be a weak solution to the Stokes problem. In other words, we have

µ〈∇u,∇v〉 = 〈f, v〉 ∀v ∈ D(Ω)

This automatically implies that u ∈ D(A) and Au = f .
Conversely, if Au = f , then by definition it is a weak solution of the Stokes operator.

We now have to prove the third point, that is the boundness of the operator ‖A−1‖.
Let u ∈ D(A), and f := Au. As in (9.52), we have that exists F ∈ L2(Ω) such that

〈f, v〉 = 〈F,∇v〉 ∀v ∈ W 1,2
0,σ (Ω)

So we have, being u ∈ D(A) ⊆ W 1,2
0,σ (Ω),

µ‖∇u‖2
2 = µ〈∇u,∇u〉 = 〈Au, u〉 = 〈f, u〉 ≤ C‖f‖2‖u‖2 ≤ C‖f‖2‖∇u‖2

This implies ‖∇u‖2 ≤ µ−1C‖f‖2. This leads to

‖u‖2 ≤ C‖∇u‖2 ≤ µ−1C2‖f‖2 = µ−1C2‖Au‖2

So, if f ∈ L2
σ(Ω), we have f = Au, with u ∈ D(A), and u = A−1f . So

‖A−1f‖2 ≤ µ−1C2‖f‖2 (9.53)

This means that ‖A−1‖ ≤ µ−1C2.

We finally prove the four point. Let u ∈ D(A) and define f := Au ∈ L2
σ(Ω) ⊆ L2(Ω).

By the previous points we have that u is a 2-generalized solution of the Stokes system,
and f ∈ L2(Ω). So, theorem 9.8 implies that u ∈ W 2,2(Ω) and exists p ∈ W 1,2(Ω),
associated to the velocity field by lemma 9.1, such that, also thanks to proposition 9.1,

−µ∆u+∇p = f

Moreover, it holds the inequality

‖u‖W 2,2 + µ−1‖∇p‖2 ≤ cµ−1‖f‖2 (9.54)

Since we already know that u ∈ W 1,2
0,σ (Ω) ⊆ L2

σ(Ω), we have u ∈ W 1,2
0,σ (Ω) ∩ H2(Ω) ∩

L2
σ(Ω).

Conversely, let u ∈ W 1,2
0,σ (Ω) ∩W 2,2(Ω). Then −µ∆u ∈ L2(Ω). So, if v ∈ C∞0,σ(Ω),

µ〈∇u,∇v〉 = −µ〈∆u, v〉 = −µ〈∆u, Pv〉 = −µ〈P∆u, v〉 (9.55)

Thanks to the density of C∞0,σ(Ω) in W 1,2
0,σ (Ω), we have

〈Au, v〉 = µ〈∇u,∇v〉 = −µ〈P∆u, v〉 ∀v ∈ W 1,2
0,σ (Ω) (9.56)

Equation (9.55) means that u ∈ D(A), and equation (9.56) implies Au = −µP∆u.
Finally, equation (9.54) applied to this case says that

‖u‖W 2,2 + µ−1‖∇p‖2 ≤ cµ−1‖Au‖2 (9.57)

This concludes the proof of the theorem.

181



9.7 Eigenvalues problem for the Stokes operator

Given the Stokes operator defined above, it is now useful, for future arguments in the
present thesis, to study the eigenvalues problem

Au = λu

Theorem 9.9 says to us that, roughly speaking, a problem of the form Au = f is
equivalent to a Stokes problem. This will be at the core of the next remarks.
Before starting, we define a functional space that will be fundamental also in the next
chapters.
Let Ω a bounded domain, with smooth boundary15.

Definition 9.14. From now on, we will represent with X the following functional space

X := {φ ∈ H1
0 (Ω) ∩H2(Ω)| ∇ · φ = 0 in Ω} (9.58)

i.e. the weak divergence free space.

Remark 9.25. The space X is an Hilbert space, if equipped with the inner product and
the norm of H2.

The following theorem underlines a fundamental property of the inverse Stokes op-
erator.

Theorem 9.10. The inverse Stokes operator A−1 : L2
σ(Ω) → L2

σ(Ω) that is, as we
already know, positive and self-adjoint, is, furthermore, a compact operator.

Proof. The inverse operator A−1 : L2
σ(Ω) → L2

σ(Ω) is continuous, as outlined in
(9.53).
Moreover, we can remark that every image A−1f , with f ∈ L2

σ(Ω), is in D(A), by the
definition of the inverse operator A−1. Since D(A) ⊆ W 1,2

0,σ can be equipped with the
norm ‖ · ‖H1 , we want to say something about ‖A−1f‖H1 .
In particular, if f ∈ L2

σ(Ω), then A−1f = u, for some u ∈ D(A), with Au = f . The, it
holds

‖A−1f‖H1 ≡ ‖u‖H1

(9.57)

≤ µ−1c‖Au‖2 ≡ µ−1c‖f‖2

So, let {fk}k∈N ⊆ L2
σ(Ω) a bounded sequence, that is ‖fk‖2 ≤ M for every k ∈ N. It

follows that ‖A−1fk‖H1 ≤ µ−1cM for every k ∈ N. This means that {A−1fk}k∈N is a
bounded sequence in W 1,2

0,σ (Ω). But remark 9.22 outlines that W 1,2
0,σ (Ω) ⊂⊂ L2

σ(Ω). This
means that there exists a subsequence {A−1fkj}j∈N and a function u ∈ L2

σ(Ω) such that

lim
j→∞
‖A−1fkj − u‖2 = 0

This is the definition of compactness for the operator A−1 : L2
σ(Ω)→ L2

σ(Ω).

On compact, positive, self-adjoint operators on Hilbert spaces there exists a big class
of spectral theorems. The most classical is the Hilbert-Schmidt theorem.

15To all the aims, it is enough to suppose Ω with C2 boundary, as in the hypothesis of theorem 9.9.
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9.7.1 Application of the Hilbert-Schmidt theorem

In the statement of theorem 2.7, we choose H = L2
σ(Ω) and B = A−1. We find, in this

way, the sequences {σk} and {ϕk} such that

0 < ... ≤ σk ≤ σk−1 ≤ ... ≤ σ1, lim
k→+∞

σk = 0, A−1ϕk = σkϕk (9.59)

where moreover {ϕk}k∈N is a complete ortonormal basis of L2
σ(Ω). This means that, for

every f ∈ L2
σ(Ω), there exists a sequence {cki }ki=1 such that

lim
k→+∞

∥∥∥∥∥f −
k∑
i=1

ckiϕi

∥∥∥∥∥
2

= 0,

∫
Ω

ϕk · ϕj dx = δkj (9.60)

Remark 9.26. In order to start to deal with the next theorem, observe that, as in (9.58),

X = {φ ∈ H1
0 (Ω)| ∇ · φ = 0 in Ω} ∩H2(Ω) (9.61)

Moreover, as highlighted in [26, Remark, pg. 1096], since the boundary ∂Ω is Lipschitz,

we have {φ ∈ H1
0 (Ω)| ∇ · φ = 0 in Ω} = C∞0,σ(Ω)

‖·‖H1 ≡ W 1,2
0,σ (Ω). But, remembering

now equation (9.48), we have that D(A) = X. �

Remark 9.27. We give more details to remark 9.26. Consider, in fact, V := {ϕ ∈
C∞c (Ω) : ∇ · ϕ = 0}, and consider V := V‖·‖H1

. Then V = {u ∈ H1
0 (Ω) : ∇ · u = 0.

The inclusion ⊆ is easy, in the sense that it does not involve decomposition theo-
rems, as the other one. Infact, consider a Cauchy sequence {un}n∈N, with un ∈ V and
‖un−um‖H1 → 0 as n,m→∞. Then, by the completion of H1

0 (Ω) we have that exists
u ∈ H1

0 (Ω) such that un → u in H1. Moreover, with usual arguments, ∇ · u = 0.
The inclusion ⊇ involves the regularity of the boundary. It is in fact neces-

sary to use the Helmholtz decomposition. Let in fact f ∈ V⊥. By theorem 6.1 we
have that exists p ∈ L2(Ω) such that f = ∇p in distributional sense. So, by in-
tegration by parts, we have f ∈ {ϕ ∈ H1

0 (Ω) : ∇ · ϕ = 0}⊥. This implies that
{ϕ ∈ C∞c (Ω) : ∇ · ϕ} ⊇ {ϕ ∈ H1

0 (Ω) : ∇ · ϕ = 0}. �

Theorem 9.11. Let Ω a bounded domain with smooth boundary, and let A = AΩ the
Stokes operator. Then, for the operator A : D(A) = X → L2

σ(Ω), there exists a sequence
of pairs (λk, w

k), with 0 < λ1 ≤ λ2 ≤ ... ≤ λk ≤ ..., and wk ∈ X ∩ L2
σ(Ω), such that

lim
k→+∞

λk = +∞, Awk = λkw
k ∀k ∈ N,

∫
Ω

wk · wj dx = δkj (9.62)

and, for every u ∈ D(A) = X,

lim
N→∞

∥∥∥∥∥
N∑
k=1

〈u,wk〉2wk − u

∥∥∥∥∥
H2

= 0

Proof. First of all, we define λk :=
1

σk
and wk := ϕk ∈ L2

σ(Ω), where σk and ϕk are

those in (9.59). One observes immediately that

λkA
−1ϕk =

1

σk
A−1ϕk = ϕk =⇒ λkϕk = Aϕk (9.63)
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The equality (9.63) implies that ϕk ∈ D(A), since it is the pre-image of λkϕ ∈ L2
σ(Ω).

The properties of the eigenvalues are, clearly, an immediate consequence of the defini-
tion as reciprocal of σk. Moreover, ϕk are eigenfunctions also for the operator A, as
underlined in (9.63). Obviously, since wk := ϕk, we have∫

Ω

wk · wj dx =

∫
Ω

ϕk · ϕj = δkj

It remains to prove that this is a complete basis. Since {ϕk}k∈N is a basis of L2
σ(Ω), we

know that for every16 f ∈ L2
σ(Ω), lim

N→+∞
‖

N∑
k=1

〈f, ϕk〉2ϕk − f‖2 = 0.

Now we have to show that {wk}k∈N is a basis also for the space X. Remember that an
Hilbert space, equipped with the H2-norm.
Let u ∈ X = D(A) and let f := Au ∈ L2

σ(Ω). Define, moreover,

fN :=
N∑
k=1

〈f, wk〉2wk

where wk ≡ ϕk. Then lim
N→∞

‖fN − f‖2 = 0. Observe also that, since u,wk ∈ D(A),

A−1fN =
N∑
k=1

〈f, wk〉2A−1wk =
N∑
k=1

〈Au,wk〉2σkwk =
N∑
k=1

〈u,Awk〉2σkwk =
N∑
k=1

〈u,wk〉2wk =: uN

and so AuN = fN . Moreover, thanks to (9.57),

‖uN − u‖H2 ≤ cµ−1‖A(uN − u)‖2 ≡ cµ−1‖fN − f‖2

So

lim
N→∞

∥∥∥∥∥
N∑
k=1

〈u,wk〉2wk − u

∥∥∥∥∥
H2

= 0

for every u ∈ X = D(A). This completes the proof.

Now that we have a basis of eigenfunctions, we can deduce some regularity proper-
ties about these eigenfunctions.

16Observe that cki = 〈
k∑
j=1

ckjϕj , ϕi〉 = 〈
k∑
j=1

ckjϕj − f + f, ϕi〉 = 〈
k∑
j=1

ckjϕj − f, ϕi〉+ 〈f, ϕi〉, and so

∥∥∥∥∥
k∑
i=1

〈f, ϕi〉ϕi − f

∥∥∥∥∥
2

=

∥∥∥∥∥
k∑
i=1

(cki − dki )ϕi − f

∥∥∥∥∥
2

≤

∥∥∥∥∥
k∑
i=1

cki ϕi − f

∥∥∥∥∥
2

+

∥∥∥∥∥
k∑
i=1

dki ϕi

∥∥∥∥∥
2

where dki := 〈
k∑
j=1

ckjϕj − f, ϕi〉. Moreover, thanks to the Bessel inequality, we have

∥∥∥∥∥
k∑
i=1

dki ϕi

∥∥∥∥∥
2

2

=

k∑
i=1

|dki |2 =

k∑
i=1

∣∣∣∣∣∣〈
k∑
j=1

ckjϕj − f, ϕi〉

∣∣∣∣∣∣
2

≤

∥∥∥∥∥∥
k∑
j=1

ckjϕj − f

∥∥∥∥∥∥
2

2
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9.7.2 Regularity properties of eigenfunctions of the Stokes op-
erator

Regularity theory is based again on theorem 9.9. This theory, is fully developed in the
Ladyzhenskaya’s book [19]; see in particular [19, Sec. 5, Th. 2]. However, we com-
pletely follows the work of Galdi in [12, Chapter IV], that is section 9.5.
This approach is in particular suggested by Simon in [26, pg. 1112].

Let as above Ω be a bounded domain with smooth boundary. At this level it is very
important to fix the dimension in which the problem, as we will see in a moment. So,
consider Ω ⊆ R3, that is n = 3.

Let wk ∈ X ∩ L2
σ(Ω) an eigenfunction of theorem 9.11, with eigenvalue λk, that is

Awk = λkw
k. Since wk ∈ D(A) = X, by (9.49) we have

‖wk‖W 2,2 ≤ cµ−1‖Awk‖2 ≡ cµ−1λk‖wk‖2

In other words, as we have already known, wk ∈ W 2,2. Now, from the Sobolev theorem
4.8, being 2 > 3

2
, we have that wk ∈ C2−[ 3

2
]−1,γ(Ω) = C0, 1

2 (Ω).

So wk ∈ C0(Ω) ≡ C(Ω). We now want to get further regularity.

Since wk ∈ C(Ω), we have wk ∈ Lr(Ω) for every r > 1, since Ω is bounded. In
particular, we can choose r = 4, so that wk ∈ L4(Ω). Since wk ∈ D(A) ∩ L2

σ(Ω) solves
the Stokes problem with force λkw

k, we have, by theorem 9.9, that

µ〈∇wk,∇v〉 = 〈λkwk, v〉 ∀v ∈ C∞0,σ(Ω)

Moreover, ‖∇wk‖4 ≤ C‖∇wk‖H1 , so that wk ∈ W 1,4(Ω). Since wk is continuous over
Ω, and Twk ≡ 0, we have that wk|∂Ω ≡ 0. So the trace is zero also in the sense of
W 1,4(Ω). So wk ∈ W 1,4

0 (Ω). Moreover ∇ · wk = 0 in the weak sense.
So, wk is a 4-generalized solution in the sense of definition 9.4. Then, since also the

force λkw
k ∈ L4(Ω), theorem 9.8 assures that wk ∈ W 2,4(Ω). Moreover it holds

‖wk‖W 2,4(Ω) ≤ Cλk‖wk‖L4(Ω) (9.64)

Again, by Sobolev theorem 4.8, we have, being 2 > 3
4
,

wk ∈ C2−[ 3
4

]−1,γ(Ω) = C1, 1
4 (Ω) ⊆ C1(Ω)

So, the basis of eigenfunctions is more regular: it is one time continuously differentiable
on the compact Ω.

9.7.3 Properties of the Stokes eigenfunctions

Theorem 9.12. Consider the orthonormal basis {wk}k∈N, with related eigenvalues

{λk}k∈N. Obviously by definition it holds

∫
Ω

wj · wk dx = δjk. Moreover, it holds∫
Ω

∇wj · ∇wk dx = λkδjk (9.65)
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Proof. Being wj ∈ C1(Ω), with also wj ∈ H2(Ω), using the derivative rule of the
product we have

∇wj · ∇wk =
3∑
i=1

∇ · (wji∇wki )− wj ·∆wk

Since ∆wk ∈ L2(Ω), we can apply the Helmolthz decomposition and so ∆wk = P∆wk+
fk1 with fk1 ∈ G(Ω). Integrating over Ω we have∫

Ω

∇wj · ∇wk dx =
3∑
i=1

∫
Ω

∇ · (wji∇wki ) dx−
∫

Ω

wj ·∆wk dx =

and so using the generalized divergence theorem we have

=
3∑
i=1

(∫
∂Ω

T (wji∇wki ) · η dσ
)
−
∫

Ω

wj ·∆wkdx

Using the devices in subsection 4.7.1, we have that∫
∂Ω

T (wji∇wki ) · η dσ = 0

So ∫
Ω

∇wj · ∇wkdx = −
∫

Ω

wj ·∆wkdx =

= −
∫

Ω

wj · (P∆wk + fk1 ) dx = −〈wj, P∆wk + fk1 〉 = −〈wj, P∆wk〉 − 〈wj, fk1 〉

The eigenfunction wj is such that Awj = λjw
j, so it is in the range of the operator A,

that is L2
σ(Ω). So 〈wj, fk1 〉 = 0 since fk1 is in G(Ω). Finally∫

Ω

∇wj · ∇wkdx = −〈wj, P∆wk〉 = 〈wj,−P∆wk〉 = 〈wj, Awk〉 = 〈wj, λkwk〉 =

= λk〈wj, wk〉 = λk

∫
Ω

wj · wkdx = λkδjk

that is the thesis.

9.8 A further application of the Stokes problem

We conclude the chapter with the following theorem. It is stated and partially proved
in [26], and uses the devices of the Stokes problem to deduce very useful estimates that
will be fundamental in the future chapters.

Lemma 9.6. Let Ω a bounded domain of Rn, n ≥ 2, with smooth boundary. There
exist constants e > 0 and c > 0 such that

v ∈ H2(Ω) ∩ {v ∈ H1
0 (Ω) : ∇ · v = 0} =⇒

{
‖∆v‖2 ≤ e‖P∆v‖2

‖v‖∞ ≤ c (‖∆v‖2)
3
4 (‖∇v‖2)

1
4
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Remark 9.28. This theorem will be fundamental in the next chapters, since it allows
to control the essential supremum norms in terms of the norm H2, provided that the
function is, in weak sense, divergence free and with zero boundary conditions. �

Proof. We start proving the first estimate. Since v ∈ H2(Ω) and

〈P∆v, w〉L2(Ω) = −〈∇v,∇w〉L2(Ω) = 〈∆v, w〉L2(Ω)

for every w ∈ L2
σ(Ω), that is 〈∆v − P∆v, w〉L2(Ω) = 0. Then, using 9.8, we have the

estimate
‖∆v‖L2(Ω) ≤ C‖P∆v‖L2(Ω)

since v solves the Stokes equation with force P∆v.

We now prove the second estimate. Using the interpolation inequality in lemma 3.2,
we have that, for every u ∈ L6(Ω) ∩ L2(Ω) it holds

‖u‖4 ≤ C‖u‖α6‖u‖1−α
2 (9.66)

with α such that 1
4

= α
6

+ 1−α
2

. So, in this case, α = 3
4
. Since v ∈ H2(Ω) in the

hypothesis, we have that in particular v ∈ W 1,6(Ω)∩W 1,2(Ω). So, in particular v,∇v ∈
L6(Ω) ∩ L2(Ω). So, by (9.66), we have

‖v‖4 ≤ C‖v‖
3
4
6 ‖v‖

1
4
2 , ‖∇v‖4 ≤ C‖∇v‖

3
4
6 ‖∇v‖

1
4
2

But ‖v‖
3
4
6 ‖v‖

1
4
2 , ‖∇v‖

3
4
6 ‖∇v‖

1
4
2 ≤ C‖v‖

3
4

W 1,6‖∇v‖
1
4
2 , since v ∈ H1

0 (Ω), and so ‖v‖2 ≤
C‖∇v‖2. Thus we have

‖v‖W 1,4 ≡
(
‖v‖4

4 + ‖∇v‖4
4

) 1
4 ≤ ‖v‖4 + ‖∇v‖4 ≤ 2C‖v‖

3
4

W 1,6‖∇v‖
1
4
2

Since p = 4 > n = 3, we have by theorem 4.6,

‖v‖∞ ≤ C‖v‖W 1,4

Moreover, ‖v‖W 1,6 ≤ C1‖v‖H2 ≤ C2‖∆v‖2. Since, if f := −∆v ∈ L2(Ω), then v solves
∆v = −f , with v ∈ H1

0 (Ω), we have, by the theory on elliptic operators, that

‖v‖H2 ≤ C‖f‖2 ≡ C‖∆v‖2

So, it is clear that ‖v‖∞ ≤ C‖∆v‖
3
4
2 ‖∇v‖

1
4
2 and this concludes the lemma.
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Part II

Local strong solutions in the case Ω
bounded domain

(après Choe and Kim)
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Chapter 10

Navier-Stokes equations: weak,
strong solutions

We are interested in different kind of solutions to the Navier-Stokes equation. We start
with the definition of local weak solution to the problem.
We give two definitions: the first is the definition of the weak solution to the momentum
equation, the second to the transport equation.

10.1 Weak solutions and weak formulations

Definition 10.1. Let Ω a bounded domain in R3, with smooth boundary, and T∗ > 0
a local time. Moreover, let µ > 0 be a positive real number. Consider the space

W 1,2
0,σ (Ω) ≡ C∞0,σ(Ω)

‖·‖W1,2
. Let u0 ∈ W 1,2

0,σ (Ω) and ρ0 ∈ L∞(Ω) given initial data. We say

that the pair (u, ρ) ∈ L2(0, T∗;W
1,2
0,σ (Ω))× L∞(0, T∗;L

∞(Ω)) is a local weak solution in
the interval (0, T∗) of the momentum equation

(ρu)t +∇ · (ρu⊗ u)− µ∆u+∇p = 0 (10.1)

with initial conditions

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x) (10.2)

if for every test function ϕ ∈ C1([0, T∗];W
1,2
0,σ (Ω)) such that ϕ(x, T∗) = 0 a.e. in Ω, it

holds

−
∫ T∗

0

∫
Ω

ρu · ϕt dx dt−
∫ T∗

0

∫
Ω

ρu · ∇ϕ · u dx dt+ µ

∫ T∗

0

∫
Ω

∇u · ∇ϕ dx dt =

=

∫
Ω

ρ0(x)u0(x) · ϕ(x, 0) dx (10.3)

Remark 10.1. It is definition 1.1 of [16]. �

Remark 10.2. The integral∫
Ω

|u · ∇ϕ · u| dx ≤
∫

Ω

|u||∇ϕ||u| dx ≤ ‖∇ϕ‖2‖u‖2
4 ≤ C‖∇ϕ‖2‖∇u‖2

2 <∞

is well defined, since u ∈ H1
0 (Ω). �
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Remark 10.3. The definition makes sense with u ∈ L2(0, T∗;W
1,2
0,σ (Ω)). However, in the

present thesis, we will find a solution u ∈ L∞(0, T∗;W
1,2
0,σ (Ω)), that is a smaller space.

�

Remark 10.4. In the weak formulation the pressure gradient term does not appear. We
will introduce it in a slightly stronger formulation of the solution, the so called strong
(weak) formulation. �

Definition 10.2. Let ρ0 ∈ L∞(Ω) an initial data and u ∈ L2(0, T∗;H
1
0 (Ω)) a velocity

field, with ∇ · u = 0. A weak solution of the transport equation{
ρt +∇ · (ρu) = 0 in Ω× (0, T∗)

ρ(x, 0) = ρ0(x)

is a function ρ ∈ L∞(0, T∗;L
∞(Ω)) such that∫ T∗

0

∫
Ω

(ρϕt + ρu · ∇ϕ)(x, t) dx dt = −
∫

Ω

ρ0(x)ϕ(x, 0)dx

for every ϕ ∈ C1([0, T∗];H
1(Ω)) such that ϕ(x, T∗) = 0 a.e. in Ω.

Remark 10.5. It is definition 1.1 of [16]. �

Remark 10.6. As above, the definition makes sense provided that u ∈ L2(0, T∗;H
1
0 (Ω)).

However, we will find a solution u ∈ L∞(0, T∗;H
1
0 (Ω)). �

Remark 10.7. We will consider in future divergence-free velocity fields, i.e. ∇ · u = 0.
The transport equation, in this case, can be reformulated as ρt + u · ∇ρ = 0. �

10.1.1 Brief deduction of the weak formulation for the trans-
port equation

The weak formulation is obtained through the following formal argument1. We will
deduce also the weak momentum equation, proving the main theorem of this discussion.

In fact, in a regular scenario, consider ϕ as above, i.e. in C1([0, T∗];H
1(Ω)) such

that ϕ(x, T∗) = 0 a.e. in Ω. Then

ρtϕ+∇ · (ρu)ϕ = 0 ∀(x, t)

Remember now that

∇ · (ρu)ϕ = ∇ · (ϕρu)− ρu · ∇ϕ, (ρϕ)t = ρtϕ+ ρϕt

So, the equality above becomes

(ρϕ)t − ρϕt +∇ · (ϕρu)− ρu · ∇ϕ = 0

Integrating over Ω× [0, T∗) we get

0 =

∫ T∗

0

∫
Ω

[(ρϕ)t − ρϕt +∇ · (ϕρu)− ρu · ∇ϕ] dx dt =

1This argument will be regularized in the proof of the main theorem.
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2

=

∫
Ω

[(ρϕ)(T∗)− (ρϕ)(0)] dx−
∫ T∗

0

∫
Ω

ρϕt dx dt−
∫ T∗

0

∫
Ω

ρu · ∇ϕ] dx dt (10.4)

where the integral of the divergence is a boundary integral over ∂Ω through the diver-
gence theorem and so it vanishes since u ∈ H1

0 (Ω). But moreover ϕ vanishes as t→ T∗,
so ∫ T∗

0

∫
Ω

ρϕt dx dt+

∫ T∗

0

∫
Ω

ρu · ∇ϕ dx dt = −
∫

Ω

(ρϕ)(0) dx (10.5)

10.2 Strong solutions

The definitions that we are going to introduce describe the strong (weak) solutions. The
term weak in brakets, often avoided, remembers us that the solutions are not strong in
the classical sense, but in a weaker sense, however stronger than the sense in definitions
10.1 and 10.2. There are many definitions of strong solutions: in general, one expects
that a strong solution is in particular a weak solution. This is true, under suitable
hypothesis; however, it is not in the interest of the present thesis: every time we will
search for a solution, we will construct a weak solution; then, using some devices, we
will prove that this solution is also strong, in the sense we are going to introduce.

Definition 10.3. Let Ω be a bounded domain in R3 with smooth boundary and T∗ > 0.
A triple (ρ, u, p) of Banach-space valued functions defined over (0, T∗) in the sense

ρ : t 7→ ρ(t) ∈ L∞(Ω), u : t 7→ u(t) ∈ Vσ0 (Ω), p : t 7→ p(t) ∈ H1(Ω)

where Vσ0 := {v ∈ H1
0 (Ω) ∩H2(Ω) : ∇ · v = 0 in Ω}, and such that exists

ut : t 7→ ut(t) ∈ L2(Ω)

weak derivative of u in the sense of weak differentiation of Banach-valued functions,
is a solution of the momentum equations in the Navier-Stokes equations if, for almost
every t ∈ (0, T∗), the pair (u(t), p(t)) is solution to the Stokes equation{

−µ∆u(t) +∇p(t) = f(t)

∇ · u(t) = 0
(10.6)

where f(t) := −ρ(t)ut(t)− ρ(t)u(t) · ∇u(t) ∈ L2(Ω).

Remark 10.8. The sense in which the pair (u(t), p(t)) satisfies (10.6) has been explained
in chapter 9. In particular, we will prove in 11.14 that the pair (u(t), p(t)) we will find
in the proof of the theorems in the present thesis is solution of (10.6) with f(t) ∈ L6(Ω).
�

Definition 10.4. Let Ω be a bounded domain in R3 with smooth boundary and T∗ > 0.
Let u ∈ L1(0, T∗;L

2(Ω)) a velocity field, such that ∇ · u exists in the weak sense and
∇ · u = 0 for almost every t ∈ (0, T∗). A function ρ ∈ L∞(0, T∗;H

1(Ω)) is a strong
solution of the transport equation

ρt +∇ · (ρu) = 0

2Using FTC in Brezis’ [3, pg. 122, Th. VIII.2].
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if the equation holds in the sense of spacetime distributions, that is3∫ T

0

(∫
Ω

ρ(x, t) ϕt(x, t) dx

)
dt =

∫ T

0

(∫
Ω

u(x, t) · ∇ρ(x, t) ϕ(x, t) dx

)
dt (10.7)

for every ϕ ∈ C∞c ((0, T∗)× Ω).

Remark 10.9. Observe that the equation (10.7) is well posed. In fact ϕ ∈ L∞((0, T∗)×Ω)
and∣∣∣∣ ∫ T

0

(∫
Ω

u(x, t)·∇ρ(x, t) dx

)
dt

∣∣∣∣ ≤ ∫ T

0

‖u‖2‖∇ρ‖2 dt ≤ ‖∇ρ‖L∞(0,T∗;L2(Ω))‖u‖L1(0,T∗;L2(Ω))

The fact that the solution we will find is a strong solution to the transport equation
will be proved in section (11.14.3). �

Remark 10.10. Equation (10.7) means that ρt = −u · ∇ρ over Ω × (0, T ) in the sense
of weak derivatives. �

3Observe that ∇ · (ρu) = ρ (∇ · u) + u · ∇ρ = u · ∇ρ.
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Chapter 11

Local strong solutions in the case of
bounded domain

11.1 Statement of the main theorems

We will prove in this chapter three fundamental theorems, that are part of the core of
the present thesis.

Theorem 11.1. Let Ω be a bounded domain in R3 with smooth boundary, and assume
the data ρ0, u0 satisfy the regularity

0 ≤ ρ0 ∈ L∞(Ω), u0 ∈ H1
0 (Ω) ∩H2(Ω)

and the compatibility condition

µ∆u0 −∇p0 =
√
ρ0g ∇ · u0 = 0 in Ω (11.1)

for some (p0, g) ∈ H1(Ω) × L2(Ω). Let T > 0 a fixed local time. Then, there exists a
time T∗ ∈ (0, T ) and a weak solution (ρ, u) ∈ L∞(0, T∗;H

2(Ω)) × L∞(0, T∗;L
∞(Ω)) to

the initial boundary value problem
(ρu)t +∇ · (ρu⊗ u)− µ∆u+∇p = 0

ρt +∇ · (ρu) = 0, ρ ≥ 0 (x, t) ∈ Ω× (0, T∗)

∇ · u = 0


ρ(x, 0) = ρ0(x) x ∈ Ω

u(x, 0) = u0(x) x ∈ Ω

u(x, t) = 0 (x, t) ∈ ∂Ω× (0, T∗)

(11.2)
such that for all t ∈ (0, T∗) we have the estimates

‖∇u(t)‖2
2 ≤ C, ‖ρ(t)‖q = ‖ρ0‖q

sup
0<s≤t

(
‖∇u‖2

H1 + ‖√ρut‖2
2

)
+

∫ t

0

(
‖∇u‖2

W 1,6 + ‖ut‖2
D1,2

0

)
ds ≤ C exp

(
C

∫ t

0

‖∇u‖4
2ds

)
(11.3)

where
C(ρ0, u0, p0) ≡ ‖g‖2

2

Here the local existence time T∗ and the positive constant C depend only on ‖ρ0‖L∞,
‖∇u0‖2, ‖g‖2 and the time T ; but it is independent of the lower bounds of ρ0.
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Remark 11.1. The fixed time T > 0 in the statement above is arbitrary but fixed. Its
presence is due to derivation of the proof from a more general case, that is the case
with an additional force term f in the first of the equations above. In particular, in the
general case, it is required

f, ft,∇f ∈ L2(0, T ;L2)

In our case, we have f ≡ 0, so our function is in the space above for all the T > 0.
However, from the estimates above, we can see that we can’t get rid of this time
sending it to infinity: it will appear in the local time T∗ and C definition, as stated in
the previous theorem. �

Remark 11.2. In the claim, we have ‖ · ‖D1,2
0

= ‖∇ · ‖2, remembering that ut ∈ H1
0 (Ω).

�

We now state a theorem that assures us, under stronger hypothesis on the initial density,
the existence of strong solutions.

Theorem 11.2. Let Ω be a bounded domain in R3 with smooth boundary, and assume
the data ρ0, u0 satisfy the regularity

0 ≤ ρ0 ∈ H1(Ω), u0 ∈ H1
0 (Ω) ∩H2(Ω)

and the compatibility condition

µ∆u0 −∇p0 =
√
ρ0g ∇ · u0 = 0 in Ω (11.4)

for some (p0, g) ∈ H1(Ω) × L2(Ω). Let T > 0 a fixed local time. Then, there exists
a time T∗ ∈ (0, T ) and a strong solution (ρ, u, p) that satisfies (11.2) in the sense of
section 10.2. Moreover, the solutions satisfy

ρ ∈ L∞(0, T∗;H
1(Ω)), ρt ∈ L∞(0, T∗;L

2(Ω))

∇p ∈ L∞(0, T∗;L
2(Ω)) ∩ L2(0, T∗;L

6(Ω))

Remark 11.3. The regularity hypothesis on the boundary can be weakened. In fact,
Sobolev theorems hold provided that the boundary is C1, while Stokes theory holds
provided that the boundary is C2. �

11.2 Construction of the weak solution

Now we start the proof of theorem 11.1, using the so called Galerkin scheme: it
consists in solving the problem in a sequence of finite dimensional spaces, where the
problem is an ODE system, then applying functional analysis arguments to extract a
limit to the sequence of solutions.

The case of ρ0 ∈ C1(Ω). Let Ω be a bounded domain. Let ρ0, u0 be initial data such
that

0 ≤ ρ0 ∈ L∞(Ω), u0 ∈ H1
0 (Ω) ∩H2(Ω)

and that satisfy the compatibility condition (11.4) for some (p0, g) ∈ H1(Ω) × L2(Ω).
Let T > 0 a fixed time and consider a function ρ0 and a δ > 0 such that

ρ0 ∈ C1(Ω), ρ0 ≤ ρ0, 0 < δ ≤ ρ0 ≤ ‖ρ0‖∞ + 1 (11.5)
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Remark 11.4. The function ρ0 is in L∞(Ω), so the norm ‖·‖∞ is the essential supremum.
This norm, as every p-norm, looks at the function out of a zero measure set. So, in
a zero measure set, in example a point, ρ0 can take values that exceed ‖ρ0‖∞. These
values could eventually also overtake ‖ρ0‖∞ + 1. The inequality ρ0 ≤ ρ0 is so to be
meant almost everywhere, while the bounds for ρ0, that is a regular function, are to be
meant in the whole Ω. �

Definition 11.1. Remember that the space X has been defined in (9.58). We consider
now a finite ”truncation” of this functional space. Remember that {wk}k∈N is the basis
of eigenfunctions of X. We set

Xm := L(w1, ..., wm) ∀ m ∈ N

We want to prove the following proposition.

Proposition 11.1. Let ρ0 ∈ C1(Ω) such that (11.5) holds. Let T > 0. Then there
exists, for every m ∈ N, um ∈ C1([0, T ];Xm) and ρm ∈ C1([0, T ];C1(Ω)) such that∫

Ω

(
ρmumt + ρm(∇um)um

)
· φ+ µ∇um · ∇φ dx = 0 ∀ φ ∈ Xm (11.6)

um(0) =
m∑
k=1

〈u0, w
k〉wk, ρmt + um · ∇ρm = 0, ρm(0) = ρ0 (11.7)

where wk is the k-th eigengunction of the Stokes operator A.

Definition 11.2. We will call the pair (um, ρm) approximate solution of the Navier-
Stokes inhomogeneous incompressible problem.

11.2.1 Existence of the approximate solution

We now build functions as in proposition 11.1 so that it is proved. This construction
will mainly follow the paper [16], for estimates and some lemmas, but also [4] and [26].

Separation of the variables. To prove proposition 11.1, we want to reduce the
integral problem (11.6) to an ordinary differential problem (i.e. a system of ordinary
differential equations). We choose φ = wi in (11.6), supposing that1

um(x, t) =
m∑
j=1

ϕj(t)w
j(x) (11.8)

with ϕj depending only on time, we have

m∑
j=1

ϕ̇mj (t)

∫
Ω
ρm(t) wj · wi dx+

m∑
j=1

m∑
k=1

ϕmj (t)ϕmk (t)

∫
Ω
ρm(t)

(
(∇wj)wk

)
· wi dx +

1This method is often named separation of the variables. We suppose the existence of a solution
written as combination of element of a specific basis, and so we deduce which properties the coefficients
(depending on time) have to satisfy.
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+ µ

m∑
j=1

ϕmj (t)

∫
Ω
∇wj · ∇wi dx = 0 (11.9)

Here it is not clear what is ρm(t) = ρm(x, t). We know that this function also have
to solve the transport equation. In particular, as typical in transport theory, we have
ρm(x, t) = ρ0(γm(x, t)) with γm(x, t) solution of the following problem{

ẏ(s) = um(y, s)

y(0) = x
(11.10)

In particular, underlining the depence on a fixed flux γ, equation (11.9) can be rewritten
as

F (γ; t)∂tϕ
m(t) +G(γ; t, ϕm(t)) = 0

where

[F (γ; t)]ij :=

∫
Ω

ρ0(γ(x, t)) wj(x) · wi(x) dx (11.11)

and

[G(γ; t, ϕm)]i :=
m∑
j=1

m∑
k=1

ϕmj ϕ
m
k

∫
Ω
ρ0

(
γ(x, t)

)(
∇wj(x)wk(x)

)
· wi(x) dx+

+ µ

m∑
j=1

ϕmj

∫
Ω
∇wj(x) · ∇wi(x) dx (11.12)

Remark 11.5. F and G are regular in space and time, provided that γ is regular (since
thus are wj and ρ0). So, if the matrix F (γ) is invertible we can try to solve this system
of ODEs. �

We have the following lemma.

Lemma 11.1. Let 0 < δ ≤ ρ0 ∈ C(Ω), T > 0 a time, and γ(x, t) ∈ C1(Ω× [0, T ]). Let

[F (γ; t)]ij :=

∫
Ω

ρ0(γ(x, t))wi(x) · wj(x) dx

Then, for every t ∈ [0, T ], the matrix F (γ; t) is invertible.

Proof. Suppose, by contrary, that exists a t0 ∈ [0, T ] such that F (t) is singular.
That means, e.g., that is

[F (γ; t0)]1,j =
m∑
i=2

Ci[F (γ; t0)]i,j ∀j = 1, ...,m

This means that ∫
Ω

ρ0(γ(x, t0))w1(x) · wj(x) dx =

= C2

∫
Ω

ρ0(γ(x, t))w2(x) · wj(x) dx+ ...+ Cm

∫
Ω

ρ0(γ(x, t))wm(x) · wj(x) dx
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that can be rewritten as ∫
Ω

ρ0(γ(x, t))η(x) · wj(x) dx = 0

where η = w1 − C2w
2 − ...− Cmwm. This holds for every j = 1, ...,m.

Then, summing and multiplying for Cj, we have

δ

∫
Ω

|η|2dx ≤
∫

Ω

ρ0(γ(x, t))|η|2dx = 0

It follows that η ≡ 0. But {wm}m is a basis, so this is an absurdum.

Coupled ODEs systems. With this information, the key point is trying to solve
the systems {

ρmt = −um · ∇ρm

ρm(x, 0) = ρ0(x)
(11.13)

F (γm; t)∂tϕ
m(t) = −G(γm; t, ϕm(t))

ϕmj (0) =

∫
Ω

u0(x) · wj(x) dx
(11.14)

where γm(x, t) := ymx (t) is the trajectory of (11.13) defined in (8.2).

Remark 11.6. The system (11.13)-(11.14) is not immediately solvable, because ymx (t)
in the second system is the solution of the first system, but the first is solvable only if
we know ϕm(t), solution of the second system. We follow a classical way, using a fixed
point theorem. �

11.3 Construction of the solution to the ODEs

In this section, we use the papers [16] and [26] to deduce some fundamental estimates.

In order to solve (11.13)-(11.14) we have the following proposition.

Proposition 11.2. Let Ãm ∈ C1([0, T )) a solution of (11.14), with T ≥ T > 0. Then,
if we set

Ũm(x, t) :=
m∑
k=1

Ãmk(t)w
k(x)

it follows that exists L > 0 such that

‖∇Ũm‖2
2 ≤ L ∀t ∈ [0, T )

where L is independent of m and depends on T but is independent of T .

This proposition is fundamental in the next subsection; it will be very useful in a
moment.
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11.3.1 Existence of a solution

Let λ1 the minimum of the eigenvalues of the Stokes operator, as defined in theorem
9.11. Let L be as in proposition 11.2 above. Fix R ≥ ( L

λ1
)

1
2 . We define now

M := BR ≡ {A ∈ C([0, T ])m : ‖A‖C([0,T ])m ≤ R}

We can fix (Am1(t), ..., Amm(t)) ∈ BR and set2

um(x, t) :=
m∑
k=1

Amk(t)w
k(x) ∈ C([0, T ], Xm) ⊆ C([0, T ], C1(Ω))

So, being ρ0 ∈ C1(Ω), we can find a solution to{
ρmt (x, t) = −um(x, t) · ∇ρm(x, t)

ρm(x, 0) = ρ0(x)

with ρm ∈ C1([0, T ] × Ω), following the classical theory of transport equation as ex-
plained in theorem 8.1. In particular, the classical method of characteristics gives us,
for every x ∈ Ω, the trajectory of a particle under the motion of the transport equation
above. We can define γm(x, t) ∈ C1(Ω× [0, T ]) as the trajectory of this particle at the
time t obtained with the velocity field um. The point x is its initial data. The solution
is so given by ρm(x, t) := ρ0(γm(x, t)) ∈ C1([0, T ]× Ω), as underlined in (8.2). This is,
in words, what explained at the beginning of chapter 8. Observe that here um is zero
on ∂Ω and ∇ · um = 0 since these properties are satisfied by wk for every k ∈ N.

Using the flux γm, that is γm is fixed, we can try to find a solution to the problem{
F (γm; t)∂tϕ

m(t) = −G(γm; t, ϕm(t))

ϕmj (0) = 〈u0, w
j〉2

where F and G are as above. By the previous lemma 11.1, we can invert the matrix
F (γm)(t). So we can solve the equation{

∂tϕ
m(t) = −(F (γm; t))−1G(γm; t, ϕm(t))

ϕmj (0) = 〈u0, w
j〉2

(11.15)

at least locally, provided that the coefficients are regular enough.
To this aim, we write the equation above in other terms: in particular, considering only
the i-th row, we have

m∑
j=1

bmij (t)∂tϕ
m
j (t) +

m∑
j=1

m∑
k=1

Cm
ijk(t)ϕ

m
j (t)ϕmk (t) + µ

m∑
j=1

Dijϕ
m
j (t) = 0 (11.16)

2Thanks to the estimates in section 9.7.2, since ‖ · ‖4 ≤ C‖ · ‖H1 , so that

‖wm‖C1(Ω) ≤ ‖w
m‖W 2,4(Ω) ≤ Cλm‖wm‖L4(Ω) ≤ C2λm‖wm‖H1(Ω)
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where

bmij (t) :=

∫
Ω

ρm(x, t) wj(x) ·wi(x) dx, Cm
ijk(t) :=

∫
Ω

ρm(x, t)
(
∇wj(x) wk(x)

)
·wi(x) dx

Dij :=

∫
Ω

∇wj(x) · ∇wi(x) dx

where we have used the notations of Kim in [16]. The following lemma specifies the
regularity of these coefficients.

Lemma 11.2. If γm ∈ C1(Ω× [0, T ]) we have that bmij , C
m
ijk ∈ C1([0, T ])

Proof. We remark first of all that the coefficients Dij are constant in t, so the
regularity is trivial3. Remember moreover that |ρm(x, t)| = |ρ0(γm(x, t))| ≤ ‖ρ0‖∞ + 1
and

|ρmt (x, t)| = |∇ρ0(γm(x, t)) · ∂tγm(x, t)| ≤ max
Ω×[0,T ]

|∇ρ0(γm(x, t)) · ∂tγm(x, t)| ≡ Rm
0

So if we define Cm
0 ≡ ‖ρ0‖∞ + 1 +Rm

0 , we have∫
Ω

|ρm(x, t)||wj(x) · wi(x)|dx ≤ Cm
0

∫
Ω

|wj(x) · wi(x)|dx < +∞

so that we have a summable boundary (thanks to the fact that wk ∈ C1(Ω) and Ω is
bounded). Furthermore∫

Ω

|∂tρm(x, t)||wj(x) · wi(x)|dx ≤ Cm
0

∫
Ω

|wj(x) · wi(x)|dx < +∞

The same bounds hold for the other coefficients. In fact∫
Ω

|ρm(x, t)|
∣∣∣∣((∇wj(x)

)
wk(x)

)
·wi(x)

∣∣∣∣dx ≤ Cm
0

∫
Ω

∣∣∣∣((∇wj(x)
)
wk(x)

)
·wi(x)

∣∣∣∣dx < +∞

and∫
Ω

|∂tρm(x, t)|
∣∣∣∣((∇wj(x)

)
wk(x)

)
·wi(x)

∣∣∣∣dx ≤ Cm
0

∫
Ω

∣∣∣∣((∇wj(x)
)
wk(x)

)
·wi(x)

∣∣∣∣dx < +∞

So the hypothesis of the Lebesgue theorem for the interchange of derivative and integral
are satisfied. It follows that bmik, C

m
ijk ∈ C1([0, T ]).

Solution to the ODEs. We use now a general theorem for local solutions of classical
ODEs, that is theorem 1.5. We can apply the theorem to our case. In fact, consider
our system of ODE. We have{

∂tϕ
m(t) = −(F (γm; t))−1G(γm; t, ϕm(t))

ϕmj (0) = 〈u0, w
j〉2

3We will write in a moment an explicit expression for these constants.
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where we have inverted the matrix at the first member because of a lemma above. The
matrix is always non singular, and the coefficients are C1 in time because of the lemma
just proved. So, also the coefficients of the invers are C1, thanks to the inverted matrix
formula. Also the coefficients of G are C1. So, we can write{

∂tϕ
m(t) = Hm(ϕm(t), t)

ϕmj (0) = 〈u0, w
j〉2

where Hm(ϕm, t) := −(F (γm)(t))−1G(γm, ϕm) ∈ C1(Rm× [0, T ]). The regularity in ϕm

is a conseguence of the quadratic structure of the equation.
So, the theorem above says that exists a local time4 of existence Tm > 0 such that there
exists a unique solution

(Ãm1(t), ..., Ãmm(t)) ∈ C2([0, Tm)) (11.17)

to the problem (11.15). We name Ãm this solution, leaving the ϕm-notation, in order to
be consistent with the work [16]. The local time of existence depends on m because each
m ∈ N gives a different ODEs system. We can moreover suppose (as in the theorem)
that [0, Tm) is the maximal interval of extistence of the solution Ãm.

Proof of Ãm ∈ C1([0, T ])∩BR. We want to say that this solution is also in C1([0, T ])∩
BR. First of all we want to replace the local time Tm with T . We use the proposition
11.2. Suppose that Tm ≤ T . Then if we set

Ũm(x, t) :=
m∑
k=1

Ãmk(t)w
k(x) (11.18)

it follows, from proposition 11.2, that exists L > 0 independent of Tm such that

‖∇Ũm‖2
2 ≤ L ∀t ∈ [0, Tm)

Moreover, (11.18) gives us an estimate on Ãm. In fact, using that∫
Ω

∇wk(x) · ∇wj(x) dx = λkδkj

we have

√
L ≥ ‖∇Ũm‖2 =

∥∥∥∥∥
m∑
k=1

Ãmk(t)∇wk
∥∥∥∥∥

2

=

(∫
Ω

∣∣∣∣∣
m∑
k=1

Ãmk(t)∇wk
∣∣∣∣∣
2

dx

) 1
2

=

=

( m∑
k=1

|Ãmk(t)|2λk
) 1

2

≥
√
λ1|Ãm(t)|

where λ1 is the minimum (positive) eigenvalue. This is true for t ∈ [0, Tm). So

|Ãm(t)| ≤ R ∀ t ∈ [0, Tm)

4That is the τ > 0 of the definition of theorem 1.5.
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Now we use a continuation argument. Let thm a sequence

0 ≤ t1m < t2m < ... < Tm

such that
lim

h→+∞
thm = Tm

We can also consider the sequence Ãm(tkm) that is a vectorial sequence. Clearly, being
0 ≤ thm < Tm, we have

|Ãm(thm)| ≤ R ∀h ∈ N

So, by the Weierstrass theorem, we have that exists a subsequence {Ãm(thnm )}n∈N such
that

Ãm(thnm )→ A0 as n→ +∞

for some A0 such that |A0| ≤ R. Moreover thnm is a strictly increasing sequence converg-
ing to Tm, since it is a subsequence of thm. We are thus in the hypotesis of the theorem
of continuation 1.4. This means that exists a δm > 0 such that Ãm ∈ C2([0, Tm + δm))
is a solution to the equation. But, by the definition of Tm as maximal time of existence,
we have an absurd. The absurd comes from the fact that Tm ≤ T . This means that
Tm > T and so

Ãm ∈ C2([0, T ]) (11.19)

that is what we wanted.

Remark 11.7. We focus on what we have done. For every Am ∈ M , we have found
another function Ãm ∈ C2([0, T ]) such that it solves{

∂tÃm(t) = −(F (γm; t))−1G(γm; t, Ãm(t))

Ãm,j(0) = 〈u0, w
j〉2

where γm(x, t) is the flux that solves{
ẏ(s) = um(y, s)

y(t) = x

with um(x, t) :=
m∑
k=1

Amk(t)w
k(x). �

11.3.2 A fixed point argument

Moreover we have now the following theorem.

Definition 11.3 (Completely continuous operator). An operator T : M → M is
completely continuous if

{T (A) : A ∈ B} is compact for every bounded B ⊆M

The closure above is the closure in M .
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Inspired by remark 11.7, we define the following operator.

Definition 11.4 (Operator associated to the ODEs system). Let Am and Ãm as above,
for a fixed m ∈ N. We define

T (Am) := Ãm ∀Am ∈ BR

We have now the following fundamental proposition.

Proposition 11.3. If M and T are defined as above, we have that M is a closed,
convex and bounded subspace of C([0, T ])m and T is a completely continuous operator
T : M →M .

To prove this proposition, we need the following argument. We will prove this fact
later.

Proposition 11.4. Let Ãm ∈ C1([0, T ])m a solution of the system (11.15) and let Ũm
as above. Then there exists K > 0 such that∫ T

0

‖∂tŨm‖2
2(t) dt ≤ K

Proof of proposition 11.3. Clearly M = BR is closed, convex and bounded. Moreover
the operator is such that T : BR → BR and it is completely continuous. We now prove
these facts.

T (BR) ⊆ BR: We first show that the codomain of T is actually BR. We will also use
that ∫

Ω

∇wk · ∇wj = λkδkj (11.20)

It is proved in section 9.7.3. By the definition of Ãm we have, as stated in proposition
11.2,

‖∇Ũm‖2
2 ≤ L ∀t ∈ [0, T ]

since now the solution Ãm is defined (with regularity) in [0, T ] and the estimate above
holds, as it will be clear in the proof, also for the time t = T . So, again,

|Ãm(t)| ≤ R ∀t ∈ [0, T ]

and since this holds for every t ∈ [0, T ] we have

‖Ãm‖C([0,T ])m := max
t∈[0,T ]

|Ãm(t)| ≤
√
L

λ1

≤ R

that is

Ãm ∈ BR
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T is completely continuous: To do this, we need another bound and a classical
theorem. Our aim is to show that

{T (A) : A ∈ B} is compact for every bounded B ⊆ BR

where the closure is inM := BR. This means that we have to show that {T (A) : A ∈ B}
is a relatively compact set for every B bounded set in BR. Thus it is sufficient to show
that every sequence in {T (A) : A ∈ B} has a subsequence that converges to a certain
point in the closure of this set. To show this, let B a bounded subset of BR and T (Anm),
with Anm ∈ B, a sequence in the set we want to show that is pre-compact. We want to
find a subsequence T (Ankm ) and a g ∈ {T (A) : A ∈ B} such that

lim
k→+∞

max
t∈[0,T ]

|T (Ankm )(t)− g(t)| = 0

Notice that, by the fact that {T (A) : A ∈ B} is closed, if we find a g that satisfy the
limit, this automatically belongs to {T (A) : A ∈ B}. We proceed using the Ascoli-
Arzelà theorem.

We use first proposition 11.4. Observe that now we assume directly Ãm ∈ C1([0, T ])
thanks to the argument above. The previous propostition immediately gives us a result
concering a sequence Ãm that satisfies the hypothesis. First of all, observe that, if Ũm
as in the propositions,

‖∂tŨm‖2 =

(∫
Ω

∣∣∣∣∣
m∑
k=1

∂tÃmk(t)w
k

∣∣∣∣∣
2

dx

) 1
2

=

( m∑
k=1

|∂tÃmk(t)|2
) 1

2

= |∂tÃm(t)|

We choose the sequence
Ãnm(t) := T (Anm)(t)

i.e. we apply the proposition to the case we are considering.
The latter inequality, togheter with the proposition, say to us that the sequence Ãnm is
equicontinuous. In fact ∫ T

0

‖∂tŨm‖2
2(t) dt ≤ K

and it follows that∫ T

0

‖∂tŨm‖2(t) dt ≤ T
1
2

(∫ T

0

‖∂tŨm‖2
2(t) dt

) 1
2

≤
√
TK

So, using the mean value integral inequality, we have, if τ < t,

|Ãnm(t)−Ãnm(τ)| ≤ |t−τ |
∫ 1

0

|(∂tÃnm)(τ+s(t−τ))| ds = |t−τ |
∫ t

τ

|(∂tÃnm)(u)|(t−τ)du =

= |t− τ |2
∫ t

τ

|(∂tÃnm)(u)|du ≤ |t− τ |2
∫ T

0

|(∂tÃnm)(u)|du ≤ |t− τ |2
∫ T

0

‖∂tŨn
m‖2(u)du ≤

≤ |t− τ |2
√
TK ≤ T

3
2

√
K|t− τ |
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if t, τ ∈ [0, T ]. Here K is independent of n,m, as we will see in the proof of the
proposition; it is the same for every solution in C1([0, T ]), as in the statement.
So the sequence Ãnm is equicontinuous on [0, T ]. Moreover

‖Ãnm‖C([0,T ])m ≤ R

So, we are in the hypotesis of the Ascol-Arzelà’s theorem 1.1. So exists a subsequance
Ãnkm (t) = T (Ankm )(t) and g ∈ C([0, T ]) such that

lim
k→+∞

max
t∈[0,T ]

|T (Ankm )(t)− g(t)| = 0

Furthermore g ∈ {T (A) : A ∈ B} since the set is closed and g is limit (in norm) of
elements of the set. So the chosen sequence T (Anm) has a subsequence that converges in
norm to a function in the set {T (A) : A ∈ B}. This is the definition of pre-compactness
on metric spaces. Clearly T is also continuous, since for every A ∈ BR we have

‖T (A)‖C([0,T ])m ≤ R

and so

‖T ‖ := sup
{
‖T (A)‖C([0,T ])m : A ∈ BR, ‖A‖C([0,T ])m ≤ 1

}
≤ sup

A∈BR
‖T (A)‖C([0,T ])m ≤ R

So the operator T is completely continuous, and so, by the Schauder fixed point theorem
2.8, it has a fixed point in M = BR. That is, there exists an Am ∈ BR such that

T (Am) = Am

So the equation has finally a solution. More precisely, exists Am ∈ C([0, T ])m such that
Am satisfies the equation (11.14) with γm solution of (11.13) with velocity field

um(x, t) :=
m∑
k=1

Amk(t)w
k(x) (11.21)

Moreover, ρm(x, t) is the solution associated to the field (11.21). So (um, ρm) is the pair

of functions we were searching for.

Remark 11.8. Notice that we know something more about the regularity of the solution
um. In fact, we have proved above in (11.17) that the solution of the ODE system
studied above is such that

Ãm ∈ C2([0, T ])m

But Ãm is nothing but the image of Am through the operator T (that sends an equation
in BR to the associated solution of the system). So

Am = Ãm ∈ C2([0, T ])m

This in particular means that um(x, t) can be derived twice respect with the time. In
this case, we obtain

umtt (x, t) =
m∑
k=1

∂2
tAmk(t)w

k(x) ∈ C([0, T ];Xm)

This will be very useful in a moment. �
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Remark 11.9. This result is very optimistic: the reason is that we have neglected an
eventual force in the NSE. The articles that inspired this discussion (i.e. [4],[16],[26])
consider the equation with the presence of the force. Their result at this point is in a
weaker class of regularity for the weak twice derivative of um. �

11.3.3 Proof of propositions 11.2 and 11.4

In this subsection we prove proposition 11.2 and 11.4 claimed above.

Proof of proposition 11.2. We start proving the first proposition. Keep in mind
lemma 9.6. Let Ãm ∈ C1([0, T )) a solution of (11.14). Define Ũm as above. Then,
using that Ãm satisfies the ODE (11.16) and summing over i multiplying for the right
coefficients ∂tÃm we have∫

Ω

ρm(x, t)|∂tŨm(x, t)|2dx+

∫
Ω

ρm(x, t)[(∇Ũm(x, t))Ũm(x, t)] · ∂tŨm(x, t)dx+

+µ

∫
Ω

∇Ũm(x, t) · ∇(∂tŨm)(x, t)dx = 0

where ρm(x, t) is a function in C1([0, T ]×Ω) such that ρm ≥ δ > 0 and ‖ρm‖∞ = ‖ρ0‖∞.
Observe that Ũm(x, t) is a function where the temporal and the spatial variable belong
to different functions multiplied and summed. So the operators ∆ and ∂t operate
independently, without any need of the second derivatives. Moreover

∂t|∇Ũm|2 = 2∇Ũm · ∂t(∇Ũm)

Being moreover |∇Ũm|2 ∈ C1([0, T );C(Ω)), we can differentiate under integral sign and
obtain∫

Ω

ρm(x, t)|∂tŨm(x, t)|2dx+

∫
Ω

ρm(x, t)

((
∇Ũm(x, t)

)
Ũm(x, t)

)
· ∂tŨm(x, t) dx+

+
µ

2

d

dt

∫
Ω

|∇Ũm|2dx = 0

We now estimate the second term to get∣∣∣∣∫
Ω

ρm
(
(∇Ũm)Ũm

)
· ∂tŨm dx

∣∣∣∣ ≤ ∫
Ω

|
√
ρm
(
(∇Ũm)Ũm

)
||
√
ρm∂tŨm|dx

Using the Young’s inequality ab ≤ a2

4
+ b2 we have∣∣∣∣∫

Ω

ρm
(
(∇Ũm)Ũm

)
· ∂tŨm dx

∣∣∣∣ ≤ 1

4

∫
Ω

ρm|∂tŨm|2dx+

∫
Ω

ρm|∇Ũm|2|Ũm|2dx ≤

≤ 1

4

∫
Ω

ρm|∂tŨm|2dx+

∫
Ω

‖ρ0‖∞|∇Ũm|2|Ũm|2dx
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It follows that

2

∫
Ω

ρm|∂tŨm|2dx+ µ
d

dt

∫
Ω

|∇Ũm|2dx ≤
1

2

∫
Ω

ρm|∂tŨm|2dx+ 2

∫
Ω

‖ρ0‖∞|∇Ũm|2|Ũm|2

(11.22)
Now we deduce another estimate. We can apply the Stokes operator A to the function
Ũm and

− P∆Ũm(x, t) = −
m∑
j=1

Ãmj(t)P∆wj(x) =
m∑
j=1

Ãmj(t)λjw
j(x) (11.23)

where wj ∈ X and so the operator is defined. So applying this in the ODE we get

µ

∫
Ω

P∆Ũm · P∆Ũm dx
5

=

∫
Ω

ρm(∂tŨm + (∇Ũm)Ũm) · P∆Ũmdx ≤

≤ µ

2

∫
Ω

|P∆Ũm|2dx+
1

2µ

∫
Ω

2|ρm|2
(
|∂tŨm|2 + |(∇Ũm)Ũm|2

)
dx

Observe moreover that ∫
Ω

∆Ũm · P∆Ũm dx =

∫
Ω

|P∆Ũm|2dx

since

〈∆Ũm, P∆Ũm〉 = 〈∆Ũm, P 2∆Ũm〉 = 〈P∆Ũm, P∆Ũm〉

and so, using lemma 9.6, we have

µ

2

1

e2

∫
Ω

|∆Ũm|2dx ≤
µ

2

∫
Ω

|P∆Ũm|2dx ≤
1

µ

∫
Ω

|ρm|2|∂tŨm|2dx+
1

µ

∫
Ω

|ρm|2|∇Ũm|2|Ũm|2dx

(11.24)

5Using that Ũm =

m∑
j=1

Ãmjw
j and (11.23) we can notice, in example, that

m∑
j=1

∫
Ω

ρm wj · wi ∂tÃmj dx =

∫
Ω

ρm∂tŨm · wi dx

and multiplying for −λiÃmi and summing over i we get the equality. Moreover, doing these operations,
and remembering that Dij = λiδij ,

m∑
i=1

(
µ

m∑
j=1

DijÃmj

)
· (λiÃmi) = µ

∑
i=1

λ2
i Ã

2
mi = µ

∫
Ω

P∆Ũm · P∆Ũm

At this point

µ

m∑
j=1

DijÃmj = −
m∑
j=1

bmik(t)∂tÃmj −
m∑
j=1

m∑
k=1

Cmijk(t)ÃmjÃmk

and the minus is absorbed by the equality (11.23).
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So, adding the inequalities (11.22) and (11.24) we have, multiplying the second by d > 0
and using that |ρm| ≤ ‖ρ0‖∞ + 1 =: b,(

3

2
− bd

µ

)∫
Ω

|ρm||∂tŨm|2dx+ µ
d

dt

∫
Ω

|∇Ũm|2dx+
µd

2e2

∫
Ω

|∆Ũm|2dx ≤

≤ (2b+
db2

µ
)

∫
Ω

|∇Ũm|2|Ũm|2dx

Choosing d = µ
2b

, we have∫
Ω

|ρm||∂tŨm|2dx+ µ
d

dt

∫
Ω

|∇Ũm|2dx+ 2ε

∫
Ω

|∆Ũm|2dx ≤

≤
(

2b+
b

2

)∫
Ω

|∇Ũm|2|Ũm|2dx ≤ 3b

∫
Ω

|∇Ũm|2|Ũm|2dx

where ε := µ2

8be2
. Estimating the latter piece

∫
Ω

|∇Ũm|2|Ũm|2dx ≤ ‖Ũm‖2
∞

∫
Ω

|∇Ũm|2dx
Lemma 9.6

≤ c2

(∫
Ω

|∆Ũm|2dx
) 3

4
(∫

Ω

|∇Ũm|2dx
) 5

4

≤

6

≤ ε

3b

∫
Ω

|∆Ũm|2dx+ C ′λ

(∫
Ω

|∇Ũm|2dx
)5

We finally have∫
Ω

|ρm||∂tŨm|2dx+µ
d

dt

∫
Ω

|∇Ũm|2dx+2ε

∫
Ω

|∆Ũm|2dx ≤ ε

∫
Ω

|∆Ũm|2dx+3bC ′λ

(∫
Ω

|∇Ũm|2dx
)5

and∫
Ω

|ρm||∂tŨm|2dx+ µ
d

dt

∫
Ω

|∇Ũm|2dx+ ε

∫
Ω

|∆Ũm|2dx ≤ 3bC ′λ

(∫
Ω

|∇Ũm|2dx
)5

(11.25)

If C :=
3bC′λ
µ

,

d

dt
‖∇Ũm‖2 ≤ C‖∇Ũm‖10

2

We integrate now between 0 and t, with t < T , and get

‖∇Ũm‖2
2(t)− ‖∇Ũm‖2

2(0) ≤ C

∫ t

0

‖∇Ũm‖10
2 (s)ds

6Using

ab ≤ λa 4
3 + Cλb

4

with λ = ε
3bc2 .
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Remark 11.10. Observe that moreover

‖∇Ũm‖2(0) ≤ ‖∇u0‖L2 (11.26)

independently of m. In fact∫
Ω
|∇Ũm(0, x)|2dx =

m∑
k=1

Ã2
mk(0)λk =

m∑
k=1

〈u0, w
k〉22λk

and furthermore

lim
K→+∞

∥∥∥∥∥
K∑
k=1

〈u0, w
k〉2wk − u0

∥∥∥∥∥
H2(Ω)

= 0

This in particular means that

lim
K→+∞

∥∥∥∥∥
K∑
k=1

〈u0, w
k〉2∇wk −∇u0

∥∥∥∥∥
L2

= 0

so that ∣∣∣∣∣
∥∥∥∥∥
K∑
k=1

〈u0, w
k〉2∇wk

∥∥∥∥∥
L2

− ‖∇u0‖L2

∣∣∣∣∣ ≤
∥∥∥∥∥
K∑
k=1

〈u0, w
k〉2∇wk −∇u0

∥∥∥∥∥
L2

→ 0

and so

lim
K→+∞

( K∑
k=1

〈u0, w
k〉22λk

) 1
2

= lim
K→+∞

(∫
Ω

∣∣∣∣∣
K∑
k=1

〈u0, w
k〉2∇wk(x)

∣∣∣∣∣
2

dx

) 1
2

= ‖∇u0‖2

since ∣∣∣∣∣
K∑
k=1

〈u0, w
k〉2∇wk(x)

∣∣∣∣∣
2

dx =

K∑
k=1

K∑
j=1

〈u0, w
j〉2〈u0, w

k〉2∇wj(x) · ∇wk(x)

=⇒
∫

Ω

∣∣∣∣∣
K∑
k=1

〈u0, w
k〉2∇wk(x)

∣∣∣∣∣
2

dx =
K∑
k=1

K∑
j=1

〈u0, w
j〉2〈u0, w

k〉2
∫

Ω
∇wj(x) · ∇wk(x)dx =

=
K∑
k=1

K∑
j=1

〈u0, w
j〉〈u0, w

k〉2λkδjk =
K∑
k=1

〈u0, w
k〉22λk

So(∫
Ω
|∇Ũm(0, x)|2dx

) 1
2

=

( m∑
k=1

〈u0, w
k〉22λk

) 1
2

≤ lim
K→+∞

( K∑
k=1

〈u0, w
k〉22λk

) 1
2

= ‖∇u0‖2

where has been used that the series is a series of positive terms, since we have a square and
λk > 0 ∀k ∈ N. �

So we have the inequality

‖∇Ũm‖2
2(t) ≤ ‖∇u0‖2

L2 + C

∫ t

0

‖∇Ũm‖10
2 (s)ds ∀t < T
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We now use the version of the Gronwall’s inequality in 1.4. In our case we have, for
t ∈ [0, T ),

‖∇Ũm‖2
2(t) ≤ ‖∇u0‖2

L2 + C

∫ t

0

‖∇Ũm‖10
2 (s)ds ≤ ‖∇u0‖2

L2 + C

∫ t

0

[‖∇Ũm‖10
2 (s) + 1]ds

So, if we choose v(t) := ‖∇Ũm‖2
2(t), V0 := ‖∇u0‖2

2, ω(v) := v5 + 1 and ψ ≡ C > 0, we
have

‖∇Ũm‖2
2(t) ≤ φ−1(φ(V0) + Ct) ≤ φ−1(φ(V0) + CT )

since also φ−1 is an increasing function and t < T ≤ T . We can define L := φ−1(φ(V0)+
CT ), so we get

‖∇Ũm‖2
2(t) ≤ L ∀t ∈ [0, T ) (11.27)

Notice that we have used the fact that φ−1 is also stricly increasing, being the inverse
of a such function.

Remark 11.11. The constant L depends on T but it is independent of T . �

Proof of proposition 11.4. Now we deduce the estimate on ∂tŨm, that is∫ T

0

‖∂tŨm‖2
2(t)dt ≤ K

We are supposing now Ãm ∈ C1([0, T ]). From equation (11.25), that holds for every t
where Ãm is defined, we have∫

Ω

|ρm||∂tŨm|2dx+ µ
d

dt

∫
Ω

|∇Ũm|2dx+ ε

∫
Ω

|∆Ũm|2dx ≤ 3bC ′λ

(∫
Ω

|∇Ũm|2dx
)5

and so, integrating over [0, T ] we have∫ T

0

∫
Ω

|ρm||∂tŨm|2dxdt+µ
(∫

Ω

|∇Ũm|2(T )dx−
∫

Ω

|∇Ũm|2(0)dx

)
+ε

∫ T

0

∫
Ω

|∆Ũm|2dxdt ≤

≤ 3bC ′λ

∫ T

0

(∫
Ω

|∇Ũm|2dx
)5

dt

So, now all the terms are positive and it follows∫ T

0

∫
Ω

|ρm||∂tŨm|2dxdt ≤ µ

∫
Ω

|∇Ũm|2(0)dx+ 3bC ′λ

∫ T

0

(∫
Ω

|∇Ũm|2dx
)5

dt ≤

(11.26)

≤ µ‖∇u0‖2
2 + 3bC ′λ

∫ T

0

‖∇Ũm‖10
2 dt

(11.27)

≤ µ‖∇u0‖2
2 + 3bC ′λ

∫ T

0

L5dt =

= µ‖∇u0‖2
2 + 3bC ′λTL

5

Now, being ρm(x, t) ≥ δ > 0, we have

δ

∫ T

0

∫
Ω

|∂tŨm|2dxdt ≤
∫ T

0

∫
Ω

|ρm||∂tŨm|2dxdt ≤ µ‖∇u0‖2
2 + 3bC ′λTL

5
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Defining K := 1
δ

(µ‖∇u0‖2
2 + 3bC ′λTL

5), we have

∫ T

0

‖∂tŨm‖2
2(t)dt =

∫ T

0

∫
Ω

|∂tŨm|2dxdt ≤ K

that is the thesis.

Remark 11.12. The constant K depends on µ, the initial data ρ0 and µ0, the bound
δ, the time T and the constant L, togheter with other constant C ′λ, and e, c that are
due to some inequalities. However, the constant is independent of the solution we are
considering, and this is the only thing we need. In fact we use K only for applying the
Ascoli-Arzelà theorem, that is for proving that the operator T is completely continuous.
�

11.4 Estimates on the approximate solutions

We now deduce some estimates concerning the approximate solution built in the pre-
vious section. These estimates will allow us to use a convergence argument, extracting
a right subsequence which limit is our aimed solution to the problem. We collect them
in some propositions. The main estimate is summarized by the following proposition.

Proposition 11.5. Let Ω be a bounded domain in R3. Consider the Navier-Stokes
problem over Ω as in proposition 11.1. Let ρ0 ∈ C1(Ω) and T > 0. Let ρm ∈ C1([0, T ]×
Ω) and um ∈ C1([0, T ];Xm) the approximate solutions built in proposition 11.1.
Then there hold the following estimates

• δ ≤ ρm(x, t) ≤ ‖ρ0‖∞ + 1, ‖ρm(t)‖q = ‖ρ0‖q

• ‖∇um(t)‖2
2 ≤ C + C

∫ t

0

‖∇um‖6
2 ds

• sup
0≤s≤t

(‖∇um‖2
H1+‖

√
ρmumt ‖2

2)+

∫ t

0

‖umt ‖2
D1,2

0
ds ≤ CC0

m
+C exp

(
C

∫ t

0

‖∇um‖4
2 ds

)
for every t ∈ [0, T ]. Here C is a generic positive constant depending only on ‖ρ0‖L∞,
‖∇u0‖2 and T , but it is independent of δ and m. Moreover, we define

C
m

0 :=

∫
Ω

(ρ0)−1|µ∆um(x, 0)−∇p0|2dx

Remark 11.13. The first point follows from classical considerations about the transport
equation: in particular the solution assumes exactly the value that assumes ρ0; the
incompressibility property and the conservation of the mass integral with exponent q
has already been discussed in chapter 8. See in particular theorem 8.1. �
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11.4.1 A first energy estimate

Proposition 11.6. Let Ω be a bounded domain in R3. Consider the Navier-Stokes
problem over Ω as in proposition 11.1. Let ρ0 ∈ C1(Ω) and T > 0. Let ρm ∈ C1([0, T ]×
Ω) and um ∈ C1([0, T ];Xm) the approximate solutions built in proposition 11.1. Then
there holds the following energy estimate∫

Ω

ρm(t)|um|2(t) dx+

∫ t

0

∫
Ω

|∇um|2dx ≤ C

for every t ∈ [0, T ]. Here C is a generic positive constant depending only on ‖ρ0‖L∞,
‖∇u0‖2 and T , but it is independent of δ and m.

Proof. We now have to deduce estimates. We know that∫
Ω

{(ρmumt + ρm(∇um)um) · φ+ µ∇um · ∇φ} dx = 0 ∀φ ∈ Xm

If we choose φ = um ∈ Xm, it follows that∫
Ω

ρmumt · umdx+

∫
Ω

ρmum ·
(
(∇um)um

)
dx+ µ

∫
Ω

|∇um|2dx = 0

Now, using that
d

dt
|um|2 = 2umt · um

and
∇|um|2 = 2(∇um)um

we have, using integration by parts,∫
Ω

ρmum · ∇|um|2dx =

∫
Ω

∇ · (ρm|um|2um)dx−
∫

Ω

|um|2 ∇ · (ρmum)dx =

=

∫
∂Ω

ρm|um|2um · ν dσ −
∫

Ω

|um|2 um · ∇ρmdx =

=

∫
Ω

ρmt |um|2dx

using that ∇ · um = 0 and um ≡ 0 over ∂Ω, and moreover um ∈ C1(Ω). So we have

1

2

∫
Ω

ρm
d

dt
|um|2dx+

1

2

∫
Ω

ρmt |um|2dx+ µ

∫
Ω

|∇um|2dx = 0

that is, using regularity in x and t and using the compactness7 of Ω

1

2

d

dt

∫
Ω

ρm|um|2dx+ µ

∫
Ω

|∇um|2dx = 0

7Remember that if f ∈ C([0, T ];C(Ω)), then for every (x0, t0) ∈ Ω× [0, T ] we have

|f(x, t)− f(x0, t0)| ≤ |f(x, t)− f(x, t0)|+ |f(x, t0)− f(x0, t0)| ≤ max
x∈Ω
|f(x, t)− f(x, t0)|+ ε

if |x− x0| < δ = δ(x0, t0). Since lim
t→t0
‖f(·, t)− f(·, t0)‖C(Ω) = 0, we have the continuity.

If now f ∈ C1([0, T ];C1(Ω)), we have the continuity of the derivatives. So f ∈ C1(Ω× [0, T ]).
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So integrating over [0, t], with t ≤ T , we have

1

2

∫
Ω

ρm(t)|um|2(t) dx− 1

2

∫
Ω

ρm(0)|um|2(0) dx+ µ

∫ t

0

∫
Ω

|∇um|2dx = 0

Moreover∫
Ω

ρm(0)|um|2(0) dx ≡
∫

Ω

ρm(x, 0)|um|2(x, 0) dx ≤ ‖ρ0‖∞‖um(0)‖2
2

8

≤ ‖ρ0‖∞‖u0‖2
2

So we have

1

2

∫
Ω

ρm(t)|um|2(t) dx+ µ

∫ t

0

∫
Ω

|∇um|2dx ≤ 1

2
‖ρ0‖∞‖u0‖2

2 (11.28)

We can also get rid of µ. If µ ≥ 1
2
, then∫

Ω

ρm(t)|um|2(t) dx+

∫ t

0

∫
Ω

|∇um|2dx ≤ ‖ρ0‖∞‖u0‖2
2

and if µ < 1
2
, we have

µ

∫
Ω

ρm(t)|um|2(t) dx+ µ

∫ t

0

∫
Ω

|∇um|2dx ≤ 1

2
‖ρ0‖∞‖u0‖2

2

and so∫
Ω

ρm(t)|um|2(t) dx+

∫ t

0

∫
Ω

|∇um|2dx ≤ ‖ρ0‖∞‖u0‖2
2

2µ
≤ (‖ρ0‖∞ + 1)‖u0‖2

2

2µ

Finally, we obtain ∫
Ω

ρm(t)|um|2(t) dx+

∫ t

0

∫
Ω

|∇um|2dx ≤ C (11.29)

that is the energy estimate.

8Since ∫
Ω

|um|2(x, 0)dx =

m∑
k=1

〈u0, w
k〉22 ≤

∞∑
k=1

〈u0, w
k〉22 = ‖u0‖22

being lim
K→+∞

‖
K∑
k=1

〈u0, w
k〉wk − u0‖H1(Ω) = 0, and so in particular

∣∣∣∣∣∣∣
∫

Ω

∣∣∣∣∣
K∑
k=1

〈u0, w
k〉wk

∣∣∣∣∣
2

dx

 1
2

− ‖u0‖2

∣∣∣∣∣∣∣ ≤ ‖
K∑
k=1

〈u0, w
k〉wk − u0‖2 ≤ ‖

K∑
k=1

〈u0, w
k〉wk − u0‖H1(Ω) → 0

as K → +∞. So the estimate follows from∫
Ω

∣∣∣∣∣
K∑
k=1

〈u0, w
k〉wk

∣∣∣∣∣
2

dx =

K∑
k=1

〈u0, w
k〉22
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11.4.2 An estimate on the velocity field

Proposition 11.7. Let Ω be a bounded domain in R3. Consider the Navier-Stokes
problem over Ω as in proposition 11.1. Let ρ0 ∈ C1(Ω) and T > 0. Let ρm ∈ C1([0, T ]×
Ω) and um ∈ C1([0, T ];Xm) the approximate solutions built in proposition 11.1. Then
there holds the following estimate

1

2

∫
Ω

ρm|umt |2dx+ µ
d

dt

∫
Ω

|∇um|2dx ≤
∫

Ω

ρm|∇um|2|um|2dx (11.30)

for every t ∈ [0, T ].

Proof. Now we deduce an estimate on velocity. We choose φ = umt ∈ Xm and so∫
Ω

ρm|umt |2dx+

∫
Ω

ρm
(
(∇um)um

)
· umt dx+ µ

∫
Ω

∇um · ∇umt dx = 0 (11.31)

We have ∫
Ω

∇um · ∇umt dx =

∫
Ω

∇um · ∂t∇umdx =
1

2

∫
Ω

∂t|∇um|2dx

where we have used that ∇ and ∂t operate separately. Finally∫
Ω

∇um · ∇umt dx =
1

2

d

dt

∫
Ω

|∇um|2dx

using the regularity on the compact Ω. Moreover

|
(
(∇um)um

)
· umt | ≤ |∇um||um||umt | ≤

1

2
|∇um|2|um|2 +

1

2
|umt |2

It follows that∣∣∣∣∫
Ω

ρm
(
(∇um)um

)
· umt dx

∣∣∣∣ ≤ 1

2

∫
Ω

ρm|∇um|2|um|2dx+
1

2

∫
Ω

ρm|umt |2dx

So ∫
Ω

ρm|umt |2dx+
µ

2

d

dt

∫
Ω

|∇um|2dx ≤ 1

2

∫
Ω

ρm|∇um|2|um|2dx+
1

2

∫
Ω

ρm|umt |2dx

Finally
1

2

∫
Ω

ρm|umt |2dx+
µ

2

d

dt

∫
Ω

|∇um|2dx ≤ 1

2

∫
Ω

ρm|∇um|2|um|2dx

This inequality can also be written as

1

2

∫
Ω
ρm|umt |2dx+µ

d

dt

∫
Ω
|∇um|2dx ≤

∫
Ω
ρm|umt |2dx+µ

d

dt

∫
Ω
|∇um|2dx ≤

∫
Ω
ρm|∇um|2|um|2dx

(11.32)

that is the desired estimate.
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11.4.3 A second derivatives estimate on the velocity field

Proposition 11.8. Let Ω be a bounded domain in R3. Consider the Navier-Stokes
problem over Ω as in proposition 11.1. Let ρ0 ∈ C1(Ω) and T > 0. Let ρm ∈ C1([0, T ]×
Ω) and um ∈ C1([0, T ];Xm) the approximate solutions built in proposition 11.1.
Then there holds the following estimate

‖∇2um‖2 ≤ C (‖ρmumt ‖2 + ‖ρm(∇um)um‖2) (11.33)

for every t ∈ [0, T ]. Here C is a generic positive constant depending only on ‖ρ0‖L∞,
‖∇u0‖2 and T , but it is independent of δ and m.

Proof. We now want to use again (11.31) with φ = Aum that is in Xm, since

Aum(x, t) = −P∆um(x, t) = −
m∑
j=1

Ãmj(t)P∆wj(x) =
m∑
j=1

Ãmj(t)λjw
j(x) ∈ Xm

So we have∫
Ω

ρmumt · Aum +

∫
Ω

ρm
(
(∇um)um

)
· Aumdx+ µ

∫
Ω

∇um ·
(
∇(Aum)

)
dx = 0

We first deal with the latter piece. Equality (1.14) says that, for functions in H2(Ω),

∇um · ∇(Aum) =
3∑
i=1

∇ ·
(
(Aum)i∇umi

)
−∆um · Aum

and so ∫
Ω

∇um · ∇(Aum) dx =
3∑
i=1

∫
∂Ω

(
(Aum)i∇umi

)
· ν dσ −

∫
Ω

∆um · Aum dx

where the first derivatives are classical derivatives9, since Xm ⊆ C1(Ω). Being Aum = 0
over ∂Ω (since Xm ⊆ H1

0 (Ω)), we have∫
Ω
ρmumt ·Aum +

∫
Ω
ρm
(
(∇um)um

)
·Aumdx = −µ

∫
Ω
∇um·

(
∇(Aum)

)
dx = µ

∫
Ω

∆um·Aumdx =

= µ〈∆um, Aum〉 = −µ〈∆um, P∆um〉 = −µ〈∆um, P 2∆um〉 =

= −µ〈P∆um, P∆um〉 = −µ
∫

Ω
|P∆um|2dx

So

µ

∫
Ω

|P∆um|2dx ≤
∫

Ω

|ρmumt · Aum + ρm
(
(∇um)um

)
· Aum|dx ≤

9Observe moreover that

Aum = A

( m∑
j=1

Ãmjw
j

)
=

m∑
j=1

ÃmjAw
j =

m∑
j=1

Ãmjλjw
j

and so Aum ∈ Xm ⊆ C1(Ω).
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≤
∫

Ω

|Aum||ρmumt + ρm
(
(∇um)um

)
|dx ≤

≤ µ

2

∫
Ω

|Aum|2dx+
1

2µ

∫
Ω

2
(
|ρmumt |2 + |ρm(∇um)um|2

)
dx

Finally, remembering that A = −P∆,

µ

2

∫
Ω

|P∆um|2dx ≤ 1

µ

(
‖ρmumt ‖2

2 + ‖ρm(∇um)um‖2
2

)
≤ 1

µ

(
‖ρmumt ‖2 + ‖ρm(∇um)um‖2

)2

So we have

‖Aum‖2 ≤
√

2

µ

(
‖ρmumt ‖2 + ‖ρm(∇um)um‖2

)
Moreover, thanks to (9.49), we know that for every φ ∈ X it holds

‖φ‖X ≡ ‖φ‖H2(Ω) ≤ C‖Aφ‖2

So, being um ∈ Xm ⊆ X it follows

‖∇2um‖2 ≤ ‖um‖H2 ≤ C‖Aum‖2 ≤ C
(
‖ρmumt ‖2 + ‖ρm(∇um)um‖2

)
where C :=

√
2
µ
C.

11.4.4 First final estimate.

We want now to deduce an estimate that includes the previous. In other words, we
dedicate the following subsection to prove the following proposition.

Proposition 11.9. Let Ω be a bounded domain in R3. Consider the Navier-Stokes
problem over Ω as in proposition 11.1. Let ρ0 ∈ C1(Ω) and T > 0. Let ρm ∈ C1([0, T ]×
Ω) and um ∈ C1([0, T ];Xm) the approximate solutions built in proposition 11.1.
Then there holds the following estimate∫ t

0

(
‖
√
ρmumt ‖2(s) + ‖∇um‖2

H1(s)
)
ds+

∫
Ω

|∇um(t)|dx ≤ K+K
∫ t

0

(∫
Ω

|∇um|2dx
)3

ds

(11.34)
for every t ∈ [0, T ]. Here K is a generic positive constant depending only on ‖ρ0‖L∞,
‖∇u0‖2 and T , but it is independent of δ and m.

Proof. Remember that um ∈ C1([0, T ];Xm) and ρm ∈ C1([0, T ], C1(Ω)). Further-
more we have proved that

‖um‖2(0) ≤ ‖u0‖2 (11.35)

‖∇um‖2(0) ≤ ‖∇u0‖2 (11.36)

By the previous subsection we have obtained

‖∇2um‖2 ≤ C
(
‖ρmumt ‖2 + ‖ρm(∇um)um‖2

)
(11.37)
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It follows that10

‖∇2um‖2
L2 ≤ 2C2

(
‖ρmumt ‖2

2+‖ρm(∇um)um‖2
2

)
≤ 2C2‖ρm‖∞

(
‖
√
ρmumt ‖2

2+‖
√
ρm(∇um)um‖2

2

)
Remember that ‖ρm‖∞ = ‖ρ0‖∞ and that

ρ0 ≤ ‖ρ0‖∞ + 1 =⇒ ‖ρ0‖∞ ≤ ‖ρ0‖∞ + 1

Finally we have

‖∇2um‖2
2 ≤ 2C2(‖ρ0‖∞ + 1)

(
‖
√
ρmumt ‖2

2 + ‖
√
ρm(∇um)um‖2

2

)
(11.38)

Now we choose ε > 0 such that 8C2ε(‖ρ0‖∞ + 1) < 1. Hence we can estimate the term∫
Ω

(1

4
ρm|umt |2 + ε|∆um|2

)
dx+ µ

d

dt

∫
Ω

|∇um|2dx

In fact,∫
Ω

ε|∇2um|2dx ≤ 1

8C2(‖ρ0‖∞ + 1)
‖∇2um‖2

L2 ≤
1

4

(
‖
√
ρmumt ‖2

L2 + ‖
√
ρm(∇um)um‖2

L2

)
=

=
1

4

∫
Ω

ρm|umt |2dx+
1

4

∫
Ω

ρm|(∇um)um|2dx ≤ 1

4

∫
Ω

ρm|umt |2dx+
1

4

∫
Ω

ρm|∇um|2|um|2dx

where has been used the operatorial norm property |(∇um)um| ≤ |∇um||um|. So, we
have ∫

Ω

(1

4
ρm|umt |2 + ε|∇2um|2

)
dx+ µ

d

dt

∫
Ω

|∇um|2dx ≤

≤ 1

2

∫
Ω

ρm|umt |2dx+
1

4

∫
Ω

ρm|∇um|2|um|2dx+ µ
d

dt

∫
Ω

|∇um|2dx

and using the estimate (11.32) we get∫
Ω

(1

4
ρm|umt |2 + ε|∇2um|2

)
dx+ µ

d

dt

∫
Ω

|∇um|2dx ≤

≤ 5

4

∫
Ω

ρm|∇um|2|um|2dx ≤ 5

4
‖ρ0‖∞

∫
Ω

|∇um|2|um|2dx ≤ 5

4
(‖ρ0‖∞+1)

∫
Ω

|∇um|2|um|2dx

always using invariant property of the q-norm for the density solution.

Since ε ∈ (0, 1
8C2(‖ρ0‖∞+1)

) is arbitrary, we can send ε to the right bound of its interval

and get∫
Ω

(
1

4
ρm|umt |2+

1

8C2(‖ρ0‖∞ + 1)
|∇2um|2

)
dx+µ

d

dt

∫
Ω
|∇um|2dx ≤ 5

4
(‖ρ0‖∞+1)

∫
Ω
|∇um|2|um|2dx

(11.39)

10Since (x+ y)2 ≤ 2x2 + 2y2.
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We want now to estimate the term∫
Ω

|∇um|2|um|2dx

First of all, we simply apply the Hölder inequality to |um|2 and |∇um|2 with exponents,
respectively, 3 and 3

2
. It follows that

∫
Ω

|∇um|2|um|2dx ≤ ‖|um|2‖3‖|∇um|2‖ 3
2
≡
(∫

Ω

|um|6dx
) 1

3
(∫

Ω

|∇um|3dx
) 2

3

= ‖um‖2
6‖∇um‖2

3

Now, using interpolated Hölder inequality, with γ = 3, q = 2, r = 6 and α = 1
2
, we get

‖∇um‖3 ≤ ‖∇um‖
1
2
2 ‖∇um‖

1
2
6

So, ∫
Ω

|∇um|2|um|2dx ≤ ‖um‖2
6‖∇um‖2‖∇um‖6

Now we apply Sobolev-Gagliardo-Nirenberg inequality, that gives us

‖um‖6 ≤ Λ‖∇um‖2

In this way
‖um‖2

6‖∇um‖2‖∇um‖6 ≤ Λ2‖∇um‖3
2‖∇um‖6

The constant Λ is independent of the domain we are considering, thanks to the fact
that um ∈ H1

0 (Ω) = W 1,2
0 (Ω) can be approached with smooth functions having compact

support contained in Ω.

Now we want to estimate the term ‖∇um‖6. The function∇um takes value in a matricial
space, so usual Sobolev-Gagliardo-Nirenberg inequality seems to not hold. However,
we can observe what follows. We will not repeat the argument in similar situations.

Let u a vectorial function. So we have

‖∇u‖6 =

(∫
Ω
|∇u|6dx

) 1
6

=

(∫
Ω

(√
|∇u1|2 + |∇u2|2 + |∇u3|2

)6
dx

) 1
6

where has been used that if A is a matrix then |A| = |AT | =
√
|A1|2 + ...+ |An|2, with Ai

the i-th colomn of A.
Moreover ∇ui ∈ H1(Ω), since ui ∈ H2(Ω). Using Sobolev estimates for W 1,2(Ω), we found

‖∇ui‖6 ≤M‖∇ui‖W 1,2(Ω)

where M depends only on p, n and Ω but it is independent of the function in W 1,2(Ω) that
we are considering, so that M does not depend on i.
It follows that

‖∇u‖6 = ‖|∇u1|2 + |∇u2|2 + |∇u3|2‖
1
2
3 ≤

(
‖|∇u1|2‖3 + ‖|∇u2|2‖3 + ‖|∇u3|2‖3

) 1
2 =
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=
(
‖∇u1‖26 + ‖∇u2‖26 + ‖∇u3‖26

) 1
2 ≤M

(
‖∇u1‖2W 1,2(Ω) + ‖∇u2‖2W 1,2 + ‖∇u3‖2W 1,2(Ω)

) 1
2

Remembering now that

‖∇ui‖2W 1,2(Ω) =

∫
Ω
|∇ui|2dx+

∫
Ω
|∇(∇ui)|2dx

and that

‖∇u‖H1 ≡ ‖∇u‖W 1,2 ≡
( ∑
|α|≤1

∫
Ω
|Dα(∇u)|2dx

) 1
2

=

(∫
Ω

∑
|α|≤1

|Dα(∇u)|2dx
) 1

2

together with |∇u|2 = |∇u1|2 + |∇u2|2 + |∇u3|2 and

|∇(∇u)|2 = |∇(∇u1)|2 + |∇(∇u2)|2 + |∇(∇u3)|2

where ∇(∇u) is the three-dimensional tensor of second derivatives, id est, it is the collection
of three matrix, namely {∇(∇ui)}3i=1. If T is a three-dimensional tensor, its norm is given by

|T |2 ≡
∑
i,j,k

T 2
ijk

It is thus clear that
3∑
i=1

‖∇ui‖2W 1,2(Ω) = ‖∇u‖2H1

Finally

‖∇u‖6 ≤M‖∇u‖H1 (11.40)

Hence, retracing our steps, we have∫
Ω

|∇um|2|um|2dx ≤ Λ0‖∇um‖3
2‖∇um‖H1 (11.41)

where Λ0 := Λ2M .

We turn back to our estimates. We want to use the following Young’s inequality:
if a, b ≥ 0, 1

p
+ 1

q
= 1 and ε > 0, then

ab ≤ εap + C(ε)bq

where C(ε) = (εp)−
q
p q−1. Going on, set C ←→ C̃ in (11.39), and let C > 0 be arbitrary.

So, if we choose q = p = 2, a = 1√
8C
‖∇um‖H1 and b = Λ0

√
8C‖∇um‖3

2. It follows that

Λ0‖∇um‖3
2‖∇um‖H1 ≤ ε

8C
‖∇um‖2

H1 +
2C

ε
Λ2

0‖∇um‖6
2

for every C > 0 and ε > 0. Finally∫
Ω

(
1

4
ρm|umt |2 +

1

8C̃2(‖ρ0‖∞ + 1)
|∇2um|2

)
dx+ µ

d

dt

∫
Ω

|∇um|2dx ≤
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≤ 5

4
(‖ρ0‖∞ + 1)

∫
Ω

|∇um|2|um|2dx ≤ 5

4
(‖ρ0‖∞ + 1)

(
ε

8C
‖∇um‖2

H1 +
2C

ε
Λ2

0‖∇um‖6
2

)
We have already noticed that∫

Ω

|∇2u|2dx ≡ ‖∇2u‖2
2 ≤ ‖∇u‖2

H1

since the latter Sobolev norm in H1 = W 1,2 also includes the 0-derivative terms. Here
∇2u ≡ ∇(∇u) is the tensor of second derivatives (that is a three dimensional tensor).
Let µ0 := 1

2
min{1

4
, 1

8C̃2(‖ρ0‖∞+1)
, 2µ

1+6T
}. So

µ0

∫
Ω

ρm|umt |2dx+ µ0‖∇um‖2
H1 + µ

d

dt

∫
Ω

|∇um|2dx ≤

11

≤
∫

Ω

(
1

4
ρm|umt |2 +

1

8C̃2(‖ρ0‖∞ + 1)
|∇2um|2

)
dx+ µ0‖∇um‖2

2 + µ
d

dt

∫
Ω

|∇um|2dx ≤

≤ µ0‖∇um‖2
2 +

5

4
(‖ρ0‖∞ + 1)

(
ε

8C
‖∇um‖2

H1 +
2C

ε
Λ2

0‖∇um‖6
2

)
So, since µ0 > 0, ∫

Ω

ρm|umt |2dx+ ‖∇um‖2
H1 +

µ

µ0

d

dt

∫
Ω

|∇um|2dx ≤

≤ ‖∇um‖2
2 +

5

4
(‖ρ0‖∞ + 1)

ε

8Cµ0

‖∇um‖2
H1 +

5

4
(‖ρ0‖∞ + 1)

2C

εµ0

Λ2
0‖∇um‖6

2

and it follows that

‖
√
ρmumt ‖2

2 +

(
1− 5

4
(‖ρ0‖∞ + 1)

ε

8Cµ0

)
‖∇um‖2

H1 +
µ

µ0

d

dt

∫
Ω

|∇um|2dx ≤

≤ ‖∇um‖2
2 +

5

4
(‖ρ0‖∞ + 1)

2C

εµ0

Λ2
0‖∇um‖6

2

We can integrate this expressione in (0, t), with 0 < t < T . So∫ t

0

‖
√
ρmumt ‖2

2(s)ds+

(
1− 5

4
(‖ρ0‖∞ + 1)

ε

8Cµ0

)∫ t

0

‖∇um‖2
H1(s)ds+

µ

µ0

∫ t

0

α(s)ds ≤

≤
∫ t

0

‖∇um‖2
2(s)ds+ C

∫ t

0

‖∇um‖6
2(s)ds

where C := 5
4
(‖ρ0‖∞ + 1) 2C

εµ0
Λ2

0 and α(t) := d
dt
‖∇um‖2

2(t). Now, using that ‖∇um‖2
2 is

the anti-derivative of α, we have that

µ

µ0

∫ t

0

α(s)ds =
µ

µ0

(
‖∇um‖2

2(t)− ‖∇um‖2
2(0)

)
11Since ‖∇u‖2H1 = ‖∇2u‖22 + ‖∇u‖22.
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and ∫ t

0

‖∇um‖2
2(ω)dω ≤

∫ t

0

sup
s∈(0,t)

‖∇um‖2
2(s)dω ≤ T sup

s∈(0,t)

‖∇um‖2
2(s)

So∫ t

0

‖
√
ρmumt ‖2

2(s)ds+

(
1− 5

4
(‖ρ0‖∞ + 1)

ε

8Cµ0

)∫ t

0

‖∇um‖2
H1(s)ds+

µ

µ0

‖∇um‖2
2(t) ≤

≤ µ

µ0

‖∇um‖2
2(0) + T sup

s∈(0,t)

‖∇um‖2
2(s) + C

∫ t

0

‖∇um‖6
2(s)ds

(11.36)

≤ µ

µ0

‖∇u0‖2
2 + T sup

s∈(0,t)

‖∇um‖2
2(s) + C

∫ t

0

‖∇um‖6
2(s)ds

This is an inequality involving functions depending on t. If t < τ < T , we can pass to
the supremum for t ∈ (0, τ). If 1 − 5

4
(‖ρ0‖∞ + 1) ε

8Cµ0
> 0, we can continue as follows.

Each piece is bounded by the right side, being every term a postive term. So∫ t

0

‖
√
ρmumt ‖2

2(s)ds ≤ µ

µ0

‖∇u0‖2
2 + T sup

s∈(0,t)

‖∇um‖2
2(s) + C

∫ t

0

‖∇um‖6
2(s)ds

and thus

sup
t∈(0,τ)

∫ t

0

‖
√
ρmumt ‖2

2(s)ds ≤ sup
t∈(0,τ)

{ µ
µ0

‖∇u0‖2
2+T sup

s∈(0,t)

‖∇um‖2
2(s)+C

∫ t

0

‖∇um‖6
2(s)ds} ≤

≤ µ

µ0

‖∇u0‖2
2 + T sup

t∈(0,τ)

sup
s∈(0,t)

‖∇um‖2
2(s) + C sup

t∈(0,τ)

∫ t

0

‖∇um‖6
2(s)ds

and analogously(
1− 5

4
(‖ρ0‖∞ + 1)

ε

8Cµ0

)
sup
t∈(0,τ)

∫ t

0

‖∇um‖2
H1(s)ds ≤

≤ µ

µ0

‖∇u0‖2
2 + T sup

t∈(0,τ)

sup
s∈(0,t)

‖∇um‖2
2(s) + C sup

t∈(0,τ)

∫ t

0

‖∇um‖6
2(s)ds

and also

µ

µ0

sup
t∈(0,τ)

‖∇um‖2
2(t) ≤ µ

µ0

‖∇u0‖2
2 + T sup

t∈(0,τ)

sup
s∈(0,t)

‖∇um‖2
2(s) +C sup

t∈(0,τ)

∫ t

0

‖∇um‖6
2(s)ds

On the other hand we have12

sup
t∈(0,τ)

{∫ t

0
‖
√
ρmumt ‖22(s)ds+

(
1− 5

4
(‖ρ0‖∞ + 1)

ε

8Cµ0

)∫ t

0
‖∇um‖2H1(s)ds+

µ

µ0
sup
s∈(0,τ)

‖∇um‖22(s)

}
≤

12Notice that
sup
s∈(0,t)

‖∇u‖22(s) ≤ sup
s∈(0,τ)

‖∇u‖22(s)

since (0, t) ⊆ (0, τ). So
sup
t∈(0,τ)

sup
s∈(0,t)

‖∇u‖22(s) ≤ sup
s∈(0,τ)

‖∇u‖22(s)

222



≤ sup
t∈(0,τ)

∫ t

0
‖
√
ρmumt ‖22(s)ds+

(
1−5

4
(‖ρ0‖∞+1)

ε

8Cµ0

)
sup
t∈(0,τ)

∫ t

0
‖∇um‖2H1(s)ds+

µ

µ0
sup
s∈(0,τ)

‖∇um‖22(s) ≤

≤ 3 { µ
µ0
‖∇u0‖22 + T sup

t∈(0,τ)
sup
s∈(0,t)

‖∇um‖22(s) + C sup
t∈(0,τ)

∫ t

0
‖∇um‖62(s)ds} ≤

≤ 3
µ

µ0
‖∇u0‖22 + 3T sup

s∈(0,τ)
‖∇um‖22(s) + 3C sup

t∈(0,τ)

∫ t

0
‖∇um‖62(s)ds

The first left side is the supremum in (0, τ) of a continuous function13 of t, thanks
to the regularity of the solutions and their derivatives and to the compactness of the
domain. So, the supremum equals the maximum on the compact [0, τ ], and thus∫ τ

0
‖
√
ρmumt ‖22(s)ds+

(
1− 5

4
(‖ρ0‖∞+1)

ε

8Cµ0

)∫ τ

0
‖∇um‖2H1(s)ds+

µ

µ0
sup
s∈(0,τ)

‖∇um‖22(s) ≤

≤ sup
t∈(0,τ)

{∫ t

0
‖
√
ρmumt ‖22(s)ds+

(
1− 5

4
(‖ρ0‖∞ + 1)

ε

8Cµ0

)∫ t

0
‖∇um‖2H1(s)ds+

µ

µ0
sup
s∈(0,τ)

‖∇um‖22(s)

}
≤

≤ 3
µ

µ0
‖∇u0‖22 + 3T sup

s∈(0,τ)
‖∇um‖22(s) + 3C sup

t∈(0,τ)

∫ t

0
‖∇um‖62(s)ds ≤

14

≤ 3
µ

µ0
‖∇u0‖22 + 3T sup

s∈(0,τ)
‖∇um‖22(s) + 3C

∫ τ

0
‖∇um‖62(s)ds

Now we can derive the estimate∫ τ

0

‖
√
ρmumt ‖2

2(s)ds+

(
1− 5

4
(‖ρ0‖∞ + 1)

ε

8Cµ0

)∫ τ

0

‖∇um‖2
H1(s)ds +

+

(
µ

µ0

− 3T

)
sup
s∈(0,τ)

‖∇um‖2
2(s) ≤ 3

µ

µ0

‖∇u0‖2
2 + 3C

∫ τ

0

‖∇um‖6
2(s)ds

Remember that

C :=
5

4
(‖ρ0‖∞ + 1)

2C

εµ0

Λ2
0

Moreover, we choose ε > 0 such that

1− 5

4
(‖ρ0‖∞ + 1)

ε

8Cµ0

>
1

2
⇐⇒ 16Cµ0

5(‖ρ0‖∞ + 1)
> ε (11.42)

13The integrale of summable functions is continuous.
14Since τ > t we have ∫ t

0

‖∇u‖22(s)ds ≤
∫ τ

0

‖∇u‖22(s)ds

and so

sup
t∈(0,τ)

∫ t

0

‖∇u‖22(s)ds ≤
∫ τ

0

‖∇u‖22(s)ds
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With this choice, it follows that15

1

2

∫ τ

0

‖
√
ρmumt ‖2

2ds+
1

2

∫ τ

0

‖∇um‖2
H1ds+

1

2
sup
t∈(0,τ)

‖∇um‖2
2(t) ≤

≤ 3
µ

µ0

‖∇u0‖2
2 + 3C

∫ τ

0

‖∇um‖6
2(s)ds

So, doubling the inequality,∫ τ

0

‖√ρmumt ‖2
2ds+

∫ τ

0

‖∇um‖2
H1ds+ sup

t∈(0,τ)

‖∇um‖2
2(t) ≤ 6

µ

µ0

‖∇u0‖2
2+6C

∫ τ

0

‖∇um‖6
2(s)ds

(11.43)
Finally we take

K := max{6 µ
µ0

, 6C}

and we can rewrite the inequality as∫ τ

0

‖√ρmumt ‖2
2ds+

∫ τ

0

‖∇um‖2
H1ds+ sup

t∈(0,τ)

‖∇um‖2
2(t) ≤ K‖∇u0‖2

2 +K
∫ τ

0

‖∇um‖6
2(s)ds

(11.44)

Remark 11.14. The constant µ0 is defined as

µ0 :=
1

2
min

{
1

4
,

1

8C̃2(‖ρ0‖∞ + 1)
,

2µ

1 + 6T

}
depend of initial data ρ0, the viscosity µ, the time T and the constant C̃. The constant
C̃, in turn, is

C̃ =

√
2

µ
C

where C is such that
|φ|2,2 ≤ C‖Aφ‖2

for all φ ∈ X. On the other hand, we have

C :=
5

4
(‖ρ0‖∞ + 1)

2C

εµ0

Λ2
0

where C > 0 is arbitrary and ε > 0 depends on µ0 and ρ0 as in the relation (11.42).
Finally, Λ0 is given by Sobolev inequalities.

15Also remembering that

µ0 :=
1

2
min{1

4
,

1

8C̃2(‖ρ0‖∞ + 1)
,

2µ

1 + 6T
} ≤ 2µ

1 + 6T

and so
µ

µ0
− 3T ≥ 1 + 6T

2
− 3T =

1

2
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11.4.5 Second final estimate

Proposition 11.10. Let Ω be a bounded domain in R3. Consider the Navier-Stokes
problem over Ω as in proposition 11.1. Let ρ0 ∈ C1(Ω) and T > 0. Let ρm ∈ C1([0, T ]×
Ω) and um ∈ C1([0, T ];Xm) the approximate solutions built in proposition 11.1.
Then there holds the following estimate∫

Ω

ρm|umt |2(t)dx +

∫ t

τ

∫
Ω

|∇umt |2dxds ≤ C ′+K ′
∫

Ω

ρm|umt |2(τ)dx+C ′
(∫ t

0

‖∇um‖6
2(s)ds

)3

(11.45)
for every t ∈ [0, T ], τ ∈ (0, t). Here C ′, K ′ are generic positive constants depending
only on ‖ρ0‖L∞, ‖∇u0‖2 and T , but independent of δ and m.

Proof. For the goal of doing other estimates, we remember that

umtt (x, t) ∈ C([0, T ];Xm)

and the continuity holds also for umt . Moreover we have already said that the derivatives
with respect time are classical derivatives. Furthermore ρm ∈ C1([0, T ];C1(Ω)) and the
sequence ρm is uniformly bounded by ‖ρ0‖∞ + 1.

Thus, we deduce a further estimate. Consider again the equation∫
Ω

{
(
ρmumt + ρm(um · ∇um)

)
· φ+ µ∇um · ∇φ} dx = 0 ∀φ ∈ Xm

We want to differentiate this relation with respect t. We know from above that um,
∇um, umt , ∇umt , umtt are regular in classical sense in the temporal variable. So, if φ ∈ Xm,∫

Ω

{
(
ρmt u

m
t + ρmumtt + ρmt (um · ∇um) + ρm(um · ∇um)t

)
· φ+ µ∇umt · ∇φ} dx = 0

since the derivatives can pass under the integral sign, having the functions (and their
derivatives) integral bounds uniform in the temporal variable16. In other terms, it
follows that∫

Ω

{
(
ρmt u

m
t +ρmumtt+ρ

m
t (um·∇um)+ρm(um·∇umt )+ρm(umt ·∇um)

)
·φ+µ∇umt ·∇φ} dx = 0

(11.46)
Choosing φ = umt ∈ Xm in (11.46) and reorganizing the expression we get∫

Ω

{ρ
m

2

d

dt
|umt |2+ρm

(
um·∇umt +umt ·∇um

)
·umt +µ|∇umt |2} dx = −

∫
Ω

{ρmt
(
umt +um·∇um

)
·umt } dx

Remembering that
um · ∇ρm = −ρmt (11.47)

16It is enough to estimate the temporal part with its maximum in [0, T ]. The remaining function
depends on x and is a linear combination of element of the basis. The integrability of this functions
follow from the fact that the elements of the basis (and their first derivatives) are summable in the
bounded domain Ω.
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and that
∇|umt |2 = 2(∇umt )umt

one gets∫
Ω

{[ρ
m

2

d

dt
|umt |2 +

ρm

2
(um · ∇|umt |2) + ρm(umt · ∇um · umt ) + µ|∇umt |2} dx =

(11.47)
=

∫
Ω

{(um · ∇ρm)
(
umt + um · ∇um

)
· umt } dx

Moreover, thanks to the regularity of the first derivatives, and using the divergence
theorem (or integration by parts), we get∫

Ω

ρm

2
(um · ∇|umt |2) dx =

∫
Ω

(ρmum) · ∇(
1

2
|umt |2)dx =

=

∫
Ω

∇ · (ρ
m

2
|umt |2um)dx−

∫
Ω

1

2
|umt |2 ∇ · (ρmum)dx =

= −
∫

Ω

1

2
|umt |2 ∇ · (ρmum)dx

(11.47)
=

∫
Ω

ρmt
1

2
|umt |2dx

where has been used the generalized divergence theorem and the fact that um = 0 on
∂Ω.
Also observe that

∂t(ρ
m1

2
|umt |2) = ρmt

1

2
|umt |2 + ρm∂t(

1

2
|umt |2)

So, usign these relations in the main equation, we get∫
Ω

(
∂t(

ρm

2
|umt |2) + ρm(umt · ∇um · umt ) + µ|∇umt |2

)
dx =

=

∫
Ω

{(um · ∇ρm)
(
umt + um · ∇um

)
· umt } dx

Notice furthermore that

∇ · (ρmum) = ∇ρm · um + ρm∇ · um = ∇ρm · um

since ∇ · um = 0 by construction. So

d

dt

∫
Ω

ρm

2
|umt |2dx+ µ

∫
Ω

|∇umt |2dx =

=

∫
Ω

∇ · (ρmum)
(
umt + um · ∇um

)
· umt dx−

∫
Ω

ρm(umt · ∇um · umt ) dx

using the regularity of the derivatives and the fact that the closure of Ω is compact.
Now we have to deal with the right side of the latter equation. Using again integration
by parts, we have ∫

Ω

∇ · (ρmum)
(
umt + um · ∇um

)
· umt dx =
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=

∫
Ω

∇·{ρmum
(
(umt +um ·∇um) ·umt

)
} dx −

∫
Ω

(ρmum) ·∇
(
(umt +um ·∇um) ·umt

)
dx =

= −
∫

Ω

(ρmum) · ∇
(
(umt + um · ∇um) · umt

)
dx

where the whole divergence piece is the integration of a trace piece; thanks to the fact
that all the functions are continuous on Ω and that um = 0 on the boundary ∂Ω, we
have the last equality. We use now some derivation rules. In particular

∇{[umt + um · ∇um] · umt } = ∇|umt |2 +∇[um · ∇um · umt ] =

= ∇|umt |2 +∇[((∇um)T · um) · umt ] =

= 2umt · ∇umt + umt · (∇{(∇um)T · um}) + [(∇um)T · um] · ∇umt
Using that

∇(Ab) = b ∇(AT ) + A∇b

we have
∇((∇um)T · um) = um ∇(∇um) + (∇um)T · ∇um

So

|∇{[umt +um ·∇um] ·umt }| ≤ 2|umt ||∇umt |+ |{∇((∇um)T ·um)} ·umt |+ |∇umt ||∇um||um| ≤

≤ 2|umt ||∇umt |+ |umt ||um||∇2um|+ |umt ||∇um|2 + |∇umt ||∇um||um|

Hence ∣∣∣∣∫
Ω

∇ · (ρmum)[umt + um · ∇um] · umt dx

∣∣∣∣ ≤
≤ 2

∫
Ω

ρm|umt ||∇umt ||um| dx+

∫
Ω

ρm|umt ||um|2|∇2um| dx+

+

∫
Ω

ρm|um||umt ||∇um|2dx+

∫
Ω

ρm|∇umt ||∇um||um|2dx

Moreover ∣∣∣∣∫
Ω

ρm
(
∇um · umt

)
· umt dx

∣∣∣∣ ≤ ∫
Ω

ρm|∇um||umt |2dx

Finally we obtain the estimate

d

dt

∫
Ω

ρm

2
|umt |2dx+ µ

∫
Ω

|∇umt |2dx =

=

∫
Ω

∇ · (ρmum)
(
umt + um · ∇um

)
· umt dx−

∫
Ω

ρm(umt · ∇um · umt ) dx ≤

≤
∣∣∣∣∫

Ω

∇ · (ρmum)
(
umt + um · ∇um

)
· umt dx−

∫
Ω

ρm(umt · ∇um · umt ) dx

∣∣∣∣ ≤
≤
∫

Ω

|∇ · (ρmum)
(
umt + um · ∇um

)
· umt | dx+

∫
Ω

|ρm(umt · ∇um · umt )| dx ≤
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≤ 2

∫
Ω

ρm|umt ||∇umt ||um| dx+

∫
Ω

ρm|umt ||um|2|∇2um| dx +

+

∫
Ω

ρm|um||umt ||∇um|2dx+

∫
Ω

ρm|∇umt ||∇um||um|2dx+

∫
Ω

ρm|∇um||umt |2dx (11.48)

We now want to obtain further estimates involving some Lebesgue and Sobolev norms.
For this goal, we rename the last five pieces. We define

I1 := 2

∫
Ω

ρm|um||umt ||∇umt |dx I2 :=

∫
Ω

ρm|um||umt ||∇um|2dx

I3 :=

∫
Ω

ρm|um|2|umt ||∇2um|dx I4 :=

∫
Ω

ρm|um|2|∇umt ||∇um|dx

I5 :=

∫
Ω

ρm|∇um||umt |2dx

We will do massive use of well-known inequalities.

For the sake of semplicity, we deduce estimates for a pair of sulutions (u, ρ), avoid-
ing the apex m.

1. First of all, we have

2

∫
Ω

ρ|u||ut||∇ut|dx = 2

∫
Ω

√
ρ|u|√ρ|ut||∇ut|dx ≤ 2‖ρ‖

1
2∞‖u‖6‖

√
ρut‖3‖∇ut‖2

using the generalization of the Hölder inequality. Now, using the Hölder interpo-
lated inequality, we have

‖√ρut‖3 ≤ ‖
√
ρut‖

1
2
2 ‖
√
ρut‖

1
2
6 (11.49)

So
I1 ≤ 2‖ρ‖

1
2∞‖u‖6‖

√
ρut‖

1
2
2 ‖
√
ρut‖

1
2
6 ‖∇ut‖2

But we can do further estimates. Consider that

‖√ρut‖
1
2
6 =

(∫
Ω

ρ3|ut|6dx
) 1

12

≤ ‖ρ‖
1
4∞‖ut‖

1
2
6

On the other hand, by Sobolev inequality, we get

‖ut‖6 ≤ C1‖∇ut‖2

‖u‖6 ≤ C2‖∇u‖2

where the two constants can be choosen independentely by the domain because
u ∈ H1

0 (Ω).
So we have

I1 ≤ C ′‖ρ‖
3
4∞‖∇ut‖

3
2
2 ‖∇u‖2‖

√
ρut‖

1
2
2
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where C ′ := 2
√
C1C2. Finally, we use the parametric Young’s inequality, with

p = 4
3
, q = 4, a = ‖∇ut‖

3
2
2 and b = C ′‖ρ‖

3
4∞‖∇u‖2‖

√
ρut‖

1
2
2 . The result is

I1 ≤ ε‖∇ut‖2
2 + Cε‖∇u‖4

2‖
√
ρut‖2

2

where
(
‖ρ‖

3
4∞
)4

= ‖ρ‖3
∞ = ‖ρ0‖3

∞ ≤ (‖ρ0‖∞+1)3 has been included in the constant
Cε.

2. Now we have, also using the generalized version of Hölder,∫
Ω

ρ|u||ut||∇u|2dx ≤ ‖ρ‖∞
∫

Ω

|u||ut||∇u||∇u|dx ≤

≤ ‖ρ‖∞‖u‖6‖ut‖6‖∇u‖6‖∇u‖2

Again, thanks to Sobolev inequality, and using (11.40),

‖u‖6 ≤ C1‖∇u‖2, ‖ut‖6 ≤ C2‖∇ut‖2, ‖∇u‖6 ≤ C3‖∇u‖H1

Here C1 and C2 are independent of the domain since u, ut ∈ H1
0 (Ω). The constant

C3 depends a priori on the domain. So

I2 ≤ C‖ρ‖∞‖∇u‖2‖∇ut‖2‖∇u‖H1‖∇u‖2

where C := C1C2C3. Finally, again by the parametric Young’s inequality, with
p = q = 2 and a = ‖∇ut‖2, b = C‖ρ‖∞‖∇u‖2

2‖∇u‖H1 , we have

I2 ≤ ε‖∇ut‖2
2 + Cε‖∇u‖4

2‖∇u‖2
H1

where also this time ‖ρ‖∞ has been replaced with ‖ρ0‖∞ + 1 as above.

3. This point is similar to the previous. We have∫
Ω

ρ|u|2|ut||∇2u|dx ≤ ‖ρ‖∞
∫

Ω

|u|2|ut||∇2u|dx = ‖ρ0‖∞
∫

Ω

|u||u||ut||∇2u|dx ≤

≤ (‖ρ0‖∞ + 1)‖u‖2
6‖ut‖6‖∇2u‖2

and using

‖u‖6 ≤ C1‖∇u‖2 ‖ut‖6 ≤ C2‖∇ut‖2

we have

I3 ≤ (‖ρ0‖∞ + 1)C2
1‖∇u‖2

2C2‖∇ut‖2‖∇2u‖2

Again C1 and C2 don’t depend on the domain. Again by parametric Young’s
inequality, with p = q = 2 and a = ‖∇ut‖2, b = C2

1C2(‖ρ0‖∞ + 1)‖∇u‖2
2‖∇2u‖2,

we have

I3 ≤ ε‖∇ut‖2
2 + Cε‖∇u‖4

2‖∇2u‖2
2
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4. We have, always by Hölder,∫
Ω

ρ|u|2|∇ut||∇u|dx ≤ ‖ρ‖∞
∫

Ω

|u|2|∇ut||∇u|dx = ‖ρ0‖∞
∫

Ω

|u||u||∇ut||∇u|dx ≤

≤ (‖ρ0‖∞ + 1)‖u‖2
6‖∇ut‖2‖∇u‖6

So, being, by Sobolev inequality,

‖u‖6 ≤ C1‖∇u‖2

and again by (11.40)
‖∇u‖6 ≤ C2‖∇u‖H1

Here the situation is similar to a point above: C1 is independent of the domain,
while C2 depends on the domain and this dipendence can be specified, as will be
done in future.
Thus

I4 ≤ (‖ρ0‖∞ + 1)C2
1‖∇u‖2

2‖∇ut‖2C2‖∇u‖H1

By the usual parametric Young’s inequality, we have, with p = q = 2 and a =
‖∇ut‖2, b = C2

1C2(‖ρ0‖∞ + 1)‖∇u‖2
2‖∇u‖H1 ,

I4 ≤ ε‖∇ut‖2
2 + Cε‖∇u‖4

2‖∇u‖2
H1

5. We finally deal with the last piece. We have, also by the interpolated Hölder’s
inequality in (11.49),∫

Ω

ρ|∇u||ut|2dx =

∫
Ω

√
ρ|∇u|[√ρ|ut|]|ut|dx ≤ ‖ρ0‖

1
2∞

∫
Ω

|∇u|[√ρ|ut|]|ut|dx ≤

≤ ‖ρ0‖
1
2∞‖
√
ρut‖3‖∇u‖2‖ut‖6 ≤ (‖ρ0‖∞ + 1)

1
2‖√ρut‖

1
2
2 ‖
√
ρut‖

1
2
6 ‖∇u‖2‖ut‖6

and being

‖√ρut‖
1
2
6 ≤ ‖ρ0‖

1
4∞‖ut‖

1
2
6 ≤ (‖ρ0‖∞ + 1)

1
4‖ut‖

1
2
6

and
‖ut‖6 ≤ C1‖∇ut‖2

where the constant C1 is independent of the domain.
We have

I5 ≤ (‖ρ0‖∞ + 1)
3
4‖√ρut‖

1
2
2

√
C1‖∇ut‖

1
2
2 ‖∇u‖2C1‖∇ut‖2 =

= C2(‖ρ0‖∞ + 1)
3
4‖√ρut‖

1
2
2 ‖∇ut‖

3
2
2 ‖∇u‖2

where C2 = C
3
2
1 .

Finally, by Young’s parametric inequality, with p = 4
3
, q = 4, a = ‖∇ut‖

3
2
2 and

b = C2(‖ρ0‖∞ + 1)
3
4‖√ρut‖

1
2
2 ‖∇u‖2, we have

I5 ≤ ε‖∇ut‖2
2 + Cε‖

√
ρut‖2

2‖∇u‖4
2
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We continue for a moment to use this notation, avoiding the apex m. Equation (11.4.5)
can be written as

d

dt

∫
Ω

ρ

2
|ut|2dx+ µ

∫
Ω

|∇ut|2dx ≤
5∑
j=1

Ij

More explicitly, using the estimates just deduced,

5∑
j=1

Ij ≤ [ε‖∇ut‖2
2 + C1,ε‖∇u‖4

2‖
√
ρut‖2

2] + [ε‖∇ut‖2
2 + C2,ε‖∇u‖4

2‖∇u‖2
H1 ]+

+[ε‖∇ut‖2
2 + C3,ε‖∇u‖4

2‖∇2u‖2
2] + [ε‖∇ut‖2

2 + C4,ε‖∇u‖4
2‖∇u‖2

H1 ]+

+[ε‖∇ut‖2
2 + C5,ε‖

√
ρut‖2

2‖∇u‖4
2] =

= 5ε‖∇ut‖2
2 + ‖∇u‖4

2{(C1,ε + C5,ε)‖
√
ρut‖2

2 + (C2,ε + C4,ε)‖∇u‖2
H1 + C3,ε‖∇2u‖2

2} ≤
≤ 5ε‖∇ut‖2

2 + ‖∇u‖4
2{(C1,ε + C5,ε)‖

√
ρut‖2

2 + (C2,ε + C4,ε + C3,ε)‖∇u‖2
H1}

So
d

dt

∫
Ω

ρ

2
|ut|2dx+ µ‖∇ut‖2

2 ≤

≤ 5ε‖∇ut‖2
2 + ‖∇u‖4

2{(C1,ε + C5,ε)‖
√
ρut‖2

2 + (C2,ε + C4,ε + C3,ε)‖∇u‖2
H1}

that is
d

dt

∫
Ω

ρ

2
|ut|2dx+ (µ− 5ε)‖∇ut‖2

2 ≤

≤ ‖∇u‖4
2{(C1,ε + C5,ε)‖

√
ρut‖2

2 + (C2,ε + C4,ε + C3,ε)‖∇u‖2
H1}

Since the inequality holds for every ε > 0, we can choose ε = µ
10

and we get

d

dt

∫
Ω

ρ|ut|2dx+ µ‖∇ut‖2
2 ≤ ‖∇u‖4

2{C1‖
√
ρut‖2

2 + C2‖∇u‖2
H1}

Integrating over the interval (τ, t), with τ > 0, we have17∫
Ω

ρ|ut|2(t)dx−
∫

Ω

ρ|ut|2(τ)dx+µ

∫ t

τ

∫
Ω

|∇ut|2dxds ≤ C

∫ t

τ

‖∇u‖4
2{‖
√
ρut‖2

2+‖∇u‖2
H1}ds

and so∫
Ω

ρ|ut|2(t)dx+µ

∫ t

τ

∫
Ω

|∇ut|2dxds ≤ C

∫ t

τ

‖∇u‖4
2{‖
√
ρut‖2

2+‖∇u‖2
H1}ds+

∫
Ω

ρ|ut|2(τ)dx

(11.50)
Now we deal with the third piece. We get∫ t

τ

‖∇u‖4
2{‖
√
ρut‖2

2 + ‖∇u‖2
H1}ds =

∫ t

τ

(
‖∇u‖2

2

)2{‖√ρut‖2
2 + ‖∇u‖2

H1} ds ≤

≤
(

sup
s∈(0,t)

‖∇u‖2
2(s)

)2 ∫ t

0

{‖√ρut‖2
2 + ‖∇u‖2

H1} ds

17C := max{C1, C2}.
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Remember now the inequality (11.43) deduced in the previous section, i.e.∫ t

0

‖√ρut‖2
2ds +

∫ t

0

‖∇u‖2
H1ds+ sup

s∈(0,t)

‖∇u‖2
2(s) ≤ 6

µ

µ0

‖∇u0‖2
2 + 6C

∫ t

0

‖∇u‖6
2(s)ds

We can read in (11.43) the following inequalities,∫ t

0

‖√ρut‖2
2ds +

∫ t

0

‖∇u‖2
H1ds ≤ 6

µ

µ0

‖∇u0‖2
2 + 6C

∫ t

0

‖∇u‖6
2(s)ds

sup
s∈(0,t)

‖∇u‖2
2(s) ≤ 6

µ

µ0

‖∇u0‖2
2 + 6C

∫ t

0

‖∇u‖6
2(s)ds

and

6
µ

µ0

‖∇u0‖2
2 + 6C

∫ t

0

‖∇u‖6
2(s)ds ≤M0 +M0

∫ t

0

‖∇u‖6
2(s)ds

where M0 is the maximum of the two constants. We have∫ t

τ

‖∇u‖4
2{‖
√
ρut‖2

2 + ‖∇u‖2
H1}ds ≤

{
M0 +M0

∫ t

0

‖∇u‖6
2(s)ds

}3

(11.51)

Remember now that
(1 + y)3

1 + y3
≤ 4 ∀y ≥ 0

and so

M3
0

(
1 +

∫ t

0

‖∇u‖6
2(s)ds

)3

≤ 4M3
0

{
1 +

(∫ t

0

‖∇u‖6
2(s)ds

)3}
Finally, using (11.50) and (11.51),∫

Ω

ρ|ut|2(t)dx+µ

∫ t

τ

∫
Ω

|∇ut|2dxds ≤
∫

Ω

ρ|ut|2(τ)dx+4CM3
0

{
1+(

∫ t

0

‖∇u‖6
2(s)ds)3

}
=

= 4CM3
0 +

∫
Ω

ρ|ut|2(τ)dx+ 4CM3
0

(∫ t

0

‖∇u‖6
2(s)ds

)3

Looking at a left piece a time, and dividing for µ, the equality can also be rewrite as∫
Ω

ρ|ut|2(t)dx +

∫ t

τ

∫
Ω

|∇ut|2dxds ≤

≤
(

4 +
4

µ

)
CM3

0 +

(
1 +

1

µ

)∫
Ω

ρ|ut|2(τ)dx+

(
4 +

4

µ

)
CM3

0

(∫ t

0

‖∇u‖6
2(s)ds

)3

≡

≡ C ′ +K ′
∫

Ω

ρ|ut|2(τ)dx+ C ′
(∫ t

0

‖∇u‖6
2(s)ds

)3

where the constants have been renamed.
We write the just deduced inequality in a line, remembering the dependence on m:∫

Ω

ρm|umt |2(t)dx+

∫ t

τ

∫
Ω

|∇umt |2dxds ≤ C ′+K ′
∫

Ω

ρm|umt |2(τ)dx+C ′
(∫ t

0

‖∇um‖6
2(s)ds

)3

(11.52)

that is out thesis.
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11.4.6 A third final estimate

This proposition states a slightly different version of the previous one.

Proposition 11.11. Let Ω be a bounded domain in R3. Consider the Navier-Stokes
problem over Ω as in proposition 11.1. Let ρ0 ∈ C1(Ω) and T > 0. Let ρm ∈ C1([0, T ]×
Ω) and um ∈ C1([0, T ];Xm) the approximate solutions built in proposition 11.1.
Then there holds the following estimate∫

Ω

ρm|umt |2(t) dx+

∫ t

0

∫
Ω

|∇umt |2 dx ds ≤ C ′′ + C ′′C0
m

+ C ′′
(∫ t

0

‖∇u‖6
2(s) ds

)3

(11.53)
for every t ∈ [0, T ]. Here C ′′ is a generic positive constant depending only on ‖ρ0‖L∞,
‖∇u0‖2 and T , but independent of δ and m. On the other hand

C0
m

:=

∫
Ω

(ρ0)−1|µ∆um(0)−∇p0|2dx

Proof. We consider again the equation∫
Ω

{(ρumt + ρmum · ∇um) · φ+ µ∇um · ∇φ} dx = 0

for φ ∈ Xm. Choosing φ = umt , we get∫
Ω

{ρm|umt |2 + ρmum · ∇um · umt + µ∇um · ∇umt } dx = 0

Consider now p0 ∈ H1(Ω), that is fixed as in proposition 11.1. We have, using integra-
tion by parts, that∫

Ω

∇p0 · umt dx =

∫
Ω

∇ · (p0u
m
t ) dx−

∫
Ω

p0 ∇ · umt dx = 0

since the trace of umt is zero at the boundary of Ω (here we are using the argument
in section (4.7.1) with um ∈ C1(Ω)) and also ∇ · umt = 0 in Ω. So we can rewrite the
equality above as∫

Ω

ρm|umt |2dx = −
∫

Ω

ρmum · ∇um · umt dx− µ
∫

Ω

∇um · ∇umt dx−
∫

Ω

∇p0 · umt dx

Observe that ∫
Ω

∇um · ∇umt dx = −
∫

Ω

umt ·∆um dx

thanks again to the result in section (4.7.1).
So we have∫

Ω

ρm|umt |2dx = −
∫

Ω

ρmum · ∇um · umt dx+ µ

∫
Ω

umt ·∆um dx−
∫

Ω

∇p0 · umt dx =

=

∫
Ω

(−ρmum · ∇um · umt + µ∆um · umt −∇p0 · umt ) dx =
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=

∫
Ω

(−
√
ρmum · ∇um +

1√
ρm

[µ∆um −∇p0]) · (
√
ρmumt ) dx

thanks to the fact that ρm ≥ δ > 0. In absolute value, we have∫
Ω

ρm|umt |2dx ≤
∫

Ω

| −
√
ρmum · ∇um +

1√
ρm

[µ∆um −∇p0]||
√
ρmumt | dx ≤

≤
∫

Ω

|
√
ρmum · ∇um||

√
ρmumt |dx+

∫
Ω

| 1√
ρm

[µ∆um −∇p0]||
√
ρmumt |dx ≤

≤
∫

Ω

|
√
ρm||∇um||um||

√
ρmumt |dx+

∫
Ω

| 1√
ρm

[µ∆um −∇p0]||
√
ρmumt |dx ≤

18

≤
∫

Ω

(
ρm|∇um|2|um|2 +

1

4
ρm|umt |2

)
dx+

∫
Ω

( 1

ρm
|µ∆um −∇p0|2 +

1

4
ρm|umt |2

)
dx =

=

∫
Ω

ρm|∇um|2|um|2dx+

∫
Ω

(ρm)−1|µ∆um −∇p0|2dx+
1

2

∫
Ω

ρm|umt |2dx

So we get

1

2

∫
Ω

ρm|umt |2dx ≤
∫

Ω

ρm|∇um|2|um|2dx+

∫
Ω

(ρm)−1|µ∆um −∇p0|2dx

that is ∫
Ω

ρm|umt |2dx ≤ 2

(∫
Ω

ρm|∇um|2|um|2dx+

∫
Ω

(ρm)−1|µ∆um −∇p0|2dx
)

We can rewrite this inequality at the time τ , that is∫
Ω

ρm(τ)|umt |2(τ)dx ≤ 2

(∫
Ω

ρm(τ)|∇um|2(τ)|um|2(τ)dx+

∫
Ω

(ρm)−1(τ)|µ∆um(τ)−∇p0|2dx
)

(11.54)
Our aim is to take the limit for τ → 0+.

We have to do some considerations. First of all, for every τ ∈ [0, T ] we have

ρm(τ) ≤ ‖ρm(τ)‖∞ = ‖ρ0‖∞ ≤ ‖ρ0‖∞ + 1

18Using

ab ≤ a2

2ε
+
εb2

2

for every ε > 0 and a, b ≥ 0. This is a particular case of the Young’s inequality. So, if ε = 2 > 0,

|√ρ||∇u||u||√ρut| ≤
ρ|ut|2

4
+

2ρ|∇u|2|u|2

2

and

| 1
√
ρ

[µ∆u−∇p0]||√ρut| ≤
ρ|ut|2

4
+

2ρ−1|µ∆u−∇p0|2

2
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On the other hand we have (ρm)−1(τ) ≤ 1
δ
. Remember now that

um(x, t) :=
m∑
k=1

Ãmk(t)w
k(x), |Ãmk(t)| ≤ |Ãm(t)| ≤ R ∀t ∈ [0, T ]

(here | · | is the usual Euclidean norm). Consequentely we have

∇um(x, t) =
m∑
k=1

Ãmk(t)∇wk(x), ∆um(x, t) =
m∑
k=1

Ãmk(t)∆w
k(x)

and finally

umt (x, t) =
m∑
k=1

∂tÃmk(t)w
k(x)

Moreover we know that Ãm ∈ C1([0, T ]). So we find the following bounds:

|um(x, t)| ≤ R

(
m∑
k=1

|wk(x)|

)
, |∇um(x, t)| ≤ R

(
m∑
k=1

|∇wk(x)|

)
,

|∆um(x, t)| ≤ R

(
m∑
k=1

|∆wk(x)|

)
, |umt (x, t)| ≤ Rm

0

m∑
k=1

|wk(x)|

where Rm
0 := max

[0,T ]
|∂tÃm|. Observe that the bounds are uniform in t and are in L2(Ω),

since wk ∈ H2(Ω). We now have summable bounds for the integrands above: in fact

ρm(τ)|umt |2(τ) ≤ (‖ρ0‖∞ + 1)(Rm
0 )2

( m∑
k=1

|wk(x)|
)2

∈ L1(Ω) (11.55)

ρm(τ)|∇um|2(τ)|um|2(τ) ≤ (‖ρ0‖∞ + 1)R4

( m∑
k=1

|∇wk(x)|
)2( m∑

k=1

|wk(x)|
)2

≤

≤ (‖ρ0‖∞ + 1)R4

( m∑
k=1

|∇wk(x)|
)2( m∑

k=1

‖wk‖∞
)2

∈ L1(Ω)

where ‖wk‖∞ = max
Ω
|wk| since wk ∈ C1(Ω).

Finally
(ρm)−1(τ)|µ∆um(τ)−∇p0|2 ≤ 2δ−1

(
µ2|∆um|2(τ) + |∇p0|2

)
≤

≤ 2δ−1

(
µ2R2

( m∑
k=1

|∆wk(x)|
)2

+ |∇p0|2
)
∈ L1(Ω)

where the summability is dued to fact that p0 ∈ H1(Ω) and ∆wk ∈ L2(Ω). Since the
following limits exist

lim
τ→0+

ρm(τ)|umt |2(τ) = ρ0|umt (0)|2, lim
τ→0+

ρm(τ)|∇um|2(τ)|um|2(τ) = ρ0|∇um|2(0)|um|2(0)

235



lim
τ→0+

(ρm)−1(τ)|µ∆um(τ)−∇p0|2 = (ρ0)−1|µ∆um(0)−∇p0|2 (11.56)

where ρ0 ≥ δ > 0. We used the continuity respect with the temporal variable: in
particular, we have, in example

‖∆um(τ)−∆um(0)‖2 = ‖
m∑
k=1

(
Ãmk(τ)−Ãmk(0)

)
∆wk‖2 ≤

m∑
k=1

|Ãmk(τ)−Ãmk(0)|‖∆wk‖2 → 0

as τ → 0+. This means that, provided that we understand the limit along a sequence,
∆um(τn)→ ∆um(0) almost everywhere in Ω.
So, thanks to the Lebesgue dominated convergence, we have that also exist the limits

lim
τ→0+

∫
Ω

ρm(τ)|umt |2(τ) dx =

∫
Ω

ρ0|umt (0)|2 dx

lim
τ→0+

(∫
Ω

ρm(τ)|∇um|2(τ)|um|2(τ)dx

)
=

∫
Ω

ρ0|∇um|2(0)|um|2(0) dx

lim
τ→0+

(∫
Ω

(ρm)−1(τ)|µ∆um(τ)−∇p0|2dx
)

=

∫
Ω

(ρ0)−1|µ∆um(0)−∇p0|2 dx

So, taking the limit both sides in the inequality (11.54), we have

lim
τ→0+

∫
Ω

ρm(τ)|umt |2(τ) dx =

∫
Ω

lim
τ→0+

(
ρm(τ)|umt |2(τ)

)
dx ≤

≤ 2

∫
Ω

ρ0|∇um|2(0)|um|2(0) dx+ 2

∫
Ω

(ρ0)−1|µ∆um(0)−∇p0|2 dx (11.57)

We have already proved that

‖∇um‖2(0) ≤ ‖∇u0‖2 ‖um‖2(0) ≤ ‖u0‖2

for every um approximate solution. So, we can estimate the integrals in (11.57) as∫
Ω

ρ0|∇um|2(0)|um|2(0) dx ≤ (‖ρ0‖∞ + 1)

∫
Ω

|∇um|2(0)|um|2(0) dx ≤

≤ (‖ρ0‖+ 1)‖um‖2
∞(0)

∫
Ω

|∇um|2(0) dx = (‖ρ0‖∞ + 1)‖um‖2
∞(0)‖∇um‖2

2(0) ≤

≤ (‖ρ0‖∞ + 1)‖um‖2
∞(0)‖∇u0‖2

2

So, using lemma 9.6, it follows that

‖um(0)‖∞ ≤ c
(
‖∆um(0)‖2

) 3
4
(
‖∇um(0)‖2

) 1
4 ≤ c

(
‖∆um(0)‖2

) 3
4
(
‖∇u0‖2

) 1
4

Moreover, we know that

‖∆um(0)‖2 ≤ ‖∆um(0)−∆u0‖2 + ‖∆u0‖2
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Observe now that

‖∆um(0)−∆u0‖2 ≤
√

5‖∇2(um(0)− u0)‖2 ≤
√

5‖um(0)− u0‖H2 < 1

for some M ∈ N, and every m ≥ M . In fact we have that um(0) → u0 in X equipped
with the H2 norm. So

‖um(0)‖2
∞ ≤ c2

(
1 + ‖∆u0‖2

) 3
2‖∇u0‖

1
2
2

for every m ≥M . Notice that, defining

E0 := max{c2
(
1 + ‖∆u0‖2

) 3
2‖∇u0‖

1
2
2 , ‖um(0)‖2

∞; m = 1, ...,M − 1}

it holds
‖um(0)‖2

∞ ≤ E0 ∀m ∈ N
So E0 does not depend on m. Thus, we have∫

Ω

ρ0|∇um|2(0)|um|2(0) dx ≤ (‖ρ0‖∞ + 1)E0‖∇u0‖2
2 (11.58)

Remember now the inequality (11.52)∫
Ω

ρ|ut|2(t)dx +

∫ t

τ

∫
Ω

|∇ut|2dxds ≤ C ′ +K ′
∫

Ω

ρ|ut|2(τ)dx+ C ′
(∫ t

0

‖∇u‖6
2(s)ds

)3

So taking a sequence τn → 0+ as n→∞, we have∫
Ω

ρm|umt |2(t)dx+ lim
n→∞

∫ t

τn

∫
Ω

|∇umt |2dxds ≤

≤ C ′ +K ′ lim
n→∞

∫
Ω

ρm|umt |2(τn)dx+ C ′
(∫ t

0

‖∇um‖6
2(s) ds

)3

≤ (11.59)

(11.57)+(11.58)

≤ C ′ + 2K ′(‖ρ0‖∞ + 1)E0‖∇u0‖2
2 + 2K ′

(∫
Ω

(ρ0)−1|µ∆um(0)−∇p0|2 dx
)

+

+C ′
(∫ t

0

‖∇um‖6
2(s) ds

)3

≤ C ′′ + C ′′C0
m

+ C ′′(

∫ t

0

‖∇um‖6
2(s)ds)3

where C ′′ is the maximum between the constants that depend only on the initial data
and

C0
m

:=

∫
Ω

(ρ0)−1|µ∆um(0)−∇p0|2dx

Finally, since ‖∇umt ‖2
2(s) is integrable in time19 (since umt ∈ C([0, T ];Xm)), we have

that ∫ t

τn

∫
Ω

|∇umt |2dxds→
∫ t

0

∫
Ω

|∇umt |2dxds as n→∞

19Observe that

|‖∇umt ‖2(s)− ‖∇umt ‖2(s0)| ≤ ‖∇umt (s)−∇umt (s0)‖2 ≤
m∑
k=1

|∂tÃmk(s)− ∂tÃmk(s0)|‖∇wk‖2 → 0

as s→ s0. So, the function is continuous.
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We finally find∫
Ω

ρm|umt |2(t)dx+

∫ t

0

∫
Ω

|∇umt |2dxds ≤ C ′′+C ′′C0
m

+C ′′
(∫ t

0

‖∇u‖6
2(s) ds

)3

(11.60)

Remark 11.15. In equation (11.59) we have considered the limit lim
τ→0+

∫
Ω

ρm|umt |2(τ) dx

as a number, also estimating it, since we have proved above that the Lebesgue dominate
convergence assures us that it is actually a number. See (11.55), (11.56).

Remark 11.16. We can also write the estimate as

‖∇um‖2
2(t) ≤ H +H

∫ t

0

‖∇um‖6
2(s)ds (11.61)

for some constant H > 0 and for every t ∈ [0, T ]. In fact, rembember equation (11.43)∫ t

0

‖
√
ρmumt ‖2

2 ds+

∫ t

0

‖∇um‖2
H1 ds+ sup

s∈(0,t)

‖∇um‖2
2(s) ≤ 6

µ

µ0

‖∇u0‖2
2+6C

∫ t

0

‖∇um‖6
2(s) ds

It follows that

sup
s∈(0,t)

‖∇um‖2
2(s) ≤ 6

µ

µ0

‖∇u0‖2
2 + 6C

∫ t

0

‖∇um‖6
2(s)ds ≤ H +H

∫ t

0

‖∇um‖6
2(s) ds

taking H as the maximum of the two constants. Moreover, ‖∇um‖2(s) is continuous,
since

|‖∇um‖2(s)−‖∇um‖2(s0)| ≤ ‖∇um(s)−∇um(s0)‖2 ≤
m∑
k=1

|Ãmk(s)−Ãmk(s0)|‖∇wk‖2 → 0

as s → s0. So, since the supremum of a continuous function on an open set is the
maximum of the function on the closure of the set, we have

‖∇um(t)‖2
2 ≤ max

s∈[0,t]
‖∇um(s)‖2

2 ≤ H +H

∫ t

0

‖∇um‖6
2(s) ds

This estimate will provide, in future arguments, a local time of existence. �

11.4.7 A further regularity estimate

Proposition 11.12. Let Ω be a bounded domain in R3. Consider the Navier-Stokes
problem over Ω as in proposition 11.1. Let ρ0 ∈ C1(Ω) and T > 0. Let ρm ∈ C1([0, T ]×
Ω) and um ∈ C1([0, T ];Xm) the approximate solutions built in proposition 11.1. Then
there holds the following estimate

sup
τ∈(0,t)

{‖∇um‖2
H1 + ‖

√
ρmumt ‖2

2}+

∫ t

0

‖∇umt ‖2
2 ds ≤ ĤC0

m
+ Ĥ exp

(
Ĥ

∫ t

0

‖∇um‖4
2 ds

)
(11.62)

for every t ∈ [0, T ]. Here Ĥ is a generic positive constant depending only on ‖ρ0‖L∞,
‖∇u0‖2 and T , but independent of δ and m. On the other hand

C0
m

:=

∫
Ω

(ρ0)−1|µ∆um(0)−∇p0|2dx
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Proof. We want now to prove this further regularity estimate. We use lemma 1.3.
If we look at estimate (11.61) and in lemma 1.3 we choose f(t) := ‖∇um‖2

2(t) and
f0 = H and g(s) := H‖∇um‖4

2(s) and a = 0, then

‖∇um‖2
2(t) ≤ H exp

(
H

∫ t

0

‖∇um‖4
2(s)ds

)
(11.63)

If τ is fixed and t < τ we have

‖∇um‖2
2(t) ≤ H exp

(
H

∫ t

0

‖∇um‖4
2(s)ds

)
≤ H exp

(
H

∫ τ

0

‖∇um‖4
2(s)ds

)
and so

sup
t∈(0,τ)

‖∇um‖2
2(t) ≤ H exp

(
H

∫ τ

0

‖∇um‖4
2(s)ds

)
(11.64)

Remember now the following estimates previously deduced:∫ τ

0
‖
√
ρmumt ‖22 ds+

∫ τ

0
‖∇um‖2H1ds+ sup

t∈(0,τ)
‖∇um‖22(t) ≤ K0+K0

∫ τ

0
‖∇um‖62(s) ds (11.43)

where K0 has been taken as the maximum of the two constants;∫
Ω

ρm|umt |2(t)dx+

∫ t

0

∫
Ω

|∇umt |2dxds ≤ C ′′+C ′′C0
m

+C ′′
(∫ t

0

‖∇u‖6
2(s) ds

)3

(11.60)

We immediately have from (11.43) that

sup
t∈(0,τ)

‖∇um‖2
2(t) ≤ K0 +K0

∫ τ

0

‖∇um‖6
2(s) ds

Moreover, by (11.60), we get

sup
t∈(0,τ)

‖
√
ρmumt ‖2

2 ≤ C ′′ + C ′′C0
m

+ C ′′
(∫ τ

0

‖∇um‖6
2(s) ds

)3

using the trick above of taking a time t < τ . Furthermore again by (11.43) we have∫ τ

0

‖
√
ρmumt ‖2

2 ds+

∫ τ

0

‖∇um‖2
H1 ds ≤ K0 +K0

∫ τ

0

‖∇um‖6
2(s) ds

Observe that from (11.63) it follows

f(t) :=

∫ t

0

‖∇um‖6
2 ds ≤ exp

(
H

∫ t

0

‖∇um‖4
2 ds

)
=: g(t) (11.65)

In fact, deriving both sides, we have

f ′(t) = ‖∇um‖6
2(t), g′(t) = H‖∇um‖4

2(t) exp

(
H

∫ t

0

‖∇um‖4
2 ds

)
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So, using (11.63), f ′(t) ≤ g′(t) since

‖∇um‖62(t) ≤ H‖∇um‖42(t) exp

(
H

∫ t

0
‖∇um‖42 ds

)
⇐⇒ ‖∇um‖22(t) ≤ H exp

(
H

∫ t

0
‖∇um‖42 ds

)
Moreover f(0) = 0 < 1 = g(0). So, we have∫ t

0
‖∇um‖62 ds = f(t) = f(0)+

∫ t

0
f ′(s) ds ≤ g(0)+

∫ t

0
g′(s) ds = g(t) = exp

(
H

∫ t

0
‖∇um‖42 ds

)
Using (11.60) we know for sure that∫ t

0

∫
Ω

|∇umt |2dxds, sup
τ∈(0,t)

‖
√
ρmumt ‖2

2 ≤ C ′′+C ′′C0
m

+C ′′
(∫ t

0

‖∇um‖6
2(s)ds

)3

(11.66)

Moreover we know that ‖∇um‖2
H1 = ‖∇um‖2

2 + ‖∇2um‖2
2 and we can study the two

pieces independently. For the first we have

‖∇um‖2
2

(11.63)

≤ H exp

(
H

∫ t

0

‖∇um‖4
2(s) ds

)
On the other hand, the second can be treated as follows. We have

‖∇2um‖2
2

(11.38)

≤ 2C̃2(‖ρ0‖∞ + 1)
(
‖
√
ρmumt ‖2

2 + ‖
√
ρm(∇um)um‖2

2

)
≡

≡ K̃
(
‖
√
ρmumt ‖2

2 + ‖
√
ρm(∇um)um‖2

2

)
≤

(11.41)

≤ K̃‖
√
ρmumt ‖2

2 + K̃(‖ρ0‖∞ + 1)Λ0‖∇um‖3
2‖∇um‖H1 ≤

20

≤ K̃‖
√
ρmumt ‖2

2 + C ′′′Λ0

(
1

4ε
‖∇um‖6

2 + ε‖∇um‖2
2 + ε‖∇2um‖2

2

)
where C ′′′ := K̃(‖ρ0‖∞ + 1) and ε > 0. We find, in this way,

(
1− εC ′′′Λ0

)
‖∇2um‖2

2 ≤ K̃‖
√
ρmumt ‖2

2 +
C ′′′Λ0

4ε
‖∇um‖6

2 + εC ′′′Λ0‖∇um‖2
2

Since ε > 0 is arbitrary, we can fix ε = 1
2C′′′Λ0

, then

‖∇2um‖2
2 ≤ 2K̃‖

√
ρmumt ‖2

2 + (C ′′′Λ0)2‖∇um‖6
2 + ‖∇um‖2

2

and so

‖∇um‖2
H1 = ‖∇um‖2

2 + ‖∇2um‖2
2 ≤ 2K̃‖

√
ρmumt ‖2

2 + (C ′′′Λ0)2‖∇um‖6
2 + 2‖∇um‖2

2

20Here we used the inequality

ab ≤ a2

2ε′
+
ε′b2

2

with ε′ = 2ε.
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Passing to the supremum for τ ∈ (0, t) we get

sup
τ∈(0,t)

‖∇um‖2
H1 ≤ 2K̃ sup

τ∈(0,t)

‖
√
ρmumt ‖2

2 + (C ′′′Λ0)2 sup
τ∈(0,t)

‖∇um‖6
2 + 2 sup

τ∈(0,t)

‖∇um‖2
2 ≤

(11.66)+(11.43)

≤ 2K̃

{
C ′′+C ′′C0

m
+C ′′

(∫ t

0

‖∇um‖6
2(s) ds

)3}
+(C ′′′Λ0)2

(
K0+K0

∫ t

0

‖∇um‖6
2(s) ds

)3

+

+2

(
K0 +K0

∫ t

0

‖∇um‖6
2(s) ds

)
Since (1 + y)3 ≤ 4(1 + y3) for every y ≥ 0 and also holds (11.65), we have

sup
τ∈(0,t)

‖∇um‖2H1 ≤ 2K̃

{
C ′′+C ′′C0

m
+C ′′

(∫ t

0
‖∇um‖62(s)ds

)3}
+4(C ′′′Λ0)2K3

0

{
1+

(∫ t

0
‖∇um‖62(s)ds

)3}
+

+2

(
K0 +K0

∫ t

0
‖∇um‖62(s) ds

)
≤ Ĉ+ĈC0

m
+Ĉ

(∫ t

0
‖∇um‖62(s) ds

)3

+Ĉ

∫ t

0
‖∇um‖62(s) ds

where Ĉ is the maximum of the constants. If we now consider

sup
τ∈(0,t)

{‖∇um‖2H1+‖
√
ρmumt ‖22}+

∫ t

0
‖∇umt ‖22ds ≤ sup

τ∈(0,t)
‖∇um‖2H1+ sup

τ∈(0,t)
‖
√
ρmumt ‖22+

∫ t

0
‖∇umt ‖22ds ≤

(11.67)
(11.66)

≤ Ĉ+ĈC0
m

+Ĉ

(∫ t

0
‖∇um‖62(s)ds

)3

+Ĉ

∫ t

0
‖∇um‖62(s)ds+2

{
C ′′+C ′′C0

m
+C ′′

(∫ t

0
‖∇um‖62(s)ds

)3}
≡

≡ D̂ + D̂C0
m

+ D̂

(∫ t

0
‖∇um‖62(s)ds

)3

+ Ĉ

∫ t

0
‖∇um‖62(s)ds

where D̂ = Ĉ + 2C ′′. But, moreover, we know, from (11.65), that(∫ t

0

‖∇um‖6
2ds

)3

≤ exp

(
3H

∫ t

0

‖∇um‖4
2ds

)
So

sup
τ∈(0,t)

{‖∇um‖2
H1 + ‖

√
ρmumt ‖2

2}+

∫ t

0

‖∇umt ‖2
2ds ≤

≤ D̂ + D̂C0
m

+ D̂ exp

(
3H

∫ t

0

‖∇um‖4
2ds

)
+ Ĉ exp

(
H

∫ t

0

‖∇um‖4
2ds

)
≤

≤ D̂C0
m

+ 3D̂ exp

(
3H

∫ t

0

‖∇um‖4
2ds

)
≤ ĤC0

m
+ Ĥ exp

(
Ĥ

∫ t

0

‖∇um‖4
2ds

)
since exp(α) ≥ 1 if α ≥ 0. Here Ĥ := max{D̂, 3D̂, 3H}.
We have finally obtained the inequality

sup
τ∈(0,t)

{‖∇um‖2
H1 + ‖

√
ρmumt ‖2

2}+

∫ t

0

‖∇umt ‖2
2 ds ≤ ĤC0

m
+ Ĥ exp

(
Ĥ

∫ t

0

‖∇um‖4
2 ds

)
(11.68)

Remark 11.17. The constants involved in the inequality depend on the constants intro-
duced before. �
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11.5 A local time of existence

We now use the estimates deduced in the previous subsections to find a local time of
existence. We have the following proposition.

Proposition 11.13. Let Ω be a bounded domain in R3. Consider the Navier-Stokes
problem over Ω as in proposition 11.1. Let ρ0 ∈ C1(Ω) and T > 0. Let ρm ∈ C1([0, T ]×
Ω) and um ∈ C1([0, T ];Xm) the approximate solutions built in proposition 11.1. Then
there exist a time T∗ ∈ (0, T ) and a constant C > 0 such that

sup
t∈[0,T∗]

‖∇um‖2(t) ≤ C

Here C and T∗ are positive constants depending only on ‖ρ0‖L∞, ‖∇u0‖2 and T , but
independent of δ and m.

Proof. Remember first of all the inequality

‖∇um‖2
2(t) ≤ H +H

∫ t

0

‖∇um‖6
2(s) ds (11.61)

where H does not depend of δ and m. In particular, we want to find a time T∗,
independent of m, δ and eventually the size of the domain, and a bound M > 0, such
that

sup
t∈[0,T∗]

‖∇um‖2(t) ≤M

We star from the inequality we have above. First of all note that we can replace H
with max{H, ‖∇u0‖2

2 + 1} > ‖∇u0‖2
2. We fix T1 ∈ (0, T ) and consider T0 ∈ [0, T1). We

define
fm(s) := ‖∇um‖2

2(s)

and

β(t) :=

 sup
s∈[0,t]

fm(s) t 6= 0

fm(0) t = 0

The function β is continuous on [0, T0], since fm is continuous on [0, T0]. In fact, let
t0 ∈ [0, T0]. We have∣∣∣∣max

s∈[0,t]
fm(s)− max

s∈[0,t0]
fm(s)

∣∣∣∣ =

{
0 (∗)
|f(t)− f(t)| (∗∗)

where (∗) happens when the maximum of fm over [0, T0] is achieved in both cases in
[0,min{t, t0}], and the case (∗∗) otherwise. In particular, in the second case we can use
the uniformly continuity of fm to deduce the smallness of the difference21.

On the other hand, observe that, from the inequality above, we have for every T0 ∈ [0, T1] ,

sup
t∈[0,T0]

‖∇um‖2
2(t) ≤ H +H

∫ T0

0

‖∇um‖6
2(s)ds ≤ H +HT0 sup

t∈[0,T0]

‖∇um‖6
2(t) ≤

21If the maximum is in [0,min{t, t0}), then we have the smallness choosing δ1 sufficiently small; if it
is in the right boundary of [0,min{t, t0}], then by uniformly continuity we can choose again δ1 so that
the difference is small.
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≤ H +HT1 sup
t∈[0,T0]

‖∇um‖6
2(t)

where the supremum is a maximum, because of the continuity of ‖∇um‖2. So if w :=
sup
[0,T0]

‖∇um‖2
2 we have that

w ≤ H +HT1w
3

We consider the polynomial αT1(w) := H +HT1w
3−w and the inequality αT1(w) ≥ 0.

We plot in the figure below a qualitative graph of the function αT1 .

R0 R1

H

w

αT1

Remark 11.18. In the graph are also reported the point w = R0, R1 that will be defined
in a moment. �

So we have

α′T1
(w) = 3HT1w

2 − 1 = 0 ⇐⇒ w = ±
√

1

3HT1

and

αT1

(√
1

3HT1

)
= H +HT1

(
1

3HT1

) 3
2

−
√

1

3HT1

= H +
H

(3H)
3
2

T
− 1

2
1 − 1√

3H

1√
T1

=

= H +
1√
T1H

(
1

3
3
2

− 1√
3

)
If T1 is very small, in a way depending on H, we have that the minimum is

negative. In particular, if α :=
1

3
3
2

− 1√
3

,

H +
α√
T1H

< 0⇐⇒ H <
|α|√
T1H

⇐⇒ T1 <
|α|2

H3
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Remark 11.19. If H, that depends on the initial data, is bounded, that is H ≤ H0,
uniformly with respect the initial data, we can choose

T1 <
|α|2

H3
0

≤ |α|
2

H3

Note also that a zero w0 > 0 of αT1 , for T1 > 0, satisfies

0 < T1 =
1

Hw2
0

(1− H

w0

) =
w0 −H
Hw3

0

Being w0 > 0 we have w0 > H > ‖∇u0‖2
2. So every positive zero (that exists because

we imposed the minimum, reached in a positive value, to be negative and moreover
αT1(0) = H > 0) is strictly greater than ‖∇u0‖2

2.
We define as [0, R0] an interval that intercepts only the first zero.
So, for every T0 ∈ [0, T1), the supremum w, that is positive, can only live in [0, R0] or
in an interval [R1,+∞), where the polynomial is positive. Furthermore the supremum
function is continuous in [0, T1). At the time t = 0 we have

β(0) = ‖∇um‖2
2(0) ≤ ‖∇u0‖2

2 < H < w0 ≤ R0

By continuity, living at starting time in the first interval, the function can’t jump beyond
R1. So, for every T0 ∈ [0, T1) we have

sup
t∈[0,T0]

‖∇um‖2
2(t) ≤ R0

and we can that T∗ = T0 ∈ (0, T1) ⊆ (0, T ) and we get

sup
t∈[0,T∗]

‖∇um‖2(t) ≤
√
R0 (11.69)

with T∗ and R0 only depending on H and T , that are independent on δ, m.

Remark 11.20. As in remark 11.19, we can consider the existence of H0. So, we can

choose T1 =
|α|

2H3
0

and T∗ = T0 ≥
|α|

4H3
0

. �

11.5.1 A uniform upper bound for the sequence C0
m

As final result of the section, we want to find a uniform upper bound for C0
m

. In
particular, we prove the following proposition.

Proposition 11.14. Let Ω be a bounded domain in R3. Consider the Navier-Stokes
problem over Ω as in proposition 11.1. Let ρ0 ∈ C1(Ω) and T > 0. Let ρm ∈
C1([0, T ] × Ω) and um ∈ C1([0, T ];Xm) the approximate solutions built in proposition
11.1. Consider

C0
m

:=

∫
Ω

(ρ0)−1|µ∆um(0)−∇p0|2dx

Then there exists a constant W0 = W0(δ, u0, g) such that

C0
m ≤ W0 ∀m ∈ N
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Proof. We have to keep in mind the compatibility condition (11.4). So, if follows

C0
m

:=

∫
Ω

(ρ0)−1|µ∆um(0)−∇p0|2dx =

∫
Ω

(ρ0)−1|µ∆um(0)−µ∆u0 +µ∆u0−∇p0|2dx ≤

≤ 2δ−1

∫
Ω

(
|µ∆um(0)−µ∆u0|2+|ρ0||g|2

)
dx ≤ 2δ−1µ2

∫
Ω

|∆um(0)−∆u0|2+2δ−1(‖ρ0‖∞+1)‖g‖2
2

Moreover, we know that lim
N→+∞

‖
N∑
k=1

〈u0, w
k〉2wk − u0‖H2 = 0.

Remark 11.21. Observe that, if vn = (v1
n, v

2
n, v

3
n), lim

n→+∞
‖∇2vn‖2

2 = lim
n→+∞

∫
Ω

|∇2vn|2dx

|∇2vn|2 =
3∑
i=1

3∑
j=1

3∑
l=1

|∂2
ijv

l
n|2 ≥

3∑
l=1

(
|∂2

11v
l
n|2 + |∂2

22v
l
n|2 + |∂2

33v
l
n|2
)

Finally22

|∆vn|2 :=

3∑
l=1

|∆vln|2 ≤
3∑
l=1

(
|∂2

11v
l
n|+|∂2

22v
l
n|+|∂2

33v
l
n|
)2

≤ 5

3∑
l=1

(
|∂2

11v
l
n|2+|∂2

22v
l
n|2+|∂2

33v
l
n|2
)
≤ 5|∇2vn|2

and so ∫
Ω

|∆vn|2 ≤ 5

∫
Ω

|∇2vn|2dx ≤ 5‖vn‖2
H2

this will be useful in a moment. �

In fact, in our case,∫
Ω

|∆um(0)−∆u0|2dx ≤ 5

∥∥∥∥∥
m∑
k=1

〈u0, w
k〉2wk − u0

∥∥∥∥∥
2

H2

No, if M ∈ N is such that∥∥∥∥∥
m∑
k=1

〈u0, w
k〉2wk − u0

∥∥∥∥∥
2

H2

<
1

5
∀m ≥M

we can bound the latter term for m ≥M . In particular we get

C0
m ≤ 2δ−1

(
µ2 + (‖ρ0‖∞ + 1)‖g‖2

2

)
≡ W0 ∀m ≥M (11.70)

If we rename the sequences (ρm, um) so that they start with m = M , we have that

C0
m ≤ W0 is true for every element of the sequence {(ρm, um)}m∈N.

Remark 11.22. There is no trace of this argument in [4]. However, the same authors
take care of this point in their work [5]. �

22Using that, if a, b, c ≥ 0, ordering 0 ≤ a ≤ b ≤ c,

(a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2bc+ 2ac ≤ a2 + 3b2 + 5c2 ≤ 5(a2 + b2 + c2)
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11.6 An extraction argument: weak limits of the

approximate solutions

In this section we will use the estimates deduced in the sections above to extract con-
vergent subsequence of the approximate solution. It is clear that, once proved that this
limits exist, we have to ask if they satisfy the original equation. However, the latter
question will be answered in the next section, that is, together with the present section,
the core of the thesis, as clarified in section 0.1.

11.6.1 Weak-star limit function for the sequence um

In this subsection we prove the following proposition.

Proposition 11.15. Let Ω be a bounded domain in R3. Consider the Navier-Stokes
problem over Ω as in proposition 11.1. Let ρ0 ∈ C1(Ω) and T > 0. Let ρm ∈ C1([0, T ]×
Ω) and um ∈ C1([0, T ];Xm) the approximate solutions built in proposition 11.1. Then
there exists a function u ∈ L∞(0, T∗;H

2(Ω)) and a subsequence {umk}k∈N of {um}m∈N
such that

umk
∗
⇀ u

In other words, for every v ∈ L1(0, T∗;H
2(Ω)) it holds

lim
k→+∞

∫ T∗

0

〈umk(t), v(t)〉H2 dt =

∫ T∗

0

〈u(t), v(t)〉H2 dt (11.71)

Here T∗ is the local time provided by proposition 11.13.

Proof. In equation (11.68), if we choose t = T∗ < T , we have

sup
s∈[0,T∗]

‖∇um‖2
H1 ≤ ĤC0

m
+ Ĥ exp

(
Ĥ

∫ T∗

0

‖∇um‖4
2ds

)
≤

(11.70)+(11.69)

≤ ĤW0 + Ĥ exp
(
ĤT∗R

2
0

)
≤ ĤW0 + Ĥ exp

(
ĤTR2

0

)
On the other hand, since um ∈ H1

0 , we have ‖um‖2 ≤ K‖∇um‖2. So,

sup
s∈[0,T∗]

‖um‖2
2 ≤ K2 sup

s∈[0,T∗]

‖∇um‖2
2

(11.69)

≤ K2R0

Observing that ‖um‖2
H2 = ‖um‖2

2 + ‖∇um‖2
H1 , we have

sup
s∈[0,T∗]

‖um‖2
H2 ≤ sup

s∈[0,T∗]

‖um‖2
2 + sup

s∈[0,T∗]

‖∇um‖2
H1 ≤

≤ K2R0 + ĤW0 + Ĥ exp(ĤTR2
0)

and so

‖um‖L∞(0,T∗;H2(Ω)) ≡ sup
[0,T∗]

‖um‖H2 ≤
√
K2R0 + ĤW0 + Ĥ exp(ĤTR2

0) ≡ K̂ (11.72)
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Going on, keep in mind proposition 5.2. At this point we consider first of all the
functions um ∈ C1([0, T∗], X

m). The space Xm is a finitely generated Banach space,
equipped with the ‖ · ‖H2 norm (since every finitely generated subspace is closed and
so it is a Banach subspace); this space is contained in (H2(Ω), ‖ · ‖H2).
So in particular um ∈ L∞(0, T∗;H

2(Ω)). Observe now that, according to proposition
5.2,

L∞(0, T∗;H
2(Ω)) ' (L1(0, T∗;H

2(Ω)))∗

where L1(0, T∗;H
2(Ω)) is a separable Banach space. We use now the version of Banach-

Alaoglu theorem in Theorem 2.3, very usefull in PDE issues.
So, if Y = L1(0, T∗;H

2(Ω)), we have just proved that um is bounded in the dual space
Y ∗. So, there exists a function u ∈ L∞(0, T∗;H

2(Ω)) and a subsequence umk of um such
that

umk
∗
⇀ u

The weak ∗ convergence notion is the usual, i.e. the one introduced in the proposition
5.2. It can be translated as

lim
k→+∞

∫ T∗

0

〈umk(t), v(t)〉H2dt =

∫ T∗

0

〈u(t), v(t)〉H2dt ∀ v ∈ L1(0, T∗;H
2(Ω)) (11.73)

This prove the proposition.

11.6.2 Weak-star limit for the sequence ρm

We now prove a proposition very similar to the previous one.

Proposition 11.16. Let Ω be a bounded domain in R3. Consider the Navier-Stokes
problem over Ω as in proposition 11.1. Let ρ0 ∈ C1(Ω) and T > 0. Let ρm ∈ C1([0, T ]×
Ω) and um ∈ C1([0, T ];Xm) the approximate solutions built in proposition 11.1.
Then there exists a function ρ ∈ L∞(0, T∗;L

∞(Ω)) and a subsequence {ρmk}k∈N of
{ρm}m∈N such that

ρmk
∗
⇀ ρ

In other words, for every v ∈ L1(0, T∗;L
1(Ω)) it holds

lim
k→+∞

∫ T∗

0

〈ρmk(t), v(t)〉∞,1 dt =

∫ T∗

0

〈u(t), v(t)〉∞,1 dt (11.74)

Here T∗ is the local time provided by proposition 11.13.

Proof. First of all remember that ‖ρm(t)‖∞ ≤ ‖ρ0‖∞ + 1. So, we have the estimate

sup
s∈[0,T∗]

‖ρm‖∞(s) ≤ ‖ρ0‖∞ + 1

So, as above, the sequence ρmk ∈ C1([0, T∗], C
1(Ω)) is in L∞(0, T∗;L

∞(Ω)) and in the
latter space the function is bounded. Moreover

L∞(0, T∗;L
∞(Ω)) ' (L1(0, T∗;L

1(Ω)))∗
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and so, again by the Theorem 2.3, we have that exist a subsequence ρmkh and a function
ρ ∈ L∞(0, T∗;L

∞(Ω)) such that

ρmkh
∗
⇀ ρ

that is what we wanted to prove.

Remark 11.23. Since umkh is a subsequence of umk , it is moreover true that

umkh
∗
⇀ u

since every convergence passes to subsequences, being every notion of convergence de-
fined through numerical sequences.
We can say for brevity, renaming the subsequences as um and ρm,

(ρm, um)
∗
⇀ (ρ, u) in L∞(0, T∗;L

∞(Ω)×H2(Ω))

where the meaning of these symbols is that defined in propositions 11.15 and 11.16.
A similar argument about subsequences will be used again in future. �

11.6.3 Weak limit for the sequence umt

We now want to know something more about the derivative umt . We first prove a lemma.

Lemma 11.3. Let Ω be a bounded domain in R3, and suppose, as above, that

um
∗
⇀ u in L∞(0, T∗;H

2(Ω))

with u ∈ L∞(0, T∗;H
2(Ω)). Then, it also holds um ⇀ u in L2(0, T∗;H

2(Ω)).

Proof. We know that um
∗
⇀ u in L∞(0, T∗;H

2(Ω)). Since L∞(0, T∗;H
2(Ω)) '

(L1(0, T∗;H
2(Ω))∗, keeping in mind the dual pairing, we have that this means

lim
m→+∞

∫ T∗

0

〈um(t), v(t)〉H2dt =

∫ T∗

0

〈u(t), v(t)〉H2dt ∀v ∈ L1(0, T∗;H
2(Ω))

Notice that by the Cauchy-Schwarz inequality, we have that, if v ∈ L2(0, T∗, H
2(Ω)),∫ T∗

0

‖v(t)‖H2 dt ≤
√
T∗

(∫ T∗

0

‖v(t)‖2
H2 dt

) 1
2

< +∞

so that v ∈ L1(0, T∗;H
2(Ω)). We have, in this, way that

lim
m→+∞

∫ T∗

0

〈um(t), v(t)〉H2 dt =

∫ T∗

0

〈u(t), v(t)〉H2 dt ∀v ∈ L2(0, T∗;H
2(Ω))

that means, looking at the dual pairing23, um
∗
⇀ u in L2(0, T∗;H

2(Ω)). Using now
theorem 2.6, since L2(0, T∗;H

2(Ω)) is reflexive, we have in particular that um ⇀

u in L2(0, T∗;H
2(Ω)). This is what we wanted to prove.

Now we are ready to prove the following proposition.

23Notice that um, u ∈ L∞(0, T∗;H
2(Ω)) ⊆ L2(0, T∗;H

2(Ω)) =
(
L2(0, T∗;H

2(Ω))
)∗

.
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Proposition 11.17. Let Ω be a bounded domain in R3. Consider the Navier-Stokes
problem over Ω as in proposition 11.1. Let ρ0 ∈ C1(Ω) and T > 0. Let ρm ∈ C1([0, T ]×
Ω) and um ∈ C1([0, T ];Xm) the approximate solutions built in proposition 11.1.
Then there exists a function u ∈ L∞(0, T∗;H

2) and a subsequence {umk}k∈N of {um}m∈N
such that

umk
∗
⇀ u

Moreover, u has the weak derivative ut ∈ L2(0, T∗;H
1
0 (Ω)) and it holds

umkt ⇀ ut in L2(0, T∗;H
1
0 (Ω))

Here T∗ is the local time provided by proposition 11.13.

Proof. To this aim, consider the fact that umt ∈ L2(0, T∗;H
1
0 (Ω)), since wk ∈ H1

0 (Ω)
and ∫ T∗

0

‖umt ‖2
H1dt =

∫ T∗

0

‖umt ‖2
2 dt+

∫ T∗

0

‖∇umt ‖2
2 dt

and using that umt ∈ H1
0 (Ω) =⇒ ‖umt ‖2 ≤ K‖∇umt ‖2, with K = K(Ω),∫ T∗

0

‖umt ‖2
H1dt ≤ (1 +K

2
)

∫ T∗

0

‖∇umt ‖2
2 dt

(11.68)

≤ (1 +K
2
)[ĤC0

m
+ Ĥ exp(ĤT∗M

4)] ≤

≤ (1 +K
2
)[ĤW0 + Ĥ exp(ĤTM4)] (11.75)

So we have obtained that umt ∈ L2(0, T∗;H
1
0 (Ω)) and the sequence is bounded in this

space, uniformly in m. Moreover, since H1
0 (Ω) is an Hilbert space, and so a reflexive

Banach space, then L2(0, T∗;H
1
0 (Ω)) is reflexive, thanks to proposition 5.2. So we can

use theorem 2.5, and we have that there exist v ∈ L2(0, T∗;H
1
0 (Ω)) and a subsequence

umkt such that
umkt ⇀ v in L2(0, T∗;H

1
0 (Ω))

Taking the subsequence mk also in umk and ρmk , and using that convergence of subse-
quences is preserved, we have, renaming the subsequences as (um, ρm, umt ),

(ρm, um)
∗
⇀ (ρ, u) ∈ L∞(0, T∗;L

∞(Ω)×H2(Ω))

umt ⇀ v ∈ L2(0, T∗;H
1
0 (Ω))

Now we want to prove that u admits a weak temporal derivative and that this derivative
is v, so that v can be renamed ut.

We that u ∈ L∞(0, T∗;H
2(Ω)). This means that

C ≡ ess supt∈[0,T∗]‖u(t)‖H2 < +∞

This implies that ∫ T∗

0

‖u(t)‖H2 dt ≤ CT∗ < +∞
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So u ∈ L1(0, T∗;H
2(Ω)). Moreover v ∈ L2(0, T∗;H

1
0 (Ω)) ⊆ L1(0, T∗;H

1
0 (Ω)).

In this way, v is the weak derivative of u provided that∫ T∗

0

∂tφ(t)u(x, t) dt = −
∫ T∗

0

φ(t)v(x, t) dt ∀φ ∈ C∞c (0, T∗)

We now use lemma 11.3. We have that um ⇀ u in L2(0, T∗;H
2(Ω)). So we start with

our argument. Let A a measurable subset of Ω, and φ ∈ C∞c (0, T∗). We have, defining
ui = πi(u) and vi = πi(v), where πi is the projection on the i-th component24,∫

A

∫ T∗

0

(
φtui + φvi) dt dx =

=

∫
A

∫ T∗

0

(φtui − φtumi + φtu
m
i + φ(umi )t − φ(umi )t + φvi

)
dt dx

Thanks to the regularity of um with respect time and the integration by parts, it holds
the equality ∫ T∗

0

φtu
m
i dt = −

∫ T∗

0

(umi )tφ dt

So, we have∫
A

∫ T∗

0

(φtui + φvi) dt dx =

∫
A

∫ T∗

0

(φtui − φtumi − φ(ui)
m
t + φvi) dt dx =

=

∫
A

∫ T∗

0

φt(ui − umi ) dt dx+

∫
A

∫ T∗

0

φ(vi − (umi )t) dt dx

The last term is the sum of two functionals. In particular we can define

fi(w) :=

∫
A

∫ T∗

0

φtwi dt dx i ∈ {1, 2, 3}

that maps fi : L2(0, T∗;H
2(Ω))→ R. Morover we have

gi(w) :=

∫
A

∫ T∗

0

φwi dt dx

that maps g : L2(0, T∗;H
1
0 (Ω)) → R. The functionals are continuous. To see this, we

first remark a fact. Observe that

L2(0, T∗;H
2(Ω)), L2(0, T∗;H

1
0 (Ω)) ⊆ L2(0, T∗;L

2(Ω)) ' L2(Ω× (0, T∗)) (11.76)

Keeping this in mind, we have

|fi(w)| ≤
∫
A

∫ T∗

0

|φt||wi| dt dx ≤ ‖φt‖t,∞
∫
A

∫ T∗

0

|wi| dt dx = ‖φt‖t,∞
∫ T∗

0

∫
A

|wi| dx dt

24The functions are in fact vectors.
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where in the last equality we used the Tonelli theorem for non-negative functions thanks
to the fact that the equivalence (11.76) remarked above says to us that the function is
measurable. So we have

|fi(w)| ≤ ‖φt‖t,∞
∫ T∗

0

|A|
1
2

(∫
A

|wi|2dx
) 1

2

dt ≤ ‖φt‖t,∞|A|
1
2

∫ T∗

0

‖wi‖2 dt ≤

≤ ‖φt‖t,∞|A|
1
2T

1
2
∗

(∫ T∗

0

‖wi‖2
2dt

) 1
2

≤ ‖φt‖t,∞|A|
1
2T

1
2
∗

(∫ T∗

0

‖w‖2
H2dt

) 1
2

So the functional is continuous. Thus, since um ⇀ u in L2(0, T∗;H
2(Ω)), we have

lim
m→+∞

∫
A

∫ T∗

0

φtu
m
i dt dx =

∫
A

∫ T∗

0

φtui dt dx

The other limit is very similar. In fact, gi is continuous since

|gi(w)| ≤ ‖φ‖t,∞
∫
A

∫ T∗

0

|wi| dt dx ≤ ‖φ‖t,∞
∫ T∗

0

∫
A

|wi| dt dx

always using the Tonelli theorem and the identification (11.76) above. So

|gi(w)| ≤ ‖φ‖t,∞|A|
1
2

∫ T∗

0

(∫
A

|wi|2dx
) 1

2

dt ≤ ‖φ‖t,∞|A|
1
2

∫ T∗

0

‖wi‖2 dt ≤

≤ ‖φ‖t,∞|A|
1
2

∫ T∗

0

‖w‖2 dt ≤ ‖φ‖t,∞|A|
1
2T

1
2
∗

(∫ T∗

0

‖w‖2
2 dt

) 1
2

≤ ‖φ‖t,∞|A|
1
2T

1
2
∗

(∫ T∗

0

‖w‖2
H1dt

) 1
2

So also this functional is continuous. We deduce that

lim
m→+∞

∫
A

∫ T∗

0

φ(umt )i dt dx =

∫
A

∫ T∗

0

φvi dt dx

since umt ⇀ v in L2(0, T∗;H
1
0 (Ω)). This means that∫

A

∫ T∗

0

(φtui + φvi) dt dx = 0

Since the equality is true for every A measurable subset of Ω and every φ ∈ C∞c (0, T∗),
we have, at φ fixed, ∫ T∗

0

(φtui + φvi) dt = 0 a.e. in Ω

In other words ∫ T∗

0

φtui dt = −
∫ T∗

0

φvi dt a.e. in Ω

Thus, if φ ∈ C∞c (0, T∗) we have, since the two integrals belong to L2(Ω) by the definition
of Bochner integral, ∫ T∗

0

φtu dt = −
∫ T∗

0

φv dt in L2(Ω)

Here we used the equality component by component of the integrals25 and the fact that
the equality almost everywhere is the equality in the sense of the Banach space L2(Ω).

In other words, we can write ut := v ∈ L2(0, T∗;H
1
0 (Ω)) in the weak sense.

25See remark 5.2.
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11.6.4 Boundary condition and incompressibility of the veloc-
ity field

Before claiming and proving the main theorem of the subsection, that will assure im-
portant properties of the velocity field, we have to prove a preliminary proposition, that
will be very useful also in future arguments.

Proposition 11.18. Let Ω be a bounded subset of R3. Suppose that we are in the
hypothesis of proposition 11.17. Then, the sequence um with weak-star limit u also
admits a subsequence {umk}k∈N such that

umk → u, ∇umk → ∇u in L2(0, T∗;L
2(Ω))

Proof. We consider now lemma 7.2. In this context, we can choose X = H1
0 (Ω) ∩

H2(Ω) with the norm26 ‖ · ‖H1
0

+ ‖ · ‖H2 . Moreover we choose B = Y = L2(Ω). The

embedding X ↪→ L2(Ω) = B is compact thanks to the Rellich-Kondrachov theorem27.
So, by lemma 7.2, the embedding

L2(0, T∗;H
1
0 ∩H2) ∩ {ϕ : ∂tϕ ∈ L1(0, T∗;L

2)} ↪→ L2(0, T∗;L
2)

is compact. In particular we follow the hypothesis of lemma 7.2. In fact, we can consider
the sequence um. It is in L2(0, T∗;H

1
0 ∩H2) and it is bounded, since(∫ T∗

0

(
‖um‖H1

0
+ ‖um‖H2

)2
dt

) 1
2

≤ 2T
1
2
∗ sup

(0,T∗)

‖um‖H2 ≤ 2T
1
2
∗ K̂

thanks to the estimate (11.72). Moreover umt is in L1(0, T∗;L
2) and∫ T∗

0

‖umt ‖2 dt ≤ T
1
2
∗

(∫ T∗

0

‖umt ‖2
2dt

) 1
2

≤ T
1
2
∗

(∫ T∗

0

‖umt ‖2
H1dt

) 1
2

≤

(11.75)

≤ T
1
2
∗

√
(1 +K

2
)[ĤW0 + Ĥ exp(ĤT∗M4)]

So, the sequence of temporal derivatives is bounded in the space. Thus, eventually
passing to a subsequence, we have that

umk → w in L2(0, T∗;L
2(Ω))

26 The space (H1
0 ∩ H2, ‖ · ‖H2) is a Banach space. In fact, being a subset of H2, the norm is

well defined and satisfies the properties of the definition of Banach space. Moreover, let wn a Cauchy
sequence in this space. Then it is a Cauchy sequence in H1

0 and H2, since

‖wn − wm‖H1 ≤ ‖wn − wm‖H2 < ε ∀m,n ≥ N

So, being wn ∈ H1
0 , H

2, we have that, by the completeness of the two spaces, wn → w′ ∈ H1
0 in H1

and wn → w′′ ∈ H2 in H2. Moreover

‖w′ − w′′‖2 ≤ ‖w′ − wn‖2 + ‖wn − w′′‖2 ≤ ‖w′ − wn‖H1 + ‖wn − w′′‖H2 → 0

so that w′ = w′′ almost everywhere. Moreover, observe that the norm used above ‖ · ‖H1
0

+ ‖ · ‖H2 is
equivalent to ‖ · ‖H2 .

27If uk is a bounded sequence in X, it is in particular a bounded sequence in H1
0 (Ω) (that is injected

↪→ L2(Ω)). So we can extract ukj → u ∈ L2(Ω) in ‖ · ‖2.
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Observe now that the inclusion i : L2(0, T∗;H
2(Ω)) → L2(0, T∗;L

2(Ω)) is continuous,
since

‖v‖L2(0,T∗;L2(Ω)) =

(∫ T∗

0

‖v‖2
2 dt

) 1
2

≤
(∫ T∗

0

‖v‖2
H2 dt

) 1
2

= ‖v‖L2(0,T∗;H2(Ω))

So, if f ∈ (L2(0, T∗;L
2(Ω)))∗, we have that

lim
m→+∞

f(i(umk)) = f(i(u))

since28 um ⇀ u in L2(0, T∗;H
2(Ω)). This means that umk ⇀ u in L2(0, T∗;L

2(Ω)).
Moreover umk ⇀ w in L2(0, T∗;L

2(Ω)), since strong convergence implies weak conver-
gence. The uniqueness of the weak limit leads to

w = u

in the sense29 of L2(0, T∗;L
2(Ω)), i.e. ‖w − u‖2 = 0 almost every t ∈ (0, T∗). So,∫ T∗

0

∥∥umk − u∥∥2

2
dt =

∫ T∗

0

∥∥umk − w + w − u
∥∥2

2
dt ≤

≤ 2

∫ T∗

0

∥∥umk − w∥∥2

2
dt+ 2

∫ T∗

0

∥∥w − u∥∥2

2
dt = 2

∫ T∗

0

‖umk − w‖2
2 dt→ 0 as k → +∞

Now we want to pass to another subsequence for proving the same result for ∇umk .
Consider this time the chain X := H1(Ω) ⊆ B := L2(Ω) =: Y .
The inclusion X ↪→ B is compact thaks to the Rellich-Kondrachov theorem. So it is
compact also the inclusion

L2(0, T∗;H
1(Ω)) ∩ {ϕ : ∂tϕ ∈ L1(0, T∗;L

2(Ω))} ↪→ L2(0, T∗;L
2(Ω))

More precisely, if we consider ∇umk , it is bounded in both the spaces. In fact(∫ T∗

0

‖∇umk‖H1dt

) 1
2

≤
(∫ T∗

0

‖umk‖H2dt

) 1
2

≤ T
1
2
∗ K̂

thanks to the estimate (11.72). Moreover, since ∂t∇umk = ∇umkt , thanks to the regu-
larity and the fact that the varible x, t are separated, we have(∫ T∗

0

‖∂t∇umk‖2
2dt

) 1
2

=

(∫ T∗

0

‖∇umkt ‖2
2dt

) 1
2 (11.75)

≤
√
ĤW0 + Ĥ exp(ĤT∗M4)

28We have |f(i(u))| ≤ C‖i(u)‖L2(0,T∗;L2) ≤ C‖u‖L2(0,T∗;H2).
29In fact

‖w − u‖L2(0,T∗;L2) = 〈w − u,w − u〉L2(0,T∗;L2) = 〈w,w − u〉L2(0,T∗;L2) − 〈u,w − u〉L2(0,T∗;L2) =

= lim
m→+∞

〈um, w − u〉L2(0,T∗;L2) − lim
m→+∞

〈um, w − u〉L2(0,T∗;L2) = 0
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So, passing again to a subsequence, we have that exists w ∈ L2(0, T∗;L
2(Ω)) such that

∇umkh → w in L2(0, T∗;L
2(Ω))

The strong convergence of umkh to u is also true, since we only have passed to a subse-
quence. If we prove that w = ∇u in the sense of L2(0, T∗;L

2(Ω)), then we conclude.
Remember that umkh ⇀ u in L2(0, T∗;H

2(Ω)), thanks to lemma 11.3. Moreover we
have ∇umkh ⇀ w in L2(0, T∗;L

2(Ω)). In fact, consider the gradient operator

∇ : L2(0, T∗;H
2(Ω))→ L2(0, T∗;L

2(Ω))

v → ∇v

The operator is continuous. In fact

‖∇v‖L2(0,T∗;L2(Ω)) :=

(∫ T∗

0

‖∇v‖2
2 dt

) 1
2

≤
(∫ T∗

0

‖v‖2
H2 dt

) 1
2

=: ‖v‖L2(0,T∗;H2(Ω))

So, if f ∈ (L2(0, T∗;L
2(Ω)))∗, then for every v ∈ L2(0, T∗;H

2(Ω)),

|f(∇v)| ≤ ‖∇v‖L2(0,T∗;L2(Ω)) ≤ ‖v‖L2(0,T∗;H2(Ω))

so that f(∇·) ∈ (L2(0, T∗;H
2(Ω)))∗. Then

lim
h→+∞

f(∇umkh ) = f(∇u)

thanks to the weak convergence of umkh to u in L2(0, T∗;H
2(Ω)). This means that

∇umkh ⇀ ∇u in L2(0, T∗;L
2(Ω))

By the uniquess of the weak limit, as above, we have that ∇u = w in L2(0, T∗;L
2(Ω)),

and so∫ T∗

0

∥∥∇umkh −∇u∥∥2

2
dt ≤ 2

∫ T∗

0

∥∥∇umkh − w∥∥2

2
dt+ 2

∫ T∗

0

∥∥w −∇u∥∥2

2
dt = (11.77)

= 2

∫ T∗

0

∥∥∇umkh − w∥∥2

2
dt→ 0 as h→ +∞

So we have the thesis.

We finally prove the main proposition of the subsection.

Proposition 11.19. Let Ω be a bounded subset of R3. Suppose that we are in the
hypothesis of proposition 11.17. Then, the weak-star limit u ∈ L∞(0, T∗;H

2(Ω)) of the
sequence um is such that, for almost every t ∈ (0, T∗), u(t) ∈ H1

0 (Ω) and ∇ · u(t) = 0.
In particular, this means that for almost every t ∈ (0, T∗), u(t) ∈ X.
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Proof. We first remember that, for almost every t ∈ (0, T∗), we have u(t) ∈ H1(Ω) =
W 1,2(Ω). So, we can use theorem 4.10 concerning the trace operator: thanks to this
theorem, we only have to verify that Tu = 0 on ∂Ω.
Let umk the sequence assured by proposition 11.18. Remember, in particular, that
umk(t) ∈ C1(Ω) for every t ∈ (0, T∗). In particular, since wh|∂Ω = 0, it is zero on ∂Ω. It
follows that

Tumk = 0 on ∂Ω

For almost every t ∈ (0, T∗), sa t ∈ (0, T∗)/E, with |E| = 0, we can consider Tu, since
u(t) ∈ H1(Ω). So

‖Tu‖L2(∂Ω) = ‖T (u− umk)‖L2(∂Ω) ≤ C‖u− umk‖H1(Ω)

Squaring both sides and integrating in (0, T∗) we have∫ T∗

0

‖Tu‖2
L2(∂Ω) dt ≤ C2

∫ T∗

0

‖u−umk‖2
H1(Ω) dt = C2

∫ T∗

0

‖u−umk‖2
2 dt+C

2

∫ T∗

0

‖∇u−∇umk‖2
2 dt

Since the two pieces on the right side vanish, we have that∫ T∗

0

‖Tu‖2
L2(∂Ω) dt = 0

This means that for t ∈ (0, T∗)/A, with |A| = 0, the trace is ‖Tu‖L2(∂Ω)(t) = 0, i.e.
(Tu)(t) = 0 on ∂Ω. So, for t ∈ (0, T∗)/(A ∪ E), since u(t) ∈ H1(Ω), we have that
u(t) ∈ H1

0 (Ω).

It remains to prove the incompressibility condition. We know that, for almost every
t ∈ (0, T∗), u(t) ∈ H1(Ω) and in particular, by the definition of weak derivative,∫

Ω

ui(t)∂xiϕ dx = −
∫

Ω

∂xiui(t)ϕ dx ∀ϕ ∈ C∞c (Ω)

If ∇ · u is the weak divergence, we have that∫
Ω

∇ · u(t)ϕ dx =
3∑
i=1

∫
Ω

∂xiui(t)ϕ dx = −
3∑
i=1

∫
Ω

ui(t)∂xiϕ dx = −
∫

Ω

u(t) · ∇ϕ dx

Remark 11.24. If we consider the functional

f(w) := −
∫

Ω

w · ∇ϕ dx ∀w ∈ L2(Ω)

then it is linear and continuous. In fact

|f(w)| ≤ ‖w‖2‖∇ϕ‖2

and so the continuity is proved, as a functional f : L2(Ω)→ R. �
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We know moreover that umk → u in L2(0, T∗;L
2(Ω)).

In other words

lim
k→+∞

∫ T∗

0

‖umk − u‖2
2 dt = 0

and so, using Theorem 3.12, pg. 68 in [24], there exists a subsequence umkh such that,
for almost every t ∈ (0, T∗),

lim
h→+∞

‖umkh − u‖2(t) = 0

So, for almost every t ∈ (0, T∗),

lim
h→+∞

∫
Ω

umkh (t) · ∇ϕ dx =

∫
Ω

u(t) · ∇ϕ dx

On the other hand we have∫
Ω

umkh (t) · ∇ϕ dx = −
∫

Ω

∇ · umkh (t)ϕ dx = 0

since ∇ · umkh (t) = 0 for every t in classic sense, by construction.
It follows that, for almost every t ∈ (0, T∗),∫

Ω

u(t) · ∇ϕ dx = 0 ϕ ∈ C∞c (Ω)

In other words, for almost every t ∈ (0, T∗) we have ∇ · u(t) = 0 in the weak sense.

11.6.5 Integrability property of the limits

In order to proceed with the proof of the fact that the pair (u, ρ) is solution to the
original Navier-Stokes equation, we need to prove the following lemma.

Lemma 11.4. Let Ω be a bounded domain of R3, and suppose that (u, ρ) are the func-
tions built in propositions 11.15-11.19. Then for almost every t ∈ (0, T∗) we have that

ρut + ρ
(
u · ∇u

)
− µ∆u ∈ L2(Ω)

Moreover, the following integrals are finite∫ T∗

0

∫
Ω

∣∣ρ(t)ut(t)·φ
∣∣ dx dt, ∫ T∗

0

∫
Ω

∣∣ρ(t)
(
u(t)·∇u(t)

)
·φ
∣∣ dx dt, ∫ T∗

0

∫
Ω

∣∣∆u(t)·φ
∣∣ dx dt

(11.78)
Finally ∫ T∗

0

‖ρ(t)ut(t) + ρ(t)u(t) · ∇u(t)− µ∆u(t)‖2
2 dt < +∞ (11.79)

Observe that (11.78) allows us to write the integrals without the absolute value.
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Proof. For those t such that u(t) ∈ H2(Ω)∩H1
0 (Ω) and ρ(t) ∈ L∞(Ω), we have, thanks

to lemma 9.6,

‖u(t)‖L∞(Ω) ≤ c
(
‖∆u(t)‖2

) 3
4
(
‖∇u(t)‖2

) 1
4

Moreover, we have that

‖ρ(t)ut(t)+ρ(t)u(t) ·∇u(t)−µ∆u(t)‖2 ≤ ‖ρ(t)ut(t)‖2 +‖ρ(t)u(t) ·∇u(t)‖2 +µ‖∆u(t)‖2

We want to estimate the three addends separately. In particular we have

‖ρ(t)ut(t)‖2 =

(∫
Ω

|ρ(t)|2|ut(t)|2dx
) 1

2

≤ ‖ρ(t)‖∞‖ut(t)‖2 < +∞

since ρ(t) ∈ L∞(Ω). Moreover

‖ρ(t)u(t)·∇u(t)‖2 =

(∫
Ω

|ρ(t)|2|u(t)·∇u(t)|2dx
) 1

2

≤ ‖ρ(t)‖∞
(∫

Ω

|u(t)|2|∇u(t)|2dx
) 1

2

≤

≤ ‖ρ(t)‖∞‖u(t)‖∞‖∇u(t)‖2

that is finite. Finally ‖∆u(t)‖2 < +∞ since u(t) ∈ H2(Ω). So, for almost every
t ∈ (0, T∗), the function is in L2(Ω).

Moreover, we have the following integrability property. In fact, if φ ∈ L2(Ω),∫ T∗

0

∫
Ω

∣∣ρ(t)ut(t)·φ
∣∣ dx dt ≤ ∫ T∗

0

‖ρ(t)‖∞‖ut(t)‖2‖φ‖2 ≤
√
T∗‖ρ‖L∞(0,T∗;L∞(Ω))‖φ‖2‖ut‖L2(0,T∗;L2(Ω))

and ∫ T∗

0

∫
Ω

∣∣∆u(t) · φ
∣∣ dx dt ≤ ∫ T∗

0

‖∆u(t)‖2‖φ‖2dt ≤ ‖φ‖2

√
5

∫ T∗

0

‖∇2u(t)‖2dt ≤

≤ ‖φ‖2

√
5T

1
2
∗

(∫ T∗

0

‖∇2u(t)‖2
2dt

) 1
2

≤
√

5T
1
2
∗ ‖φ‖2‖u‖L2(0,T∗;H2(Ω))

and finally∫ T∗

0

∫
Ω

∣∣ρ(t)
(
u(t) · ∇u(t)

)
· φ
∣∣ dx dt ≤ ∫ T∗

0

‖ρ(t)‖∞
∫

Ω

|u(t) · ∇u(t)||φ|dx dt ≤

≤ ‖ρ‖L∞(0,T∗;L∞(Ω))‖φ‖2

∫ T∗

0

‖u(t) · ∇u(t)‖2 dt

Moreover, since u ∈ H1
0 , ‖u‖4 ≤ C1‖∇u‖2 and moreover, using (11.40), ‖∇u‖4 ≤

|Ω| 1
12‖∇u‖6 ≤ |Ω|

1
12C2‖∇u‖H1 ≤ |Ω| 1

12C2‖u‖H2 , so that

‖u(t) · ∇u(t)‖2 ≤
(∫

Ω

|u(t)|2|∇u(t)|2dx
) 1

2

≤ ‖u(t)‖4‖∇u(t)‖4 ≤ C1|Ω|
1
12C2‖u(t)‖2

H2
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and so ∫ T∗

0

‖u(t) · ∇u(t)‖2 dt ≤ C1|Ω|
1
12C2

∫ T∗

0

‖u(t)‖2
H2 dt < +∞

since u ∈ L2(0, T∗;H
2(Ω)).

Finally we have to prove∫ T∗

0

‖ρ(t)ut(t) + ρ(t)u(t) · ∇u(t)− µ∆u(t)‖2
2(t) dt < +∞

It holds the inequality∥∥ρ(t)ut(t)+ρ(t)u(t)·∇u(t)−µ∆u(t)
∥∥2

2
≤
(
‖ρ(t)ut(t)‖2+‖ρ(t)u(t)·∇u(t)‖2+µ‖∆u(t)‖2

)2 ≤

≤ 5
(
‖ρ(t)ut(t)‖2

2 + ‖ρ(t)u(t) · ∇u(t)‖2
2 + µ‖∆u(t)‖2

2

)
≤

≤ 5
(
‖ρ(t)‖2

∞‖ut(t)‖2
2 + c2‖ρ(t)‖2

∞‖∆u(t)‖
3
2
2 ‖∇u(t)‖

1
2
2 ‖∇u(t)‖2

2 + µ‖∆u(t)‖2
2

)
Finally ∫ T∗

0

∥∥ρ(t)ut(t) + ρ(t)u(t) · ∇u(t)− µ∆u(t)
∥∥2

2
dt ≤

≤ 5

(∫ T∗

0

‖ρ(t)‖2
∞‖ut(t)‖2

2dt+c
2

∫ T∗

0

‖ρ(t)‖2
∞‖∆u(t)‖

3
2
2 ‖∇u(t)‖

5
2
2 dt+µ

∫ T∗

0

‖∆u(t)‖2
2dt

)
≤

≤ 5

(
‖ρ‖2

L∞(0,T∗;L∞)

∫ T∗

0

‖ut‖2
2 dt+5

3
4 c2‖ρ‖2

L∞(0,T∗;L∞)T∗‖u‖4
L∞(0,T∗;H2)+5µ

∫ T∗

0

‖u‖2
H2 dt

)
that is finite since30 ρ ∈ L∞(0, T∗;L

∞), ut ∈ L2(0, T∗;H
1
0 (Ω)), u ∈ L∞(0, T∗;H

2).

11.7 Further regularity results: the transport equa-

tion

Proposition 11.20. Let Ω be a bounded domain in R3. Consider the Navier-Stokes
problem over Ω as in proposition 11.1. Let ρ0 ∈ C1(Ω) and T > 0. Let ρm ∈ C1([0, T ]×
Ω) and um ∈ C1([0, T ];Xm) the approximate solutions built in proposition 11.1 and the
function ρ ∈ L∞(0, T∗;L

∞(Ω)) such that

ρm
∗
⇀ ρ in L∞(0, T∗;L

∞(Ω)) (11.80)

We know that hold all the properties proved in section 11.6. Here T∗ is the local time
provided by proposition 11.13. Then, we have moreover that

ρm → ρ in L∞(0, T∗;L
p(Ω))

30We also used that ‖∆u(t)‖2 ≤
√

5‖u‖H2 .
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Proof. The whole proof is a rereading of theorem 8.6. In fact, remember that um ∈
L∞(0, T∗;H

2(Ω)) ⊆ L1(0, T∗;W
1,1(Ω)) and ∇ · um ≡ 0. Moreover, since um → u in

L2(0, T∗;L
2(Ω)), we have that um converges to u in L1(0, T∗;L

1(Ω)). Now, ρm is a weak
solution of {

∂tρ
m + um · ∇ρm = 0

ρm(0) = ρ0

and um ∈ L1(0, T ;W 1,1(Ω)), ∇ · um = 0, so, using theorem 8.2, with p =∞ and q = 1,
ρm is a renormalized solution. The initial condition is ρm(0) = ρ0 ∈ C1(Ω). This im-
plies that for every β admissible function β(ρm(0)) → β(ρ0) in L1(Ω). Moreover ρm is
bounded in L∞(0, T∗;L

∞(Ω)), and so in L∞(0, T∗;L
p(Ω)) for every p ∈ [1,∞]. Then,

using theorem 8.4, ρm converges to some ρ, renormalized solution with initial condition
ρ0, in C([0, T∗];L

p(Ω)).

On the other hand, we have that ρm is also a weak solution with initial density ρm(0),
that is ∫ T∗

0

(∫
Ω

ρmϕt + ρmum · ∇ϕ dx

)
dt = −

∫
Ω

ρ0(x)ϕ(x, 0) dx

for every ϕ ∈ C1([0, T∗];H
1(Ω)) with ϕ(x, T∗) = 0 a.e. in Ω. Thanks to (11.80), and

the fact that ϕt ∈ L1(0, T ;L1(Ω)), it follows that

lim
m→∞

∫ T∗

0

∫
Ω

ρmϕt dx dt =

∫ T∗

0

∫
Ω

ρ ϕt dx dt

Moreover, observe that∣∣∣∣ ∫ T∗

0

(∫
Ω

(
ρmum − ρu

)
· ∇ϕ dx

)
dt

∣∣∣∣ =

=

∣∣∣∣ ∫ T∗

0

(∫
Ω

(ρm − ρ)u · ∇ϕ dx

)
dt−

∫ T∗

0

(∫
Ω

ρm(um − u) · ∇ϕ dx

)
dt

∣∣∣∣ ≤
≤
∣∣∣∣ ∫ T∗

0

(∫
Ω

(ρm−ρ)u·∇ϕ dx
)
dt

∣∣∣∣+‖ρm‖L∞(0,T∗;L∞(Ω))‖um−u‖L2(0,T∗;L2(Ω))‖∇ϕ‖L2(0,T∗;L2(Ω))

Since ‖ρm‖L∞(0,T∗;L∞(Ω)) is bounded and um → u in L2(0, T∗;L
2(Ω)), the second addend

vanishes. Moreover, we have∫ T∗

0

(∫
Ω

|u · ∇ϕ| dx
)
dt ≤ ‖u‖L2(0,T∗;L2(Ω))‖∇ϕ‖L2(0,T∗;L2(Ω))

so that u·∇ϕ ∈ L1(0, T∗;L
1(Ω)). So, thanks again to the weak star convergence (11.80),

we have

lim
m→∞

∫ T∗

0

(∫
Ω

(ρm − ρ)u · ∇ϕ dx

)
dt = 0

If follows that ∫ T∗

0

(∫
Ω

ρϕt + ρu · ∇ϕ dx

)
dt = −

∫
Ω

ρ0(x)ϕ(x, 0) dx
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that is, ρ is a weak solution to the transport equation with velocity field u and initial
density ρ0. In particular, applying lemma 8.4 with p =∞ and q = 1, we have that ρ is
a renormalized solution. Subtracting the two definitions of renormalized solution, we
have that∫ T∗

0

(∫
Ω

(
β(ρ)− β(ρ)

)
ϕt dx

)
dt+

∫ T∗

0

(∫
Ω

(
β(ρ)− β(ρ)

)
u · ∇ϕ dx

)
dt = 0

In other words β(ρ)−β(ρ) ∈ L∞(0, T ;L∞(Ω)) is weak solution of the transport equation
with velocity field u ∈ L1(0, T∗;W

1,1(Ω)), and initial density ρ′0 ≡ 0. Using theorem 8.5
with p = ∞ and q = 1, we have that β(ρ) ≡ β(ρ) for every admissible function β. So,
choosing βM such that βM(s) = s if |s| ≤M , and βM bounded, C1(R) and admissible,
we have that

ρ ≡ ρ over {|ρ| ≤M, |ρ| ≤M}
Letting M →∞, we have the equality of the functions in the whole space Ω× (0, T∗).

11.8 Weak solution to the incompressible Navier-

Stokes equations

The notion of weak solution for the Navier-Stokes equation (and, clearly, also the trans-
port equation) has been introduced in Chapter 10. In this section we will, first, provide
a further integral of the momentum equation, verifying, then, that the pair of solutions
(ρ, u) satisfies also the weak formulation as introduced in Chapter 10.
We collect here the properties deduced in sections 11.2-11.7.

um
∗
⇀ u in L∞(0, T∗;H

2(Ω)), ρm → ρ in L∞(0, T∗;L
q(Ω)) (11.81)

umt ⇀ ut in L2(0, T∗;H
1
0 (Ω)) (11.82)

Remember also that ρm
∗
⇀ ρ in L∞(0, T∗;L

∞(Ω)). Moreover, um can be choosen such
that

um ⇀ u in L2(0, T∗;H
2(Ω)) (11.83)

and
um → u, ∇um → ∇u in L2(0, T∗;L

2(Ω)) (11.84)

11.8.1 Statement of the theorems

In this subsection we prove an integral version of the problem, that in particular implies
the usual definition.

Proposition 11.21. Let Ω be a bounded domain of R3. Consider the pair of solution
(u, ρ), as introduced in sections31 11.2-11.7. Then, for every ν ∈ X, exists a subset
Eν ⊂ (0, T∗), with |Eν | = 0, such that∫

Ω

(ρut + ρ (u · ∇u)− µ∆u) · ν dx = 0 ∀t ∈ (0, T∗)/Eν

31i.e., with the properties summarized above.
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Corollary 11.1. Let Ω be a bounded domain of R3. Consider the pair of solution (u, ρ),
as introduced in sections 11.2-11.7. Then exists a subset E ⊂ (0, T∗) with |E| = 0 such
that, for every ψ ∈ W 1,2

0,σ (Ω),∫
Ω

(ρut + ρ (u · ∇u)− µ∆u) · ψ dx = 0 ∀t ∈ (0, T∗)/E

Theorem 11.3. Let Ω be a bounded domain of R3. Consider the pair of solution (u, ρ),
as introduced in sections 11.2-11.7. Then for every ϕ ∈ C1([0, T∗];W

1,2
0,σ (Ω)) such that

ϕ(x, T∗) = 0 a.e. in Ω, we have∫ T∗

0

∫
Ω

(ρut + ρ (u · ∇u)− µ∆u) · ϕ(x, t) dx dt = 0

11.8.2 Proof of proposition 11.21

Remember, from proposition 11.1, that the pair (um, ρm) is such that∫
Ω

(
ρmumt + ρm(∇um)um

)
· φ+ µ∇um · ∇φ dx = 0 ∀φ ∈ Xm (11.85)

Remark 11.25. We have extracted a lot of subsequences of um. So, the sequence that
we are considering is not indexed by the natural numbers, but by a subsequence of N,
m ←→ nm. However, the property continues to hold, provided that φ ∈ Xm with the
right m. �

Remark 11.26. We have that, if φ ∈ Xm,∫
Ω

∇um · ∇φ dx = −
∫

Ω

∆um · φ dx

using the arguments in section 9.7.3. �

Let, now, E be a measurable subset of (0, T∗). Then if a function g is in Lp(0, T∗;X),
it is in particular in Lp(E;X) in the sense that

‖g‖Lp(E;X) ≤ ‖g‖Lp(0,T∗;X)

since the Lp temporal norm is bigger in a larger domain (and this is true for p = ∞
thanks to the property of the supremum, and for p < ∞, thanks to the monotonicity
property of the integral operator). Moreover, the integrals∫

E

∫
Ω

ρut · φ dx dt,
∫
E

∫
Ω

∆u · φ dx dt,
∫
E

∫
Ω

(ρu · ∇u) · φ dx dt

are defined, as proved in section 11.6.5, provided that φ ∈ L2(Ω). So, if we prove that

lim
m→+∞

∫
E

∫
Ω

ρmumt · νmdx dt =

∫
E

∫
Ω

ρut · φ dx (11.86)

lim
m→+∞

∫
E

∫
Ω

∆um · νmdx dt =

∫
E

∫
Ω

∆u · φ dx dt (11.87)
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lim
m→+∞

∫
E

∫
Ω

(ρmum · ∇um) · νmdx dt =

∫
E

∫
Ω

(ρu · ∇u) · φ dx dt (11.88)

for a suitable sequence {νm}m such that νm → φ ∈ X in the H2-norm, we have
practically finished: if we fix φ ∈ X and let E change in the measurable subsets of
(0, T∗), we have that∫

Ω

(ρut + ρu · ∇u− µ∆u) · φ dx = 0 ∀t ∈ (0, T∗)/E

with |E| = 0, thanks to a well-known result of measure theory. Clearly, in this situation
E = Eφ, since the integrand function depends on φ. We now choose the sequence
{νm}m. We know that for every φ ∈ X holds the limit

lim
m→+∞

∥∥∥∥∥
m∑
k=1

〈φ, φk〉2φk − φ

∥∥∥∥∥
H2

= 0

So, we can take

νm :=
m∑
k=1

〈φ, φk〉2φk ∈ Xm (11.89)

Observe that νm ∈ Xm, as required in (11.85).
So, (11.86), (11.87), (11.88) holds, and thanks to (11.85), we have the thesis.

Remark 11.27. If (11.86), (11.87), (11.88) does not hold for every m ∈ N but only for
a subsequence, the same subsequence where the convergences (11.81)-(11.84) hold, we
can consider the same subsequence in νm; the convergence continues to hold, since we
are considering a subsequence. �

We now prove the equalities (11.86), (11.87), (11.88).

Proof of equality (11.86). To prove this first limit, we can write∣∣∣∣ ∫
E

∫
Ω

ρmumt · νmdx dt−
∫
E

∫
Ω

ρut · φ dx dt
∣∣∣∣ =

=

∣∣∣∣ ∫
E

∫
Ω

ρmumt · (νm − φ) dx dt+

∫
E

∫
Ω

(ρmumt − ρut) · φ dx dt
∣∣∣∣ ≤

≤
∫
E

∫
Ω

|ρmumt ||νm − φ| dx dt+ |
∫
E

∫
Ω

(ρmumt − ρut) · φ dx dt| ≤

≤
∫ T∗

0

‖ρmumt ‖2‖νm − φ‖2dt+ |
∫
E

∫
Ω

(ρmumt − ρumt + ρumt − ρut) · φ dx dt| ≤

≤M∗
0‖νm−φ‖H2

(∫ T∗

0

‖umt ‖2
2

) 1
2

+|
∫
E

∫
Ω

(
(ρm−ρ)umt

)
·φ dx dt|+|

∫
E

∫
Ω

(
ρ(umt −ut)

)
·φ dx dt|

where M∗
0 := (‖ρ0‖∞ + 1)

√
T∗. The first piece is bounded by

M∗
0‖νm−φ‖H2

(∫ T∗

0

‖umt ‖2
H1dt

) 1
2

≡M∗
0‖νm−φ‖H2‖umt ‖L2(0,T∗;H1

0 (Ω)) → 0 as m→ +∞

(11.90)
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since ‖umt ‖L2(0,T∗;H1
0 (Ω)) is bounded in m. In fact, see i.e. [10, p.723], any weakly con-

vergent sequence is bounded, and we know that umt ⇀ ut in L2(0, T∗;H
1
0 (Ω)).

In the second piece we use the convegence of ρm to ρ and, again, the boundness of
umt . We have

|
∫
E

∫
Ω

(
(ρm−ρ)umt

)
·φ dx dt| ≤

∫
E

∫
Ω

|umt ||(ρm−ρ)φ|dx dt ≤
∫ T∗

0

‖umt ‖2‖(ρm−ρ)φ‖2dt ≤

≤
(∫ T∗

0

‖umt ‖2
2dt

) 1
2
(∫ T∗

0

‖(ρm−ρ)φ‖2
2dt

) 1
2

≤ ‖umt ‖L2(0,T∗;H1
0 (Ω))

(∫ T∗

0

∫
Ω

|(ρm−ρ)φ|2dx dt
) 1

2

The last term has the first factor bounded, as above; the second term can be treated
as follows: ∫

Ω

|(ρm − ρ)φ|2dx =

∫
Ω

|ρm − ρ|2|φ|2dx ≤ ‖|ρm − ρ|2‖ 3
2
‖|φ|2‖3 =

= (

∫
Ω

|ρm − ρ|3dx)
2
3 (

∫
Ω

|φ|6dx)
1
3 = ‖ρm − ρ‖2

3‖φ‖2
6 ≤ C2‖ρm − ρ‖2

3‖∇φ‖2
2

using that

‖v‖6 ≤ C‖∇v‖2 (11.91)

for every v ∈ W 1,2
0 (and φ ∈ H1

0 ≡ W 1,2
0 (Ω)). Finally we get(∫ T∗

0

∫
Ω

|(ρm − ρ)φ|2dx dt
) 1

2

≤ C‖∇φ‖2

(∫ T∗

0

‖ρm − ρ‖2
3dt

) 1
2

≤

≤ CT
1
2
∗ ‖∇φ‖2 sup

t∈(0,T∗)

‖ρm − ρ‖3 → 0 as m→ +∞

since ρm → ρ in L∞(0, T∗;L
q(Ω)) for every q ≥ 3

2
. So choosing q = 3, we have

lim
m→+∞

sup
t∈(0,T∗)

‖ρm − ρ‖3 = 0

Now we deal with the latter piece, that is∣∣∣∣ ∫
E

∫
Ω

(
ρ(umt − ut)

)
· φ dx dt

∣∣∣∣ =

∣∣∣∣ ∫
E

∫
Ω

(umt − ut) · (ρφ) dx dt

∣∣∣∣
We know that umt ⇀ ut in L2(0, T∗;H

1
0 (Ω)), that means

lim
m→+∞

f(umt ) = f(ut)

for every continuous functional f : L2(0, T∗;H
1
0 (Ω)) → R. So if we consider the func-

tional

f(w) :=

∫
E

∫
Ω

w · (ρφ) dx dt ∀w ∈ L2(0, T∗;H
1
0 (Ω))
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it is well-posed (as we will see in a moment) and linear (thanks to the linearity of the
integrals and the euclidian scalar product). Moreover we have

|f(w)| ≤
∫
E

∫
Ω

|w||ρφ| dx dt ≤
∫ T∗

0

‖w‖2‖ρφ‖2 dt
32

≤ C1‖φ‖H1

∫ T∗

0

‖ρ‖4‖w‖H1 dt ≤

≤ C1‖φ‖H1

(∫ T∗

0

‖ρ‖2
4 dt

) 1
2
(∫ T∗

0

‖w‖2
H1 dt

) 1
2

≤ C1‖φ‖H1T
1
2
∗

(
sup

t∈(0,T∗)

‖ρ‖4

)
‖w‖L2(0,T∗;H1

0 (Ω))

Observe that, since ρm → ρ in L∞(0, T∗;L
q(Ω)), we have ρ ∈ L∞(0, T∗;L

4) for q = 4.
This shows the well-posedness of the operator and its continuity. So we have

lim
m→+∞

f(umt ) = f(ut)

that means

lim
m→+∞

∫
E

∫
Ω

umt · (ρφ) dx dt =

∫
E

∫
Ω

ut · (ρφ) dx dt

This is what we wanted.

Proof of equality (11.87). Now we deal with another limit. As above, observe that∣∣∣∣ ∫
E

∫
Ω

(∆um · νm −∆u · φ) dx dt

∣∣∣∣ =

=

∣∣∣∣ ∫
E

∫
Ω

(∆um · νm −∆um · φ+ ∆um · φ−∆u · φ) dx dt

∣∣∣∣ ≤
≤
∫
E

∫
Ω

|∆um||νm − φ|dx dt+

∣∣∣∣ ∫
E

∫
Ω

(∆um −∆u) · φ dx dt
∣∣∣∣ ≤

≤
∫ T∗

0

‖∆um‖2‖νm − φ‖2dt+

∣∣∣∣ ∫
E

∫
Ω

(∆um −∆u) · φ dx dt
∣∣∣∣

We know that um ⇀ u in L2(0, T∗;H
2(Ω)). So we can choose

f(w) :=

∫
E

∫
Ω

∆w · φ dx dt ∀w ∈ L2(0, T∗;H
2(Ω))

The linearity of the functional is obvious; well posedness and continuity follows from
this consideration:

|f(w)| ≤
∫
E

∫
Ω

|∆w||φ| dx dt ≤
∫ T∗

0

‖∆w‖2‖φ‖2dt

32Since

‖ρφ‖22 =

∫
Ω

|ρ|2|φ|2dx ≤ ‖|ρ|2‖2‖|φ|2‖2 = ‖ρ‖24‖φ‖24 ≤ C2
1‖ρ‖24‖∇φ‖22 ≤ C2

1‖ρ‖24‖φ‖2H1
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So

|f(w)|
33

≤
√

5‖φ‖2

∫ T∗

0

‖w‖H2dt ≤
√

5‖φ‖2T
1
2
∗

(∫ T∗

0

‖w‖2
H2dt

) 1
2

≡
√

5‖φ‖2T
1
2
∗ ‖w‖L2(0,T∗;H2(Ω))

So the functional f is well-posed and continuous over L2(0, T∗;H
2(Ω)), i.e. it is in

(L2(0, T∗;H
2(Ω)))∗.

It follows that

lim
m→+∞

∫
E

∫
Ω

∆(um − u) · φ dx dt = 0

for every φ ∈ X. The other piece is immediate noticing that∫ T∗

0

‖∆um‖2‖νm − φ‖2dt ≤
√

5

∫ T∗

0

‖um‖H2‖νm − φ‖2dt

using equation (11.72), that is sup
[0,T∗]

‖um‖H2 ≤ K̂, we have

∫ T∗

0

‖∆um‖2‖νm−φ‖2dt ≤
√

5

∫ T∗

0

K̂‖νm−φ‖H2dt =
√

5K̂T∗‖νm−φ‖H2 → 0 as m→ +∞

Proof of equality (11.86). We deal now with the latter limit. As usual, we write∣∣∣∣ ∫
E

∫
Ω

(ρmum · ∇um) · νmdx dt−
∫
E

∫
Ω

(ρu · ∇u) · φ dx dt
∣∣∣∣ =

=

∣∣∣∣ ∫
E

∫
Ω

(ρmum · ∇um) · (νm − φ) dx dt+

∫
E

∫
Ω

(ρmum · ∇um − ρu · ∇u) · φ dx dt
∣∣∣∣ ≤

≤
∫ T∗

0

∫
Ω

|ρmum · ∇um||νm − φ| dx dt+

∣∣∣∣ ∫
E

∫
Ω

(ρmum · ∇um − ρu · ∇u) · φ dx dt
∣∣∣∣

The first addend can be treated as above. We have∫ T∗

0

∫
Ω

|ρmum · ∇um||νm − φ| dx dt ≤ (‖ρ0‖∞ + 1)

∫ T∗

0

∫
Ω

|um||∇um||νm − φ| dx dt ≤

≤ (‖ρ0‖∞+1)

∫ T∗

0

‖|um||∇um|‖2‖νm−φ‖2dt = (‖ρ0‖∞+1)‖νm−φ‖2

∫ T∗

0

‖|um||∇um|‖2dt

Moreover∫
Ω

|um|2|∇um|2dx ≤ ‖|um|2‖2‖|∇um|2‖2 = (

∫
Ω

|um|4dx)
1
2 (

∫
Ω

|∇um|4dx)
1
2 = ‖um‖2

4‖∇um‖2
4

Now we have some Sobolev inequalities. In fact, being um ∈ H1
0 (Ω), we know that

‖um‖4 ≤ C1‖∇um‖2 ≤ C1‖um‖H2 (11.92)

33Using that

‖∆w‖2 :=

(∫
Ω

|∆w|2dx
) 1

2

≤
(∫

Ω

5|∇2w|2dx
) 1

2

≤
√

5‖w‖H2
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where the constant C1 depends on Ω. At the same time, being ∇um ∈ W 1,2, using
(11.40) we get

‖∇um‖6 ≤ C2‖∇um‖W 1,2 ≤ C2‖um‖H2

Moreover
‖∇um‖4 ≤ |Ω|

1
12‖∇um‖6 ≤ |Ω|

1
12C2‖um‖H2

So

‖|um||∇um|‖2 = (

∫
Ω

|um|2|∇um|2dx)
1
2 ≤ ‖um‖4‖∇um‖4 ≤ C1|Ω|

1
12C2‖um‖2

H2

It follows that∫ T∗

0

‖|um||∇um|‖2 dt ≤ C1|Ω|
1
12C2

∫ T∗

0

‖um‖2
H2dt

(11.72)

≤ C1|Ω|
1
12C2

∫ T∗

0

K̂2dt = C1|Ω|
1
12C2T∗K̂

2

Thanks to this bounds, the convergence of the first piece follows from the fact that
‖νn − φ‖H2 → 0. We deal now with the piece∣∣∣∣ ∫

E

∫
Ω

(ρmum · ∇um − ρu · ∇u) · φ dx dt
∣∣∣∣ =

=

∣∣∣∣ ∫
E

∫
Ω

(
(ρm − ρ)um · ∇um + ρ(um · ∇um − u · ∇u)

)
· φ dx dt

∣∣∣∣ =

≤
∣∣∣∣ ∫

E

∫
Ω

(
(ρm − ρ)um · ∇um + ρ

(
(um − u) · ∇um + u · (∇um −∇u)

))
· φ dx dt

∣∣∣∣ ≤
≤
∣∣∣∣ ∫

E

∫
Ω

(ρm − ρ)um · ∇um · φ dx dt
∣∣∣∣+

∣∣∣∣ ∫
E

∫
Ω

ρ(um − u) · ∇um · φ dx dt
∣∣∣∣+

+

∣∣∣∣ ∫
E

∫
Ω

ρu · (∇um −∇u) · φ dx dt
∣∣∣∣

We start with the second addend. We have

|
∫
E

∫
Ω

ρ(um − u) · ∇um · φ dx dt| ≤
∫
E

∫
Ω

|ρ||um − u||∇um||φ|dx dt ≤

≤
∫ T∗

0

‖um − u‖2‖|ρ||∇um||φ|‖2dt

On the other hand

‖|ρ||∇um||φ|‖2
2 =

∫
Ω

|ρ|2|∇um|2|φ|2dx ≤ ‖|ρ|2‖3‖|∇um|2‖3‖|φ|2‖3 =

= ‖ρ‖2
6‖∇um‖2

6‖φ‖2
6

(11.91)+(11.40)

≤ ‖ρ‖2
6C

2
2C

2
1‖um‖2

H2‖∇φ‖2
2

(11.72)

≤ (‖ρ‖6C1C2)2K̂2‖∇φ‖2
2

and so

|
∫
E

∫
Ω

ρ(um − u) · ∇um · φ dx dt| ≤ (C1C2K̂‖∇φ‖2)

∫ T∗

0

‖ρ‖6‖um − u‖2dt ≤
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≤ (C1C2K̂‖∇φ‖2)

(∫ T∗

0

‖ρ‖2
6dt

) 1
2
(∫ T∗

0

‖um − u‖2
2dt

) 1
2

≤

≤ (C1C2K̂‖∇φ‖2)T
1
2
∗

(
sup

t∈(0,T∗)

‖ρ‖6

)
‖um − u‖L2(0,T∗;L2) → 0 as m→ +∞

Here again we know that ρ ∈ L∞(0, T∗;L
6) since ρm → ρ in L∞(0, T∗;L

q) with q = 6.
Moreover we used (11.84).

A similar argument holds for the term

|
∫
E

∫
Ω

(ρm − ρ)um · ∇um · φ dx dt| ≤
∫
E

∫
Ω

|ρm − ρ||um||∇um||φ|dx dt ≤

≤
∫ T∗

0

‖ρm − ρ‖2‖|um||∇um||φ|‖2dt

We now have

‖|um||∇um||φ|‖2
2 =

∫
Ω

|um|2|∇um|2|φ|2dx ≤ ‖|um|2‖3‖|∇um|2‖3‖|φ|2‖3 =

= ‖um‖2
6‖∇um‖2

6‖φ‖2
6

and we use the inequalities

‖um‖6 ≤ C ′1‖∇um‖2 ≤ C ′1‖um‖H2 , ‖φ‖6 ≤ C ′2‖∇φ‖2 ≤ C ′2‖φ‖H2

since um, φ ∈ H1
0 (Ω). Moreover, since ∇um ∈ W 1,2, with (11.40) we have

‖∇um‖6 ≤ C ′3‖∇um‖H1 ≤ C ′3‖um‖H2

It follows that

‖|um||∇um||φ|‖2 ≤ C ′1‖um‖H2C ′3‖um‖H2C ′2‖φ‖H2

(11.72)

≤ C ′1C
′
3C
′
2K̂

2‖φ‖H2

Finally∣∣∣∣ ∫
E

∫
Ω

(ρm − ρ)um · ∇um · φ dx dt
∣∣∣∣ ≤ C ′1C

′
3C
′
2K̂

2‖φ‖H2

∫ T∗

0

‖ρm − ρ‖2dt ≤

≤ C ′1C
′
3C
′
2K̂

2T∗‖φ‖H2 sup
t∈(0,T∗)

‖ρm − ρ‖2 = C ′1C
′
3C
′
2K̂

2T∗‖φ‖H2‖ρm − ρ‖L∞(0,T∗;L2(Ω)) → 0

since ρm → ρ in L∞(0, T∗;L
q(Ω)) for every q ≥ 3

2
.

We finally deal with the remaining piece, i.e.∣∣∣∣ ∫
E

∫
Ω

ρu · (∇um −∇u) · φ dx dt
∣∣∣∣
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We define, for every w ∈ L2(0, T∗;H
2(Ω)), the functional

f(w) :=

∫
E

∫
Ω

ρu · ∇w · φ dx dt

The functional is obviously linear. It is also well posed and continuous. In fact

|f(w)| ≤
∫
E

∫
Ω

|ρ||u||∇w||φ| dx dt ≤
∫ T∗

0

‖∇w‖2‖|ρ||u||φ|‖2dt

and, since u ∈ H2 and φ ∈ H1
0 ,

‖|ρ||u||φ|‖2
2 =

∫
Ω

|ρ|2|u|2|φ|2dx ≤ ‖|ρ|2‖3‖|u|2‖3‖|φ|2‖3 =

= ‖ρ‖2
6‖u‖2

6‖φ‖2
6 ≤ ‖ρ‖2

6C
2
2‖u‖2

H1C2
1‖∇φ‖2

2

So we have

|f(w)| ≤ C2

(
sup

t∈(0,T∗)

‖u‖H1

)
C1‖∇φ‖2

∫ T∗

0

‖ρ‖6‖∇w‖2dt

Remember that sup
t∈(0,T∗)

‖u‖H2 is a number since u ∈ L∞(0, T∗;H
2(Ω)). Finally

|f(w)| ≤ C2‖u‖L∞(0,T∗;H2)C1‖∇φ‖2

(∫ T∗

0

‖ρ‖2
6dt

) 1
2
(∫ T∗

0

‖∇w‖2
2dt

) 1
2

≤

≤ C1C2‖u‖L∞(0,T∗;H2)‖∇φ‖2T
1
2
∗ ‖ρ‖L∞(0,T∗;L6)

(∫ T∗

0

‖w‖2
H2dt

) 1
2

Here ‖ρ‖L∞(0,T∗;L6) is a number since ρm → ρ in L∞(0, T∗;L
q) with q = 6. So the

functional is well-posed and continuous. Since um ⇀ u in L2(0, T∗;H
2(Ω)), we have

that
f(um − u)→ 0 as m→ +∞

In other words

lim
m→+∞

∫
E

∫
Ω

ρu · ∇(um − u) · φ dx dt = 0

So, we have proved the proposition.

11.8.3 Proof of corollary 11.1

We have already remarked that the zero measure set E found above depends on the
ν ∈ X that we fix. What is true is the following assertion.
Let ν ∈ X. Then there exists a subset Eν ⊆ (0, T∗), with |Eν | = 0, such that∫

Ω

(ρut + ρu · ∇u− µ∆u) · ν dx = 0 t ∈ (0, T∗)/Eν (11.93)
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We now want to generalize the result. We can do vary particular choice of ν. For
ν = wm ≡ φm, element of the basis of X, we set

Em := Ewm

and
E :=

⋃
m∈N

Em

Being countable union of zero measure set, we have that |E| = 0. So, for every m ∈ N
we have ∫

Ω

(ρut + ρu · ∇u− µ∆u) · wm dx = 0 ∀t ∈ (0, T∗)/E (11.94)

Moreover, possibly except over another zero measure set, say A, |A| = 0, the integral
above is well defined, as we have seen in 11.4, since also wm ∈ L2(Ω). If now ν ∈ X,
we can find νm such that

lim
m→+∞

‖νm − ν‖2 ≤ lim
m→+∞

‖νm − ν‖X = 0

where νm ∈ Xm is define in (11.89) with φ = ν. This is possible since {wm} is a basis.
So, for those t ∈ (0, T∗)/A such that ρut + ρu · ∇u− µ∆u ∈ L2(Ω), as in section 11.6.5,
with t /∈ E, we have∣∣∣∣ ∫

Ω

(ρut + ρu · ∇u− µ∆u) · ν dx
∣∣∣∣ =

∣∣∣∣ ∫
Ω

(ρut + ρu · ∇u− µ∆u) · (ν − νm) dx

∣∣∣∣ ≤
≤ ‖ρ(t)ut(t) + ρ(t)u(t) · ∇u(t)− µ∆u(t)‖2‖ν − νm‖2

If we send m→∞ we find that the left-side is zero. Here we used that∫
Ω

(ρut + ρu · ∇u− µ∆u) · νm dx = 0

for every t ∈ (0, T∗)/E, since νm :=
m∑
k=1

〈ν, φk〉2φk and so by (11.94) and linearity the

integral is zero. Finally, for every t ∈ (0, T∗)/(A ∪ E) and for every ν ∈ X we have∫
Ω

(ρut + ρu · ∇u− µ∆u) · ν dx = 0 (11.95)

Observe that now A and E does not depend on ν.
Moreover, in (9.61), we have observed that X = W 1,2

0,σ (Ω) ∩ H2(Ω). So, if ψ ∈
W 1,2

0,σ (Ω), we have that there exists a sequence, say {νk}k∈N ⊆ C∞0,σ(Ω), such that

lim
k→∞
‖νk − ψ‖2 ≤ lim

k→∞
‖νk − ψ‖H1 = 0

Since νk are smooth, we have that in particular νk ∈ X. So, for every t ∈ (0, T∗)/(A∪E),
and k ∈ N we have ∫

Ω

(ρut + ρu · ∇u− µ∆u) · νk dx = 0
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It follows that∣∣∣∣ ∫
Ω

(ρut + ρu · ∇u− µ∆u) · ψ dx

∣∣∣∣ =

∣∣∣∣ ∫
Ω

(ρut + ρu · ∇u− µ∆u) · (ψ − νk) dx
∣∣∣∣ ≤

≤ ‖ρut + ρu · ∇u− µ∆u‖2(t)‖ψ − νk‖2 → 0

as k →∞. This means that, for every t ∈ (0, T∗)/(A ∪ E), |A ∪ E| ≤ |A|+ |E| = 0,∫
Ω

(ρut + ρu · ∇u− µ∆u) · ψ dx = 0 (11.96)

for every ψ ∈ W 1,2
0,σ (Ω).

11.8.4 Proof of theorem 11.3

The integral property (11.96) holds for every time-independent ψ function in W 1,2
0,σ (Ω).

We want to increase the class of functions such that the equality holds. For this purpose,
consider ϕ ∈ C1([0, T∗];W

1,2
0,σ (Ω)), where (W 1,2

0,σ (Ω), ‖·‖H1) has to be meant as an Hilbert

space34. In particular, a function in this class is in L2(0, T∗;W
1,2
0,σ (Ω)). So, we can use

the theorem 5.2 above, from [6].

Remember now that

∫ T∗

0

‖ρut+ρu ·∇u−µ∆u‖2
2(t) dt < +∞, as seen in Section 11.6.5.

So for every ϕ ∈ C1([0, T∗];W
1,2
0,σ (Ω)) we have∣∣∣∣ ∫ T∗

0

∫
Ω

(ρut+ρu ·∇u−µ∆u) ·ϕ(x, t) dx dt

∣∣∣∣ ≤ ∫ T∗

0

‖ρut+ρu ·∇u−µ∆u‖2‖ϕ(t)‖2 dt ≤

≤
(∫ T∗

0

‖ρut + ρu · ∇u− µ∆u‖2
2(t) dt

) 1
2
(∫ T∗

0

‖ϕ(t)‖2
2 dt

) 1
2

< +∞

Moreover, using theorem 5.2, for every ε > 0 there exists ϕε ∈ L2(0, T∗)⊗W 1,2
0,σ (Ω) such

that

‖ϕ− ϕε‖L2(0,T∗;W
1,2
0,σ (Ω)) < ε

So, the estimates above hold with ϕ substituted by ϕε, and, moreover, we have∫ T∗

0

∫
Ω

(ρut + ρu · ∇u− µ∆u) · ϕε(x, t) dx dt =

=

∫ T∗

0

∫
Ω

(ρut + ρu · ∇u− µ∆u) ·
( mε∑
i=1

χEεi (t)h
ε
i (x)

)
dx dt =

=
mε∑
i=1

∫ T∗

0

χEεi (t)

∫
Ω

(ρut + ρu · ∇u− µ∆u) · hεi (x) dx dt = 0

34It is a closed subspace of the Hilbert space H1(Ω) ≡W 1,2(Ω)
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since hεi ∈ W
1,2
0,σ (Ω) and so we used (11.96). It follows that∣∣∣∣ ∫ T∗

0

∫
Ω

(ρut + ρu · ∇u− µ∆u) · ϕ(x, t) dx dt

∣∣∣∣ =

=

∣∣∣∣ ∫ T∗

0

∫
Ω

(ρut + ρu · ∇u− µ∆u) · (ϕ(x, t)− ϕε(x, t)) dx dt
∣∣∣∣ ≤

≤
∫ T∗

0

‖ρut + ρu · ∇u− µ∆u‖2‖ϕ(t)− ϕε(t)‖2 dt ≤

≤
(∫ T∗

0

‖ρut + ρu · ∇u− µ∆u‖2
2 dt

) 1
2
(∫ T∗

0

‖ϕ(t)− ϕε(t)‖2
2 dt

) 1
2

≤

≤
(∫ T∗

0

‖ρut + ρu · ∇u− µ∆u‖2
2 dt

) 1
2

‖ϕ− ϕε‖L2(0,T∗;W
1,2
0,σ (Ω))

Since the latter piece is small, we have that for every ϕ ∈ C1([0, T∗];W
1,2
0,σ (Ω))

∫ T∗

0

∫
Ω

(ρut + ρu · ∇u− µ∆u) · ϕ(x, t) dx dt = 0 (11.97)

So we have proved the theorem.

11.8.5 The weak solution is a weak strong solution with a pres-
sion gradient term

Theorem 11.4. Let Ω be a bounded domain of R3. Consider the pair of solution (u, ρ),
as introduced in sections 11.2-11.7. Then, for almost every t ∈ (0, T∗), there exists a
function p(t) ∈ L2

loc(Ω) such that p(t) has weak derivative in Ω and

ρut + ρ
(
u · ∇u

)
− µ∆u = ∇p

Proof. Remember that

C∞0,σ(Ω) ⊆ {φ ∈ C∞c (Ω) : ∇ · φ = 0 in Ω} ⊆ W 1,2
0,σ (Ω)

Thanks to theorem 11.1, there exists a set of zero measure A ∪ E such that for every
φ ∈ W 1,2

0,σ (Ω) we have∫
Ω

(ρut + ρu · ∇u− µ∆u) · φ dx = 0 ∀t ∈ (0, T∗)/(A ∪ E)

Using Lemma 6.1, we have that, for a.e. t ∈ (0, T∗),∫
Ω

(ρut + ρu · ∇u− µ∆u) · ϕ dx = −
∫

Ω

p(t) ∇ · ϕ dx ∀ ϕ ∈ C∞c (Ω)
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for some p(t) ∈ L2
loc(Ω). If ψ is a scalar test function and ϕ := ψêi, we have that∫

Ω

(ρut + ρu · ∇u− µ∆u)i ψ dx = −
∫

Ω

p(t) ∂iψ dx ∀ ψ ∈ C∞c (Ω)

This means that
(ρut + ρu · ∇u− µ∆u)i = ∂ip(t)

where the derivative is a weak derivative. In other words, for almost every t ∈ (0, T∗),
we have

ρut + ρu · ∇u− µ∆u = ∇p(t)
The equality above is to be meant in the weak derivative sense, so it is true almost
everywhere.

Remark 11.28. This theorem immediately gives us an important property of the pair
(u, ρ): it is a solution in a strong sense. �

11.9 Weak solution to the problem with regular ini-

tial density ρ0: the momentum equation

We want now to deduce now the weak formulation of the problem, as introduced in
chapter 10. To do this, we need to derive the functions in classical sense. So, for a
moment, we turn back to the approximate solutions in the following way. In partic-
ular, at first, we have the following theorem. In fact, in the previous paragraph we
deduced an integral weak form of the momentum equation. However, this formulation
doesn’t involve the initial data. In this subsection, we will modify the integral equation,
changing it into the real weak formulation of the problem as introduced in chapter 10.

Theorem 11.5. Let Ω be a bounded domain of R3. Consider the pair of solution (u, ρ),
as introduced in sections 11.2-11.7, with initial data (u0, ρ0), as fixed at the beginning
of chapter 11. Then, for every ϕ ∈ C1([0, T∗];W

1,2
0,σ (Ω)) such that ϕ(x, T∗) = 0 a.e. in

Ω, we have

−
∫ T∗

0

∫
Ω

ρu · ϕt dx dt−
∫ T∗

0

∫
Ω

ρu · (∇ϕ) · u dx dt+ µ

∫ T∗

0

∫
Ω

∇u · ∇ϕ dx dt =

=

∫
Ω

ρ0(x)u0(x) · ϕ(x, 0) dx

Proof. Let ϕ ∈ C1([0, T∗];W
1,2
0,σ (Ω)) such that ϕ(x, T∗) = 0 a.e. in Ω. Consider∫ T∗

0

∫
Ω

(ρmumt + ρmum · ∇um − µ∆um) · ϕ(x, t) dx dt

and remember that
ρmt + um · ∇ρm = 0, ∇ · um = 0

By the regularity in time, we have that

(ρmum · ϕ)t = ρmt (um · ϕ) + ρm(um · ϕ)t = ρmt u
m · ϕ+ ρm(umt · ϕ+ um · ϕt)
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and so
ρmumt · ϕ = (ρmum · ϕ)t − ρmt um · ϕ− ρmum · ϕt =

= (ρmum · ϕ)t + (um · ∇ρm)(um · ϕ)− ρmum · ϕt
using the mass equation. On the other hand we have

∇(um · ϕ) = ϕ · (∇um) + um · (∇ϕ) (11.98)

using the Leibniz rule for weak derivatives, since um ∈ C1(Ω). So

ϕ · ∇um · (ρmum)
(11.98)

= [∇(um · ϕ)− um · (∇ϕ)] · (ρmum) =

= ∇(um · ϕ) · (ρmum)− ρmum · (∇ϕ) · um (11.99)

Moreover we have that, if φ is a scalar field and A is vectorial,

A · ∇φ = ∇ · (φA)− φ(∇ · A)

and so, with A = ρmum and φ = um · ϕ,

(ρmum) · ∇(um · ϕ) = ∇ · (ρmum(um · ϕ))− (um · ϕ)∇ · (ρmum) (11.100)

using again the Leibniz rule and the fact that ρmum is regular in x.
Moreover

∇ · (ρmum) = ρm∇ · um + um · ∇ρm = um · ∇ρm (11.101)

since ∇ · um = 0.
So we have

(ρmum) · ∇(um · ϕ)
(11.100)+(11.101)

= ∇ · (ρmum(um · ϕ))− (um · ϕ)(um · ∇ρm) (11.102)

and then

ϕ ·∇um · (ρmum)
(11.99)+(11.102)

= ∇· (ρmum(um ·ϕ))− (um ·ϕ)(um ·∇ρm)−ρmum · (∇ϕ) ·um

Putting the pieces togheter we have

ρmumt · ϕ+ ϕ · ∇um · (ρmum) = (11.103)

= (ρmum · ϕ)t − ρmum · ϕt +∇ · (ρmum(um · ϕ))− ρmum · (∇ϕ) · um

The aim is now clear: integration in Ω will remove the divergence term, while integra-
tion in t will provide us an initial time term.

At the same time we have, thanks to (1.14),

∆um · ϕ =
3∑
i=1

∇ · (ϕi∇umi )−∇um · ∇ϕ

In the last equation there is, however, a little problem: the equality is obtained using the
Leibniz rule, but ∇umi or ϕi aren’t in C1 class. So, we have to use a little approximation
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argument. Since ϕ(t) ∈ H1
0 (Ω), and the boundary ∂Ω is regular, then there exists a

sequence of functions ηk(t) ∈ C∞c (Ω) ⊆ C∞(Ω) such that

lim
k→+∞

‖ϕ(t)− ηk(t)‖H1 = 0

It follows that∫
Ω

∆um(x, t) · ϕ(x, t) dx
35

= lim
k→+∞

∫
Ω

∆um(x, t) · ηk(x, t) dx =

(1.14)
= lim

k→+∞

( 3∑
i=1

∫
Ω

∇ ·
(
(ηk(x, t))i∇umi (x, t)

)
dx−

∫
Ω

∇um(x, t) · ∇ηk(x, t) dx
)

since now we are in classical hypothesis. If we prove that∫
Ω

∇ ·
(
(ηk(x, t))i∇umi (x, t)

)
dx = 0 ∀k,m ∈ N, ∀i ∈ {1, 2, 3} (11.104)

then ∫
Ω

∆um(x, t) · ϕ(x, t) dx = −
∫

Ω

∇um(x, t) · ∇ϕ(t) dx

using the same argument convergence of note 35.
To prove (11.104) we use the generalized divergence theorem. In particular, we have∫

Ω

∇ ·
(
(ηk(x, t))i∇umi (x, t)

)
dx =

∫
∂Ω

T
(
(ηk(x, t))i∇umi (x, t)

)
· ν dσ

where ν is the outward normal vector.
If we show that the trace is zero we have done. We can use the argument in (4.6),

since umi (t) ∈ H2(Ω) and ηk(t) ∈ C∞(Ω). Since Tηk(t) = 0 on ∂Ω (it is a continuous
function over Ω and the boundary value is zero), we have the thesis.
So, passing to the integrals, we have∫ T∗

0

∫
Ω

∆um(x, t) · ϕ(x, t) dx dt = −
∫ T∗

0

∫
Ω

∇um(x, t) · ∇ϕ(x, t) dx dt

Measurability and summability are not a problem in the latter equality, thanks to the
discussion in the chapter dedicated to the Bochner integral.
We now restart from the initial integral equality. We have∫ T∗

0

∫
Ω

(ρmumt + ρm∇um · um − µ∆um) · ϕ(x, t) dx dt =

35 Observe that∣∣∣∣∫
Ω

∆um(x, t) · ϕ(x, t) dx−
∫

Ω

∆um(x, t) · ηk(x, t) dx

∣∣∣∣ ≤ ∫
Ω

|∆um(x, t)||ϕ(x, t)− ηk(x, t)|dx ≤

≤ ‖∆um(t)‖2‖ϕ2(t)− ηk(t)‖2 → 0 as k → +∞
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(11.103)
=

∫ T∗

0

∫
Ω

(ρmum · ϕ)t − ρmum · ϕt +∇ ·
(
ρmum(um · ϕ)

)
− ρmum · (∇ϕ) · um dx dt−

−µ
∫ T∗

0

∫
Ω

∆um · ϕ dx dt =

=

∫ T∗

0

∫
Ω

(ρmum · ϕ)t − ρmum · ϕt +∇ · (ρmum(um · ϕ))− ρmum · (∇ϕ) · um dx dt+

+µ

∫ T∗

0

∫
Ω

∇um · ∇ϕ dx dt

We now have to reach two goals: interchange the integrals in the first term and get
rid of the divergence term.

To interchange the integrals observe that the product ρmum · ϕ is regular in time;
in particular we can observe that

(ρmum · ϕ)t = ρmt u
m · ϕ+ ρmumt · ϕ+ ρmum · ϕt ∈ C([0, T∗];L

2(Ω)) ⊆ L2(0, T∗;L
2(Ω))

So, the function is in L2
(
(0, T∗)×Ω

)
, by the isomorphism between the two spaces, and

so by the Fubini theorem∫ T∗

0

∫
Ω

(ρmum · ϕ)t dx dt =

∫
Ω

∫ T∗

0

(ρmum · ϕ)t dt dx

Using the FCT with Bochner integrals, we have∫ t

0

(ρmum · ϕ)t dt = (ρmum · ϕ)(t)− c0

for almost every t ∈ [0, T∗]; here c0 is a contant in L2(Ω). Actually the equality holds
for every t ∈ [0, T∗], thanks to the regularity in t of the integrand function. So we have

c0 = (ρmum · ϕ)(x, 0)

See [9, pg. 51-52, th. 4.9]. So, it follows that∫ T∗

0

(
ρmum · ϕ

)
t
dt =

(
ρmum · ϕ

)
(T∗)−

(
ρmum · ϕ

)
(x, 0) =

= −
(
ρmum · ϕ

)
(x, 0) a.e. x ∈ Ω

since ϕ(x, T∗) = 0 almost everywhere in Ω.
It follows that ∫ T∗

0

∫
Ω

(
ρmum · ϕ

)
t
dx dt = −

∫
Ω

(
ρmum · ϕ

)
(x, 0) dx

Our aim is now to show ∫
Ω

∇ ·
(
ρmum(um · ϕ)

)
dx = 0
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Using the generalized divergence theorem we have∫
Ω

∇ ·
(
ρmum(um · ϕ)

)
dx =

∫
∂Ω

T
(
ρmum(um · ϕ)

)
· ν dx

We now have to show that the trace is zero. Since the boudary is regular (and the
domain is bounded) we can approach, for almost every t ∈ (0, T∗), ϕ(t) ∈ H1(Ω) with
a sequence ηk(t) ∈ C∞(Ω) such that

lim
k→+∞

‖ϕ(t)− ηk(t)‖H1 = 0 (11.105)

If we show that ρmum(um · ηk) ∈ C1(Ω) converges to ρmum(um ·ϕ) in H1, then we have
done, as will be precised later.
Consider

‖ρmum(um · ηk)− ρmum(um · ϕ)‖2
H1 = ‖ρmum

(
um · (ηk − ϕ)

)
‖2
H1 =

= ‖ρmum
(
um · (ηk − ϕ)

)
‖2

2 + ‖∇
(
ρmum

(
um · (ηk − ϕ)

))
‖2

2

36

≤

(11.106)

≤ sup
Ω

(
|um|2|ρmum|2

)
‖ηk − ϕ‖2

2 + 2 sup
Ω
|ρmum|2

∫
Ω

|∇
(
um · (ηk − ϕ)

)
|2dx+

+2 sup
Ω

(
|um|2|∇(ρmum)|2

)
‖ηk − ϕ‖2

2

The first and the third pieces go to zero as k → +∞, thanks to (11.105). For the
second term we have

∇
(
um · (ηk − ϕ)

)
= (ηk − ϕ) · (∇um) + um · ∇(ηk − ϕ)

and so∫
Ω

|∇
(
um · (ηk − ϕ)

)
|2dx ≤ 2

∫
Ω

|ηk − ϕ|2|∇um|2dx+ 2

∫
Ω

|um|2|∇(ηk − ϕ)|2dx ≤

≤ 2 sup
Ω
|∇um|2‖ηk − ϕ‖2

2 + 2 sup
Ω
|um|2‖∇(ηk − ϕ)‖2

2

that goes to zero as k → +∞, thanks again to (11.105). So, for almost every t ∈ (0, T∗),
we have (

ρmum(um · ηk)
)
(t)→

(
ρmum(um · ϕ)

)
(t) in H1 as k → +∞

36

=

∫
Ω

|um · (ηk − ϕ)|2|ρmum|2dx+

∫
Ω

|∇
(
um · (ηk − ϕ)

)
⊗ (ρmum) +

(
um · (ηk − ϕ)

)
∇(ρmum)|2dx ≤

≤
∫

Ω

|um|2|ηk−ϕ|2|ρmum|2dx+2

∫
Ω

|∇
(
um·(ηk−ϕ)

)
|2|ρmum|2dx+2

∫
Ω

|um|2|ηk−ϕ|2|∇(ρmum)|2dx ≤

(11.106)
where we used that |w1 ⊗ w2| ≡ |w1w

T
2 | ≤ |w1||w2|, since it can be meant as a matrix product.
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Since ρmum(um · ηk) ∈ C1(Ω), by definition we have for almost every t ∈ (0, T∗),

T
(
ρmum(um · ϕ)

)
(t) = lim

k→+∞
T
(
ρmum(um · ηk)

)
(t) in L2(∂Ω)

But T
(
ρmum(um · ηk)

)
(t) = 0 since the function is in C1(Ω) and at the boundary the

function is zero, since um = 0 on ∂Ω.
Since the limit of a zero sequence in L2(∂Ω) is zero, we have that for almost every
t ∈ (0, T∗)

T
(
ρmum(um · ϕ)

)
(t) = 0 a.e. on ∂Ω

It follows that∫
Ω

∇ ·
(
ρmum(um · ϕ)

)
dx =

∫
∂Ω

T
(
ρmum(um · ϕ)

)
· ν dx = 0

for almost every t ∈ (0, T∗). Then∫ T∗

0

∫
Ω

∇ ·
(
ρmum(um · ϕ)

)
dx dt = 0

So, our initial expression becomes as follows:∫ T∗

0

∫
Ω

(ρmumt + ρmum · ∇um − µ∆um) · ϕ dx dt =

=

∫ T∗

0

∫
Ω

(ρmum · ϕ)t − ρmum · ϕt +∇ · (ρmum(um · ϕ))− ρmum · (∇ϕ) · um dx dt+

+µ

∫ T∗

0

∫
Ω

∇um · ∇ϕ dx dt =

= −
∫

Ω

(ρmum ·ϕ)(x, 0) dx−
∫ T∗

0

∫
Ω

ρmum ·ϕt dx dt−
∫ T∗

0

∫
Ω

ρmum · (∇ϕ) · um dx dt+

+µ

∫ T∗

0

∫
Ω

∇um · ∇ϕ dx dt

At this point, we want now to take the limit another time. The first member goes to
zero, since it is the limit from which we started in this section. For the second member
we go in order. First of all we show that

lim
m→+∞

∫
Ω

(ρmum · ϕ)(x, 0) dx =

∫
Ω

ρ0(x)u0(x) · ϕ(x, 0)dx (11.107)

In fact observe that, since ρm(x, 0) = ρ0(x) for the choice of the initial data,∣∣∣∣ ∫
Ω

(
ρmum·ϕ

)
(x, 0) dx−

∫
Ω

ρ0(x)u0(x)·ϕ(x, 0)dx

∣∣∣∣ =

∣∣∣∣ ∫
Ω

ρ0(x)
(
um(x, 0)−u0(x)

)
·ϕ(x, 0) dx

∣∣∣∣ ≤
≤
∫

Ω

|ρ0(x)||um(x, 0)− u0(x)||ϕ(x, 0)|dx ≤ sup
Ω
|ρ0|‖um(0)− u0‖2‖ϕ(0)‖2 → 0
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as m goes to infinity, since um(0) goes to u0 in X, that is in H2-norm.

Now we deal with the second piece. We want to show that

lim
m→+∞

∫ T∗

0

∫
Ω

ρmum · ϕt dx dt =

∫ T∗

0

∫
Ω

ρu · ϕt dx dt (11.108)

Using well know arguments, we have∣∣∣∣ ∫ T∗

0

∫
Ω

(ρmum − ρu) · ϕt dx dt
∣∣∣∣ =

∣∣∣∣ ∫ T∗

0

∫
Ω

(ρmum − ρmu+ ρmu− ρu) · ϕt dx dt
∣∣∣∣ ≤

≤
∫ T∗

0

∫
Ω

|ρm||um − u||ϕt| dx dt+

∫ T∗

0

∫
Ω

|ρm − ρ||u||ϕt| dx dt ≤

≤ (‖ρ0‖∞ + 1)

∫ T∗

0

‖um − u‖2‖ϕt‖2 dt+

∫ T∗

0

‖ρm − ρ‖3‖u‖3‖ϕt‖3dt ≤

≤ (‖ρ0‖∞+ 1)

(∫ T∗

0

‖um− u‖2
2dt

) 1
2
(∫ T∗

0

‖ϕt‖2
2dt

) 1
2

+ sup
(0,T∗)

‖ρm− ρ‖3

∫ T∗

0

‖u‖3‖ϕt‖dt

Observe that∫ T∗

0

‖u‖3‖ϕt‖3 dt
37

≤ C

(∫ T∗

0

‖u‖2
H1dt

) 1
2
(∫ T∗

0

‖ϕt‖2
H1dt

) 1
2

< +∞

since u ∈ L∞(0, T∗;H
2) and ϕt ∈ C([0, T∗];W

1,2
0,σ (Ω)).

So, since at the beginning we can select the sequences with the properties um → u in
L2(0, T∗;L

2) and ρm → ρ in L∞(0, T∗;L
q) with q ≥ 3

2
, we have also the convergence of

this piece.

We now have to prove that

lim
m→+∞

∫ T∗

0

∫
Ω

ρmum · (∇ϕ) · um dx dt =

∫ T∗

0

∫
Ω

ρu · (∇ϕ) · u dx dt (11.109)

We have ∣∣∣∣ ∫ T∗

0

∫
Ω

ρmum · (∇ϕ) · um − ρu · (∇ϕ) · u dx dt
∣∣∣∣ =

=

∣∣∣∣ ∫ T∗

0

∫
Ω

(ρm−ρ)um·(∇ϕ)·um+ρ(um−u)·(∇ϕ)·um+ρu·(∇ϕ)·um−ρu·(∇ϕ)·u dx dt
∣∣∣∣ ≤

≤
∫ T∗

0

∫
Ω

|ρm − ρ||∇ϕ||um|2dx dt+

∫ T∗

0

∫
Ω

|ρ||∇ϕ||um||um − u| dx dt+

37Using that
‖u‖3‖ϕt‖3 ≤ |Ω|

1
6 ‖u‖6|Ω|

1
6 ‖ϕt‖6 ≤ C‖u‖H1‖ϕt‖H1

since u ∈ L∞(0, T∗;H
2) and ϕt ∈ C([0, T∗];W

1,2
0,σ (Ω)).
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+

∫ T∗

0

∫
Ω

|ρu||∇ϕ||um − u| dx dt (11.110)

Remember now that, from (11.77), we have chosen a sequence such that

lim
m→+∞

∫ T∗

0

‖∇um −∇u‖2
2dt = 0 (11.111)

So, we deal with the three pieces in 11.9, in order.
We start with∫ T∗

0

∫
Ω

|ρm − ρ||∇ϕ||um|2dx dt ≤
∫ T∗

0

‖∇ϕ‖2‖|ρm − ρ||um|2‖2 dt ≤

≤ sup
(0,T∗)

‖∇ϕ‖2

∫ T∗

0

‖|ρm − ρ||um|2‖2 dt

On the other side we have

‖|ρm − ρ||um|2‖2
2 =

∫
Ω

|ρm − ρ|2|um|4dx ≤ ‖|ρm − ρ|2‖3‖|um|4‖ 3
2

= ‖ρm − ρ‖2
6‖um‖4

6

where we have used the Hölder inequality with p = 3 and q = 3
2
. Since ‖um‖6 ≤

C‖∇um‖2 ≤ C‖um‖H2 , and um ∈ L∞(0, T∗;H
2) with ‖um‖L∞(0,T∗;H2) ≤ Ĥ, we have∫ T∗

0

∫
Ω

|ρm − ρ||∇ϕ||um|2dx dt ≤ sup
(0,T∗)

‖∇ϕ‖2T∗CK̂
2 sup

(0,T∗)

‖ρm − ρ‖6

Since ρm → ρ in L∞(0, T∗;L
q) for every q ≥ 3

2
we have that this piece goes to zero.

The second piece is similar. We have∫ T∗

0

∫
Ω

|ρ||∇ϕ||um||um − u| dx dt ≤
∫ T∗

0

‖∇ϕ‖2‖|ρ||um||um − u|‖2 dt ≤

≤ sup
(0,T∗)

‖∇ϕ‖2

∫ T∗

0

‖|ρ||um||um − u|‖2 dt

On the other hand

‖|ρ||um||um−u|‖2
2 =

∫
Ω

|ρ|2|um|2|um−u|2dx ≤ ‖|ρ|2‖3‖|um|2‖3‖|um−u|2‖3 = ‖ρ‖2
6‖um‖2

6‖um−u‖2
6

Since um, u ∈ H1
0 (Ω) for almost every t ∈ (0, T∗) (being a numberable sequence), we

have ‖um − u‖6 ≤ C‖∇um −∇u‖2. Finally we get∫ T∗

0

∫
Ω

|ρ||∇ϕ||um||um − u| dx dt ≤ CK̂ sup
(0,T∗)

‖∇ϕ‖2 sup
(0,T∗)

‖ρ‖6

∫ T∗

0

‖∇um −∇u‖2dt
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Using (11.111), we have that also this term goes to zero.

The latter term is similar. In fact∫ T∗

0

∫
Ω

|ρu||∇ϕ||um−u| dx dt ≤
∫ T∗

0

‖∇ϕ‖2‖|ρu||um−u|‖2 dt ≤ sup
(0,T∗)

‖∇ϕ‖2

∫ T∗

0

‖|ρu||um−u|‖2 dt

So, as above,

‖|ρu||um−u|‖2
2 =

∫
Ω

|ρu|2|um−u|2dx =

∫
Ω

|ρ|2|u|2|um−u|2 dx ≤ ‖|ρ|2‖3‖|u|2‖3‖|um−u|2‖3 =

= ‖ρ‖2
6‖u‖2

6‖um − u‖2
6 ≤ C2‖ρ‖2

6‖u‖2
6‖∇um −∇u‖2

2

Since u ∈ L∞(0, T∗;H
2), we have ‖u‖6 ≤ C‖u‖H1 ≤ C‖u‖H2 and so ‖u‖L∞(0,T∗;L6) ≤

C‖u‖L∞(0,T∗;H2) <∞. So it follows∫ T∗

0

∫
Ω

|ρu||∇ϕ||um − u| dx dt ≤ C2‖ρ‖L∞(0,T∗;L6)‖u‖L∞(0,T∗;H2)

∫ T∗

0

‖∇um −∇u‖2dt

that vanishes thanks, again, to equation (11.111).

Finally we have to deal with the easiest piece. We have to prove that

lim
m→+∞

∫ T∗

0

∫
Ω

∇um · ∇ϕ dx dt =

∫ T∗

0

∫
Ω

∇u · ∇ϕ dx dt

We have∣∣∣∣ ∫ T∗

0

∫
Ω

(∇um −∇u) · ∇ϕ dx dt

∣∣∣∣ ≤ ∫ T∗

0

∫
Ω

|∇um −∇u||∇ϕ| dx dt ≤

≤
∫ T∗

0

‖∇um −∇u‖2‖∇ϕ‖2dt ≤
(∫ T∗

0

‖∇um −∇u‖2
2dt

) 1
2
(∫ T∗

0

‖∇ϕ‖2
2dt

) 1
2

≤

≤ T
1
2
∗ sup

[0,T∗]

‖ϕ‖H1

(∫ T∗

0

‖∇um −∇u‖2
2dt

) 1
2

that goes to zero as remarked above.

Finally we have

0 = lim
m→+∞

∫ T∗

0

∫
Ω

(ρmumt + ρmum · ∇um − µ∆um) · ϕ(x, t) dx dt

= lim
m→+∞

{
−
∫

Ω

(ρmum·ϕ)(x, 0) dx−
∫ T∗

0

∫
Ω

ρmum·ϕt dx dt−
∫ T∗

0

∫
Ω

ρmum·(∇ϕ)·um dx dt+

+

∫ T∗

0

∫
Ω

∇um · ∇ϕ dx dt

}
=

= −
∫

Ω

ρ0(x)u0(x)·ϕ(x, 0)dx−
∫ T∗

0

∫
Ω

ρu·ϕt dx dt−
∫ T∗

0

∫
Ω

ρu·(∇ϕ)·u dx dt+µ
∫ T∗

0

∫
Ω

∇u·∇ϕ dx dt

This means that for every ϕ ∈ C1([0, T∗];W
1,2
0,σ (Ω)) with ϕ(x, T∗) = 0 almost everywhere

in Ω we have the desired equality.
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11.10 Weak solution to the problem with regular

initial density ρ0: the transport equation

We have proved the weak formulation of the transport equation. However, to be a
weak solution of the Navier-Stokes equations, the pair (u, ρ) also have to solve the weak
transport equation, as introduced in chapter 10. So we have the following theorem.

Theorem 11.6. Let Ω be a bounded domain of R3. Consider the pair of solution (u, ρ),
as introduced in sections 11.2-11.7, with initial data (u0, ρ0), as fixed at the beginning
of chapter 11. Then, for every ϕ ∈ C1([0, T∗];H

1(Ω)) such that ϕ(x, T∗) = 0 a.e. in Ω,
we have ∫ T∗

0

∫
Ω

ρϕt dx dt+

∫ T∗

0

∫
Ω

ρu · ∇ϕ dx dt = −
∫

Ω

ρ0(x)ϕ(x, 0)dx

Proof. Let ϕ ∈ C1([0, T∗];H
1(Ω)) such that ϕ(x, T∗) = 0 a.e. in Ω. We have that,

clearly, approximate solutions (ρm, um) are classical solution of the transport equation;
so, following the argument of (10.5), we have∫ T∗

0

∫
Ω

(ρmϕt + ρmum · ∇ϕ)(x, t) dx dt = −
∫

Ω

ρ0(x)ϕ(x, 0)dx

If we prove that for every test function ϕ

lim
m→+∞

∫ T∗

0

∫
Ω

ρmϕt dx dt =

∫ T∗

0

∫
Ω

ρϕt dx dt

lim
m→+∞

∫ T∗

0

∫
Ω

ρmum · ∇ϕ dx dt =

∫ T∗

0

∫
Ω

ρu · ∇ϕ dx dt

we have that ρ is a weak solution to the transport equation. We know that ρm → ρ in
L∞(0, T∗;L

q(Ω)) for every q ∈ [3
2
,∞). So∣∣∣∣ ∫ T∗

0

∫
Ω

(ρm−ρ)ϕt dx dt

∣∣∣∣ ≤ ∫ T∗

0

‖ρm−ρ‖2‖ϕt‖2dt ≤ ‖ρm−ρ‖L∞(0,T∗;L2(Ω))

∫ T∗

0

‖ϕt‖2dt→ 0

We deal now with the other limit. We can write∫ T∗

0

∫
Ω

(ρmum−ρu)·∇ϕ dx dt =

∫ T∗

0

∫
Ω

(ρm−ρ)um·∇ϕ dx dt+
∫ T∗

0

∫
Ω

ρ(um−u)·∇ϕ dx dt

We can deal with the first integral in a way very similar to the one discussed above. In
fact∣∣∣∣ ∫ T∗

0

∫
Ω

(ρm−ρ)um·∇ϕ dx dt
∣∣∣∣ ≤ ∫ T∗

0

∫
Ω

|ρm−ρ||um||∇ϕ| dx dt ≤
∫ T∗

0

‖|ρm−ρ||um|‖2‖∇ϕ‖2dt

where

‖|ρm − ρ||um|‖2
2 =

∫
Ω

|ρm − ρ|2|um|2dx ≤ ‖ρm − ρ‖2
4‖um‖2

4
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From Sobolev inequalities, since um ∈ H1
0 (Ω), we have ‖um‖4 ≤ C‖∇um‖2. So it follows

that

‖|ρm − ρ||um|‖2 ≤ C‖ρm − ρ‖4‖∇um‖2 ≤ C‖ρm − ρ‖4‖um‖H2

Finally∣∣∣∣ ∫ T∗

0

∫
Ω

(ρm − ρ)um · ∇ϕ dx dt

∣∣∣∣ ≤ (∫ T∗

0

‖|ρm − ρ||um|‖2
2dt

) 1
2
(∫ T∗

0

‖∇ϕ‖2
2dt

) 1
2

≤

≤ C

(∫ T∗

0

‖ρm − ρ‖2
4‖um‖2

H2dt

) 1
2
(∫ T∗

0

‖∇ϕ‖2
2dt

) 1
2

≤

≤ C sup
(0,T∗)

‖ρm − ρ‖4

(∫ T∗

0

‖um‖2
H2dt

) 1
2
(∫ T∗

0

‖∇ϕ‖2
2dt

) 1
2

≤

≤ CT
1
2
∗ K̂

(∫ T∗

0

‖∇ϕ‖2
2dt

) 1
2

‖ρm − ρ‖L∞(0,T∗;L4(Ω))

since sup
[0,T∗]

‖um‖H2 ≤ K̂. So this piece goes to zero as m→∞.

To deal with the other integral, we use that um ⇀ u in L2(0, T∗;H
2(Ω)). So, we

can consider the functional

f(w) :=

∫ T∗

0

∫
Ω

ρw · ∇ϕ dx dt ∀w ∈ L2(0, T∗;H
2(Ω))

We now show that this functional is well defined and continuous (it is obviously linear).
We have

|f(w)| ≤
∫ T∗

0

∫
Ω

|ρw||∇ϕ| dx dt ≤
∫ T∗

0

‖ρw‖2‖∇ϕ‖2dt ≤

noticing that ‖ρw‖2 =

(∫
Ω

|ρ|2|w|2dx
) 1

2

≤ ‖|ρ|2‖
1
2
2 ‖|w|2‖

1
2
2 = ‖ρ‖4‖w‖4 ≤ ‖ρ‖4‖w‖H2 ,

we have

≤ ‖ρ‖L∞(0,T∗;L4)

∫ T∗

0

‖w‖H2‖∇ϕ‖2 dt ≤ ‖ρ‖L∞(0,T∗;L4)

(∫ T∗

0

‖w‖2
H2 dt

) 1
2
(∫ T∗

0

‖∇ϕ‖2
2 dt

) 1
2

≤

≤ ‖ρ‖L∞(0,T∗;L4)

(∫ T∗

0

‖∇ϕ‖2
2 dt

) 1
2

‖w‖L2(0,T∗;H2(Ω))

So continuity and well-posedness are proved. It follows that

lim
m→+∞

f(um − u) = 0

and so

lim
m→+∞

∫ T∗

0

∫
Ω

ρmum · ∇ϕ dx dt =

∫ T∗

0

∫
Ω

ρu · ∇ϕ dx dt
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It follows that, for every ϕ test function ϕ ∈ C1([0, T∗];H
1),∫ T∗

0

∫
Ω

ρϕt dx dt+

∫ T∗

0

∫
Ω

ρu · ∇ϕ dx dt =

= lim
m→+∞

∫ T∗

0

∫
Ω

(ρmϕt + ρmum · ∇ϕ)(x, t) dx dt = −
∫

Ω

ρ0(x)ϕ(x, 0)dx

So, we have proved that the limit solution satisfies (in weak sense) the transport equa-

tion.

11.11 A posteriori estimates on the pair (ρ, u)

Now we have finally found the weak solution to the Navier-Stokes equation, for initial
density ρ0 with certain regularity hypothesis. Now we deduce some useful estimates on
the pair (u, ρ) of solutions.

11.11.1 Estimates on the density ρ

In this subsection, we have the following lemma.

Lemma 11.5. Let ρ(t) ∈ L∞(0, T∗;L
q) the limit solution above. Then it hold the

following properties

0 ≤ ρ(t) ≤ ‖ρ0‖∞ + 1, ‖ρ(t)‖q = ‖ρ0‖q ∀t ∈ (0, T∗)

Remark 11.29. This properties hold a.e., since a function in Lp(0, T ;X) is defined a.e.,
being (respect with time) in an Lp space. �

Proof. We know that, for every q ∈ [3
2
,+∞), it holds

lim
m→+∞

‖ρm − ρ‖L∞(0,T∗;Lq(Ω)) = 0

We can fix a point t ∈ (0, T∗) such that t /∈ Im for every m ∈ N, where Im is such that
‖ρm(t) − ρ(t)‖q ≤ ‖ρm − ρ‖L∞(0,T∗;Lq(Ω)) < ∞ for every t ∈ (0, T∗)/Im. In particular

I :=
⋃
m∈N

Im has measure zero. So, for t ∈ (0, T∗)/I we have

‖ρm(t)− ρ(t)‖q ≤ ‖ρm − ρ‖L∞(0,T∗;Lq(Ω)) → 0

as m → ∞. This means that {ρm(t)}m is a Cauchy sequence in Lq(Ω). This implies
that there exists a subsequence {ρmk(t)}k such that

lim
k→+∞

ρmk(x, t) = ρ(x, t) a.e. x ∈ Ω

Since ρm(x, t) ≥ δ, we have that also

ρ(x, t) ≥ δ a.e. x ∈ Ω

Moreover, since ρm(x, t) ≤ ‖ρ0‖∞ + 1, it follows that

ρ(x, t) ≤ ‖ρ0‖∞ + 1 a.e. x ∈ Ω
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Remark 11.30. We have obtained the limit solutions from ”astract” theorems of func-
tional analysis that provide us the solution in a non constructive way. We know that,
in example, ρ ∈ L∞(0, T∗;L

q). This has to be read in terms of spaces involving time:
we fix a time (almost everywhere) in (0, T∗). At this time, ρ gives back a vector in
Lq(Ω) that is a function defined almost everywhere. So, almost every where in time,
we have information about the density almost everywhere in the space. In other words,
stopping the time at a certain point, the configuration of the density at that freezed
time is known almost everywhere. The same holds for the other functions, e.g. the
vectorial velocity u. �

So for a.e. t ∈ (0, T∗), we have

δ ≤ ρ(t) ≤ ‖ρ0‖∞ + 1 (11.112)

where the inequalities hold almost everywhere. We now deduce the second equality.
For almost every t ∈ (0, T∗) we have

|‖ρm(t)‖q − ‖ρ(t)‖q| ≤ ‖ρm(t)− ρ(t)‖q ≤ sup
t∈(0,T∗)

‖ρm − ρ‖q → 0 as m→ +∞

So that lim
m→+∞

‖ρm(t)‖q = ‖ρ(t)‖q a.e. t ∈ (0, T∗). Since ‖ρm(t)‖q = ‖ρ0‖q for every

t ∈ (0, T∗) and m ∈ N, we have ‖ρ(t)‖q = ‖ρ0‖q a.e. t ∈ (0, T∗).

Moreover, we have that sup
(0,T∗)

‖ρ(t)‖∞ ≤ ‖ρ0‖∞+1. We know that ρ ∈ L∞(0, T∗;L
∞(Ω)).

So, if k ∈ N, we have that

lim
k→∞
‖ρ(t)‖k = ‖ρ(t)‖∞, lim

k→∞
‖ρ0‖k = ‖ρ0‖∞

provided that t is such that ρ(t) ∈ Lk(Ω) for every k. So, if Ik is such that ρ(t) ∈ Lk(Ω)
and ‖ρ(t)‖k = ‖ρ0‖k for every t ∈ (0, T∗)/Ik, we have that, for every t ∈ (0, T∗)/I, where

I :=
⋃
k∈N

Ik, we have ρ(t) ∈ Lk(Ω) for every k. So ‖ρ(t)‖∞ = ‖ρ0‖∞ for almost every

t ∈ (0, T∗).

11.11.2 Estimate on the velocity u

Now, we want to deduce a first estimate on the velocity u. In particular, we prove the
following theorem.

Proposition 11.22. Let Ω be a bounded domain of R3. Consider the pair of solution
(u, ρ), as introduced in sections 11.2-11.7. Then, there exists a constant C > 0 such
that

sup
(0,T∗)

‖∇u(t)‖2 ≤ C

Proof. We already know, thanks to the theorem 11.13, that

sup
0≤t≤T∗

‖∇um(t)‖2 ≤ C (11.113)
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We have already remarked that the sequence {um}m can be chosen such that

lim
m→+∞

∫ T∗

0

‖∇um −∇u‖2
2 dt = 0

In other words, as a function of time, ‖∇um −∇u‖2 → 0 in L2(0, T∗).
This means that there exists a subsequence {‖∇umk −∇u‖2(t)}k∈N such that

lim
k→+∞

‖∇umk −∇u‖2(t) = 0 a.e. t ∈ (0, T∗)

Moreover we know, using estimate (11.113), that exists a measure zero set, say A, such
that

‖∇um(t)‖2 ≤ C ∀t ∈ (0, T∗)/A, ∀m ∈ N

If B is the zero measure set such that ‖∇umk − ∇u‖2(t) → 0 holds for every t ∈
(0, T∗)/B, we have that, for every t ∈ (0, T∗)/(A ∪B),

‖∇u(t)‖2 = lim
k→+∞

‖∇umk(t)‖2 ≤ C

Since the bound is true almost everywhere in (0, T∗), we have that sup
(0,T∗)

‖∇u(t)‖2 ≤ C,

that is the thesis.

11.11.3 A final a posteriori estimate

We finally prove in this section the following theorem.

Theorem 11.7. Let Ω be a bounded domain of R3. Consider the pair of solution (u, ρ),
as introduced in sections 11.2-11.7. Then, there exists a constant C > 0 such that, for
every t ∈ (0, T∗),

sup
τ∈(0,t)

(
‖∇u‖2

H1 + ‖√ρut‖2
2

)
+

∫ t

0

‖∇ut‖2
2ds ≤ CC(ρ0, u0, p0) + C exp

(
C

∫ t

0

‖∇u‖4
2ds

)
(11.114)

where

C(ρ0, u0, p0) :=

∫
Ω

(ρ0)−1|µ∆u0 −∇p0|2 dx

Proof. We start with a similar estimate that we have already proved. Remember
(11.67), that is

sup
τ∈(0,t)

‖∇um‖2
H1 + sup

τ∈(0,t)

‖
√
ρmumt ‖2

2+

∫ t

0

‖∇umt ‖2
2ds ≤ ĤC0

m
+Ĥ exp

(
Ĥ

∫ t

0

‖∇um‖4
2ds

)

If we add both sides the term sup
τ∈(0,t)

‖um‖2
2 ≤ K̂2 and

∫ t

0

‖umt ‖2
2 ds ≤ D̂0, thanks to

(11.75), we have

sup
τ∈(0,t)

‖um‖2
H2 + sup

τ∈(0,t)

‖
√
ρmumt ‖2

2 +

∫ t

0

‖umt ‖2
H1ds ≤
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≤ sup
τ∈(0,t)

‖um‖2
2 + sup

τ∈(0,t)

‖∇um‖2
H1 + sup

τ∈(0,t)

‖
√
ρmumt ‖2

2 +

∫ t

0

‖umt ‖2
2ds+

∫ t

0

‖∇umt ‖2
2ds ≤

≤ D̂0 + K̂2 + sup
τ∈(0,t)

‖∇um‖2
H1 + sup

τ∈(0,t)

‖
√
ρmumt ‖2

2 +

∫ t

0

‖∇umt ‖2
2ds ≤

≤ D̂0 + K̂2 + ĤC0
m

+ Ĥ exp(Ĥ

∫ t

0

‖∇um‖4
2ds)

Before going on, observe that the inequality can be re-written as

(
sup
τ∈(0,t)

‖um‖H2

)2

+

(
sup
τ∈(0,t)

‖
√
ρmumt ‖2

)2

+

∫ t

0
‖umt ‖2H1ds ≤ D̂0+K̂2+ĤC0

m
+Ĥ exp

(
Ĥ

∫ t

0
‖∇um‖42ds

)

since the functions are positive. So, taking the liminf both sides we have

lim inf
m→+∞

{(
sup
τ∈(0,t)

‖um‖H2

)2

+

(
sup
τ∈(0,t)

‖
√
ρmumt ‖2

)2

+

∫ t

0
‖umt ‖2H1ds

}
≤

≤ lim inf
m→+∞

{
D̂0 + K̂2 + ĤC0

m
+ Ĥ exp

(
Ĥ

∫ t

0
‖∇um‖42ds

)}
≤

≤ lim sup
m→+∞

{
D̂0 + K̂2 + ĤC0

m
+ Ĥ exp

(
Ĥ

∫ t

0
‖∇um‖42ds

)}
So, using the properties of limsup and liminf38 we get

(
lim inf
m→+∞

sup
τ∈(0,t)

‖um‖H2

)2

+

(
lim inf
m→+∞

sup
τ∈(0,t)

‖
√
ρmumt ‖2

)2

+ lim inf
m→+∞

∫ t

0

‖umt ‖2
H1ds ≤

≤ D̂0 + K̂2 + lim sup
m→+∞

ĤC0
m

+ lim sup
m→+∞

Ĥ exp

(
Ĥ

∫ t

0

‖∇um‖4
2ds

)
38We remark that, if an, bn are two positive sequences, then, if n > k ∈ N,(

inf
n>k

an
)(

inf
n>k

bn
)
≤ anbn =⇒

(
inf
n>k

an
)(

inf
n>k

bn
)
≤ inf
n>k

(
anbn)

So, sending k →∞, we have, by definition,(
lim inf
n→∞

an
)(

lim inf
n→∞

bn) ≤ lim inf
n→∞

anbn
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Since um
∗
⇀ u in L∞(0, T∗;H

2(Ω)) we have39

‖u‖L∞(0,t;H2(Ω)) ≤ lim inf
m→+∞

‖um‖L∞(0,t;H2(Ω))

At the same time we can deduce the analogous inequality for ‖
√
ρmumt ‖L∞(0,t;L2(Ω)). In

fact, first of all consider that, from equation (11.67),

sup
τ∈(0,t)

‖
√
ρmumt ‖2

2 ≤ ĤW0 + Ĥ exp(ĤT∗M
4)

and L1(0, t;L2(Ω)) is a reflexive Banach space, with L∞(0, t;L2(Ω)) ' (L1(0, t;L2(Ω)))∗,
we have that, extracting a subsequence,

√
ρmumt

∗
⇀ w in L∞(0, t;L2(Ω))

for some w ∈ L∞(0, t;L2(Ω)). More precisely, we can extract the subsequence in the
case t = T∗, then the weak star convergence is true for every t as explained in the note
below. It follows that

‖w‖L∞(0,t;L2(Ω)) ≤ lim inf
m→+∞

‖
√
ρmumt ‖L∞(0,t;L2(Ω))

We want to prove that ‖w‖L∞(0,t;L2(Ω)) = ‖√ρut‖L∞(0,t;L2(Ω)). First of all observe that√
ρmumt ⇀

√
ρut in L2(0, t;L2(Ω)). In fact, if f ∈ (L2(0, t;L2(Ω)))∗, we have, with

vf ∈ L2(0, t;L2(Ω)),

f(
√
ρmumt −

√
ρut) =

∫ t

0

〈
√
ρmumt −

√
ρut, vf〉2 ds =

=

∫ t

0

〈(
√
ρm −√ρ)umt , vf〉2 ds+

∫ t

0

〈umt − ut,
√
ρvf〉2 ds

The second term goes to zero since umt ⇀ ut in L2(0, T∗;H
1
0 (Ω)) and∣∣∣∣∫ t

0

〈g,√ρvf〉2 ds
∣∣∣∣ ≤ ∫ t

0

‖g‖2‖
√
ρvf‖2ds ≤

(∫ t

0

‖√ρvf‖2
2ds

) 1
2
(∫ t

0

‖g‖2
2ds

) 1
2

≤
(∫ t

0

‖√ρvf‖2
2ds

) 1
2
(∫ t

0

‖g‖2
H1ds

) 1
2

39We use here that a weak-star convergence in L∞(0, T∗;H
2(Ω)) implies weak-star convergence in

L∞(0, t;H2(Ω)) for every t < T∗. In fact, if v ∈ L1(0, t;H2(Ω)), we can define

v′ : (0, T∗)→ H2(Ω)

v′(τ) :=

{
v(τ) τ ≤ t
0 τ > t

and so v′ ∈ L1(0, T∗;H
2(Ω)) and

lim
m

∫ t

0

〈um, v〉H2dt = lim
m

∫ T∗

0

〈um, v′〉H2dt =

∫ T∗

0

〈u, v′〉H2dt =

∫ t

0

〈u, v〉H2dt
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so that the functional is continuous. The first term, on the other hand, can be treated
as follows. We have∣∣∣∣∫ t

0

〈(
√
ρm −√ρ)umt , vf〉2 ds

∣∣∣∣ ≤ ∫ t

0

‖(
√
ρm −√ρ)umt ‖2‖vf‖2 ds ≤

≤
(∫ t

0

‖(
√
ρm −√ρ)umt ‖2

2 ds

) 1
2
(∫ t

0

‖vf‖2
2 ds

) 1
2

=

=

(∫ t

0

∫
Ω

|
√
ρm −√ρ|2|umt |2 dx ds

) 1
2
(∫ t

0

‖vf‖2
2 ds

) 1
2

≤

≤ sup
τ∈(0,t)

‖
√
ρm −√ρ‖4

(∫ t

0

‖umt ‖2
4 ds

) 1
2
(∫ t

0

‖vf‖2
2 ds

) 1
2

using that∫
Ω

|
√
ρm−√ρ|2|umt |2dx ≤

(∫
Ω

|
√
ρm−√ρ|4dx

) 1
2
(∫

Ω

|umt |4dx
) 1

2

= ‖
√
ρm−√ρ‖2

4‖umt ‖2
4

Observe now that(∫ t

0

‖umt ‖2
4ds

) 1
2

≤ K

(∫ t

0

‖∇umt ‖2
2ds

) 1
2

≤ K

√
ĤW0 + Ĥ exp(ĤT∗M4) ≡ F 0

since

∫ T∗

0

‖∇umt ‖2
2 dt ≤ [ĤW0 + Ĥ exp(ĤT∗M

4)]. At the same time

‖
√
ρm −√ρ‖4 =

(∫
Ω

|
√
ρm −√ρ|4dx

) 1
4

≤
(∫

Ω

|ρm − ρ|2dx
) 1

4

= ‖ρm − ρ‖
1
2
2

using

|
√
ρm −√ρ|2 = |

√
ρm −√ρ||

√
ρm −√ρ| ≤ |

√
ρm −√ρ||

√
ρm +

√
ρ| = |ρm − ρ|

Finally ∣∣∣∣∫ t

0

〈(
√
ρm −√ρ)umt , vf〉2 ds

∣∣∣∣ ≤ ‖ρm − ρ‖ 1
2

L∞(0,t;L2(Ω))F 0

(∫ t

0

‖vf‖2
2 ds

) 1
2

Since ρm → ρ in L∞(0, T∗;L
2(Ω)) (since 2 > 3

2
) we have that also this piece converges

to zero. It follows that

‖w −√ρut‖2
L2(0,t;L2(Ω)) = 〈w −√ρut, w −

√
ρut〉L2(0,t;L2(Ω)) =

= 〈w,w −√ρut〉L2(0,t;L2(Ω)) − 〈
√
ρut, w −

√
ρut〉L2(0,t;L2(Ω)) =

= lim
m→+∞

〈
√
ρmumt , w −

√
ρut〉L2(0,t;L2(Ω)) − lim

m→+∞
〈
√
ρmumt , w −

√
ρut〉L2(0,t;L2(Ω)) = 0
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The result of the two limits follows from this:

lim
m→+∞

〈
√
ρmumt , w −

√
ρut〉L2(0,t;L2(Ω)) = 〈w,w −√ρut〉L2(0,t;L2(Ω))

since
√
ρmumt

∗
⇀ w in L∞(0, t;L2(Ω)) and w − √ρut is in L1(0, t;L2(Ω)). The inner

product above is extacly the dual pairing between L1(0, t;L2(Ω)) and its dual space.
Moreover

lim
m→+∞

〈
√
ρmumt , w −

√
ρut〉L2(0,t;L2(Ω)) = 〈√ρut, w −

√
ρut〉L2(0,t;L2(Ω))

since
√
ρmumt ⇀

√
ρut in L2(0, t;L2(Ω)), as proved above, and

f(v) :=

∫ t

0

〈v, w −√ρut〉2ds

is such that

|f(v)| ≤
∫ t

0

‖v‖2‖w −
√
ρut‖2ds ≤

(∫ t

0

‖v‖2
2ds

) 1
2
(∫ t

0

‖w −√ρut‖2
2ds

) 1
2

≡

≡ ‖v‖L2(0,t;L2(Ω))

(∫ t

0

‖w −√ρut‖2
2ds

) 1
2

Since w −√ρut ∈ L2(0, t;L2(Ω)), this means that f is continuous (and it is linear).

It follows that

0 = ‖w −√ρut‖L2(0,t;L2(Ω)) =

(∫ t

0

‖w −√ρut‖2
2 ds

) 1
2

Thus ‖w −√ρut‖2 = 0 almost everywhere in (0, t). This means that

‖w‖2 = ‖√ρut‖2 a.e. in (0, t)

It follows that

sup
τ∈(0,t)

‖w‖2 = sup
τ∈(0,t)

‖√ρut‖2

Finally

sup
τ∈(0,t)

‖√ρut‖2 = sup
τ∈(0,t)

‖w‖2 ≡ ‖w‖L∞(0,t;L2(Ω)) ≤ lim inf
m→+∞

‖
√
ρmumt ‖L∞(0,t;L2(Ω))

Finally we want to say something about the term

lim inf
m→+∞

∫ t

0

‖umt ‖2
H1ds
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Remember that umt ⇀ ut in L2(0, T∗;H
1
0 (Ω)). Since this is a reflexive Banach space,

we have that also umt
∗
⇀ ut in L2(0, T∗;H

1
0 (Ω)). So in particular in L2(0, t;H1

0 (Ω)). It
follows that(∫ t

0

‖ut‖2
H1ds

) 1
2

= ‖ut‖L2(0,t;H1
0 (Ω)) ≤ lim inf

m→+∞
‖umt ‖L2(0,t;H1

0 (Ω)) = lim inf
m→+∞

(∫ t

0

‖umt ‖2
H1ds

) 1
2

Putting all the pieces together we get

sup
τ∈(0,t)

‖u‖2
H2 + sup

τ∈(0,t)

‖√ρut‖2
2 +

(∫ t

0

‖ut‖2
H1ds

)
≤

≤ D̂0 + K̂2 + lim sup
m→+∞

ĤC0
m

+ lim sup
m→+∞

Ĥ exp

(
Ĥ

∫ t

0

‖∇um‖4
2ds

)
Moreover, we have already proved that

lim
m→+∞

∫ T∗

0

‖∇um −∇u‖2
2 dt = 0

We can use the following lemma in [3, Th. IV.9, pg. 58], that is lemma 3.3. Using this,
we can find ∇umk such that

lim
k→+∞

‖∇umk −∇u‖2
2 = 0 a.e. t ∈ (0, T∗)

Moreover, we know that

sup
[0,T∗]

‖∇um‖2 ≤ sup
[0,T∗]

‖um‖H2 ≤ K̂

So, ‖∇um‖4
2 is bounded, and ‖∇u‖2 is the limit of ‖∇umk‖ almost everywhere. It

follows that, from the Lebesgue dominated convergence theorem,

lim
k→+∞

∫ t

0

‖∇umk‖4
2 ds =

∫ t

0

‖∇u‖4
2 ds

If we think to the steps above applied to the subsequence mk we have

sup
τ∈(0,t)

‖u‖2
H2 + sup

τ∈(0,t)

‖√ρut‖2
2 +

(∫ t

0

‖ut‖2
H1 ds

)
≤

≤ D̂0 + K̂2 + lim sup
m→+∞

ĤC0
m

+ Ĥ exp

(
Ĥ

∫ t

0

‖∇u‖4
2ds

)
This can be rewritten as

sup
τ∈(0,t)

(
‖∇u‖2

H1 + ‖√ρut‖2
2

)
+

∫ t

0

‖∇ut‖2
2ds ≤ (11.115)

≤ sup
τ∈(0,t)

‖u‖2
H2 + sup

τ∈(0,t)

‖√ρut‖2
2 +

(∫ t

0

‖ut‖2
H1 ds

)
≤
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≤ D̂0 + K̂2 + lim sup
m→+∞

ĤC0
m

+ Ĥ exp

(
Ĥ

∫ t

0

‖∇u‖4
2 ds

)
We have to compute the limit

lim sup
m→+∞

ĤC0
m

We want to prove now that40

lim sup
m→+∞

C0
m ≤ C(ρ0, u0, p0) (11.116)

C(ρ0, u0, p0) ≤ C(ρ0, u0, p0) (11.117)

In this case, since ∆um(x, 0) → ∆u0(x) almost every41 x ∈ Ω, we have, by Fatou’s
Lemma,

C(ρ0, u0, p0) =

∫
Ω

(ρ0)−1|µ∆u0 −∇p0|2dx ≤ lim inf
m→+∞

∫
Ω

(ρ0)−1|µ∆um(0)−∇p0|2dx =

= lim inf
m→+∞

C0
m ≤ lim sup

m→+∞
C0
m ≤ C(ρ0, u0, p0)

So, in this case, lim sup
m→+∞

C0
m

= C(ρ0, u0, p0) ≤ C(ρ0, u0, p0).

If we assume that (11.116)-(11.117) hold, we can deduce the desired estimate. We
consider two cases.

If C(ρ0, u0, p0) = 0, the inequality above becomes

sup
τ∈(0,t)

(
‖∇u‖2

H1 + ‖√ρut‖2
2

)
+

∫ t

0

‖∇ut‖2
2ds ≤ D̂0 + K̂2 + Ĥ exp

(
Ĥ

∫ t

0

‖∇u‖4
2 ds

)
≤

≤ D̂0 + K̂2 + (Ĥ + D̂0 + K̂2) exp

(
(Ĥ + D̂0 + K̂2)

∫ t

0

‖∇u‖4
2 ds

)
≤

≤ 2(Ĥ + D̂0 + K̂2) exp

(
(Ĥ + D̂0 + K̂2)

∫ t

0

‖∇u‖4
2 ds

)
since

(Ĥ + D̂0 + K̂2) exp

(
(Ĥ + D̂0 + K̂2)

∫ t

0

‖∇u‖4
2 ds

)
≥ Ĥ + D̂0 + K̂2 ≥ D̂0 + K̂2

If C(ρ0, u0, p0) > 0, we can take ε such that ε < C(ρ0, u0, p0). Thus

sup
τ∈(0,t)

(
‖∇u‖2

H1 + ‖√ρut‖2
2

)
+

∫ t

0

‖∇ut‖2
2ds ≤

40The second inequality is easy; observe that the latter term only depends on the initial conditions.
41In fact

‖∆um(0)−∆u0‖2 ≤
√

5‖um(0)− u0‖H2 → 0

so ∆um(0) → ∆u0 in L2. This implies that there is a subsequence that converges to ∆u0 almost
everywhere. So we can pass to this subsequence.
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≤ D̂0 + K̂2 + Ĥ lim sup
m→+∞

C0
m

+ Ĥ exp

(
Ĥ

∫ t

0

‖∇u‖4
2 ds

)
≤

≤ D̂0 + K̂2 + ĤC(ρ0, u0, p0) + Ĥ exp

(
Ĥ

∫ t

0

‖∇u‖4
2 ds

)
≤

≤ D̂0 + K̂2 + (Ĥ +
D̂0 + K̂2

ε
)C(ρ0, u0, p0) + Ĥ exp

(
Ĥ

∫ t

0

‖∇u‖4
2 ds

)
≤

and so42 we have

≤ 2

(
Ĥ +

D̂0 + K̂2

ε

)
C(ρ0, u0, p0) + Ĥ exp

(
Ĥ

∫ t

0

‖∇u‖4
2 ds

)
So, in every case, we can write the inequality in the form

sup
τ∈(0,t)

(
‖∇u‖2

H1 + ‖√ρut‖2
2

)
+

∫ t

0

‖∇ut‖2
2 ds ≤ CC(ρ0, u0, p0) +C exp

(
C

∫ t

0

‖∇u‖4
2 ds

)
provided that

lim sup
m→+∞

C0
m ≤ C(ρ0, u0, p0) ≤ C(ρ0, u0, p0)

We now prove this fact. Actually the inequality holds with the limit. In fact, consider
sequence such that ∆um(0) → ∆u0 almost everywhere. In particular we have that
‖∆um(0)−∆u0‖2 → 0. So there exists43 a function U ∈ L2(Ω) such that

|∆um(x, 0)−∆u0(x)| ≤ U(x) ∀m, ∀x ∈ Ω

eventually extracting another subsequence and considering the initial inequality adapted
to this subsequence (convergence properties keep to hold as long as the kind of conver-
gence is defined through a numerical sequence). So we can estimate the function

(ρ0)−1|µ∆um(0)−∇p0|2 ≤ δ−1
(
µ|∆um(0)|+ |∇p0|

)2 ≤ 2δ−1
(
µ2|∆um(0)|2 + |∇p0|2

)
Moreover

|∆um(0)| ≤ |∆um(0)−∆u0|+ |∆u0| ≤ U + |∆u0|
42Using that (

Ĥ +
D̂0 + K̂2

ε

)
C(ρ0, u0, p0) > D̂0 + K̂2

43For every k ∈ N there exists mk such that

‖∆umk(0)−∆u0‖2 ≤
1

2k

So
U(x) :=

∑
k∈N
|∆umk(x, 0)−∆u0(x)| ≥ |∆umh(x, 0)−∆u0(x)| ∀h ∈ N

and ‖U‖2 ≤
∑
k∈N
‖∆umk(0)−∆u0‖2 ≤

∑
k∈N

1

2k
< +∞.
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The function U + |∆u0| is in L2(Ω) since it is sum of functions in L2(Ω). Thus

(ρ0)−1|µ∆um(0)−∇p0|2 ≤ 2δ−1
(
(U + |∆u0|)2 + |∇p0|2

)
≡ G

where G ∈ L1(Ω).
So the sequence has a summable bound. Then, we can apply the Lebesgue dominated
convergence theorem, and we get

lim
m→+∞

C0
m

= lim
m→+∞

∫
Ω

(ρ0)−1|µ∆um(0)−∇p0|2dx =

∫
Ω

(ρ0)−1|µ∆u0 −∇p0|2dx

Now we prove (11.117). In fact, in the last integral we want to replace ρ0 with the
initial data ρ0. We have supposed to hold the compatibility condition

µ∆u0 −∇p0 =
√
ρ0g

where g ∈ L2(Ω). The functions ρ0, ρ0 are non negative, and ρ0 ∈ L∞(Ω), so in
particulare the initial density is a non negative measurable function. We can consider

P0 := {x ∈ Ω : ρ0(x) = 0} = ρ−1
0 ({0})

This set is measurable subset of Ω, since ρ0 is measurable and {0} is a Borelian set.
For every x ∈ P0, we know for sure that |µ∆u0 −∇p0| = 0 by the equality above. Also
g is a measurable function.
So we can redefine these functions as follows. We set

(
√
ρ′0(x))−1 :=

{
(
√
ρ0(x))−1 x /∈ P0

∞ x ∈ P0

and

g′(x) :=

{
g(x) x /∈ P0

0 x ∈ P0

We now, for sake of semplicity, drop the apices. With this devices, we can write

(
√
ρ0)−1|µ∆u0 −∇p0| = |g|

Observe that now this condition is completely equivalent to the compatibility condition,
keeping in mind the product in the extended positive line 0 · ∞ = 0, as in example
introduced by [24].
Moreover the measurability of the functions is preserved44. Moreover we have that

44In fact let g a measurable function over a measure space (M,M) and let g0 ∈ [0,∞] and G0 a
measurable set. Then

f(x) :=

{
g(x) x /∈ G0

g0 x ∈ G0

is a measurable function. In fact, if A is an open set, we can discern two cases. If g0 /∈ A, then

f−1(A) = g−1(A) ∈M

If g0 ∈ A we have
f−1(A) = (g−1(A) ∩Gc0) ∪G0 ∈M
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ρ0 ≤ ρ0. So, for every x /∈ P0,

(ρ0)−1(x) ≤ (ρ0)−1(x)

and if x ∈ P0

(ρ0)−1(x) ≤ δ−1 ≤ ∞ = (ρ0)−1(x)

So we have∫
Ω

(ρ0)−1|µ∆u0 −∇p0|2dx ≤
∫

Ω

(ρ0)−1|µ∆u0 −∇p0|2dx =

∫
Ω

|g|2dx <∞

The latter integral is actually ‖g′‖2
2, but it holds ‖g′‖2

2 ≤ ‖g‖2
2, since the functions are

equal or |g′| is zero while |g| ≥ 0. The points where ρ−1
0 = ∞ give no contribution to

the integral. If fact

ρ−1
0 =∞ ⇔ x ∈ P0 ⇒ |µ∆u0 −∇p0| = 0

so that the product between infinity and zero is zero. Since g ∈ L2(Ω), C(ρ0, u0, p0) =∫
Ω

(ρ0)−1|µ∆u0 −∇p0|2dx is a number.

Finally we have, for every t ∈ (0, T∗),

sup
τ∈(0,t)

(
‖∇u‖2

H1 + ‖√ρut‖2
2

)
+

∫ t

0

‖∇ut‖2
2 ds ≤ CC(ρ0, u0, p0) + C exp

(
C

∫ t

0

‖∇u‖4
2 ds

)
(11.118)

Remark 11.31. Another similar estimate can be deduced without other computation.
In fact, we know that

lim sup
m→+∞

exp

(
Ĥ

∫ t

0

‖∇um‖4
2ds

)
≤ exp

(
Ĥ

∫ t

0

C4ds

)
≤ exp

(
ĤT∗C

4
)

thanks to estimate (11.113).
So equation (11.115) becomes

sup
τ∈(0,t)

(
‖∇u‖2

H1 +‖√ρut‖2
2

)
+

∫ t

0

‖∇ut‖2
2ds ≤ D̂0 +K̂2 +lim sup

m→+∞
ĤC0

m
+Ĥ exp

(
ĤT∗C

4
)

This leads to the inequality to

sup
τ∈(0,t)

(
‖∇u‖2

H1 + ‖√ρut‖2
2

)
+

∫ t

0

‖∇ut‖2
2 ds ≤ CC(ρ0, u0, p0) + C

11.12 Regularization of the initial density

In this subsection we prove the following lemma.
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Lemma 11.6. Let δ ∈ (0, 1) and ρ0 ∈ L∞(Ω). Then there exists a regularized initial
density ρ0,δ ∈ C1(Ω) such that

0 < max{ρ0, δ} ≤ ρ0,δ ≤ ‖ρ0‖∞ + δ

Moreover, if we consider these functions as a sequence of functions indixed by δ, we
have

lim
δ→0

ρ0,δ(x) = ρ0(x) for almost every x ∈ Ω

Remark 11.32. If we choose ρ0 = ρ0,δ for a fixed δ, the choice satisfies the hypothesis
(11.5), since δ ∈ (0, 1). Moreover, in the following section we will consider sequence
δ = δm. So, in the following proof, from a certain point, we will consider such a
sequence. �

Proof. We have ρ0 ∈ L∞(Ω) and Ω bounded domain. So, we can consider B =
BR(0) ⊇ Ω. We can extend now the function. In particular, we consider

ρ0(x) :=

{
ρ0(x) x ∈ Ω

‖ρ0‖∞ x ∈ B/Ω

Moreover, define, for every ε > 0, Bε := {x ∈ B : dist(x, ∂B) > ε}. Then, there exists
ε > 0 such that Ω ⊂ Bε for every ε < ε.

We define

g0δ(x) := max{ρ0(x), δ}

Clearly g0δ(x) ≤ ‖g0δ‖∞ ≤ ‖ρ0‖∞ + δ. On the other side, we consider

g′0δ(x) := −g0δ(x) + ‖ρ0‖∞ + δ ≥ 0

We consider now the regularization

gε0δ(x) :=

∫
B(x,ε)

ηε(x− y)
(
g′0δ(y)− δ

4

)
dy ≥ 0

The non-negativity follows from the fact that −g0δ(x) + ‖ρ0‖∞ + δ ≥ δ
4

if δ ≤ ‖ρ0‖∞.
Observe now that

lim
(ε,δ)→(0,0)

gε0δ(x) = −ρ0(x) + ‖ρ0‖∞ a.e. x ∈ Ω (11.119)

We now prove that limit (11.119) holds. In fact

∣∣gε0δ(x)− (−ρ0(x) + ‖ρ0‖∞)
∣∣ =

∣∣∣∣ ∫
B(x,ε)

ηε(x− y)
(
g′0δ(y)− δ

4
+ ρ0(x)− ‖ρ0‖∞

)
dy

∣∣∣∣ ≤
≤
∫
B(x,ε)

1

ε3

∣∣∣∣η(
x− y
ε

)

∣∣∣∣∣∣g′0δ(y)− δ

4
+ ρ0(x)− ‖ρ0‖∞

∣∣ dy
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Let C > 0 such that |η(z)| ≤ C for every z ∈ B(0, 1). Observe now that∣∣∣∣g′0δ(y)− δ

4
+ ρ0(x)− ‖ρ0‖∞

∣∣∣∣ = |−max{ρ0(y), δ}+‖ρ0‖∞+δ+ρ0(y)−ρ0(y)−δ
4

+ρ0(x)−‖ρ0‖∞| ≤

≤ | −max{ρ0(y), δ}+ ρ0(y)|+ 3

4
δ + |ρ0(y)− ρ0(x)| ≤ δ +

3

4
δ + |ρ0(y)− ρ0(x)|

since

max{ρ0(y), δ} − ρ0(y) =

{
0 < δ ρ0(y) ≥ δ

δ − ρ0(y) ≤ δ δ ≥ ρ0(y)
≥ 0

So we have

∣∣gε0δ(x)− (−ρ0(x) + ‖ρ0‖∞)
∣∣ ≤ C

(
δ +

3

4
δ +

1

ε3

∫
B(x,ε)

|ρ0(y)− ρ0(x)| dy
)
→ 0

as ε, δ → 0, thanks to the Lebesgue theorem.

On the other hand, we have that

lim
ε→0

gε0δ(x) = g′0δ(x)− δ

4
a.e. x ∈ Ω

since it is the regularization of the function. So, for every α > 0, exists ε = ε(α) such
that

|gε0δ(x)− g′0δ(x) +
δ

4
| < α

for every ε < ε. So, if we choose α = δ
4
, we have

gε0δ(x) ≤ g′0δ(x)

for every ε < ε(δ). So, if ε0(δ) := ε(δ)
2
< ε(δ),

g
ε0(δ)
0δ (x) ≤ g′0δ(x)

So, if now δ = δk = 1
k
, we have ε1 := ε0(δ1), and ε2 < min{ε0(δ2), ε1

2
}. So, in general

εk < min{ε0(δk),
εk−1

2
}

So εk → 0 and gεk0δk(x) ≤ g′0δk(x) and so the sequence gεk0δk(x) → −ρ0(x) + ‖ρ0‖∞ from
below. This means that

−gεk0δk(x) + ‖ρ0‖∞ + δk → ρ0(x), −gεk0δk(x) + ‖ρ0‖∞ + δk ≥ g0δk(x)

and moreover −gεk0δk(x) + ‖ρ0‖∞ + δk ∈ C1(Ω), that is the thesis.
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11.13 Weak and strong solution to momentum equa-

tion with initial density ρ0 ∈ L∞(Ω)

11.13.1 Weak solution to the momentum equations

We now briefly repeat the argument above for another sequence.

The regularized approximation of the previous subsection gives us a sequence of initial
data in the regularity class that we needed. In particular, we have {ρ0δ}δ∈(0,1) ⊆ C1(Ω)
such that, for every δ ∈ (0, 1), it holds

0 < max{ρ0(x), δ} ≤ ρ0δ(x) ≤ ‖ρ0‖∞ + δ

and moreover it holds the limit

lim
δ→0

ρ0δ(x) = ρ0(x) a.e. x ∈ Ω (11.120)

The first inequality above gives us an important information. In fact, we have that

ρ0(x) ≤ max{ρ0(x), δ} ≤ ρ0δ(x)

and
0 < δ ≤ max{ρ0(x), δ} ≤ ρ0δ(x) ≤ ‖ρ0‖∞ + δ < ‖ρ0‖∞ + 1

So, if we choose the initial density ρ0(x) = ρ0δ(x), we have that this density satisfies
the hypothesis required in (11.5). Under these hypothesis, we have already discussed
the construction of a weak solution to the problem, in the sense that we will clarify
in a moment. We have that exists a pair of solutions (ρδ, uδ) ∈ L∞(0, T∗;L

∞(Ω)) ×
L∞(0, T∗;H

2(Ω)) of weak solution to the INSE, with initial data45 (ρ0, u0) = (ρ0δ, u0),
that is∫ T∗

0

∫
Ω

ρδ(ϕt + ρδuδ · ∇ϕ) dx dt = −
∫

Ω

ρ0(x)ϕ(x, 0) dx = −
∫

Ω

ρ0δ(x)ϕ(x, 0) dx

for every ϕ ∈ C1([0, T∗];H
1(Ω) with ϕ(x, T∗) = 0 a.e. in Ω; and

−
∫ T∗

0

∫
Ω

ρδuδ · ϕt dx dt−
∫ T∗

0

∫
Ω

ρδuδ · ∇ϕ · u dx dt+ µ

∫ T∗

0

∫
Ω

∇uδ · ∇ϕ dx dt =

=

∫
Ω

ρ0(x)u0(x) · ϕ(x, 0) dx =

∫
Ω

ρ0δ(x)u0(x) · ϕ(x, 0) dx

for every ϕ ∈ C1([0, T∗];X) with ϕ(x, T∗) = 0 almost everywhere in Ω.
Remember that T∗ is independent of the lower bound δ of the initial density and also
of the initial density ρ0 itself.
It also exists the weak derivative uδt ∈ L2(0, T∗;H

1
0 (Ω)) of uδ. Moreover, for such a

solution, we have already proved the following estimates: for every t ∈ (0, T∗) we have
that

0 ≤ ρδ(t) ≤ ‖ρ0‖∞ + 1

45Looking at the initial density, it is clear the role of δ in (ρδ, uδ).
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‖ρδ(t)‖q = ‖ρ0δ‖q, ‖∇uδ(t)‖2
2 ≤ C

sup
(0,t]

(
‖∇uδ‖2

H1 +‖
√
ρδuδt‖2

2

)
+

∫ t

0

‖∇uδt‖2
2ds ≤ CC(ρ0, u0, p0)+C exp

(
C

∫ t

0

‖∇uδ‖4
2ds

)
(11.121)

uniformly in δ. From the family of solutions {(ρδ, uδ) : δ ∈ (0, 1)} we can consider
a sequence. In fact, if we take δ = δm = 1

m
∈ (0, 1) for every m ≥ 2, we have46 a

sequence {(ρm, um)}m≥2 with the boundaries and the properties above, where δ has to
be replaced with m.
With this (more familiar) notation, we now that exists (u, ρ) ∈ L∞(0, T∗;L

∞)×L∞(0, T∗;H
2)

such that

ρm
∗
⇀ ρ in L∞(0, T∗;L

∞(Ω)), um
∗
⇀ u in L∞(0, T∗;H

2(Ω))

and morever exists ut ∈ L2(0, T∗;H
1
0 (Ω)) weak derivative of u, and

umt ⇀ ut in L2(0, T∗;H
1
0 (Ω))

In fact, looking at section 11.6, we have that the limit-extraction argument is based
only on the features of the functional spaces considered and the estimates above; so,
although in 11.6 the sequence (ρm, um) has some regularity properties, the extraction
works in the same way in this less regular case.

Finally, the pair (ρ, u) is the candidate to be out local solution. We have to show
that it is a weak solution with initial data (ρ0, u0) and moreover that the main estimate
(11.121) holds without δ. In particular, using the m-notation, we have that∫ T∗

0

∫
Ω

ρm(ϕt + ρmum · ∇ϕ) dx dt = −
∫

Ω

ρ0 1
m

(x)ϕ(x, 0) dx

for every ϕ ∈ C1([0, T∗];H
1(Ω)) with ϕ(x, T∗) = 0 a.e. in Ω; and

−
∫ T∗

0

∫
Ω

ρmum · ϕt dx dt−
∫ T∗

0

∫
Ω

ρmum · ∇ϕ · u dx dt+ µ

∫ T∗

0

∫
Ω

∇um · ∇ϕ dx dt =

=

∫
Ω

ρ0 1
m

(x)u0(x) · ϕ(x, 0) dx

for every ϕ ∈ C1([0, T∗];X) with ϕ(x, T∗) = 0 almost everywhere in Ω.
Remember moreover that

lim
m→+∞

ρ0 1
m

(x) = ρ0(x) a.e. x ∈ Ω, ρ0 1
m

(x) ≤ ‖ρ0‖∞ + 1

So, thanks to the Lebesgue dominated theorem, we have

lim
m→+∞

∫
Ω

ρ0 1
m

(x)ϕ(x, 0) dx =

∫
Ω

ρ0(x)ϕ(x, 0) dx

and

lim
m→+∞

∫
Ω

ρ0 1
m

(x)u0(x) · ϕ(x, 0) dx =

∫
Ω

ρ0(x)u0(x) · ϕ(x, 0) dx

46With an abuse of notation, we consider ρm ≡ ρ 1
m and um ≡ u 1

m .
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If we show that the limit in m allows us to get rid of the m in the notation, than we
proved that (ρ, u) is a weak solution with initial data (ρ0, u0).
We start with the transport (or mass) equation. Remember that, thanks to the adap-
tation of the DiPerna-Lions compactness result [8], we have that

ρm → ρ in L∞(0, T∗;L
q)

since ρm is a weak solution and the properties in 11.7 hold: in particular, equation
(11.120) says that for every β bounded, β(ρ0δ) → β(ρ0) in L1(Ω), and ρ0 ∈ L∞(Ω).
Moreover, since |ρ0δ(x)| ≤ ‖ρ0‖∞ + 1 and there is convergence almost everywhere,
Lebesgue dominated convergence imlies that ρ0δ → ρ0 in Lp(Ω), for every p ∈ [1,∞].
This implies, as proved in section 11.10, that

lim
m→+∞

∫ T∗

0

∫
Ω

ρmϕt dx dt =

∫ T∗

0

∫
Ω

ρϕt dx dt

lim
m→+∞

∫ T∗

0

∫
Ω

ρmum · ∇ϕ dx dt =

∫ T∗

0

∫
Ω

ρu · ∇ϕ dx dt

for every ϕ ∈ C1([0, T∗];H
1(Ω)) such that ϕ(x, T∗) = 0 a.e. in Ω. So the limit solution

satisfies the weak transport equation. Moreover in section 11.9 we have already proved
that

lim
m→+∞

∫ T∗

0

∫
Ω

ρmum · ϕt dx dt =

∫ T∗

0

∫
Ω

ρu · ϕt dx dt

lim
m→+∞

∫ T∗

0

∫
Ω

ρmum · (∇ϕ) · um dx dt =

∫ T∗

0

∫
Ω

ρu · (∇ϕ) · u dx dt

lim
m→+∞

∫ T∗

0

∫
Ω

∇um · ∇ϕ dx dt =

∫ T∗

0

∫
Ω

∇u · ∇ϕ dx dt

provided that, as above, ρm → ρ in L∞(0, T∗;L
q). So, also the momentum equation is

satisfied. This is a first result that we were aiming. Observe that all the arguments of
the previous sections recalled here don’t involve the fact that in those previous sections
(ρm, um) are very regular; the arguments we used are only convergences and continuity
of some operators between functional spaces (in particular Lp spaces involving time).
It remains to prove the main inequality for the weak solution. We have the inequality

sup
(0,t]

(
‖∇um‖2

H1+‖
√
ρmumt ‖2

2

)
+

∫ t

0

‖∇umt ‖2
2ds ≤ CC(ρ0, u0, p0)+C exp

(
C

∫ t

0

‖∇um‖4
2 ds

)
using the m-notation. The inequality can be written in a slightly different way. In fact,
if we consider the inequality in (11.115), we have that this inequality can be written as

sup
(0,t]

‖∇um‖2
H1 + sup

(0,t]

‖
√
ρmumt ‖2

2 +

∫ t

0

‖∇umt ‖2
2ds ≤

≤ CC(ρ0, u0, p0) + C exp

(
C

∫ t

0

‖∇um‖4
2 ds

)
(11.122)
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We want now to take the limit on both sides. It is very similar to a calculus already
done. As in section 11.11.3 we have

lim inf
m→+∞

(
sup
(0,t]

(
‖∇um‖2

H1 + ‖
√
ρmumt ‖2

2

)
+

∫ t

0

‖∇umt ‖2
2ds

)
≤

≤ lim inf
m→+∞

(
CC(ρ0, u0, p0) + C exp(C

∫ t

0

‖∇um‖4
2ds)

)
≤

≤ lim sup
m→+∞

(
CC(ρ0, u0, p0) + C exp(C

∫ t

0

‖∇um‖4
2ds)

)
Always in 11.11.3 we have proved that

‖u‖L∞(0,t;H2(Ω)) ≤ lim inf
m→+∞

‖um‖L∞(0,t;H2(Ω))

and
sup
τ∈(0,t)

‖√ρut‖2 ≤ lim inf
m→+∞

‖
√
ρmumt ‖L∞(0,t;L2(Ω))

and (∫ t

0

‖ut‖2
H1 ds

) 1
2

≤ lim inf
m→+∞

(∫ t

0

‖umt ‖2
H1 ds

) 1
2

It also holds, passing to a suitable subsequence and considering this subsequence at the
beginning,

lim
m→+∞

∫ t

0

‖∇um‖4
2 ds =

∫ t

0

‖∇u‖4
2 ds

Since CC(ρ0, u0, p0) is indipendet of m (i.e. of δm), we have

sup
(0,t]

(
‖∇u‖2

H1+‖√ρut‖2
2

)
+

∫ t

0

‖∇umt ‖2
2ds ≤ sup

(0,t]

‖∇u‖2
H1+sup

(0,t]

‖√ρut‖2
2+

∫ t

0

‖∇umt ‖2
2ds ≤

≤ sup
τ∈(0,t]

‖u‖2
H2+ sup

τ∈(0,t]

‖√ρut‖2
2+

(∫ t

0

‖ut‖2
H1ds

)
= ‖u‖2

L∞(0,t;H2)+ sup
τ∈(0,t]

‖√ρut‖2
2+

(∫ t

0

‖ut‖2
H1ds

)
≤

≤
(

lim inf
m→+∞

‖um‖L∞(0,t;H2(Ω))

)2

+

(
lim inf
m→+∞

‖
√
ρmumt ‖L∞(0,t;L2(Ω))

)2

+

(
lim inf
m→+∞

(∫ t

0

‖umt ‖2
H1ds

) 1
2

)2

≤

and using the properties of liminf47

≤ lim inf
m→+∞

‖um‖2
L∞(0,t;H2(Ω)) + lim inf

m→+∞
‖
√
ρmumt ‖2

L∞(0,t;L2(Ω)) + lim inf
m→+∞

∫ t

0

‖umt ‖2
H1ds ≤

47Remember that if f : [0,+∞)→ [0,+∞) is continuous and increasing and an ≥ 0 we have

lim inf
n→+∞

f(an) = lim
k→+∞

f(ank
) = f

(
lim

k→+∞
ank

)
≥ f

(
lim inf
n→+∞

an

)
where ank

is the sequence with limit the liminf. Moreover lim inf
n→+∞

an ≤ lim
k→+∞

ank
.
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≤ lim inf
m→+∞

(
‖um‖2

L∞(0,t;H2(Ω)) + ‖
√
ρmumt ‖2

L∞(0,t;L2(Ω)) +

∫ t

0

‖umt ‖2
H1ds

)
≤

Remembering now that, as deduced from the estimates above, sup
τ∈(0,t)

‖um‖2
2 ≤ K̂2 and∫ t

0

‖umt ‖2
2ds ≤ D̂0, we have

≤ lim inf
m→+∞

(
sup
(0,t]

(
‖um‖2

2+‖∇um‖2
H1

)
+‖
√
ρmumt ‖2

L∞(0,t;L2(Ω))+

∫ t

0

(‖umt ‖2
2+‖∇umt ‖2

2)ds

)
≤

≤ lim inf
m→+∞

(
sup
(0,t]

‖um‖2
2+sup

(0,t]

‖∇um‖2
H1+‖

√
ρmumt ‖2

L∞(0,t;L2(Ω))+

∫ t

0

‖umt ‖2
2dx+

∫ t

0

‖∇umt ‖2
2ds

)
≤

lim inf
m→+∞

(
K̂2 + D̂0 + sup

(0,t]

‖∇um‖2
H1 + ‖

√
ρmumt ‖2

L∞(0,t;L2(Ω)) +

∫ t

0

‖∇umt ‖2
2ds

)
=

= K̂2 + D̂0 + lim inf
m→+∞

(
sup
(0,t]

‖∇um‖2
H1 + ‖

√
ρmumt ‖2

L∞(0,t;L2(Ω)) +

∫ t

0

‖∇umt ‖2
2ds

)
≤

≤ K̂2 + D̂0 + lim inf
m→+∞

(
CC(ρ0, u0, p0) + C exp

(
C

∫ t

0

‖∇um‖4
2ds

))
=

= K̂2 + D̂0 + CC(ρ0, u0, p0) + lim inf
m→+∞

(
C exp

(
C

∫ t

0

‖∇um‖4
2ds

))
=

= K̂2 + D̂0 + CC(ρ0, u0, p0) + C exp

(
C

∫ t

0

‖∇u‖4
2ds

)
≤

≤ (K̂2 + D̂0) exp

(
C

∫ t

0

‖∇u‖4
2ds

)
+ CC(ρ0, u0, p0) + C exp

(
C

∫ t

0

‖∇u‖4
2ds

)
=

= (K̂2 + D̂0 + C) exp

(
C

∫ t

0

‖∇u‖4
2ds

)
+ CC(ρ0, u0, p0) ≤

≤ Q exp

(
Q

∫ t

0

‖∇u‖4
2ds

)
+QC(ρ0, u0, p0)

where Q := max{K̂2 + D̂0 + C,C}. We have finally proved the inequality

sup
(0,t]

(
‖∇u‖2

H1 + ‖√ρut‖2
2

)
+

∫ t

0

‖∇ut‖2
2ds ≤ Q exp

(
Q

∫ t

0

‖∇u‖4
2ds

)
+QC(ρ0, u0, p0)

(11.123)
Moreover, in remark 11.31 we have deduced

sup
τ∈(0,t)

(
‖∇um‖2

H1 + ‖
√
ρmumt ‖2

2

)
+

∫ t

0

‖∇umt ‖2
2ds ≤ CC(ρ0, u0, p0) + C

So, we have ∫ t

0

‖∇um‖2
H1 ≤ t

(
sup
(0,t)

‖∇um‖2
H1

)
≤ T∗

(
CC(ρ0, u0, p0) + C

)
301



and ∫ t

0

‖∇umt ‖2dt ≤ T
1
2
∗

(∫ T∗

0

‖∇umt ‖2
2dt

) 1
2

≤ T
1
2
∗

(
CC(ρ0, u0, p0) + C

)
This means that

∇um ∈ L2(0, T∗;H
1(Ω)) ∩ {ϕ : ∂tϕ ∈ L1(0, T∗;L

2(Ω))}

and the sequence is bounded as clear from above. Observe that48 ∂xi∂tu
m = ∂t∂xiu

m.
Here, however,∫

Ω×(0,T∗)

∂xi∂tu
mϕ d(x, t) = −

∫
Ω×(0,T∗)

∂tu
m∂xiϕ d(x, t) =

∫
Ω×(0,T∗)

um∂t∂xiϕ d(x, t) =

=

∫
Ω×(0,T∗)

um∂xi∂tϕ d(x, t)

thanks to the Schwarz Lemma for smooth function, and we proceed back to front.
Since H1(Ω) ⊂⊂ L2 by the Rellich-Kondrachov theorem, we have that the sequence
{∇um}m has a subsequence {∇umk}k and a function w ∈ L2(0, T∗;L

2(Ω)) such that

lim
m→+∞

‖∇umk − w‖L2(0,T∗;L2(Ω)) = 0

We call this subsequence um again. Passing to a subsequences, the convergences proved
yet are heredited. We know moreover that um ⇀ u in L2(0, T∗;H

2(Ω)). We consider
the functional

f(v) := ∇v ∀v ∈ L2(0, T∗;H
2(Ω))

Clearly
f : L2(0, T∗;H

2(Ω))→ L2(0, T∗;L
2(Ω))

and

‖f(v)‖L2(0,T∗;L2(Ω)) =

(∫ T∗

0

‖∇v‖2
2dt

) 1
2

≤
(∫ T∗

0

‖v‖2
H2dt

) 1
2

= ‖v‖L2(0,T∗;H2(Ω))

so that the functional is continuous. This means that49

∇um = f(um) ⇀ f(u) = ∇u in L2(0, T∗;L
2(Ω))

48In the previous application of this theorem, the interchange of derivatives was simply guaranteed
by the fact that the variable were separated.

49In fact, if T ∈ (L2(0, T∗;L
2(Ω)))∗, we can define A(v) := T (f(v)) for every v ∈ L2(0, T∗;H

2(Ω)).
The operator is continuous, since

|A(v)| = |T (f(v))| ≤ C‖f(v)‖L2(0,T∗;L2(Ω)) ≤ C‖v‖L2(0,T∗;H2(Ω))

It is also linear, since T and f are linear. Then A ∈ (L2(0, T∗;H
2(Ω))∗. This means that

lim
m→+∞

T (f(um)) = lim
m→+∞

A(um) = A(u) = T (f(v))

the weak convergence, in L2(0, T∗;L
2(Ω)), of f(um) to f(u).
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The strong convergence ‖∇um − w‖L2(0,T∗;L2(Ω)) → 0 implies that the convergence is
also weak, so that

∇um ⇀ w in L2(0, T∗;L
2(Ω))

Since the weak limit is unique, we have that w = ∇u in L2(0, T∗;L
2(Ω)). So we have

‖∇um −∇u‖L2(0,T∗;L2(Ω)) ≤ ‖∇um − w‖L2(0,T∗;L2(Ω)) + ‖w −∇u‖L2(0,T∗;L2(Ω)) =

= ‖∇um − w‖L2(0,T∗;L2(Ω)) → 0 as m→ +∞

In other words we have proved that

lim
m→+∞

∫ T∗

0

‖∇um −∇u‖2
2dt = 0

In other words, as a function of time, ‖∇um −∇u‖2 → 0 in L2(0, T∗).
This means that there exists a subsequence {‖∇umk −∇u‖2(t)}k∈N such that

lim
k→+∞

‖∇umk −∇u‖2(t) = 0 a.e. t ∈ (0, T∗)

Moreover we know, using estimate (11.113), that exists a measure zero set, say A, such
that

‖∇um(t)‖2 ≤ C ∀t ∈ (0, T∗)/A, ∀m ∈ N

If B is the zero measure set such that ‖∇umk − ∇u‖2(t) → 0 holds for every t ∈
(0, T∗)/B, we have that, for every t ∈ (0, T∗)/(A ∪B),

‖∇u(t)‖2 = lim
k→+∞

‖∇umk(t)‖2 ≤ C

Since the bound is true almost every-where in (0, T∗), we have that

sup
(0,T∗)

‖∇u(t)‖2 ≤ C (11.124)

11.14 Strong solution to the nonhomoegeneous in-

compressible Navier-Stokes equations

In this section we prove that the pair of solutions (ρ, u) is a strong solution in the sense of
the definitions of the chapter 10. While in the next subsection 11.14.1 we will show that
the pair (ρ, u) is automatically strong solution of the momentum equation, subsection
11.14.2 and subsection 11.14.3 will specify, respectively, that an higher regularity of the
velocity field holds, and that if we assume more regularity of the initial density, that is
ρ0 ∈ H1(Ω), the pair (ρ, u) also satisfies the strong formulation of transport equation.
This concludes our discussion, together with some a posteriori estimates that will be
deduced in remark 11.39.
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11.14.1 Strong solution to the momentum equations with pres-
sure gradient term

In the sections above, in particular in (11.93), we have proved that if ν ∈ X, there
exists a measure zero subset Eν ⊆ (0, T∗) such that∫

Ω

(ρδuδt + ρδuδ · ∇uδ − µ∆uδ) · ν = 0 t ∈ (0, T∗)/Eν

It is clear that the set Eν also depends on the choice of δ, that is the choice of the
regularized initial density data. With the m-notation introduced above, we have that
we can write ∫

Ω

(ρmumt + ρmum · ∇um − µ∆um) · ν = 0 t ∈ (0, T∗)/Eν,m

In particular we can choice ν = νm ∈ Xm ⊆ X, where the apex here means that
the function is in the approximate functional space Xm. So, if we write for brevity
Em,νm ≡ Em, we have∫

Ω

(ρmumt + ρmum · ∇um − µ∆um) · νm = 0 t ∈ (0, T∗)/Em

On the other hand, for every φ ∈ X, there exists a sequence {νm}m∈N with νm ∈ Xm

and ‖νm − φ‖H2 → 0 as m→ +∞.
Since ρm and um converges to a limit in the same sense as in section 11.8.1, we

can restart from the relation (11.85) that holds for every t ∈ (0, T∗)/
⋃
m∈N

Em with

|
⋃
m∈N

Em| = 0. Following the passeges above, we get that if E is a measurable subset of

(0, T∗), than ∫
E

∫
Ω

(ρut + ρu · ∇u− µ∆u) · ν dx = 0 ∀ν ∈ X

A simple property of measure theory says that if ν ∈ X there exists a subset Eν ⊂ (0, T∗)
with |Eν | = 0 such that∫

Ω

(ρut + ρu · ∇u− µ∆u) · ν dx = 0 t ∈ (0, T∗)/Eν

So, following the arguments in section 11.8.5, we find p(t) ∈ L2
loc(Ω) such that

ρ(t)ut(t) + ρ(t)u(t) · ∇u(t)− µ∆u(t) = ∇p(t)

where ∇p is the weak gradient of the pressure term. Clearly, also the argument in
section 11.6.5 are the same, and we use theorem 11.4.
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11.14.2 Further estimates on the velocity field

We have found u = u(t) ∈ H1
0 (Ω) ∩ H2(Ω) such that, for almost every t ∈ (0, T∗) it

holds {
−µ∆u(t) +∇p(t) = −ρ(t)ut(t)− ρ(t)u(t) · ∇u(t)

∇ · u(t) = 0
in Ω (11.125)

i.e., it is solution to the Stokes solution with force f(t) := −ρ(t)ut(t)− ρ(t)u(t) · ∇u(t).
Then we can observe that u(t) is a 6-generalized solution.

In fact, consider t ∈ (0, T∗)/E, where |E| = 0. Then the following properties hold.

• u ∈ H2(Ω) ⊆ D1,6(Ω).

•
∫

Ω

3∑
i=1

ui(∂xiϕ) dx = −
∫

Ω

(
∇ · u

)
ϕ dx = 0

• We know that u ∈ H2(Ω) ⊆ W 1,6(Ω). Since u ∈ X, we have that

lim
m→∞

∥∥∥∥∥
m∑
i=1

〈u,wi〉2wi − u

∥∥∥∥∥
H2

= 0

We define um :=
m∑
i=1

〈u,wi〉2wi ∈ X. The function um is a linear combination of

eigenfunctions, and we know that wi ∈ C1(Ω). Moreover, Twi = u|∂Ω ≡ 0, and
∇ · wi = 0. Since also wi ∈ C1(Ω), we have that Twi = 0 also in the sense of
W 1,6(Ω). So, wi ∈ W 1,6

0 (Ω) and also um ∈ W 1,6
0 (Ω). So, we find

‖um − u‖W 1,6 =
(
‖um − u‖6

6 + ‖∇um −∇u‖6
6

) 1
6 ≤ ‖um − u‖6 + ‖∇um −∇u‖6

But ‖um − u‖6 ≤ C‖um − u‖H1 and ‖∇um −∇u‖6 ≤ C ′‖∇um −∇u‖H1 , so that

‖um − u‖W 1,6 ≤ C ′′‖um − u‖H2 → 0

as m→∞. Being W 1,6
0 (Ω) closed, we have that also u ∈ W 1,6

0 (Ω).

• Observe that f(t) ∈ L6(Ω). In fact we have

‖ρut‖6 ≤ ‖ρ‖∞‖ut‖6 ≤ ‖ρ‖∞‖∇ut‖2 <∞ (11.126)

‖ρ
(
u · ∇u

)
‖6 ≤ ‖ρ‖∞‖u · ∇u‖6 ≤ ‖ρ‖∞‖u‖∞‖∇u‖6 ≤ (11.127)

≤ cM‖ρ‖∞ (‖∆u‖2)
3
4 (‖∇u‖2)

1
4 ‖∇u‖H1 <∞

thanks to (11.40) and lemma 9.6. So we can consider, if ϕ ∈ C∞0,σ(Ω),

−µ∆u+∇p = f =⇒ −µ∆u · ϕ+∇p · ϕ− f · ϕ = 0

so that

−µ
∫

Ω

∆u · ϕ dx+

∫
Ω

∇p · ϕ =

∫
Ω

f · ϕ = 〈f, ϕ〉
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Since ϕ ∈ C∞0,σ(Ω), and, being ∇p ∈ G(Ω), 〈∇p, g〉 = 0 for every g ∈ C∞0,σ(Ω) ⊆
L2
σ(Ω), then

−µ
∫

Ω

∆u · ϕ dx = 〈f, ϕ〉

On the other hand

−µ
∫

Ω

∆u · ϕ dx = −µ
3∑
i=1

∫
Ω

∆ui · ϕi dx = −µ
3∑
i=1

∫
Ω

(
3∑
j=1

∂2
xj
ui

)
· ϕi dx =

= −µ
3∑
i=1

3∑
j=1

(
−
∫

Ω

∂xjui · ∂xjϕi
)

= µ

3∑
i=1

∫
Ω

∇ui · ∇ϕi dx = µ

∫
Ω

∇u · ∇ϕ

since also ϕ ∈ C∞0 (Ω).

So we proved that the function is a 6-generalized solution. We now use theorem 9.8.
We deduce that

‖∇2u‖6 + inf
c∈R
‖p+ c‖1,6 ≤ C‖f‖6

Using that ‖p+c‖1,6 =
(
‖p+c‖6+‖∇p‖6

6

) 1
6 ≥ ‖∇p‖6, and so that inf

c∈R
‖p+c‖1,6 ≥ ‖∇p‖6,

we have

‖∇2u‖2
6 + ‖∇p‖2

6 ≤
(
‖∇2u‖6 + ‖∇p‖6

)2 ≤ 2C
(
‖ρut‖2

6 + ‖ρ
(
u · ∇u

)
‖2

6

)
So, thanks to (11.126)-(11.127), and the fact that ‖ρ(t)‖∞ ≤ ‖ρ0‖∞ + 1,

‖∇2u‖2
6 ≤ C ′(‖∇ut‖2

2 + ‖u · ∇u‖2
6)

Moreover ‖∇u‖2
6 ≤M‖u‖2

H2 , and so, thanks to (11.127),

‖∇u‖2
W 1,6 =

(
‖∇u‖6

6 + ‖∇2u‖6
6

) 1
3 ≤ ‖∇u‖2

6 + ‖∇2u‖2
6 ≤ C ′′

(
‖∇ut‖2

2 + ‖u‖4
H2 + ‖u‖2

H2

)
So, using estimate (11.123), we have50∫ t

0

‖∇u‖2
W 1,6 ≤ C ′′

(∫ t

0

‖∇ut‖2
2 dt+

∫ t

0

‖u‖4
H2 dt+

∫ t

0

‖u‖2
H2 dt

)
≤

≤ C ′′′
(
Q exp

(
Q

∫ t

0

‖∇u‖4
2ds

)
+QC(ρ0, u0, p0)

)
50Using also that that

‖u‖2 ≤ C‖∇u‖2 ≤ C‖∇u‖H1 =⇒ sup
(0,t)

‖u‖2H2 = sup
(0,t)

(
‖u‖22 + ‖∇u‖2H1

)
≤ (C + 1) sup

(0,t)

‖∇u‖2H1

and so using (11.123) we have

sup
(0,t)

‖u‖2H2 ≤ (C + 1)

(
Q exp

(
Q

∫ t

0

‖∇u‖42ds
)

+QC(ρ0, u0, p0)

)
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So equation (11.123) can be rewritten as

sup
(0,t]

(
‖∇u‖2H1 + ‖√ρut‖22

)
+

∫ t

0
‖∇ut‖22 ds+

∫ t

0
‖∇u‖2W 1,6 ds ≤ Q exp

(
Q

∫ t

0
‖∇u‖42 ds

)
+QC(ρ0, u0, p0)

(11.128)

11.14.3 Strong solution to the transport equation

In the sections above we have found a weak solution to the problem; in particular we
constructed a pair of weak solution (u, ρ). Here u is a weak velocity field; in this section
we want to regularize the density solution ρ of the mass equation in the INSE system.
We have the following theorem.

Theorem 11.8. Let u ∈ L∞(0, T∗;W
1,2
0 (Ω)∩W 2,2(Ω)) the weak divergence-free velocity

field (that is ∇ · u = 0) constructed in the sections above. Remember that

∇2u ∈ L2(0, T∗;L
6(Ω)) (11.129)

Let ρ ∈ L∞(0, T∗;L
2(Ω)) a weak solution to the transport problem{

ρt +∇ · (ρu) = 0 in (0, T∗)× Ω

ρ(0) = ρ0 in Ω
(11.130)

with ρ0 ∈ L2(Ω). Then, if we also suppose ρ0 ∈ H1(Ω), ρ is a strong solution to the
transport equation with ρ ∈ L∞(0, T∗;H

1(Ω)) and it holds the estimate

‖ρ(t)‖H1 ≤ ‖ρ0‖H1 exp

(
C

∫ t

0

‖∇u‖W 1,6ds

)
∀ t ∈ [0, T∗) (11.131)

Remark 11.33. Notice that here we have added a further hypothesis on the initial
density ρ0, that now suppose an integrability property also for the weak derivative.

Remark 11.34. The weak solution obtained in the previous sections is ρ ∈ L∞(0, T∗;L
∞(Ω)).

So, this density is in particular in L∞(0, T∗;L
2(Ω)) since

sup
(0,T∗)

‖ρ(t)‖2 = sup
(0,T∗)

(∫
Ω
|ρ(x, t)|2dx

) 1
2

≤ sup
(0,T∗)

(∫
Ω
‖ρ(t)‖2∞dx

) 1
2

= |Ω|
1
2 sup

(0,T∗)
‖ρ(t)‖∞ < +∞

Proof of theorem 11.8. In this section ρ ∈ L∞(0, T∗;L
2) will always represent the weak

solution in the hypothesis of theorem 11.8, that is the weak solution built in the previous
sections.
From the construction of the velocity field explained in the sections above, we have that
u ∈ L∞(0, T∗;H

2): the hypothesis remark that ∇·u = 0 and u ∈ L∞(0, T∗;D
1,2
0 ∩D2,2).

Moreover, we are supposing ∇2u ∈ L2(0, T∗;L
6(Ω)). All these hypothesis will help us

to prove the statement.
We want to approach the initial density and the velocity field, so that the problem

can be considered as a classical problem. First consider the density ρ0.
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Remark 11.35. We want an external approximation also for the initial density. Since
the domain is bounded, we can consider an extension of the function to the whole R3,
that is ρ0 ∈ H1(R3) such that

‖ρ0‖H1(R3) ≤ C ′′‖ρ0‖H1(Ω)

This new initial density coincides almost everywhere in Ω with the old one. Since
H1(R3) ≡ H1

0 (R3), as already observed, we have that exists a sequence ρ0
n ∈ C∞c (R3) ⊆

C∞(Ω), such that

lim
n→∞

‖ρ0 − ρ0
n‖H1(Ω′) ≤ lim

n→∞
‖ρ0 − ρ0

n‖H1(R3) = 0

for every Ω′ ⊂ R3. Moreover, for every k ∈ N exists mk such that

‖ρ0
nh
‖H1(Ω′) − ‖ρ0‖H1(Ω′) ≤ ‖ρ0 − ρ0

nh
‖H1(R3) ≤

1

h

So
lim
h→∞
‖ρ0

nh
‖H1(Ω′) ≤ ‖ρ0‖H1(Ω′) (11.132)

So, the approximating sequence can be chosen with the property (11.132). Observe
that the sequence does not depend on Ω′. �

We also want to regularize also the velocity field, so that equation (11.130) con be
considered in classical sense. In particular, we want a (possibly) smooth field u with
zero boundary values and a divergence free property. Remembering that u ∈ H1

0 (Ω) and
∇ · u = 0 in the weak sense, we have that a simple convolution will assure a divergence
free property for the regularized function; however, the mollification would modify the
boundary values. So we have to proceed with caution.

Remark 11.36. In particular observe that the following extension of u in the whole R3

space maintain the properties underlined above

u(x, t) :=

{
u(x, t) x ∈ Ω

0 x /∈ Ω

and

∇u(x, t) =

{
∇u(x, t) x ∈ Ω

0 x /∈ Ω

In particular u ∈ L∞(0, T∗;H
2(Ω)). Weak derivatives continue to hold. In fact the

equality∫
R3

u(x, t)ϕxi dx =

∫
Ω

u(x, t)ϕxi dx = −
∫

Ω

∂xiu(x, t)ϕ dx = −
∫
R3

∂xiu(x, t)ϕ dx

holds for sure if ϕ ∈ C∞c (Ω); if this is not true, but ϕ ∈ C∞c (R3), then we can approx-
imate the intersection of the support of ϕ and Ω with smooth functions from inside.
Thus, it follows ∇ · u(t) = 0. Moreover ∇2u ∈ L2(0, T∗;L

6(Ω)) and the weak derivative
argument continues to hold.
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Observe moreover that u(t) ∈ H1
0 (Ω), since the approximation with test functions of u

can be extended to an approximation of u by defining as zero51 the test function outside
Ω. �

At this point we observe that u ∈ L2(0, T∗;H
2,6(Ω)). In fact by the hypothesis on u we

have, thanks to (11.40),

‖∇u‖6 ≤M‖∇u‖H1 <∞

Moreover∫ T∗

0
‖∇2u‖26 dt <∞,

∫ T∗

0
‖∇u‖26 dt ≤M2

∫ T∗

0
‖∇u‖2H1dt ≤M2T∗

(
sup

(0,T∗)
‖∇u‖H1

)2

<∞

since u ∈ L∞(0, T∗;H
2). So, in particular,

C1 :=

∫ T∗

0
‖∇u‖2∞(s) ds ≤ C2

∫ T∗

0
‖∇u‖2W 1,6(Ω)ds ≤ C

2

(∫ T∗

0
‖∇u‖26 dt+

∫ T∗

0
‖∇2u‖26 dt

)
<∞

(11.133)

since

‖∇u‖2
W 1,6 =

(
‖∇u‖6

6 + ‖∇2u‖6
6

) 1
3

52

≤ ‖∇u‖2
6 + ‖∇2u‖2

6

Obviously, u ∈ L2(0, T∗;L
6(Ω)).

So, by properties of L2-Banach valued functions space, we have that, if X is a
Banach space, exists un ∈ C∞([0, T∗];X) such that53

lim
n→∞

‖un − u‖L2(0,T∗;X) = 0

If we choose

X := {φ ∈ H1
0 (Ω) ∩W 2,6 : ∇ · φ = 0 in Ω}

equipped with the norm ‖ · ‖X := ‖ · ‖2,6. It clearly is a Banach space54. This implies
that

lim
n→∞

‖∇2un−∇2u‖L2(0,T∗;L6(Ω)) = 0 =⇒ lim
n→∞

(∫ T∗

0

‖∇2un‖2
6 dt

) 1
2

=

(∫ T∗

0

‖∇2u‖2
6 dt

) 1
2

(11.134)

51Clearly the smoothness is maintained.
52Observe that, if a, b ≥ 0, a6 + b6 ≤ (a2 + b2)3 = a6 + 3a4b2 + 3a2b4 + b6.
53See theorem 5.1.
54It is obviously a vector space and the norm is well defined. Consider now a Cauchy sequence φk,

and remember that Ω is bounded. For every ε > 0 we have that exists K such that

‖φk − φh‖2,6 < ε ∀k, h ≥ K

Since ‖φk − φh‖1,2 ≤ C‖φk − φh‖2,6, and so, being Sobolev spaces complete, φk → φ ∈ H1 ∩W 2,6.
Being φk ∈ H1

0 , that is closed, moreover φ ∈ H1
0 . Finally, for every ϕ ∈ C∞c (Ω) we have∫

Ω

φ · ∇ϕ dx = lim
k→∞

∫
Ω

φk · ∇ϕ dx = 0

that is ∇ · φ = 0 in the weak sense in Ω.
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and un ∈ H1
0 (Ω), with ∇ · un = 0 in Ω. Furthermore we also have

lim
n→∞

‖∇un −∇u‖L2(0,T∗;L6) = 0

Moreover, we want to regularize the function also respect with the x-variable. To this
aim, we define the set Am such that

Am := {x ∈ Ωc : dist(x, ∂Ω) >
1

m
}

So we can consider Ωm := Acm.

We set

um,n(x, t) :=

∫
Ωm

ηm(x− y)un(y, t) dy

where the field un has to be understood as in remark 11.36. At fixed t ∈ [0, T∗], this
convolution is clearly smooth in x thanks to properties of convolution. Moreover, it is
continuos as a function of two variables, In fact, if (x0, t0) ∈ Ωm × [0, T∗] we have that

|um,n(x, t)− um,n(x0, t0)| ≤ |um,n(x, t)− um,n(x0, t)|+ |um,n(x0, t)− um,n(x0, t0)| ≤

≤
∣∣∣∣ ∫

Ωm

(
ηm(x−y)−ηm(x0−y)

)
un(t, y) dy

∣∣∣∣+∣∣∣∣ ∫
Ωm

ηm(x0−y)
(
un(t, y)−un(t0, y)

)
dy

∣∣∣∣ ≤
≤
∣∣∣∣ ∫

Ωm

(
ηm(x− y)− ηm(x0 − y)

)
un(t, y) dy

∣∣∣∣+ ‖ηm(x0 − ·)‖2,Ωm‖un(t, ·)− un(t0, ·)‖2

Since un ∈ C∞([0, T∗];X), we can find δ1 > 0 such that ‖un(t, ·) − un(t0, ·)‖2 <
ε
2
. On

the other hand, since ηm(r) is uniformly continuos on R, there exists δ2 > 0 such that

|x− x0| = |(x− y)− (x0 − y)| < δ2 =⇒ |ηm(x− y)− ηm(x0 − y)| < ε

2

it follows that

|um,n(x, t)−um,n(x0, t0)| ≤ ε

2
‖un(t, ·)‖2+

ε

2
‖ηm(x0−·)‖2,Ωm ≤

ε

2

(
max
t∈[0,T∗]

‖un(t, ·)‖2+‖ηm(x0−·)‖2,Ωm

)
Moreover, thanks to the convolution properties, the x-derivative is continuos over Ωm,
and, thanks to the theorem 3.2,

|∇um,n(x, t)| =
∣∣∣∣ ∫

Ωm

ηm(x− y)∇un(y, t) dy

∣∣∣∣ ≤ (∫
Ωm

|ηm(x− y)|2 dy
) 1

2

‖∇un(·, t)‖2 ≤

≤
(∫

R3

|ηm(x− y)|2 dy
) 1

2

max
t∈[0,T∗]

‖∇un(·, t)‖2 ≡
(∫

R3

|ηm(z)|2 dz
) 1

2

max
t∈[0,T∗]

‖∇un(·, t)‖2

so that

sup
t∈[0,T∗]

‖∇um,n(t)‖∞ ≤
(∫

R3

|ηm(z)|2 dz
) 1

2

max
t∈[0,T∗]

‖∇un(·, t)‖2
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so um,n ∈ C([0, T∗];C
1(Ωm)).

Finally we underline other two properties of the field um,n. In particular, if x ∈ ∂Ωm,
we have

um,n(x, t) =

∫
Ωm

ηm(x− y)un(y, t) dy = 0

since un(y, t) = 0 if y ∈ B(x, 1
m

). Moreover,

∇ · um,n(x, t) =

∫
Ωm

ηm(x− y)∇ · un(y, t) dy = 0

since ∇ · un(y, t) = 0 by the definition of un. So, we can use this velocity field to solve
the transport problem {

∂tρ+ um,n · ∇ρ = 0 Ωm × [0, T∗]

ρ(0) = ρn0
(11.135)

By the classical theory exposed at the beginning of chapter 8, we have a solution ρm,n

in the classical sense. Considering this solution, we now do some classical estimates.
We have

∂tρ
m,n + um · ∇ρm,n = 0 =⇒ ∂t∂xjρ

m,n + ∂xju
m,n · ∇ρm,n + um,n · ∇∂xjρm,n = 0

Multiplying this equality by ∂xjρ
m,n we have(

∂t∂xjρ
m,n
)
∂xjρ

m,n +
(
∂xju

m,n · ∇ ρm
)
∂xjρ

m,n +
(
um,n · ∇∂xjρm,n

)
∂xjρ

m,n = 0

and so

1

2
∂t|∂xjρm,n|2 +

(
∂xju

m,n · ∇ρm,n
)
∂xjρ

m,n +
(
um,n · ∇∂xjρm,n

)
∂xjρ

m,n = 0

Since ∇ · um,n = 0, we have that

∇· (|ρm,nxj |
2um,n) = |ρm,nxj |

2
(
∇·um,n

)
+um,n ·∇|ρm,nxj |

2 = um,n ·∇|ρm,nxj |
2 = 2

(
um,n ·∇ρm,nxj

)
ρm,nxj

So, it follows

1

2
∂t|∂xjρm,n|2 +

(
∂xju

m,n · ∇ρm,n
)
∂xjρ

m,n +
1

2
∇ · (|ρm,nxj

|2 um,n) = 0

Summing over j and integrating on Ωm we have

1

2

∫
Ωm

∂t|∇ρm,n|2dx+
3∑
j=1

∫
Ωm

(
∂xju

m,n·∇ρm,n
)
∂xjρ

m,n dx+
1

2

3∑
j=1

∫
Ωm

∇·(|ρm,nxj
|2 um,n) dx = 0

Since um,n is zero on ∂Ωm, through the divergence theorem we have that∫
Ω

∂t|∇ρm,n|2dx = −2
3∑
j=1

∫
Ω

(
∂xju

m,n · ∇ρm,n
)
∂xjρ

m,n dx
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So, estimating, we have

d

dt

∫
Ωm

|∇ρm,n|2dx ≤ C

∫
Ωm

|∇um,n||∇ρm,n|2dx ≤ C‖∇um,n‖∞,Ωm
∫

Ωm

|∇ρm,n|2dx

and so by Gronwall’s inequality

‖∇ρm,n(t)‖2
2,Ωm =

∫
Ωm

|∇ρm,n|2(t) dx ≤
(∫

Ωm

|∇ρm,n|2(0) dx

)
exp

(∫ t

0

C‖∇um,n‖∞,Ωm(s) ds

)
≤

≤
∥∥ρm,n(0)

∥∥2

H1(Ωm)
exp

(∫ t

0

C‖∇um,n‖∞,Ωm(s) ds

)
(11.136)

Remember that ‖ρm,n(t)‖2,Ωm = ‖ρm,n(0)‖2,Ωm , since this holds for the solutions of
transport equation with the incompressibility condition ∇ · um,n = 0. We have

‖ρm,n(t)‖2
H1(Ωm) = ‖ρm,n(t)‖2

2,Ωm + ‖∇ρm,n(t)‖2
2,Ωm ≤

≤
∥∥ρm,n(0)

∥∥2

2,Ωm
+
∥∥ρm,n(0)

∥∥2

H1(Ωm)
exp

(∫ t

0

C‖∇um,n‖∞,Ωm(s) ds

)
≤

≤ 2
∥∥ρm,n(0)

∥∥2

H1(Ωm)
exp

(∫ t

0

C‖∇um‖∞,Ωm(s) ds

)
using that exp(α) ≥ 1 for every α ≥ 0. Taking the square root we have

‖ρm,n(t)‖H1(Ωm) ≤
√

2
∥∥ρm,n(0)

∥∥
H1(Ωm)

exp

(∫ t

0

C ′‖∇um,n‖∞,Ωm(s) ds

)
≡ (11.137)

≡
√

2
∥∥ρn0∥∥H1(Ωm)

exp

(∫ t

0

C ′‖∇um,n‖∞,Ωm(s) ds

)
We consider now the term ‖∇um,n‖∞,Ωm . We know that

‖∇um,n(t)‖∞,Ωm = sup
x∈Ωm

∣∣∣∣ ∫
Ωm

ηm(x− y)∇un(y, t) dy

∣∣∣∣ ≤ ‖∇un(t)‖∞,Ω

since 0 ≤
∫

Ωm

ηm(x− y) dy ≤
∫
R3

ηm(x− y) dy = 1. If follows that

‖ρm,n(t)‖H1(Ωm) ≤
√

2
∥∥ρn0∥∥H1(Ω1)

exp

(∫ t

0

C ′‖∇un‖∞,Ω(s) ds

)
where Ω ⊂ Ωm ⊂ Ω1. If follows that, for n ∈ N fixed,

‖ρm,n(t)‖H1(Ω) ≤
√

2‖ρn0‖H1(Ω1) exp

(∫ T∗

0

C ′‖∇un‖∞(s) ds

)
≡ Λ0 ∀t ∈ (0, T∗)

(11.138)
Taking the supremum, we have

‖ρm,n‖L∞(0,T∗;H1(Ω)) ≤ Λ0
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The space L∞(0, T∗;L
2(Ω)) is the dual space of L1(0, T∗;L

2(Ω)) that is separable since
L2(Ω) is separable and the exponent is ≥ 1. So, thanks to a versione of Banach-
Hanaoglu, ρm,n and ∇ρm,n are bounded in its dual space L∞(0, T∗;L

2(Ω)) and then
there exists a subsequence mk and ρn, fn ∈ L∞(0, T∗;L

2(Ω)) such that

ρmk,n
∗
⇀ ρn, ∇ρmk,n ∗

⇀ fn in L∞(0, T∗;L
2(Ω))

Clearly fn = ∇ρn. In fact, for every φ ∈ C∞c (Ω× (0, T∗)),∫
Ω×(0,T∗)

ρn∂xiφ dx = lim
k→+∞

∫
Ω×(0,T∗)

ρmk,n∂xiφ dx =

= − lim
k→+∞

∫
Ω×(0,T∗)

∂xiρ
mk,nφ dx = −

∫
Ω×(0,T∗)

fni φ dx

Remark 11.37. Observe that φ and its derivatives are bounded and ρn ∈ L∞(0, T∗;L
2(Ω)).

So ∫ T∗

0

(∫
Ω

|ρn|2|∂xiφ|2dx
)
dt ≤M‖ρn‖2

L2(0,T∗;L2(Ω)) <∞

So ρn∂xiφ ∈ L2(0, T∗;L
2(Ω)) and so, as we have already discussed, it is in L2((0, T∗)×Ω)

and the Fubini theorem holds. The same is true for fni . �

It holds moreover that

‖ρn‖L∞(0,T∗;L2(Ω) ≤ lim inf
k→∞

‖ρmk,n‖L∞(0,T∗;L2(Ω), ‖∇ρn‖L∞(0,T∗;L2(Ω) ≤ lim inf
k→∞

‖∇ρmk,n‖L∞(0,T∗;L2(Ω)

It follows that

‖ρn‖L∞(0,T∗;H1(Ω)) ≤ ‖ρn‖L∞(0,T∗;L2(Ω)) + ‖∇ρn‖L∞(0,T∗;L2(Ω)) ≤

≤ lim inf
k→∞

‖ρmk,n‖L∞(0,T∗;L2(Ω) + lim inf
k→∞

‖∇ρmk,n‖L∞(0,T∗;L2(Ω) ≤

≤ lim inf
k→∞

(
‖ρmk,n‖L∞(0,T∗;L2(Ω) + ‖∇ρmk,n‖L∞(0,T∗;L2(Ω)

)
≤

≤ 2
√

2‖ρn0‖H1(Ω1) exp

(∫ T∗

0

C ′‖∇un‖∞(s) ds

)
So

‖ρn‖L∞(0,T∗;H1(Ω)) ≤ 2
√

2‖ρn0‖H1(Ω1) exp

(∫ T∗

0

C ′‖∇un‖∞(s) ds

)
(11.139)

Before going on, we want to say somthing about ‖umk,n − u‖L2(0,T∗;L2). Observe that

‖umk,n(t)‖L2 = ‖ηmk ∗ un(t, ·)‖2 ≤ ‖ηmk‖1‖un(t, ·)‖2

using Young’s inequality for convolutions. So, it follows that

‖umk,n(t)− un(t)‖L2 ≤ C‖un(t, ·)‖2
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that has summable square, being un ∈ L2(0, T∗;L
2). Since moreover, ‖umk,n(t) −

un(t)‖2,Ω → 0 as k →∞, being Ω ⊂ Ω1 bounded, we have∫ T∗

0

‖umk,n(t)− un(t)‖2
2 dt→ 0 (11.140)

as k →∞. With the same argument, we have that

‖∇2umk,n‖6 = ‖ηmk ∗ ∇2un(t, ·)‖6 ≤ ‖ηmk‖1‖∇2un(t, ·)‖6

and, being∇2un ∈ L2(0, T∗;L
6), and being Ω ⊂ Ω1 bounded ‖∇2umk,n(t)−∇2un(t)‖6 →

0 as k →∞. It follows that∫ T∗

0

‖∇2umk,n(t)−∇2un(t)‖2
6 dt→ 0 (11.141)

as k → ∞. Thus, these convergence allow us to prove that the limit ρn is a strong
solution to the transport equation. We now prove this fact. Consider, for every k ∈ N,

ρmk,nt + umk,n · ∇ρmk,n = 0 over Ω× (0, T∗) (11.142)

Remark 11.38. As in remark 11.37, ϕ is bounded together with its derivatives, while
ρmk,n is in L∞(0, T∗;L

2(Ω)) and also umk,n · ∇ρmk,n. In fact, we have that

sup
(0,T∗)

‖umk,n · ∇ρmk,n‖L2(Ω) ≤ sup
(0,T∗)

(∫
Ω

|umk,n|2|∇ρmk,n|2dx
) 1

2

≤

≤
√
|Ω| sup

Ω×(0,T∗)

|umk,n| sup
(0,T∗)

‖∇ρmk,n‖L2(Ω)

The second factor is bounded thanks to the estimate (11.138). On the other hand
we have that the other term is bounded thanks to the regularity of the velocity field.
So, the integrand is in L2(0, T∗;L

2(Ω)) and so in L2(Ω × (0, T∗)) ⊆ L1(Ω × (0, T∗)).
Moreover, Fubini holds. �

Using the definition of weak derivative, we have∫
Ω×(0,T∗)

ρmk,nϕt d(x, t) =

∫
Ω×(0,T∗)

(
umk,n · ∇ρmk,n

)
ϕ d(x, t)

for every ϕ = ϕ(x, t) ∈ C∞c (Ω× (0, T∗)). Using the Fubini-Tonelli theorem, we have∫
Ω

∫ T∗

0

ρmk,nϕt dt dx =

∫
Ω

∫ T∗

0

(
umk,n · ∇ρmk,n

)
ϕ dt dx (11.143)

Our aim is to prove, strarting from (11.143), that∫
Ω

∫ T∗

0

ρnϕt dt dx =

∫
Ω

∫ T∗

0

(
un · ∇ρn

)
ϕ dt dx (11.144)

for every ϕ ∈ C∞c (Ω× (0, T∗)); that is

ρnt ≡ −un · ∇ρn (11.145)
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in the sense of weak derivative. So we prove (11.144).
Our purpose is now to pass from (11.143) to (11.144) with a limit argument. We have

quite immediately that

lim
k→+∞

∫
Ω

∫ T∗

0
ρmk,nϕt dt dx =

∫
Ω

∫ T∗

0
ρnϕt dt dx

thanks to the weak star convergence of ρmk,n to ρn (and the integral operator above is the
dual pairing). It remains to prove that

lim
k→+∞

∫
Ω

∫ T∗

0

(
umk,n · ∇ρmk,n

)
ϕ dt dx =

∫
Ω

∫ T∗

0

(
un · ∇ρn

)
ϕ dt dx

With the usual devices, we have∣∣∣∣ ∫ T∗

0

∫
Ω

(
umk,n · ∇ρmk,n − un · ∇ρn

)
ϕ dt dx

∣∣∣∣ =

=

∣∣∣∣ ∫ T∗

0

∫
Ω

(
umk,n · ∇ρmk,n − un · ∇ρmk,n + un · ∇ρmk,n − un · ∇ρn

)
ϕ dt dx

∣∣∣∣ ≤
≤
∣∣∣∣ ∫ T∗

0

∫
Ω

(umk,n − un) · ∇ρmk,nϕ dx dt

∣∣∣∣+

∣∣∣∣ ∫ T∗

0

∫
Ω
un · (∇ρmk,n −∇ρn) ϕ dx dt

∣∣∣∣ ≤
The first limit follows from Hölder’s inequality. In fact∣∣∣∣ ∫ T∗

0

∫
Ω

(umk,n − u) · ∇ρmk,nϕ dx dt

∣∣∣∣ ≤ ∫ T∗

0
‖umk,n − un‖L2(Ω)‖∇ρmk,nϕ‖L2(Ω) ≤

≤
(∫ T∗

0
‖umk,n − un‖2L2(Ω)dt

) 1
2
(∫ T∗

0
‖∇ρmk,nϕ‖2L2(Ω)dt

) 1
2

Observe that∫ T∗

0
‖∇ρmk,nϕ‖2L2(Ω) dt =

∫ T∗

0

(∫
Ω
|∇ρmk,n|2|ϕ|2dx

)
dt ≤ sup

(0,T∗)×Ω
|ϕ|2

∫ T∗

0
‖∇ρmk,n‖2L2(Ω) dt ≤

and using (11.138)

≤ sup
(0,T∗)×Ω

|ϕ|2
∫ T∗

0
Λ2

0 dt <∞

Since umk,n → un in L2(0, T∗;L
2(Ω)), thanks to (11.140), we have that this first limit vanishes.

For the second piece, remember that ϕ ∈ C∞c (Ω× (0, T∗)). So, in particular∫ T∗

0

∫
Ω
un · (∇ρmk,n −∇ρn) ϕ dx dt→ 0 as k →∞

since ∇ρmk,n ∗
⇀ ∇ρn in L∞(0, T∗;L

2(Ω)) and being55 unϕ in L1(0, T∗;L
2(Ω)). So we have

the thesis ∫
Ω

∫ T∗

0
ρnϕt dt dx =

∫
Ω

∫ T∗

0

(
un · ∇ρn

)
ϕ dt dx (11.147)

55 ∫ T∗

0

‖unϕ‖L2(Ω) =

∫ T∗

0

(∫
Ω

|unϕ|2dx
) 1

2

dt ≤MT∗ sup
(0,T∗)

‖un‖L2(Ω) <∞ (11.146)

where M is a bound for ϕ and un ∈ L∞(0, T∗;H
2(Ω)).
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for every ϕ ∈ C∞c (Ω×(0, T∗)). We now have to consider again the estimate (11.139). Moreover,
thanks to remark 11.35, being Ωm ⊂ Ω1, for every m ∈ N, we have that

‖ρn0‖H1(Ωm) ≤ ‖ρn0‖H1(Ω1), lim
n→∞

‖ρn0‖H1(Ω1) ≤ ‖ρ0‖H1(Ω1) ≤ ‖ρ0‖H1(R3) ≤ C ′′‖ρ0‖H1(Ω)

and so
lim sup
n→∞

‖ρm,n(0)‖H1(Ωm) ≤ lim sup
n→∞

‖ρn0‖H1(Ω1) ≤ C ′′‖ρ0‖H1(Ω)

On the other hand the bound ‖ρn0‖H1(Ω1) ≤ ‖ρ0‖H1 + 1 holds for every n large enough. It
follows that equation (11.139) becomes

‖ρn‖L∞(0,T∗;H1(Ω)) ≤ 2
√

2
(
‖ρ0‖H1 + 1

)
exp

(∫ T∗

0
C ′‖∇un‖∞(s) ds

)
(11.148)

Observa that∫ T∗

0
‖∇un‖∞(s) ds ≤

√
T∗

(∫ T∗

0
‖∇un‖2∞(s) ds

) 1
2

≤ C
√
T∗

(∫ T∗

0
‖∇un‖2W 1,6(s) ds

) 1
2

Since the later integral converges, thanks to (11.141), we have that ‖ρn‖L∞(0,T∗;H1(Ω)) is
bounded, for n large enough. So, we have that there exists a subsequence nh and two function
ρ, f such that

ρnh
∗
⇀ ρ, ∇ρnh ∗⇀ f in L∞(0, T∗;L

2(Ω))

In particular, repeating the arguments above, we have

‖ρ‖L∞(0,T∗;L2(Ω) ≤ lim inf
h→∞

‖ρnh‖L∞(0,T∗;L2(Ω), ‖∇ρ‖L∞(0,T∗;L2(Ω) ≤ lim inf
h→∞

‖∇ρnh‖L∞(0,T∗;L2(Ω)

Moreover, equation (11.148) can be rewritten as

‖ρn‖L∞(0,T∗;H1(Ω)) ≤ 2
√

2
(
‖ρ0‖H1 + 1

)
exp

(∫ T∗

0
C ′‖∇un‖W 1,6(s) ds

)
and so

‖ρ‖L∞(0,T∗;H1(Ω)) ≤ lim inf
h→∞

(
‖ρnh‖L∞(0,T∗;L2(Ω) + ‖∇ρnh‖L∞(0,T∗;L2(Ω)

)
≤

≤ lim inf
h→∞

4
√

2‖ρnh0 ‖H1(Ω1) exp

(∫ T∗

0
C ′‖∇unh‖W 1,6(s) ds

)
≤

≤ lim sup
h→∞

4
√

2‖ρnh0 ‖H1(Ω1) exp

(∫ T∗

0
C ′‖∇unh‖W 1,6(s) ds

)
Since now

∫ T∗

0
‖∇unh‖W 1,6 ds→

∫ T∗

0
‖∇u‖W 1,6 ds thanks to equation (11.134), we have

‖ρ‖L∞(0,T∗;H1(Ω)) ≤ C‖ρ0‖H1 exp

(
C

∫ T∗

0
‖∇u‖W 1,6 ds

)
Finally, ρ is a strong solution of the transport equation. In fact (11.144) can again be passed
to the limit. In fact, since un → u in L2(0, T ;L2), the equation∫

Ω

∫ T∗

0
ρnhϕt dt dx =

∫
Ω

∫ T∗

0

(
unh · ∇ρnh

)
ϕ dt dx
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can be passet to the limit with the same devices used above. So we have

ρ = −u · ∇ρ

Moreover, the same argument applied to the two sequences prove that this is also a weak
solution. In fact, let ϕ ∈ C∞c (Ω× [0, T∗)). We have

(ρmk,nϕ)t = ρmk,nt ϕ+ ρmk,nϕt

(ρmk,nϕ)t − ρmk,nϕt +∇ · (ϕρmk,numk,n)− ρmk,numk,n · ∇ϕ = 0

and integrating over Ω× (0, T∗) we have

−
∫

Ω
(ρmk,nϕ)(0) dx−

∫ T∗

0

∫
Ω
ρmk,nϕt dx dt =

∫ T∗

0

∫
Ω
ρmk,numk,n · ∇ϕ dx dt

Thus, since ∫
Ω

(ρmk,nϕ)(x, 0) dx ≡
∫

Ω
ρn0 (x)ϕ(x, 0) dx

and ∫ T∗

0

∫
Ω
ρmk,nϕt dx dt→

∫ T∗

0

∫
Ω
ρnϕt dx dt

since ϕ ∈ L1(0, T∗;L
2(Ω)), we have finally∣∣∣∣ ∫ T∗

0

∫
Ω
ρmk,numk,n · ∇ϕ dx dt−

∫ T∗

0

∫
Ω
ρnun · ∇ϕ dx dt

∣∣∣∣ =

=

∣∣∣∣ ∫ T∗

0

∫
Ω

(ρmk,numk,n − ρmk,nun) · ∇ϕ dx dt−
∫ T∗

0

∫
Ω

(ρnun − ρmk,nun) · ∇ϕ dx dt

∣∣∣∣
that vanishes since un · ∇ϕ ∈ L∞(0, T∗;L

2(Ω)) and ρmk,n converges in weak star to ρn in
L∞(0, T∗;L

2(Ω)) as k →∞. Moreover, we have, if M is a bound for ∇ϕ,∣∣∣∣ ∫ T∗

0

∫
Ω

(ρmk,numk,n − ρmk,nun) · ∇ϕ dx dt

∣∣∣∣ ≤M ∫ T∗

0

∫
Ω
|ρmk,n||umk,n − un| dx dt ≤

≤M
∫ T∗

0
‖ρmk,n‖L2(Ω)‖umk,n − un‖L2(Ω) dt ≤

≤M
(

sup
(0,T∗)

‖ρmk,n‖L2(Ω)

)√
T∗

(∫ T∗

0
‖umk,n − un‖2L2(Ω) dt

) 1
2

Remember that sup
(0,T∗)

‖ρmk,n‖L2(Ω) ≤ Λ0 thanks to equation (11.138). So, we have that also

this term vanishes, since umk,n → un in L2(0, T∗;L
2(Ω)). This means that, for every ϕ ∈

C∞c (Ω× [0, T∗)),∫
Ω
ρn0 (x)ϕ(x, 0) dx−

∫ T∗

0

∫
Ω
ρnϕt dx dt =

∫ T∗

0

∫
Ω
ρn
(
un · ∇ϕ

)
dx dt (11.149)

that is, ρn is also a weak solution in Ω × (0, T∗) with velocity filed un. Moreover, using the
convergence of ρnh , and the fact that un → u in L2(0, T∗;L

2), we can take the limit in

−
∫

Ω
ρnh0 (x)ϕ(x, 0) dx−

∫ T∗

0

∫
Ω
ρnhϕt dx dt =

∫ T∗

0

∫
Ω
ρnh

(
unh · ∇ϕ

)
dx dt
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as h→∞, observing this time that∣∣∣∣ ∫
Ω
ρnh0 (x)ϕ(x, 0) dx−

∫
Ω
ρ0(x)ϕ(x, 0) dx

∣∣∣∣ ≤ ‖ρnh0 − ρ0‖L2(Ω)‖ϕ(0)‖L2(Ω) → 0

So we have that

−
∫

Ω
ρ0(x)ϕ(x, 0) dx−

∫ T∗

0

∫
Ω
ρϕt dx dt =

∫ T∗

0

∫
Ω
ρ
(
u · ∇ϕ

)
dx dt

that is, ρ is a weak solution to the transport equation with velocity field u and initial data
ρ0. Strong and weak solutions coincide (ρ = ρ): We know, by hypothesis, that ρ is a
weak solution to the problem on the whole Ω× (0, T∗). This means that∫ T∗

0

∫
Ω

(ρϕt + ρu · ∇ϕ)(x, t) dx dt = −
∫

Ω
ρ0(x)ϕ(x, 0)dx

for every ϕ ∈ C∞c (Ω × [0, T∗)). But, according to [8], or section 8.2, using in particular
uniqueness theorem 8.5, weak solutions are unique. This means that ρ = ρ over Ω × [0, T∗).
So, we have that ρ is a strong solution of the transport equation over Ω×(0, T∗). This actually

proves the theorem.

Remark 11.39. This theorem proves the first part of (20). The second part follows from the
fact that ρt = −u · ∇ρ and the regularities above56. Finally the equation (21) is proved in
section 11.14.257. �

56In particular, we have

‖u · ∇ρ‖22 ≡
∫

Ω

|u · ∇ρ|2 dx ≤ ‖u‖∞‖∇ρ‖22

that is uniformly bounded in (0, T∗) thanks to lemma 9.6 and u ∈ L∞(0, T∗;H
2(Ω)) and (11.131).

57Actually, in this section it is proved only the belonging to L2(0, T ;L6(Ω)). However, the fact that
∇p ∈ L∞(0, T∗;L

2(Ω)) follows from

‖ρut + ρu · ∇u− µ∆u‖2 ≤ ‖
√
ρ‖∞‖

√
ρut‖2 + ‖ρ‖∞‖u · ∇u‖2 + µ‖∆u‖2

that is uniformly bounded over (0, T∗) thanks to (11.114) and the fact that

‖u · ∇u‖22 =

∫
Ω

|u · ∇u|2 dx ≤ ‖u‖24‖∇u‖24 ≤ C‖∇u‖22‖∇u‖2H1

since Ω is bounded. Moreover remember that u ∈ L∞(0, T∗;H
2(Ω)).
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