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Chapter 0O

Introduction to the problem

0.0.1 The inhomogeneous incompressible Navier-Stokes equa-
tions

Let © a bounded domain in R?® with smooth boundary. The motion of a nonhomoge-
neous incompressible viscous fluid in €2 is governed by the inhomogeneous incompressible
Navier-Stokes equations (INSE, briefly); solving the partial differential equation asso-
ciated to this problem consists in finding a triple of functions (p,w, P) which satisfies
the system of equations

pi(x, 1) + V- (pu)(z,t) = 0
(pu)e(z,t) + V- (pu @ u)(z,t) — pAu(x,t) + VP(z,t) =0 (1)
V-u(x,t) =0

together with the standard mathematical data given by the initial value problem and
the boundary value problem, that is

{p(x, 0=m(®) . g 2

u(x,0) = ug(x

u(z,t) =0 V (x,t) € 02 x (0,T) (3)

where 02 is the boundary of €.
Before specifying the historical process of the study of these equations, the actual
aims of the present thesis, and, consequently, the hypothesis we will require on the

initial data, we briefly point out the physical interpretation of the functions involved in
the INSE.

Physical interpretation of the problem. In a physical interpretation the function
p that appears in denotes the density of the fluid that we are considering, and it is
a scalar function p : Q x I — R2% where I C R is an interval of time; in the case of
a global solution, it coincides with R. On the other hand, u is the velocity field, and
assumes values in R3, u : Q@ x I — R3. Finally P : Q x I — R denotes the pressure
of the fluid, it is a scalar function, to which is associated a gradient pressure term
VP :QxI— R3 Finally i > 0 is the positive constant of wviscosity.
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The first equation in is called mass equation (and it is a transport equation).
This equation has a simple physical interpretation. We explain this with a formal argument.
Consider in fact the density function p(x,t) over a domain 2. The amount of fluid at time ¢
in a subdomain V of € is given by

/ p(z,t) dz
\%4

However, if we introduce a function F'(z,t) that describes the flux of the fluid, we can consider
this flux through the surface of V', that is given by

/ F(x,t) do(x)
ov

It is well known in physics that the variation in time of the amount of fluid equals the opposite
of the flux through the surface, that is

d
G | otant) do=- /W F,t) do() (4)

If the functions involved in are regular enough, we can rewrite

/ptxt /VFxt

By the arbitrariness of the subdomain, where this physical interpretation holds, we can deduce
that

pe(x,t) ==V - F(x,t) over Q
It is physically reasonable to define the flux as F(z,t) = p(x,t)u(x,t), a vectorial function
with module given by the product of density and velocity, that has the same direction and
verse of the velocity (since p > 0). The equation assumes the form

pr ==V -(pu)=—=p(V-u)—u-Vp
If we assume the incompressibility condition V - u = 0 for the velocity, we have
pt+u-Vp=0

that is the so called transport equation. It is clear that the mass equation is a scalar equation.
The second equation of the system is named momentum equation, while the latter is
the solenoidal condition or incompressibility equation. The momentum equation is a
vectorial equation, while the solenoidal condition is clearly scalar.

Consider for a moment the two equations together, to outline a part the story of the
Navier Stokes equations (whose nature is located in the momentum equation, that
expands the physical description of the motion of a fluid merely given by the law of
conservation).

What today is known as Nawier-Stokes System was proposed for the first time by
the French engineer C.L.M.H. Navier in 1822, [21, p. 414], in the form

p(%U—FU'VU) = pAv —Vr —pf(x,t)
V-v=0

(5)



on the basis of a suitable molecular model. Nevertheless, the problem was known, in
a very different stamp, before the formalization actualized by Navier. It is well repre-
sented by the following comment of Truesdell [30, p. 455]:

“Such models were not new, having occurred in philosophical or qualitative specula-
tions for millennia past. Navier’s magnificent achievement was to put these notions
into sufficiently concrete form that he could derive equations of motion for them.”

Notice that here the pressure is not a thermodynamic variable; rather it represents
the “reaction force” that must act on the fluid in order to leave any material volume
unchanged, in contrast to the compressible scheme, where the pressure is a thermody-
namic variable.

Even though the problem has been known before Navier, it was only later, by the
efforts of Poisson (1831), de Saint Venant (1843), and mainly by the clarifying work
of Stokes (1845), that equations found a completely satisfactory justification on
the basis of the continuum mechanics approach. Nowadays, equations are usually
referred to as Navier—Stokes equations.

Today is accepted to relate the nature of the Navier-Stokes equations to the New-
tonian nature of the fluid. A Newtonian fluid is, in the language of modern rational
mechanics, a fluid that respect the dynamical equation

T = —nl +2uD (6)

where T is the so called Cauchy stress tensor, that define the state of stress at a point
inside a material (in this case, a fluid) in the deformed configuration; the tensor I is
the identity; D = {D;;} is defined by

1 Gvi an
Dij =5 <axj * 8%) (7)

and 7 is the pressure introduced above.

In words, the relation @ states that the stress in a viscous liquid produces a gradient
of velocity that is proportional to the stress. In Newton’s words: “The resistance,
arising from the want of lubricity in the parts of a fluid is, cateris paribus, proportional
to the velocity with which the parts of the fluid are separated from each other”; see [22]
Book 2, Sect. IX, p. 373]. However, the deduction of the Navier-Stokes equations
starting from their rational mechanics model is not one of the aims of this thesis.
These brief historical references are a summary of [12, Chap. 1].

Finally, we focus on the latter equation, that is the incompressibility condition.
The third equation is strictly related to the transport equation: the incompressibility
condition, as we will see in section [8.1.1] will ensure that the volume occupied by the
fluid (i.e., the mass associated to the density-solution of the first equationE[) will not

f p(x,t) is the density at time ¢ and position z € (2, the mass of the fluid in Q at time ¢ is

M(t) = /Q p(z,1) do



change, remarking the incompressible nature of the fluid.
The notions of solution that will be involved here are various and to be clarified. In
particular, we are going to introduce new functional spaces to solve the problem.

0.1 Results presented in this thesis

As typical in PDEs, solving the Navier-Stokes equations is not a well posed problem if we
do not clarify what “kind of solution” we are searching for. Fixed the class of functions
in which we want to find some solutions, the problem requires suitable hypothesis on
the initial data to be resolved. The variety of possible situations splits the present
problem into several subproblems: in particular, the existence of smooth solutions to
the Navier Stokes equations is a problem that has never been proved or disproved. This
particular version of the Navier Stokes problem is, from May 2000, one of the so called
Millennium problems, since the study of these equations in applied sciences has revealed
to be fundamental, in particular in applied physics and engineering. So, NSEs deserved
four points (existence and breakdown questions) in the Clay Institute’s list of prize.
The matter is perfectly exposed in Fefferman’s [I1]. Another unsolved problem related
to the Navier Stokes equations is the Euler equation (u = 0), although this particular
problem is not on the Clay Institute’s list.

Apart from this general introduction, in the present thesis we focus our attention on
local strong solutions to the Inhomogeneous Incompressible Navier Stokes Equations.
While the adjective local has a clear meaning (i.e. we are looking for a local time
T € (0,00] of existence of the solutions), the word strong is less explicit. In fact the
meaning of the terms strong and weak, especially dealing with PDE problems, have
different facets. We will clarify this point in chapter Other words involved in
the heading of the problem are incompressible and inhomogeneous: the incompressible
nature of the fluid has already been introduced in section [0.0.1], while the inhomogeneity
of the problem is a consequence of the presence of the non linear term V - (pu ® u).

To understand the hypothesis we will require later and the aims of this thesis, it is
necessary to do a little history of the strong theoryf] for the Navier Stokes equations,
overlooking the results that deal with the problem from a different point of view.

The following brief excursus is taken from [4]. The existence of strong solutions’
has been proved until the ’80s for initial densities py with a positive lower bound. In
particular, in three dimensions, Ladyhzenskaya and Solonnikov proved that for initial
data satisfying

Lo € Cl<§), lgf pPo > O, Uy € WQ_Q/T’T(Q>, V- Uy = 0 (8)

and, eventually, the presence of an external force f € L" (Q X (O,T)) for some r > 3,
there exists a time T, € (0,7) and a wunique solution (p,u,p) to the initial boundary
value problem, such that

uw e L0, T; W2 (), wu € L™ (2 x (0,T,)) (9)

2In the sense of strong solutions.
3 As before, chapter (10| will clarify what kind of strong solutions we are searching for.
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peC(Qx[0,T.]), pelL(0,T;W(Q) (10)

Clearly here we are requiring very restrictive conditions on the initial data, from a
physical point view.

In 1987, Kim improved the regularity of the unique solution, without weakening the
requests on the initial data; however, the physical validity of the model could not be
confirmed since so far the class of admissible initial data, that guarantee the solvability
of the problem, remains unchanged.

In 1990 Padula proved the existence of a unique strong solution for initial densities
po € LY(Q) N Wheo(Q) satisfying the additional property

/ po dz >0 for any ' C Q with positive measure (11)

(in which case, it is obvious that py can only vanish on sets of measure zero).
Hypothesis is again a limitation for a correct physical interpretation of the natural
model: we also have to consider the case in which the fluid does not occupy the whole
(accessible) space, i.e. cases in which the density is zero in some regions of the space.
Indeed, this is a valid request observing physical problems suggested by our reality.
The main difficulty of achieving the existence and the higher regularity of solutions
in the case of vacuum is that it seems difficult to derive a priori estimates for u; in
appropriate norms, since u; in the momentum equation is multiplied by p, possibly
vanishing in some regions.

In the present thesis, following [4], we will overcome this difficulty by estimating Vu,
in L? norm first, then applying Sobolev inequality and finally avoiding the restrictive
hypothesis on the initial density: this is the key point of the work of Choe and Kim
[4], and also one of the key points of this thesis, as we will see below. This method
requires rather higher regularity assumption and a compatibility condition on the initial
data: given a bounded domain 2, we will consider initial densities 0 < pg € L>(9Q)
and initial velocity fields vy € H(Q2) N H*(Q) satisfying the compatibility condition
pAug—Vpy = /pog, for some (po, g) € H'(2)x L*(Q), and the natural incompressibility
condition on the initial velocity field V - ug = 0 in €.

Through the work of Choe and Kim, assuming these hypothesis, we will prove the
existence of a positive time T, > 0 and of a weak solution (p,u) to the initial boundary
value problem , together with some estimates.

Moreover, improving the regularity of the initial density, i.e. assuming also py €
H'(Q), we will prove the existence of a strong solution (p,u,p) to the initial boundary
value problem , together with other regularity properties, as we will specify in the
statements of the main theorems [See [0.1.1].

Now we list all the key points of the present thesis.

e The first goal is to revise and reformulate the resolution of the local problem for
system (1) as presented in [4], collecting in a single place the theorems spread in
literatured?l

e In their beautiful but short paper [4], Choe and Kim claim that, after using
techniques and results based on the fundamental paper by DiPerna and Lions

4See, in particular, the beautiful paper [16] by Kim and the references therein.



[8] on transport theory, published in Inventiones in 1989, one can deduce the
existence of a weak solution to the original problem , which satisfies some
regularity estimates. Quoting Choe and Kim:

" Therefore, adapting the arguments in Lions (1996), we can easily deduce that
the limit (p,u) is a weak solution of the original Eqs. (1)-(3) with the initial

data (py, uo) and satisfies [...] [some] regularity estimates |...]”
(12)

The reference “Lions (1996)” is the paper [20] in the bibliography. The “adapta-
tion” cited above occupies in the present thesis the sections - (about
50 pages). In fact in [4] essentially are omitted the technical details hidden in the
assertion . Lions’ paper [20] provides the devices and the strategies to deal
with the problem; however these tools are spread along the pages, and employed
with different aims.

Another purpose consists in collecting, in a unique chapter, the development over
the centuries of the Stokes theory, concering the Steady State Stokes equation,
together with the related Stokes operator. Such a theory is used in order to study
the regularity of a basis of functions, i.e. the sequence {¢,, }, that is the starting
point of the Galerkin method, widely employed in chapter [II} Chapter [9] gathers
results from [12], [19] and [27].

In chapter [11]a critical reading of Simon’s [26] provides the devices to understand
the non trivial estimates deduced in Kim’s [16].

Chapter [§] summarizes the main results concerning transport theory. This chap-
ter is in particular focused on the fundamental Inventiones paper by Di Perna
and Lions [8], that provides a complete (and arduous) inspection of the problem.
We propose a critical approach to the problem, considering the case of bounded
domain assuming the typical hypothesis of the transport equation on a bounded
domain (i.e. incompressibility and zero boundary conditions). Moreover we pro-
vide a rigorous approach to the formal proofs produced in the paper.

0.1.1 Structure of the thesis

The structure of this thesis is composed by four blocks:

(1)

(i)

The introductive block, to which belongs this chapter, contains the presentation of
the matter (Chapter [0)) and a brief chapter where are collected well-known (and
useful) devices of mathematical analysis (Chapter [1);

The part [I| collects the basis of fluid mechanics, with definition of fundamental
spaces of functional analysis and some tools typical of PDE theory.

Chapter[2]is a brief summary of the main results about Banach and Hilbert spaces.
The approach becomes more specific in chapters [3| [ and [5] that concern, respec-
tively, LP spaces, Sobolev spaces and L” spaces involving time.



Chapter [6] is dedicated to the Helmoltz decomposition, fundamental in fluid me-
chanics and in particular in the present thesis. On the other hand, chapter (7| deals
with weak and strong compactness of LP(0,T; X), where X is a Banach space.
In chapter [10| we finally specify what weak and strong solutions are in the present
context. Chapter |8 takes on the transport theory and the compactness results of
DiPerna and Lions [§], that play an important role in the Navier-Stokes theory
(as revealed by the presence of a transport equation in the Navier-Stokes system).
Finally chapter [9 summarizes almost a century of fluid mechanincs theory, from
the results of Lorentz concerning the whole space Stokes problem (with the in-
troduction of a concrete fundamental solution, analogous to the work of Laplace
in the case of the Laplacian equation) [12, Ch. IV], to the work of Ladyzenskaja
regarding the Stokes equation [19].

The results of this compilative part will be stated and proved (the most of them)
in details, even if the proof of some of them will only be sketched, with references
from insidd’| and outside the present thesis.

(iii) The core of the thesis is placed in part [LI} this part of the work has the purpose of
proving the existence of a local time solution to the INSEs, following the article by
Kim and Choe [4]. This section also takes inspiration from Simon’s [26] to obtain
some useful estimates, and from Kim’s [16] to acquire some useful propositions
and an ODE approach to the problem, in order to build the approximate solutions.

In this part we will prove the following main theorems.

Theorem 0.1. Let Q be a bounded domain in R3 with smooth boundary, and assume
the data pg, ug satisfy the regularity

0<po € L¥(Q), u € Hy(Q) NH*(Q) (13)

and the compatibility condition
pAug — Vpo = +/pog, V-uy=0 in Q (14)
for some (po,g) € HY(Q) x L*(Q). Let T > 0 a fized local time. Then, there exists a

time T, € (0,T) and a weak solution (u,p) € L>(0,T,; H*(Q)) x L>(0,T.; L>(Q)) to
the initial boundary value problem

(pu)e+ V- (pu®@u) — pAu+Vp =0 p(z,0) = po(x) x€
pe+V(pu)=0, p>0 (x,t) € Qx(0,T,) w(z,0) =ug(x) x€Q
V-u=0 u(z,t) =0 (x,t) € 0Q x (0,T%)
(15)
such that for a.e. t € (0,T,) we have the estimates
IVu@®llz <€, le®lla = lleoll, (16)

5In example, if a result follows from a well known functional analysis result referred in the text, a
referenced note will connect the two statements, together with a few lines comment.
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t t
sup (9l + puld) + [ (I9ulfns + ulye) ds < Coxp (© [ 19ul ds)

(17)
and . .
sup (Il + I/Aulf) + [ 19wl ds+ [ 19ulfne ds <
t
< Qexp (@ JROZE ds) +QC(po. w0 o) (18)
0
where
C(po, ug,po) = ||9||§ (19)

Here the local ezistence time T, and the positive constant C,Q depend only on ||pol| L,
IVuoll2, [lg]l2 and the time T; but it is independent of the lower bound of py.

We now state a theorem that assures us, under stronger hypothesis on the initial
density, the existence of strong solutions.

Theorem 0.2. Let Q) be a bounded domain in R® with smooth boundary, and assume
the data po, ug satisfy the regularity

0< poe H'(Q) uo € HQ) N H(Q) iE)
and the compatibility condition
pAug — Vpo = /pog, V-ug=0 (14)

for some (pg,g) € HY(Q) x L*(Q). Let T > 0 a fized local time. Then, there exists a
time T, € (0,T) and a strong solution (p,u,p) that satisfies in the sense of section
[10.3. Moreover, the solutions satisfy

p € L0, T,; H(Q)), pr € L=(0,T,; L*(2)) (20)
Vp € L=(0,T,; L*(2)) N L*(0,T,; L°(Q)) (21)

Remark 0.1. Weak and strong solutions have to be meant in a sense that will be precised
in chapter . o |



Chapter 1

Classical analysis prerequisites

1.1 Notations

The whole PDE theory is based on which kind of domain we are considering. We start
giving the definition of domain that we will adopt in the present thesis.

Definition 1.1. A domain of R™ is a subset {2 of R™ that is open and connected. If
this subset is also bounded, we will call it bounded domain.

Remark 1.1. The symbol C2°(Q2) represents the smooth functions with compact support
in the domain 2. Sometimes, the symbol is replaced by C§°(£2), especially when we use
this set combined with the divergence-free condition, i.e. Cg%,(€2). O

1.1.1 Vectors, matrices and tensors

Writing the name of a vector, we will always mean the column representation of the
vector. The row representation will be represented with u?. So, the juxtaposition
represents the matricial product.

Definition 1.2. Let u,v € R” and A € M,, a n X n-matrix. Then we define the dot

product

U"UCZUTU

The dot product is also called inner product. Moreover, we use the symbol - also to
represent the application between matrices and vectors, that is

w-A-v=ul A, A-v=Av
Definition 1.3. It is also defined an outer product
U@ = uv’
This product is a matriz.
Remark 1.2. We will frequently use
pu®u = (pu)u’ (1.1)

i.e. the product with the transpose. [l



Remark 1.3. The canonical euclidean norm, or 2- norm, of vectors, matrices and tensors
will be represented with the simple symbol | - |: the lack a the number 2 as a pedex
has the purpose of avoiding to get confused with the L? norm, || - ||2, that will be used
massively in the future. Clearly the meaning of the symbol | - | is dued to the context:
if v is a vector, |v| is the euclidean norm of a vector; if A is a matrix, |A| is the 2-norm
of a matrix. This matricial norm is the norm induced by the Frobenious inner product
for matriced!]

(A, B) = Tr(A"B)

For semplicity, we will use the notation
A-B:=Tr(A"B) (1.2)

The - distinguishes this scalar product from the matrix product AB.

Remark 1.4. Sometimes this scalar product is represented with the notation A : B.
However, despite the ambiguity, we prefer to maintain the usual notation of the scalar
product. [

So,

A= VA - A= \/Tr(ATA) =

With these devices, the Cauchy-Schwarz inequalily assumes the form
lu - v| < |ullv] YV ou,veR"

where at the first member | - | represent the absolute value.

It is useful to recall also that, if A € M,,,, and B € M,,,, it holds
|AB| < [A]|B| (1.3)
An application of ([1.3]) concerns the outer product. In fact, if u,v € R, we have
u @ | = [uv”| < Jullv”] = Jullv] (1.4)

since u € M,,; and v € My,.

However, when p # 2, the vectorial (or, more in general, tensorial) p-norm will be
represented with | - |,. So, for example, if v is a vector in R" we have

ol = (Z)

i=1

The definition is generalized to all the components in the case of tensors of bigger di-
mension.

'Remember that
Tr(ATB) = Tr(BAT) = Tr(BT A) = Tr(ABT)
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In future pages, tensors will play an important role: in fact, since INSE involve some
vectorial quantities, their second derivatives will be represented by tensors. Differently
from a vector or a matrix, it is difficult, if not impossible, to represent a tensor graphi-
cally on a paper. However, the representation of a tensor is not useful: we will, mainly,
deal with its norms. So, if T is a n X n X n tensor, we will write

TP => Y > 17

i=1 j=1 k=1

In the same way, we have
n n n

Tp=>" | TP

i=1 j=1 k=1

The definitions can be adapted in the case of tensors of bigger dimension. [J

1.1.2 Remarks on the vectorial nature of the INSE

Definition 1.4. The divergence of a matrix is a vector, in this case a three-dimensional
vector, defined as

I(pu @ u)j)

(V (pu® u))j = oz,

3
je{1,2,3}

=1

Definition 1.5. Another useful vectorial definition is the Laplacian of a vector that is

Au1
Au = | Auy (1.5)
AUg

Remark 1.5. For future computations, we recall here other definitions. Being u (or in
general, another velocity field) a vector, we define Vu as the Jacobian matriz of u. The
same symbol is also used for the gradient of a scalar function, in example the pressure

pP. O

Remark 1.6. As it will be proved in (1.10), the momentum equation can be rewritten
in a slightly different way. In particular

V- (pu@u) = (V- (pu))u+p(Vu) u
So, using the mass equation, we have
O(pu) + V- (pu@u) — pAu+ VP = pus + p(Vu) - u — pAu + VP

that is an alternative way to write Navier-Stokes equations. This formulation will be
very useful in order to find approximate solutions; the limit of this sequence of solutions
will satisfy the weak formulation of the original momentum equation (pu); + V - (pu ®
u) — pAu+ VP =0.0

11



1.2 Topological prerequisites

Definition 1.6. Let (X, d) a metric space, with the topology 74 induced by the distance.
Let Y C X a subset. We will write Y to mean the closure of Y in X.

Definition 1.7. Let (X,dx) and (Y,dy) metric spaces. A function f : (X,dx) —
(Y, dy) is called Lipschitz (or Lipschitz continuous) if there exists L > 0 such that

dy (f(z1), f(22)) < L dx(z1,22) V21,29 € X
L = Ly is called Lipschitz constant.

Definition 1.8. A bounded domain €2, with boundary 0f2, is called a Lipschitz domain
if for every zy € 9€) there exist an hyperplane H"~! > x(, a Lipschitz function f, and
two numbers 7,0 > 0 such that

QNA={r+yv|z € B.(zo)NH" !, —d<y< f(z)}

and
ONNA={z+yv|x€B.(xg) NH" ', y=f(z)}

where v is a unitaty normal to H"~! and
A={x+yv| x € B.(zo) NH" ", |y| <}

Definition 1.9. A bounded domain €2, with boundary 952, is called a C* domain if for
each zy € 90 there exist 7 > 0 and a C* function f : R" ' — R such that

UNB.(xg) ={x € B.(x0)| xp, > f(x1,...,20-1)}
Moreover, it is called a smooth domain if f € C.

We list now some lemmas that will be useful in future proofs.

Lemma 1.1. Let 2 a bounded domain. Then it is defined

d(2) := sup |z —y|

z,yef
It is called diameter of the set.

Definition 1.10. If A, B are two subset of a domain €2, with AN B = (), we define

dist(A,B) == inf |z —y

r€AyeB

Lemma 1.2. Let Q@ C R™ a domain with n > 2. Then there exist a sequence {€);};en
of bounded Lipschitz subdomain of Q0 and a sequence {¢;};en, with ¢; > 0, such that

° ?@~§;?%+1 k/j eN;
o dist(0Qj11,8) > €1 VjEN;

12



e lim ¢; =0;
j—+o0

j=1

Definition 1.11. Let (X, 7) a topological space and Y a subspace of X. We say that
Y is relatively compact in X if its closure Y in X is a compact subset of X.

We state here also the Ascoli-Arzela theorem, that will be very useful in a compactness
argument.

Theorem 1.1 (Ascoli-Arzela). Let a,, € C([0,T]) such that exists C > 0 and K > 0
such that
la,(t)| < C VneN, tel0,T) (1.6)

lan(t) —an(T)| < K|t —7] Vit,7€[0,T], VneN (1.7)
Then exists a subsequence {an, }ren and a € C([0,T]) such that

i max |, (t) — a(t)] =0

1.3 Useful vectorial and matricial calculus identities

We collect here some useful estimates that, going on, we will use in the calculations in
the present thesis.

(i) If Fis a C* vector field and ¢ is a C! scalar function, we have the divergence rule

V-(pF)=¢V-F+F- -V (1.8)

(i) If w = w(x,t) is a C* vector field we have (using Schwarz theorem for partial
derivatives interchainging)

1d 1d 2, ) e
3
= ij (Oywy) =DV - (Gyw; Vwy) — Aw - dw (1.9)
j=1

where in the last equality has been used the previous point.

(iii) If a,b are two sufficiently regular vectorial fields, then

V-(a®b)=(V-a)b+Vb-a (1.10)

This is a formula for the divergence of outer product. By definition, we have

(V- oy, = Al - 57O $7 0, 0, + aidby) =

i—1 ' i=1 i=1



= (V'a)bj+Vbj'&
Bracketing these elements in a column vector we get
V-(a®b)=(V-a)b+Vb-a
that is our assertion.

(iv) It holds

3
Au-u = ZV- (u;Vu;) — |Vul? (1.11)
i=1
In fact, by definition,
3 3
(Au) -u = z:(Auz)uZ = Z V- (Vu)uy,
i=1 i=1

But, according to the first point, we have
V- (u; V) = uV - (V) + Vu, - Vg = 4,V - (V) + |V [?
Otherwisd?
IVul? = |Vu'|? = |(Vuy, Vg, Vug) |2 = |V > 4 | Vug | + [Vus)?
So

3 3

3
(Au)-u = ZV- (Vu;)u; = Z (u; V) — Z |V |* = Z V- (4 V) — |Vuf?
i=1

i=1 i=1
So, the assertion is proved.

(v) If uw € C? is a vector field, we have

A(V-u) = V- (Au) (1.12)

Remember that the laplacian of a vector field is a vector field. We now prove the
identity. We have, using Schwarz’s theorem,

S NTORINED ) LTI 3 LA TE
i=1 j=1

=1 j=1 7j=1 =1

- En:airj (zn: aﬁﬂ”) N i&tjAuj =V (Au)
=1 i=1 j=1

2The Frobenious norm of a matrix has the property that

A2 = |AL2 + ...+ |An)?

if Ay are the columns of the matrix.
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(vi) If uis a C! vector field and 7 is a C! scalar function, then

V(un) =nVu+u® Vn (1.13)

In fact we have
(V(nu));; = Op; (nui) = (0u;m) wi +n (Or;ui) = (@ Vn)iy +n(Vu)y;

(vii) If w and v are two regular verctor field we have

3
Vu- Vv = Z V- (V) —u- Av (1.14)

i=1

In fact we have that
3

((Vu)(Vv)T) =D 0w

i j=1
and so
3 3
Vu-Vu="Tr ((Vu)(VU)T) = Z O Ui O Vs
i=1 j=1
Using that
sz (uz&% Ui) = (9%. uia@j v; + uzai V;

it follows

3

3 3
Vu-Vov = Z Z 8x]. (uz(?x]vz) — Z Zuﬁivz =

i=1 j=1 i=1 j=1

= Z V- (u;Vv;) — Z%‘AU@‘ = Z V- (w;Vv;) —u- Av
i=1 i=1

i=1

1.4 Useful well-known estimates

1. Young’s Inequality. Let ¢,p € R such that p,q > 1 and i + % = 1. Then

T X
abﬁa—+— Ya,b>0
p q

In fact, remembering that ¢(t) := e’ is a convex function, we have
1 1 1 1

2. Parametric Young’s Inequality. Let ¢,p € R such that p,q > 1 and %Jré =1
and € > 0. Then
ab < ea? + C.b? Ya,b>0

A
where C, = %. In fact, it is sufficient to write ab = ((sp);a) ( b ) and
apply the previous inequality.

15



3. Discrete Minkowski’s inequalities. Let a,b € R" and p € [1, +00). Then
(ENWMW)S(ZWW>+<ZWW) (1.15)
k=1 k=1 k=1

1.5 ODEs

Definition 1.12. A function f : D C R® — R™ is uniformly lipschitz if exists a costant
L > 0 such that

[f(x) = fy)l < Llz —y| Vo,yeD

Definition 1.13. A function f : D C R™ — R™ is locally uniformly lipschitz if for all
x € D exists a neighborhood U(x) such that f is uniformly lipschitz in U(x).

Remark 1.7. If D is open, a function f € C'(D) is locally uniformly lipschitz. In fact,
if x € D, then we can consider B,(z) C D, and

[f(2) = f) < Llz—y[  V2zye€B(z)

where { =&, € [r,2] := {tae + (1 —t)z| t € [0,1]} and L := sup
B (z)

%QH.

X

Remark 1.8. We are in this situation if we choose as f the velocity field u(z, ). In fact,
u € C?*(Q x[0,+00),R?), which means that u € C?(A,R?), where A is an open set that
cointains € x [0, 4+00). O

We recalled these definitions to recall the following proposition.

Theorem 1.2. Let f : D x I CR"” x R — R" a locally uniformly lipschitz function in
(z0,t0) € D x I with lipschitz constant L = L(xo,to) in the neighborhood U(xo,to). Let
r >0 and Ty > 0 such that B.(zo) X [to — To, to + To] C U(xg,to). Let 6 > 0 such that

1 M
o< 17 and 0 < min{r, 7}

with M = max |f(z,t)|. Then the Cauchy problem

By (z0) x[to—To,to+70]

x'(to) = 29
has a unique solution x(t) defined for allt € [ty — 6t + 4.
Theorem 1.3. Let f € CY(D x I;R"), (z,t0) € D x I. Let x(t) a solution of

Then exists a maximal extension of x(t), we say T(t), which solves the problem in an
open set J C I.

16



Theorem 1.4. Let f € CY(D x I;R"), (zg,t0) € D x I. Let x(t) a solution of

{a':<t> = f(x(t),1)

x(to) = 2
fort, ty € (t1,t2). Let {ty}ren C R such that t, — t1 as k — oo and

lim z(ty) =7 € R"

k—+o00
Then, exists a > 0 such that z(t) is solution of the Cauchy problem for allt € (t;—a,ty).

Theorem 1.5. Let A an open set in R™ and let f(p,t) € C*(A x [0,T]) be a force,
with k > 1. Consider vy € A and the problem

Then there exists a time 7 > 0 and a unique solution ¢ € C**1([0,7), A) to the problem.
Moreover, we can choose T > 0 as the maximal time of existence of the solution. The
mazimal interval of existence of the solution is an open set.

1.5.1 Gronwall’s lemmas

t
Lemma 1.3. Let f,g € C([a,b]), with g > 0. Suppose that f(t) < fo —|—/ g(s)f(s) ds

where fo is a constant. Then
t
o)< foosw [ ate)as)

Lemma 1.4. Let v :[0,T) — R, continuous such that
t —_—
v(t) < Vo +/ Y(s)w(v(s)) ds YVt €[0,T)
0

where Vo > 0, 1 : [0,T) — R, is continuous and w : [0, +00) — (0, +00) is continuous
and monotone strictly-increasing. Then

<o (o+ [ () i) veep)

o) = / e

Remark 1.9. This lemma is due to Bihari, and we provide the proof in [1, p. 23, Prop.
1.1. O

where
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Proof. We define

So, it follows by the hypothesis that

o(t) < Vo +y(t)
Moreover

y'(s)
w (Vo +y(s))

and so, integrating over [0, ], with ¢ € [0,T), we have

y'(t) =w®)v(t) <w(Vo+y)y(t) = < 4(s) (1.16)

v+ g Voo dr
e |

y(t)+Vo dr t
B /vo w(t) / Vo + y(s / vis

B(0(t)) < Bly(t) + Vo) < S(Vo) + / (s) ds

o(y(t) + Vo) — B(Vo) = /

w(r)

So

By the monoton of ¢~ we have v(t) < ¢! <¢(Vo) + /tw(s) ds), vielo,T) I
0

We now provide a useful Gronwall’s integral lemma.

Lemma 1.5. Let I be an interval of the real line. Let o, B, u be real valued functions
defined on I. Assume that B and u are continuous and that the negative part of « is
integrable on every closed and bounded subinterval of I. If, moreover, 8 is non negative

and if u satisfies the inequality
t
+/ B(s)u(s)ds  Vtel

where a 1s the left extreme of I, and « is non decreasing, then

u(t) < a(t) exp </at6(s) ds) Vel

1.5.2 Time evolution opeator and flow of an ODE

Definition 1.14. Consider an ordinary differential equation

3In fact ¢'(x) = >0, and s0 71 < 13 <= P(x1) < ¢(z2).

w(w)
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where each term satisfies the right condition of solvability mentioned above. We define

o(t;to, o) := x(t)

where x(t) is the solution of the equation. Here ¢ is called flow at time ¢ with starting
data (zo, 1) of the ODE above.

Remark 1.10. If we fix t and to, ¢(zo) := @(t; 19, z0) is a transformation ¢ : R" — R™.
O

Remark 1.11. If ty € [0,T), 2o € R", f € C*(R™ x [0,T],R") and |f(z,t)| < M for all
(x,t) € R™ x [0,T], then the solution exists in the interval of time [0,7]. So we can
consider ¢(t;ty, zo) for all t € [0,7]. Because both t,ty € [0,7], we can also consider
o(to;t, xo). It follows that

(10(1507 2 @(ta lo, 33'0)) = Zo, Qp(ta lo, Sp(t(]v t .Z'o)) = Zo

because of unicity of solution of an ODE (level curves never cross; if they do, then the
curves coincide). In this way, we have found the inverse of the trasformation. O

Lemma 1.6. Let f € C*(R" x [0,T],R"), with |f| < M. Let ¢ the flow associtated to
the velocity field f. Let to € [0,T]. Then

o(t:to,z) = g(x,t) € C*R" x [0, T],R")

Theorem 1.6. Let f € C3(R™ x [0,T],R™) a velocity field such that V, - f = 0 and
If| < M. Let ty € [0,T] and let

M;(z) = D,p(t; ty, x)
with ¢ the flow associated to f. Then det(M;(z)) = det(My,(x)) = det = 1.

Remark 1.12. Tt is a theorem of volume conservation, a generalization of the Liouville
theorem for the Hamiltonian flow. [J

Remark 1.13. This result is important, and justifies the name incompressibility equation
for the divergence free equation of a flow, V- f = 0. As we will see later, this theorem
says that in a change of varibles, where the change is a time evolution operator solution
of a divergence free equation, the Jacobian term is unimportant, because it is costanly
unitary. [J

1.6 Other classical results: surface integrals and di-
vergence theorems

1.6.1 Integrals over manifolds
We first introduce some topological notions.

Definition 1.15. Let V' C R"™ a connected subset of the whole space. We say that V'
is a k-manifold if for every xy € V exists an open neighborhood A, of zy such that
V' N Az, = ¢(U) where the pair (¢, U) satisfies the followings:
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(i) U is open, connected and bounded in R¥, so that U is a compact subspace of R¥;

)
(ii) my(0U) = 0, where my, is the Lebesgue measure in R¥;
(iii) » € CY(U;R™);
(iv) ¢ is an injective function;
(v) Oup(u) has maximal rank for every u € U.

So, we have the next definitions.

Definition 1.16. Let V a k-manifold, and let (¢, U) its representation. We define the
area element of this manifold as

2
det 8(901'1’ tey Qplk) (u>

a(ulw"vuk‘)

where I¥ := {(i1,...,ix) € {1,...,n}F 1 i) <iy < ... <iig}.
Finally we can introduce the most operational definition, that is the integral.

Definition 1.17. Let f € C(V,R). We define

[ rio=[ tin = / Flelw) oun) du= [ 7o) (e du

Remark 1.14. The definition is well posed because QU has zero measure, so it holds the
latter equality in the definition. Morevoer, f o ¢ and o} are continuous function over
the compact U, so the product of the two functions is continuous over the compact and
so integrable. [

Definition 1.18. If V = U Vi, where V; is a k-manifold with representation (¢;, U;),

we define
/Vf do ;:i/%fdazf;/(]if(%(u)) (1) du (1.17)

for ever feC(V,R).

1.6.2 Divergence theorem for regular domains

Theorem 1.7. Let n > 2 and A C R"™ an open, bounded and connected set such that
A={zeR":¢(x) <0}, 0A={xeR":¢(x) =0}, Vo(z)#0 VreiA

with ¢ € C*(R™;R). Let F € C'(A;R"). Then

/A(V-F) d:p:/ F-vdo,_ (1.18)

DA
where v is the normal vector of 0A.

Remark 1.15. Tt is sufficient that A is a C'' domain of R*. [J

4And being V; CV, f € C(V,R).
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Part 1

Functional spaces in fluid mechanics
and PDEs
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Chapter 2

Banach and Hilbert spaces: weak
and strong convergences

2.1 Hilbert spaces

Definition 2.1. A real Hilbert space is a vector space, equipped with a scalar product,
that is complete with respect the norm induced by the inner product.

Theorem 2.1. Let H a Hilbert space. Let C # 0 a closed and convex vector subspace
of H. If v ¢ C, then 3 vy € C such that

— = inf |v — 2.1
o —vo| = inf o —wl (21)

Definition 2.2. Let v € H and C' as above. We define the projection of v over C' as

po(v) = {UO if v C

v otherwise
Definition 2.3. If WW is a vector subspace of H, we define
Wh={ve Hl (v,u)=0 Ywe W}

Corollary 2.1. Let H a Hilbert space and W a closed and convex linear subspace. Let
v € H. Then vy := pwv € W is the unique element of W such that

(v—vy,w)y=0 VYweW

It follows that v = (v — vg) + vy = V' + vy with v € W=,

2.2 Banach spaces

The notion of Banach space is more general then the one of Hilbert space (i.e. every
Hilbert space is a Banach space). Definitions and statements are inspired by [10].

Definition 2.4. A Banach space is a linear normed space (X, ||-||) such that is complete
respect with the norm || - ||.
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Definition 2.5. Let X,Y be Banach spaces. A bounded operator from X to Y is a
function f : X — Y such that exists C' > 0

If(@)lly < Cllzllx

For every Banach space X we can define the dual space of X.

Definition 2.6. If X is a Banach space, then we define the dual space of X as
X*:={f: X — R such that f is a bounded linear operator}

Remark 2.1. For a linear opeator between normed spaces, boundness and continuity
are equivalent. [

Proposition 2.1. The space X* equipped with the norm
If1] := sup [f(z)] (2.2)

llzll<1
1s a Banach space.

Definition 2.7. We say that a Banach space X is reflexive if (X*)* = X. More
precisely, this means that for each u** € (X*)*, there exists u € X such that
(U™, u") = (u*,u) ut e X~

where the symbol (u*,u) denotes the real number u*(u). In other words, the symbol
(-,+) denotes the pairing of X* and X.

Theorem 2.2. Every Hilbert space is reflexive; more precisely, for every f € H* there
exists a unique element xy € H such that

fly) =(v,y) YyecH

Moreover, the map f — xy is a linear isomorphism of H* onto H.

2.3 Strong and weak convergences

Definition 2.8. Let (X, ||-]|) a Banach space. We say that a sequence z;, € X converges
to x € X (in strong sense) if

lim [z —z|| =0
k—+o00

We use one of the following notations

lim z, ==, Tp — T
k—+o0

Definition 2.9. Let (X, || - ||) a Banach space and let X* its dual space. We say that
x, € X converges weakly to x € X if

lim f(a) = f(z) VfeX

k—+o00

In this case we write
T — X
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Proposition 2.2. Let (X, || - ||) be a Banach space. Let {xy}reny C X and x € X. The
following statements hold:

(i) If x, — x, then x), — x;
(i1) If x, — x, then
o] < tminf | (2.3)
(i1i) If X is reflexive and xp € X is such that ||zg|| < C for every k € N, then there
exist a subsequence ry; and an element x € X such that xy, — x.
The latter property is called weak compactness.
We can also introduce a notion of convergence in the dual space X™*.

Definition 2.10. Let (X, || - ||) a Banach space, and let X* its dual space. Consider a
sequence fr € X*. We say that fi is weak star (or weak *) convergent to an element
feXif

lim fi(x) = f(z) Vere X

k—+o00
In this case we write
fo = f
Lemma 2.1. Let (X, || - ||) be a Banach space and X* its dual. Suppose that f, € X*
is such that f, = f with f € X*. Then

o
1fI < 1,1g1+1{30f | fell

Remark 2.2. While the proof of (2.3 is often provided, we prove here lemma since
it is less usual. [

Proof. Define M := || f]| = sup{|f(x)| : = € X, ||z|| < 1}. By the definition of
supremum we have that for every ¢ > 0 exists T € X, [|Z|| = 1 such that

@] > M —=
Since T € X, by the weak-* convergence we have that
i |fi(@)] = /@)
So, exists a K € N such that
|fk(f)|>M—€ Vk>K
Since T is an element in the unitaty disc of X we have that
1fell = [fe(@)]  VEkeN

It follows that
liminf ||fx]| > M — ¢
k——+o0

Since the inequality holds for every € > 0 we have llim inf || £l =M= 7|
——+00

It also holds the following theorem from [I8| part 4.9, problem 10, pag. 269].
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Theorem 2.3. (Banach-Alaoglu) Let Y a separable Banach space and let M C Y* a
bounded subset of the dual space. Then, every sequence in M has a subsequence that
converges in weak star to an element of Y*.

Definition 2.11. A Banach space (X, || - ||) is weakly complete if every weak Cauchy
sequencd!] is weakly convergent to some z € X.

Theorem 2.4. Let (X,|| - ||) a Banach space. Then

(i) The closed unit ball {z € X| ||z||x < 1} is weakly compact if and only if X is
reflexive.

(i1) If X is reflexive, then X is also weakly complete.
Remark 2.3. The theorem is [12, Th. 11.1.3, pg. 32]. O

Theorem 2.5. Let (X, ||-||) a reflexive Banach space and consider a bounded sequence
{ur} € X. Then there exists a subsequence uy, and u € X such that uy, — u. In other
words, bounded sequences in a reflexive Banach space are weakly precompact.

Theorem 2.6. Let (X, || -||) a reflexive Banach space. Suppose that x, = x in X*.
Then x, — z in X.

2.4 Compact operators on Hilbert spaces

Definition 2.12. Let X;, X5 be two Banach space, and let T be an operator T": X; —
X, linear and bounded. We say that T is compact if for every {z,} C X; bounded =
{Tz,} has a subsequence that converges in Xs.

Lemma 2.2. Let (H,(-,-)) be an Hilbert space and consider T € L(H). Then there
exists a unique linear bounded operator T* € L(H) such that

(x,Ty) = (T"x,y) Va,yeH
We say that T* is the adjoint of T'.
Lemma 2.3. If T € L(H) is compact, then also T* is compact.

Theorem 2.7. Let (#H, (-,-)) an Hilbert space. Let B : H — H a bounded, compact and
self-adjoint operator. Then there ezists a sequence {\}ren such that Ay # 0 for every
k € N and

k—+4o0
Associated to this sequence, there exists a complete orthonormal basis, {pr}ren C H,
such that

i.e., zp is weak Cauchy if the following property holds, for all [ € X*: given € > 0, there is
n =T7(l,e) € N such that

1

|l(f£k7$k/)| <e Vk,k/Zﬁ
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Proof. The proof is provided in [23, Th. IV.16, pg. 203]. i

Remark 2.4. Thanks to the self-adjointness of the operator we have that the eigenvalues
are real. If B is furthermore a positive operator, in the sense of (Bp, @) >0 V¢ # 0,
we have \; > 0 for every k € N. In fact, for ¢ # 0,

(Meor, or)  (Bow, or)

>\k = = >0
ok l? k2
that is, the eigenvalues are positive. [
Lemma 2.4. Let (H,(-,-)) be an Hilbert space, with norm || -|| = (-, -)%. Let S a closed,

positive, symmetric bilinear form with dense domain D = D(S) C H, equipped with the

1
norm (H 24 S, )) >. Then there exists a uniquely determinded positive symmetric
operator B : D(B) — H with dense domain D(B) C D, that satisfies

{D(B) ={ueD: S(u,v),YveD, is continuous in || - ||} (2.4)

S(u,v) = (Bu,v) Yue D(B), veD

Remark 2.5. As underlined in [27], pg. 94], a proof is provided in [14, VI, Theorem 2.6]
or [31l Satz 5.37]. The proof rests on the Riesz representation theorem. [

2.5 A fixed point theorem

The following theorem will help us in future chapters to find a solution to a coupled
System.

Theorem 2.8 (Schauder fixed-point theorem). Let X be a Banach space and M C X
a closed, bounded and convex subset of X. Let T : M — M be a completely continuous
operator. Then T has a fixed point in M.

This theorem is a corollary of a well known fixed point theorem.

Theorem 2.9 (Fixed point theorem). If M is a convex, compact subset of a Banach
space X, and T : M — M 1is continuous, then T has a fized point in M.

Remark 2.6. Statements and proofs of these theorems are provided in [I5, pg. 10]. O
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Chapter 3

LP spaces and kernels

3.1 Lebesgue spaces

Consider the measure space (R? B(R?), 1), where B(R?) is the Borelian o-algebra in
R3 and du = dx is the Lebesgue measure in the 3D space.

Definition 3.1. For every 2 C R® measurable set and p € [1,00) we define
LP = LP(Q) :={f] f is a B(R")-measurable function and / |f(z)Pdx < 400} (3.1)
Q

It is well known that L” is a vector space. Morover, it is a normed space with the norm

1= ([ o dx); (32)

With this norm, the space is complete, so it is a Banach space.

We can also consider the limit case p = co. We have

L* =L>Q) ={f:Q—=R]| f is a B(Q)-measurable function and sup |f| < oo}
Q

(3.3)
where sup | f| is the essential supremum of |f|. Also L*>*(Q2) is a Banach space, with
Q

norm

[flloo = sup|f] (3.4)
Q

We claim now two important inequalities, that are Holder’s generalized inequality and
the interpolation inequality.

1 1 1
Lemma 3.1. Let Q be a domain. Let p,q,r be such that 1—9 + ; + o= 1 and let be
ferr),ge L) and h € L™ (). Then fgh € LY(Q) and

[£ghlle < ([ fllpllgllq Al (3.5)
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Lemma 3.2. Let Q be a domain. Let 1 < q <~y <r < oo and a € [0,1] be such that
1 a 11—«

—=—+—— Let fe LIY(Q)NL"(R). Then f € L7(Q) and
Y4 r

LAl < WAl (3.6)

Lemma 3.3. Let I be an interval in R. Let f,, f € LP(I). If f, — f in LP(I), then
there exists a subsequence f,, such that

(1) fn,(t) = f(t) a.e. inl;

(i1) Ezists h € LP(I) such that |f,,(t)| < h(t) for every k € N and for almost every
tel.

Now we state a theorem about differentiation under integral sign for convolutions.

Theorem 3.1. Let Q a domain in R". Let g(x,-) € CY(Q) and 0 < G a measurable
function such that

Let f:Q — R a measurable function, and suppose that
Fo(y) = f(y)g(z,y) € L'(Q) Y2 €Q andalso |f(y)|G(y) € L'()
Then
¢(x) = / fW)g(z,y) dy € CH(Q)
Q

3.1.1 The vectorial case

If u:Q CR" — R™ we want to define the LP for vectorial functions, say LF(Q)™. If | - |
is the Euclidean norm, we define

lull, = ( / |u|pda:)
Q

Another possible choice is to define the norm as

n
fulfyi= (3l
=1

However the two norms are equivalent. In fact, if we look at the second one, we have

Jell, = (Z / rui\p)’l’ -(/ ZH) -(/ \u|§)‘l° (37)

Since the norms | - | and | - |, are equivalent in R”, we have that also the L? norms are
equivalent. A similar argument holds for the matrices.
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3.2 Convolutions and mollifications

Definition 3.2. Let u : {2 — R, with €2 a bounded domain, a function locally integrable
and let Q. = {z € Q| dist(x,00) > eo}. Let n € C(Q2) with compact support in
B(0,¢0). Then, we define the convolution

() () = /B L=y, Ve,

Theorem 3.2. Let Q a bounded domain. Let u : Q0 — R a function such that u €
L3(Q) and v’ € L>®(Q). Let n € C(Q), with compact support in B(0,&0). Then, the
convolution u x 1 has the derivative D(uxn) = Duxn for every xy € Q.

Remark 3.1. If we prove the theorem in an interval I C R, then the theorem holds for
the partial derivatives. So, in particular, it holds in R".

Proof. Consider I C R. Let 2y € I.,. By definition, we have

/50 u(zo +h —y) —u(zo —y)

lim (U * 77) (o +h) — (U * 77)(900) ~ lim
h—0 h h—0

- n(y)dy

—&0

Since u € W2(I), by theorem [3, Th. VIII, pg. 122], we have that exists @ € C(I)
such that v = u almost everywhere in 7, and

a(2) — a(w) = / Wd, Vewel (3.8)

Since the convolution does not change if u changes on a zero measure set, and if h is
small enough to have xo + h —y,x9 —y € I, we have

zo+h—y
Wro+h—y)—u(zo—y) = / o' (t)dt
To—Y
so that
i(zo +h —1y) — a(zy — 1 froth-y 1 [roth—y
| ( 0 y) ( 0 y)| S _/ ]u’(t)|dt§ _/ Hu/Hoo,Idt: Hu/Hoo,I
h h ro—Y h ro—Y

(3.9)
Since ||u/||s,7 is a constant and n € L*((—ep, o)), we have that the incremental ratio
has an integrable bound. It follow that
(@ n)(zo + h) — (@ *n) (o)

lim (u * n)(xo +h) — (u * 77) (x0) _ lim _
h—0 h h—0 h

N /EO ' (zo — y)n(y)dy = /ao u'(zo — y)n(y)dy = (u *n)(zo)

—&0 —&0

Remark 3.2. Since it holds (3.8)), we have, throught the fundamental theorem of Lebesgue
integral calculus, that @ has derivative @’ almost everywhere and that @' = v/ almost
everywhere. []

So we have the thesis. |
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3.2.1 Mollifiers

Consider an open set 2 C R™. We define, for ¢ > 0,
Q. = {z € Q| dist(x,09) > ¢}

Moreover we define the function n € C*°(R") by

Cexp (%) lz] <1
n(x) = S
0 lz] > 1

The constant C' > 0 is selected so that / n(xz) dx = 1. Then, for every € > 0, we set
R3

Ne(z) = glnn (x)

€
The functions 7. are C* and satisfy

/ ne de =1, supp(n.) C B(0,¢)

Definition 3.3. If u : {2 — R is locally integrable, we define its mollification
u(z) = / ne(z — y)uly) dy = / ne(y)u(z —y) dy, Ve
Q B(0,¢e)

We have the following theorem.

Theorem 3.3. Let 2 be a domain. Let € > 0 and consider Q.. Consider u® the
mollification of u € L, (). The the following properties hold.

(1) v € C=(8);

(11) u® — u almost everywhere as € — 0;
(i5i) If f € C(QQ), then u® — u uniformly on compact subsets of §);
(iv) If 1 <p < oo and u € Lj (), then u® — u in L} (Q).

(v) If 1 < p < oo, u € LY (Q), Q is bounded and V,W are open set such that
VccW ccCq, then

1wl ey < llullzeqw)

Proof. We only prove the latter point, since it allows us to remark an aspect of the
convolution. The theorem is [10, Th. 7, pg. 714].

Consider, as above, V. CcC W ccC €. Observe, in particular, that the closures of
these three sets are compact set. In particular, the distance of V' from the boundary
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OW is finite and positive. If d is this distance, we define ¢y := %l. Obviously, ¢¢ only
depends on the three sets. So, let € V', and consider that

()| = | /B ) do] < / e (@ — y)nt (z — y)luly)| dy <

B(z,)

< ( / ) czy)l_’l’ ( / y m(w—y)W(y)\pdy); - ( / y m(a:—y)\u(y)\pdy) p

since / N:(x —y) dy = 1. So, we have that
B(z,e)

1y = /V (@) P < /V ( / ( )ns(fv—y)luw)l”dy) dx <

and, if € < gg, we have that B(xz,¢) C W, since x € V' and the distance d > &y,

S/V(/Wﬁa(x—y)’u(y)!pdy) dxzfvv\u(y)\P(/‘/nE(x—y)dx)dyg
< [ ( [ nte—nie)as= [ utpas = i,

where the latter equality holds since

/ Ne(z —y)dx = / Ne(z —y)de =1
n B(y,e)

being n.(z —y) = 0 if |z — y| > €. This is the thesis.

|=

Remark 3.3. We remark that we only required € < €y, and &g is independent of u, but
only depends on the domains. [J
3.3 Approximation results

We list some density results about L? spaces, that can be found in [24, Th. 3.14, pg.
69].

Theorem 3.4. Let Q be a domain. For 1 < p < oo, the set C.(2) is dense in LP(£2).

Corollary 3.1. Let Q2 be a domain. Then, for 1 < p < oo, the set C°(2) is dense in
LP(Q).
3.4 LP? spaces as functional spaces
Theorem 3.5. Let f,, f € LP(2). Suppose that
i Ul = Ul fo—f in L)
Then f, — f in LP(Q).
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Remark 3.4. It is an application to the L? spaces of the theorem [3], Proposition I11.30,
pg. 52]. O

Theorem 3.6. Let f, € LP(?) and f € LP(Y) such that, for every ¢ € C(2),

lim fn ) dx = / f(z

Suppose moreover that ezists C > 0 such that || f,||, < C for every n € N. Then
fn— f, that is

lim fn ) do = / flx dx Vg€ LYQ)

n—oo

Proof. Let g € L(2) and € > 0. Then we fix p. € C2°(Q2) such that [|g — .||, < &.
It follows that

<

(- gm-ﬂ/ Do+ (o= Dlo— e ds

L/ e d (C“+Hﬂb)€

that is small for n large enough, using the hypothesis on the test functions. i

o= fllllg — %m_]/ . de| +

Theorem 3.7. Let f, € LP(Q) a sequence of function in LP(Q) such that sup || ful|, <
0o. Then, for every € > 0 exists M. > 0 such that !

s | o)l do} <
neN {z€Q: |fn(z)|>M:}

Proof. Let M € (0,00). Then

X{we@: |fu(@)>3 (@) fu (@) | MP~H < | fr(2) P

for every x € (2. Integrating the expression, we have that

p
S N R T e e < 2= (sl
S n(T)|> "

{zeQ: [fu(x)|>M}

and the thesis follows since p > 1. i

3.5 Convergence in measure

Definition 3.4. Let (2, M, 1) a finite measure space. Let f,, f measurable functions
over ). Then we say that f, — f in measure if and only if, for every ¢ > 0

Tim p({r € Q¢ [falx) — [(2)] 2 €}) =0
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We have the following properties of convergence in measure.

Proposition 3.1. Let (2, M, i) a measure space, with j1() < co. Let f,, f measurable
functions over Q. Then the following properties hold.

(i) Let e > 0. If for every 6 > 0 there exists Ny € N such that
p{x e Q: |fulz) — fu(z)| > e}) <6 Y n,m > Ns (3.10)
then exists a measurable function f such that f, — f in measure.

Conversely, if f, — f in measure, then equation (3.10|) holds.
(i1) If f, — f almost everywhere in ), then f, — f in measure.
(i1i) Suppose that f, — f in LP(Q). Then f, — f in measure.

(w) If f, = f in measure, then there exists a subsequence ny, such that f,, () — f(z)
for almost every x € Q).

(v) On the other hand, if f, — f in measure and exists g € LP(Q2) such that |f,| < g,
then f, — f in LP(Q).

(vi) If f., — f in measure and B is a continuous function over R, then B(f,) — B(f)
m measure.

(vii) Let f, a sequence of measurable functions, such that for every By piecewise dif-
ferentiable such that

Br(t) =0 2] <
Be(t) := § Bi(t) > 0 ] >
Bk, B are bounded

= =

exists v, measurable function such that
Br(fn) — v m measure as n —r 00

If moreover f, € LP(Q), with sup || fn||Lr(q) < 00, it follows that exists f measur-
neN

able function such that

fn—f in measure as n — oo
Proof. We only prove the point (vii). We consider the family of functions
B(t) =0 [t <5
Br(t) = Bu(t) =1 [t| >
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where Ay := [k, —3] U [1, k] and S is continuous. The function S, defined above is
piecewise differentiable. This is less than the hypothesis required above; however it is
not a problem. We prove the proposition in this case. It is clear that

R = (—o00, —k] U Ay U [—%, %} U [k, 00)

Using point (i), we have that S (f,) is a Cauchy sequence in measure. So, if we consider
the set

EL(e) ={z € Q: [fulz) — fulz)| > &}
it can be decomposed in a finite number of subsets, depending on the subset [—%, %],
Ay or [—o0, k] U [k, oo] where u,(z) and u,,(x) live. We also define

11

Bk = [_Ea E]a

Cy = (—o0, —k] U [k, 00)
In particular, we define now the set

EYD (€)= {z € Q¢ |fula) = fu(@)| > &, fulz) € D, fulx) € D'}

where D, D’ € {Ay, B, Ci}. It follows that

En(e) = U i (e)

D7D/€{Ak7Bk7Ck}

We now show that, as n, m are large enough, and k£ € N is large but fixed, the set EZZ%,
has small measure.

(i) We first consider ET’ZL’E{Z (¢). In this set we have
e < ful@)=fn(@)| < [ fu(@) = Bi(fn (@) 1] Br(fn (@) = B (fm () [+ Bk (fin () = frm ()]
and so it follows thatfl]

B () € {1 Fn(@) =Bl Fa@)] = S8k (@) =B fn(@)] = ZIAIBi(Fin ()= Fi (@)

9
>
> 3}

The first set is empty if & is large enough, since | f,(z)| < £. The second set has

small measure, thanks to the convergence in measure. The latter set is empty,
since Ok (fm(z)) = fin(zx) for f.(x) € Ag. Clearly Eg%kk (¢) can be studied in the
same way.

(ii) On the other hand we can consider the set
Epfl o ={e € Q| fu(2) = ful@)] > & ful@), fule) € A} C

C {z e Q: |B(ful®) = Prlfm(2))] > }

and so the measure is small.

f a,b,c > 0 and a + b+ ¢ > ¢, then a element in the set {a,b,c} is > e. In fact, if every element
is < £, we have a contradiction.
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(iii) Moreover in every set of the form Efn’%, (¢), with D = Cy or D" = C}, we have, if
in example D = Cy,

ELD(e) S {r €9 |fu@)] > £}

and so

EMD ()] < [z € Q: [fula)] > k| < lewwwa

So the measure is small if k is large enough.

(iv) Finally, the term

n 1
En = A{r € Q: |fal@) = fm(@)] > & [ful@)], [fu(2)] < o)
has small measure if £ is large enough and n goes to infinity. In fact

e < |ful@)=fn(2)] < [fu(@) =B (fn (@) [+]Bk(fr (€)= B (frn (2)) |+ Bk (fin (€)= fru ()]

and so

By € (@) =Bl fal@))] 2 3018 u(@) =Bl Fn(@))] 2 SIU{1B ()~ Fn(@)] 2 5}

€
3
The first and the latter term are empty if k is large enough. The measure of the

second term vanishes if n — oo, thanks to the hypothesis.

So we have that f, is Cauchy convergent in measure. Then, thanks to point (i), there
exists a measurable function f such that f, — f in measure.

3.6 Lebesgue’s Differentiation Theorem

Theorem 3.8. Let Q) be an open subset of R™. Suppose that f € L}, (Q). Then, for
almost every zy € €2 it holds

lim |/x0 . x) dr = f(xg) (3.11)

r—0 |B an
A point xq at which (3.11)) holds is called a Lebesgue point of f.

Corollary 3.2. Let I be an open interval of R. Suppose that f € L; (I). Let Y €
C(1I) be a sequence of test functions over I such that /goff (t) dt =1 for everyn € N

I
and supp(¢¥®) C (== +to,to + 1). Then, for almost every ty € I,

lim [ () f(t) dt = f(to) (3.12)

n—o0 I
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3.7 Further integration theory: kernels

We start this further integration theory with a fundamental definition.

Definition 3.5. A Calderdn-Zygmund kernel is a function K € L, (R"/{0}) such that
exists a constant B > 0 with the following properties:

() [K(0)] < 2 Va0,

el

(ii)/ |K(x —y) — K(z)|de <B VYy#0;
{zeR™:[x|>2[y}

(iii) / K(z)de =0 Y ryr>0.
ri<lz|<rs

Remark 3.5. Keep in mind that a compact subset C' of R"/{0} is far enough from the
origin 0. In fact if for every r > 0 there is a point xy € B(0,7) that is a point of C,
then we can build a sequence z,, € C such that x,, — 0. But also every subsequence of
x, converges to 0, so we have find a sequence in C' such that it hasn’t a subsequence
that converges in C'. This contradicts the compactness of C. So there exists a r > 0
such that each point of B(0,r) is not a point of C. So, if K € C(R"/{0}) and C is a
compact subset of R"/{0}, we have that K, and |K|, are continuous on C. So, |K]| is
summable on C. This means that K € L} (R"/{0}). O

loc
Remark 3.6. Except for the second condition, the other requests seem natural. This
second condition is called Hormander condition. The following lemma gives us a more
operational formulation. []

Lemma 3.4. Suppose that exists B > 0 such that

Vo #0, / K(x)de=0 Y ry,re>0 (3.13)
ri<|z|<re

Suppose moreover that K € C*(R"/{0}) and it holds

VK (z)| < Vao#0 (3.14)

Then it holds also the Hormander condition.

Proof. Since 0, K (z —ty) = —VK(z —ty) -y, by the Fundamental Calculus theorem
we have

K(x)—K(x—y):—/O VK(x—ty)-ydt

Now if 2|y| < |z| we havef]
n+1

e 2
|K(2) = K(z —y)| < Blz —ty| " y| < [ vl

2Observe that the previous expression makes sense if x — ty # 0. But with the last assumption, if
x =ty foratel01],
<<l
ol =yl < Iyl < 15
that is an absurd.
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where has been used that

le<||_||<| —tly| < |z —ty|| < |z —t
= <lel =yl < l=| = tlyl <[] = tly|| < o —ty]

Now we integrate and
/ K(2) — K(z — )| dz < 2" Bly| e
{: |z[>20yl} {a: [z|>2]yl}
Writing the latter integral in polar coordinates we have
C
/ lz| ™" e = ——
o lal>2lyl} 2yl

Substituting B with a costant B’ (and eventually taking the maximum between B and
B’ to have the same constant in the two inequalities), we have the thesis. i

The following proposition will be very useful in a moment.

Proposition 3.2. Let f : R"/{0} — R a function in C*(R"/{0}). Suppose that f is
homogeneous of exponent . Then

(i) Oy, f(x) is homogeneous of exponent o — 1 for every i € {1,...,n};

(it) |f(z)| < Clz|* ¥V x #0, where C = max|f(x)].

|z|=1
Proof. By definition, we have

e hsy _
ax1f<tx) = }llll)r(l) f(t[[‘ + he];) — f(tl’) - }llli% f(ZE + ;6]1) f(ZE)

/() = o ()

Remark 3.7. If f is sufficiently regular in R™/{0}, then |f(z)| < Cy|x|* and moreover,
being |0, f(x)| < Ci|z|*~!, we have

=170, f(x)

On the other side |f(z)] =

< |z|* max|f|. B
|z|=1

97 = (10 @F) < Vi Claf

where C' := max; C;. O
The following lemma paves the way to the hypothesis of the Calderén-Zygmund theo-

re1.

Lemma 3.5. Let K be a Caldeon-Zygmund kernel and let f € C°(R™). Then the
function

¢(z) = lim K(z —y)f(y)dy (3.15)

e—0 |1_7y|25

i1s defined for every x € R™.
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Proof. Let B the constant provided by the definition of Calderén-Zygmund kernel.
With a change of coordinates (namely a translation), we have

/ L Ka—nidy= | K)f (= y)dy =

ly|>e

K () f(x — y)dy — / K(y)f(x)dy

1>|y|>e

- / K=y

ly|>1

where € < 1 and it has been used a property of a Calderén-Zygmynd kernel. We can
rewrite this expression as

| Ke—wswd= [ K@) = sl + [ K-y

1>|y|>e lyl=1

The first integral can be estimated as follows:

(K@) [f(x—y) = f(@)]] < BV fllooly['™
using the Lagrange theoremﬂ and the estimate for K. So

/1>| > ’K(y)[f(x_y)_f(x)]ldySB”fooo/ % dy

1>]y|>e ly

But the function |y|*~™ is integrable near the origin (since n — 1 < n) and so the limit

. 1
T
exists. So also the limit
lim K (y)[f(x —y) — f(2)]|dy

20 J1>py|>e

exists. This imply the existence of the limit of the integral of positive and negative part
of the integrand, and so of the limite of the whole function, that is the difference of the
two limites mentioned above.

So, being

[ K= [ K@) = sl + [ K-y

1>|y[>e ly|>1

we have that the left side is equal to the sum of two integrals with existing limit. It
follows that also exists the limit of the left side. Il

3We have

1 d 1
fat0) = 1@ = | [ Lo+t =| [ rarth)-hat < |9l

and we choose h = —y.
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Remark 3.8. If the kernel is such that the integral
K(x —y)f(y)dy
R3

is well defined, i.e. the product |K(z — y)||f(y)| is summable over R? for every x, we
have in particular that, for a fixed z,

ule) = | Klw=y)fly)dy = lim e K(z —y)f(y)dy

using the Lebesgue dominated convergence theorem. The Calderén-Zygmund theorem
will provide us information about the integrability of the function u. In particular, as
we will see in a moment, if |K (z —y)||f(y)| € L}(R?) for every z € R® and f € L?(R3),
we will have

[ullz < Cli £l

ie. alsouw € L?. O

3.8 The Calderén-Zygmund theorem

Theorem 3.9. Let K € L}, (R"/{0}) a Calderdén-Zygmund kernel. Let p € (1,00) and
consider the operator

T.(f) == flz —y)K(y) dy

ly|>e

for f € LP(R™). Then there exists a constant C, depending only on B, n, p, and
independent of €, such that

IO < Coll £l (3.16)
Moreover, for every [ € LP(R™) exists the strong limit

Ti(f) :=lmT.(f) in LP(R")

e—0

The operator Tk is bounded in LP(R™) and obeys to the same bound ({3.16)).

The rest of this section is committed to prove this Calderén-Zygmund theorem.

3.8.1 The Calderon-Zygmund decomposition

Definition 3.6. In the following claims, a cube Q) with sides parallel to the axes in R"
will be the closed cube

Q:={xeR": x; €la;b), la;—b)|=1 Vi=1,..n}

with measure |Q| = {". By @ we will mean the interior of the cube Q.
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A daughter of the cube @ is a cube @)’ of side % obtained dividing @) into 2" sub-cubes,
[ [
i.e. dividing I; = [a;, b;] = {ai, a; + 5} U [ai + 3 bi] =I' U

..... by ={TERY: m el ke{l,2}, Vi=1,.,n}

7777 ’n)

Theorem 3.10. Let f € L'(R") and o > 0. Then there exists a countable collection
of cubes with sides parallel to the axes, say {Q;};en, with disjoint interiors such that

1

a< — |f(z)] de < 2"«
’QJ‘ Qj

Moreover we can decompose the function f. In particular, consider

Q:=JQ;, F=RYQ

jeN
Then, we have the following:
(i) 19 < a7 fllpr@n);
(ii) 3 E CR", |E| =0 such that |f(z)| < « for every x € F/E;

(i1i) There exists two functions g and b such that

f(x) = g(x) +b(x)

such that |g(x)| < 2"« almost everywhere and for every p € [1, o]

p—1 N
lgllzr(eny < a7 (14 2") 2| fll [ zny

and b(z) =0 for all x € F. Finally

/ b(z) dz =0  VjeN, 1l 21 eey < (14 2")[1f 1|21 ey (3.17)
Q

J

Proof. First of all, we can write R as the union of a countable collection of cubes
with disjoint interiors such that

[fllzr@ny < Q]

for every cube @ of the family. Each cube can be divided into 2™ daughters, with sides
parallel to the axes. For each daughter )’ of a cube @), we can compute the number

1
|f(x)| dz. At this point we ask if this number is larger or smaller that o. We
Q' Jo

have two possibilities.
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1
o If 5] |f(z)| dz < «, we consider the daughters of the cube @', now considered
Q/
as a father;
o If

1
Q| /Q/ |f(z)| dz > « then we retain to this cube a special role.

This "sketched” algorithm allows us to construct a countable sequence of cubes.

Let {Q;}, a first countable family of cubes, with the property

1Al 2r ey < Qs (3.18)

Dividing each cube @); we obtain a new countable sequence of cubes. In particular, to
each father cube ); they are related

Q; — QY

The relation with the father is important in view of the next step. If now

1
W/Q(’“)V(mﬂ dr < a
J J

we subdivide Q;k) into 2" daughters. On the orher hand. if

1
W\/Q(k) ’f(l’)' dr > «
J J

we retain the cube as one of the {C},};.
Remark 3.9. Observe that

1
e < Q] = = [ [fl@)]de<a
Q5] Jg,

So the original cubes @); have to be divided into daughters. [J

So, we have described a first pass of the construction. Starting from the original cubes
(); we have obtained some daughters that have been retained in the {C}}),, and some
daughters that have been subdivided into other sub-cubes. At the end of this step we
have a countable number of cubes retained and a countable number of cubes to which
we will apply again this process. Since the number of steps is ”scanned” by the sepa-
ration of the cubes (that is a countable process), and each steps produces a countable
number of cubes to retain, we have that the family {C}}; of set to retain is countable,
since countable union of countable sets.
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Define now ) := U Ch. Observe that the interior ', are disjoint by construction,

heN
since we have started with disjoint interiors and the construction mantained the prop-

erty. In particular, we have that, if P, is the father of C, then |P,| = 2"|C}| and

1

] ), f@ldr<a

since otherwise we would have already stopped the process at P,. So

1
|f(z)] de < 2"« (3.19)
Gl Je,
1
being |f(x)] doe < — |f(x)| de < a. Furthermore observe that
28|Chl Je, 1Pal Jp,
<Y icl< Yo [ it =a (3 [ 1@lar) —at [ ip)ae <
heN heN heN UnenCh
< a—lufuLl(Rn) (320)

Now, by the Lebesgue differentiation theorem we have that exists £ C R™, |E| = 0
such that

f(x _qlzlinm@/f VeeR"E

where () is a family of cubes that contain x and () — = means that their diamters
converge to zero.

Let now x € F/E. We have that z ¢ Q, so that x ¢ C} for every h € N. So,
there exists a subsequence of cubes @)/, containing x whose diameters converge to zero
and which are not elements of the family {C},},, thanks to what we have just said. So,

in particular,
1

=1 [ f@)ldr<a
@l Jay,
It follows that | f(z)| < a. We now define
f(x) reF
= 1 °
9(z) f(z) dz x€C,
[Chl Je,

This defines g almost everywhere. Moreover, using that |f(z)] < a over F, equation

(3.19) and that 2™ > 1, we have

lg(z)| < 2"a almost everywhere

Moreover, we have that
[ ls@l dz = [ 1P de <0l
F F
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and, using ((3.20)),
/ g(2)P do < 27a?|Q) < a1 2|| ]| e
Q

We now consider the function b(x) := f(z) — g(z), that is defined almost everywhere
and, by definition, it vanishes on F'. Moreover

[ vy do= [ (r0) = gla)) dr =0
Ch Ch
Finally, being |b| < |f| + |g|, we have
/Q!b(x)l dr < | fller@ + 9l < I F @y + 2"l < [ fllzr@n (1 +27)
and this completes the proof. i

3.8.2 The Marcinkiewicz Interpolation
Definition 3.7. An real operator T over a vector space V' is said to be sublinear if
(i) T(yv) =~T(v) for every v > 0;
(i) T'(v +w) <T(v) + T(w) for every v,w € V.
Definition 3.8. A sublinear operator is said to be weak type (p, q), with ¢ < oo, if for
every f € LP(R")

{z e R"| |Tf(x)] > a}| < (M)q

- (3.21)

for every a > 0, with C' independent of o and f.

Remark 3.10. If [|Tf||Lemny < C||f]lzrny holds, then by the Chebyshev’s inequality
we have that it is weak type (p,q). O

Remark 3.11. If p € (p1, p2), then
LP(R™) C L (R™) + LP2(R")

In fact, let f € LP(R™) and choose v > 0. Define

and



Obviously f = f, + f7. Moreover

1Mo @ny S PPN Ny 1 N2 ey < A7 7PN )

In fact, observe that

1 by gy = / @) de = / @) PP @) de =
{zeRn: |f(x)|>~} {zeR™: |f(x)[>~}

1
= |f(z)[P dr <«
/{xeRn: 1f(z)|>7} | f(@)[p=r

and analogously we have

112 ey = / @) da = / F@PLF@P do <37 £
{zeRn: |f(x)|<v} {zeR": |f(z)|<v}

ner \f( )P dx

and these are the desired estimates. [J

Theorem 3.11. Let r € (1,00]. Assume that T is subadditive and weak type (1,1) and
weak type (r,r). Then, for every p € (1,r), there ezists a constant C, such that

I flivgry < CollF vy (322)
Proof. Fist consider r < co. We take a > 0 and denote
AMa) ==z e R": [Tf(x)] > a}
Decompose now f = f, + f*. Observe moreover that
e eR": |Tf(@)| >} C{x € R : [Tfula)| > F}U{z € R s [T/°(@)] > T)
since |T(f)| = |T(fa+ fY)| < |T(fo)| + |T(f*)| by sublinearity. It follows that

Aa) < [z e R™: [Ta(@)| > SH + o € R : [Tf(@)] > S} <

C o 1(Rn C @ 7 (R" " C OT
< Olfeluen , (SMen )G [ g o ars & [ (e ae -
e o o Rn
C C’“
-2 @) do F@lrdr (329
{zeR™: [f(z)|>a} {zeR™: |f(z)|<a}

using the hypothesis on T" as a weak operator. Now, we multiply by pa?~! and integrate
for o € (0,00). The first term becomes

o0 | ()] 1
p—1_—1 — p—2 = — pd
/0 fo Ve (/|f|>a|f|dx) do /]R" |f(x)|(/0 o da> dx ) |f(x)|P dx

and the second

o o) 1
p—1_—r r — r p=l=rq dx = Pd
[ ([ v@ra)do= [ y@r( [ omia)aes o [ i
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where Fubini’s theorem can be employed since the second iterated integral is finite,
being f € LP(R™). Moreover

/ PNz R : [Tf(z) > a}|da:/ ap—1</ dm) oy —
0 0 {zeR™: |Tf(z)|>a}

and so, if f € LP(R™), we have, looking at the inequality (3.23)) that the latter integral
is finite. So, using Fubini’s Theorem we have that the integrals can be interchanged,
and thus, continuing the chain of equality,

|Tf ()] . 1 1” |p
= o’ da ) dr = — TfiE de:_Tf p(R"
L/ )= [ AP de= TS

It follows that T'f € LP(R™). So, we have the thesis in this case. If » = oo the proof
can be adapted. |

3.8.3 Fourier transform

Definition 3.9. Let u € L'(R"). We define the Fourier transform of u as

U = —1 e~ Yyu(z) dx
R O

On the other hand, the inverse Fourier transform of u is

7 = ! e Yu(x) dx
W)= g [ et d

Remark 3.12. Since |e*™¥| = 1 and u € L'(R"), then the integrals converge.

The following theorems list some important theorems.

Theorem 3.12. Let u € LY(R") N L*(R™). Then 4, u € L*(R") and
@l 2@y = [Jl| 2@ny = NlullL2 @y (3.24)

Definition 3.10. Fourier transform in L*(R"). Let v € L?*(R"). Then there exists
uy, € L*(R™) N L?(R™) such that

1' - n)y —
Jim flu, — ulfp2eny = 0
Using equation ([3.24])), we have that
ik — @]l z2ny = lluk — will2@ny = [luk — )l L2

so that 4y, is a Cauchy sequence in L?(R™). We define @ has its limit in Z?(R™). Similarly
we can define .

Remark 3.13. If u € L*(R™), we have that 4 is defined and
lullp2ny = lim fJug][p2@ey = lim (g p2gn) = @] 2n
where u;, € LY(R™) N L*(R"). So, the equality (3.24]) holds also in L?*(R™). O
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Theorem 3.13. Assume u,v € L*(R™). Then the following properties hold:

0/ u@d:ﬂ:/ o dx;

o Dou = (iy)*a for each multiindex o such that D*u € L2(R™);

—

o (uxv)=(2m)200;

¢

® U =
The following theorem let us finally introduce a generalization of Sobolev spaces.

Theorem 3.14. Let k > 0 be an integer. Then a function v € L*(R™) belongs to
H*(R™) if and only if
(1+ |y)a € L*(R")

In addition, there exists a positive constant C such that

1 R
5||U||Hk(Rn) <@+ [yl 2@ey < Cllul| gegn)

for each u € H*(R™).

3.8.4 Properties of singular kernels

We now list some properties of the Calderén-Zygmund kernels introduced at the begin-
ning of section

Definition 3.11. Let K be a Calderon-Zygmund kernel. For every £ > 0 we define

K(z) |z =e
0 lz| < e

(Ce(K) (x) := {

Moreover, we consider
i [T
(r.K)(z) ="K (g)
and for f € LP(R™) we set (6.f)(z) := f(ex).

Definition 3.12. Moreover, we define the convolution operator

Tr(f)(x) = - K(x —y)f(y) dy

Proposition 3.3. The following properties hold.

(i) If K is a Calderdn-Zygmund kernel, then also 1. K is a Calderdn-Zygmund kernel
with the same constant B, for every ¢ > 0;

(ii) For anye >0
CL(K) = 7.(Cy (71 (K))
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(i) If K is a Calderén-Zygmund kernel, then Cy(K) is also a Calderdn-Zygmund
kernel, with a constant By > 0 depending on B and the dimension of the space
only;

(i) Suppose that f, K and € are such that the image T,k f has sense. Then
(6:750.) | = Trurcf

(v) If T : LP(R") — LP(R") is a bounded linear operator, then the family 6116,
satisfies the uniform bound -

sup [|01 76| (Lo n), Lorn)) < C
e>0 €

(vi) It holds F (C.(K)) (&) = F (Cl(T;K)> (€€), where Fq is the Fourier transform
of g.
Remark 3.14. Since C.(K) = 7.(C1(11(K))), we have, thanks to (i) that 1 K is a

Calderén-Zygmund kernel, so that, thanks to (i), Ci(71K) is a Calderén-Zygmund
kernel. Finally, using again (i), we have that C.(K) is a Calderén-Zygmund kernel. [J

Proof. We first prove that 7. K is a Calderén-Zygmund kernel with constant B. In
fact,

i i
— —-n - < —-n - — —-n
(K)@)| ==K (2) | <eB|2| " = Blal

’ —n
Moreover

.K)(r—vy)— (1. K)(x)| dv ="
[ 16 =)~ ) /

|z]>2]y]

w(22)-x ()

Finally
x

/ (r.K)(z) do =¢™" / K (—) do = & / K(z)e"dz=0
r1<l|z|<rs r<|z|<rs € lz)< 2

We now compute, in order to prove the second point, the composition 7.(C}(71(K))).
First of all )

(11 K)(x) = e"K(ex)
So, it follows that

(@ () 0= {5 112

Finally

(@ () - {3 122 = o

0 z| <e
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We now prove the third point. Consider a Calderén-Zygmund kernel K. By definition,
for every x # 0,

K ()| 2| =
Ci(K)(x)| := < Blx|™
G ) {0 SRR
Fix now A > 1 and p > 0. Then
/ |K(x)| dx < B/ |z|™" dz = w,Blog A (3.25)
p<|z|<Ap p<|z|<Ap

where w, is the area of the unit sphere S*~! in R”. Using this estimate, we have

3
/ K(z )| de < w,Blog
lz|>2]y|, |z—y|>1, |z|<1 2

choosing p =1 and A = 3, since 1 < |z —y| < |z| + %‘ < 3. On the other hand

/ |K(x)| de < w,Blog?2
lz|>2ly|, l[z—yl<1, |z|>1

since we can choose p =1 and A = 2, being 1 < |z| < |z —y| + |y < 1+ Iw\ , that is
|z| < 2. So, the constant B; can be choosen as By := (1 + wy, log3)B.

We now prove the fourth point. Remember that

(0:f)(z) := flex)
and thus we have

T (0 f)(x) = | K(z—vy)f(ey) dy

Rn
Then it follows that

o (0. @) = [ 5 (E=) e dn= [ w0 (S o) dy =
x — dz
- [ & (*5)10% = @uh @
Let now T : LP(R™) — LP(R™) be a bounded linear operator. In particular

Tf Lp Rn
ozrerr@®m) || f|lLren)

=C<o0
Consider now the operator

fla) 25 flex) 55 T(f(e) = g(-) —= g(=)

So, we have

1 ny — 1 ny — E p ;y;% pn ;:
1 (5:75) Al = Isalaseer = ([ 10 () ae) "= ([ latwpe ay)
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1

=7 ||T(6:f) | o) < €7 Cll0cfll ooy = 520( |f(ex)? dﬂ?) =
R”

= sio( [ 1rwrenan) =l
Rn

that is the conclusion of this point.
For the following final point, remember that

Ff) = /n e " f(2) dr

Since

<@mmw:{mw|ﬂze

0 lz| < e
So, by definition ,we have

e " K (2) do = 8"/ e VK (ey) dy =

ly[>1

FE)© = [ i@ do=

|z|>e

n

- /|>1 e*z‘y-(sé)(réK)(y) dy = /n e*iy'(sé)CH(Ti)(y) dy = F(Ci(r1))(e€)

and this concludes the proof of the proposition. i

Concerning the Fourier transform, we also have this lemma.

Lemma 3.6. Let K be a Calderon-Zygmund kernel with constant B. Then, there ezists
a constant v depending only on dimension of space so that

sup sup |[FC.K ()| < vB (3.26)
e>0 £eR™

Proof. Let K be a Calderén-Zygmund kernel with constant B. Then, define
K1 = 01<K)

and remember that, for every ¢ > 0, 71 K is a Calderén-Zygmund kernel with constant
B. Then, by proposition [3.3| we have that

F(C(K))(€) = F (Ca(r1K))) (<€)

and so it is enought to prove that |K,(€)| < 4B, if K is a Calderén-Zygmund kernel
with constant B (and we apply this to K +— 71 K).

We remark first of all that C1(K)(x) = xjz>1(2) K (2), with |K(z)| < % for every

x # 0. It follows that
B
[CL(K)(2)] < X\wlzl(iﬁ)W
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that is in L'(R"), since 2n > n, being n € N. By definition of Fourier transform we
have

Ki(€) == lim e Ky (7) da

R—o0 |CL’|<R

Fix 0 # ¢ € R™, and consider R > f’g Then we can write

e Ky () do = e K (2) da e K (z) doe = 14 I
/M @) /| (z) dz+ / (2) (&) + (&)

<% i <lel<r

We now estimate I; and I,. We first deal with [;. Consider r; < 1. Then

.

Ki(z) do = / Ki(z) dz = 0
T1<|x\<

|€\ €]

and so

11()] = ‘/| (e7¢ —1) Ky(z) da

l
3

g/ 2||€é|Blz| " do = 27w, B
|| <2

3

We now deal with the other integral. Choose 1 := =5. Then it follows that || = T

‘ €2~ €]
and e~ = —1. So, we can use the equality
RO = [ e - K dok [ e @) do
|§‘<\x|<R 22 <|2|<R
Observe that
/ e K (v — ) dor = / e T (1 — ) d =
|§|<\x|<R %gng

z/:x—'r) il . il
= / e (o) da! = —/ e K (o)) da =
E<la'+nl<R fa<le’+nI<R

B ‘/ e K () dx’+{ / e K () da' / e K () d“"}
T <|z'|<R T <|z'|<R 2T <|a'4n|<R

€ €l

= —L(§) + E§)
where
E(§) = e K (x) do — K (x) do =
(©) / ) /R \(2) do
_/e_m'gKl(x) dx—/e_mgKl(x) dx
A B
where



It follows that

26,(¢) :/ e " (Ky(z) — Ky(z — 1)) dz+ E(€)

22 <|2|<R

Consider now z € A. Then

|w+77|< |€! or |z+n>R

In the first situation we have |z| < while in the second |z| > R — With these

considerations, we have

2 3T T
A — R— — R
C{K|||<H}U{ g <= }

Be{fgswsigfo{rsmsnr g

Thus, it follows that
Ems/mmmm+/mmwms
A B

g/ K () dx+/ K (2) dx+/ Ky (2)] da
27 < |p|< 3x <|a|<EE —rer Slel<B

Tel [l ] B Tel

Using now , we have that the integral only depends on the ratio of the boundary
values on the ring domain. So, we have that

\£|’ lé\

Similarly, we have

3
/ | K1 (2)| de < w,Blog -, / |K1(z)| de < w,Blog?2
2 <fo|<in 2 E<lal<Z
and
R+
| K (x)| de < w,Blog Bz < w,Blog2
R— & <o <R+ T
since - ~
R-—g l-gzg R[]
where f(t) := 1= and
3 s
R> == ->—->0
€] 3~ Rl
so that
I+ 75




So we have
|E(§)] < cwnB

2

o = 2|n|, we have

Moreover, observe that since |z| >

Prop.
/ | Ky (x)— Kq(x—n)| dx §/ |Ky(z)—Ky(z—n)|de < (14w,log3)B
2L <|z|<R || >2(n|

€]

so that the proof is complete. i

3.8.5 The Calderén-Zygmund operator

In this conclusive section we prove two theorems concerning the Calderén-Zygmund
operator.

Theorem 3.15. Let K be a Calderon-Zygmund kernel with constant B. Then

sup sup |K.(§)] < B (3.27)
e>0 £eRn

for some v > 0, where K.(y) := K(y)X|yj>=(y). Then, for each p € (1,00), the operator

T.(f)(z) = | K.z —y)f(y) dy

R

is defined for f € LP(R™). Moreover T.(f) € LP(R™) and ezists a constant C, =
Cyp(n,p, B) such that

ITell2ze @), Lo@ny) < Gy
uniformly in € > 0.

Proof. First of all, we underline that T.(f) = K. x f. Moreover, since f € LP(R"),
the convolution is defined. In fact, if ¢ € (1, 00) is the conjugate of p, we have

[tk = [ 15 )l K @ - dy <

; % B\l
< —y)P d K(y)|*d < — d
<(Loue—wra) ([ wwra) <in( [ o w) <e

since ng > n. So, the definition of the operator is well-posed in every space LP(R").

Remark 3.15. However, we want the integrability condition to be inherited by T.(f). To
do this, we have to proceed in steps. We first control the L?(R") integrability, starting
from a smaller space. [

Remark 3.16. We want to obtain a uniform bound, independent of €. In order to do
this, we have to deduce the estimate in the space L'(R") N L*(R™). The definition can
be extended by density. [
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Definition over L'(R™) N L*(R"). Let f € L*(R™) N L*(R"). By Young’s inequality
for convolutions, we have that

[Te(P)ll2 = e+ fll2 < [[KE[l2]lflln < o0
So, if f € LY(R™) N L*(R"), then T.(f) € L*(R™). In this case, we have, moreover,

IT=(P)lle = IFT()Nl2 = Cm){[Kfll < @m)2aBllflle=2Bllfll: - (3.28)

where the bound is assured by theorem . So, the operator is defined in
L*(R™) N L'(R™). Since this subset of L?(R") is dense in L?(R"), we can extend the
operator to the whole L*(R"): if f € L*(R"™), we can find f;, € L*(R") N L'(R") such
that

lim [|fy = fll2=0

k—oo

So, since T.(af + bg) = aT.(f) + bT.(g), we have

1Te(fm) = Te(fu)ll2 = 1 T(fi = fu)ll2 < ¥ Bl fmo = full2 = 0

as m,h — oco. So the sequence T.(f,,) converges to a function v in L*(R™). So, we
define

T.(f) = lim T(fn)

where the limit has to be meant in L?(R"). On the other hand, if f € L*(R"), we have
already seen that it is defined

K (z —y)f(y) dy = Af(z)

R”

It is now clear that if f,, — f in L?(R"), we have

Kol = o) o= [ Ko=) f0) o] < [ 1Ko =)l nlo) = Sl d <

R™ R™

3
< ( \Ka(x—y)|2 dy) | fin = fllL2ny — 0 as m — oo
Rn

This means that

lim [ K.(z—y)fm(y) dy= | Kz —y)fy) dy (3.29)
pointwise. Since T.(f,,) converges to T.(f) in L*(R™) by definition, there exists a
subsequence T (fo,, ) such that T.(fm,)(x) — T(f)(x) for almost every z € R™. But
Te(fm,)(x) = Af(z), thanks to (3.29), and so Af = T.(f) almost everywhere in R".

So the extention of T5’ LL(R)AL2 (R to the space L?(R") coincides with the convolution
of the space L?(R") with the kernel K.. That is, if f € L*(R"),

T.(f) = | K.z—y)f(y) dy

R"

95



It follows that

| |
||Te(f)||L2(Rn)ZAEI;OHTe(fm)HLZ‘(Rn) < lim (VB fmll r2wny) = YB|| fll 2rny (3-30)

So the thesis holds in the case p = 2, that is T. is a bounded operator in £(L?(R"), L?(R")).

We now want to prove that 7. is also a weak type (1, 1) operator, so that, using theorem
3.11], we can conclude that T is bounded in LP(R") for p € (1,2).

Let « > 0 and f € L'(R"). We consider the Calderén-Zygmund decomposition at
height a. We have

Tz—:(f) = Tz—:(g) + Te(b)
It follows that

[{z € R": [TL(N)(@)] > o} < [{z € R+ |T(g)(2)] > FH+Hz € R* 2 [T(b)(2)] > F}
We will estimate these two pieces separately. From theorem [3.10] we know that

9l 72@ny < (14 22"l fllr@n)
Therefore we have
n Q 4 (3-30) _ _
{z e R": |T.(g)(x)| > §}| < @IITE(!J)H%(M < eB*a?|gl|Zagny < ¢ BaTH| fllo e

It remains to estimate 7. (b). In order to do so, remember the cubes ); in the Calderdn-
Zygmund decomposition, that is theorem m To each cube (); we associate a larger
cube @7, concentric with @;, with diameter 2y/n times larger. Thus, we define

»=Ue
JEN

and F* = R"/Q*. Observe now that, since |Q}| = A|Q;|, with A independent of j and
dipending only on n,

1< 1R =AY 1Q5 = Al

jeN jEN

)
< A fl ey

Moreover, denote with y; the common center of ); and (). Then, if z ¢ @}, we have
that | — y;| > 2|y — y;| for all y € Q;. In fact,

|z —y;| > Ry = 2r; > 2]y — yj

where R; is the radius of the ball inscribed in @7, while r; is the radius of the ball
circumscribing ;. Observe that 2r; = R; by elementary geometry considerations. So,

we define
b () = {b(m) z € Q;

0 otherwise
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Observe that b(z Z b;(x). Moreover, since ); have mutually disjoint intersiors nad

JEN
b(x) = 0 on F', we have that the sum reduces to one term only for almost every € R™.

Observe moreover that

b)) = [ Ko =a)blo) dy = | (K =9) = Kol =) bl0) dy

since / b(y) dy = 0. Remember now that

J

P =R/ = (\(R/Q))

jEN

and so
1T () ey = /|Tb |dx<Z/ Ty ()| da <
JeN

<Z/ ( Ko (2 —y) — Ko(z = y;5)[[b(y)] dy) dz =
]EN :E¢Q }

_ Z/ |b(y) (/ |K (v —y) — Ke(x — y5)| dx) dy <
jEN {$¢Q;}

<> [ ([ el =y (= 39) = Ko = )] ) d <
jeN lz—y;]1>2[y—y;l

using the properties of the Calderén-Zygmund kernel and remark [3.14],
3
<BY [ 10l dr= Bl S B0+ 2 e
JEN

By Chebyshev we have
* Q — — n
o € F°| [Tb(a)| > SH < 2070 [ [Tb(a)] do < 207 Bul1+ 2] e
F*

It follows that

n a * a *
e € R |Teb(2)] > S} < W € 7] Teb(2)] > S+ (7] <

< 2a_131(1 —+ 2n)||f||L1(Rn) + /\Oz_IHf“Ll(Rn)

This means that 7, is a weak type (1,1). The Marcinkiewicz interpolation theorem
implies the result for p € (1,2), as explained above.

We want now to deduce the thesis for p > 2. Let p € (2,00). Its conjugate expo-
nent is p’ € (1,2). The adjoint operator of 7. is computed convolving with K (—x)
instead of K.(x). Also the reflexed kernel K. (z) := K.(—x) satisfies the properties of
the theorem. Since the convolution with K. is the adjoint operator of 7%, we have that
the thesis also holds for p € (2, 00). i
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Theorem 3.16. Let K be a Calderon-Zygmund kernel, with constant B. Fix p €
(1,00). Consider the operator

T.(f)(z) == " flz—y)K(y) dy

There exists a constant C, = Cyp(p,n, B) such that

ITeflr@ny < Cpll fllo@ny

holds uniformly for all € > 0. Moreover, for each f € LP(R™), the strong limit
Tie(f) = Im ()

exists in the norm LP(R™). The operator Ty is bounded in LP(R™) with operator norm
bounded by C,,.
Proof. We first of all do some well-posedness considerations.

Remark 3.17. T, is defined for every f € LP(R™). If p € (1,00) and ¢ € (1, 00) is its
conjugate, we have that, for every f € LP(R"™),

/|> [f (& =)l K (y)] dy = - [f (& = K W) [Xpze(y) dy <

<(Lue—wra) ([ wora) <in( [ omw) <=

since f € LP(R™) and ng > n. O

The operators 7. are nothing but convolution operators with kernels C.(K'). Thanks
to proposition [3.3] it is a Calderén-Zygmund kernel with constant B. So, using lemma
3.6 we are in the hypothesis of theorem [3.15] since moreoverff] C.(K) is in L2(R™). So

we have
[ T(N)zr @y < Cpll fll Loy (3.31)

We now prove the convergence. We first focus our attention on a dense subset of L(R").

Definition and convergence over C:°(R"). Consider the dense subset C2°(R") of
LP(R™). Let f € C*(R™). Then

TN = [ K@) dy s / o KW =) = 1) dy

The first integral is a fixed function in LP(R") since it is the convolution (Kxy>1) * f
and by Young’s convolution inequality

I Xyi=1) * Flleony < B Xyl zr ey L1l 22y (3.32)

4In fact,

B2
[ @R[ <o
ly|>e ly|>e ‘y|
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since Kxjy>1 € LP(R™) for every p € (1,00). Looking at the second integral, we have
that the convergence is even uniform. In fact, let Cy := supp(f), a compact set in R”.
Remember first of all that

o= 5@l = |( [ Vi@t a) o) < s ws@bl G
Define m(e,n) := min{e,n} and M (e, n) := max{e,n}. So we have

/ KO U )~ ) dy - / K(y) (fx —y) — F(z)) dy| =

n<]y|<1

/ K(w) (e —y) = f(@) dy| < [ K () fe—)—f @)l dy <
m(en)<|y|<M(en) m(emn)<|y|<M(emn)

using the property of Calderén-Zygmynd kernels with constant B and (3.33))

d
< Bsup |V/f| ‘i’ndy:Bsup IVfl 371—
£eRn m(e,n)<|y|<M(e,n) |y| §ER™ m(e,n)<|y|<M(e,n) |y’
M(Eﬂl) pn_]-
< Bsup |Vf| — dp = Bsup [Vf[(M(e,n) —m(e,n)) =0

£ERn m(emn) P EERN
as €,m — 0, since also 0 < m(e,n) < M(e,n) — 0.

Since the Cauchy convergence is uniform in x € R", we have that the sequence

/ K(y) (f(zx —y) — f(z)) dy converges uniformly to a continuous function in R".
e<ly|<1

This means that exists F' € R™ such that
lim sup

| K@=y - @) dy- F)| =0
e—0 pcRrn e<lyl<1
Remark 3.18. Let R > 0 such that Cy C B(0, R). Let x € R" such that |z| > R+ 1. It
follows that |z| > R and, since |y| < 1,
[z —yl = e =yl = 2] -1 >R
It follows that f(z) = f(x —y) =0, so that, if |z| > R+ 1

/ KO U =) = @) dy =0

for every € > 0. Then, this function is compactly supported, with support contained
in B(0, R+ 1). Since the uniform limit of functions with compact support in a fixed
compact is supported in the same compact, we have that F' is supported in B(0, R+ 1).
So F € LP(R™) for every p € (1,00). O

Obviously the uniform convergence implies that
}:ii% | 72f = FHLP(]R") =0
where now F' € LP(R") also consider the integral over |y| > 1. We use the estimate
(3.32) to say that the sum belongs to LP(R™). So we can define
Trf = hn% T.f in the sense of LP(R") (3.34)
e—

Remember also that |7, f| ren) < Cpl| f]|Lrn), as proved above.
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Definition and convergence over LP(R"). Let f € LP(R"). Then we can consider
a sequence {f™}en © C°(R™) such that || f™ — fllrny — 0 as m — oo. By the
argument above it is defined Tk f™ for every m € N, in the sense that

e—0
So we have
IThe ey = T [T oy < Coll 7 v (3.35)
Obsiously the operator T is linear, since if a,b € R and ¢, go € C2°(R")
Tk (agr + bga) := lim T.(agy + bg2) = aTk g1 + bTk go
It follows that

1Tk (f™) = T (F) | ereny = 1Tk (™ = f)loqny < Cpll £ = "l zony — 0
where f™ — f* € C*(R") and f™, f* — f in LP(R"). So Tk (f™) is a Cauchy sequence
in LP(R™). It follows that we can define

Ti(f) := lim Tk(f™) in the sense of LP(R™)
m—o0

Now they hold two limits. At first

j n N
1T (Do = i [ T(f) ey < Cp lim | |sony = Collflisceny (3.36)

Moreover
Tx(f) = hH(l) T.(f) in the sense of LP(R") (3.37)
e—
In fact, let 6 > 0. Fix N = N(d) € N such that || f~ — f||po@n) < c%' Then, we can
find g9 = go(fY) = €o(IN(J)) = £0(d), such that if € < gy
1Tk (FY) = To(f ) | oo geny < 6
since, being f~ € C=(R"), (3.34) holds. So we have)

Tk (f) = Te(H)l oy = 1 Tre () = Tic (F¥) + T (FY) = To(fY) + T (f) = ()| prmy <
<N Tw(f) = T () ey + 1T (FY) = Te(f ) oy + 1 T(FY) = Te()preny <
< Cpllf = M lleo@ny + (1T (fY) = Te(fY)ony + Coll £ = Fllzogny <
<6+ [T (fY) = To( ) | ogny + 6 < 36

if € < g9(0). This says that (3.37]) holds. Thus we have
TP lerery = [Bm TP < Ol Flancer
that is the thesis of the Calderén-Zygmund theorem. i
5Since fV, f € LP(R"), we have
1Tk (f) = T (V) Ie@ny = 1T (f = FY) | ze@ny < Cpllf = fnllo@n)

using linearity (since Tk is linear on smooth function and the limit conserves the linearity) and using

(3.36)). Similarly, we have that
IT-(fN) = Te (Pl o@ny = IT=(FY = Pllzr@ny < Collf = Yl Lo@ny
using the linearity of T. and the bound (3.31)).
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Chapter 4

Sobolev spaces

Definition 4.1. Let €2 C R™ an open subset. We define
Llloc(Q) = {f Q- R ‘ / |f(x)| dz < 400 V¥V K compact subset of Q}
K

Definition 4.2. A multiindex of lenght k is a vector
a=(aq, ..., )
such that o; € N and |a| :== a; + ... + o, = k.

Definition 4.3. Let U an open subset of R™. A test function on U is an element of
the space

CX(U) :={¢:U = R| ¢ € C*(U) and supp(¢) is a compact subset of U}

Definition 4.4. Let U an open subset of R and u € L},.(U). We say that u admits

loc
the a-weak partial derivative if exists a function v € L}, (U) such that

/ uD%¢ dx = (—1)1 / vp de Yo € C°(U)
U U

In this situation, we write
D*u=wv or V*u=wv

If k£ € N, it is often used the notation
VFu = {D"| |a| = k}
where in this situation the symbol means a whole class of derivatives.

Remark 4.1. The two integral in the definition are well-posed, because a test function
can be dominated by its maximum and the characteristical function of its (compact)
support. [

1

L (U) admists two o™-weak partial derivatives, say

Lemma 4.1. If a function u € L
v, v, then

V=70 a.e.
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Remark 4.2. If v is the a'"-weak derivative of u on the open set U, then it is the a!’-
weak derivative of u in all the open subsets V' C U. In fact, obviously u,v € L (V)
and for every ¢ € C°(V) C C°(U), we have

/qu% dr = /UuDad) dr = (—1) /Uw dr = (—1)“'/Vv¢ dz

where has been used that ¢ and its deriviatives vanish outside V. The central equality
follows from the fact that v is the a'"-weak derivative of v on U. O

4.0.1 Definition of Sobolev spaces

Definition 4.5. Let p € [1,00] and k£ > 0 an integer. We define the Sobolev space as
WkP(U) .= {u € L}, (U)| D*u exists in the weak sense and D*u € LP(U) VYa : |a| < k}

Finally we define
H*(U) := WE(U)

Sobolev norms:

Remark 4.3. Sobolev spaces WP are normed spaces. In fact, for u € WkP(U), we can
define

( Z /U|D°‘u|pdx) = ( Z ||Dau|]§) if 1 <p<+o0
[ullwre@y = q _lel<k o<k (4.1)
Z sup |D“u| if p = 0o
U

o<k
These naturally induce a distance and so a topology. [
Morover, it is called homogeneous Sobolev space the set

DFP(U) := {u € L}, ,(U)| D*u exists in the weak sense and D*u € LP(U) Yo : |a| = k}
It can be equipped with the seminorm
1
| prory = (Z / \Dau\pdx)p
jaf=k "V
When k£ = 1 it actually coincides with the p-norm of the gradient. Let also be
DEP(U) := {u € D**(U)| 3 {un,} C C=(U) such that ml_l)IJIrloo |Um — | pray = 0}

Definition 4.6. We also define the so called Sobolev space with zero boundary values|
WEP(U) == {u e WEP(U)| 3 {u,,} € C=(U) such that liril |tm — w|lwre@y = 0}
m——+0o0

Remark 4.4. We can equip the space with the norm

HUHW(;W(U) = nl_l)ffoo [unllwerwy = [ullwesw)
where the last identity holds because |||un |lwr.e@y — [[ullwrr@)| < l|un — ullwrr@w) —

0 asn— 4oo0. U
Tn a sense that will be specified in subsection
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Equivalent norms and vector valued functions. In the following chaptes, we will
use mainly vectorial functions; moreover, it will be very useful to introduce an equiva-
lent Sobolev norm that helps in inequalities and estimates.

Let u : Q@ C R® — R". We say that u is in W*P(Q)" if it is true for every u;,
i € {1,...,n}. In this case we can consider the p- norm of each derivative.
In the future we will represent

1 k 1
[ullwrr == </ |u|pdx+/ |Vu|pd$+...+/ |VkU|pdx) = </Z|Vju|pdx)
Q 0 QO Qj:()

where V/u is the tensor of the j-th derivatives.
Since a tensor space is a finite dimensional normed space, we have the equivalence of
all the norms. So

C’f’1|u|§ < ulf < C%’,JUI;’;, e Cf}k|vku|§ < |Vku|p < C§7k|Vku|§

and for an A-dimensional tensor

|T|§ = Z |1—‘7:17---7ih|p

we have the equivalence of the norms:
a O\ k C\» kN
|| pyes < (/Z(J;jwﬂmg) < (/ > s vau|g> :Cz,j*</2\vzu|g>
3
where O j« := max{Cy1, ..., Cay}. Since |V/ulh = Z Z | D%u; [P, we have
=1 |al=j

3 1 3 1
lwllyre < Co e (/QZ > |Daui‘73dac) = Oy (Z > ||Dau,»]|§>

i=1 |a|<h i=1 |a|<k

and the latter one is the vectorial version of the norm introduced in (4.1). Since the
other inequality is similar, we have the equivalence of the norms.

From now on, we will consider

k 1
s = ([ 3 19uar)
25

It is of course a norm. From Minkowsky’s inequality it follows the triangular inequality.
In fact

k 1 k 1
ot olhess = (194 0lp) " < (X (97l + 19700,)" ) <

j=0 7=0

k , : k A 5
2 (vayunz) +(Z||vw||z) — ulln + [ollwr
=0 =0
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4.1 Sobolev spaces in the case () = R"

Important properties of Sobolev spaces dipend on the nature of the domain where the
space is defined.

Definition 4.7. If n € N and 1 < p < n we define the Sobolev conjugate of p as

* np
pr =
n—p
Remark 4.5. We have
11 1
p* p n

and p* > p. U

Theorem 4.1. Letn € N and 1 < p <n. Let p* the Sobolev conjugate of p.
Then
HUHLP*(R") S C|U|Dl,p(Rn) = CHVU“LP(Rn) \V/U - C:o(Rn>n

with C only depending on n,p. Here
CPR"" :={u:R" = R"| ue CR"}

Remark 4.6. The proof that we are going to show follows the steps of the proof of the same
theorem in [10]. However, we repeat the steps since we are in the case of u vectorial function
and there are some differences. [

Proof. We first assume p = 1. By the regularity of u, applying the fundamental theorem
of calculus component by component, we have

Tq
u(z) = / Op, U(T 1y ooy Tim 1y Yiy T 1y oeey Tn) AYs
—00
Remember 0,,u is a vector. Using integral inequality for vectors we have

x;
lu(z)| S/ |02, (L1 oy Ti 15 Yiy Tige1s o, T) | Ay <

—00

“+00
< / |02, (X1, ooy i1, Yiy Tig 1, o, Tn)| Ay

—00

Remembering now that

Vu| = /[0 ul? + oo+ [0n,ul2 > |0pu| Vi=1,..,n

—+o00
lu(z)| < / IVU(Z1,y ooy Tim1y Yiy Tik 1y -es Ty | Ay

—00

If we multiply the inequality for ¢ = 1, ..., n, after raising both sides to % we get

)| g]}(/

1

n—1
|VU($13 ey Lg—15Yiy Ti+1, 7$n)| d%)

o0

—00
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Hence

1

400 n oo N 00 n—1
/ ”U,(ﬂf)’mdxl S / H </ ’vu Ly eeey Li—1,Yis Ti41, 7xn)|dyl> d.Il -

—0o0 o i=1

[e's) 00 — N 00 p—
:/ </ IVu(yr, ... Tn |dy1> 11 </ |Vu( f1317.-‘733i—1,yi733i+1,~-,$n)|dyz‘> dzq
—00 —0oQ 2

1=

oo n—1 oo N n—1
= (/ |Vu(yr, ...,xn)dy1> / H </ IVu(z1, ..., Tim1, Yi, Tit1, ...,xn)|dyi> dxy

=2

Now, by Hélder inequality

oo N 00 ﬁ
/ 11 </ |VU(5617---,561'1,yi7$i+1,--«,$n)|dyi> dry <

—00 ;9 —00

1

n +00 o0 n—1
S < H/ / |VU(.’IZ‘1,...7$i_17yi,$i+1,...7xn)dyid(L’1>
i=27 70 VT

So we can define

L :—/ IVu(yi, ..., zn)|dy:

—+00 0
I; ::/ / \Vu(xh...,ﬂci_hyz‘,wiﬂ,--.7$n)|dyid»’v1
—0o0 —0oQ
So

1

+o0 "
/ () |77 dy <

o0 +oo n—1
S (/ |vu(y17 dyl) <H/ / |VU L1y -5 Li—1yYiy Tit1, .-, T )’dyzd$1>

n 1 n

:Ii”%l [z = Hl%l

i=2 i=1
Integrating this expression with respect o we get

n

e} +oo " oo 1
/ / |u(x)|n1dx1dx2§/ L ]I I" "y =I5~ 1/ H I" "Lxy =

i=1,1#2 1=1,1#2

+oo o]
= (/ / |VU(.I‘1,:I/2,..., ’dy2d$1> / H In 1d1’2

i=1,i#2

At this point we can apply Holder to the latter term, so that

/ H I”ldx2< H (/ Id@)”ll:

i=1,1#2 1=1,1#2
00 00 —— n ) %
= </ / Vu(y1, ... dyld$2) H (/ I; dm2>
—o0 J—o00 i3
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So we have

0 400 n
| [ @l <

400 poo ﬁ 00 0o o )
< (/ / |Vu(x1,y2,...,a:n)|dy2da:1> </ / |Vu(y1,...,xn)|dy1d1:2> H (/

Iterating the process, we get

n n ) 00 —
/ lu(z)|»Tdx < H </ / IVu(xi, ..., Tim1, Yi, Tit1, ...,xn)|dx1...dyi...da:n> =
" i=1 \J—oo  J—oo

e
= </ |Vu(m)|dm)
]Rn
This is the thesis if p = 1. Let now 1 < p < n. Let
_p(n—1)
n—p
Applying the previous result to v := |u|” we have

/ |25 dar < </ |vyuw|dx>
n Rn

Viu|" = 'y|u|7_1‘—z’Vu

>1

But

using the homogeneity of y — |y|? with v > 1 to extend the derivative to the whole space.
With the norm, we have
IVl < Alu]' = Vul

So
p=1

n—1 1
</ |u|nw1dx> ! §’y/ lu[ 77 Vulde < v (/ ]u|(w_1)pgldx> ’ (/ |Vu|pdx)p
n R” R n

where Holder inequality has been used again.
By the definition of v we have

p mn *
_1 = =
(o )p—l n—1 7

It follows that

n—1 p—1

. m p
(/ wpm) < AVl

n-1 p-1 1

But

n D D*
and so

[l 2o mny < YNVl Lorny
where y = 2= —, C(n,p) =C. i

n—p
Remark 4.7. Tt is sufficient to ask u € C§(R™)™, since only the first derivative is used in the

proof. I

Theorem 4.2. Let 1 <p<nandletp*:= pn

n—p

Then, Wy *(R*) C L (R™) and

2From ” Analyse Fonctionnelle”- H. Brezis, Th. I1X.9.
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exists C' = C(n,p) such that
el o gy < ClIVUll Loy ¥ u € WoP(RT)
Proof. We know by previous theorem that
10l L ny < CIVOlLr@ny Vo € CF(RY)
Now, being u € W, (R"), we have {u,,} C C°(R") such that

llm |um - u|D1,p(Rn) — 0
m—+00

and
lim ||Um - UHLP(]R”) =0
m——+00

So, even if currently we don’t know that the LP" norm is well-posed, we have
[ull o < lu=tim || o+t | o < =i || Lo +C N V|| o = [[u=tim || Lo +Cl[ Vg || 2r <

< =l + C(Vum = Vaullze + [[Vul|10)
Remembering that C' is independent by u,,, note that

|V, — Vulle = ||V (tm — w)||zr = |ty — u|prs — 0 as m — +00

Morover, since ||u,, — ul|» — 0, we have that the convergence u,, — u is in L and
hence pointwise a.e. along a subsequence. Note that u; — u; is a sequence in C§°(R")
and

||uz — uj”Lp* S 6||V’U,Z — VUjH[p S U(HVul — VU/HLP -+ ||VU] — VUHLP)

using Gagliardo-Nirenberg-Sobolev inequality for smooth functions with compact sup-
port. So we have that {u,,} is a Cauchy sequence in LP". Being this space complete,
Jv € LP" such that u,, — v in L” . So, there exists a subsequence of u,, converging to
v pointwise a.e. Being a subsequence of a sequence converging a.e. to u, we have that
v =u a.e. SO

lu — || = |0 — || pr — 0 as m — 400

So the thesis holds. Il

Moreover, thanks to the following theorem, the above lemma hols also for u € WP(R™).
Theorem 4.3. Let p € [1,00). Then W, ?(R") = WP(R").

Remark 4.8. We will prove it for u : R — R"™. The scalar case is analogous. [J
Proof. Obviously W, ?(R") C W'?(R"). Let now u € W'(R") and let 1, € C°(Bj11(0))
such that

nk|Bk(0) =1, e € [07 1]7 89617719 <2
Notice that it is sufficient to construct a such function in R, then generalize it to a
n-dimensional function via radial extension.
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Then we have that umy, € W, ?(R™), as it will be proved in the following lemma. More-
over
uny, — u in WH(R") as k — +o0

In fact

lunk = ullwro@ny < llume = wllLo@ny + [V (e = )| Lo@n) =
1
p

1
= ( |u77k—u|pdac> + ( |(1—nk)Vu—u®D77k|pdx> <
Rr R™

1 1 1
P P P
< ([ wom—uae) s+ ([ j0-mwaras) 4 ([ e Dpas)
R" R” R
Clearly un — n almost everywhere when k — +o00. Morover
(e = DIP < fuf”

is a integrable majorant, being u € LP(R™). So by Lebesgue theorem

lu(nr — 1)[Pde — 0 as k — 400
R

Moreover Vu € LP(R"), so also

|Vu(n, —1)[Pde — 0 as k — o0
Rn

Finally

1 1 1
([ weopnpar) = ([ 1 [Cw@mrre) <2 o)
Rn n i,j Bk+1(0)/Bk(0)

Using again Lebesgue theorem, we have that also this term goes to zero as k — +o00.

This implies that um, € Wy*(R") is a Cauchy sequence in the W, ”(R") norm. Be-
ing this space complete, we have that exists v € Wy ?(R") such that
||uny, — v||WO1,p(R,L) — 0 as k — +o0

But Wol’p(R”) is equipped with the same norm of WP(R"). So

lu = vllwrir@ny < llu = unkllwre@n + [lune = vllyiegny =0

So v = v up to a null measure set. It follows that ||u—vg||wir@r) = ||v—=vk|lwrr@n) — 0
if v, € C°(R") is a sequence that approaches v in the norm || - [[y1r@mn). So u €
war(r™). i

This lemma, used in the previous proof, holds for all the domains.

Lemma 4.2. Let Q open and let w € WP(Q) such that supp(w) is a compact subset
of Q. Then w € W, 7(Q).

Remark 4.9. If Q = R™ open set, and w = un, with v € WI?(R"), we have that
supp(w) C By41(0) and w € WHP(R") because u € WHP(R") and 7, is bounded. This
is exactly what we used in the previous proof. [

Proof. See [17, Lemma 1.23, pg. 19]. i
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4.2 Sobolev spaces in the case of bounded domains
The main inequality of this case is the following.
Lemma 4.3. Let Q C R" a bounded domain. Let q € (1,400) and

d(Q2) := sup |z —y|
z,y€efd
Then
lullzo@ye < Cla, D[Vl oy ¥ 1€ Wy ()

This s called Poincaré inequality.

We have seen that W,?(R") = W'P(R"). However, the equality does not hold for a
bounded domain (2. In fact, if we consider Q = Bx(0) with R > 0 and u =1 € WP(Q)
a scalar functio it follows from previous lemma that if, for absurd, u € VVO1 P(Q),
then, taking in example ¢ = 2 and being d(2) = 2R,

wR = () = |

dm§0(2,2R)/de:0
Q

Q

That’s obviously absurd]

This tells us that W, ?(U) # W' (U). However, we will deduce a characterization
of the set W, P(U): this coincides with the set of the functions of WP(U) those ”van-
ish on the boundary”, in a sense that will be formalized by the so called trace operator.
This operator, roughly speaking, map a function to its values at the boundary: for

C(U) functions, it will coincide with the restriction to the boundary.

Sobolev Inequalities in bounded domain. We have two main theorems from [10].

Theorem 4.4. Let Q a bounded and open subset of R™, with 090 € C'. Assume
1 <p<mn, and let p* := 5. Assume u € WhP(Q) a real valued function. Then

u € L (Q) and
||u||LP*(Q) < CHUHWLP(Q)

where C' depends only on p,n and S2.

Theorem 4.5. Let 2 a bounded open subset of R™. Suppose u € Wol’p(Q) a real valued
function, with 1 < p < n. Then we have the estimate

ullza) < C||Vullzr) Vg € [1,p7]

where the constant C' depends only on p,q,n, 2.

3The inequality also holds for scalar functions.
4The function u is here actually a regular function on an open set. So, the weak derivative coincides
with the classical derivative.
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Remark 4.10. We will be particulary intrerested in functions u € W?(Q)" or W, *(Q)",
i.e. R™ vector valued functions. The estimates above continue to hold. In fact, if we
write u = (ug, ..., uy,), we haveﬂ

will or ) < Clluillwrr [uill Loy < Cl[Vuil| o)

So, using the equivalence of the norms as in (3.7]),

el g = / ultda < K / S fuittde = K S il < KCW S Va2, ) =
=1 =1 =1

n q

=KC"Y (/Q |V, |P d:c) < ch(K')q(Z/Q |V, |P daz>
=1

i=1
n n %
using that, if y = (y1, ., ya), [9lld = Y lwil? < (K)|lylg = (K')q(z Iyilp) , since
i=1 i=1 .
p
on vectors g-norm and p-norm are equivalent. We have used y; = ( / |V, [P dx) .
Q

Remember that | - | is the vectorial Euclidean norm, while | - |, is the vectorial p-norm.
Since, using again norm equivalence, we have [Vu; [P < CT|Vul? it follows

ol < Ky ([ Socnvugar) = weswper( [ ) <
=1

q

p

< KC‘](K/)"C{]</ Cé’\VuP”dx)
Q

where C is such that |Vu|, < C3|Vul for the equivalence of matricial norms.
We have proved that

[ullze < K"|[Vul| e

where K’ depends on the same parameters as before.

A similar argument holds when w is a matrix. It will be proved in the special case
p=2in (11.40). O

5If u € Wy P(Q)" we have exists @, € C2°()" such that

1
_ . _ Y = . af, - » P S
o=t o=enlher = i (2 [ 107 altas)”

1 1
SN (s g

so that each component is in W, 7 (Q).
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4.2.1 General Sobolev inequalities

Definition 4.8. We say u* is a version of a given function u provided u = u* almost
everywhere.

Theorem 4.6. Let U be a bounded domain, open subset of R™, and suppose that QU
is Ct. Assume that n < p < oo and u € WY2(U). Then u has a version u* € C%7(U),

n

forv=1-— L with the estimate

||U*||CO,W(U) < CHUHWLP(U)
The constant C depends only on p,n and U.

Theorem 4.7. Let U ba a bounded open subset of R™, with a C* boundary. Assume
uw€e WrP(U). If k> o, then u € C'k_[%]_l’v(ﬁ), where

n

any positive number < 1,

_ [5} +1— =, 2 4s mot an integer
18 an integer

In addition, it holds the estimate
ol o1y < Cllullwsny
the constant C' depending only on k,p,n,~y and U.
Theorem 4.8. Let Q a bounded domain with C* boundary. Let u € WkP(Q).
If k> 2 thenu € C’k_[%}_l’v(ﬁ), where

Bl +1-12, if % is not an integer
B any positive number <1, if% s an integer

4.3 Trace operator

Traces concern the possibility of assigning boundary balues along 02 to a function
u € WP (Q), assuming 992 € C'. We have the following (trace) Theorem.

Theorem 4.9. Assume Q is bounded and 02 is C'. Then, there exists a bounded linear
operator

T : WHP(Q) — LP(0R)
such that
(i) Tu = ulaq if u € WHP(Q) N C(Q);
(i) | Tullrro0) < Cllullwis) for each u € WP(Q) with the constant C' depending
only on p and 2.
Definition 4.9. We call T'u the trace of u on 0f).
We examine now what it means for a function to have zero trace.

Theorem 4.10. Assume € is bounded and 09 is C*. Suppose furthermore that u €
WhP(Q). Then
ueW,?(Q) <= Tu=0 on 00
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4.4 Compactness in Sobolev Spaces

Definition 4.10. Let X and Y be Banach spaces, with X C Y. We say that X is
compactly embedded into Y, written X CC Y if

(i) exists a constant C' > 0 such that ||z||y < C||z|/x for every x € X;

(i) for every {zj}ren bounded sequence in X, ie. ||xy|x < C for every k € N, exist
a subsequence xy, and y € Y such that hlim |zx, —ylly =0.
— 00

Theorem 4.11. Assume U is bounded open subset of R™, and OU is C*. Suppose
1 <p<n. Then
WP (U) cc LY(U)

for every 1 < g < p*:= n”—i).

Remark 4.11. A Banach space Z embeds continuously into another Banach space X if
holds only the first condition in definition .10} We write Z — X. So, if we have the
chain

Z—=XCCY

then Z CcC Y. In fact, let z; a bounded sequence in Z. We have that
2kl x < Cllzillz < CC
So, there exists a subsequence z;, and y € Y such that
lim |z, —ylly =0
h—o0
SozZccyY.O

Corollary 4.1. Let U be a bounded open subset of R™. Then, for every q € (1,00), we
have
Wh(U) cc LY(U)

Proof. If ¢ < n, then we can use p = ¢ in theorem , observing that p* = n”—_qq > q.

If ¢ > n, since lim = +00, we can find p < n such that

p—>n~ 1L — P
np
n—p

>q>n
So theorem says that
WhP(U) cc LI(U)
But since U is bounded, and ¢ > p, we have that W'¢(Q) — W'P(Q). In fact, if
ue Whi(Q),
1 1 1
ullwraw) = (lell§ + 1Vullf)* < llully + 1Vully < U] llull, + (U] [Vl
with r such that 119 =14 %1. So

1
lullwrawy < 20U ullwrsw)

So, by remark [4.11], we have
Wh(U) cc LY(U)

that is the thesis. I
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4.5 The Homogeneous Sobolev Spaces D1

For m € N and 1 < ¢ < oo we define
D™(Q) = {u € L, (Q)| D'u € L1Q), |I| =m}
In D™Y we introduce the seminorm
il = ( 3 /Q |Dlu|q) (4.2)
[l|=m

We can also define other spaces, starting from the homogeneous sobolev space.

Let P, the class of all the polynomials of degree < m — 1. For u € D" we set
(U] :=={w € D™ w=u+ p, for some p € P,}

We set '
D™= {[u];n| u € D™}, |[]in] g = [tlm.g

Lemma 4.4. Let Q an arbitrary domain of R*, n > 2. Then D™4(Q) is a Banach
space. In particular, if ¢ = 2, then it is an Hilbert space with scalar product

(o el = 32 [ Dhute

[l|=m
Remark 4.12. The proof of this classical result can be found in [I2, Lemma I1.6.2, pg.
83]. O

Remark 4.13. The functional (4.2)) induces a norm in the space C5°(£2). We define D"
as the completion of the space C§°(£2) with the norm | - |, ,. O

We state now a weak-compactness result, that is propesed in [12] as Exercise 11.6.2, pg.
85.

Proposition 4.1. The space D™ is separable for 1 < ¢ < oo and reflexive for q €
(1,00). Thus, for q € (1,00) the space is weakly complete and the unit ball is weakly
compact.

Proof. Once one has proved separability and reflexivity, the weakly compactness follows
from theorem [2.41 We focus our argument on the case m = 1, since it is simplier and
equivalent to the others. We have that the set

ou ou .
= q m N g —_— —_— 1,(]
W {wE(L) Cw (8m17”"6xn) Jue DY}

It is clearly isomorphic to D*4. Moreover, being D™ complete, it is a closed subset of
(Lq)n thus that is separable if ¢ > 1 and reflexive if ¢ > 1. This gives the properties

for D4 il
We also have the following lemma, that is [12, Lemma I1.6.1].
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Lemma 4.5. Let Q an arbitrary domain of R", n > 2, and let w € D™4(Q)), with
m >0 and q € (1,00). Then u € W,4(Q2) and the following inequality holds

lullmge < e | D 1D ullge + lullie (4.3)

[l]=m
where w is an arbitrary bounded locally lipschitz domain with w C €2.

Sketch. The inequality follows from the Gagliardo-Nirenberg interpolation inequal-
ity on bounded domain, together with the Young’s inequality: in fact, the Gagliardo-
Nirenberg inequality allows to control the inequalities of smaller degree in terms of the
norm L' and the norm L? of the m-th derivative. The Young’s inequality convert the
product into a sum. |

4.6 Sobolev spaces with negative degree

Definition 4.11. Let ¢ € (1,4+00) an exponent and k € N a positive integer degree.
Let ¢ := ﬁ. Let Q C R™ a domain. Then we define

W=r4(Q) = (Wf’q,(Q)> ={F: W5 (Q) - R: Fis a linear and continuous operator}
i.e. the dual space of Wé"’ ’q/(Q). This space can be equipped with the following norm:

F(y
||F||W*k»¢Z(Q) = sup | ( >|
0£peW e ||S0||W§""(Q)

Remark 4.14. The definitions can be adapted to vectorial functions. [J

Remark 4.15. If ¢ = 2 (and so ¢’ = 2), every f € L*(Q) can be seen as an element of
this space:

Fi(p) ¢=/Qf-<;>dx

In fact, linearity is obvious, while

[Fr (o) < /Q [flleldz < (I F1l2ll#ll2

This inequality says that F is a well-posed operator and it is continuousﬂ So Fr €
W=k2(Q). O

Definition 4.12. Let ¢ € (1,+00) an exponent and k& € N a positive integer degree.
Let ¢ := q%l. Let Q C R™ a domain. Then we say that

FeW F(Q) < Flo, € W(Q) VQbounded subdomain of € such that €, C Q

loc

Tf o, = ¢ in W(f’Q, then |lon — @ll2 = 0
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Remark 4.16. If F € W, "9(Q), then for every ) as above the functional F has a norm

loc

defined locally as above. []

Lemma 4.6. Let Q@ C R", n > 2, be a bounded Lipschitz domain and let q¢ € (1,00).
Then

ull o) < C(IVullw-ra) + lullw-raw)
for every u € L1(Q) where C = C(q,§2) > 0 is a constant.

Remark 4.17. The proof is provided in [27, Lemma 1.1.3, pg. 45]. O

Theorem 4.12. Let Q2 be a bounded Lipschitz domain in R™, with n > 2. Let Qy # ()
any subdomain, and let q € (1,00). Then exists C' = C(q,2, ) > 0 such that

[ull Loy < ClIVullw-10(0)

for all w € L) such that / u dx = 0.
Qo

Remark 4.18. The proof is provided in [27, Lemma 1.5.4, pg. 58]. O
Proof. We define, first of all,

where u € LI(Q), v € W? (Q) and ¢/ = -L.

q
q—1
We now prove the estimate. Suppose, by contrary, that AC > 0 such that

[ull oy < ClIVull -1,

for every uw € L9(2) such that / u dr = 0. This means that for every j € N, exists
Qo

u; € L9(Q) such that / uj dr =0 and
Qo

[ujllza) > GV -1
We define @; := ||u || u; and consider the sequence {@;}jen. Then

~ - - 1
e A RV
Qo J

Since L1(€2) is reflexive, and {@;};en is bounded, we have that exists @;, such that @;, —
u € L(€2). We rename @; this subsequence. In particular it holds that ||Vi;||-1,, — 0,
as j — 0o. Moreover

Fu(o)| = (0, ¥ )| = lim |7, 7 - 0)] =0
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for every v € W (Q). This implies that IVul||-1, = 0. Observe that furthermore
(@, V- 0)| < Vgl -agllvllig =0 asj— o0

Thus, in the sense of distributions, we have Vu = 0. This implies u = ¢, and being
fQo u dr =0, we have ¢ = 0.

On the other hand, lemma {4.6| says that
lally = 1 < C (IVEsllw-ra) + 1@]lw-10)) (4.4)

Since @ is bounded in L4(2) and the embedding L(2) C W~14(Q) is compact, we have
that exists a subsequence @;, that converges to some @ € L?(£2). Since the convergence
is in particular a weak convergence, we have that u = u = 0, since the limit is unique.
This means that

lim [|&;]|-1, =0

— 00

So equation (4.4) becomes 1 < 0, that is an absurd. So the thesis in proved. i

4.7 A generalized divergence theorem

The following theorem is a generalization of the divergence theorem [32, Th. 6.3.4, pg.
125]

Theorem 4.13. Let Q C R™ an open set of class C' with bounded boundary T'. Let
ve WH(Q). Then

/QV-vda::/F(Tv)~77da (4.5)

where T 1s the trace operator and n the outward normal vector.

4.7.1 An application of the trace operator

This application is useful in the integration by parts: this tell us when we can get rid of
the boundary piece. In future, we will often use this device to simplify our calculations.

Remark 4.19. Let w,v € H?(2) scalar functions, with Tv = 0 on 9€2. Moreover suppose
v € C*(Q). Then we have

/ T(vVw)-ndo=0 (4.6)
o0

In fact, being w € H*(Q) = W*2(Q), in particular Vw € W1(Q2). Being Q bounded

with regular boundary, there exists a sequence {¢"} C C'*(£2) such that
Jim 190 = =0

Consider now the sequence {ve™}, € C*(Q2). We have that

2

Hva — UQDnHIQ/Iﬂz(Q) == H'va - ’U@n”% + HV(va - ’ngn)HZ
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In particular
Viv(Vw — ¢")] = (Vo) (Vw — ¢") + vV (Vw — ")

So
IVI(Vw — )13 < (Vo) (Vw — ")l + [0V (Vw — ¢")]l2)* <

< 2([(Vo)(Vw = &)z + [0V (Vw — ")]13)
using that (a + 0)? < 2(a® + 0?). Finally

WVw — 0" [0y < 0V — ™[5+ 2/|(Vo)(Vw = "I + 20V (Ve — ")13

Observe now that each piece vanishes as n — +o00. In fact

[ Ve = v do < max o T - o7 (4.7)
Q Q
J 170w = ) dr < e 9 [V - (48)
Q Q
and
190 = e do < max o2V (Vo - o) (49)
Q Q

since v € C1(€). Using that
IVw — "2, IV (Vw = @")|I2 < [[Vw = ¢" [fy12i0) = 0 as n — +oo
we have that vy™ approaches vVw in norm W12(Q). We have moreover that ve" €
C1(Q2) and
v(x)e™(x) =0 Vo e 0N
since v = 0 in Jf). So
T(vVw) = nl—l>r—‘£loo T(ve™)

where the limit is taken in L?*(92). Since the trace T'(ve™) is constanly zero, also the
limit in L?(99) is zero. So the trace of vVw is zero and the integral above is zero too.
0J

4.8 Weak derivatives and mollifications

The following theorem is a different version of theorem [3.2] that generalizes the thesis
in the case of weak derivatives.

Theorem 4.14. Let u € W*P(Q), with Q domain in R™. Consider u. the mollification
of u. Then
D%, = (D%u) % n. over €.

for every o multi-index such that || < k.
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Proof. The derivative of u. over €2 has to be intended in classical sense, being u. €
C>®(Q.). So, let € > 0 fixed and ¢ € CX(.). First of all observe that, if « is a
multi-index, for every x € €. we have

Dfu(z) = / u(y) (D°n.) (z — y) dy = (~1) / (—1)u(y) (D*n.) (¢ — y) dy =

Q

— (1) / w(y) DS (e — ) dy = / D uly)e(a — ) dy

since if x € Q. is fixed, then n.(x — y) is smooth with compact support in 2. So we
have that

/ ((D%u) x 1) () () dx = / < /Q Du(y)n.(z —y) dy>¢(x) de =

€ €

= | Dupla) do = (0! [ wle)D7pla) da

since ¢ has compact support in 2.. This is the thesis. i
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Chapter 5

Spaces involving time

5.1 Bochner Integral

Often we deal with function of the form u = u(x,t) with (z,t) € Q x I and Q C R3,
I = [a,b] € R. This function, fixed the time, is a function of the only z-variable. In
particular, it can happen that u(z,to) is B(R?)-misurable for a.e. to € I and that for
those ty € I we have

/ lu(z, to)|? dx < 400
Q

In other words, u(-,ty) € L? for a.e. ty € I, i.e. u maps the interval [a,b] to element of
the functional space LP. This justify the following definition.

Definition 5.1. A Banach space valued function is a function
w:fa,b) = X
where (X, || - ||) is a Banach space.

Ezample 5.1. The simplest example is that of a function f € C([a,b] X [¢,d],R).
For every zq € [a,b], f(xo,y) is a continuous function for y € [¢, d]. So it belongs to the
space (C'([¢,d],R), || - ||s), Where || - || is the usual maximum in an interval. [

We can also introduce a notion of measurability for Banach valued functions. First of
all

Definition 5.2. A Banach valued function s : [a,b] — X is called simple if 3 m € N
and {E;}", C B([a,b]) and s; € X for i = 1,...,m such that

s(t) = 3 s (0

The integral of a simple function is soon defined. We define

m

/ sdt = s B

=1
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So we have

Definition 5.3. A Banach valued function w : [a,b] — X is measurable if there exists
a sequence {s(t)}ren of simple functions such that

sk(t) — u(t) for a.e. t € [a, b
(i.e. for a.e. t € [a,b] the limit ||sk(t) — u(t)|| — 0 for & — +00).

Definition 5.4. We say that a Banach valued function is summable, or Bochner inte-
grable, if

(i) lim |[sk(t) —u(t)| =0 for a.e. t € [a,b];
k—4o00

(i) lim_ / lsi(t) — u(t)]| dt =0,

Here || - || is always the norm in the Banach space X. In this case we define

b

/bu(t) dt := lim sk(t) dt

k—+oco J,

Remark 5.1. The definition is well-posed. First of all, being u and s;, strong measurableﬂ
(the first can be approximed with simple functions; the latter is a simple function, so
constantly approximed with simple functions), we have that ||sx(t)—u(t)| is measurabld?]
inf] ([a, b], B([a, b)), dt) . Morover, we have

| /absk@ it - /absh@) i |

for k, h — 400, since

/ab (Sk(t) — Sh(t)) dtH < /ab |lsk(t) — su(t)|| dt — 0

b b b
/ I (si() — u(®)) — (sn(t) — u()]] df < / lsi(t) — u()] dt + / lsn(t) — u(t)] dt

Being X a Banach space (hence complete), we have that the limit exists in X. OJ

Remark 5.2. Oftern we deal with Banach spaces of the form X", that is the cartesian
product of n identical Banach spaces. This space can be equipped with the natural

norm || (w1, .o, @)l xn = Vw1 |2+ o 4 |, with ||| =[] - || x.
my

So, if f : [0,T] — X", and it is a measurable function, we have that, if s;(t) = Z stEk,
i=1

llsk(t) — f(t)|lx» — 0 ae. t €]0,T]
Moreover, s¥ and f have n components in X. It follows that each component of s;(t) =

mg
Z sfx pr converges, in X to the respective component of f. The same holds for the
i=1

Here is required the property of strong measurability to define (Bochner) integrability.
2This is proved, in example, in [33] Proof of Pettis Theorem, 6th edition, pg. 132].
3Here B([a,b]) is the Borel-Algebra on [a, b].
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summability condition. So, it is defined the Bochner integral of each component.

In particular, we have
T T
Jim (/0 si(t) dt)j :/O (1)), dt

in the sense of the space X. So, we can consider the collection of the n integrals as an
element of X".

T
By the definition of the norm, also / sk (t) converges to this vector of X", since, if [
0

T
is a vector of X" such that [; = / (f(t))J dt, for j =1,...,n,
0

T
0 J
as k — 00.

T
By the uniquess of the limit in the Banach space X", we have that / f(t) dt is the
0

n

H/O s(t) dt —I|xn= |

Jj=1

2
— 0

collection I of the Bochner integral of each component.

Observe that, if X = L?*(Q2), with Q a domain, and if f € L*(Q)", so that f = (f1, ..., fa),
with f; € L*(Q), it holds that

1 lxr = AN + o+ 1l

using that || - [x = || |[2. Since [|fi]l3 = / | fil*dz, we have
Q

I = iz:;|fi|2dx)% =(/ |f|2dx)5

since | f|? = >0, |fi]?* is the Euclidean norm in R™. So it is the usual norm in L*(Q)™.
If p # 2, then we have an equivalence of the norms, since the Euclidean norm in R” is
equivalence to the p—norm in R". [

The definition can be generalized, replacing the Lebesgue time-measure with a general
measure. But we are interested to very particular examples of this spaces, i.e. the L?
spaces involving time.

5.2 L? spaces involving time

Definition 5.5. For 7' > 0 and p > 1 we define the space

LP(0,T; X)
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as the set of all strongly measurable functions
u:[0,T] = X

such that ,
/ lu(®) [Pt < +o0
0

: .
[ ( JGIE dt)
0

Remark 5.3. The strongly measurability of « implies, as underlined above, that ||u(t)]|
is measurable in the Lebesgue sense in [0, T]. So, the integral is a well-posed integral
of a non-negative measurable function. [

In this case, we define

If p = 0o we define

[ul[ oo o,7x) 2= sup [Ju(t)]| < +o00
te[0,7

Talking about Navier-Stokes equations, it is foundamental the case X = L?. So

T 1
P
TP ( / ()|, dt)
0

Remark 5.4. Moreover it holds the following proposition.

Proposition 5.1. Let u : [a,b] — X a summable function, with v € LP(a,b; X) and
p > 1. Then exists si(t) such that

b
lim / 56 () — u(®)|[%, dt =0
k—+oo J,

Proof. We know, by definition, that exists a sequence s () of simple functions such
that

k—+o0

b
lim / | sk(t) — u(t)||dt =0

and that this sequence also has limit u(t) almost everywhere. Here we use, for sake of
simplicity, || - || for || - ||x. We can change slightly the structure of s; to pass the limit
under the integral sign. We define

k2
Sk(t) . @ '
Sk(t) == Sk(t>||mm{ i 7||8k:(t)||} teg}Qk,z

0 otherwise

where Q== {t € [a,0] : £ < [Ju(t)|] < B2}, for i € {0, ..., k?}.
Remember that the s, are simple functions, so they take a finite number of values.
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So it is also §;. These values are taken over measurable sets, since these domains are
intersections of domain of s; and €2;,. Observe moreover that

{8 ) - 0 8} 2

Finally we show that ||sg(t)|| — [Ju(t)]| as k — 4o0. In fact

IN

namn_' )|

i1 . .
te Q. <= |u®)| € {E’T} = |lu(@)||k € [i,i+]1] <= |[u@®)||k—1 <i<|u(t)||k =
1 ik
= o)+ < W <)
So we have
1 {Z(k:) ™ )”} ! min{ G2, {5k ()1} = |s(?)l]
T i Sk =g 22 u(t)] 1 el _ (k)
s (@)l k T € Ls,c(t) T WO Tsk@l min{ ¢, ||se ()|} =
Since klim llsk(®)]| = ||u(t)||, we have that, for every ¢ > 0, exists K; = K;(t) such
—+00
that )]
u
1—e< <l4e Vk> K1)
|5 (®)]|

It also exists Ky = Ko(t) such thatf]

1
e<——— <e Vk>Ky(t)
kl s (@] ’

So, if £ > max{K7, Ky}, we have

lu@®ll 1 _ Ju@I
sk @I Ellse @1~ sk ()]

For those k such that it holds the condition mln{ L lsi(®)||1} = [|sx(t)]| we have that
the function is simply 1. So, for k large enough, we have that

i s} - 10

[k ()]l
(s} )

i 01} 1] = -0

1—-2< <l+e¢

Sof|

lim ||8,(t) — k()] = lim

k—+o0 k—+o00

~ sl

4Where the step of s, is zero, so it is also the step of 3.
®Since for k large enough ¢ is in €2; . for some i.
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Obviously
185(2) — u(®)] <[5k () = se(®)]] + [[sk(t) —u@)]| =0 as k = 400

Finally
136(8) = ()P < {Isx @)1 + a1} < 27]|u(t)]”
Since u € LP(a,b; X), we have that

b b
. N . p — : a _ p —
Jim [l —uera = [ (s - w17 di=o

This means that $;(t) is a sequence of step functions which limit is u(t) in LP(a, b; X),
that is the thesis. [l

Theorem 5.1. Let X be a Banach space and let p € [1,00). Then the collection of the

functions
n

Fat) = adi(t)  cr€ X, ¢i(t) € C(0,T)

k=1
is dense in LP(0,T; X); that is, for every f € LP(0,T;X) and ¢ > 0 ezists K € N such
that

\f = fellzrorix)y < € Vk > K

Observe that fi(t) € C*(0,T; X).
Proof. Let f € LP(0,7;X). By proposition we know that exists a si(t) =
Z siXpk(t), with E¥ measurable in [0, T] and s} € X, such that

r :
din ([ s - ol ar) =0

Now, for every i,k € N, we can find a function ¢F € C>(0,7T) such that
k €
i —XEeRllp <
ng E; Hp QZHSfHX
since if ||s¥||x = 0, then s¥ = 0 and we can rename the sequence. Then we can define
my,
t) = skl(t)
i=1

Then we have

. .
1 = Full o) = ( | -k dt) < 1f = selluroo + 58— fill oz =
0

= ([ 150 - s dt) +HZ (et () = O o) <
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§</0T||f(t)—sk )% dt) +ZHS Xer(t) = 2E )| oo ) =

:(/OTnf(t)—sk I dt) +Z(/ T— dt>;:
(/ 1 (&) = se(@)II% dt) +Z”5kﬂx</ e (1) - )!”dt)p:

= ([ e - a) i Istllxlixer — ¢l <
< (/OTHf(t)—sk % dt> +Z (/OT”f(t)_Sk o dt) +Z—=

= ([ 1s0 - ot )’ «3-5 < ([ 1o -son #) e

: :
If K is such that </ llsk(t) — FOI5 dt) < ¢ for every k > K, then we have
0

\f = fellerorixy <26 VE> K
that is the thesis. |l

We now focus our attention to the case X = L4(Q), with ¢ € [1, 00).

Corollary 5.1. Let p,q € [1,00) and f € LP(0,T; L1(2)). Then, for every e > 0, there
exists f. € C2((0,T) x Q) such that

||f - fEHLP(O,T;LQ(Q)) <e€

Ne
Proof. Let be e > 0. By theorem|5.1|there exists g.(t) = Z o5 (t)c;, with ¢, € L1(§2)

and ¢ € C2°(0,T) such that

If — gEHLP(O,T;Lq(Q)) <e
By density of C2(€2) in LY(%2), we can find i € C22(42) such that

I = il < =—
TC.N,

where



Define f.(x,t) Zcbs (@) € CX((0,T) x Q). Then
\f = fellerona) SN = gellzrorina)) + 1|9 = fellro.rLa@)) <

<et <€+ZH¢k — ¢k HLP (0,T3L9(2))

LP(0,T;L4(Q))

On the other hand

T : T
oot oy = (] 16000y ) = ([ 10RO bl a

< T((sup) ]gbi]) ek, — Orllza) < CT[cg, — ¢hllLa) <
0.7

& o

It follows that || f — f.||zr0r;00(0)) < 2¢, that is the thesis. |

5.3 Important functional spaces results
In fluid dynamics the temporal variable ¢ plays a very important role. It is very com-

mon that the regularity of a certain function, or field, is different with respect to the
temporal variable and the other variables.

We start with a basic proposition, inspired by [0, p. 248].

Proposition 5.2. Let X a Banach space. If X is separable and p € [1,400), then
LP(0,T; X) is separable. Moreover if p € [1,+00) and p' is its cojugate, then

(LP(0,T; X))* = L¥ (0, T; X*)
The dual pairing is explicetely given by
T /
(W, 0) 1ot 0.0,x7), L0 (0.7:) :/ (u(®), v(t))x xdt Vue LV (0,T;X'), ve LF(0,T;X)
0

In particular, if p=2 and (X, {,)x) is an Hilbert space, then L*(0,T;X) is an Hilbert
space with scalar product given by

T
<u7U>L2(O,T;X) = / <U7U>th \V/U,U S L2(O7Ta X)
0

If p € (1,400) and X is reflexive, then LF(0,T; X) is reflexive.

Remark 5.5. The proof follows from the real case X = R. [J

Moreover, the inclusion in LP spaces involving times is the following.
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Lemma 5.1. Let X CY continuously embedded. Then also
7(0,T; X) € IP(0, T;Y)
1 a continuous embedding.

Proof. Thanks to the continuity of the injection X — Y, we have that exists C' > 0
such that ||z||y < C||z||x for every x € X. It follows that if f € LP(0,T; X), we have

T ; T -
1oz, :=( [ dt) sc( [ s dt) — Ol

that is the cointinuity of the embedding. i
We focus now our attention to the Banach spaces X that are spaces of functions.
In particular Sobolev spaces (including LP spaces). So a function w in LP(0,7T; X'), with
X = W*HP(Q), is a function in X at every time ¢, i.e.
w: [0,T] — WHP(Q)
In this way, we can look at u as a function
u = u(t)(z)
More precisely, for those pairs (x,t) where u is defined, we can write
u=u(x,t)
We have now a question: since in particular u(t) € LP(2), can we think to u as a
function in L?(Q2 x (0,7)), that is a function defined almost everywhere in the 4D set
Q2 x (0,7)? The answer is "yes” in a very special case. It is explained by the following

proposition.

Proposition 5.3. Let p € [1,00). Let Q a bounded domain and T > 0. Then there
exists an identification

LP(0,T; LP(Q2)) ~ LP(2 x (0,T))
Proof. An inclusion is easy. In fact, if u(z,t) € LP(Q2 x (0,7)), we can consider,

for almost every tg € (0,7), u(to)(x) := u(z,ty) € LP(2). Moreover, since in particular
lulP € L'(2 x (0,T)), by the Fubini theorem we have

/QX(O’T) lu(z, £)[? d(z,t) :/OT (/Qw(x’mp dw) &

Conversely, let u € LP(0,T; LP(1)).
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Remark 5.6. The interval [0, T') can be subdivided into a finite number of sub-intervals
of constant lenght % In particular, for every ¢t € [0,7) and n € N, exists a unique
j = j(n,t) such that ¢t € [£, Z£1). So, by Lebesgue theorem, for almost every ¢ € [0, 7],
if f € Li,.(0,T),

itn)+1

n

w [ F) ds o £

This will be useful in a moment. O

We now consider the sequence

j+1
i o
meBUAnyzn/“ u(s, ) ds  ifteo,T)n[L, 1"

J n n

)

Then u,, € LP(Q x [0,T]) C LP(0,T; LP(Q2)). If we show that

T
lim (/hm—uwmﬁcu:o (5.1)

T
lim </ [tn, — U |P dx) dt =0 (5.2)
m,n—00 Jq Q

In other words, {u,}nen is a Cauchy sequence in LP(Q x [0,7]). By the completeness
of the space LP(€ x [0,T7]), we have that exists u € LP(Q x [0,7T]) such that

then

u, —u in LP(Q x [0,T7])
Moreover, (5.1)) and (5.2)) imply that ||@||Lr@xjo,r)) = ||t ro.1;Lr@))-

So, we have only to show that (5.1)) holds. First of all, observe that
1

n/i ' (u(s,z) —u(t,z)) ds

41
< n/] llu(s, ) —u(t, )|, ds
p I

(5.3)
This estimate, together with remark [5.6 implies that u, (¢) — u(t) in LP(2) for almost
every t € [0,T]. So, the thesis follows.

[un(t, ) = ult,)llp =

5.3.1 The case of LP(0,T; L4(2))

Let p,q > 1 and 2 bounded. When X = L%(Q2), we have, as said above, a function of
two variables. Moreover, by the definition of Bochner integral we know that the integral
of a function that takes values in X is an element of X. The definiton of summability
in this case leads to

lim ||si(t) —u(t)]| =0 forae. t€ [a,b

k—+o0

Clearly, at almost every ¢ € (a,b), is defined
f(t) = / u(z, t)dx
Q
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since u(t) € L) C LY(). But is the function f(¢) measurable over (a,b)? Observe
that

/Qu(x,t)dx—/ﬂsk(x,t)dx

So for almost every t € (a,b) we have that ¢ (t) := / sk(x,t)dx is a simple function
Q

SOR RCTTEED DY RACISIOIEED SRt

where d¥(x) € LY(Q) e dy.; := / d¥(z)dx.

Q
So f is the pointwise limit of simple functions ¢, that are measurable. So, f is mea-
surable. This means that we can consider the integral of the absolute value (also the
absolute value is measurable),
/ u(z,t) dx
Q

/\f )| dt = /

Since, at almost every fixed t € (a,b), u(x,t) € L), we have that

< / |u(z, t)—sg(z, t)|dx < ]Q]iHu(t)—sk(t)Hq —0 ask— +o0
Q

dt

/u(x,t) dx| <
Q
/ |u(z,t)| dz. It follows that, since alsﬂ lu(x,t)| € LI(Q),

/|f |dt<//|uzt|dw<|§2| /||u ()]t < (b—a) </ lu(t det> < foo

So we can consider the integral with sign

/abf(t)dt:/ab/gu(z,t) dx dt

b
On the other hand, since we have, by definition, / u(z, t)dt € L), we can consider

/Q/abu(x,t) dt dx

/Q/abu(x,t)dtdxg//abu(x ‘dm-/
/||u )1 dt = /(/|uwt|d$)

since u : [0,T] — L%(Q) C LY(Q
6 And
| / (e £)|di — / sk (2 £)|dz] < / ue, )] — |si (. D] dee < / (e ) — si (e, 1)]da
Q Q Q Q

and

so that the measurability holds also for / lu(z, t)|dx.
Q
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An integral interchange. We may ask if in this case is possible to interchange the
integrals. Again, the definition of summability leads to

kgr-i{loo |lsk(t) —u(t)]ly =0 for ae. t € [a,b
As above, we have that

lim sk(:c,t)da::/u(x,t)dx
Q Q

k—o0

for almost every ¢ € (a,b). As in proposition we can redefine the sequence so that
IIsk(t)]lg < |lu(t)]l4- In particular, we have

Jim_ ab (/st(a:,t)dx>dt: /ab (/Qu(x,t)dx>dt
/Q sl 1) da

we can use the Lebesgue dominated convergence. On the other hand we have that

/j(/sk(x t)d:c)dt:/ab (L:Zidf(w)x,ﬂf(t)dx)dt:
/(/b 3 XEk()dt>d$:/ﬂ</ab5k(x,t)dt)d:c

/Q (/b (se(w, 1) = u(w, 1)) dt) dz| <

/(sk(:c,t)—u(x,t)) dt gm\l—é/ lse(, ) — ulz, 8)]|, dt — 0

as k — oo, thanks to the definition [5.4, By the uniqueness of the limit, we have that

/ab (/Qu(%t)dﬂ?)dt— /Q (/abu(x,t)dt)da; (5.4)

The case p = ¢ = 2. We know by the Proposition that L2(0,T;L?*(Q)) =~
L3((0,T) x Q). So in this case we have that

u€ L*((0,T) x Q) = ue L'Y((0,T) x Q)

since

< lse(®)lh < 19" llse @)y < [ Ju®)ll, € L'(a,b)

and

<
1

b
/ (si(z,t) —u(z,t)) dt

<|Q'

since the measure of (0,7") x Q is finite. So, by the Fubini theorem, we haveﬂ

// xtdtdx—// (x,t) dz dt

TAnd since u € L((0,T) x Q) means |u| € L1((0,T) x Q) we also have the formula

/Q/ lu(z, ©)| dt dx:/a /Q\u(x,t)|dz "
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Product of functions. It is very usefull to consider f € LP*(0,7;L") and g €
L9(0,T; L?), where ¢ is the conjugate of p, and ¢; the conjugate of p;. Since f and g
are measurable, also f - ¢ is measurable: in fact, if s;(¢) and v;(¢) are such that

kErJPOO llsk(t) — f(®)|l, =0 ae. t, jlg-noo |v;(t) —g(t)|[q =0 ae. t
it follows that

im lsk(t)-vx(t) = F(8)-g@)ll < lim i (t)-(ve(t) =g ()l +[1(sx(t) = f(2))-g(B)][1 = O

k——+o0

and is a simple function in that takes values in L'(Q). The summability follows from
an analogous calculation. The same argument holds for a greater number of functions,
provided that these functions are in the right class in order to use the Holder inequality.

Theorem 5.2. Let (H, ||-||) an Hilbert space. Then L*(0,T,)®H is dense in L*(0,T,; H),
where

L0, T.) @ H:={g=g(t) € H: g(t) =Y _ fi()h;, f; € L*(0,T.), h; € H}

Remark 5.7. Here the symbol & is inappropriately used; it usually means tensor product,
that is a more complex algebraic structure. However, the density above holds.

Proof. Let f € L*(0,T,; H). Then there exists a sequence of simple functions, say

sk(t) == Z X& (t)hi

with FE; measurable subset of [0,7,] and h; € H, such that [see section
T

lim s (t) = f(#)]*dt = 0

k—4o00 0

Since sy (t) € L?(0,T,) ® H, we have in other words that, for every e > 0, exists K such
that

||SK - f||L2(0,T*;H) <€

that is the required density. i

5.4 Sobolev spaces involving time

The basic results of this sections are inspired by the fundamental Evans’ work [10].

Definition 5.6. Let X be a Banach space. The Sobolev space W1?(0,T; X) consists
of all the functions u € LP(0,T; X) such that u' exists in the weak sense and belongs
to LP(0,T; X). Furthermore, we set

=

p

I @)l + o (8 dt) 1 <p<oo

||u||W17P(0,T;X) = /
sup ([lu()]| + [/ ()] p =00
0<t<T

91



We have the following theorem.

Theorem 5.3. Let u € W'?(0,T; X) for some p € [1,00]. Then u € C([0,T]; X)
(after possibly being redefined on a set of measure zero). Moreover it holds

u(t):u(s)—i—/tu'(T) dr VO<s<t<T

Furthermore, we have the estimate

Hll < C , :
nax [u@)[| < Cllullwrrorx)

where C' only depends on T'.
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Chapter 6

Helmholtz decomposition in 2
spaces

Given a measure space (2, M, 1), the space L?(u) = L*(Q) = L? stands out other L?
spaces because of it is equipped of an inner product. Remember in fact that

L*(Q) := {f : © — R measurable functions such that /Q |f? du < +oo}

So, we can introduce
(f.9) = /Qfg dp

which is well-posed because of Holder inequality.

Definitions above can be generalized to n-dimensional vectorial field simply replacing
absolute value with Euclidian norm and defining the integral component by component.
The product between f and g become the Euclidian inner product. With these devices,
we can continue our speech.
We define

O3 Q) = {/ € C(@)": V- [=0)

where the superscript n remembers us, at least in this chapter, that the functions take
vectorial values in R".

Definition 6.1. We define the closed space

[2(Q) = m\\-llm
that can be equipped with the standard inner product in L?*(£2).
Remark 6.1. Remember that

LZQOC(Q) ={p: Q2 —=R: /K Ip|* dpp < +00 ¥V K C Q compact subset}

is the classical local L? space over . [
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Definition 6.2. Let €2 a domain in R", n > 2. We define

G(Q) == {f € LX(Q)": Tp e L2,(9) such that f < Vp}

loc

where, by definition,

Flvp &L /f-gad$=—/pv-g0dx Y e C=(Q)"
Q Q

Remark 6.2. Note that both members make sense, the first because integral of the
product of L? functions, the latter because V - ¢ vanishes out of a compact, so we can
use Holder inequality inequality thanks to the fact that p € L2 () (and also V - ¢
because of its regularity). [

Remark 6.3. Similarly, for F € W, "%(Q)" we say

loc

d def

F=p < (.F,gp)z—/pv-godx VpelCrQ)"
Q

where (-, ) is the dual pairing for functionals in W, (Q)". O

6.0.1 Preliminary lemmas

The aim of this section is to prove the Helmholtz’s theorem We have first to prove
some lemmas.

Lemma 6.1. Let Q C R™ with n > 2 and let Qo # 0 a bounded subdomain of 0 such
that Qo C Q. Let f € W, *()" such that

flv)y=0 YveCr, ()"

Then there exists a unique weak potential p € L2 () such that f < Vp and

loc

/pdsz
Qo

Remark 6.4. Let ¢ € (1,00) and ¢ its conjugate. Then, every f € L?(Q)) induces an
element in W~14(Q)". In fact, consider

(Fr ) ::/Qf~sodx

In fact, linearity is obvious, while

(Fpao)l < / Flielde < el

So, the inequality says that F; is a well-posed operator and it is continuous, since if
o1 — ¢ in W7 (Q)", then in particular || — ¢|ly — 0. So Fr € W=L4(Q)". O
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Proof. Using advanced functional analysis, the proof would follows easily, using the
Banach closed range theorem. However, in order to follow this way, one would prove
the surjectivity of the divergence operator and theorems about unbounded operator,
that will distract us from our aim. So, we follow the proof of [27, Lemma 2.2.1, pg. 73],
that is less elegant but effective. Thus, we start with the proof.

The idea is to use the classical method to construct potential strarting from the work of
a fixed force. First of all, keep in mind lemma . Fix € C 2, and choose a bounded
and lipschitz domain €2; such that 0y C €2y C Q; C Q2. We want to show that exists a

unique p € L9(2) such that Vp = f in distributional sense over €2; and / pdr = 0.
Qo

We proceed as follows. Consider a further domain such that Q; C Q, C Q, C Q.
Remark 6.5. Let f € W=12(Qy)" be a functional, with Qy bounded domain. Consider

2

D= {Vv e L*(Q)" : ve W ()} C L3 ()"

Then we can define the functional f: D — R such that Vo — f(Vv) := f(v). Then

f (Vo) = [f)] < Ifll-12llvllie < Ol fl-12ll Vol

since [[v]|T 5 = [[v[3+]V|l5 < (C*+1)||Vol|3, using Sobolev estimates over the bounded
domain €25. So, the functional is continuous over D C L2(Qg)”2, if this set is equipped
with the ||| norm. So, by the Hahn-Banach theorem, the functional f can be extended
to the whole L2(£2)" with the same operator norm. In particular, exists F' € L2(€)"
such that

/ F-Vvdz = f(v)
Qo

but F represent the whole element of the dual (LQ(QQ)"2>*. If v € CX(Qy), then
V - (=F) = f in the distributional sense. At this point we can redefine F' +— —F. [

So, roughly speaking, every functional of W~12({2,) on a bounded domain can be writ-
ten as the divergence of a matricial functional in L?(£).

At this point we define F*¢ as the mollification of F € L2(Q,)"", where 0 < ¢ <
dist (0, Q). In particular F° € C°°(€)". We want to prove that exists U. € C(Q;)
such that

V. F*=VU. in O

To do this, we use the following remark.

Remark 6.6. Let w : 7 — w(7), with 7 € [0,1], a continuous function from [0, 1]
to 1. Suppose that w’ exists on [0, 1] piecewise continuous. We say that w is the
parametrization of a curve. It is a closed curve if w(0) = w(1). Moreover, if g €

C*>®(1)™, we define the work of g along w as

[ stwirn - wieyar = [ (Z:gj(wmw;m) N
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It is a well known result of classical analysis that if for every closed curve w

1
/ g(w) -w' dr=0
0

then exsits u € C*(€2;) such that ¢ = VU. The scalar function U is called scalar
potential of the force g. [

If we show that for every closed curve w

/0 (V- F*) (w(r))-w'(r) dT =0

then remark provides us a potential U, over ;. To show this, we consider the
function

Vela) i= / ne(e — w(r))w'(r) dr

for every x € €y, where 7. is the usual mollificator. Clearly, V,,. € C*(Q)", if
w([0,1]) € €y, with w ﬁxe. Moreover,

(V- Vo) @) = [ 3 (D) a = wrus(r) dr = = [ Lonle = w(r)) dr =

= 1e(x — w(0)) = ne(x — w(1)) = 0
since w(0) = w(1), being the curve closed. So Vi, € Cg%,(§22). Then, by the hypothesis

0=f(Vie) = / F-VV,.dr=
Qo

= Zn: /92 sz(iv)</ol Din.(z — w(r))w)(1) dT) dx =

Ji=1

and so, since 7). is smooth on the domain, w’ is piecewise continuous and F' € LQ(QQ)”Q,
by Fubini theorem we have

= i /01 wZ(T)(/QQ Djne(x—w(r)) Fi(x) dx) dr = — i /01 wy(7) D (F5) (w(r)) dr =

Jil=1 gil=1

- [ )i i

n fact, we have choosen ¢ < dist(9Qs, 1), so that ¢ = dist(9Q2, Q1) — d, with ¢ < dist(9€2, Q).
So, if x is such that dist(z, Q) < J, we can consider y € B(z,&). Then y ¢ ;. In fact,

dist(y, 0Q2) < |y — x| + dist(x, 0Q2) < € + § = dist(21, 0Q2) = dist(9Q, 0s2)

So, if y € Oy, then |z — y| > &. Then, if w(7) € Q; for every 7 € [0, 1], we have |z — w(7)| > ¢, and so
Ne(z —w(7)) = 0, if dist(z, 0Q2) < . So V., is compactly supported.
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It follows that, for every w closed curve contained in €,

/0 (V- F*)(w(r)) -w'(r) dr =0

that is what we wanted. So, exists a potential U. € C*°(£;) such that V- F* = VU,
over €y, determined up to a constant. In particular, we can choose a constant c.(£2)

such that
/ U.dr=0
Qo

We now have to deduce some estimates. Using theorem [4.12] we have

el < CIVU sy =€ sup WVl gy, [T Vedaa)
0£veC (1) [v][wrz@) 0£vEC (1) [vl[wr2g0y)
since, being v € C°(€y),
(VU v)g = (V- F.,v)y = (F.,Vv)s
Being moreover |[v||w12(,) > ||V 12(0,), we have
1Vl z2(0) < ClEF] 2200 (6.1)

Here C' is independent of e. By the properties of mollifications, see theorem [3.3] we
have
lim HF — FsHLQ(Ql) =0

e—0
Replacing U, with U. — U, in (6.1]), we have
10Uz = Uyllzz@) < CIF = F[Lagay) — 0
as €, — 0. So, by completeness of L?(€);) we have that exists U € L*(€;) such that

lim [|U = Ue| 12(,) = 0

Furthermore
/Ugdl’:O, ﬁogQ1:> Udzr=0
Qo

Qo
So, we have defined locally on €2; a potential pressure

p‘Ql =U

such that Vp‘Ql = VU =V - F = f in the weak sense. Moreover / p‘Ql dx = 0.

Qo

Let now 2] be another with the same properties of ;. We have that, in the in-
tersection of the domains, p‘ o and p| o have the same gradient. So p‘ g ~Ply =¢
1

over 3 N Q). Moreover, 2y C ; N2 and so

0= [ (oo, ~ploy) do = cion)
Qo !

o
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that is ¢ = 0. So, the local pressure p‘ﬂl is well-posed with respect to the change of the
local domain. Using the decomposition of the domain provided by lemma 1.2 we have
that p can be defined over the whole €2, and so we obtain a pressurdﬂ p € L2 (Q) with

loc

the required properties. i

6.1 Helmholtz decomposition theorem

There is now this fondamental theorem.
Theorem 6.1. Let 2 C R"™ an open subset, with n > 2. Then

e [t holds
GQ) ={feLl()": (f,g9)=0Vge L)}

e For all f € L*()™ there exist unique fo € L2(Q) and fi € G(Q) such that
f=lh+h (fo,f1)=0
where there exists p € L3, () such that fi < vp. Consequently
£z = [1follz2 + [LAlIZ:
e The operator
P: L*(Q)" — L2(Q)
f—=Pf:=fo

is well-defined, is linear, bounded with | P|| < 1. Moreover, the following proper-
ties hold: if f,g € L*(Q)"™ then

(i) P(f1) =0;

(i) (I = P)f = fi;
(iii) P2f = Pf;

(i) (I = P)*f=(I—-P)f;

(v) (Pf,9) =}, Pg);

(vi) 1172 = IPfI72 + (L = P)fI1Z.-

Remark 6.7. Observe that the property || P|| < 1 tell us that

1Pflle < I fllze Vf € L2(Q)"

This would be fundamental for future estimates. [J
Remark 6.8. Thanks to the theorem, we can write G(Q) = (L2(Q))*. O
Remark 6.9. The property (v) says that P is a self-adjoint operator. O

2Since the sequence of domains is ”swarming”, every compact in ) is containded in an element of
the sequence.
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Proof. First of all, we prove that G(Q) = L2(Q)*. Let f € L2(Q)*. In particular,
by definition, f € L?(Q)". Hence, we can consider the functional, defined in remark

6.4
FfZU—>Ff(U)

for every v € Wy *(Q)™ C L*(Q)". In particular, if Qg is a bounded subdomain of €,
we have

[ v de| < 1o ol
Qo
But, if vy, v € W,?(Q)" are such that lim |jv), — Ule 2.0y = 0, then
H
lon = vl 200y < [Jvn — v L2@@)n < ||vn —v][wr2@)n ||vh—v\|W12 n — 0 ash — +o0

So, the functional

F?O(v) = frudr
Qo

is a well-defined, linear and continuous operator. It follows that F; € I/Vlgcl Q).
Moreover, if v € Cg5,(Q2)",
/ frvde=0

because f € L2(Q)F = {f € L*(Q)" : (f,9) = 0Vg € LZ(Q)"} and v € C3,(Q)" C
L2(Q)"™. But now we are in the hypothesis of lemmal6.1] So, there exists a p € L7, ()

such that f < Vp. This means that f € G(Q).

Viceversa, let f € G(£2). Than there exists a locally L? distributional potential, say p.

If v € Cg5, ()", we have
/f‘vdx:—/meda::O
Q Q

using the definition of f < Vp. Let now v € L2(2)". This means that v € L2(Q)" and
exists v, € Cg%,(£2) such that

v = vpllz2@)n =0 ash —0

Then
L1 = wlds < [ 151l = vilde < 1 Flapello = ol
Q 0

So, being f,v € L*(Q)",

‘/Qf-vd:c

Finally, for every v € L2(Q)",

(v —wy) dx

/Qf-vd:vzo
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This means that f € L2(Q2)*. So the equality of sets holds.

We now have to use Hilbert theory to deduce the existence of the decomposi-
tion. If we show that L2(Q2)" is a closed and convex subspace of L*(2)", then from
Hilbert’s spaces main theorem , we have that for every f € L*(Q)" there exist unique
fo € L2(Q) and f; € L2(Q)* = G(Q) such that

f=Jo+ h, (fo, f1) =0 (6.2)

Convexity: let f, g € L2(Q)". We want to show that tf + (1 —t)g € L2(Q)" for every
t € [0,1]. Clearly the linear interpolation ¢f + (1 —t)g is in L?. Moreover, both f, g are
approximed in L? by f,, gn € Co,(Q)™. Alsﬂ tfn+ (1 —t)gn € Coo(2)™. Finally

[t(f = fn) + (L =1)(g = gn)llL2 = 0 as h = 400

Sotf+ (1—1t)ge L2(Q).

Closure: the L?(2)" space is equipped with the distance d||.|, induced by the norm
| - ll2- The space C§%,(2) is a subspace of L*(€2)". By definition L2(€2)" is the closure
of C§%,(Q) in the metric space (L*(€2)",dj.|,), so it is a closed subset of L*(Q)".

So, by the theorem about Hilbert spaces mentioned above, we have that it is possi-
ble to decompose f in the sum of two orthogonal functions, as in (6.2)). So we define

Pf==f, VY feL*Q)"

This decomposition immediately tell us that the operator P defined above is well posed.
In fact, the decomposition is unique, and the following properties hold.

e Linearity: It is an immediate consequence of the uniqueness, since, if f,g €
L2()™ and a,b € R, then afy + bgy satisfies (6.2)).

e Boundedness: Observe that
172y = I1fo + fillZ2yn = I foll T2y + 12l 22)n + 2(fo, f1)

= [ follZ2yn + 1l Z2pn = Ifoll72qyn
and so
IPfllz) = Il foll2@yr < 1 fll 2@
It follows that the operator P is bounded and || P|| < 1.

e P(f;) = 0: The unique decomposition of f; € G(Q2) is fi = 0+ f1, so the property
follows by uniqueness.

3Smoothness and divergence free property are clear. Moreover, if v, w has compact support,
{zeQ: (w+w)(z)#0} C{zreQ: v(x)#0}U{r e Q: w(x)+#0}

It follows that supp(v+w) C supp(u) Usupp(v). Because the union of two compacts is a compact and
a closed subset of a compact set is a compact set, also v + w has compact support.
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e (I — P)f = fi: We have that
U=P)f=f-Pf=fo+hHi—fo=h

e P?2f = Pf: We have
P*f=P(Pf)=Pfo=fo

since the unique decomposition of fy is fo = fo + 0.

e (I — P)*f = (I — P)f: Calculating, we have
(I-PPf=(I-P)((I-P)f)=(I~-P)(fi)=h-P(h)=h=I-P)f
o Self-adjointness: We have

(Pf,g) = (fo,9) = (fo, 90 + g1) = (fo, 90) + {fo, 1) =
since f1, g1 € G(9),

= (fo,90) + (f1,90) = (f, 90) = ([, Pg)

e [? norm decomposition: it follows from the fact that Pf = fy and (I — P)f =
f1, together with (6.2)).

So, the proof of the theorem is complete. |
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Chapter 7

Weak and strong compactness of
LP(0,T; X) spaces

We start with some fundamental issues in weak topology theory. In these pages, a space
X will always be a Banach space.

Definition 7.1. A sequence {u}r € X converges weakly to u € X, written up — u is

lim Aup =Au VA e X*

k——+o0
An important issues is also what means for a space to be compact in another.

Definition 7.2. Let X,Y Banach spaces, with X C Y. We say that X is compactly
embedded in Y, and we write
Xccy

if

Jully < Cllullx  VueX
and for every bounded sequence {u}r € X there exists a subsequence uy, and v € Y
such that

lim g, —ully =0

J—+oo
Remark 7.1. The inclusion can be substituted with another embedding. In particular,
if j(X) C Y, where j is an embedding, the two properties of the definition become
lully < Cllj()llx and tim_[j(up,) = ully =0

The following theorem about weak compactness holds for every reflexive Banach
space, in particular for Hilbert spaces.

Theorem 7.1. Let X a reflexive Banach space and consider a bounded sequence {uy} C
X. Then there exists a subsequence uy, and w € X such that u, — u.
In other words, bounded sequences in a reflexive Banach space are weakly precompact.

Definition 7.3. Let X a Banach space and consider the dual space X*. A sequence
{fn}n € X* in the dual space is said to be weak-* convergent in X* if there exists
f € X* such that

lim f,(z)=f(x) VeeX



In this case we write

fo = f

Definition 7.4. A space X is weakly compactly embedded in Y if the embedding of the
first in the latter satisfies the two properties above with the weak convergence.

The following propositions summarises some well known facts about compactness, weak
compactness and compact embeddings.

Proposition 7.1. Let U a bounded open set in R™ with OU € C*. Let p € [1,n). Then
wWte(U) cc LY(U)
for every q € [1,p*).
Proposition 7.2. Let X,Y Banach spaces and T : X — Y a linear operator. Then
T is compact <= T* is compact
Moreover, the equivalence holds with weak compactness.
The following is taken from Evans, [10, p. 466].

Theorem 7.2. Let q € (1,4+00). Let {un} a bounded sequence in W*P(Q)). Then there
ezists a subsequence {up, } and u € W*P(Q) such that u,, — u in WHP(€2).
Moreover if {up} C WEP(Q), then u € WrP(Q).

7.0.1 Further well-known compactness results

By a theorem above, we know that H'(U) cc L*(U), if U is C'. Without assuming
OU to be C', we have H}(U) cC L*(U). The inclusion is the canonical one. So we
have the linear inclusion operator

j i Hy(U) = L*(U)

u— j(u) =u
that is a compact operator, in particular bounded and linear. Remember that

Theorem 7.3. Let T' : Hy — Hy a linear bounded operator. So there exists a unique
bounded adjoint operator
T : Hy — Hy

such that
<Th1,h2>h2 — <h1,T*h2>h1 \V/hl € Hl, hz € Hz

So, the adjoint operator
75 (LAU)) = (Hy(U))*
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exists and it is also compact. Since L*(U) is reflexive and H=Y(U) := (H}(U))*, we
have that the embedding]l]
j*: LX(U) = HY(U)

is compact. Moreover we have weak compacness of Sobolev spaces. Consider infact
a bounded sequence {u;} C HZ(). Then in particular we have that {u;} C H(Q).
So there esists a subsequence {uy,} and u € Hj(€2) such that wuy, —% u. Moreover

llullgr < ||ul|lge for all the u € HZ(2). So the embedding HZ(Q2) — H}(Q) is weakly
compact. So, also the embedding H'(Q2) < H~2(Q) is compact. The injectivity is
provided from the fact that H2($) is densd’]in H}(€2).

7.0.2 Covergence in C([a,b]; X)

Before inspecting the compactness of LP spaces involving time, we focus our attention
to the following generalization of a real analysis result.

Lemma 7.1. Let X a Banach space, and let —oo < a < b < co. Let f, € C([a,b]; X)
a sequence such that, for every tg € [a,b] and for every |a,b] > t, — tg

T (£, (t) = £(t)lx =0 (7.

with f € C([a,b]; X). Then f, — f in C([a,b]; X).

Proof. The thesis can be rewritten as

lim sup [ fn(t) = f(#)][x =0

=00 tela,b]

By contrary, suppose that the thesis does not hold. Then, there exists € > 0 such that,
for every N € N exists n > N such that

sup [ fa(t) = ft)]x > €

te(a,b]

Then, we can find a subsequence n; such that

sup [ fn,(t) = f(t)lx > VEEN

tela,b]

1 Also j* is injective (and this means that the image of j*(L?(U)) can be seen as a subset of H~(U)).
In fact, suppose that j*(u) = 0. Then

(j(v), W2 =0 Yo € Hy, ueL?

Then if R(j) is dense in L?(U) we have that %, so that j* is injective.
But R(j) = H}(U) that is dense in L?(U) since

Cee(U) € Hy(U) € L*(U)
and C§°(U) is dense in L?(U).

2Quickly C§°(Q) € H2(Q) C H} (), so taking the closure in || - || ;1 we have the thesis.
In other words, we can take ¢, € C§°(Q2) C HZ(f2) that approaches a function u € H}(2) in the norm

|| . ||H17 since H&(Q) = WHHHl '
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This means, in particular, that there exists a real ¢ € [a, b] such that

1fnc () = F(D)llx > €

In order to remark the dependence on ny, we define ¢, = t. It follows that, for every
keN,

[ fo (i) = f ()l x > €

The sequence t,, € [a,b] is bounded, so, there exists a subsequence tn,, and to € [a, b]
such that

lim ¢ = to
h oo Rh

So, by the fact that f € C([a,b]; X), we can find H is such that

€
I£tn,) = )l <5 ¥h=H
We have that

[ fr,, (b, ) = S GO = [ s, (i, ) = F i M= 1 () = S (E)] > %

for every h > H. But this is in contradiction with ([7.1). Thus, this is the thesis. |

7.1 Compactness in Banach spaces involving time
Lr0,7T; X)
In [26] it is stated the following lemma.

Lemma 7.2. Let X C E C Y Banach spaces, such that the embedding X — E is
compact. Then the embedding

L0, T; X)N{p: 0y € L'(0,T;Y)} — L*(0,T; E)
s also compact.

Nevertheless, we state and prove the following more general theorem, that is fur-
nished in [25].

Theorem 7.4. Let X C B C Y Banach spaces, and suppose that the embedding X — B
is compact, and let p € (1,00). Let F a family bounded in L*(0,T; X) and suppose that

oF  Of

is bounded in L'(0,T;Y). Then F is relatively compact in LP(0,T; B).

The proof is long and it is exposed in the following subsections.
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7.1.1 Relative compactness

We have introduced in definition the relative compactness. The following definition
is equivalent.

Proposition 7.3. Let X C Y two Banach spaces. Then X is relatively compact in'Y
if and only iof

Ve>03{z;: i=1,...n} C X : Ve X Ia; such that ||x — z4|ly <e (7.2)

Proof. Suppose that ([7.2)) holds. Let z; a sequence in X. If we show that x; has a
subsequence converging to a point € Y, then we have the thesis. Let h € N U {0}
and, with e = % in ((7.2), consider

Pp={z1,...,xn,}

We start with h = 0. There exists yo € Py such that the ball B(yp, 1) of Y contains
infinite points of {xy}, being the sequence infinite. So, we define

[0 = {k eN: T € B(yo, 1)}

Now, if h = 1, there exists y; € P; such that B(y;, %) contains infinite points of I,
being this set infinite. So we can consider

1
[1 = {k S IO DX € B(y17 5)}
Iterating the process, we have that y;, is such that B(y, 2%) contains infinite points of
the sequence A,_;. We define

1
Iy ={ke€l_1: zx € By, ﬁ)}
We choose now a sequence ky,, strictly increasing, such that k, € I, for every h.
Then zy, is a Cauchy sequence. In fact, kj, € I; for every h > [. This means that, if
h,m > [, we have ky, k,, € I;, and so

1
1k = e | < Nlww, = wll + g = wrn | < 55

If | — oo, we have that zj, is a Cauchy sequence. So, being Y complete, we have that
exists © € Y such that

lim ||z, — |y =0

h— 00

This is the thesis.

Conversely, suppose that doesn’t hold. So, exists € > 0 such that X can not
be covered with a finite number of balls (of V') of radius €. So let z; € X arbitrary. We
can find x5 such that |21 — z2]]y > € (otherwise X C B(z1,)).

So, given some points {x1,...,xx}, we can find xx.1 ¢ {x1,..., 2} such that ||z, —
Tpy1lly > € for every h € {1,...,k} (otherwise for every z € X/{z1,...,zx} it would
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exist h(x) € {1,...,k} such that ||z — Thmlly < Eandso X C UF_ B(x;,) that is a
contradiction.). So we have a sequence {z} such that

ey — zmlly > 2

for every k # m (since for sure k > m or k < m). So, it is impossible for the sequence
x1, to have a Cauchy subsequence. So, x; can not have a subsequence converging in Y.
But x, is a sequence in X C X and X is compact in Y. This is a contradiction.

7.1.2 Statement of the main theorem
Definition 7.5. Given a function f defined over [0, 7] we define, for every h > 0,
(tnf)(t) == f(t+h) on [—h,T —h]
We first prove the following theorem.

Theorem 7.5. Let X C B C Y be Banach spaces, withe the embedding X — B
Compacﬂ. Let p € (1,00). Suppose that

F is bounded in LP(0,T; X) (7.3)
| f — fllero.r—nvy = 0 as h — 0, uniformly in f € F (7.4)
Then F' is relatively compact in L*(0,T; B).

Remark 7.2. Theorem implies theorem [7.4] In fact, observe that for every g €
LY(0,T;Y) we have

o) =5 / 9(s) ds

3f

So, if we choose g = % we get
d of
—\ f(t) — ds | =0
(10~ [ S as) -

and so f — / ) ds = ¢, that is f € C(0,7T;Y). Moreover

t+h
f(t+h)—f(t):/t %(s) ds Vtel0,T —h]

Then h
0
ITnf = fllzror—niy) = H/ f ) ds

Moreover, Young’s convolution inequality says that, if g € L*(0,T;Y) and ¢ € LP(0, a),
then

3Moreover, B C Y will always be considered a continuous embedding.

LP(0,T—h;Y)

< lgllzr .l ze©.q)

/Oa gt +XN)p(X) dA

LP(0,T—a;Y)
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So, choosing a = h, ¢ = 1 and g(s) = %(s), we have

ot
t+h af af
‘ /t E(s) ds —

1
< Chpr
ot -
< C uniformly in f. So we obtain the second hypothesis of theorem

LY(0,T;Y)

1
< hp

L2(0,T—h;Y)

af
I HE
z5 1

Now we have to prove theorem [7.5] To do this, we need to prove some lemmas.

L1(0,T;Y)

7.1.3 Lemmas used in the proofs

Lemma 7.3. Let X C B CY be Banach spaces, with the embedding X — B compact.
Then, for every n > 0, esists N such that

Voe X,  ulls <nllvlx + Nlvlly (7.5)
Proof. Let n > 0. Define the set
Vei={veB: ||v]|g<n+n|v|]y}

First of all, observe that V,, is open. In fact, if vy € V,,, then the function || - ||z —n|| - ||y
is a continuous functionﬁ So, by continuity, we can find a neighbourhood of vy such
that it holds || - ||z — n| - ||y <n.

Moreover, obviously V,, C V. an C U Vp. So, we can consider S := {z €
neN
X : ||lzl]|x = 1}. So we have S C B C U V,. Moreover

neN
ScXcB

where X is compact in B, by the hypothesis. Since S is closed in the compact X of B,
also S is compact in B. Since {V,,} is a cover of B, we have that there exist ny, ..., 7,
such that

S C g C an U...uJ Vnm = Vmax{ny,....nm}

Let N :=max{ny,...,n,}. Then, for every v € X, with ||v||x = 1, we have
[vlls < mllvllx + Ny

Normalizing v € X we have the thesis. i

Moreover, we have the following lemma.

4In fact, we have
[([lvll 5 = nllvlly) = (lvollz = nllvolly)[ < [[lvlls = llvoll B+ nll[vlly = llvolly | < [lv—wvollz +nllv—volly <

< |lv =wollp +nCllv —wollB

since B continuously embeds into Y, that is ||v||y < C||v]|5.
°If v € B, then, if v # 0, we can choose n such that n|jv||y > ||v|| 5, so that v € V.
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Lemma 7.4. Let X C B C Y be Banach spaces, with the embedding X — B compact.
Let F bounded in LP(0,T; X) and relatively compact in LP(0,T;Y). Then F is relatively
compact in LP(0,T; B).

Proof. Let € > 0 and M such that || f||.»(o,r,x) < M for every f € F. By the hypothesis,
we have F relatively compact in LP(0,7;Y). So, there exists {f; : i =1,....n} C F
such that

VieF, 3fieF: |fi— fllerory) <c¢

So, by lemma [7.3] we have that, if f € F, exists f; € F such that for every n, with
N = N(n),

\f = filleeorsmy S0 f = fillero,rixy + N f = fillzeoryy < Cnp+ Ne

where C := 2M.
So, if &’ > 0, and we set 7 :=

&J

>0 and € = =, with N = N(n) = N(¢'), we have

2N
If — filleeo,rim) < €
This is the equivalent definition of relatively compact. So F' is relatively compact also
in L?(0,T; B). I
The following lemma is an important theorem by Ascoli and Arzela.

Lemma 7.5. Let Y be a Banach space. A subset F' of C(0,T;Y) is relatively compact
if and only if

o F'(t)={f(t): f € F} is relatively compact in'Y, for every 0 <t < T
o F'is uniformly continuous, that is Ve > 0, dn > 0 such that

VO<t <t <T: [h—tbl<n = |f(t2) = ft)lly <e (7.6)

7.1.4 Proof of the theorem

We finally prove theorem [7.5] If we show that, with the hypothesis of theorem [7.5] F
is relatively compact in LP(0,7;Y), then, since F is bounded in LP(0,7; X) we have,
through lemma that F' is also relatively compact in LP(0,T; B).

We first show that, in this context,

to
I = { / ft)dt: fe F} is relatively compact in Y, V0 <t; <to <T (7.7)
t1

to

To see this, consider / f(t) dt € X. We have, if M is such that || f||r0r.x) < M for
t1

every f € F,

[

to
< [T IOl dt < (ta — 0 | Flror < Mt — )3

X t1
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So, every sequence in I € Ir, with

[k:/2fk(t) dt

is a bounded sequence in X. Being X compactly embedded into B, we have that exists
a subsequence k;, and an element I € B such that

lim || I, — I||s =0
h—o00
But B continuously embeds into Y, so that I € Y and
||Ikh - IHY < OHIkh - ]HB —0

as h — oo.

We define now | e
M) 0= 2 [ 5o ds

So, clearly, M,f € C(0,T — a;Y) and, for every 0 < t; <ty < T — a we have

1 [hte 1
H(Maf)(t2)—(Maf)(tl)Hy - ”5/ (Ttrtlf_f) (s) dSHy < 5HTtQ*’tlf_fHLl(O,Tf(tgftl);Y)

t1

since tj +a <T —(ta—t1) <= a <T —ty. Observe that, thanks to condition ([7.4),
for every € > 0 we can find 7 such that

||Tt2—t1f - fHLl(O,T—(tz—tl) Y) < e

)

for every t; <ty such that |ty — t;| < 7, and for every f € F. By definition (7.6]) this
means that the set
M,F :={M,f: feF}

in C(0,7 — a;Y). Moreover we have already proved that
1 t+a
(M,F)(t) := {a f(s) ds: fEF}
t
is relatively compact in Y, thanks to (7.7). So, using lemma , we have that M, F' is
relatively compact in C(0,7 — a;Y").

Moreover, consider the function 7, f : [0,a] — LP(0,7 — a;Y) that maps h — 7,f.
Thanks to ([7.4)) we have that this function is continuous in h.
So, using that

(Maf)(t):é/ttﬂf(s) ds:é/oaf@m) dhz%/oarhf(t) dh

we have
1

(Mo = 1) =3 [ (50 = F(0) a
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so that
HMaf — f||Lp(07T_a;Y) < é/o |7 f — fllzror—asv) dh < hsel[lol,)a] |70 f = fllLeo,r—av)
We remark that condition ([7.4)) can be rewritten as
Ve > 03 n > 0 such that ||7,f — fllzeor—ny) < €
for every h <mand f € F;if 6 <h <n we have ||75f — fllzro,r—ny) < €. So

sup ||7sf — fllzror—ny) < €
6€[0,h]

This means that

lim sup ||7f — f||LP(0,T—a;Y) =0
a—0 hE[O,a]

uniformly in f € F. If a <T — T}, that is T} < T — a, we have
HMaf - f”LP(O,Tl;Y) =< ”Maf - fHLP(O,T—a;Y) S hsup] 170f = fllzr 0. 1-av) (7.8)

€0
So M, f converges to f in LP(0,7;Y) if a — 0, uniformly in f € F.
Moreover, M, F' is relatively compact in C'(0,7 — a;Y"). So in particular it is relatively
compact in LP(0,T1;Y). In fact, if M, fy is a sequence in M,F', we have that exists a
subsequence M, fi, and g € C(0,7 — a;Y) such that
lim ||Mafkh - gHC(O,T—a;Y) =0
h—o00

Clearly in particular g € LP(0,7};Y"). Moreover

s€[0,T—a]

T % 1
6o iy =l = ([ 1M (=000 ds) <77 w10 o (5)-a(9)y =0
0

So M,F is relatively compact in LP(0,71;Y). This implies that also F' is relatively
compact in LP(0,77;Y). In fact, using ([7.8)), for every € > 0 exists n > 0 such that

| Mof = flleromy) < €

for every a < nand f € F. Since M,F is relatively compact in LP(0,T3;Y), there exists
{M,f;: i=1,...,n} such that, for every M,f € M,F exists i € {1,...,n} such that

|Maof — Mafillro,ry) < €
Then
1f=fillromiyy S Wf=Maflloromy) HIMaf —Mafill ro.riv) I Ma fim fill oo,y < 3¢
So, by the correspondence F' <— M,F we have that also F' is relatively compact in

Lp((], Tl, Y)

If now we consider f(t) := f(T —t) and define
F={f: feF}
we have that the same discussion above continues to hold. So, F is relatively compact

in LP(0,71;Y). Looking at the definition of F this means that F is relatively compact

in LP(T'—1T1;T;Y). So, if we choose T} = % we have that F' is relatively compact over

the whole LP(0,7";Y"). This implies the thesis, as explained above. i
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Chapter 8

The transport equation

8.1 Classical transport theory

Definition 8.1. By transport equation we mean the following problem. Let 2 C R"
a domain and let I C R bounded. Let u(x,t) € C(I;C'(Q)). The transport equation
associated to the velocity u is the Cauchy problem

{pt(x,t) +u(z,t) - Vp(z,t) =0

(8.1)
p(x,0) = po(x)
where py € C1(Q) and we search for p € C*([0,T] x Q).

Remark 8.1. We have the following theorem, from [16], that summarizes the theory of
the regular transport equation. [J

Theorem 8.1 (Classical transport equation). Let Q a bounded domain. Let u(z,t) €
C([0,T};CY(Q) with V -u =0 and uw =0 for all (x,t) € 9Q x [0,T]. Let py € C'(Q).
Then the problem (8.1)) has a unique solution p € C*([0,T] x Q). Furthermore, we have:

e if exist a, B € R such that a < po(z) < B for every x € Q, then
p(x,t) € [a, B] V(z,t) €[0,T] x Q

e thanks to the condition V - u = 0, the density solution of the transport equation
satisfies a property of mass incompressibility, that is

lo()llg = [lpollq
for every g > 0.

Proof. The fact that u € C([0, T]; C*(£2)) means that there exists an open set E such
that u(z,t) € C([0,T]; C*(E)). We can consider the ODE associated to the velocity u,
that is,

i(t) =u(z(t),t) x(0)=yecQ

with y fixed. Then, by locally existence of ODE we have a unique solution

z(t,y) € C'([0,7];C' (@)
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The function x is nothing but the flow z(t,y) = ¢(¢;0,y). It is a regular function, as
specified above. Moreover, z(t,y) € C*([0,T] x Q). In fact, x = x(t,y) is C* in both
the variables separately, and this regularity is also uniform in x, so that it follows that
the function is regular also looking at x as function of two Variables.ﬂ Furthermore, the
time 7" can be replaced with T". In fact
[uz, )] < [luC Dller@ = max llul Do) < +o0

where |u(-, 1)1 @) is continuous because so it is v(, ¢). So the velocity is bounded and
we have global existence in [0, 7] of the solution to the ODE.

Moreover, from V - u = 0, it follows, as previously seen, that the Jacobian determinant

of the transformation o
St . Q — Q
y — x(t,y)

is constantly 1 for every fixed t. Notice that the codomain is Q. In fact, if we consider
the flow ¢ with the velocity v and we take an initial datay € 0€2, then z(t,y) = y, since

0=i(ty) =u(x(ty),t) =0

is solution.

If otherwise y € €2, the solution can’t cross the boundary, since, by unicity of the
solution, it might remain on the boundary for all the times, including past times. So
the solution remains in Q. Clearly y — z(¢,y) admits an inverse, that is

x— o(0;t,x) == y(x,t)

by the unicity of the solution, where ¢ is always the flow associated to the velocity v.
As above, for initial data x € €, the solution y remains in Q. So the inverse is global.
Then, since the Jacobian determinant is non zero and S; is injective (since the in-
verse has been found), then S; is invertible with inverse in C!. That is, S; is a C'-
diffeomorfism of Q onto itself. We call S; ! its inverse, and define

p(x,t) = po(S; " (x)) (8.2)

that is in C*([0, 7] x Q), sinc y(z,t) € C([0,T] x Q). The first point in the statement
follows obviously. The second point follows from the arguments explained in section
as already remarked. i

n fact, if (to,y0) € [O7T] x €, then

|z(t, y)—z(to, yo)| < |x(t,y)—z(to, y)|+|x(to, y) —x(to, yo)| < mggIw(t,y)—l’(to,y)|+|x(to,y)—w(to7yo)l
Y

and the latter is small if |y — yo| is small, thanks to the continuity respect with the initial data, while
the first is small if |t — to| is small because, by definition of C1([0,7]; C*(Q2)),

max|a(t,y) = o(to,9)| < llalt,) = alto)|oay = 0 a5t =ty
ye

2More precisely, we can define
S (y,t) = (x(t,y),1)
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8.1.1 Temporal invariant property of the g-norm of the density
p

We now consider solutions of the transport equation to deduce important properties of
the density appearing in the INSE.

Theorem 8.2 (g-norm conservation). Let Q a bounded domain in R®. Moreover con-
sider a velocity fieldu € C2([0,T]; C1(Q)) such that V-u = 0 in Q and such that the vari-
bles (x,t) appear in the expression of u as separated variables. Let p € C*([0,T], C*(Q2)),
for some T > 0, a solution of the transport equation

Vp=0
{'O”r“ P (8.3)

p(ff, O) = ﬁO(x)
with p, € C*(Q). Then, for every q > 0, we have

lo()llg = [lpollg ¥ ¢ €0, 7]
where p(t) = p(x,1).

Proof. We want to use the Theorem [I.6] In the hypothesis of this theorem we have
supposed that the force term f is in C3. However, looking critically at the proof of
this theorem, one can notice that our w satisfies the hypotesis since it has separated
variables. As above, we know that

pr+u-Vp=0

So we can consider the solutions of the system

{j:(t) = u(x(t), 1)

.CC(to) =X
These give us the vectorial transformation

i.e. a vectorial function that reaches the values of the solution of the system at time ¢,
with starting point (x,tp). The flow ¢ is defined in the whole interval [0, 7] provided

and since z(t,y) € C1([0,T] x ), S is a Cl-diffeomorfism, since the inverse is
S (x,t) = (y(x,t),t)

and so it is injective, and moreover

dyz(t,y) Ohalt,
OnS = ( yxé Y tx(l y)>

and its determinant is equal to the determinant of 0,S; with ¢ fixed. So it is 1 for every ¢ and
every y. So, we are in the situation above again, and it follows that S is a C' diffeomorfism. So
y(z,t) € CH([0,T] x Q).
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that u is bounded and regular. But u € C?([0, 7], C'(Q)), with separated variables,
and so regularity and boundness in [0, 7] x € are immediate.

Fixed t and t;, we can change . The dependence of ¢ on the variable z is C*, since
w is in the class C'. Moreover ¢ is invertible in z and its inverse is obtained simply
interchanging the position of ¢y and ¢; so, being the inverse a solution with different
data, it is also C'. So we can use ¢(x) := @(t;to, z) as a change of coordinates.

Thus

Loty = [ ptettita,a). 0 e (Do) do
But p(p(t;to, x),t) = p(x,to) as previously remarked, and
det(Do(x)) = det(0p(t;tg, x)) = det(Dp(to; to, x)) = det(dx) = det(l) =1
using Theorem as outlined above. Observe that ¢ and its inverse map € in itself.

So
Lol = / 1p(y,1)]7 dy = / P, o)t i = [p(to)2

This in true for every ¢ € (0, +00). But

o)l = Tim_llo(®)lls = tim_[loto)lls = llo(to)

that is exactly what we wanted to prove. |

Remark 8.2. The above result holds for every ¢ > 0 in this regular case. [

8.2 Weak transport theory (aprés DiPerna-Lions)

In this section we will follow the work [8] by DiPerna and Lions to prove existence and
uniqueness of weak solution to the transort equation, together a fundamental stability
result that will help us in future considerations.

Remark 8.3. The work [§] by DiPerna and Lions studies the transport equation in the
whole space R™. In this article there is no trace of the bounded domain case. We
consider here only this "new” case, that is fundamental for future arguments. We also
require the velocity field to be divergence-free. Who write did not manage to find a
similar discussion in literature. All the statements and proofs are written using the weak

formulations, avoiding the formal notations of the enlightening paper by DiPerna-Lions.
O

8.2.1 Linear transport equation

Definition 8.2. Let  be a bounded domain in R” and let T > 0. Let p € [1, 00| be an
exponent, and ¢ such that %+% = 1, its conjugate exponent. Let u € L'(0,T; Wol’q(Q))
be a velocity field over (0,7") x 2, with V -u = 0, i.e. the divergence-free property. Let
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p° € LP(2) be the initial density. We say that the density p € L>(0,T; LP(£2)) satisfies
the equation

{&p —u-Vp=0 in (0,7) x Q (8.4)

p(0) = p°
if it is a solution of (8.4) in distributional sense, that is

—/OT(/Qpﬁtngdx) dt-/f@)ﬂ@,@ dm+/0T(/Qp(u-v¢) dx) dt =0 (35)

for all test functions ¢ € C*°([0,T] x 2) with compact support in [0,7") x 2. This space
can also be denoted by D([0,T) x ).

Remark 8.4. On a bounded domain, as in the case of classical transport theory, it is
necessary to assume V - u = 0 in the weak sense. []

So, we have a first existence theorem.
Theorem 8.3. Let p € (1,00], po € LP(QY). Let q be its conjugate exponent. Assume
ue LY0,T; Wy (Q)) (8.6)

with V - u = 0, where q is the conjugate of p. Then there exists a solution of (8.4)) in
L>(0,T; LP(R2)) corresponding to the initial condition py.

Proof. The proof is based over a classical regularization argument, as in section

11.14.3] Consider the Banach spacd’|

Y :={veWy4Q): V.-v=0}
equipped with the norm || - ||y := || - [lw1se@). So, we can find a sequence u" €
C>(0,T,;Y) such that

Tim flu = u*||1oz.v) =0 (8.7)

Since u™(t) € Wy%(€), each element of the sequence can be extended to be zero outside
Q. Moreover the initial density p" can be approached in LP(Q) with a sequence p° €
C(Q2) (by the density results in LP(£2)). We now set

1

Ay =A{x € Q. dist(z,00) > —}

m

and 2, ;== A¢ . We define

W e t) = [ (o= 9 t) dy

31t is clearly a Banach space. In fact, give a Cauchy sequence v* € Y, by the completeness of

Wy9(Q), we have that exists v € W, ?(2). Moreover, for every ¢ € C°(f2),

/v-chdx: 1im/vk-chdac:0
Q k—o0 Q

that is V - v = 0 in the weak sense.

117



This convolution is smooth in z at ¢ € [0,7] fixed. Moreover, it is continuous as a
function of two variables, In fact, if (xq,to) € 2, x [0,T] we have that

[u™ " (2, t) — u™" (2o, to)| < U™ (2, t) — wT " (2o, )| 4 [ (w0, t) — w (2o, t0)| <
’/ (2= Y) =N (10 —Y)) u"(t,y) dyH/ M (0 =) (U (t, y) —u" (to, y)) dy| <

< ‘ | e =) = to =) wt.0) dy‘ o = Ve (8 ) — w (o, s

Since v € C*°([0,77; X ), we can find §; > 0 such that [[u"(t,-) — u"(to,)[|q < 5. On
the other hand, since 7,,(r) is uniformly continuos on R, there exists d, > 0 such that

19
|z — 20| = |[(x —y) — (20 —y)| <2 = [M(T —Y) = N0 — y)| < 5

it follows that

70,8 ta)] < S5 =, < 5 (g 6=,

t€[0,7]

Moreover, thanks to the convolution properties, the z-derivative is continuos over ,,,
and, thanks to the theorem [3.2]

1V m"<xt|—\/mnmx— y)Vu(y, >dy\ (/ e — )P dy)’l“uwn,wuqs

_ p p
< ([t ) s 19001 = ([ =) s 1900 0,

so that

sup [V ||oo_( / (2 |sz) max [V (- 6)],

te[0,T] t€[0,7)

sou™" € ([0, T.]; C*(Q,,)) and the continuity of Vu™" in (xg,t5) € O, x [0, T] follows
from the same argument above.

Finally we underline other two properties of the field «™". In particular, if x € 0%,,,
we have

u™"(x,t) = / N (T —y)u"(y,t) dy =0

since u"(y,t) = 0if y € B(z, =). Moreover,

Vo umn () = / (& — )V (g, 1) dy = 0

m

since V - u™(y,t) = 0 by the definition of u™. So, we can use this velocity field to solve
the transport problem

Op—u™"-Vp=0 1in[0,7] x Q,
p(0,z) = pj
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We can name p"™"™ the solution of this classical transport equation. We know, according
to the classical theory studied above, that

1™ Ol = [l66 1o < llpolly +1=Co p€l, 0]

It follows that |[p™"| L~ rr@) < Co. Suppose now p € (1,00]. Observe that
L>(0,T; LP(2)) = (L' (0, T; LY(Q))*, where q is such that %—l—% = 1, thanks to proposi-
tion[5.2 Moreover L9(€Q) is separable, since ¢ € [1, 00). So, always thanks to proposition
, LY0,T; L9(Q)) is separable. Then, thanks to theorem [2.3] we have that exists a
subsequence weak-star converging to some p € L*>(0,7; L?(Q2)), that is

pmk,n BN pn

in L°>°(0,7T; L*(Q)) = (L'(0,T; L9(2))*. In particular, the sequence satisfies, for every
p € CZ(Qx[0,1)),

—/(m’“” d:v—/ / Py dr dt = //m’“" TN dr dt

Observe that

[ )0 o= [ piarote.0) da

T T
/ / p"M oy da dt — / /p"gpt dz dt
0o Ja 0o Jo

as k — oo, thanks to the weak convergence. Furthermore

and

T
prEtyE N o dx dt — / / plu" - Vo dx dt) =
o Jo

‘// et — pMu™ - Ve do dt — //m’“” ) V(pdxdt’

prET — " Vo do dt‘ + O(/ 1" I [u™ = u™ g dt) <
0
T
P - Vi d dt\ w0 (sl ) ([ =l ) <
0,7) 0
mk " n V(,O dx dt + CCOHU/ — u HLI(O,T;L‘?(Q)
Observe now that ||u —u™ " 1 0,/ms0() — 0 as k — oo, thanks to (8.7)), and, moreover

T T
| vl ar<c [, i< oo
0 0

that is u™ -V € L1(0,T; L9(2)) and so the weak star convergence of p™=" implies that

// et — My - Vo do dt — 0
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as k — oo. It follows that

T T
— / p6(z)p(x,0) dx —/ /p”got dr dt = / /p"u” -V dx dt (8.8)
Q 0o Ja o Jao

Moreover, by the weak convergence property, we have
1" [z 0,720 () < Tk [ o™ | oo 0,0 (0)) < Co (8.9)

We let now n — oo in ({8.8]). Clearly

/Q (P(z) — p°())p(z,0) de

By the bound (8.9)), we have that there exists a subsequence nj, and p € L>(0,T; LP(2))
such that, as h — oo,

< Cllpg = #°ll, = 0

*

=p

h

P

T T
/ /p"hu”h-Vgo dx dt—/ /pu-Vgo dx dt’:
0o Jo 0o Jo

T T
:‘/ /(p—p”h)u'Vgp dz dt—/ /p”h(u"h—u)-V<p dx dt’g
o Jao o Ja

T T
| o= rmueve i dt\ [l =l de <
0 Q 0

T T
I (p—p"h)u-dedt‘+0(sup||p”h||p) | = i <
0 Q (0,7) 0

T
< ‘ [ [o=muvoa dt) G — ull o)
0 Q

It follows that

<

<

Since
T T
/ |- V|, dt < 0/ |ull, dt < oo = u -V € L0, T; LY(Q))

0 0

and so, since p™* converges weakly star to p,
T
/ /(p—pnh)u-Vgo dx dt — 0
0o Ja

It follows that

T T
— / P’ (x)o(z,0) do —/ /pgot dr dt = / /pu -V dx dt
Q 0o Ja 0o Ja

So we have found p € L*°(0,T; LP(2)) such that is a weak solution to the trasport
equation with velocity « and initial density p°.

Another important result of this section is the following: under appropriate condi-

tions on u, weak solutions of (8.4]) can be approached by smooth solution of (8.4 with
small error terms. In particular, we have the following approximation theorem.
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Theorem 8.4. Let p € (1,00], and let p € L>*(0,T; LP) be a solution of (8.4)) with
intial density po € LP(Q) and assume that u € LY(0,T;Wh*(Q)) for some a > g,
V-u=0. Let n. = n-(z) a regqularizer kernel over Q. In particular, if Q. = {x € Q:

dist(z,0Q) > €}, we set
(z) 1 [z
() = —nl =
Ui Enn -

with C(R™) 2 n > 0, supp(n) C B(0,1). Let pe(x,t) = (p(-,t) * n.)(x,t). Let
¢ € CX([0,T) x Q) and suppose that ¢(z,-) = 0 for every x € QF, with Qy compact.
Then, if e < dist(2g, 082),

([ S [ poosyacs [ ([ puvoac)a- [ [roa)a

(8.10)

where

re(z, 1) = / Py, 8)(uly, ) — u(z, £)) - Vie(y — ) dy

Moreover, 1. converges to zero in L'(0,T; L’ (Q)) as e — 0, where (B is such that

loc

Finally p2(x) == (po * n:) ().

Remark 8.5. The convergence to zero of r. in L*(0,T; L (€)) assures that

loc

T T B—1 T
‘ [ ([roa) dtH [ ([ roar) dt‘§|9|5( sup 1ol) [ el dt -0
; o 0 Q% 0,7]xQ 0

ase — 0. O

Proof. First of all, consider the integral

/0T</Epe(x,t)g—?(x,t) dx) dt:/oT{/s (/Qp(y’tm(x ) dy) ?;b(x . dx} o
-[ Me(2— y)(%(l’ t)dx | ply,t) dy ¢s y,t) ply,t) dy ¢ dt
IRVAVRTSE 2

since n.(x—y) = n.(y—x) by definition, and, being ¢ < dlst(Qg, 092), we have ¢(z,t) =0
in /€., so that

/Q ns(a:—y)%(:v,t) dx:/gzns(x—y)aa—f(x,t) dx

In the same way, we have

/ P2(2)6(0, ) di = / 6:(0.9)0°(y) dy
Qe Q
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So, we can rewrite equation (8.10)) as

O:—/OT( Qpaagig da:) dt—/gpoqﬁs(o,:c) d:c—l—/OT(/S)pu-Vqﬁedx) dt =

:_/OT(/QE;JE(Z—f d:c) dt—/Qspgqﬁ(O,x) d:c—i—/OT(/Qspsu-Vqﬁdx) dt+
+{/OT(/qu-V¢EdQZ> dt—/OT(/QEpgu-qudx) dt}

If we define

2 ::{/OT(/QW.W ) dt—/f(/ﬂgpgu-ngdx) it}
we have

= ([ {0 ute- ([ sttvnie—yay )} i) ae-
-/ ' (/ o) Vot [ ptwmto - d) ar) a

Remark 8.6. Notice that ¢ € C2°(£) is defined on the whole R™; so also its convolution
is defined in the whole space. [

We now remark that

/oT (/n pe(@ tyu(z, 1) - Vo(z, 1) d:c) dt =

= /OT o (/Qp(y,t)m(:v—y) dy) u(z,t) - Vo(z,t) d%’) dt =

/Qna(:r —y)u(z,t) - Vo(z,t) dx> dy} dt =

= [ [otw( [rete =09 ety -oto.0) o) dy'} e -

_ OT {p(y,t)( (. tula, 1) V(e — ) dx) dy} dt =

since Vn.(x —y) = —=Vn.(y — x)

-[ Lot ([ ote.uto)- ity = o) ae) ay} a
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So we have, changing the name of the variables in the first block of the integral,

L= ' ([ [ o000 0000 Tty — o) e} ay) ar-
[ (LA [ otwtrotetitet) vty - dl ay) a

It is clear that this term has the structure of the integral

/Q w){(B) - B(x)) - Vi.y — 2)} dy (8.11)

integrated over 2 and over (0,7"). So we finally have

ro(z,t) = / oy, ) (uly, t) — u(z,1)) - Viu(y — z) dy

If we show that (| goes to zero in the right norm as € — 0, then we have the thesis.
Remark 8.7. Let B e L1(0 T;Wh*) and w € L>(0,T; L, ). Then

loc loc
(B-Vw)*n. —B-V(wxn.) —0 in LY0,T; L)

We now prove this fact. Consider a compact set 5 C . Then, from now, we take
0 < e < dist(£2,0). We set

2 (z)] =

w(y){(Bly) - B(x)) - Vn.(x — y)} dy\ <

< / wIIB) — B 2[vn(*2

X (z,e) B(y B(z
<0 [ oo 1260~ ”'}xm,@@dy

If 1 < s,t, such that %—l— 7 =1, then

o(f (Y w) (], o) -

- C</B<x,5> {M} dy) ( [ fugyrizeaz=y) dy)i _

_ C</B<M> {Bw =Bl dy)i(|w|t*xe)

XB(o, E)
en

pwl<o( [ {EOSEY dy);(w “x.)
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o+l

where y.(z) := . Observe that we can consider s = ¢, so that t = p. Thus, we

have

B =



Since a > ¢, we have that

\@@nsc(@@@@ﬁﬁé#ﬁﬁ%a@>imw*%)

So, at the power of 3, we have

B =

vaxw%zcﬂ(L%m){E&@giﬂfﬂ}amggqu*xg

So, integrating over )y, we have

Observe now that /3 ( %4—%) = 1, and so, using Holder’s inequality again, with exponents

< @

Sy

()} do

Qo

o3 b
3 and 5. we have

[@

e ([, {252 a) o ( Lore)

So, we have

1721 L6 () < C(/Qo { /B(m) {M}a dy} alx);L (/QO(\w\p*XE) da:)

Using Young’s convolution inequality, we have

=

[ b e de < sy [ ol do =l
QO Q0

So, we have finally

B(y) — B(z)[1® i
||r;||mo>30( / { / {M} dy} dx> ol
Qo B(z,e) €

On the other hand

([, {00 ) (] [ ([ wocrs)ss)'

< CIIVBl|zeqo)

So, if we integrate over (0,7),

T T
/WWMm@ﬁSOmmmwmm/|wmm%>
0 0

te(0,T)
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This density property allows us to prove the theorem in the only case of smooth func-
tions. In a smooth scenario, we have that

/Q w(y){(B(y)—B(x)) Vii.(y—z)} dy = /

w0 B Vily-2) dy-Bla) / w(y) Ve (y—z) dy

Q

— V- (wB)+B-Vw  in L} (Q)

thanks to the properties of convolutions. But, in this regular case V- (wB) = B-Vw +
wV - B, and so, if V- B = 0, exactly as V -« = 0 in the hypothesis, we have the
convergence to zero. This is the thesis. [] |

8.2.2 Uniqueness of the solution

The reformulation provided by theorem allows us to prove some important results,
concerning the weak transport equation. In particular we discuss now unieuqness of the
solutions. However, before obtaining the uniqueness main result, we have an important
lemma, that will introduce us to the renormalized solutions.

Lemma 8.1. Let p € (1,00], and let p € L>*(0,T; L") be a solution of (8.4) with
intial density po € LP(Q) and assume that uw € L'(0,T;Wh*(Q)) for some a > q,
V-u=0. Let n. = n-(z) a reqularizer kernel over Q. In particular, if Q. = {x € Q:

13 £

with C2(R™) 2 n > 0, supp(n) C B(0,1). Let p.(z,t) := (p(-,t) * n-)(z,t). Let
¢ € C2([0,T) x Q) and suppose that ¢(z,-) = 0 for every x € QF, with Qy compact.
Let 3 € CY(R) a function, with 3" bounded and such that 3 vanishes near the origin.
Then, if ¢ < dist(€y, 0S2), equation holds, and implies that

—/OT (Lﬂ@@—f dm) dt—/mﬂm?) 6(0,) dx+/0T (/ﬂsmpe)uw da:) dt =
-/ ' ( / )0 d:c) it

o t) = / Py, 1) (uly,£) — ule,1) - Vie(y — ) dy

where, as above,

Proof. Consider ({8.10)), that is, for every ¢ € C°([0,T) x Q) such that ¢(z,-) =0
for every x € Qf, with Qg compact, if ¢ < dist(€g, 09),

_/OT (/EPE% dx) dt_/ggpg 5(0.2) d:c+/0T </Ep€u~v¢d:(:) dt:/OT </Q7“g¢dx) dt
(8.12)
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In particular, being p.u¢ = 0 on 0f)., it follows that

/QE,OSV‘(UQb) dm:_/ﬂsm'v%deF/QEV'(/)euqb) da

so that, using the weak divergence theorem,

/ pe V- (up) de=— [ ou-Vp. dz (8.13)

Qe

We choose now ¢(z,t) := @(x)(t), with ¢ € C°(0,7) and ¢ to be fixed. Then we

have
[(/ S Op(a) o) = | o (ot ole))

If we choose as ¢ the unitary mass sequence

oy (T) =nL(y — )

1
n

it follows that

_/0 p(y) ¢'(t) dt:/o () (u- Voo +1:)(y) dt

that is, in the sense of weak derivatives,

0
apa(y, t) =u(y,t) - Voe(y,t) +re(y,t)

In particular, the equation is true for every y € Q.. In particular, we have p.(y,-) €
W11(0,T). On the other hand choosing, instead of ¢, the function

1 tel0,t
fo(t) .= ’ 8.14

i () {0 telto+d,T) (8.14)
such that

/0 (o) (1) dt = —1 (8.15)

using the Lebesgue differentiation theorem, we have that, from (8.12)) and (8.13)) it
follows that, for almost every t, € (0,7,

to
pe(to) = p° +/ (u-Vp-+r.) dt (8.16)
0
This means that p.(y,-) is absolutely continuous and its continuos version is the right
side of (8.16)).
Consider now 3 € C*(R) with 8 bounded. The weak chain rule says that
0

Eﬁ(Pe) = B/(pf)% = B'(p)(u-Vpe +ro) =u-V(B(p)) + B'(p:)re
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since p. has classical regularity in space. So, in particular, being 8 bounded, f(p.) €
W10, T) and so, moreover,

B0 = B8 + [ (- V() + B (o)) dr
In terms of weak derivatives we have
| Btoawte) de=— [ o) 9600 + 8 o) de
0 0
for every ¢ € C(0,T).

Consider now ¢ € C°([0,T") x ), so that ¢(T,z) = 0. We know that

(B(pe)d) = 0u(B(pe))d + B(pe) 0
so that B(p.)¢ € WH(0,T). Moreover we have

0= Bl (T)S(T) = B(o)6(0) + / Ou(B(p2)) dt + / B(p.)or dt

0

/T< Qsﬁ(ps)agb dac) dt = / (/OTB<p€)at(b dt) dz =

- Bleo0) dr - / | ( / N V(B(02) + B p)re)o dt) do =

=~ [ sro) x| ' (f Blpu- 9 i) i~ | ' (/ Brres i) i

that is the thesis. I

Then we have

Theorem 8.5. Let p € (1,00], and let p € L*(0,T; LP(Q2)) be a solution of (8.4]) for
the initial condition p° = 0, with u € LY(0,T;W,9(Q)) and V - u = 0, being ¢ the
conjugate of p. Then, p = 0.

Proof. Letting ¢ — 0 in the statement of lemma , with 8 € CY(R) bounded,
vanishing at the origin, and with 8’ bounded, we have that

[ ([ o0 ae) - [ saot 0y dor [ [ sowvoir)a=o )

where we used that p° =0 and 7. — 0 in L*(0,T; L), .(2)).
Let now M € (0,00). We would choose 3(t) := (|t|° AM), where aAb := min{a,b}. The
function is clearly bounded, but it is not in C'(R). However, it is possible to choose

Bi(t) a sequence such that 8, € C1(R) for every k, Bi.(t) < B(t) for every k € N and
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t € R and finally, for every ¢t € R, Bi(t) < Bry1(t), with Bi(t) — 5(t) as k — oo, for
almost every ¢t € R. So (8.17) implies that

/ (/Bk — dx) dt—/Qﬁk(Po)qﬁ(w,O) dx+/OT(/ng(p)u.v¢ dx> d—0

(8.18)
for every k € N. It is clear that Si(t) < B(t) < M. By the hypothesis, we have that
u e LY0,T; L9(R)). So, using corollary we have that if § > 0, there exists N5 € N
such that

||u — UN6||L1(0’T;Lq(Q)) < (S (819)
We now choose ¢ in a precise way. In particular, we choose a sequence ¢, € C°(9)
such that ¢ =1 over Q1 (so that |Vy,| = 0 over Q%) and such that

/\whrf’ dt=1 VheN
Q

where ¢’ is such that % + i = 1. So, if 6 > 0 is fixed, and Nj is such in (8.19)), we

have that u™s(z,-) = 0 if z € K§, with K; a compact set in €2, and exists H = Hs,
depending on 4 such that Q% D K for every h > Hs. Then

T
/|Vgph|</ |[us | dt) de =0
Q 0

for every h > Hjs. Let ¢p(x,t) = ¥(t)on(z), with ¢ € C2([0,T)). It follows that

‘/:w(ﬂ(/gﬁk(p) u- Vo, dw) dt’ < M(fg%dw!)

T T
= a1 (waxtol)| [ [ iwenl ar ae— [ 9ol [ dr el -
= a1 (aslo)| [ [ (= 0 DI¥el o ] <
< a1 (aactol) ([ [ 1= 1119 o ) <
§M<maxhp|>(/ /‘u—uN‘s‘\V(pﬂ dx dt) <
[0,T) 0 QO
T T
< — ulNs , — _ o Ns
 (mclol ) ([ = 9anl at) = (mctol ) ([ =l o)

(8.20)

T
/ |ul|Vy| da dt‘ =
0

since ||Vp||2 = 1. Finally

t)(/ﬂﬁk(p) u- Vo, dx) dt‘ < M(%%XWO
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for every h > Hgs. This means that, for every k € N and ¢ € C°([0,T))

T

lim w(t)(/gﬁk(p) WV d:c) dt = 0

h—o00 0

So, equation (8.18]) becomes

- 0 [ sorende) - [ s aos [ T¢<t>( [ etorevinas)ai o
(8.21)

Since 1" and (3}, are bounded, and v, — xq as h — oo, letting h — oo we have

- [T [ s ) de— [ i a0

We suppose 1(0) = 1. Using again the boundedness of ¢ and the fact that Sy has been
taken increasing, letting k — oo we have, choosing M =n € N fixed

—/OTw’(t)(/Q]mp/\ndx) dt—/ﬂ\po\p/\ndm:()

Choosing now ¢ as in (8.14)), (8.15)), we have that for every ¢, € (0,7)/E, , with

|En| =0,
/ lp(to)|P An de = (/ lplP An dx) (to) = / lpolP A dx (8.22)
Q Q Q

Since the sequence |p|P A n is increasing in n, and |[p|’ An — |p|’ when n — oo, and

(8.22)) is defined for every to € (0,7)/ U E,,, we have that for almost every ¢, € (0,7T)

lo(to)llp = llpoll (8.23)

Since, by the hypothesis py = 0, this means that for almost every ¢y € (0,7), p(tg) =0
almost every z € Q. This means that p is zero in L*(0,T; LP(€2)), that is the thesis. I

Remark 8.8. If now p = 0o, observe that in particular p € L>°(0,7"; LP(Q2)), with p < oc.
So p = 0 by the case above. [

The next corollary follows from the proof of theorem [8.5

Corollary 8.1. Letu € L'(0,T; L' (Q)) and py € LP(?). Let p be a measurable function
over Q2 x (0,T) such that, for every B admissible function,

_/OT (/Qg(p)% dx> dt—/ﬂﬂ(poM(I,O) dx+/0T (/Qﬁ(p)u~v¢ dx) dt = 0

for every ¢ € C(Q2 x [0,T)). Then, for almost every ty € (0,T) we have

lp(to)llp = llpoll
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8.2.3 Renormalized solutions

Definition 8.3. Let 2 be a bounded domain in R™, and 7" > 0 a time. Let p € (1, 00],
q its conjugate and p° € LP(Q) an initial density. Let u € L*(0,T; Wy%(Q)), V- u = 0
be a velocity field. We say that p € L>(0,7T; LP(Q2)) is a renormalized solution of

(8.24)

Op+u-Vp=0 1in (0,7) x Q
p(0) = p°

if, for every 8 € C'(R), with 3 and %/\tl bounded and S such that vanishes near 0, it
holds

[ ([ 0% ae) ai— [ stoepoteoy dos [ ([ sonvoar) a=o

(8.25)
for every ¢ € C°([0,T) x Q).

Lemma 8.2. Let Q be a bounded domain in R™ and T > 0 a positive time. Let
p € (1,00] and p € L>=(0,T; L*(Q)) a solution of (8.4) with intial density py € LP(2)
and assume that u € L'(0,T;Wy%()), V-u = 0. The p € L®(0,T;L*(Q)) is a

renormalized solution to the problem for admissible function [ with 8 bounded.

Proof. By theorem [8.1] we know that

-/ T( / Eﬁ(pg% d:c) = [ a6ty ot0.0) e+ | T( [ B0 vo dx) at -

-/ ' ( / )0 dx) it

1 1 1
with 7. — 0 in L'(0,T; L] (Q)), with — = =+ = =1 = v = 1. So, letting ¢ — 0,
Y q P

being 3 bounded and | (p.)| < Cjs, we have that the thesis follows. |l

8.2.4 Classical regularity of the solution

Before starting the conclusive section of the chapter about stability, we focus our at-
tention on the regularity of the solutions to the weak transport equation.

Lemma 8.3. Let p € (1,00) and p° € LP(Q). Assume that w € L'(0,T; W, 9(Q)) with
V-u=0. Then p € C([0,T]; LP(2)).

Remark 8.9. This theorems are Theorem I1.3, Theorem I1.4 and Corollary I1.2 of paper
[8]. O

Proof. By equation (8.23)) we have that ||p(¢)||, has a continuous version ||p(t)||, =
llpoll, € C(]0,T7). If we show that, moreover, for every [0,7] > t,, — to € [0, 7] it holds

lim [ (p(z,tn) — p(z,t0)) - o(x) dv =0 Vo € L1(Q) (8.26)

n—oo o)
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this means that p(t,,) — p(to) in LP(Q2), that is p(¢,,) converges weakly to p(to) in LP(€2).
Since moreover ||p(t,)|l, — |lp(to)]|, by continuity of the norm, we have, by theorem

[3.5] that

Tim Jo(ta) — p(to)ll, = 0

that is the continuity in C'([0, T]; LP(2)). So, we only have to prove ({8.26)). We proceed
as follows. If in equation ({8.5) we choose ¢(x,t) = 1 (t)p(z) it follows that

_/OTw(t)(/Qp(x,t)go(x) dx) dt—/ﬂp‘)(:ﬁ)zb(O)go(x) ot

+/OT¢(t)</Qp(:c,t) (u(z, t) - Voo(a)) di) -

So, if 1(t) is choosen as in (§8.14)), (8.15), we have, for almost every ¢, € [0, 7],

/Qp(%,to)@(l’) dr = /on(x)go(:v) dx—/oto (/Qp(x,t) (u(x,t)-Vnp(x)) d:r;) dt (8.27)

The continuity of the right side implies that / p(x,to)p(x) dr can be defined in the
Q
whole [0, 7.

Consider now h > 0. Then, for every ¢ € C>°(Q) we have

‘/ x, to+h)p(z) do— / p(z,to)p(x) dz| = ‘/:M (/Qp(x,t)(u(x,t)-Vgo(:lz)) d:v) dt' <

to+h
< Mgo/t @) lpllu(®)llq dt < Mylipllze oo @) lull L0720 2
0

where M, := max |V|. It follows that for every ¢ € C°(Q)

lim [ p(x,to+ h)p(x) doe = / p(x,to)p(z) do

But moreover ||p(ty + h)||, < Ir%ax] lp(t)]|p- So, by theorem |3.6| we have that
0,7

lim mmmwmwm:/mmeww
h—0 Q Q

for every g € L4(). This implies (8.26) and thus the thesis. |l

8.2.5 Stability

We now prove some consistency and stability results.
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Consistency.

Lemma 8.4. Let p € L=(0,T;L*(Q)) and v € L*(0,T; LY(Q)) with p € (1,00]. If
p 1s a renormalized solution, then p is a solution. Moreover, if p is a solution and
we LY0,T; Wh(Q)), with V -u = 0, then p is a renormalized solution.

Proof. We already know that if w € L'(0,7;W'4(Q)) and V - u = 0, then p €
L>(0,T; LP(2)) is a renormalized solution, thanks to We have to prove the converse
implication. Suppose that p € L>(0,7; LP(2)) is a weak solution to the problem. We
want to prove that it is a renormalized solution. We can consider a sequence 3, of
admissible solution such that

1Bk ()] < [|t], Br(t) — t uniformly on compacts of R

In particular, one can consider at first 34(t) := [t| A k, and then a C! approximation of
this function from above, with bounded derivative. So we have

_/OT (/ng(p)g_f dq:) dt—/gﬁk(po)(b(x,()) da:+/OT (/Qﬁk(p)u-w dx) dt — 0

We have now the bounds

[ (i a)as [*( [ 101%) ar) <o

since p € L>(0,T; LP(2)). Similarly, we have

/Q|/3k(Po)||¢(x,O)\ dr < /Q |pol|@(x,0)] dz < oo

/OT (/ka(p)IIuIIVszﬁl dx> dt < /OT </Q|p||u||v¢| dx> dt < oo

Since fBx(t) — t as k — oo for every t € R, letting k& — oo, we have equation that
is the weak formulation. |l

Stability. The following theorem is the main result of this section, that in turn is one
of the fundamental results of the thesis. As usual, provided a uniqueness result, as that
of theorem [8.5] one expects a stability result of the solutions. We will use this fact in

proposition [I1.20]

Theorem 8.6. Let p € (1,00). Let u™ € L*(0,T; L'(Q)) be such that converges to u in
LY0,T; L (S2)). Let p™ a bounded sequence in L=(0,T; LP()), i.e. sup ||pn |l (o.r:100)) <
neN

00, such that p" is a renormalized solution of the transport equation with velocity field
u™, corresponding to an initial condition p° € LP(Q). Assume that p° converges in
LP(Q) to some p° € LP(Q). Suppose moreover that for every [ admissible function
B(p2) — B(p°) in LY (). Then p" converges to p € L¥(0,T;LP(Q)), renormal-
ized solution of the transport equation with velocity field u and inital density p°, in
L>(0,T; LP(2)).
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Remark 8.10. To prove these theorems, we will use the following lemma by basic real
analysis. See lemma [7.1] O

Proof. Now we want to prove the stability. We start with pointwise stability. Let
[ an admissible function, and define v, := 5(p,), where p™ is renormalized solution to
the transport equation with velocity filed u™ and initial density pj. Then, since [ is
bounded, we have that v, € L>(0,T; L>(2)). Moreover, observe that, since p" is a
renormalized solution,

[ (o3 ) e Lo [ (foune-so) -

and this can be rewritten as

—/OT(/Q%‘;—? d:r) dt—/gvngﬁ(x,O) da:+/0T(/Qvn(u”-V¢) d:r;) dt =0

where 3(p2) =: v2. On the other hand, the function 32 is admissible yet, and, as above,
wy, = v2 € L>(0,T; L>(f)). Moreover, as above,

_/OT(/Q ?;f dx) dt—/gw2¢(a:,0) dx—i—/OT(/an(un-V¢) da:) dt =0

and w? := (v?)2. Since the sequences are bounded in L>(0,7; L>(f2)), we have that
exist v,w € L*>(0,T; L>*(2)) such that, up to extract a subsequence,

vy v, w, —w in L(0,T; L®(Q))

In particular
[0l zoe 0,20 (2)) < hr{gi;}f [vnllzoo 0,12 (2) < Cp

where ((s) < Cs for every s € R. Observe that, up to extract a subsequence, we can
suppose that p? converges to p° almost everywhere in Q.

Since u" — w in L'(0,T; L'(€))), we have that, considering in example the case of
vy, (that of w, is analogous),

[ ([ogpa)a— [([aSrw)a [ boonw- [ oo n

since 9y € L'(0,T; L*(Q2)) and ¢(0,z) € L*(2). Moreover

[ (ot s [ ([ ) o
[ (frt-wmam)a- f (f-ste ) o

g/o /Q|vn||u”—u||v¢| dr dt + T(/Q(v—vn)(u-ngS) dx) dt' <
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/OT (/Q(U—vn)(u-w) d.r) dt’

where M is such that |V¢| < M. Since ||vy| e (0,r;z(@)) is bounded and v" — u in
LY0,T; L*(92)), we only have to prove that also the other term vanishes. But

< M|Jvp|| 2o 0, @ U™ = wll Lo, @) +

T
/ / |ul[Vo] dx dt < Mlul|ror11 @) < 00
0 Q

that is u - Vo € LY(0,7T; L'(2)), and since v, — v in L=(0,T; L>(12)), we have that
also this term vanishes. So finally

_/OT</QU% daz> dt—/ﬂvo(az) o, 0) dx+/OT(/Qv (u- Vo) dq:) dt =0 (3.28)

and, in the same way,

_/OT(/QM% dx) dt—/QuP(x) 6(2,0) dx+/0T(/Qw (u- Vo) dx) dt =0

Remark 8.11. Observe that, since pj — po almost everywhere and (3 is bounded, we
have 8%(pg) — B%(po) in L*(2), with a € {1,2}. O
Equation (8.28)) says that v is a weak solution, with initial condition v°; by the previous

lemma it is a renormalized solution.

Choosing a(t) = 2, approaching this function with admissible ay,(#) such that ag(t) <
and ay,(t) — t? as k — oo, for every t € R. So we have that

_/OT (/ﬂak(v)g—f dm) dt—/ﬁ o (0°(2)) 6(z, 0) dx+/0T </Qozk(v) (wVo) dx) dt = 0

implies, letting k£ — oo,

—/OT</QUQ% da:) dt—/Q(UO)Q(a:) ¢(x,0) da:+/0T</qu2 (u-Vo) daz) dt =0

since [v(z,1)[> < [[0]|7e . p.poo0y < CF and v = B(p°) < Cf, so that the integrals are
well-posed.

So, v? is a weak solution to the transport equation with initial condition (v°)?. But
also w is a weak solution to the same transport equation with initial condition (v%)2.
By uniqueness theorem , we have v? = w.

This means that
v2 B0 in L(0,T; L™®(Q))

n

Moreover, notice that

T
lon = vllZ2(0,m:2(0)) = / (/ o = of dx) # = on =0 = Vo =
0 Q
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= (Un» Un) £2(0,1522(2)) — 2(Un, V) 12(0,1:22(0)) + (U, V) L2(0,1:L2(02))
Observe that
(Vn, U>L2(O,T;L2(Q)) — (v, U)Lz(o,T;Lz(Q))

since v € L>=(0,T; L>(Q)) € L*(0,T; L(Q)) and v, — v. Moreover, if we choose the
function ¢ =1 on (0,7) x , that is in L*(0,T; L' (2)), we have

T T
0 Q 0 Q
T T
%\/0 (/;21)2 (25 d.f(,’) dt :/0 (/S;'U2 d,ﬁ(:) dt = HUH%2(O,T;L2(Q)) (829)

as n — 0o, since ¢ € LY(0,T; L*()) and v2 = v? in L>®(0,T; L>(52)). This means
that v,, — v in L*(0,T; L*(Q)).

Remark 8.12. We can choose a(t) = |t|P, with p € (1,00), and obtain the same result
in LP(0,T; L?(?)). In fact, this choice implies that |v,|P — |v[P in L>®(0,T; L>=()).
Moreover, LP(0,T; LP(2)) is the dual of L%(0,T; L4(f2)), with ¢ and ¢ conjugate expo-
nents. So, for every v € L9(0,T; L(S2)), we have (v,,v)pq — (V,V)py, a8 n — 00,
where (-, -)p.q = (-, ) Lr(0,13Lr(Q)),L9(0,7;L9(0)) 15 the dual pairing between LP(0,T; LP(2))
and L7(0,7T; L4(Q)). In fact

<>:/(/d) dt—>/0T(/Qv-ydx) &t = (0, V)

as n — oo, since v, — v in L>(0,T; L=(Q)) and v € L(0,T; L4(Q)) C L*(0,T; L1(Q)),
being ¢ > 1. This means that v, — v in L?(0,T; LP(2)). Since, choosing ¢ = 1 as
in (8.29), |v.|? N [v[P in L>°(0,T; L>(€2)) implies ||vp || ro,rir0)) = ||V]2r(0,1:00(02)) 88
n — 00, the generalized version of theorem (see remark implies that v, — v in
LP(0,T; LP(Q2)) in the strong sense. [J

We now want to show that v = 3(p), for some p € L>(0,T; LP(f2)), so that we have
the convergence (in LP(0,T; L*(Q2))) of B(p,) to v; this implies (since v satisfies the
weak transport equation) that p is a renormalized solution, and so, by theorem , a
(unique) solution.

We know that v, = S(p,) converges to v € L*(0,T;L*(Q)) in L?(0,T; L*(2)). This

implies that v, converges to v in measure, that is f(p,) converges in measure to v.
Since |2 x (0,7")| < oo and

[onllLro7;L0@) < CllpnllL=r;10(0)) < C (Sug HPnIILw(o,T;Lp(Q))) <00
ne

using propistion , we have that exists p, measurable function on 2 x (0,7), such
that p, — p in measureﬁ But, if 8 € C'(R) is an admissible function, we have, by

4The convergence of 3(p,) holds for every 8 € C*(R). However, proposition holds in this case.
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proposition that v, = B(pn) = B(p) in measure. It follows that v = B(p). In fact,
we have

18(p) = vll20z:e20) < 118(p) = Blon)ll20.1:220) + 18(pn) = vll20.1:22(2))

We know from above that ||8(pn) — v||2(0102()) — 0 as n — oo. On the other
hand, B(p,) converges to B(p) in measure and |B(p,)| < Cs implies that S(p,) has a
uniform integrable bound in L*(0,T; L*(2)). So, again by proposition B.1] ||3(p,) —
B(o)| r20,7522(0)) — 0 as n — co. So, B(p) = v € L*(0,T; L*()).

Remark 8.13. The same argument holds with L?(0, T'; L*(Q2)) replaced by LP(0,T; LP(Q)).
O

So, the measurable function p is a renormalized solution of the weak transport equation,
since v = B(p) is a solution. Now, using the arguments in the proof of theorem (see
corollary ., with ¢ = 1 (where only the measurability of p is used), we deduce that
llp(to)ll, = llpoll, for almost every ty € (0,7"). So p € L*>(0,T"; L*(£?)), and this implies
that p is a solution to the weak transport equation with initial density po.

Remark 8.14. The aim of the theorem is to prove that p, — p in C([0,T]; LP(R2)),
where p is a renormalized solution of the weak transport equation with velocity field u
and initial density p°. If we know a priori that p, — p in L=(0,T; L>(Q2)) to some
p € L>(0,T;LP(R2)), with p weak solution to the transport equation with field u and
initial density p°, then by uniqueness theorem p = p, and so p,, — p in C([0, T]; LP()).
In this spirit we will use this stability theorem. []

We have finally that p € L>(0,T; L?(£2)) is a renormalized solution, that is, if 5 is an
admissible function, with M > 0 such that |G(s)| < M for every s € R, we have

/ </ﬁ c’)th) dt—/@ (0, z) dx—l—/OT(/ﬂﬁ(p) (u-V¢) dx) gt — 0

Choosing ¢ € C°([0,T) x Q) as in (8.27), we have, for every to € [0,7] (eventually
redefining the function out of a zero measure set)

| Btotto.oneta) do = [ 5ot - [ ’ < | Btotanutat) - 9o dx) it

Moreover, by the hypothesis, p, is renormalized solution to the transport equation with
velocity field u™ and initial density pC. It follows that, if to € [0, 7], we have

[ Bonttoao(o) de = [ Biohaeta) - / ( | 8ot} Vo0 dx) i

Let now [0,7] 3 t,, — to € [0, 7] and consider that

/Qﬁ(pn(tmx d:c—/ﬁ po(@ /On (/Qﬁ(pn(x,t))un(x,t)~Vg0(x) dx> dt

We want to show that
i [ Bt 2)) (o) do = / Bp(to, 2))p() da (8.30)

n—oo
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for every p € C'2°(€2). But this is true. In fact

/Q (B(pn(ta, 2)) — Blp(to, v))) () da = / (B(ph(x)) = B(p*(x))) () dz—

Q

_{ /Otn (/Qﬁ(pn(a:,t))un(:c,t).vw(x) d:c) dt—/oto (/Qﬁ(p(:c,t))u(x,t).v@(x) dx) dt} _

= [ G- a))ota) o [ ([ 8o v do= [ oo ) at-

tn
- / / Bpn)un - Vep da dt
to Q

Observe, first of all, that

[ Bt - 5w eto) e

< llellsellB(on) = B(p") Il = 0
as n — oo. Furthermore

/Oto (/Qﬁ(pnmn.w dx—/Q B(p)u-V dx) dt‘ = /Oto (/Q(ﬁ(pn)un_g(p)u).w dx) dt‘ _
/Oto (/Qﬁ(pn)(un—u) Vo d:v) dt+/0t0 (/Q(ﬂ(pn) — B(p))u- Vg dx) dt‘ <

< M|V /OT/an—uy do dt + /Oto (/Q(ﬁ(pn)—ﬁ(p))u-Vgo dx) dt‘ 0

as n — 00, since u"™ — u in L'(0,T; L*(Q)) and B(p,) — v = B(p) in L=(0,T; L>(Q))
and X (o)t - Vi € LY(0,T; L1(2)).

/: </Qﬁ(pn)un.w dx—/ﬂg(p)u.w dx) dt’+

/OT X(toin)(t)(/ﬂﬁ(pn)un-VgO dx—/Q Blp)u-Vi d:,;) dt‘Jr

Moreover, we have

/t:n/ﬂﬁ(pn)un -V dz dt‘ <

/: (/QB(P)U-VQO) dt‘ <

MVl / Jully dt < \ / ) xuo,tn)(w( [ o)) Vo des [ @pn)-50)u9 dx) dt\+

_I_

tn

tn
+MVeloo [ llullr dt < M||VS0||oo||Un—U||L1(0,T;L1(Q))+3M||V<P||oo/ [ul[x dt — 0
to

to
as n — oo, since t, — to, v — u in L'(0,T; LY(Q) as n — oo. So we have proved
(8.30). Starting from this point, we want to show that also

lim [ pp(t,,x)e(z) doe = / p(to, x)p(z) dz (8.31)

n—oo 0 Q

for every ¢ € C°(Q2) and t, — 1.
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Remark 8.15. If (8.31)) holds, then it is true for every ¢ € L9(2). Moreover, we have
that

lon ()l = 1£61l» = Nleolls = llpo(to)lls

thanks to the convergence of pj — po in LP(2) and using corollary [8.1] since u,,u €
LY0,T; L'(Q)) and p, p, are renormalized solutions. So, it follows that p,(t,) — p(to)
in LP(Q2). O

So we have to prove (8.31). Given M € (0, 00), consider the function

(s <M
‘m“”_{M o) > M

We have to fix this M in a precise way. Let t,, — to € [0,7] and a consider the sequence
{pn(tn) tnen U {p(to)} C LP(Q2). Moreover, this sequence is bounded in LP({2), since

o () llp, [l 2(t0) | < |lo(to)ll + sup || pnll Lo (07520 02))

since || pn(ta)llp < sup o7y Pn(t)llp = [|onll L 0,1:2r(2)) < C by the hypothesis. So, using
theorem 3.7, we have that for every € > 0 exists M. > 0 such that

/ |p(to, x)| dx, / lpn(tn,z)| de <e  VneN (8.32)
{z€Q: |p(to,x)|>Me} {z€: |pn(tn,x)|>Me}

Remark 8.16. Notice that (8.32]) implies that
M.z € Q: |p(to,z)| > M.}, M|{x € Q: |pp(tn,z)| > M.} <e€ VneN

that will be useful in the future. O

Fix ¢ > 0 and choose M. > 0 as above. Then we can consider [3);.. Moreover, let ﬂ]"{@
an admissible functions that coincides with /3, outside a neighbourhood of M., and

such that )

183 ()] < B ()] < Mz, sup|Bay(s) = Bar| < 7

seR k

If we now consider the admissible function | ﬂ]]ff[€| < M., from We can choose k. € N
2l

£

such that < e. So, we can write

/%mmw@mzfmumm@wm¢H/mmmmwm%mmmwwm
Q Q Q

(8.33)
We, at first, focus our attention to the second addend. We have

Lﬂ%mxﬁmwwmwpdx

+/ {pn(tn, ) = B (pu(tn, ) yo(x) do| =
{zeQ: |pn(tn,x)|>M:}
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<

- ‘/ {pn<tmx> - Me}@('r) dx
{ze: |pn(tn,x)|>M:}

< Hsouoo( / ol )| det Moz € Q¢ Jpu(tn )] > Ma}r) < 2/l
{zeQ: |pn(tn,z)|>M:}

If in equation (8.33)) we subtract the term / p(to, x)p(x) dx, we have also to consider
Q

<

/Q Bur. (ot 7)) p() daz — / plto, 2)p(a) de

<

+

[ B onttn, ) = B otto ) ) o

+

[ G ot 0) = ptto ) o) d

We deal at first with the second addend. Following the steps above, we have again

<

/Q (B (p(to, ) — p(to, z))p(x) da

<|/ (Bar.(p(to, ) = plto, ) p(a) da| +
{ze: |p(to,@)|<Mc}

+] / (B (olto. 2)) — plto, 2))p() di
{ze: |p(to,z)|>M.:}

(M. — p(to, x))p(z) dz

IA

/{IEQI lp(to,x)[>Me}

<l ( [ olto.0) do -+ Ml € 05 |p(to0) > MY ) < 22l
{zeQ: |p(to,z)|>M:}
The other term can be written as

1 [ (631 (0n(t012)) = B (0. 2)) ) ole) do

/Q(5Ms<pn(tn7x))_ﬁﬁa(pn(tnyw)))@(x) d-%"i‘/g (B]’fjs(pn(tmx»_ﬁ]];i(p(tmx)))@(x) dz+

+/ (BﬁE(P(toan)) — B (p(to, 2)))p(z) da
%

<

< HsOIIoo/Q!ﬂMa(pn(tmw))—ﬂME(p(to,x))l dx+ +

/Q (8. (pntn, 2)) = BY7. (p(to, 2))) () da

Hlelos /Q Bar.(o(to, 2)) — Bar. (plto, 2))]| dax <

_ 2l
<

| [ (55 Gonttn,2) = 55 0tt0, ) )
Q
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We have that, for every admissible function, (8.30)), there exists N = N( ]’fj) = N,
such that, for every n > NN,

2[[¢plloo|€2]

‘ /Q Pu(tn, T)p(z) do — /Q p(to, z)p(x) da L

< delllloo + +e <dellglloo + 3¢

that is
i [ p(tnsz)ole) do = [ plto,z)o(e) do

Using remark [8.15, we have that p,(t,) — p(ty) in LP(€2). From theorem [7.1] it follows
that
pn—p 0 C([0,T]; LP())

that is the thesis. I
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Chapter 9

Stationary Stokes System and the
Stokes operator

The Stokes equation is a stationary PDE, i.e. the equation does not involve the temporal
variable t. The study of this system of equations will be useful in future discussions.
We will deal with the equation in the whole space and the Stationary stokes system on
a domain ).

The theory of the Stokes equation in the whole space will concern both homogeneous
and inhomogeneous Stokes equation: in the latter case we will deal with an external
force in the class C2°, following the ideas of Galdi’s An introduction to the Mathematical
Theory of the Navier-Stokes equations [12], that is, introducing a fundamental solution
to the equations and obtaining solutions to the Stokes equations by convolution. A
uniqueness theorem will be prove in the case of homogeneous equation. The whole
Stokes theory is developed in the classical paper [19]. However, as mentioned before,
this compilative chapter is based on Galdi’s work [12].

To this purpose, it is fundamental to introduce the main tools of classical harmonic
analysis, which will be useful in the future dissertation.

On the other hand, we will prove fundamental existence and regularity results in the
case of the Stationary Stokes System in a bounded domain (2.

9.1 Stokes equation: solution and regularization

Definition 9.1. In a bounded domain €2, the Stokes equation is the stystem

{AU:Vp—i—f

in Q 0.1
V.ov=0 o (9.1)

with the adherence condition v = v, over 9f).

Remark 9.1. The system (9.1) can _obviously be understood in classical sense, that is
veCH)NC(Q),peCH Q) NCK), feC(Q) and v, € C(IN). However, in a little
while we will propose a weak interpretation of the equation. [

Remark 9.2. If 2 = R", the space is not bounded and the adherence is useless. We will
find solution with a certain decay at the infinity. [

141



Remark 9.3. Observe that, if 2 is bounded and regular enough, we have, formally,

0:/V~Uda::/ VU, -V do
0 a0

where v is the outer normal of 2. According to this, we have the following definition.

O

Definition 9.2. An adherence condition is compatible if

/ Ve -vdo =0
a0

Remark 9.4. In example, v, = 0 over 0f) is compatible.

We also define the following space, that will be fundamental in the next sections.

Definition 9.3. We set the space of divergence-free test functions as
D(Q):={ue () V-u=0in Q}
The next definition introduce the weak version of the problem disclosed in remark
9. 11

Definition 9.4 (Weak solution). A field v : Q@ — R" is called a g-weak (or q-generalized)
solution of (9.1)) if and only if

(i) v e DM(Q);
(i

i) v is weakly divergence fredl] in ©;
(iii) v = v, in trace sense, or, if v, = 0, v € Dy?(Q);
)

(iv) v satisfies

(Vu, Vo) =—=(f,0)  »€DQ) (9-2)

Remark 9.5. In the practice, that is in the application to the problem at the core of the
present thesis, we will obtain v € W4(Q) or W,(Q). O

Apparently, in this definition it doesn’t appear the pressure term. However, it holds

the following lemma.

Lemma 9.1 (Pair of weak solutions). Let 2 be a domain in R™, with n > 2 and
lel f e W=(Q), with q € (1,00), for any ' bounded and QO c Q. A vector field
v € WnU(Q) satisfies

(Vu, Vo) =—(f,0) ¢ €DH) (9.3)

li.e. divergence free in the sense of distributions, that is

/v-Vd)da::O Vo € C°(Q)
Q

2This lemma is [I2, Lemma IV.1.1 pg. 235]. In this book, the author asks that e wyha).
However, in the same book, page 60, Theorem I1.3.5, the author consider Wy “4(Q) as the dual

space of W (Q’)7 that in our notation is, differently, defined with W~=19()'), as we have written in

definition
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if and only if exits p € L} () such that

(Vo, Vi) = =(f, ) + (p. V) e CF(Q) (9.4)
The pair (u,p) is often called weak solution pair.

Proof. Tf we suppose that (9.4 holds for some p € L (Q), for every ¢ € C3°(Q). So, if

loc

Y € C5%(2), clearly, being V -4 = 0, the pressure therm vanishes and we have (9.3)).
Now we have to show the other implication. We define the the functional

F() = (Vo, Vi) + (f,4)

We now show two properties of this functional: it belongs to W~54(€’) and F(v) = 0 for
every v € Cg2,(€Y). Obviously, being W9(Y) = (Wy? (Q)')*, if 4by, — ¢ in Wy ()

we have

[F ok = ) < AIVllgl[Vior = Vllg + [ fllglln = ¢lly = 0 as k— oo

where || - ||, = || - [lp.r. So F € W19(Q). Moreover, if v € C5(€2), (9.3) implies that
F(v) =0.

So, lemma , we have that exists p € L () such that F L Vp, that is

loc
f(so)z—/QpV~sadx Vi € C5°(£2)

that is the thesis. I

Moreover, it can be proved an existence and uniquess theorem for a weak solution
q=2.

Theorem 9.1. Let 0 C R™, n > 2, be a bounded and locally Lipschitz domain. For
any f € Do_l’2(Q) and v, € WY21(0Q) that satisfies the compatibility condition, there
exists one and only one weak solution v to . Moreover, if p is the pressure filed
associated to v by Lemma (9.1

[vll2 + lIpll2 < e(lfll-r2 + o1 200)
with ¢ = ¢(n, ).

Remark 9.6. This existence theorem in the case ¢ = 2 is fundamental to start consid-
ering the problem, but it is different from our aims: we want to reqularize solution that
we already know that exist. So we omit the proof. [

Weak and strong solutions to the Stokes problem. In the lines above we have
defined generalized weak solution (see definition and pairs of weak solution (see
lemma, . Moreover, we have a strong definition of solution for the Stokes system.

143



Definition 9.5 (Strong solutions). Let Q a domain in R™, with n > 2. A strong
solution of the Stokes system (0.1) with f € L*(Q) and v, € L%*(09Q) is a pair of
functions (u, fi) € W*2(Q2) x G(Q) sucht that the equalities

—pAu+ fi1 = f, V-u=0, Tu = v,
hold a.e. in 2.

Remark 9.7. If v, = 0 on 0f2, the zero boundary conditions is satisfied if we require
ue HY} Q). O

The following proposition shows the duality between strong and weak solution.
It also simplifies the implication ”regular weak solution” = ”strong solution for an
associtated pressure term”.

Proposition 9.1. Let 0 C R"™ a bounded domain, with n > 2. Consider the Stokes
problem (9.1)) over Q2. Then:

e A strong solution (u, f1) of the Stokes problem is also a weak solution in the sense

of definition [9.4, with q = 2.
e Moreover, for a 2-weak solution u € W**(Q) of definition [9.4, with f € L*(Q),

there ezists a pressure term f; € G(Q) such that the pair (u, f1) is a strong solution

in the sense of definition [9.5]

e Finally, if (u, p) is a weak solution pair in the sense of lemma with [ € L*(Q),
and, in addiction, w € H*(Q) and Vp € L*(Q) then (u,Vp) is a strong solution
in the sense of definition [9.5]

Proof. Let (u, f1) a strong solution, so that u € H?*(Q2) and f; € G(2). Then, if
v € Cg%,(Q2) we have

—u/QAu-vda::/ﬂ(—uAuijl)-vam:/Qf-v

since fi; € G(Q). It also holds, using integration by partsﬂ and a result about traces,

—,u/Aumdm:,u/Vu-Vvdx
Q Q

that is equation (9.2). Moreover, u € H*(Q) C D'*(Q), u = v, in trace sense and, for
every ¢ € C5°(Q2), we have

/u-Vgpda::—/(V-u)apda::O
Q Q

So u is a 2-weak solution.

3Thanks to the fact that v € C*(Q2) and v = 0 at the boundary.
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Conversely, let u a weak solution in the sense of definition [0.4] that also belongs to
H?(Q). By equation (9.2) we have

,LL/Vu-Vvdx:/f-vd:v Vv € Cgo, ()
Q Q

Again, as in the note above, we have the equality

—u/Au-vd:r:z,u/Vu-Vvdx
Q Q

and so

/(—,uAu —f)vdr=0 Yve i, (Q)

e

Thanks to lemma being f € L*(2), we have
—pAu—f=fi

with fi € G(2). Moreover, T'u = v, in the hypothesis and for every ¢ € C§°(Q2),

Oz/u-Vgodx:—/(V-u)gpdx
Q Q

so tha, by a classical measure theory result, V - u = 0 almost everywhere in (2.

Finally, let (u, Vp) as in the hypothesis. Then, using (9.4)), V¢ € C5°(€2) we have

/(,uVu-ch—f-go)da::/pv-gpdx:—/Vp-goda:
Q0 Q Q

So, being also u € H*(Q), then

—M/Au-cpdx—/f-godx:—/Vp~gpdx
Q Q )

So for every ¢ € C§°(Q2), we have

/(—uAu—f+Vp)-<pda::O
0

where —puAu— f+Vp € L?(Q2). But, for classical measure theory results, we have that
the integrand is zero a.e., since it is zero the integral against any test function over €2,

so thatl]
—pAu+Vp=f ae. in

Moreover, as above, since v € H?(Q) we have V-u = 0 almost everywhere. Furthermore,
Tu = v, in trace sense by definition. |

4Here all the terms have three components. One can so apply the measure theory result for real
valued functions considering ¢ = (¢1,0,0) and so on. In this way one gets the result for the three
components separately, and then we put the pieces togheter.
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9.2 Existence, uniquess and estimates in () = R"

In this section we focus our attention to the Stokes problem on the whole space, with
particular interest to the inhomogeneous problem.

Definition 9.6. Let f,g € C°(R") a vector and a scalar field, respectively. The Stokes

problem in the whole space associated to these fields is the system

{A” =Vpt/ in R (9.5)

V.v=g

and we search for v € C%(R") and p € C*(R") with suitable decay properties at infinity.

9.2.1 Solution to the problem
We simplify the problem. Consider a field F' € C°(R™). Then, we define

ww)i= [ Ua-pF@)dy 7@ =~ [ de-pFedy 90

where U and 7 have to be fixed. In the following subsections we fix the kernels U, ¢q. In order
to do this, we collect some basic results.

Harmonic functions. Here we briefly review the main definitions and result in harmonic
theory.
Let Q C R™.

Definition 9.7. A function u € C%(Q) is called harmonic in Q if
Au(z) =0 VreQ
Definition 9.8. A function u € C*(Q) is called biharmonic in € if
2 — 4 - 2 92 —
Au(z) = Viu(z) == ;;8@8@“(3«") =0 VreQ
The operator V4 is called biharmonic or bilaplacian operator.
Theorem 9.2. Let Q C R™ a domain and let u € C?*(Q2) an harmonic function. Then, for

every Br(y) CC Q it holds
1

= d
w)= o [, e

where w, 1s the area of the unit sphere in R™.

Theorem 9.3. Let Q C R" a connected domain and let u € C?(Q) an harmonic function.
If exists yo € Q such that u(yg) = supu, then u = const.
Q

Corollary 9.1. Let Q C R a bounded and connected domain. Let v € C*(Q) N C(Q). Then

maxu = maxu
Q o0
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Fundamental solution of the biharmonic equation. By biharmonic equation we
mean the PDE
Viu=0

Remark 9.8. We see immediately that applying the biharmonic operator to a C* function is
equivalent to applying the laplacian operator twice. In fact, if v is C* in a neighborhood of =,

4 _ 2 02 _ 2 2 _ 2 _
Viu(e) =Y N 0202 u(x) =Y 02> 07 u(z) = 02, (Au)(z) = A(Au)(x)
i=1 j=1 i=1  j=1 i=1
Definition 9.9. We call fundamental solution of the biharmonic equation the function
() = (] == (0.7

Lemma 9.2. For every x # 0 we have VAT'(z) = 0.

Proof. Tt is an easy computation. Let x # 0. We have

€T; €T 1 2
8_ :71 71/:7— 2
sl =T %G Tl T P

so that

3 2
1 x: 2
A — — -t = —
! Z“(m |x13> ]

using the previous remark, thanks to the fact that |z| is smooth in R"/{0}. Going on we have

2 20s 2%; 1 22
g, = =i g (LT L g 1 g %P
] T P O ( \x|3> IFERIPG

2 3 W)
A:—2<—3 =0
] > e

Thus

that is the thesis. |l

9.2.2 Lorentz’s fundamental solutions

To the purpose of solving the Stokes equation, it will be useful to introduce other fundamental
solutions, with the fundamental solution of Laplace’s equation I' as a model. In particular,
thinking to the Stokes equation, it will be useful to find function (or, as we will say, kernels),
say U, q, such that

—AU(2) + 0,,q(2) =0

To this aim, we can define, given real variable function ¢(t) smooth for ¢ # 0,
Uij(2) := (8152 — 02,02;)¢(|2])

qj(2) = =0z, Ap(|2])]

for every z # 0, we have
—AUij(2) + 0:,q5(2) = —A(0;A[9(12])] — 02,02 [9(12)]) — 02,0, A[¢(|2])] =
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using that ¢(|z|) is smooth far from the origin and so using the Schwarz lemma

= 0 VHo(|2])] + 02,0, Alp(|2])] = 02,0, Alo(|2])] = — 35V (|2])]

So if .
8(t) = = = ozl = A =1z

It follows that, for every z # 0,
—AUij(2) 4 0,95(2) =0

We now can write explicitly the expression for the kernels: using the equalities of the previous
proof, we have

(2) = 0 10 1 zz 9y 1 =z
IV Anlz| 8mlz| 8w |23 8mlz| 8w |z)?
1 Zj
q;(z) = EW
3
Remark 9.9. Notice first of all that Z 0y, Uij(x —y) = 0. In fact, if i = j
i=1
1 Ti— Y Ti— Y (x-—y-)?’
&QU,;'x—y:(— J J 497 J 3 J
T N P R PR
and, if ¢ # j,
1 1 (2 —yi)”
Ou Usj(x—y) = — ( (x5 — —3
i ](x y) 87 <($] y])(‘x_y‘g ‘x_y‘g) )
So

23:3 Uyl ) = — <—3(:v' PRk TG _yj)> —0
i=1 o 8 T e =y |z — y|?
9.2.3 Classical results about Stokes equation

Definition 9.10. Thanks to the arguments in the previous subsection, we define the so called
Lorentz’s fundamental solutions, for every x # y, as

5 L 0y (i —yi)(zj — y5)
Uij(z —y) = o <‘x_y + P (9.8)
1 z;—y

Remark 9.10. We will now build solutions to the Stokes problem by convolution of the external
force against the kernels defined above. As we will see, the convolution has no problems of
definition: however, we have to do some work to derive the function we’re going to define. [

Remark 9.11. If we consider the kernels U and ¢, these are homogenous function of degree,
respectively, —1 and —2. This means that the origin is a summable singularity.

However, deriving once the kernels, we get homoegenous functions of degrees —2 and —3. The
kernel obtained deriving ¢ is thus no more summable in the origin. The same thing happens

if we derive another time U. This suggests that we have to deal with these functions carefully.
O
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So, we have the following theorem.

Theorem 9.4 (Classical Stokes problem in R3). Let f € C°(R3) be a test external force.
We define

V= [ U=t dy. @)= [ a@-w)-fwdy  ©10)

The pair (V,11) is a solution of the Stokes equation

(9.11)

—pAV + VI = f
V-V =0

in the class C*°(R®). Moreover this pair of solutions (V,11) satisfies the estimates

w

V()| < - R

Vao:|z]>R

and

@
(2] = R)?

where R > 0 is such that supp(f) C B(0, R).

ITI(z)] < Vao: |zf]>R

Proof. We proceed proving the theorem by steps.

1. Well-posedness and smoothness. Well-posedness and regularity follow from a
simple consideration: we can consider the integral

1
M/RSU(Z) flx—2) dz

where U represent one of the U;; and f a component f; of f. This integral is well-posed for
every z. In fact, let 7o € R? and consider B(xg, ), for § > 0, i.e. we choose an arbitrary open
ball in the space. If R > 0 is such that supp(f) C B(0, R) and if C := |z¢| + d, we have, for
x € B(xp,9),

2] > R+ Co = |o—2| > ||z = |2l > |2| — |a| > R+ Co— |o| > R

since |z| = |z — xo| + |zo| < & + |zo| = Co. So, if |z|] > R+ Cp, then f(z — z) = 0. It follows
that we can rewrite

/ U(z) f(x — 2) dz:/ U(z) flx — 2) dz
R3 B(0,R+Co)

So, being
U(2) f(x = 2)xB(0,r+co)(2)] < IfllclU(2)[XB(0,R4C0) (%)

/ U(2)]dz < +o0
B(0,R+Cy)

since U has an integrable singularity in the origin, being U homoegenous of exponent v = —1.
So, the integral is well posed and
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thanks to a change of variable. Moreover, since we have also the estimatd’]

U(2) 0uf(x — 2)XB(0,R+C0) (2)] < 102 flloolU (2) X B(0,R+C0)(2)
we can pass the derivative under the integral sign, and get

1
0.V () = Ouf(z— =) dz =
Vi) = /B ey V) e 2) 02

1 1
= [ UG @eha—2) de = [ V=) 0.f ) dy

using that, being f = 0 if |z| > R + Cy, so it is also J, f.

The continuity follows from the same argument and the fact that f € C°°. In fact, the
same estimate, with ||0; f|loc gives a summable bound, so we have the continuity in xo.
From the arbitrariness of 29 and § > 0, we have that V € C°°(R?). The same method says
I € C®(R3).

2. Estimates and asymptotic behaviour. Now we deduce the estimates. We start
with II. Let R > 0 such that supp(f) C B(0, R). Then

()| =

|RCEBOE

/ o —v) - f(y) dy
B(0,R)

g/ lg(z —y) - F(y)] dy <
B(0,R)

< /B o i@ =l

Remember now that each component of ¢, i.e. ¢;, is an homogeneous function of exponent
a = —2. It follows that

< _ M
[z —y [z —yl?

If |z| > R we have
[z =yl = x| = [yl = || = [yl > |z| - R

for every y € B(0, R). So
1 1

<
[z —yl? (2| - R)?

and hence for every x such that |z| > R

M __ Q@
i< [ R O =

where Q := M / |f(y)|dy. The estimate for V' is similar. We have
B(0,R)

Vi) = \;/R Uz - ) f(y) dy] _

1

- /B o U0 dy

1
<s / o DEI Gy

)

5Since also supp(d, f) € B(0, R).
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The kernel U is such that each component is an homogeneous function of exponent o = —1.
So

T — 1 T — 1 M’
o=l = | (= leol)| = i [0 (24| = oty mex it = 2
[z —y| |z —yl lz —yl [z —y[ |21=1 |z —yl

Again, for |z| > R, we have

|z =yl = |a] -
and
1 1
[z —yl ~ 2| -
for every y € B(0, R). So
1 M’ 1 M’ w
velsy [ s [ iy =

where W := M’/ |f(y)|dy. These are the estimates that we expected.
B(0,R)

3. Further derivatives and check that are solutions. Finally we find the deriva-
tives of V' and IT and we prove that the functions solve the equation of Stokes. Even if we have
proved that VIl are smooth, we can’t pass the derivative under the integral sign, because of
the remarks done before the theorem. The proof of smoothness itself use the smootheness of
the force f, so that’s what we will use again. In order to verify that

—pAV + VI = f

we have to remember that this is a vector equality. So we have to prove it component by
component. For the sake of simplycity, we will prove the equality of the first component: the
others are similar. So, we want to prove

—pAVy + 0,11 = f1

Remember that

/RZUUOC— )fi(y)dy

=1

We start immediately deriving the expression twice. Let x € B(xo,d) fixed, for 2o € R? and
0 > 0. We have

Z /Uu )fi(z — 2)d Z/ Un(2)02 [ filx — 2)]dz

Using that 92 [fi(z — 2)] = 02 [fi(x — z)], we have

1 3
M;/ Un(z fl(a:—z)]dz

We now fix € > 0. So, we can split

3 3

D2 Vi(x _ 1 Uy (2)0% [fi(z — 2)]d= 1 Uy (2)0% [fi(z — 2)]d=
Vi) u;/| u(2)8 [l — )] +u;/@€ u(2)3 [l — )]
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Notice at once that the first piece is 0-.(1) = o(1), since the integrand is summable in the
whole space thanks to the singularity of Uy; and the compactness of the support of f; (and
the fact that z is banished in a fixed neighborhood). Moreover, observe that

02, [Un(2)0:, (fila — 2))] = 9:,Un(2)0:, (filx - 2)) + Un(2)0Z (filz — 2))

So we have

3 3

92 Vi(x :l 0,.|U11(2)0,, T—2z dz—l 0,.U11(2)0,. (fi(x—2))dz+o(1
2 Vi () M;/M (U0 (2)0-, (filw—2) u;/l Tu(2)0-,(fi(e—2))dz+o(1)

The first addend can be reduced to a surface integral. We prove this. We have

/||> 0z [Un(2)0z; (filx — 2))]dz = lim 0z [Un(2)0z, (fi(x — 2))]d=

thanks to the fact that the integrand, as we can see looking at the equality above regarding
this term, is the sum of two integrable addend on |z| > ¢ (thanks to the compactness of the
support of f). By the divergence theorem for annulus we have

[ olUu)0n (il - )z =
R>|z|>e

_ / Un(2)0s. (fi( — 2))wis(2)dor(2) — / Un(2)0s. (fi( — 2))ws(2)dor(2)
|z|=R

|z|=¢

If R is large enough, we have already seen that f;(z —z) = 0, for z fixed in its neighbourhood.
So it is its partial derivative. Hence, this piece vanishes as R — +o00. It follows that

0 Vi) =
3

1
T Uu()0:(filw = 2)milz)do () =5 0., U (=)0, (il — 2))d= +o(1) =
> [, VeI (= Do) =3 [ 01 Un(2)n a2 of1)

1 3
) _; ; /zIZa 8ZiUll(Z)8Zi(fl($ N Z))dz + 0(1)

Remark 9.12. We have included one more piece in the o(1) (in particular the first of the
second line) since changing the variable z <— ey we get

/ D)2 (il 2o (s) = / Un(e2)0s. (fi(m — £2))s(e2)2dor () =

|2|=1

and Uy; is homogeneous of degree —1
= 5/ U1(2)0, (fi(x — e2))vi(z)do(z) - 0 ase —0
|z|=1

since we can pass the limit under the integral if the integrand is continuous on the compat
set over which the integral is done. [J
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Now, as before, we have

0:,[0:,Un(2) filx — 2)] = 02, Un(2) filx = 2) + 0:,Un(2)0z,[filx — 2)]

and so

/||> 8in1l(z)8zi(fl(m _ Z))dz _

— /|> 02,10,Un(2) filz — 2)]dz / 02 Uy(2) fulw — 2)dz

2|2

As above, the first addend can be reduced to a surface integral, that is

/|> 02, 10:,U1(2) filx — 2)|dz = — / _ 0:,Un(2) fi(x — 2)vi(2)do(z)

We get
2 _—l3 — V4 r — 2Z)V;\z)do\2) — 2 z r — zZ)az o =
G2 Vi(x) = M;( /Wazivll( Vil = 2)i()do(2) /ZEgaZiUu( ) fulz — 2)d >+ &
1< 1S
= - 0, Un(2) filx — z)vi(2)do(z) + — 82U x—z)dz+ o(1
M;AZE W) file — 2)(2) (”u,z;/ng W) il — 2)dz + o(1)

This gives an expression for the second derivatives of V] in . We can now sum over ¢ and get

1 3 3

AVi(z) ==Y VU (2) - v(2) filz — 2)do(z) + 1 > AUy (2) fi(z — 2)dz + o(1)
K =1 Y lz|=¢ H =1V |zl>e

We can now pass to 0, II(z). With the same = and €, we have

3
aﬂm Q\r—y f 8961 q Jilz— Z dz = Q(Z)aﬂu [f (:C—Z)]dZ:
/zl v /zll ;@l l
and using that Jg, [fi(z — 2)] = =0, [fi(z — 2)] we have
3
= - 0(2)0z [fi(x — 2)ldz

So if we use 0y, [qi(2) fi(x — 2)] = 0, qi(2) filx — 2) + qi(2)D, [ fi(x — 2)], we get

3

3
011w) == > [ a0 lfle -2z = > [ a0t - 2)ds =
=1 7 lzl<e =1 |z[>e
3
:_Z/ng Pnla(2) filz — 2 dZJrZ/PE @ (2) fi(x — 2)dz + o(1)

=1
where again the term over |z| < e vanishes as € — 0, thanks to the integrability of ¢;(z) in the
origin (being homogeneous of degree —2 and being compact the support of f). Now, again,
we want to replace the first term with a surface integral. In particular

/ Oun (=) ol — 2))ddz = — / a(2) file — 2w (2)do(2)
|z[>€ |z|=¢
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So

3

3
Bl =3 [ =)+ Y [ a2z o)

=1 7 lzl=e =1

We now can sum the two expression, checking if they solve the equation. So, for x and ¢ as
above, we have

—pAVi(2) + 0, 11(z) =

3 3
= _ Z . VU1 (2) - v(2) fi(z — 2)do(z) — Z y AUy (2) filx — 2)dz+
1=1"1%1=¢ =1 7 121>e
3 3
+30 [ aile - amde) + Y [ dsalils - 2)d+ o) =
=1 Y 12l=¢ =1 7 121>¢e

3
(=AU (z) + 02, q1(2)) fl(m—z)dz+z /I (=VUu(2) - v(2) + q(2)vi(2)) fi(lzr—2)do(z)+o(1)
1=1"17I=¢
Observe that € > 0, so if |z| > & we are far away from the origin. But
—AUu(2) + 0:,q(2) =0 V2 #0

so the first integral is zero. We have to consider

/||_ (=VUu(2) - v(2) + q(2)v1(2)) filx — 2)do(z) =
— /||=1 (=VUy(e2) - v(ez) + qez)ri(e2)) filz — e2)e’do(z) =

= /|:1 (=VUu(2) - v(2) + q(2)v1(2)) filx — ez)do(z)

using that v and 1y are homogeneous of degree 0, while VU;; and ¢; are homogeneous of
degree —2. It will be useful in a moment to know which value has the integral

/:1[_VU11(Z) . I/(Z) + QZ(Z)Vl(Z)]dO'(z)

for [ =1,2,3. Let first [ = 1. Then

11 1 22 1
U = 4 -1 —
n(z) 8m|z| 87 |z|? a1(2) 47 |2)3
It follows that, for |z| =1,
1
8Z1U11(Z) = 877'&' (Zl — 32?)
and, for j # 1,
1
8ZjU11(z) = 87 (—Zj - 32’]'2%)
So, if |z| =1,
L, 42 2.2 2 3.2 L,
—VU1(2) - v(2) + q1(2)1(2) = ~ % (21 — 321 — 25 — 3252 — 25 — 3z3z1) + Ezl
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It is straightforward to calculate the following integrals

4
/ 22 do(z) = / 22 do(2) —/ 22 do(z) = hall
l2|=1 |2]=1 |2]=1 3

It follows that
Let now [ # 1. We have

It follows that, for |z| =1,

1 1 . 1
0., Uy(2) = o (zl — 32%2;) , 0., Un(z) = o (=3z12125) j#1,1, 0, Un(z) = o (z1 - 321z12)

So, if |z| =1,
1

1
—VU(z) - v(z) + q(z)vi(z) = ~ % (z1z1 — 3272 — 321,21232 + 212 — 3212)) + e

Again, it is straightforward that

/ zizg, do(z) = / 2B do(z) = / zizpze do(z) =0 i, 4, k distinct
|z|=1 |z]=1 |z|=1

/|:1 (=VUL(2) - v(2) + q(2)v1(2)) do(z) =0

Now, we consider the term
/ | (=VUu(2) - v(2) + @(2)n1(2)) filx — ez) do(z)
z|=1
The integrand is continuous on the compact sphere |z| = 1, and so sending € — 0 we have

/|:1 (=VUy(2) - v(z) + q(2)v1(2)) filr—ez)do(z) — fl(a;)/ (=VUy(2) - v(z) + q(2)vi(z)) do(z) =

|z|=1

0 otherwise

:{fl(as) if =1

so that
3

Z /| (=VUyu(2) - v(2) + q(2)v1(2)) filz — 2)do(z) — fi(x) ase—0
1=1"1#1=¢

Now, if x is fixed as above, for every € > 0 we have

3
HAV(@) + 011 = 3 [ (VU v + @@ () il - 2)do(z) + o)

=1 /12l=¢
Since the equality holds for every € > 0 and the left side is indipendent by € we have
—pAVi(z) + 00, () = f1(2)

that is what we want.
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4. Incompressibility condition. It misses to prove that V satisfies the incompress-
ibility equation V -V = 0. The method is similar to the previous. Let 2 € R? in an open
neighbourhood and £ > 0. We have

O, Vi(x) = On; /R3 > Ualz = y) fily)dy = s, /}R3 Ua(2)fi(z — 2)dz =

3 3
= Z/{RS U’ll(z)al’z [fl(-r - Z dz = — ;/Rg Uil(Z)azi [fl(m — z)]dz

As above
0:Un(2) filx — 2)] = 0., Un(2) fi(z — 2) + Ui (2) 0z, [ fi(x — 2)]

So
3

Vi) ==Y [ Uale1oalnte — s -

=1

w

2 /Z|Zs Ua(2)0: [filz — 2)ldz =

=1

3 3

= _ 02U (2) fi(x — 2)]dz 0..Ua(2) il — 2)dz + o(1) =
Z/| V)=t 3 [ 00l = ot

=1

Sy

3

2) filx — 2)vi(2)do(z) + Z /l 0, Ui (2) filz — 2)dz + o(1) =
1 z|>e

3

- g /|z>5 9., Uq(2) filx — z)dz + o(1)

where the surface integral has been included in the o(1) since

/ Ua(z) filz — 2)vi(2)do(z) / Ui(ez) fix — e2)vi(e2)e*do(z) =
|z|=¢ |z]=1

= E/ Ui (2) fi(x — ez)vi(2)do(z) =0 ase—0
|z|=1

where has been used that U;; is an homogeneous function of degree —1 and we have passed the
limit under the integral sign because the integral is continuous on a compact set. It follows
that

3 3 3
V) =Y Vi) =) Z/ 0., Un(2) il — 2)dz + o(1) =
i—1 i=1 1=1 7 12|>¢
3 3
=Y [ Yo tue) e - 2)dz+ of)
1=1 72122 =1
Using that, as noticed at the beginning,
3
> 0.,Uij(2) =0 Vz#0, je{1,2,3}
i=1
we have, since ¢ > 0,
V-V(x)=0(1)



being the other integrals zero because so it is the integrand far from the origin. Being x fixed,
and € > 0 arbitrary, we can send € — 0 and get

V- -V(z)=0

This completes the proof. |

Remark 9.13. We now have build a solution to the problem in the very special case of incom-
pressible fluid. The following paragraph generalizes the problem to the case V-v = g # 0.
O

Reduction to the original problem. What we solved at this point is the incompressible
Stokes problem, that is

{“A” = Vet (9.12)

V-v=0
We want to generalize the proof to the case

{,uAv:Vp-i-f

9.13
S (9.13)

with g € C2°(R™). In order to solve (9.13), we shall look for a solution

v=u+h
bp=m

where u and 7 are volume potensials introduced above corresponding to F' := f — uAh, with
h=V(&x*g)

where

) e (27) " tn|z — y| n=2
£ {mm—zwdlw—yﬁn n>3

that is the fundamental solution of the Laplace’s equation. By the properties of the Laplace’s
solution and some calculus, we have

Ah=Vge C*[R"), V-h=gecCrR")
At this point, it is clear that
pAv = pAu+ pAh =Vr+ F 4+ pAh=Vp+ f

and
Vv=V.-u+V-h=g

9.3 Estimates of the solution on the whole space

We now need some estimates over this integral solutions. In order to do so, we will use
theorems about integration of kernels and some applications. So, in the next section, keep in
mind the results of section B.7)

Remark 9.14. For sake of semplicity, we will prove the results with only two derivatives. With
the same devices one can prove the results stated in susection however the calculations
are prohibitive and distract us from our aims. [
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9.3.1 Estimates over the velocity field

We now deduce some estimates concerning the velocity field. First of all observe that

3
D= | = Uil — ) is)d =

1 3 1 3
= /lx o ; Un(z —y) fily)dy — B /|I o ; Uz — ) £1(y)dy (9.14)

if € > 0 is arbitrarly fixed. Deriving with respect the variable x, remembering that D;; =
Oz;0z, and using the differentiation under integral sign previously discussed, we have

Dijjup(z / ZUkl z—y)fily *ng ZUkl )fi(z — z)dz =
lz—y|>e |z|<e
=1 =1

So, we have to deal with two pieces, that is

3
(1) Dy Y Un(z—y)fily)dy, (1) Dy Z Uni(2) filz — z)d=

lz—yl>e 12 |zl<e 1=
Considerations about the (I) piece. For the first term notice that

Di; Uni(z —y) i(y)dy = Di; Uni(2) fi(x — 2)dz = / Uw(2)Dyj[ fi(x — 2))dz =

lz—y[=>e |22 2>

= Ukl(z)ij Lfi(z — 2)]dz

|z|>¢€
since Oy, 0y, [fi(x — 2)] = 0.,0.,[fi(x — 2)]. But
D [Uri(2) D5 (fi(x — 2))] = DjUpi(2) D7 (fi(x — 2)) + Upi(2) D; D; (fi(z — 2))

and
Di DUk (2) fi(z — 2)] = D D;Uki(2) fi(z — 2) + DUk (2) D; [fi(z — 2)]

so that
Uni(2) D[ fi(x — 2)] = Di[Ui(2) Df (fi(x — 2))] — D Uni(2) D (fi(z — 2)) =
= Dj[Un(2)D; (fi(x = 2))] = Di[DjUni(2) fi(z — 2)] + D D;Uni(2) fi(x — 2)
Integrating on B(0, )¢ we have

/| Ul D e — =) =

= Dz [Upi(2) D (fi(x—2))]dz — D [D:Uy(2) fi(z—2)]dz + D7 D;Ui(2) fi(x—2)dz

|2[>¢ |2|=¢ 2|2

The first piece is

Di[Un(2)Di (fi(z — 2))ldz = _lim Di[Uni(2) D (fix — 2))]dz

|z|>e R=+00 JR> 2>
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and by divergence theorem over an annulus (avoiding the singularity for € > 0), we have

/ DU (2) D (fix — 2))ldz =
R>|z|>e

— /|:R U (2)Di(fi(zx — 2))v;(2)do(z) — U (2)DZ(fi(z — 2))v;(2)do ()

|z|=¢
We have fixed € R?, and so, if 2 € B(xg,6), we have if R > Ry + Cy, with Cy = |zo| + 6
and Ry such that supp(f) C B(0, Rp), then, as previously seen, f = 0, togheter with its
derivatives. So for such R the first piece vanishes. Concerning the second, we have

/| Uki(2)Di (fix — 2))vj(2)|do(z) < M g [Uki(2)|do(2)
and
[ wuGlaet) = [ atenidots) =< [ atwidot)
z|=e yl= yl=
since Uy, is homogeneous of degree o = —1. So this piece vanishes as ¢ — 0. Thus the whole

first term vanishes. Now we consider

Di[D;Upi(2) fi(x — 2z)]dz = lim D7 [D;Upi(2) filx — 2)]dz
|zl>e R=t00 JR>|2|2e
where again we can write the integral as limit of integrals since D7[D:Up(z)fi(z — 2)], is
integrable over |z| > e thanks to the regularity of f; and the compactness of its support.
Again by divergence theorem over an annulus we have

/ Di[D;Ui(2) fi(x — 2)]dz =
R>|z|>¢

B /IR DjUk(2) filz = 2)vi(2)do(2) = D:Uw(2) fi(x — 2)vi(2)do(2)

|z|=¢

For the surface integral over 0B(0, R) it holds the same argument about the support of f;. So

lim D;; Uri(z = y) fily)dy = limy Uni(2) D[ fi(x — 2)]dz =

e=0 |lz—y|>e =0 J]z)>e

D DU (=) file — z)dz> _

e—0

= lim < " D3;Ui(2) filz — 2)vi(2)do(2) +

2|2

= lim (/xy|:5 DUy (z — y) fily)vi(y)do(y) + / DiD;Uy(x — y)fl(y)dy) (9.15)

e=0 lz—y|>e

where v;(y) is the i-th component of + ﬁ:g‘ but the dipendence by x is hidden (also v;(z) =
+2).
El

Consideration about the (II) piece. Notice that

<

Di; /F<E Ui (2) fi(z — 2)dz| = ‘/z|<g Ukl(z)Dz’jfl(eT —2)dz

< IDij fillso / Ua(2)xxcdz — 0 as e —0

|z|<e
since Uy (z) has an integrable singlularity at the origin, being homogenous of degree v = —1,
and K is such that if z ¢ K then f(x — z) = 0. So |Ug|xk is summable near the origin.
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Considerations about the two pieces. Remembering equation (9.14]), we have to
study the sum obtained in (|9.15])

3 3
— 1/ ZDijUkl(iU — ) fily)dy — 1/ ZDiUkz(fE —y)fily)vi(y)do(y) (9.16)

B Jjz—y|>e =1 K J|z—y|=¢ =1

as ¢ — 0. In fact, every other term vanishes, as proved. Remember that as x # y, Uy is
regular and so D;; = Dj;.

We want first to estimate the second term of (9.16)). For this aim, it is necessary to remark
that, reading the explicit forms for D;Uy;, we see that

1
| DU (a(z —y))| = £|DiUkl(a: —y)| Ya>0

So

3 3

S Diltu - lfti) dot)| <30 [ DUl W) doty) <
=1 Y lz—yl=e =1 Y z—yl=¢

3

<> [ Dt )] o)

=1
where has been used that |vj(y)| < |v(y)| = 1. Being, for every € > 0, |D;[Uy(xz — y)]| > 0

integrable, since the only singulatiry is when x = y, and being f; cointinous because of the
hypothesis about f, we have that

/| ‘ [ Di[Upi(z = y)ll[ fiy)| do(y) = | fi(ye)l e | DilUki(z — y)l| do(y)
T—Y|=¢€ T—Y|=¢€

where y. is a point in 0B.(z) = {y € R" : |z —y| = ¢}. With a change of coordinates, we

havtﬂ

[ DW= lldew) = [ DU - )] doly) =
|z—y|=e lz—y|=1
1
= [ LIDWla -l dot) = [ DIVl - )| doty
lz—y|=1 € |lz—y|=1
The last integral is well-defined because x # y on |xr — y| = 1. Observe moreover that

lye: — x| =¢—0ase — 0. So liH(l) ye = x. By the continuity of f; we have
E—

lim | fi(ye)| = | fu()]

Furthemore we have that

/I_ =1 ’Dz[Ukl(af - y)HdU(y) = / ‘DzUkl(Z)’dO'(Z)

|21=1

/_ - |D;[Uki(x — y)]|do(y) =/ |D;[Upi(2)]|do(2) =

|z|=2

= /|z|_1 IDilUsi(e2)]ldo(z) = * / |Di[Usa(e (@ — )]ldo(y)

le—y|=1
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so this is simply a number that does not depend on z or y. Hence we define

A= [ DU do (2 (9.17)
|z|=1
So the limit exists, and it is
lim - [ DilUki(z = )l fi(y)ldo(y) = Al fi()]
T—y|=¢
Finally we get
3
111%2/ [ Di[Uri(z = y)ll| fu(y)ldo(y ZAzkl|fl | <
0 Jla—yl=¢
< Cilfr(@)] + [f2(2)] + [ f3(2)]] < 3Cik|f(fv)\ (9.18)

where Cjj, 1= max. Airg and f(z) = (fi(x), f2(2), f3(2)).

We want now to say something about the other piece of (9.16]), that is

gl_rf(l]/l ZDz] Ukl T — )]fl(y)dy

z— y|>€l 1

Remark 9.15. We have that
1 5kl 2Kz
U, = | = 4+ ==
ki(2) 8 <|Z’ - |23

is an homogeneous function with exponent o = —1. [J

Remark 9.16. Being Uy, homogenous of order —1, we have that 0,,Uj; is homogeneous with
order —2. So, Oy, 0, Uy is homogeneous of order —3 and finally V(0,,0.,Uk;) is homogeneous
of order —4 and so the Hormander condition holds, since the proposition says

IV DijUsi(2)] = |V (02;02,U) (2)] < W Yz #0
On the other hand we know that
Cl/
‘DijUkl(z)’ = |8Z]axlUkl(Z)| < W Vz 75 0

The maximum between C' and C” satisfies both the inequalities. If D;;Uy; also is such that

/ DijUki(x)dx =0
ri<|z|<re

then we are in the hypothesis of the Calderén-Zygmund theorem. But by the divergence
theorem in an annulus we have

/ D;jUy(x)dx = / ainkl(x)ﬁdaz — / 8inkl(x)ﬁd:c =
ri<|z|<ra || =2 |z |z|=r1 ||
25 o
= 8xlUkl ToX 7]7“ dx —/ 8$1Ukl rx d
/x|:1 ( >|7“2$| 2 |z|=1 (a) oo 1|$’

= / 8inkl(x)ﬁda: - / ainkl(a:)ﬁd:E =0
=1 =1 ||

|z
using a change of variable and the fact that d,,Uj; is homogeneous of degree —2. So we can
apply the Calderén-Zygmund theorem. U
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Application of Calderén-Zygmund theorem. Since in remark we just proved
that D;;Uy is a Calderén-Zygmund kernel, we can apply theorem [3.16] to deduce that

1if%/ DUz — y) fi(y)dy < Cpllfill e ws) (9.19)
0 |z—yl>e LP(R3)
and so
3 ) L3
lim / “DylUne ) fwdy| <> |im / Dy Uk — )] fi(y)dy
0T la—ylze H LP(R) HA3|E70 a—y>e Lr(R3)
1
ZC U fill o w3y ;HfHLP(IE@ ZC 1= & HfHLP(RB) (9.20)

since for every I € {1,2,3} we have |f;(x)|*> < |f1(z)]* + |fg(:t:)|2 +|f3(z)|* = | f(x)|? and so

Il = [ 1@ o) < ([ 150 do)" =1l

3
Above we have defined C), = Z Cpi-
=1

Estimates (9.3.1)) and (9.20) will be helpful in a moment. We now underline where we were.
For every € > 0 we found

Djjup(z) = —= ZDU Uni(z—y)fi(y)dy +/ ZD Uri(z—y) fi(y)v(y)do(y)
lz—y|>e 1= lz—yl=e ;=4
with
3
lim /| _ Dl = 9l ot <307 @2
=1 7 lv—yl=¢

Remark 9.17. We remark that

V2l —/ V2P da —/ S DU da < c'/ 3 Z D P d =

|or|=2 |or|=2 k=1

=C, > Z/ | D%, |P da (9.21)

|a|=2 k=1
Clearly, being |a| = 2, we can write D = D;; with 4,5 € {1,2,3}. O

In order to simplify the notation, we set
Dz]Uk( = ,ij / ZD Uk:l xr — fl( ) ( )d(T( )
lz—yl|= =€ 1=1

where obviously

k(T / ZDU Un(z — y)fily)dy

r—y|>e 12
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Moreover we define

So
|Dijug()] < |AZ(x >|+\/ S DUl — Aot <
jo—yl=e =5
< |45 |+Z / DUl ) Aldo) = 14500 + 1B
Then

|D1]uk( )‘p < (‘Aljk:( )| + |B’ij‘( )|) < 2P (|Az]kz( )‘p+ ‘Bz]kz( )‘p)

Since the inequality holds for every € > 0 we can send € — 0 and obtain
[Digun(@)P < 27 (1lim ASje(@)P + | lim Bj()?)

using the continuity of | - | and of the power. Remembering now thatﬂ

e—0 e—0

lim | B (2 |—hmZ / DU ) () < 31 @)
lz—y

we can write

[ Dijug(@)P < 27 (| lim A% (2) + 3Ch f ()P

Integrating over R? these positive functions we get
/ Dy (2 d < 27 / [l A5, de+2P3C, / @) de = 2 / [ lim A% [P de b6 Ch 12, gy

In equation (9.20) we have seen that

P
p — _ p
[ Ao o = y|>8ZDUUkz v~ ) ily) dy L1 e
=1 Lp(Rs)
So, putting together the pieces, we have
2PCP
[, Do de < (2 4+ 008 ) 111
But
() 5 orcy
192l gy O / D @) de< | Y ( " +6p0fk) -
i,5,k=1 i,5,k=1

7Also remember that

giggZ [Pt - plawiiew ZAmm

It means that the limit exists, so the expression makes sense.
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We can moreover define the constant

3
2w (Y
Coi= 2. < ur 6pCZp’“)

and get
V207 sy < Coll £ o es) (9.22)

that is the estimate that we want to prove.

9.3.2 Estimates over the pressure term

A similar estimate also holds for the pressure gradient Vp. In fact, we have first of all

0, [ e~ ) o)y = s, [ a2l ~ )i

and we can split the integral as
/ a(z) filr — z)dz = / @(2) filx — z)dz + / a(z) filz — z)dz
R3 |z|>e |z|<e
Deriving we have
o [Late 0@ = [ @k [ a@one - d 029
R z|>e zl<e

Since

‘/ q(2)0y, filr — 2) dz| < / lqi1(2)0y, filx—2)| dz < HVfHOO/ lgi(z)|xk dz — 0 ase—0
|z|<e |z|<e

|z|<e
(9.24)
having ¢; an integrable singularity in z = 0, we have to say something about the first addend

in . We have
@(2)0z, filz — 2) = @(2) (Vfilz — 2)); = —q(2)0:, (filz — 2))

Moreover
Oz (q(2) filz — 2)) = Oz, qu(2) filx — 2) + q(2)0s, (filz — 2))
This means that

/|Z|>a q(2)0y, fix — 2)dz = /|z>5 0..q1(2) fi(x — 2)dz — / 8., (q(2) filz — 2)) dz

|z[>e

We’ll deal with the first addend using the Calderén-Zygmund theorem. But at first we study
the latter term. We have

/| _ Olale) e — )= lim Oulan(2) fi — 2))d

R=400 JR>|2|>¢

where we can write this limit since the integrand is summable on |z| > ¢ thanks to regularity
of f; and the compactness of its support, for x fixed in a certain neighbourhood. So

/R>|Z|>E Oz la(2) fi(x —2)]dz = /Z|:RQZ(Z)fl(SE—Z)I/i(Z)dU(Z) —/|Z|:€ a(2) fila — 2)vi(2)do(2)
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The term integrated over 0B(0, R) vanishes for R large enough, in particular R > |zo|+d+ R,
where x € B(z,0) and supp(f) C B(0, Rp). So

[ oudaiit -2l =~ [ a)hi - 2u)do()
|z|>¢ |z|=¢

Sending € — 0

/| e = 2u(e) dol:)

< /|z|_a () filx — 2)vi(2)] do(z) <

< / @ (2)||filz = 2)| do(z) = [fi(z — z)| lau(2)| do(z)
|z]=¢ |z|=¢

where z. € 9B(0,¢) and has been used the mean value property of the integral. Moreover

_ 2 o _ o
/|Z|ZEQZ(Z)|dU(Z)_E /|y=1 a(ey)| do(y) /|y|:1 a1 (y)|do(y)

since ¢; is an homogeneous function of exponent @ = —2. Thus it follows that

‘ / (=)0, file — 2) dz
|z|>e

/| )l =) do / a2 fi(x — 2yi(z) do(z)] <

|2|=¢

< / et fulw — 2) de| + [film — 2| [ la(w)] do(y)
|z|>e ly|=1
So, it follows that
ti| [ a@onite =) do| <l | [ 0aG)te—2) de| + Al

thanks to the continuity of f;, where A; := / la:(y)| do(y). Moreover
ly[=1

lim
e—0

/ O..q(2) filr — z) dz| = lim/ 0xq(2) filr — z) dz
|z[>¢ 2|

e—0

where the limit without the absolute value exists thanks to the Calderén-Zygmund theoremlﬂ;
in particular

Yig(x) = lim 9q1(2) filz — z)dz = lim Oz, q1(x — y) fi(y)dy

e20 J)z)>e €20 Jjz—y|>e

exists for all x € R? thanks to the C-Z theorem, since d.,¢; is an homogeneous function of
exponent a = —3; moreover, V(9,,¢;) is homogeneous of degree o = —4 and

s, 0N = [ 0O gaoe) = [ ooyt -

®Notice that 0z, qi(z — y) = (Vai(z — y))i = 02,q1(2)|2=2—y-
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= roz "2 2 z ™™z "1
= [ yrbaet = [ oo o) -

=/le () Trdo(2) - /le a(2)Tdo() = 0

since ¢; is homoegenous of degree o = —2. So, by Calderén-Zygmund theorem, we have

%iallem3) < Cpllfill Lo rs)

Now we remember that (9.23)) holds for every € > 0, and so, by the arbitrariety of ¢,

wl ZQZ xr—Yy fl

R3 92

+ lim

e—0

) (P279)

3
= [tia(x)
=1

3
Sy

/||> (200, fi — 2) d

/ (=)0, file — 2) dz
|z|<e

/ q1(2)0y, fi(x — 2) dz lin%/ q(2)0y, filx — z) dz
|z]1>e 70 )z|>e

Since we know that

3
P _ p _ 4 P
IVpl0ae) = [ 190@P do = [ (izlwg%p(xn) o

where

and so
Za%/ al@ - h) dy.  |uple |<eru

We useﬂ and thus we get

|02,p()[P < (1931 ()] + [Pi2(2)]| + [1hi3(2))P < 4PZ e

Hence we finally have

3 3
V9l = [ (Z\ampw) s [ Y
=1

i=1

3 3 3
(4p > wi,z<w>|p> de =47 "% / Yig(2)|P do =
i—1 =1 YR?

9We can see this, in example, applying
(z+y)P <2°(z" +9")
so that, if a,b,c > 0, we have

(a+b+c)P <22 ((a+b)P +P) =2P(a+b)P +2PcP < 4P(a? + D7) + 2P¢P
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3 3 3 3
- 41?2 Z Hwil”i?([@) = 4pzz D, l||fl||Lp(R3
i=1 [=1

i=1 [=1

But
ey = [, 1@IP o< [ 5GP do =171

since |f1(7)|? < |f1(2)> + |f2(2)]2 + | f3(x)|> = | f(z)]? for | € {1,2,3}. So we finally get

HvPHLp(R?, < 4PZZ Zl”fHLp (R3) = C,HfHLp(Rs

=1 =1

Together with the estimate (9.22)) above, we have
IV2ull o sy + 1VPll o (ny < Ol flloces) (9.25)

Remark 9.18. In the incompressible case f = F' with the notations introduced above (g = 0).
In the case g # 0, we have f «— f — Ah, and so

[F| < [fl+ AR = [f] + Vg
that is, by the Minkowski inequality,

1ENq < W fllq +1Vlla = [[fllg +19l1q

This provide the estimate in the case g # 0. [J

9.3.3 Summary of the estimates

By the structur of & as integration of a kernel and the Calderén-Zygmund theorem, we
have that

|hlis1.q < clgly V=0 (9.26)

with ¢ = ¢(n, q). Moreover, in the previous sections we have proved that

ulag < el fllg +1gl10)s 7l < callfllg + 9hq)

for every ¢ > 1. The same calculus as above, with more difficulties, tell us that

>0, ¢>1 (9.27)
1Tli41,q < 2 ([flig + 19lir1,0)

{|u|l+z < e (1f b + l9lirr)
Since v = u + h and p = 7, using (9.26)),
V]ir2,6 + [Pliv1g < e[ flig + [9li1,0)
with ¢ = ¢(n, q).
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9.4 Stokes fundamental solution in R": Existence,
uniquess and estimates

The main aim of this section is to prove the following theorem, by [12, Theorem IV.2.1,
pg. 243].

Theorem 9.5. Given
fewm™iRY), ge W™ RY), m>0, 1<g<oo, n>2

there exists a pair of functions v,p such that v € W™24(Bg), p € W™TL4(Bg) for any
R >0, satisying almost everywhere the equation

Av=Vp+/ R" (9.28)
Vv=yg '

Moreover, for alll € [0,m], |v|i42,, and |plis1,4 are finite and we have

V]142,4 + [Plivig < (| flig +19li414)
In the above inequalities, ¢ = c¢(n, q,1).
It also can be proved a uniqueness result.

Lemma 9.3. In the hypothesis of theorem[9.5, if v1, p1 is another solution corresponding
to the data f,g with |vi|i12, finite for some | € [0,m], then |v; — V|42, = 0 and
Ip1 — Pliv1q = 0.

9.4.1 Proof of theorem [9.5]

We start the proof remembering that W™ 4(R") = W," “2(R™). This result is well
known when m’ = 1 and it can be generalized to m’ € N. It follows that there exist twi
sequences {fi}, {gr} C C5°(R™) such that

Jm (| fe = fllmg = im {lge = gllmi14 =0 (9.29)
—00 k—o0
So, we can consider the problem

{Avk = Vpi + fx

n R” (9.30)
Vv, =gk

We can solve this system thanks to the previous sections. So, the pair of solutions
(vg, pr) satisfies the inequality

Uk li42,q + Prlir1g < c(n, @) (| frlig + |gklieg) VI € [0,m] (9.31)

This implies that the left side term is bounded. In fact, we have |fi|1, < || fillmg < C
and |gkliv1,4 < llgkllmi1e < €', thanks to the convergences in (9.29). We now define
the class

(U] :=={we D™ R"): w=u+P, IP € P,}

168



where P, is the set of the polynomials with degree < m — 1.
So we can define .
D™ R") := {[u]m| v € D™I(R")}

We can equip this set with the norm

Iwdml] = Tttlm.q

It can be proved that this space is a well defined Banach space. All the properties are
listed in proposition [£.1] Morover, in the proposition we have proved that the set is
reflexive Banach space. So we have [vg];42 € DF24(R™) and (D12 € DHI’Q(R”), for
every | € [0,m]. Moreover, we have seen in , that the sequences are bounded in
this space.

But sequences in a reflexive Banach space converges weakly to a limit, thanks to [10, Th.
3, pg. 639]. This means that for every T' € (D"2¢(R™))*, there exists a subsequence k;
such that

lim T'(vy,) = T'(v)

j—00
So, consider ¢ € L7 (R"), with % + % = 1. Define
Ty(u) := (D%, )
with |a| =142 € [2,m + 2]. So, if u € D*>4(R"), we have u = w + P € D"29(R™).
So,
(0% E [0 « (0%
Ty ()| = [(D*(w+P), )| = [(D%w, )| < [D*wll[[¢lly = 1D%ullgl|]lg < |ulisaqlldlly
So Ty € (D*>9(R™))*. This means that

lim (D%, 1) = (D%,) Vi € L7 (R")

j—o0
Analogously, one proves

lim (D*Vpy,, ) = (D°Vp,9) Vi€ L7(R")

for every || € [0,m]. So, choosing [ = 0 and |8] = 0, we find v € D*?(R") and
p € DY(R™) such that

(Av—Vp, o) = (f.¥) V¢ e L' (R") (9.32)

since fr — f in W"™9(R"), so the convergence is in particular weakly.

Now we have to do some remarks. First of all, remember lemma 4.5 Then we have
that v € W24(Bg) and p € Wh4(Bg) for every R > 0, where Br = Bg(0).

Notice now that ¢ € C5°(R") C LY (R"). So, writing R" = U B(0,k), for every k € N

keN
we have

(Av—Vp—f0) =0 Vo CP(B(0,k)) C C(R")

10We have that the degree of P is <1 +2 —1 =1+ 1, so that D*P = 0.
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It follows that Av = Vp + f almost everywhere in B(0, k), that is in B(0, k)/Ej, with
|Ex| = 0. So, if £ := U E), we have that |E| =0 and Av = Vp+ f in R"/E, that is

keN
almost everywhere in R”. In the same way we have V - v = g.

Observe that, since (X NY)* ~ X* + Y* we have that the classes of v; are in the
intersections of the spaces D't2¢ (R™), so that the weak convergence holds with the sum
of operators in the dual spaces; in particular, it holds in every dual space, choosing the
null operator in the other spaces. So we have that

Vir2,4 + [Pliv1,q < Hminf |vgfii2,4 + liminf [pyli4, (9.33)
k—o0 k—o0

So, since klim |fe — flig = klim lgk — glix14 = 0 for every [ € [0,m], we have, using
—00 —00

[©:31).

‘U|l+2,q + ‘p’lJrl,q < 2¢(n, q)(‘ﬂl,q + ‘g‘lﬂ,q)

that is what we wanted. |l

9.5 Stokes theory on bounded domains

We finally start to consider bounded domains. First of all, we have the following
introductive lemma that is inspired by [12, Lemma IV.4.2].

Lemma 9.4. Let Q C R", with n > 2 a bounded domain. Let v,p such that v €
Wh(Q), V-v=0andp e L. (Q). Let f € L} (Q) and suppose that

loc loc loc

(Vo, V) = =(f,) +(p, V-¥) Ve CX(Q) (9.34)

Then, if v. is the reqularization of v, in the sense of definition and p. 1is the
reqularization of p, we have

A e = e € .
{ ve=Vet g (9.35)

V-v.=0

for every domain Qg such that Qy C €.

Proof. Let Qy C Q. Let ¢ € C®(Qp). Observe that, then, p. € C=(Q) if ¢ <
dist (Q, 0€2). By hypothesis (9.34), we have

<VU, VQO€> = _<f7 905> + <p7 V- st>
Remark 9.19. Let h,g € L*(Q), Q bounded and g such that supp(g) C Qp C Q.. Then

(.1) = [ aohto) do = [ < [ e =0 dy)h(:v) g —

= [ ([ e = gt ar) a2 [ ) ([ntv=ota) d) dy = (.o

that will be useful in the future. O

USince n(z) = n(—=x), then n.(x —y) = n-(y — x).
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Applying remark [9.19, we have
<VU, v§05> = <VU, (V@)a> = <<VU)57 v§0>ﬂo - <VU57 v§0>ﬂo - —<A’U€, §0>QO

thanks to the fact that now v. € C*(Qy) and supp(¢) C €. Moreover, we have
<f? (;0€> = <f5790>5207 and

(0, Vo) = 0, (V-9)e) = (p, V- 0)a, = —(VDe, 0)q,

So, we have that
<AU€7 90>Qo = <f€7 90>Qo + <vp€7 gp)Qo
This means that

/ (Ava—fE—VpE) cpdr=0

Qo

for every ¢ € C°(£p). This clearly implies that Av. = Vp. + f. almost everywhere in
Qo and, being the functions involved continuous in €2, D €2y, in the whole €. |

We can finally prove the following theorem, that is [12, Th. IV.4.1].

Theorem 9.6. Let 2 C R"™ a bounded domain, with n > 2. Let v a velocity field such
thaﬂ Vv e L (), ¢ € (1,00) and it is weakly divergence free. Moreover, suppose
that

If f e W9(Q), with m >0, it follows that

loc

ve WrNQ), pew Q)

loc loc

where p z's_zlfhe pressure filed of lemma [9.1 Moreover, if V', Q" C Q are bounded and
such that Q@ C Q" Cc Q C Q, we have

[Vlmi2.00 + [Plmt1g0 < (| fllmanr + WllLgor—o + [pllger—o) (9.36)
where ¢ = c¢(n,q,m, ', Q).

Proof. Keep in mind lemma (9.1, Then, the proof is essentially a corollary of the

—/
previous theorem. Consider a cut-off functions, that is ¢ € C*°(Q) with ¢ = 1 over ()
and ¢ = 0 over (Q")¢. Let Qy D Q" and consider the equation

(Ave)p = (Vpe)p + fep
Now, we define u := pv. and ™ = pp.. We have
Au=v.A¢ +2(Vep - Vv, + pAv, = v.A +2(Vp - V)v. — Vop. + Vr + fop
using that V7 = Vp. + ¢Vp.. Defining

fc = UEAQD_FQ(VSO'v)Us_VSOps: fl = fs@p

12Lemma implies that also v € L% (), so that v € W,2%(Q) just using hypothesis.
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It follows that
Au=Vr+ f.+ f1

and
Vou=V-(pv:) = (V-v)p+v. - Vo=uv.-Vp=:g

where V - v, = 0 since v is weakly divergence free. So the pair (u, 7) solves

V-u=g
in R™. Observe that, since p € C®(€) and v., p., f- € C°(Q.), with Q. D Qq if € is
small enough, we have u, 7w, g € C°(R") if extended as zero outside. So in particular
their integral norms and those of their derivative are finite.
So, using lemma , since f., fi € W™4(R™) and g € W™TH4(R"), and since |ulz, and
|7|1,, are finite, we have, with [ = m = 0, that also this solutions satisfy
[ul2g + |7l1q < c(llfi + fellg + lghq)

In other words, the inequality is

IV2ullg + 11V 7lly < el foplly + v=A¢lly + 201 (Ve - V)velly + [ Veopellg + [V (ve - VEP)Hq))
9.37
Observe now that V(Vgp . va) = (V2g0)1)6 + V¢ - V.. So, looking at the right member

of (9.37), we notice that Vi, VZ¢ are bounded in Q" — Q' and zero outside. At the
same time, ¢ is bounded and zero outside Q”. So we have

||V2u||q + |Vrlly < C(er”q,ﬂ’ + vellg -0 + Vel lg0r—ar + ||p€||q79”—9’)

< C/(Hfs“q,ﬂ’ + ||UE||1,q,Q”fQ’ + ||p€Hq,Q”fQ’) (9.38)
On the other side, observe that

Oz, u = O, pve + PO, ve
and so
D2 u =02 Qu. + 20,,00,,0: + 02 v.
So, by inverse triangular inequality, we have that
”aiu |q = ||a§iSOUs + 20,00, v + Wiﬂqu > |H5’§i<pve + 2axi§0axﬂ)6”q - HSOaiUEHq‘ >
> [l90z,vellg — 119z, 0ve + 200,005, ]

q
So, we have that

0 velly < 1107, u

’q"’"”ai@ve"‘ani‘Pamivqu < OH(HfE”qﬂ""HUEHLq,Q”fﬂ"FHpqu,Q”fQ’)
Since ||908§iv-€||q > ||308§1-U6||q,ﬂ/ = ||a§ive
102, 0ellg.r < C" ([ fellger + lvelligor—ar + Ipellgor o)

Since the same inequality holds for 0,,7. and the other second derivatives, we have
V20 llggr + IVPellor < C (Il f:llogr + llve
Using the pointwise convergence of mollifications, we have, as ¢ — 0,
IV*0llge + VPl < Ol fllger + [vllgor-a + [Pllgar-a)
that is the thesis. il

4.0, being ¢ constantly 1 over ', we have that

tasv—e + [Ipellq.0r-or)
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9.5.1 Li-Estimates near the boundary
The main theorem of this subsection is the following. It is theorem [12, Th. IV.5.1].

Theorem 9.7. Let Q) be an arbitrary domain in R™, withn > 2, with a boundary portion
o of class C™2, m > 0. Let Qo be any bounded subdomain of 0 with 9y N O = o.
Further, let

veWh(Q), pe L), 1<g<ox

be such that
(Vu, Vi) = =(f.4) + (p, V- 4), ¥ € G ()
(v, Vo) =0 Vi € C5° ()
V=10, ato

Then, if
fewm™iQy), v, e Wmtlei(q)

we have
v e WmAQ), pe WmHh(QY)

for any Q' satisfying
[ ] Q/ C QO;
e 00V NN is a strictly interior subregion of o.

Finally, the following estimate holds

[0llm+2.q9 + [Pllmt1ge < (I fllmaso + [vcllmra-1/a00) + [0l1g00 + [Plla0s)
where ¢ = c(m,n,q, ', Q).

Remark 9.20. The proof is very technical and it is apart from our purposes. It is
completely exposed in [12, Th. IV.5.1, pg. 276]. O

9.5.2 Proof of the main theorem
In order to prove the main theorem, we have to prove a uniqueness lemma.

Lemma 9.5. Let Q be a bounded, C?-smooth domain on R"™. If v is a q-weak solution
to the Stokes problem, corresponding to zero data f =0, v, =0, thenv =0 and p = ¢
a.e. in §2, where p is the pressure field associated to v.

Proof. We deal with the proof in two cases. First of all, suppose ¢ > 2. Let v,v; two
solutions, and define u := v — v;. Then u satisfies, for every p € Cg% (€2),

<vu7 V90> = <VU7 VQO> - <VU17 VQO) =0

since v and v, are solution associated to the same data. Also the trace is zero, since T
is a linear operator. So, we have that, for every ¢ € C§%(Q2),

Oz/Vu-Vgpd:U
Q
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It follows, by regularizing the euqation, that Au. = 0, with zero boundary conditions.
It follows that u = 0. I

We finally prove the main theorem.

Definition 9.11. In the following we set
g = i o+ cll

Theorem 9.8. Let v be a q-generalized solution of the Stokes problem in a bounded
domain Q of R*, n > 2, of class C™2, m > 0, corresponding to

fewm™i(Q), v, e WntleapQ) (9.39)

Then

v € WmHHe(Q), p € Wmtha(Q)
where p is the pressure field associated to v by lemma [9.1 Moreover, the following
inequality holds:

[Vllm2,q + [Pllmr1,am < el fllmg + 1oullmia-1/g.400)
with ¢ = ¢(m,n, q,<).

Proof. Being € a bounded domain, we can consider the closure . It is a compact
set. By definition, we can cover this compact with a finite number of open balls. Using

theorem and , sectioning the domain as in , we find functions v € W™2:4(Q)
and p € W™+14(Q) such that

[tz + [Plms1.g < ([ Fllmg + 10sllmr2-1/g000) + [0]lg + 1Pll)

So, summing the L? norms of all the derivatives of all the orders up to m + 1, we finally
get

[Vllms2q + [Plmsram < c2(fllmg + vllmsa-1/0000 + 1Pllgr + vll) - (9.40)

Moreover, we know that, given data as in (9.39)), a g-weak solution of the problem is
such that v € W™+24(Q), p € WmL9(Q).

We now show that, provided that the solution is unique, we can prove the existence of
a constant c3 > 0 such that, for every f € W™4(Q), v, € Wm2-1/44(9Q), a weak solu-
tion v € W™24(Q)) of the Stokes system with associated pressure field p € W™14(Q))
satisfies

[vllg + lplla/m < e3 (I fllmg + losllmrz-1/0.000)) (9.41)
Clearly, this result, together with (9.40)), gives us the the final estimate.

If (9.41) were not true, then for every c¢; > 0 there exists fr € W™4(Q), vF €
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Wmt2=1/24(9()) and a weak solution v, € W™ 29(Q) of the problem, with associated
pressure field p, € W™4(Q), such that

loelly + Ipellase > eIl fillmg + 105 nro—1/g.000)) (9.42)
We can choose ¢, = k € N. Moreover, without less of generality, we can supposelﬂ
[orllg + [[prllg/m = 1 for all k € N (9.43)

Since k£ — oo, then
1 (el + 08 a1 /aatom) = 0 (9.44)

By equation (9.40)), we have that
[k llms2.g + [Prllms1am < c2(l fllmg + 105 lmt2-1/q.000) + 1Pella/m + llorllg) < C

So the sequence is uniformly bounded. Now we use corollary .1 In fact, we have that
m >0, and so m 4+ 2 > 2. So in particular |lvg|2, < C, that implies

1 <0 [Vl <C

(|

Since W14(Q) ccC L) for every ¢ € (1,00), we have that exist kj, and u € L()
such that

hh—>I£lo vk, —ullg =0
Since now [|Vuy, |1, < C, being a subsequence, we have that exist hj, and w € LI(Q)
such that

lim |V, —wll, =0
l—00 !

In particular llim |vk,, — ullq = 0, being a subsequence. So, it follows that Vu = w €
—00
L9(Q). In fact, for every ¢ € C5°(Q),

/u Oy, 0 dx = lim [ vy, Oy de = —lim / Oy, Vg, p do = —/wi Y dx
Q I—oo Jo =0 o ! Q

If we rename the sequence to be v, we have that

1
|vx — ull1,g = (HUk —ully + |V, — Vqu) T =0

B3In fact, if v, € W™29(Q) is a ¢g-weak solution of the problem with data f, € W™9(Q), v* ¢
Wm+2-1/4.4(9Q), with associated pressure field p, € W™*+14(Q), we have that

- U p/ L Pk
k — T 0 . 1 k o — ——
lvkllq + [lpxllq/r’ lvellg + [1Pellg/m

is a g-weak solution to the problem with data

fk / ’Uf

o= W)=
[okllq + lIPrllq/m o

vk llg + [Pk llg/m

Moreover, we have
1> k(| fellm,g + 1@0Dxlmt2-1/4.900))
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as k — oo. Similarly, we can find 7 € L%(f2) such that klgilo ok — 7|/ = 0. So we
have

lullg + ll7llg/m =1
passing to the limit equation . Moreover it holds that u is a g-generalized solution
to the Stokes problem in €. In fact

(Vog, Vo) = (fi, v)

for every v € Cg5, (). Since f, — 0 in W™4(Q) thanks to (9.44), we have that
(Vu, Vv) = 0. Moreover, u is weakly divergence free, since so it is v. Finally, since
v, — w in W™4(Q), and so in particular vy, — v in WH9(Q), Tv, — Tu in L9(09),
using the estimate in theorem . Since Tv;, = v* converges to zero, thanks to ((9.44]),
we have Tu = 0. So u is a weak solution of the Stokes problem with external force
f = 0 and boundary data v, = 0. But, thanks to the uniqueness of the solution, we
have u = 0, ™ = const. So ||ul|q + ||7||¢/r = 0, that is a contraddiction. So, the theorem

is proved. |

9.6 The Stokes operator on a bounded domain

In the application of the Galerkin scheme it is fundamental the study of the eigenvalues
and the eigenfunctions of a linear operator, named Stokes operator. The properties of
this operator are strictly related to the results about the Stokes equation deduced above.
We start with the definition of some spaces.

Definition 9.12. Let €2 be a bounded domain of R", with n > 2. In the following, we
define these spaces. Remembering that D(£2) = Cg%(2), we set

o 7on 2

L2(Q) := Ce ()

with the scalar product
(u,v)q = (u,v) := / u-vde
Q

and clearly ||ul|y = (u, u)z.
On the other hand, we set Wy2(Q) := C’gfa(Q)H'”Wl’Q(m C L2(2), with the scalar

product
(u,v) + (Vu, Vv)

1
and the norm (||u|3 + || Vul3)2.

Remark 9.21. Observe that also (Vu, Vv) is a scalar product over WOIUZ(Q) In fact,
linearity, positivity and simmetry are immediate. Moreover, if ||Vul|s = 0, it follows
that Vu = 0 and so u = ¢ almost everywhere on 2, and so the constant c¢ is the
continuous version of u. Since T'c = ¢y, we have ¢ = 0. O

Remark 9.22. It also holds that Wolf(Q) complactly embeds into L2(€2). In symbols,

Wolf(Q) CC L2(Q). In fact, by the Sobolev theorem about (compact) embeddings we
have tha Hj(Q2) cC L*(©2). This means that
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(i) 3C > 0 such that [Julls < C||ul|m for every u € H}(Q);

(ii) if {up}ren is a bounded sequence in Hg(€2), then there exists a subsequence {uy, }
and u € L?*(2) such that
dim flug, —ullz =0
J—+o0o

Since the norms in Wy 7(€), L2(Q2) are the same of H{ (), L*(), the first property
holds for sure. So, let now {uy }ren in Wolf(Q) a bounded sequence. Since it in particular
lives in Hj(2), we can find a subsequence {uy, }jen that converges to some u € L*(Q)
in the sense

|ug, — ull2 = 0 as j — 400

It remains to prove that moreover u € LZ(f2). Since uy, € Wolf(Q), then there exists
a sequence uzj € C5°.(22) such that hlim ||uff — g, || = 0. We can choose, for every
’ —00
: k; k; 1
kj, the index h; := h(k;) such that [Ju,’ — uy,|l2 < [Ju,] — wg,[|m < o It follows that

J
{uZ; bien € C% () is a sequence such that

! — ulla < [l — g ll2 + lur, — ull = 0 as j — +oo
This show that u € L2(€2). This is the thesis. OJ
Definition 9.13 (Stokes operator). We want to define an operator
A:D(A) — LA(Q)
with domain D(A) C L2(2) and range R(A) := {Au: u € D(A)}.
We define D(A) C Wolf(Q) to be the set of the functions u € Wolf(Q) such that
f e L) w(Vu, Vo) = (f,v) YveC(Q) (9.45)

If Ay(v) := u(Vu, Vo) for every v € Cg%,(Q2), by the Riesz representation, we have

D(A) :={u € Wolj(Q) . the functional A, (v) is continuous in || - ||2} (9.46)
For every u € D(A), the image Au € L2(Q) is defined by

w(Vu, Vo) = (Au,v) Vv e Cgo, ()

In other words, Au := f, with f defined in (9.45)). The operator A = Agq is said Stokes
operator on the domain ).

Remark 9.23. Since, if uy,uy € D(A) and f; is given by (9.45)) with v = u;, i € {1, 2},
we have

pu(V(uy + us), Vo) = (f1 + fo,v) Vv € Cgo, ()
and so A(uj +ug) = f1 + fo, that is A is linear. O

Remark 9.24. For the future, remember that P : L*(Q) — L2(f) is the Helmholtz
projection. [
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9.6.1 Properties of the Stokes operator

The following theorem prove the existence and collects some properties of the Stokes
operator.

Theorem 9.9. Let Q C R™, withn > 2 a bounded domain. Then there exists A = Aq,
the Stokes operator defined above, A : D(A) — L2(Q), with the following properties:

e A is a positive, symmetric operator, with domain D(A) C L2(2), and C§%,(Q) C
D(A) € Wy, ().
Moreover
N(A):={ue D(A): Au=0} ={0}
and the inverse operator A~ : D(A™') — L2(Q) with domain D(A™') = R(A) =
L2(Q) is a positive, self-adjoint operator on the Hilbert space L%(Q).

o Letuce Wolg(Q), f € Li(Q). Then u is a weak solution to the problem

—pAu+Vp=f
Veou=0 (9.47)
u|39 =0

on Q if and only if u € D(A) and Au = f; moreover, the latter claim holds if and
only if there exists p € L7, .(Q) such that

—pAu+Vp=f
in the sense of distributions.

e The inverse operator A~ is bounded; in particular, if C is the Poincaré constant
on the bounded domain €2, we have

A7 < 2!
Here || - || is the operator norm.
o Finally, if Q is a C* domain, then
D(A) = L2(Q) N Wy (Q) N W2(Q) (9.48)
and p € L*(Q2). Moreover
[ullwz20) + 1[I Vpll2 < Cu™ [ Aully (9.49)
for every u € D(A).

Proof. The existence is based on lemma . In our context, we set H = L2(Q),
equipped with the norm || - ||2. Since

Ce.(Q) CWR2(Q) € L2(Q)
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then Wolf(Q) is dense in (H, || - ||2). So, we can set D(S5) := Wolf(Q), and
S:D(S)x D(S) =R

S(u,v) = pu(Vu, Vo)

Clearly, S is symmetric. Moreover S(u,u) = pu||Vul|3 > 0 and is zero in D(S) if and
only if u = 0. D = D(S) is here equipped with the norm

1
(lull3 + [IVull2)* = lullz:

So, according to lemmal[2.4] there exists a uniquely determined operator with the proper-
ties . Observe that, by continuity, S satisfies these properties. In fact, if u € D(A)
andveD = Wolf(Q), we can approach v in norm || - || g1 with a sequence v, € C§%(§2).
So we have

S(u,v) = lilgn/L(Vu, Vo) = lilgn pl{Au, vy = p(Au, v)

and if ||v||2 < d, then |lvg||2 < § for k sufficiently large, say k > K. Then, by definition
(9.46]) of D(A), for every € > 0 exists 0 such that, for every k > K,

IS (u,vg)| < e

So we have
1S(u,0)] = lim | S(u, )| < <

since v, — v in H'. So v — S(u,v), for every v € D, is continuous with respect to the
norm || - ||2. So, the operator A satisfies the required properties, and so B = A.
We start remarking some properties. Let u,v € D(A). We have that

1 1
(Au,v) = pS(u, v) = pS(U,u) = (Av,u) (9.50)

So, we have that A is symmetric. Moreover, if u € D(A),
1
(Au,u) = —=S(u,u) >0 (9.51)
,u

and if S(u,u) =0, then u =0 in WOIUQ(Q)
Moreover, if u € D(A) and Au = 0, we have

((Vu, Vo) =0 Yo € Wi (Q)
But u € D(A) C Wol(f(Q), and so [|[Vul|; = 0, that implies © = 0 in Wolj(Q) So, we

finally have
N(A)={ue D(A): Au=0} = {0}

This fact allows us to define an inverse operator. In fact, consider
R(A)={f € L2(Q): Ju € D(A) f = Au}
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So, for every f € L2(f2), it is possible to define A™' f = u. This operator is well posed.
In fact, if fi, fo € L2(Q), we have f; = Au;, Ju; € D(A). So, if fi = fo, we have

Ozfl_fQZA(ul_UQ)

and so u; = ug in Wolf(Q)
So we have the operator

A7V R(A) — D(A) C L2(Q)

with A7 f) = u, if Au=f.

We can now prove that | R(A) = L2(Q)|. We now that R(A) C L2(Q) by definition.
So, let f € L2(Q)). Then, if v € Wolj(Q), we have, using the Poincaré inequality
lell: < ClIVvll> ovel W (),

ulf 0 < plifllzllollz < pCllfll2IVoll2

So, if we consider the Hilbert space (Wolf(Q), (-,)1), where, for every u,v € Wolj(Q),

(u,v)1 := (Vu, Vv)

with norm (v, v)? = ||Vv||2, the operator \; : Wolf(Q) — R, defined by Af(v) := pu(f,v),
is continuous over Wolf(Q) equipped with (-, ).
Since Ay is clearly linear, it belongs to the dual space (WOIf(Q), (-,)1)*. By Riesz

representation theorem for Hilbert spaces, it follows that there exists a unique f €
Wolf(Q) such that

p(fiv) = Ap(w) = (fon = (VF, Vo) Yo e Wyi(Q) (9.52)

So, by definition , f € D(A), and Af = f. This means that f € R(A), that is what we
wanted to prove.

With these devices, we can deduces the claimed properties of the operator A1, For
every f,g € R(A) = L2(Q), we have that exist u,v € D(A) such that f = Au and

g = Av. So,
[©-50)

(A7 ) = (u, Av) =" (Au,v) = (f,A™'g)
since u,v € D(A). Similarly, if f € R(A), and so f = Au with u € D(A), we have

(19.51))

(A7 f) = (u, Au) =0
with u € D(A). So we have proved that

A7V R(A) = L2(Q) — L2(Q)

MThanks to the fact that the domain is bounded.
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is a positive and self-adjoint operator over the Hilbert space L2(12).
We now prove the second claim of the theorem. Let u € WOIUZ(Q) and f € L2(Q).
Let u be a weak solution to the Stokes problem. In other words, we have

(Y0, Vo) = (f,0) ¥ e D(S)
This automatically implies that u € D(A) and Au = f.
Conversely, if Au = f, then by definition it is a weak solution of the Stokes operator.
We now have to prove the third point, that is the boundness of the operator [|A™Y.
Let u € D(A), and f := Au. Asin (9.52), we have that exists F' € L*(Q2) such that

(fov) = (F, Vo) Yve Wy Q)
So we have, being u € D(A) C W(}g(Q),

plVully = p(Vu, Vu) = (Au, u) = (f,u) < C| fllzllull2 < Ol fll2| Vel
This implies ||Vulls < g~ *C||f]|2- This leads to
[ulls < O Vully < p™ C?||fll2 = 1 C?|| Aullz
So, if f € L2(Q2), we have f = Au, with u € D(A), and u = A~'f. So
AT fll2 < 7' CP| flla (9.53)

This means that ||A7|| < p~'C?
We finally prove the four point. Let u € D(A) and define f := Au € L2(Q) C L*(Q).
By the previous points we have that u is a 2-generalized solution of the Stokes system,

and f € L*(Q2). So, theorem [9.§ implies that u € W?22?(Q) and exists p € WH2(Q),
associated to the velocity field by lemma [9.1] such that, also thanks to proposition [0.1]

—pAu+Vp=f
Moreover, it holds the inequality
[ullwee + M IVplle < eI f2 (9.54)

Since we already know that u € WOIC?(Q) C L2(Q), we have u € Wolf(Q) N H?*(Q) N
L ().
Conversely, let u € Wy 7 (Q) N W22(Q). Then —pAu € L*(Q). So, if v € C§5,(Q),

w(Vu, Vo) = —u(Au,v) = —pu(Au, Pv)y = —u(PAu,v) (9.55)
Thanks to the density of Cg%,(€2) in WOIC?(Q), we have
(Au,v) = p(Vu, Vo) = —u(PAu,v) Yo € WOIC?(Q) (9.56)

Equation (9.55) means that u € D(A), and equation (9.56) implies Au = —puPAu.
Finally, equation ((9.54) applied to this case says that

lullwzz + 1= [[Vplla < e[| Aullz (9.57)

This concludes the proof of the theorem. |
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9.7 Eigenvalues problem for the Stokes operator

Given the Stokes operator defined above, it is now useful, for future arguments in the
present thesis, to study the eigenvalues problem

Au = lu

Theorem says to us that, roughly speaking, a problem of the form Au = f is
equivalent to a Stokes problem. This will be at the core of the next remarks.

Before starting, we define a functional space that will be fundamental also in the next
chapters.

Let 2 a bounded domain, with smooth boundary[]

Definition 9.14. From now on, we will represent with X the following functional space
X :={pe€ Hy(Q)NH* Q)| V- -¢=0in Q} (9.58)
i.e. the weak divergence free space.

Remark 9.25. The space X is an Hilbert space, if equipped with the inner product and
the norm of H?.

The following theorem underlines a fundamental property of the inverse Stokes op-
erator.

Theorem 9.10. The inverse Stokes operator A~ : L2(Q2) — L2(Q)) that is, as we
already know, positive and self-adjoint, is, furthermore, a compact operator.

Proof. The inverse operator A1 : L2(Q) — L2(Q) is continuous, as outlined in
©.53).
Moreover, we can remark that every image A~'f, with f € L2(Q), is in D(A), by the
definition of the inverse operator A~*. Since D(A) C Wolf can be equipped with the
norm || - |1, we want to say something about ||[A~!f]|g1.
In particular, if f € L2(2), then A~ f = u, for some u € D(A), with Au = f. The, it

holds
(19.57)
AT fllzrr = Nluller < el Aulla = 5 el £]]2
So, let {fi}ren € L2(Q) a bounded sequence, that is || fx|l < M for every k € N. Tt
follows that |A™! fi|lgr < p~'eM for every k € N. This means that {A™! fi }ren is a
bounded sequence in WOIUZ(Q) But remark |9.22| outlines that WOIC?(Q) CC LZ(Q). This
means that there exists a subsequence {A™"f;, }jen and a function u € LZ(2) such that

lim |A7" fi, —ulla =0
j—ro0

This is the definition of compactness for the operator A= : L2(2) — L2(2). |

On compact, positive, self-adjoint operators on Hilbert spaces there exists a big class
of spectral theorems. The most classical is the Hilbert-Schmidt theorem.

15To all the aims, it is enough to suppose 2 with C? boundary, as in the hypothesis of theorem
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9.7.1 Application of the Hilbert-Schmidt theorem

In the statement of theorem [2.7} we choose H = L2(2) and B = A~'. We find, in this
way, the sequences {0} and {p} such that

0<..<op<op1<..<0y, lim op=0, A 'y =o0orpn (9.59)

k—+o0

where moreover {py, Hren is a complete ortonormal basis of L2(£2). This means that, for
every f € L2(f2), there exists a sequence {cf}¥_ | such that

k
f—= Z i
i=1
Remark 9.26. In order to start to deal with the next theorem, observe that, as in (9.58]),
X={pe Hy(Q)| V-6=0inQ} N H*Q) (9.61)

lim
k——+o00

=0, / O - @j dx = Oy, (9.60)
0

2

Moreover, as highlighted in [26, Remark, pg. 1096], since the boundary 9f2 is Lipschitz,
we have {¢p € H}(Q)| V-¢ =0in Q} = C’gf’o(Q)H'”Hl = WOIf(Q) But, remembering
now equation (9.48)), we have that D(A) = X. O

Remark 9.27. We give more details to remark [0.26] Consider, in fact, V := {¢ €
C>®(Q): V-¢ =0}, and consider V := Pl Then v = {ue H}(Q): V-u=0.

The inclusion is easy, in the sense that it does not involve decomposition theo-
rems, as the other one. Infact, consider a Cauchy sequence {u, }nen, with u,, € V and
|ty = || ;1 — O as m,m — oco. Then, by the completion of H}(§2) we have that exists
u € H}(Q) such that u,, — u in H'. Moreover, with usual arguments, V - u = 0.

The inclusion involves the regularity of the boundary. It is in fact neces-
sary to use the Helmholtz decomposition. Let in fact f € V*. By theorem we
have that exists p € L?*(Q) such that f = Vp in distributional sense. So, by in-
tegration by parts, we have f € {o € H}(Q) : V- = 0}+. This implies that
{oeCx(): Vol 2{pe Hy(): V- ¢=0} O

Theorem 9.11. Let Q0 a bounded domain with smooth boundary, and let A = Aq the
Stokes operator. Then, for the operator A : D(A) = X — L2(R), there exists a sequence
of pairs (A, w®), with 0 < A\; < X < ... <\, < .., and w* € X N L2(Q), such that

lim A\, = +o0, Awk = ok VE e N, / Wy - w; dxr = O (9.62)

and, for every u € D(A) = X,

lim =0
N—o0

N
Z(u, wh)ouw® — u
k=1

H2

1
Proof. First of all, we define \, := — and w* := ¢, € L2(Q), where o} and ¢, are
Ok
those in (9.59). One observes immediately that

1
MAT o = — ATl pe = o = M = Agi (9.63)
k
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The equality implies that ¢, € D(A), since it is the pre-image of A\ € L2(Q).
The properties of the eigenvalues are, clearly, an immediate consequence of the defini-
tion as reciprocal of op. Moreover, ¢, are eigenfunctions also for the operator A, as
underlined in . Obviously, since wy, := ¢, we have

/wk'wjd$:/80k'90j=5kj
Q Q

It remains to prove that this is a complete basis. Since {¢y }ren is a basis of L2(£2), we
N

know that for every!'s| f € L2(Q), Nl—igloo I Z(f, or)2pr — fll2 = 0.
k=1

Now we have to show that {w*},ey is a basis also for the space X. Remember that an
Hilbert space, equipped with the H?-norm.
Let u € X = D(A) and let f := Au € L2(Q). Define, moreover,

N

In = Z(f,wk>2w

k=1

where w* = ;. Then A}im |f5 — fll2 = 0. Observe also that, since u, w* € D(A),
—00

N N

Al fy = Z(f, w'“>2A’1wlc = Z(Au,wk>20kwk =

k=1 k=1 k=1
and so Auy = fy. Moreover, thanks to (9.57)),

Jun — ullgz < cp M| A(uy — w2 = e fv — fl2

] =

N
<u7 Awk>2akwk = Z<U’7 wk>2wk
k=1

So
N

E Q’LU —Uu

=0
H?2

lim
N—oo

for every u € X = D(A). This completes the proof. Il

Now that we have a basis of eigenfunctions, we can deduce some regularity proper-
ties about these eigenfunctions.

k k
180bserve that ¢f = (3 ¢fp;, 01) = Zc]% F+Fe) =0 ckoj— f.1) + (f. i), and so
=1 =1 =1
k k
S (e — £l =Dk —db)e i — i
i=1 2 i=1 2 2

where dk — f, ). Moreover, thanks to the Bessel inequality, we have

||M?r'

2 2

=2kj|d?|2 Z

2 i=1 i=1

Z(pl

2
k
C 30] f7 @z) <
J
Jj=1

2
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9.7.2 Regularity properties of eigenfunctions of the Stokes op-
erator

Regularity theory is based again on theorem [0.9] This theory, is fully developed in the

Ladyzhenskaya’s book [19]; see in particular [19, Sec. 5, Th. 2|. However, we com-

pletely follows the work of Galdi in [I12, Chapter IV], that is section [0.5]
This approach is in particular suggested by Simon in [20] pg. 1112].

Let as above ) be a bounded domain with smooth boundary. At this level it is very
important to fix the dimension in which the problem, as we will see in a moment. So,
consider ) C R3, that is n = 3.

Let w* € X N L2(Q) an eigenfunction of theorem , with eigenvalue )\, that is
Aw* = \ywk. Since w* € D(A) = X, by we have

[ llwes < en™HlAw® ||z = cp™ Aeflw®|l2

In other words, as we have already known, w* € W??. Now, from the Sobolev theorem
, being 2 > 3, we have that w* € CrlE-1(Q) = ¢z (Q).
So w* € C°(Q) = C(Q). We now want to get further regularity.

Since w* € C(Q), we have w* € L"(Q) for every r > 1, since  is bounded. In
particular, we can choose r = 4, so that w* € L*(Q). Since w* € D(A) N LZ(Q2) solves
the Stokes problem with force A\,w”, we have, by theorem , that

w{Vuwk Vo) = (A", v) Vv € Cgo, ()

Moreover, ||[Vwk|, < C||Vw*||i, so that wk € WI4(Q). Since w” is continuous over
Q, and Tw* = 0, we have that w*|so = 0. So the trace is zero also in the sense of
Wh4(Q). So w* € W, *(Q). Moreover V - w* = 0 in the weak sense.

So, w¥ is a 4-generalized solution in the sense of definition . Then, since also the
force \yw® € L*(Q), theorem [9.8| assures that w* € W24(Q2). Moreover it holds

[w* lw2a@) < CAellw* || 24 (9.64)
Again, by Sobolev theorem we have, being 2 > %,
wh e - (Q) = chi(@Q) C CY@Q)

So, the basis of eigenfunctions is more regular: it is one time continuously differentiable
on the compact €2.

9.7.3 Properties of the Stokes eigenfunctions

Theorem 9.12. Consider the orthonormal basis {w*}ren, with related eigenvalues

{ A\ tren. Obuviously by definition it holds / w! - w® dx = 6;,. Moreover, it holds
Q

/ V! - Vuk de = k0, (9.65)
Q
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Proof. Being w’ € C1(Q), with also w/ € H?(Q), using the derivative rule of the
product we have

- Vuwk _Zv wVuwl) —w’ - Aw®

Since Aw® € L*(Q), we can apply the Helmolthz decomposition and so Aw* = PAw* +
I with fF € G(Q2). Integrating over Q we have

3
/ij-Vwkdx:Z/V'(wngf) d:p—/wj-Awkd:)sz
Q i=1 /9 @

and so using the generalized divergence theorem we have

3

Z(/ (W Vwk) - nda)—/ﬂwj-Awkdx

Using the devices in subsection [4.7.1 we have that

/ T(w!Vwk) -7 do =0
o0

/ V' - Vukder = — / w - AwPdr =
0 0

= —/wj (PAWF + fF) de = —(w?, PAw" + fF) = —(w?, PAw®) — (w?, fF)
0
The eigenfunction w? is such that Aw’ = \jw’, so it is in the range of the operator A,

that is L2(Q). So (w’, fF) = 0 since fF is in G(Q). Finally

/ V! - Vurde = —(w/, PAw®) = (v, —PAw") = (w, Aw®) = (w?, \yw®) =
Q

= M\ (w?, w*) = )\k/ w! - whde = Aedjk
Q

that is the thesis. I

9.8 A further application of the Stokes problem

We conclude the chapter with the following theorem. It is stated and partially proved
in [26], and uses the devices of the Stokes problem to deduce very useful estimates that
will be fundamental in the future chapters.

Lemma 9.6. Let Q) a bounded domain of R", n > 2, with smooth boundary. There
exist constants e > 0 and ¢ > 0 such that

[Av]ly < el PAv]

v 2 v 3 Q) : U= i
€ H(Q)n{ve Hy(Q) : V 0} = {HUHOOSC(||AUH2)4(||VUH2)

Bl
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Remark 9.28. This theorem will be fundamental in the next chapters, since it allows
to control the essential supremum norms in terms of the norm H?, provided that the
function is, in weak sense, divergence free and with zero boundary conditions. [J

Proof. We start proving the first estimate. Since v € H?(2) and
<PAU, w>L2(Q) = —<VU, Vw>L2(Q) = <AU, w>L2(Q)

for every w € L2(1), that is (Av — PAv,w) 2y = 0. Then, using , we have the
estimate
||A'U||LZ(Q) S CHPAUHL?(Q)

since v solves the Stokes equation with force PAw.

We now prove the second estimate. Using the interpolation inequality in lemma [3.2]
we have that, for every u € L5(2) N L?(2) it holds

lulls < Cllullgllull,™ (9.66)

l—«

with a such that ; = & + 152 So, in this case, o = Since v € H?*() in the

3
T
hypothesis, we have that in particular v € W¢(Q)NWH2(Q). So, in particular v, Vv €

LS(Q) N L*(). So, by (9.66), we have
3 1 3 1
[olla < Clloflgllvlls,  [[Volla < CIVollgVollz

31 3 1 3 1
But [lvfgllvlls, [VollglVolls < CllollysllVolls, since v € Hy(Q), and so [jufls <
C||Vvl|2. Thus we have

1 3 1
[vllwra = (olls + 1Voll2)* < flolla + [1Volla < 2C[0ll 6l Volls
Since p = 4 > n = 3, we have by theorem [4.6]
[0]lee < Cllv]lwrs

Moreover, ||v]|wis < Cyljv||gz < Co)|Av]|s. Since, if f := —Av € L*(Q2), then v solves
Av = —f, with v € H}(Q2), we have, by the theory on elliptic operators, that

[o][2 < Clifll2 = CllAv]

3 1
So, it is clear that ||v]je < C||Av||£[|Vv]|4 and this concludes the lemma. B
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Chapter 10

Navier-Stokes equations: weak,
strong solutions

We are interested in different kind of solutions to the Navier-Stokes equation. We start
with the definition of local weak solution to the problem.

We give two definitions: the first is the definition of the weak solution to the momentum
equation, the second to the transport equation.

10.1 Weak solutions and weak formulations

Definition 10.1. Let © a bounded domain in R3, with smooth boundary, and T}, > 0
a local time. Moreover, let © > 0 be a positive real number. Consider the space

WOIf(Q) = ng(Q)”"'Wl’2. Let ug € Wolf(ﬂ) and pg € L>(Q) given initial data. We say
that the pair (u,p) € L*(0,Ts; Wolf(Q)) X L>(0,T,; L>(Q2)) is a local weak solution in
the interval (0,7) of the momentum equation

(pu)y + V- (pu®@u) — pAu+Vp =0 (10.1)
with initial conditions
u(z,0) = up(z),  p(z,0) = po() (10.2)

if for every test function p € C'([0,T.]; W(}JQ(Q)) such that p(x,7,) = 0 a.e. in €, it
holds

T. T. T,
—/ /pu~g0tdxdt—/ /pu-Vgo-ud:cdt—l—u/ /Vu-Vgodxdt:
o Jo o Ja o Ja

= /on(x)uo(x) ~(z,0) dx (10.3)

Remark 10.1. Tt is definition 1.1 of [16]. O
Remark 10.2. The integral

/Q - V-l de < / 1l [Vellu] de < [Velallull} < CIVells]Vul2 < oo
is well defined, since u € H}(2). O
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Remark 10.3. The definition makes sense with u € L?(0, T}; Wol(f(Q)) However, in the

present thesis, we will find a solution u € L*>(0, T; Wolf(Q)), that is a smaller space.
]

Remark 10.4. In the weak formulation the pressure gradient term does not appear. We
will introduce it in a slightly stronger formulation of the solution, the so called strong
(weak) formulation. O

Definition 10.2. Let p, € L>=(2) an initial data and u € L*(0,Ty; H}(2)) a velocity
field, with V - u = 0. A weak solution of the transport equation

pr+V-(pu) =0 1in Q x (0,7%)
p(l‘7 0) = ﬁ()(x)
is a function p € L>(0,T,; L>(2)) such that

/OT* /Q(pcpt 4 pu- Vo) (x,t) de dt = _/on(x)@(%o)dl,

for every ¢ € C([0, T.]; H'(2)) such that o(x,T,) = 0 a.e. in .

Remark 10.5. It is definition 1.1 of [16]. O

Remark 10.6. As above, the definition makes sense provided that u € L?(0, T,; H} (Q2)).
However, we will find a solution u € L>(0,T,; Hy(Q2)). O

Remark 10.7. We will consider in future divergence-free velocity fields, i.e. V -u = 0.
The transport equation, in this case, can be reformulated as p; + u-Vp =0. O

10.1.1 Brief deduction of the weak formulation for the trans-
port equation

The weak formulation is obtained through the following formal argument]] We will
deduce also the weak momentum equation, proving the main theorem of this discussion.

In fact, in a regular scenario, consider ¢ as above, i.e. in C([0,T.]; H'(Q)) such
that ¢(z,T,) = 0 a.e. in Q. Then

pro+V-(pu)p=0  V(z,1)
Remember now that
Ve(pu)p =V - (ppu) —pu-Vo,  (pp) = pip+ pp
So, the equality above becomes
(pe)i — ppr + V- (ppu) — pu- Vo =0
Integrating over € x [0, 7T}) we get

T
0=/ /Q[(pso)t—/wtﬂLV-(sopU)—pu-VsD] dz dt =
0

IThis argument will be regularized in the proof of the main theorem.
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Q/ﬂ[(ﬂ@@)(ﬂ)—(pw(o)l dw—/UT*/stot dx dt—/OT*/qu-Vso] dr dt (10.4)

where the integral of the divergence is a boundary integral over 9€) through the diver-
gence theorem and so it vanishes since u € H} (). But moreover ¢ vanishes as t — T},

SO
T. T.
/ / ppy dx dt +/ /pu Vo dr dt = —/(pgp)(()) dx (10.5)
o Jo o Jo Q

10.2 Strong solutions

The definitions that we are going to introduce describe the strong (weak) solutions. The
term weak in brakets, often avoided, remembers us that the solutions are not strong in
the classical sense, but in a weaker sense, however stronger than the sense in definitions
and [10.2] There are many definitions of strong solutions: in general, one expects
that a strong solution is in particular a weak solution. This is true, under suitable
hypothesis; however, it is not in the interest of the present thesis: every time we will
search for a solution, we will construct a weak solution; then, using some devices, we
will prove that this solution is also strong, in the sense we are going to introduce.

Definition 10.3. Let © be a bounded domain in R? with smooth boundary and 7T, > 0.
A triple (p, u,p) of Banach-space valued functions defined over (0,7%) in the sense

p: t—p(t) e L), u: t—u(t) € Vi(Q), p: tep(t) € H(Q)
where V§ :={v e H}(Q)NH*Q): V-v=0in Q}, and such that exists
up: t = u(t) € LA(Q)
weak derivative of u in the sense of weak differentiation of Banach-valued functions,

is a solution of the momentum equations in the Navier-Stokes equations if, for almost
every t € (0,7%), the pair (u(t),p(t)) is solution to the Stokes equation

{—uAuw +Vp(t) = f(t)

v ult) = 0 (10.6)

where f(t) := —p(t)us(t) — p(t)u(t) - Vu(t) € L*().

Remark 10.8. The sense in which the pair (u(t), p(t)) satisfies (10.6]) has been explained
in chapter [9] In particular, we will prove in [11.14] that the pair (u(t), p(t)) we will find
in the proof of the theorems in the present thesis is solution of (10.6) with f(¢) € L%(Q).
0

Definition 10.4. Let Q be a bounded domain in R? with smooth boundary and 7}, > 0.
Let u € LY(0,T.; L*(2)) a velocity field, such that V - u exists in the weak sense and
V - u = 0 for almost every t € (0,7). A function p € L>*(0,Ty; H'(Q)) is a strong
solution of the transport equation

pe+ V- (pu) =0

2Using FTC in Brezis’ [3, pg. 122, Th. VIIIL.2].

193



if the equation holds in the sense of spacetime distributions, that isﬂ

/0~T (/Qp(x,t) oi(z,t) da:) dt = /OT (/Qu(a:,t) -Vp(z,t) o(x,t) dx) dt  (10.7)

for every ¢ € C°((0,T%) x ).
Remark 10.9. Observe that the equation ((10.7)) is well posed. In fact ¢ € L*((0,T,)x )

and
T T

\ / ( / u(x,w-wx,ﬂdw) dt\g | WlelVlla dt < 1¥pllmo oo oo
0 Q 0

The fact that the solution we will find is a strong solution to the transport equation

will be proved in section ((11.14.3)). [

Remark 10.10. Equation ((10.7) means that p, = —u - Vp over £ x (0,7 in the sense
of weak derivatives. [J

3Observe that V- (pu) = p (V- u) +u-Vp=u-Vp.
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Chapter 11

Local strong solutions in the case of
bounded domain

11.1 Statement of the main theorems

We will prove in this chapter three fundamental theorems, that are part of the core of
the present thesis.

Theorem 11.1. Let Q be a bounded domain in R3 with smooth boundary, and assume
the data po, ug satisfy the reqularity

0<po € L¥(Q), wupc€ HI(Q)N H*(Q)
and the compatibility condition
pAuy — Vpg = +/pog  V-uy=0 inQ (11.1)

for some (po,g) € H' () x L*(Q). Let T > 0 a fized local time. Then, there erists a
time T, € (0,T) and a weak solution (p,u) € L>(0,T,; H*(Q2)) x L>(0,T.; L>(Q)) to
the initial boundary value problem

(pu); + V- (pu®@u) — pAu+Vp=0 p(x,0) = po(x) x€Q
pe+V-(pu)=0, p>0 (x,t) € Qx(0,T)) u(z,0) =ug(x) x€
V-ou=0 u(z,t) =0 (x,t) € 002 x (0,T%)

(11.2)
such that for all t € (0,T,) we have the estimates

IVu@®lz<C. lle®llq = lleollg

t t
sup (19l + Iuld) + [ (19l + lullye) ds < Coxp (€ [ [7ulbas)
(11.3)

where
C(po, uo,po) = |l9ll3

Here the local existence time T, and the positive constant C' depend only on ||pol|re,
IVuoll2, [|gll2 and the time T; but it is independent of the lower bounds of py.
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Remark 11.1. The fixed time T' > 0 in the statement above is arbitrary but fixed. Its
presence is due to derivation of the proof from a more general case, that is the case
with an additional force term f in the first of the equations above. In particular, in the
general case, it is required

f £V f e L*0,T; L7)
In our case, we have f = 0, so our function is in the space above for all the T" > 0.
However, from the estimates above, we can see that we can’t get rid of this time
sending it to infinity: it will appear in the local time T, and C definition, as stated in
the previous theorem. []
Remark 11.2. In the claim, we have || - HDé,z = ||V - ||l2, remembering that u; € H}(Q).
O
We now state a theorem that assures us, under stronger hypothesis on the initial density,
the existence of strong solutions.

Theorem 11.2. Let ) be a bounded domain in R3 with smooth boundary, and assume
the data po, ug satisfy the reqularity

0<po€ HYQ), wug€ Hy(2) N H*N)
and the compatibility condition

pAuy — Vpg = +/pog  V-uy=0 inQ (11.4)
for some (po,g) € H' () x L*(Q). Let T > 0 a fized local time. Then, there exists
a time T, € (0,T) and a strong solution (p,u,p) that satisfies in the sense of
section[10.3. Moreover, the solutions satisfy

p € L0, T,; H'(Q)), pr € L™=(0,T,; L*(2))

Vp € L>(0,T,; L*(Q)) N L*(0,T,; L°(Q))

Remark 11.3. The regularity hypothesis on the boundary can be weakened. In fact,

Sobolev theorems hold provided that the boundary is C*, while Stokes theory holds
provided that the boundary is C2%. [

11.2 Construction of the weak solution

Now we start the proof of theorem [I1.1} using the so called Galerkin scheme: it
consists in solving the problem in a sequence of finite dimensional spaces, where the
problem is an ODE system, then applying functional analysis arguments to extract a
limit to the sequence of solutions.

The case of py € C'(Q). Let Q be a bounded domain. Let py, uy be initial data such
that
0<pyeLXQ), wue Hy()NH Q)

and that satisfy the compatibility condition (11.4)) for some (po,g) € H*(Q2) x L*(Q).
Let T' > 0 a fixed time and consider a function p, and a 6 > 0 such that

Do €CHQ),  po<Py 0<3<Py < |pollo +1 (11.5)
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Remark 11.4. The function py is in L>(£2), so the norm ||- ||« is the essential supremum.
This norm, as every p-norm, looks at the function out of a zero measure set. So, in
a zero measure set, in example a point, py can take values that exceed ||ppl|so- These
values could eventually also overtake ||po|l + 1. The inequality py < 7, is so to be
meant almost everywhere, while the bounds for p,, that is a regular function, are to be
meant in the whole Q. 0

Definition 11.1. Remember that the space X has been defined in (9.58). We consider
now a finite ”truncation” of this functional space. Remember that {w"*}cy is the basis
of eigenfunctions of X. We set

X™ = L(w', ..., w™) VmeN
We want to prove the following proposition.

Proposition 11.1. Let p, € C'(Q) such that (IL3) holds. Let T > 0. Then there
exists, for every m € N, u™ € C*([0,T]; X™) and p™ € C'([0,T]; CY(Q)) such that

/ (Pmu" + p™(Vu™ ™) - ¢+ pVu™ -V dr =0 ¥ ¢ e X" (11.6)
Q

u™(0) = (ug,whut, U™ V" =0, p"(0) =Py (11.7)
k=1

m

where w¥ is the k-th eigengunction of the Stokes operator A.

Definition 11.2. We will call the pair (u™, p™) approzimate solution of the Navier-
Stokes inhomogeneous incompressible problem.

11.2.1 Existence of the approximate solution

We now build functions as in proposition [11.1] so that it is proved. This construction
will mainly follow the paper [16], for estimates and some lemmas, but also [4] and [26].

Separation of the variables. To prove proposition [11.1, we want to reduce the
integral problem ([11.6) to an ordinary differential problem (i.e. a system of ordinary
differential equations). We choose ¢ = w" in (11.6)), supposing thatﬂ

m

u"(z,t) =Y it () (11.8)

j=1
with ¢; depending only on time, we have

;@T(t)/ﬂpn%t) w? - w' d{L‘—l—ZZ@?@(t)gpzn(t)/

p" (L) ((ij)wk) ' dr +
j=1 k=1 &

IThis method is often named separation of the variables. We suppose the existence of a solution
written as combination of element of a specific basis, and so we deduce which properties the coefficients
(depending on time) have to satisfy.
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- uzgo;”(t)/ Vu’ - Vw' dz =0 (11.9)
j=1 @

Here it is not clear what is p™(t) = p™(x,t). We know that this function also have
to solve the transport equation. In particular, as typical in transport theory, we have
P (x,t) = po(y™(x,t)) with v™(x,t) solution of the following problem

{y<s> = u"(y, 5)

J(0) = 2 (11.10)

In particular, underlining the depence on a fixed flux v, equation (11.9)) can be rewritten
as

F(y;)0i™(t) + G(7;t,0™(t)) = 0
where
Fy;t)]y = / Po(r(£)) w (x) - w(z) de (11.11)
and

Gt g™l =303 g /Q 7o (1 ) (Vo (2)*(2) - wi(a) dact

j=1 k=1
—|-,UZ<,O§”/ V' (z) - Vw'(z) da (11.12)
j=1 79

Remark 11.5. F and G are regular in space and time, provided that v is regular (since

thus are w’ and p,). So, if the matrix F'(7) is invertible we can try to solve this system
of ODEs. O

We have the following lemma.

Lemma 11.1. Let 0 < § < p, € C(Q), T > 0 a time, and y(z,t) € C*(Q x [0,T]). Let

Fy )]y = / Polr(, )w'(z) - w () de

Then, for every t € [0,T], the matriz F(vy;t) is invertible.

Proof. Suppose, by contrary, that exists a tog € [0,7] such that F(t) is singular.
That means, e.g., that is

m

[F(yito); =Y CGlF(vito)liy Vi=1,...m

1=2

This means that

| atrt )t @) wia) do =
= Ca [ B )u(e) @) dot ot Co [ (o 0" a) - wla) da
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that can be rewritten as
[tz - wiw) o= o
Q

where n = w! — Cow? — ... — C,,w™. This holds for every j =1, ..., m.
Then, summing and multiplying for C;, we have

5 / Inf2de < / Poly(a, ) lPde = 0

It follows that n = 0. But {w™},, is a basis, so this is an absurdum. |

Coupled ODEs systems. With this information, the key point is trying to solve
the systems

pit = —um - V™
{pmu, 0) = 7ol) 1)
F(y™ ) 0™ (t) = =G (y™;t, 9™ (1))
(11.14)

@i (0) = /Quo(x) ~w! (x) dx

where v (z,t) := y2*(t) is the trajectory of (11.13)) defined in (8.2]).

Remark 11.6. The system ([11.13)-(11.14)) is not immediately solvable, because y2'(t)
in the second system is the solution of the first system, but the first is solvable only if

we know @™ (t), solution of the second system. We follow a classical way, using a fized
point theorem. [J

11.3 Construction of the solution to the ODEs

In this section, we use the papers [16] and [26] to deduce some fundamental estimates.

In order to solve ([11.13))-(|11.14]) we have the following proposition.

Proposition 11.2. Let A,, € C'([0,T)) a solution of (I1.14), with T > T > 0. Then,
if we set

Onlirt)i= 3 Aui(t) (o)
it follows that exists L > 0 such that
IVUn[I3 < L V¥t e [0,T)
where L is independent of m and depends on T but is independent of T.

This proposition is fundamental in the next subsection; it will be very useful in a
moment.
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11.3.1 Existence of a solution

Let A; the minimum of the eigenvalues of the Stokes operator, as defined in theorem
1
9.11} Let L be as in proposition [11.2| above. Fix R > ()%)5 We define now

We can fix (A1 (1), ..., Apm(t)) € Br and Se

Xm:Amk ) € C([0,T], X™) C C(]0,T], C*(Q))

=1

So, being 7, € C'(), we can find a solution to

{pmx,t)—um( t) - Vp"(x,t)
P (,0) = pol(x)

with p™ € CY([0,T] x ), following the classical theory of transport equation as ex-
plained in theorem [8.1] In particular, the classical method of characteristics gives us,
for every x € Q, the trajectory of a particle under the motion of the transport equation
above. We can define 4" (x,t) € C*(Q x [0,T]) as the trajectory of this particle at the
time t obtained with the velocity field «™. The point x is its initial data. The solution
is so given by p™(z,t) := py(v"(z,t)) € C'([0,T] x Q), as underlined in (8.2). This is,
in words, what explained at the beginning of chapter [§] Observe that here u™ is zero
on 02 and V - u™ = 0 since these properties are satisfied by w* for every k € N.

Using the flux 4™, that is 4™ is fixed, we can try to find a solution to the problem
F(y™1)0pe™ (t) = =G(y" 8, ¢™(1))
SOT(O) = (ug, w’)s

where ' and G are as above. By the previous lemma [11.1) we can invert the matrix
F(y™)(t). So we can solve the equation

{atso (t) = =(F(y™ 1) 'G (Y™ t,9™(1))
7(0) = <U0awj>2

at least locally, provided that the coefficients are regular enough.
To this aim, we write the equation above in other terms: in particular, considering only
the i-th row, we have

Z i (1) (1) + Z

Jj=1

(11.15)

Cr@] ()i () + 1y Dyl () = 0 (11.16)

1 j=1

Ms

B
Il

2Thanks to the estimates in section since || - |]4 < C|| - ||g1, so that

o™ llor @y < lw™lweag@) < CAmllw™ [ Lag@) < C*Amlw™[lm1()
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where

bii(t) = /Q,om(x t) w(z) - w'(x) de, CP(t) = /me(x,t)(ij(x) w*(z)) - w'(z) do

Dy = /Qij(a:) - Vu'(z) dx

where we have used the notations of Kim in [16]. The following lemma specifies the
regularity of these coefficients.

Lemma 11.2. If v € CY(Q x [0,T)) we have that b?, C™,

170 ~ijk

e CY([0,T))

Proof. We remark first of all that the coefficients D;; are constant in ¢, so the
regularity is trivial] Remember moreover that |p™(xz,t)| = [po(v™ (2, 1))| < [|polles + 1
and

1p" (2, )| = VP (Y™ (2,1)) - O™ (z,1)| < nax IVoo(v" (2,t)) - 0™ (2, )| = Ry’

So if we define CJ* = ||po||leo + 1 + R, we have
Lol @) v wle < € [ foite) i)l < oo
Q Q

so that we have a summable boundary (thanks to the fact that w* € C*(Q) and Q is
bounded). Furthermore

100" 0llw @) wi@lde < 7 [ i) wia)lde < o0

The same bounds hold for the other coefficients. In fact

Lol (et ) vl < [ |((w)ute ) v

[ ol|( (v e o) wiofar < g [ |((w @)t ) o

So the hypothesis of the Lebesgue theorem for the interchange of derivative and integral
are satisfied. It follows that b7, ™ e ¢*((0,77). |

ijk

dr < 400

dr < +00

Solution to the ODEs. We use now a general theorem for local solutions of classical
ODEs, that is theorem [I.5] We can apply the theorem to our case. In fact, consider
our system of ODE. We have

{@90 (t) = =(F(y": 1) Gy t,0™(1))
{

7(0) = anwj>2

3We will write in a moment an explicit expression for these constants.
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where we have inverted the matrix at the first member because of a lemma above. The
matrix is always non singular, and the coefficients are C! in time because of the lemma
just proved. So, also the coefficients of the invers are C'!, thanks to the inverted matrix
formula. Also the coefficients of G are C. So, we can write

{&t@ (t) = H™(¢™(t),1)
7(0) = (ug, w),

where H™(¢™,t) :== —(F(y™)(t)) 'G(y™, ¢™) € C*(R™ x [0,T]). The regularity in ¢™
is a conseguence of the quadratic structure of the equation.

So, the theorem above says that exists a local timd| of existence T},, > 0 such that there
exists a unique solution

(A1 (), ooy A (1)) € C2([0, T}0)) (11.17)

to the problem . We name A,, this solution, leaving the ¢"-notation, in order to
be consistent with the work [16]. The local time of existence depends on m because each
m € N gives a different ODEs system. We can moreover suppose (as in the theorem)
that [0,7},) is the maximal interval of extistence of the solution A,,.

Proof of A,, € CY([0,T])NBg. We want to say that this solution is also in C ([0, 7])N
Bpg. First of all we want to replace the local time T,, with T. We use the proposition
11.2l Suppose that T,, < T. Then if we set

Un(z,t) =Y Api(t)uw’(z) (11.18)

it follows, from proposition [11.2] that exists L > 0 independent of T}, such that
IVUL5 <L Vtel0,T,)

Moreover, (11.18) gives us an estimate on A,,. In fact, using that
/ Vu(x) - V! (1) dr = A\pdy;

we have
1

dx)

VL > VU2 =

S Aul)

k=1

U

_ (Z|flmk(t)|2>\k> > /M| An(t)

where \; is the minimum (positive) eigenvalue. This is true for ¢ € [0,7},). So

> Apr(t) Vo

k=1

N

[An(t) <R Vtel0,T,)

4That is the 7 > 0 of the definition of theorem
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Now we use a continuation argument. Let tﬁl a sequence
0<th <t <..<Tp

such that

- h
lim ¢, =1,
h—+o00

We can also consider the sequence Am(tfjl) that is a vectorial sequence. Clearly, being
0<th <T,, we have i
|A,(t") <R VheN

So, by the Weierstrass theorem, we have that exists a subsequence {A,,(t"")},en such
that )
Aty — Ay asn — +oo

for some Ay such that |Ag| < R. Moreover " is a strictly increasing sequence converg-
ing to T}, since it is a subsequence of " . We are thus in the hypotesis of the theorem
of continuation . This means that exists a d,, > 0 such that A,, € C*([0, T, + 6m))
is a solution to the equation. But, by the definition of T, as maximal time of existence,
we have an absurd. The absurd comes from the fact that 7,, < 7. This means that
T,, > T and so

A,, € C*([0,T)) (11.19)

that is what we wanted. |l

Remark 11.7. We focus on what we have done. For every A,, € M, we have found
another function A,, € C?%([0,T]) such that it solves

{@Am@) = —(F(y™51)) 7' G(y™st, Au(8))
A (0) = (ug, w’)s

where 7 (x,t) is the flux that solves
y(s) = u"(y, s)
y(t) =«
with «”(z,t) := Y Api(t)w*(z). O
k=1
11.3.2 A fixed point argument

Moreover we have now the following theorem.

Definition 11.3 (Completely continuous operator). An operator 7 : M — M is
completely continuous if

{T(A): A e B} is compact for every bounded B C M

The closure above is the closure in M.
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Inspired by remark [11.7, we define the following operator.

Definition 11.4 (Operator associated to the ODEs system). Let A,, and A,, as above,
for a fixed m € N. We define

T(An) = A, VA, € Bg
We have now the following fundamental proposition.

Proposition 11.3. If M and T are defined as above, we have that M is a closed,
convez and bounded subspace of C([0,T])™ and T is a completely continuous operator
T:M— M.

To prove this proposition, we need the following argument. We will prove this fact
later.

Proposition 11.4. Let A, € CH[0,T))™ a solution of the system (11.15) and let Unn
as above. Then there exists K > 0 such that

T
/HmamwﬁgK
0

Proof of proposition . Clearly M = Bp is closed, convex and bounded. Moreover
the operator is such that 7 : Bgp — Bpg and it is completely continuous. We now prove
these facts.

T(Br) C Br: We first show that the codomain of T is actually Br. We will also use
that

/ V" - Vuw! = A\, (11.20)
Q

It is proved in section m By the definition of A,, we have, as stated in proposition

2 )
IVO.I3 <L viel[o.T]

since now the solution A,, is defined (with regularity) in [0, 7] and the estimate above
holds, as it will be clear in the proof, also for the time ¢t = T'. So, again,

A,()| <R Vtel0,T]

and since this holds for every t € [0, T] we have

A 1 | L
HAm”C([O,T})m = max |[A,(t)] < )\_1 <R

te[0,7)

that is



T is completely continuous: To do this, we need another bound and a classical
theorem. Our aim is to show that

{T(A): A € B} is compact for every bounded B C Bg

where the closure isin M := Bg. This means that we have to show that {7 (A) : A € B}
is a relatively compact set for every B bounded set in Bg. Thus it is sufficient to show
that every sequence in {7 (A) : A € B} has a subsequence that converges to a certain
point in the closure of this set. To show this, let B a bounded subset of Br and T(A™),
with A € B, a sequence in the set we want to show that is pre-compact. We want to
find a subsequence T'(A™) and a g € {T(A): A € B} such that

lim ~max [T (Azr)(t) — g(t)] = 0

k——+o00 t€[0,T]

Notice that, by the fact that {7 (A): A € B} is closed, if we find a g that satisfy the
limit, this automatically belongs to {T(A): A € B}. We proceed using the Ascoli-
Arzela theorem.

We use first proposition u Observe that now we assume directly A,, € C([0,T])
thanks to the argument above. The previous propostition immediately gives us a result
concering a sequence A,, that satisfies the hypothesis. First of all, observe that, if U,
as in the propositions,

10Tl = ( /
Q

We choose the sequence

1

dw)é - (i A (OF)" = 00 (0)

k=1

m 2

k=1

AL () = T(A})(1)

i.e. we apply the proposition to the case we are considering. )
The latter inequality, togheter with the proposition, say to us that the sequence A} is
equicontinuous. In fact

T
/ 10w 3(t) dt < K
0

and it follows that

T T %
/ 10Ul |2(t) dt < T%(/ 10, U ||3(t) dt) <VTK
0 0

So, using the mean value integral inequality, we have, if 7 < ¢,

A0 (8)— An ()] < [t—] / (@A) (r+s(t—7))| ds = |t~ / (AR ) ()| (t—7)du =

t T T
— it [ @A wldu < e - [ (@AW <[t~ 7P [ 1807 u)du <
T 0 0
<|t—r2VTK < T:VK|t — 7]
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if t,7 € [0,7]. Here K is independent of n,m, as we will see in the proof of the
proposition; it is the same for every solution in C*([0,77), as in the statement.
So the sequence A”, is equicontinuous on [0, 7]. Moreover

A llcqomm < R

So, we are in the hypotesis of the Ascol-Arzela’s theorem [1.1 So exists a subsequance
A (t) = T(A™)(t) and g € C(]0,T]) such that

lim max [T (AX™)(t) — g(t)| =0

k—+00 t€[0,T]

Furthermore g € {T(A): A € B} since the set is closed and g is limit (in norm) of
elements of the set. So the chosen sequence T (A" ) has a subsequence that converges in
norm to a function in the set {7 (A) : A € B}. This is the definition of pre-compactness
on metric spaces. Clearly 7 is also continuous, since for every A € By we have

17 (A)lleqomm < R

and so
171 := sup {IT(Alleqomm = A € Br, [Alleqomm <1} < sup [[T(A)lleqomm < R
A€EBRr
So the operator 7T is completely continuous, and so, by the Schauder fixed point theorem
2.8 it has a fixed point in M = Bpg. That is, there exists an A,, € Bg such that
T(An) = An,

So the equation has finally a solution. More precisely, exists A,, € C([0,T])™ such that
A, satisfies the equation (11.14}) with 4™ solution of (|[11.13|) with velocity field

u"(x,t) = App(t)w’ (z) (11.21)

k=1
Moreover, p™(z,t) is the solution associated to the field (11.21)). So (u™, p™) is the pair
of functions we were searching for.

Remark 11.8. Notice that we know something more about the regularity of the solution
u™. In fact, we have proved above in that the solution of the ODE system
studied above is such that

A, € C*([0,T])™

But . A,, is nothing but the image of A,, through the operator T (that sends an equation
in By to the associated solution of the system). So
A, = A, € CH0,T))™

This in particular means that ™ (z,t) can be derived twice respect with the time. In
this case, we obtain

m

g (z,t) =Y 0f Api(t)w* () € C([0,T]; X™)

k=1

This will be very useful in a moment. [
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Remark 11.9. This result is very optimistic: the reason is that we have neglected an
eventual force in the NSE. The articles that inspired this discussion (i.e. [4],[16],]26])
consider the equation with the presence of the force. Their result at this point is in a
weaker class of regularity for the weak twice derivative of u™. [J

11.3.3 Proof of propositions and
In this subsection we prove proposition and claimed above.

Proof of proposition We start proving the first proposition. Keep in mind
lemma Let A, € C'([0,T)) a solution of (11.14). Define U,, as above. Then,
using that A,, satisfies the ODE and summing over ¢ multiplying for the right
coefficients 9,A,, we have

/Q (2, 8)[ 0,0, )2 + /Q (@ ) [(V T (22 )T (2, 8)] - OuTm (£t

+M/S2V0m(x, t) - V(0,Up)(z,t)dz =0

where p™(z,t) is a function in C([0, T] x Q) such that p™ > 6 > 0 and ||p™||oe = |50 ||co-
Observe that U,,(z,t) is a function where the temporal and the spatial variable belong
to different functions multiplied and summed. So the operators A and 0; operate
independently, without any need of the second derivatives. Moreover

Being moreover |VU,|> € C'([0,T); C(Q)), we can differentiate under integral sign and
obtain

/me(x,t)|8t0m(x,t)|2dx+/

i p" (x,t) ((Vﬁm(x,t))ﬁm(x, t)) U, (2, 1) da+

2dt

We now estimate the second term to get

d 3
+ﬁ—/ VT, |2dz = 0
Q

/Q (V) Orn) - B0 de| < /Q NI (VT,) T |3/ 70,0 |

2
Using the Young’s inequality ab < CLZ + b* we have

/ (V) ) - 0,0 d
Q

1 - - -
<5 [P [ p7I90, PO <
4 Q Q

1 . - o
<5 [ 0P+ [ 1l V10, P
Q Q
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It follows that

~ d - 1 ~ . -
2 / 0T P + / VO Pde < / 0T P + 2 / 1B lloc |V T 2T ?
Q dt Jo 2 Jq Q
(11.22)

Now we deduce another estimate. We can apply the Stokes operator A to the function
U,, and

— PAU(2,t) = = Y Apj() PAW () = Y Apj(H) A\ (x) (11.23)

J=1 Jj=1

where w’ € X and so the operator is defined. So applying this in the ODE we get

/ PAU,, - PAU,, dx = / (U + (VU)U,,) - PAUd <

- 1 - ..
< H/ |PAUm|2dx+—/2|pm|2(|@tUm|2+|(VUm)Um|2) du
2 Jo 21 Jo
Observe moreover that

/ AU,, - PAU,, dx = / |PAU,, |*dx
Q Q

since

(AU,,, PAU,,) = (AU,,, P2AU,,) = (PAU,,, PAU,,)
and so, using lemma [9.6] we have

/|AU 2y < 1 /|PAU 2de < * /|pm| 0,07, 2t /|pm| T 2 T2
(11.24)

m

5Using that U, Z mjwj and (|11.23)) we can notice, in example, that

Z/ P w - w' 8t/Lnj dx = / pmatﬁm cw' dx
j=1"79 Q

and multiplying for — XA and summing over ¢ we get the equality. Moreover, doing these operations,
and remembering that D;; = A;d;4,

Zm: ( zm: ) (NiApi) = ZA?A?M = u/ PAU,, - PAU,,
i=1 j=1 Q
At this point

1 Z DijAp; = — Z b ()0 A — Z Z C(t) A A
j=1 j=1

j=1k=1

and the minus is absorbed by the equality (11.23]).
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So, adding the inequalities (11.22]) and (11.24]) we have, multiplying the second by d > 0
and using that [p™| < ||pyllee + 1 =: b,

3 bd ~ d ~ ud ~
- — — m aLde + p— C[/mzd / A[’m2d <
(2 N)/Q|p 19.Unl"d Mdt/gz’ ['de 2e? Q’ ' <

db? ~ 91 12
< (2b+ —) VU |*|Upn|“dex
1% Q

N

25, we have

Choosing d =

~ d ~ -
/|pm||8tUm|2dx+u—/|VUm|2dx+25/|AUm|2dx§

b o L
< (2b+§>/|VUm,2|Um‘2dx§3b/ VO 2|0 |2d
Q Q

where € := %. Estimating the latter piece

3 5
. - - - Lemma [9.6] - 1 - 1
/wmymﬁwgwM@/mwM%c = 8(/mmym></wmfm)g
Q Q Q Q

|§| ~ ~ 5
Si/ AT, 2dz + C, /\VUm|2dx
3b Jq 0

We finally have

. d . . . . 5
/\pmH@tUm\zdx—i-u—/ |VUm]2dx+25/ \AUm\zdxgs/ ]AUmIde+3bC§\(/ |VUm\2dx)
Q dt Jo Q Q 0

and

. d . . . 5
/|pmH(9tUm\2dx—|—u—/\VUm|2dx+5/\AUm\Zd:c§3bCf\(/|VUm\2dx>
(11.25)

It .= 2%
w o

d ~ ~

We integrate now between 0 and ¢, with t < T, and get

t
IVURI3(t) = IV UnI2(0) < C/O IV Unlly"(s)ds

6Using
ab < Aa® + Oy\b*

with A = 525
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Remark 11.10. Observe that moreover

IVUn 12(0) < [|Vuoll2 (11.26)

independently of m. In fact

[ V0000 de = 3 22000 = Y o, w3
Q k=1 k=1

and furthermore

K
i > o wh et g =0
k=1 H2(Q)
This in particular means that
K
K1—1>I-r|-loo Z(uo, wh) oV — Vug|| =0
k=1 L2
so that
K K
Z(uo,wk>2Vwk — IVuo|| 2| < Z (ug, wM) o Vwk — Vug|  — 0
k=1 L2 k=1 L2
and so
K 1 K 2 1
B2y ) 2
Kl_lgloo (;@07 >2)\k:> Kl_lgrloo (/ z_: ug, w*) V' (z) de) = [[Vuol2
since

=

k=1 k=1 j=1 Q
K K K
= ZZ(uo,wj><uo,w Yo ARk = Z<u0,w )5 Ak
k=1 j=1 k=1
So
Lo ! K :
([ 190m0.0)ar)" - (;wo,wwk) < dim_( ;wo,w%k) ~ ol

where has been used that the series is a series of positive terms, since we have a square and
A, >0VkeN. O

So we have the inequality
t
IVTw 30 < [Vl + C / VT (s)ds Ve < T
0
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We now use the version of the Gronwall’s inequality in [I.4] In our case we have, for
tel0,7T),

t t
HW%WQQWW%+C/HW%@%M%wWwé+C/WW%W@+H%
0 0

So, if we choose v(t) := ||VU,|3(t), Vo == || Vuoll3, w(v) :=v° + 1 and ¢ = C' > 0, we
have

IVULI(t) < &7 (6(Vo) + Ct) < 671 (6(Vo) + CT)

since also ¢! is an increasing function and t < T < T. We can define L := ¢~ (¢(Vp) +
CT), so we get ) B
VO <L vie[o,T) (11.27)

Notice that we have used the fact that ¢! is also stricly increasing, being the inverse
of a such function. il

Remark 11.11. The constant L depends on T but it is independent of 7. O
Proof of proposition [11.4. Now we deduce the estimate on 0,U,,, that is
T ~
| 1ol < &
0

We are supposing now A,, € C*([0,T]). From equation (I1.25)), that holds for every ¢
where A,, is defined, we have

5
/|pm|yat0m\2dx+ui/|va|2da;+e/\Aﬁmﬁdxg?)bc;(/wﬁmﬁdx)

and so, integrating over [0, 7] we have

T T
/ /ypmuatﬁmy2dxdt+u(/\vaP(T)dx—/\va|2(0)dx)+s/ /yAUdemdtg
0 Q Q Q 0 Q

T B 5
< 3b0;/ </ |VUm]2da:> dt
0 Q

So, now all the terms are positive and it follows

T T 5
/ /|pm|]8t(7m|2dxdt§u/ yva\2(0)da:+3bcg/ (/ |va\2dx) dt <
0 Q Q 0 Q

(11.26) T - T
< mv%m+wxl|wmmwts MW%%+%@Z:ﬁﬁ=

= || Vuol|3 + 3bCLTL?
Now, being p"(x,t) > 6 > 0, we have

T T
(5/ / 10,U,,, |Pdadt < / / 10" |0 Upn | dvdt < || Vol + 36CATL?
0 Jo 0o Ja
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Defining K := 1 (u||Vugl|3 + 30C{TL?), we have

1
é
T 5 T 5
/ HatUmHg(t)dtz/ /|8tUm]2dxdt§K
0 0 Q

that is the thesis. I

Remark 11.12. The constant K depends on p, the initial data p, and g, the bound
9, the time 7" and the constant L, togheter with other constant C, and e, c that are
due to some inequalities. However, the constant is independent of the solution we are
considering, and this is the only thing we need. In fact we use K only for applying the

Ascoli-Arzela theorem, that is for proving that the operator 7T is completely continuous.
OJ

11.4 Estimates on the approximate solutions

We now deduce some estimates concerning the approximate solution built in the pre-
vious section. These estimates will allow us to use a convergence argument, extracting
a right subsequence which limit is our aimed solution to the problem. We collect them
in some propositions. The main estimate is summarized by the following proposition.

Proposition 11.5. Let Q be a bounded domain in R®. Consider the Navier-Stokes
problem over ) as in proposition . Let py € CY(Q) and T > 0. Let p™ € C*([0,T] x
Q) and u™ € C'([0,T); X™) the approzimate solutions built in proposition .

Then there hold the following estimates

o 0 <p"™(@,t) < lpolls+ 1. 1™ ®llg = Aoll

t
. [Vu"()IE<C+C / IVam|lS ds
0

t t
o s (I Bt V) [y ds < CGTCexp (€ [ Ivanitas)

for every t € [0, T]. Here C is a generic positive constant depending only on || po||e,
IVuol|l2 and T, but it is independent of § and m. Moreover, we define

m

T3 = [ @) e (w,0) = Ve
Q

Remark 11.13. The first point follows from classical considerations about the transport
equation: in particular the solution assumes exactly the value that assumes p,; the
incompressibility property and the conservation of the mass integral with exponent ¢
has already been discussed in chapter [§ See in particular theorem U
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11.4.1 A first energy estimate

Proposition 11.6. Let Q be a bounded domain in R®. Consider the Navier-Stokes

problem over §) as in proposition 11.1 Letpy, € C*(Q) and T > 0. Let p™ € C*([0,T] x
Q) and u™ € C([0,T]; X™) the approzimate solutions built in proposition|11.1. Then

there holds the following energy estimate

t
/pm(t)\um\2(t) dx+/ /\Vum|2dx§C
Q 0 Q

for every t € [0,T]. Here C is a generic positive constant depending only on ||po||Le,
IVuglle and T, but it is independent of § and m.

Proof. We now have to deduce estimates. We know that

/{p ut + p"(Vu™)u™) - o+ pVu™ - Vot de =0 Vo e X™

If we choose ¢ = u™ € X™, it follows that
/ Pl u™dr + / pru™ - ((Vu™u™)de + u/ |Vu™2dz = 0
Q Q Q

Now, using that

E\um\z =2uy" - u™

and
Vu™? = 2(Vu™)u™

we have, using integration by parts,

/ pu™ - V" Pdr = / Vo (p" " Pu™)d — / [u™? V- (p"u™)dx =
0 0 Q
= / P Pu™ v do — / W™ u™ - Vp"dr =
o0 Q

= [ s
Q

using that V - u™ = 0 and v™ = 0 over 952, and moreover u™ € C*(Q). So we have

1 m 1 m m m

2/p dt|u ?dx + 2/th lu |2dx+u/ﬂ|Vu |?dr =0

that is, using regularity in x and ¢ and using the compactnes of O
1d

- m m2d /vad =0
s o e [ [

"TRemember that if f € C([0,T]; C(Q)), then for every (zo,t) € Q x [0, T] we have
[£(,8) = f(@o. o)l < [f(2,2) = fl@,t0)| + £ (@, t0) = f(z0, to)| < max|f(z,?) = f(z,t0)| +&

if |z — xo| < 6 = (o, tp). Since tlg? [£(-t) = f(,to)llo@) = 0, we have the continuity.
0
If now f € C1([0,T]; C*(Q2)), we have the continuity of the derivatives. So f € C1(Q x [0, T]).
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So integrating over [0, t], with t < T, we have

1 1 t
! / O™ (t) do — / o (0)u™ 2(0) di + / / Va2 = 0
2 Q 2 Q 0 Q

Moreover

g
/me(o)|um|2(o) dr = /me(x,())luml2(%0) dz < |[olloo ™ (0113 < 170l oc ol 12

So we have

1 t 1,
! / PO () de + g / / Ve < gl (11.28)
2 Ja o Ja 2

We can also get rid of p. If > 1, then

t
Lorourpw dos [ [ 1venpds < olelul?
Q 0 JQ

and if p < %, we have

t
m m m ]- —
n [P o [ [ 190 e < gl
Q 0 JQ
and so

t — ~ 2 - 1 2
[ ) o [ [ 9 < Illolf o Qe - ol
Q 0 JQ

2u 21

Finally, we obtain

/me(t)|um|2(t) d:c+/0t/ﬂ|vum|2da;§ C (11.29)

that is the energy estimate. i

8Since
m oo
/|um| (w,0)dz = (o, w3 < 3o wh)3 = o3
k=1 k=1
K
being hm Z ug, W )w —uOHH1 ) = 0, and so in particular
K 2 2 K
(/ S ut, w0yt dx) ~ Juolla] < 'S a0, ¥y —uo||2<||2uo, Yt — ol ey = 0
Q=1 k=1

as K — 4+o00. So the estimate follows from
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11.4.2 An estimate on the velocity field

Proposition 11.7. Let Q be a bounded domain in R3. Consider the Navier-Stokes

problem over §) as in proposition 11.1 Letp, € CY(Q) and T > 0. Let p™ € C*([0,T] x
Q) and u™ € C*([0,T]; X™) the approzimate solutions built in proposition|11.1. Then

there holds the following estimate

1
-/ | dm—i—u—/ V| dx</ VRl (11.30)
2 Q d Q

for every t € [0,T].
Proof. Now we deduce an estimate on velocity. We choose ¢ = u}" € X™ and so
/ " ulPdr + / P (Vu™u™) - ude + u/ Vu™ - Vu'de =0 (11.31)
Q Q Q

We have )
/ Vu™ - Vu'de = / Vu™ - 0, Vu"dx = —/ 0| Vu™ *dx
Q Q 2 Ja

where we have used that V and 0, operate separately. Finally

/QVU -Vutdx—Zdt/]Vu °dx

using the regularity on the compact €. Moreover
mY,,m m ml|,,m m 1 m|2|,, m 2 1 2
(V™) -] < [Vu™||u[u?] < 5[V Pl + 5 ||
It follows that

/me((Vum)um) cuyt dx

1
/me\u 2de + th/ IV 2y < / m|Vum|2|um|2da:+§/Q M 2dz

Finally

1 1
< —/pm|Vum|2|um|2dx—|——/ " dx
2 Ja 2 Jo

So

1
5/9 Pl P+ th/ |Vu™2de < = / P VU™ Pl d

This inequality can also be written as

1
2/ P u lzd:c—i—,ud/ |Vu™| dq:</ P u| dm—i—,ud/ ]Vum\Qda;</pm|Vum|2\um\2da;
Q Q
(11.32)
that is the desired estimate. Wl
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11.4.3 A second derivatives estimate on the velocity field

Proposition 11.8. Let Q be a bounded domain in R®. Consider the Navier-Stokes
problem over ) as in proposition . Letpy € CY(Q) and T > 0. Let p™ € C*([0,T] x
Q) and u™ € C'([0,T); X™) the approvimate solutions built in proposition .

Then there holds the following estimate

IV2u™ll2 < C (™" l2 + lp™ (V™ yu™|12) (11.33)

for every t € [0, T]. Here C is a generic positive constant depending only on || po|| =,
IVugl|l2 and T, but it is independent of § and m.

Proof. We now want to use again ((11.31)) with ¢ = Au™ that is in X™, since

Au(x,t) = —PAu™(x,t) ZA t)PAw (z) = Z A ul(z) € X™

So we have
/ pluyt - Au™ + / P (Vu™)u™) - Audx + /L/ Vu™ - (V(Au™))dz = 0
Q 0 Q

We first deal with the latter piece. Equality (1.14)) says that, for functions in H*(Q),

3
Vu™ - V(Au™) = Z V- ((Au™);Vul*) — Au™ - Au™

i=1

and so

3
/ Vu™ - V(Au™) dx = Z/ ((Au™);Vui") - v do — / Au™ - Au™ dx
Q — Joa Q

where the first derivatives are classical derivativesﬂ since X™ C C(Q). Being Au™ =0
over 0f) (since X™ C H}()), we have

/ puyt Au™ —|—/ P ((Vu™u™)-Au™dz = _M/ Vu™ (V(Au™)) da = M/ Au™ AuMdx =
Q Q Q Q
= p(Au™, Au™) = —p(Au™, PAu™) = —p(Au™, P2Au™) =

—u(PAU™, PAu™) = —,u/ |PAu™|dx
Q

u/ |PAu™|*dx < / Py - Au™ + p" (Vu™u™) - Au™|dz <
Q Q

90bserve moreover that

and so Au™ € X™ C C1(Q).

216



< [ Ao + o ((Fumyar) da <

/ | Au™*dx + —/ ([P + [p™(Vu™)u™|?) da

Finally, remembering that A = —

m m m m\,,m m m m\,,m 2
2/!PAu Pdo < — (|| I3+ ™ (V™ 5) < = (o™ w2 + llo™ (Va™)u™ )

KIH

So we have

a0l < Y2l s+ 1 (V)
Moreover, thanks to (9.49), we know that for every ¢ € X it holds
ollx = |9l m2) < CllAd]2
So, being v € X™ C X it follows
V26 ly < ™z < ClAu™ 2 < C (o™l + lo™(Tu™yu )

where C' := %Q. i

11.4.4 First final estimate.

We want now to deduce an estimate that includes the previous. In other words, we
dedicate the following subsection to prove the following proposition.

Proposition 11.9. Let Q be a bounded domain in R®. Consider the Navier-Stokes
problem over ) as in proposition . Letpy € CY(Q) and T > 0. Let p™ € C*([0,T] x
Q) and u™ € C'([0,T); X™) the approzimate solutions built in proposition .

Then there holds the following estimate

/Ot (Ivomug2(s) + ||Vum||?{1(3))ds+/9|Vum(t)|dx < ,C+,C/Ot (/Q |Vum|2dx>3d3

(11.34)
for every t € [0, T]. Here K is a generic positive constant depending only on || po|| e,
IVugl|l2 and T, but it is independent of § and m.

Proof. Remember that u™ € C([0,T]; X™) and p™ € C([0,7T],C*(Q)). Further-
more we have proved that
[u"™]]2(0) < luoll2 (11.35)

[Vu™[2(0) < [[Vuol|2 (11.36)

By the previous subsection we have obtained
IV2u™l2 < C(llp™ w2 + llo™ (Vu™)u™||2) (11.37)
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It follows that™]
Va7 < 202 ([0 w5+ 1™ (Vam™u™([3) < 202 (1™ |oo (Vo™ up 5+ 1Vem (Vu™)u™|13)
Remember that |[p™||« = ||7glleo and that

Po < lpolle +1 = [[Bolloe < llpolloc +1

Finally we have

V2™ 13 < 2C*(lpolloo + D (Vo™ ui 3 + Ve (Va™ )u™|12) (11.38)

Now we choose € > 0 such that 8C?%(||po||oc + 1) < 1. Hence we can estimate the term

1 d
/(—pm|u;“|2+£|Aum|2) d:v+u—/|Vum|2dx

In fact,

1 1
€v2m2d< v2m2 < Z mm?_,_ mvm m (|2 —
[ AV s € g IV e < (VA V(T )

1 1 1 1
- / P / o (VY e < / o P + + / o[ P 2
4 Jo 4 Jo 4 Jq 4 Jo

where has been used the operatorial norm property |(Vu™)u™| < |Vu™||u™|. So, we
have

1 d
/ (=p™ "] + €| V2u™]?) dx+u—/ |Vu™?dr <

1 1 d
< —/pm|u;”|2d:n+—/pm|Vum|2|um|2d:L“+,u—/ |Vu™|*dx
2 Jq 4 Jo dt Jq
and using the estimate (|11.32) we get

1 d
/ (=p™ "] + €| VZu™]?) da:+u—/ |Vu™?dr <

<3 [ v PP < il [ 190" Pl Pds < Slmlety) [ [9unPlePds
Q Q Q

always using invariant property of the ¢g-norm for the density solution.

Since € € (0
and get

1 . . . . .
,m) is arbitrary, we can send ¢ to the right bound of its interval

1 2 1 2 2> d / 2 ) / 2 2
™Mt + V™7 | det+pu— Vu™|dr < = ot+1 Vu™ |7 |u™ | dx
(11.39)

OSince (z +y)? < 222 + 2y°.
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We want now to estimate the term
/ |Vu™? |u™ [*da
Q

First of all, we simply apply the Holder inequality to [u™|* and |Vu™|? with exponents,
respectively, 3 and % It follows that

3 3
[ 1vrpher e < farppalvarply = ([ weeae) ([ vapan) = e givaes

Now, using interpolated Holder inequality, with v =3, ¢ =2, r =6 and o = %, we get

PR I
So,
/QIVU’”!ZIU’"% < e [§IVa™ 2l Vu™ s
Now we apply Sobolev-Gagliardo-Nirenberg inequality, that gives us

[u" [l < AlIVu™]5

In this way
™2 Vu™ (|| V™ |6 < A2 VU™ (I3 V™|

The constant A is independent of the domain we are considering, thanks to the fact
that u™ € H}(Q) = W,*(Q) can be approached with smooth functions having compact
support contained in ().

Now we want to estimate the term ||Vu™||¢. The function Vu™ takes value in a matricial
space, so usual Sobolev-Gagliardo-Nirenberg inequality seems to not hold. However,

we can observe what follows. We will not repeat the argument in similar situations.

Let u a vectorial function. So we have

1 1
6 6
|Vul|e = (/ |Vu|6d:c> = </ (\/|VU112+\vu2|2+yVU3|2)6 dx)
Q Q

where has been used that if A is a matrix then |A| = |[AT| = \/|A1]2 + ... + |4, |2, with 4;
the i-th colomn of A.
Moreover Vu; € H(Q), since u; € H?(). Using Sobolev estimates for W2(2), we found

IVuille < M{|Vuillwrz )

where M depends only on p,n and € but it is independent of the function in W12(€2) that
we are considering, so that M does not depend on 1.
It follows that

[NIE

1
IVulls = [IIVu1* + [Vuzl? + |VusP[l3 < (11Vur s + [ Vuzl*lls + [[[Vus|*[s)
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=

1
= (IVurllg + IVu2llg + 1Vusl§) > < M(IIVurlfprei) + IVu2llfe + [Vuslfyieg)
Remembering now that
IVulln = [ [Vuido+ [ 9(Vu)Pds
Q Q

and that

IVl = [Vulwro = (X [ 1p2(v0) da:) - ([ T 10w dw)

la<1 o] <1
together with |Vu|? = |[Vuy|? + |[Vug|? + |Vus|? and
IV (V) = |V(Vur)? + [V (Vug)|? + |V (Vusz)|?

where V(Vu) is the three- dimensional tensor of second derivatives, id est, it is the collection

of three matrix, namely {V(Vu;)}?_,. If T is a three-dimensional tensor, its norm is given by
T]> = Z Tz%k
ijk

It is thus clear that

3
D IVuillfiiey = Vullin

Finally
HVUHG § MHV’LLHHl (11.40)

Hence, retracing our steps, we have
/ (VU2 |u™ P dx < Aol | Vu™||3]| V™ || g (11.41)
Q

where Ay 1= A%2M.

We turn back to our estimates. We want to use the following Young’s inequality:
if a,b >0, %—I—%:land5>0,then

ab < ea”? + C(e)b?

where C(g) = (ep) r¢~'. Going on, set C' «— C in (1.39), and let C' > 0 be arbitrary.
So, if we choose ¢ =p =2, a = \/%*CHVUmHm and b = Agv8C||Vu™||3. Tt follows that

€ 2C
Ao Va3 Vu™ || g < @HW’”H% + 7A§!\VUMHS

for every C' > 0 and € > 0. Finally

1 2 1 2 2) d / 2
Pl —= Veu™ dx + Vu™|“dx <
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=] Ot

5 m m
< Sl +1) [ [V Plumfs <
Q

We have already noticed that

€ " 2C "
(Il + 1) (Ve + 203170 8)

/ V2u2de = |V2ul2 < ||Vl
9]

since the latter Sobolev norm in H! = W2 also includes the O-derivative terms. Here
Viu = V(Vu) is the tensor of second derivatives (that is a three dimensional tensor).

1
Let po : mln{4, 82 (Ipo et D)’ 1+6T} So

" / o P o[V sy / Va2 <
Q

] 1 1 d
< —p" a4 — v2um2) dz + po||Vu™ |5 + —/ Vu™|?dx <
/9(4 PP+ S IVl + sy [ 90

2C

< o[ Vu™ 13 4+ = (llpolloc + 1) { =5 IVu™[|F + —AG[|Vu™||3
4 C 3

So, since po > 0,

d
/ P uy? |2dx + ||Vum||H1 + # —/ |Vum|2dx <
Q dt

< V™l + 7(loolloe + D gm— VU™ [l + 5 (HpoHoo +1)—— AZHV [}

8C’
and it follows that

VA 1+ (1= 5l + D ) IVl + 2 (vunias <

5 2C
< |IVu™ 2 e - 1 _A2 Yu™ 6
< Va3 + 7 (llpoll + )2 Nl I2

We can integrate this expressione in (0,t), with 0 <t < T. So
t ) 5
[ IV iBs)ds + (1= LAl + [ 19 ias + 24 [ agsyis <
0 4 8(]

t t
< / IVamIB(s)ds + T / IV [5(s)ds
0 0

where C' := 3(||po|| + 1)%/\% and a(t) := 4| Vu™|3(t). Now, using that |[Vu™||3 is
the anti-derivative of «, we have that

poft p

— [ a(s)ds = —(|[Vu™[[5(t) — [[Vu™[[5(0))

Ho Jo Ho

USince || Vul|%: = [[V2ul3 + [[Vul3.
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and
[ 19 eds < [ s [9u ) < 7 s (90
0 s€(0,t) s€(0,t)

So

4 5 € ! H
mum2sds+(1—— oo+1—)/ Vu™||%:(s)ds + —||Vu™||3(t) <
/O VP ug([5(s) 7 Lol )86% i VU™ {5 (s) uoH 12(¢) <

t
1% m m al m
S—IIW 15(0) + T sup [|[Vu H%(SHC/O [Vu™|5(s)ds

s€(0,t)

o 4 P L
IIVUOHz +T sup [Vu™|3(s) + C/ IVu™13(s)ds
s€(0,¢) 0
This is an inequahty 1nv01v1ng functions depending on ¢. If t < 7 < T we can pass to
the supremum for ¢ € (0,7). If 1 — 2(||polle + D st

Each piece is bounded by the right side, being every term a postive term. So

t t
m ,LL m al m
/0 IV s < L [9ulf+ T sup [Vuml(s) +C / V™ |5(s)ds

s€(0,t)
and thus

t
sup [ IV (s < s ([Tl s [ B(s)+C / IV 5(s)ds) <
0

te(0,7) te(0,7) s€(0,t)

< —HVugH2+T sup sup HVumH —1—0 sup / HVumH

te(0,7) s€(0,t)

and analogously

)
1—- 00 Vu™ ds <
(1= Jmle g ) s [ 19wy <

< —HVUOH2+T sup sup ||Vum|] —|—C sup / HVumH
te(0,7) s€(0,t) te(0,7)

and also

t
I m m al m||6
— sup [[Vu™[3(t) < —HVUOH2+T sup sup [[Vu™||5(s )+Ctsgp)/o IVu™]5(s)ds
(0,7

Ko te(o,r) te(0,7) s€(0,8)

On the other hand we havd™

sup { [ v+ (1= 2mle + 055 [ I96m B+ £ sup [0 H%(s)}S

tE 0 ‘I' 0 86(077)

12Notice that
sup [|Vull3(s) < sup [[Vul3(s)
56(07t) 56(0)7—)
since (0,t) C (0,7). So

sup sup [[Vul3(s) < sup [[Vul3(s)
te(0,7) s€(0,t) s€(0,7)
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5 €
< swp / /7 2(s)ds+ (1= 2 ([l pollee+1)—— ) sup / V|2 (s )ds—i—— sup [Vum|[2(s) <
4 8C' 1o

te(0,7) te(0,7) s€(0,7)

<3{*HVU0||2+T sup - sup [[Vu™|3(s) +C sup / IVu™[5(s)ds} <
te(0,7) s€(0,t) te(0,1)

<32Vl + 37 sup [Vun[3(s) + 5 s / IVam(s)
s€(0,7)

The first left side is the supremum in (0,7) of a continuous functionE of ¢, thanks
to the regularity of the solutions and their derivatives and to the compactness of the
domain. So, the supremum equals the maximum on the compact [0, 7], and thus

5 € T
/ I l3s)ds+ (1-2(loollso+1) o / Va2 (s)ds+ 2o sup [Vu[3(s) <
4 8Co /) Jo

H0 se(0,7)

< s { [ ivmaigsds + (1= 2mle + 055 [ 196+ £ sup [ H%@)}s

te(0,7) 0 s€(0,7)

<3*HVU0H2+3T sup [ Vu”[3(s) +3C sup / V™ [8(s)ds <

s€(0,7)

LKl 7
<3*HVUollz+3T sup || Vu'™|3(s )+3C/ IVu™|3(s)ds
0

s€(0,7)

Now we can derive the estimate

T m 5 € ! m
[ s+ (1= Sl + 05 ) [ 19 sas +

+ <ﬂ —3T) sup ||[Vu™|5(s) < 3’uﬂHVuoH§+36/ [Vu™||5(s)ds
0 0

Ko s€(0,7)

Remember that

— 2C
C:= (”p()Hoo + 1)7/\2

Moreover, we choose € > 0 such that

5 € 1 16C ug
1= 2ol + D > = e 22O 11.42
a Il V5607 2 = Sl + 1) )

13The integrale of summable functions is continuous.

M4Gince 7 > t we have
t T
/O IVul(s)ds < / |Vul3(s)ds

t T
swp [ IVuli(s)ds < [ [Vulfs)as
te(0,7) J0O 0

and so
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With this choice, it follows that™]

1 ! m 1 ! m 1 m
5 | IWmras 5 [ IV ads+ 5 sup Va3 <
2 0 2 0 QtE(O,T)

<32 Va3 + 50 [ [V is)ds
Ko 0
So, doubling the inequality,

/ VA" s+ [ ||Vum||H1ds+ s IV 5(e) < 625 Vuol+6C / V™ |5(s)ds
0 0

0,7)
(11.43)
Finally we take

K= max{6ﬁ, 6C'}
Ho

and we can rewrite the inequality as

| Ivararigas + [ 1vands+ s 1m0 < KIwlE 6 [ Ivanieds

te(0,7)

(11.44)
Remark 11.14. The constant p is defined as

1 . {1 1 2 }
= —min<{ —, — ,
PO M T 82 (Jpollw + 1) T4 6T

depend of initial data po, the viscosity u, the time T" and the constant C. The constant
C, in turn, is
V2

C=--C
i
where C is such that

|pl2e < Cl|AD|2
for all € X. On the other hand, we have

2C
(||Po||oo + 1)7/\2

where C' > 0 is arbitrary and € > 0 depends on pg and pg as in the relation ((11.42)).
Finally, A is given by Sobolev inequalities.

15 Also remembering that

1
Ho {Z 2 1 6T} =1 6T
8C2([lpolloc +1)" 1+ +

and so 14+ 6T )
LY P —37 =

Ho
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11.4.5 Second final estimate

Proposition 11.10. Let Q be a bounded domain in R®. Consider the Navier-Stokes
problem over ) as in proposition . Let py € CY(Q) and T > 0. Let p™ € C*([0,T] x
Q) and u™ € C'([0,T); X™) the approvimate solutions built in proposition .

Then there holds the following estimate

t t 3
/pm|u?””|2(t)da: +/ /|Vu§”\2dxds§0’+K'/pm|u§”|2(7)dx+0'(/ HVumHg(s)ds)
Q rJo Q 0
(11.45)

for every t € [0,T], 7 € (0,t). Here C', K" are generic positive constants depending
only on ||pollre, |Vuolle and T, but independent of § and m.

Proof. For the goal of doing other estimates, we remember that
wp(a,1) € C(0, T); X™)

and the continuity holds also for v;". Moreover we have already said that the derivatives
with respect time are classical derivatives. Furthermore p™ € C*([0,7]; C*(2)) and the
sequence p™ is uniformly bounded by ||po|| + 1.

Thus, we deduce a further estimate. Consider again the equation
/{(pmu;” + (W™ - Vu™) - ¢+ pVu™ Vol de =0 Voe X™
Q

We want to differentiate this relation with respect t. We know from above that u™,
Vau™, ult, Vu, u} are regular in classical sense in the temporal variable. So, if ¢ € X™,

/{(p;”u;” + p"ugy + pft (W™ - Vu™) + p™ (u™ - Vum)t) o+ puVut - Vol de =0
Q

since the derivatives can pass under the integral sign, having the functions (and their
derivatives) integral bounds uniform in the temporal variabld™® In other terms, it
follows that

J a2 T 47 T 47 0T 4V V) i =0
Q

(11.46)
Choosing ¢ = uy* € X™ in ([11.46)) and reorganizing the expression we get

pm d m m m m m m m m m m m m m
/9{7%\% 2+p™ (u™ Vuy - Vu™) u +p| Vu*} do = —/Q{pt (u)"+u™Vu™)u} da

Remembering that
u™ - Vo™ = —p/" (11.47)

161t is enough to estimate the temporal part with its maximum in [0,7]. The remaining function
depends on x and is a linear combination of element of the basis. The integrability of this functions
follow from the fact that the elements of the basis (and their first derivatives) are summable in the
bounded domain €.
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and that
Viu'|* = 2(Vui)uy

one gets
m pm m m m m m m m
/{ 2 dt |2 * 7(u - Vg |2) + ™ (ug" - Vu™ ") 4 p Vg |2} dx =

/{(um V™M) (u]t A+ u™ - V) '} da
Q

Moreover, thanks to the regularity of the first derivatives, and using the divergence
theorem (or integration by parts), we get

| ) de = [ ram) - VG
= [l Punyde = [ S V- (e -

1 -
:_/_luzn‘Qv( m md 1.4 / m|2dl‘
Q

where has been used the generalized divergence theorem and the fact that «™ = 0 on
o0f).
Also observe that

m 1
Oi(p™ |ut | )_Pt 2|ut |2+pmat( |Ut | )

So, usign these relations in the main equation, we get
oL lul ) + o - V™ - w4 Va2 ) da =
o by Py t KV Uy =

= [ {(u™- me)(ugn +u™ - Vum) ~uy'} dx
Notice furthermore that
V- (o) = Vo 4 o ™ = V"
since V - u™ = 0 by construction. So

d

@), —|ut ]2da:+u/ IVul"|*de =

= / V(") (w4 u" - V™) - u e — / P (u - Vu™ - uy) dx
Q 0

using the regularity of the derivatives and the fact that the closure of €2 is compact.
Now we have to deal with the right side of the latter equation. Using again integration
by parts, we have

/ V(") (u) 4w V) - utde =
0
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= /QV~{pmum ((u* +u™- Vu™)-u*)} d —/Q(pmum)-V((u?+um-Vum)-uT) dx =

_ /Q(pmum) V(" + a™ - V™) - o) do

where the whole divergence piece is the integration of a trace piece; thanks to the fact
that all the functions are continuous on 2 and that «™ = 0 on the boundary 92, we
have the last equality. We use now some derivation rules. In particular

V{[u/ +u™ - Vu™] - ul"} = V" + Vu™ - Vu™ - ul"] =

= V|u"[* + V[(Vu™)" - u™) - uf"] =
=2u" - Vu" +u - (V{(Vu™)T - u™}) + (V™) - u™] - Vul

Using that
V(Ab) = b V(AT) + AV
we have
V((Vu™T - u™) =u™ V(Vu™) + (Vu™)T - Vu™
So

V{lw" +u™ - V] < 20 [V |+ [V (V™) ™)} |+ Ve | [V o] <

< 20" [IVuf] + [ [Ju™ [ V2™ + [ [ V™ [ + [V [ Vu™[u™|

Hence
/ V- (p"u™) g +u™ - Vu™ )t de| <
Q
<2 / o[V [u e+ / o 2 dat
Q Q
n / ol [V P + / P [V |

Q Q

Moreover

/ P (VU™ w)t) )t da
Q

Finally we obtain the estimate

< / P VU [ul [P dx
Q

— —|u;“]2d:z:+u/Q]Vu§”|2dx:

= / Vo (p™u™) (u + ™ Vu™) - ude — / p"(uft - Vu™ - u) de <
Q Q

<

/V (") (ut + u™ - V) - uptde — / P (uyt - Vu™ - uf) dr| <

Q Q

< / V- (pmu™) (u + u™ - Vu™) - )| d:E—l—/ o™ (uy - Vu'™ - uf")| de <
0 0
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<2 [ |Vl do+ [ ol P9 de
Q Q
+/,0m|umHu;”||Vum\2dx+/pm|Vu§”HVumHum\2dx+/pm|VumHuI”\2da: (11.48)
Q Q Q

We now want to obtain further estimates involving some Lebesgue and Sobolev norms.
For this goal, we rename the last five pieces. We define

R T A A W T T
Q Q

1, ;:/pmyummumw%mux 1L ::/pm|um12\vu¢y|vum|dx
Q Q

I5 = / " VU [ul P dx
Q
We will do massive use of well-known inequalities.

For the sake of semplicity, we deduce estimates for a pair of sulutions (u, p), avoid-
ing the apex m.

1. First of all, we have

1
2/ plullu[Vu|de = 2/ Voluly/plug [Vuglde < 2| pl S [[ulle[|v/pouells[| V2
Q Q

using the generalization of the Holder inequality. Now, using the Holder interpo-
lated inequality, we have

Ipulls < IVl [1v/puell§ (11.49)

So
1 1 1
Iy < 2||pl|5 ullol[v/puel |3 | v/owell§ Vw2

But we can do further estimates. Consider that

1
1 12 1 1
IvVpull§ = (/Q pg\ut!6dm) < [lpllSlluell
On the other hand, by Sobolev inequality, we get
[urlls < Crl[ V2

[ulls < Cal|Vulla

where the two constants can be choosen independentely by the domain because
u € H(Q).
So we have s s )

I < Clpll3 V|3 | Vull2llv/ou 3
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where C' := 2,/C;C5. Finally, we use the parametric Young’s inequality, with
3 3 1
p=13, q=4 a=|[Vul3 and b = C’||p||&||Vull2]l\/puel|3. The result is

I < ||Vl + Cel[Vull]louel3

3
where (H,0||§o)4 = Ipll2, = lIPoll%, < (Ilpolleo+1)? has been included in the constant
C..

. Now we have, also using the generalized version of Holder,

L/ﬁWMUMVWFdxﬁ|Wmn/"WHWHVUHVUW$S
Q Q
< lollollallslaellll Falls |Vl
Again, thanks to Sobolev inequality, and using ((11.40)),
lulls < CuIVulle, llwrlls < CallVarllar  1Vulls < Cll Vel

Here C; and C, are independent of the domain since u, u; € H{(2). The constant
C3 depends a priori on the domain. So

Iy < Cllplloc [ Vulla[ Va2Vl a1 [Vl

where C' := C1C5C5. Finally, again by the parametric Young’s inequality, with
p=q=2and a=||Vuls, b = Cl|pllec||Vull5]|Vul| 71, we have

L < el|Vuel3 + Cel|Vull3] [ Vul

where also this time [|p||s has been replaced with [|pg||s + 1 as above.

. This point is similar to the previous. We have
Lmﬁww%wéWMAWWMWWmﬂ%mLMWMW%MS

< (Ilpollse + Dlellgllreello ]| V212

and using

lulls < CillVulla flule < Col| Vel

we have

Is < (lpolloc + 1)CT I Vul3C ] Ve ||Vl

Again C] and C5 don’t depend on the domain. Again by parametric Young’s
inequality, with p = ¢ = 2 and a = [|Vu[|s, b = CFCo(lpollee + 1)[[Vull3][Vull2,
we have

I3 < €| Vel + Ce[|Vul5][Vull3
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4. We have, always by Holder,

/ plu2I V| [Valdz < [lploc / 2 [V [Vulda = 17 1 / lJul| Ve [ Vel <
Q Q Q

< (Ipollso + Dllullgh Veuell2l Vulls
So, being, by Sobolev inequality,

[ulls < CylIVulla

and again by ((11.40))
[Vulls < Ca| V|

Here the situation is similar to a point above: (] is independent of the domain,
while Cy depends on the domain and this dipendence can be specified, as will be
done in future.
Thus

Iy < (lpolloe + DO [Vull3 Vuell2Col Vul 112

By the usual parametric Young’s inequality, we have, with p = ¢ = 2 and a =

IVuell2, b= CECa(llpolloe + DIVullZ Vel

Iy < el|Vugl3 + Ce||Vul3][Vul

5. We finally deal with the last piece. We have, also by the interpolated Holder’s
inequality in ((11.49)),

/QpIVUHUtde:/Q\/E|VU|[\/ﬁ|utl]lut|d:vS IIﬁolléo/QIVUI[\/ﬁlutl]lutldﬂf <

1 1 1 1
< [[Bollsolv/puells ([ Vullalluells < (lpollse +1)2 1v/puell3 Ivouellé 11V ell2]luells
and being
1 1 1 1 1
Ivpulg < Nlpolloolluellg < (lpolloo + 1) %[l

and
uells < C1l[Vuello

where the constant ('} is independent of the domain.
We have

3 1 1
Is < (llpolloe + D)2 IV/puell3  Cil[ Ve[ [ Vul 201 || V|| =

3 1 3
= Ca(llpolloo + 1)1 lVpw]|3 [Vl [[ Vel

3
where Cy = C}.
3
Finally, by Young’s parameltric inequality, with p = 3, ¢ = 4, a = ||Vu[|3 and
3 ES
b= Callpollee + 1) 5 [[y/puell3 [[Vul|2, we have

I5 < e[ Vuel3 + Cell /pud3] [ Vull;
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We continue for a moment to use this notation, avoiding the apex m. Equation ((11.4.5))

can be written as .
d [p
— | Z|uPda + u/ Vu|Pde <Y I
dt o 2 O ; !

More explicitly, using the estimates just deduced,

ot

Z el Vuellz + Crell Vullallv/puell3] + [ Vaell + CoclIVulla | Vull ]+

Hell Vel + Cs eI Vullo I V3] + [l Vuel3 + Cacll Vull3 [ Vulli ]+
Hel Vel + Cs cllv/puel 2 V2] =
= 5| Vue|lz + [Vull2{(Cre + Cs.0)IVpuells + (Coe + Cad) | Vullin + Cso[[VPull3} <
< 5e[[Vuell; + [Vull2{(Cre + Cs.o)llv/pullz + (Coe + Cie + Cs.0) | Vulln }

So
d

dt
< 5e||Vue|f5 + HVU||2{(01,a + Cs ) lvpuell3 + (Coe + Cae + Cs.0) | Vullin }
that is

Iutl dz + pl| Ve 3 <

d
dt

< [IVullo{(Cre + 0575)”\/7)%“2 +(Coe + Cie + Cs.0) | Vullfn }

Since the inequality holds for every ¢ > 0, we can choose € = {5 and we get

|Ut| dz + (1 — 5¢)||[ V|3 <

d

pr pIUtIdev+MIIVUt||2 < [IVull{Cullvpulls + ColVull3: }

Integrating over the interval (7,t), with 7 > 0, we haveE|

t t
[ olul o = [ pufyisra [ [ [VuPdeds < ¢ [ ValilyzulEvar s
Q Q T JQ T

and so

t t
/Q plus2(t)de 4 / / VuPdeds < C / IVl {11/l Tl s + / plusf2(7)dz

Q
(11.50)
Now we deal with the third piece. We get

t t
2
/ IVulla{llv/pulls + HWH?p}dé‘:/ (IVull3) {lvpulls + [[Vullf } ds <

< (s 17U ) / (ul? + [Vuly) ds

s€(0,t)

17C = max{C1, C1}.
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Remember now the inequality (11.43) deduced in the previous section, i.e.

t t t
/ IVAulds + [ [ Vulfpds + sup [Vull(s) < 62 [Vuolf + 6 / IallS(s)ds
0 0 0

s€(0,t)

We can read in ((11.43)) the following inequalities,
t t t
/ |/purl2ds + / IVulfsds < 62| +6C / IV all$(s)ds
0 0 0

t
sup [Vl3(s) < 671Vl + 67 [ [Fults)as
0

s€(0,t
and . .
62 [Tl + 6 / IVullS(s)ds < My + M, / IVallS(s)ds
0 0 0

where M is the maximum of the two constants. We have

t t 3
[ Il + [Vl s < {Mo T My / ||w||3<s>ds} (1151)
Remember now that (1 )3
+y
< 4 >
T3 =4 W20

and so

M3 (1 n /Ot Hqug(s)ds>3 < 4M§‘{1 + (/Ot IIWHQ(S)d8>3}

Finally, using (11.50|) and (11.51)),

t t
/p|ut|2(t)dx —l—,u/ /|Vut|2d$ds§/p|ut|2(7‘)d:r+4CMg{1+(/ ||Vu||g(s)ds)3} —
0 r Jo Q 0

¢ 3
= 4C'Mg’+/p|ut|2(r)da:+4C'M§(/ ||Vu||g(s)ds)
Q 0

Looking at a left piece a time, and dividing for i, the equality can also be rewrite as

t
/p|ut\2(t)dx —i—/ /|Vut|2dxds§
Q T JQ
4 3 1 2 4 s( [ 6 ’
< (44— |CMyg+(1+— plu*(T)dx + {4+ — |CM; |Vulls(s)ds | =
H K/ Jo H 0

t 3
_ C’+K’/ plug2(7)dz + c(/ Hvuug(s)ds)
Q 0

where the constants have been renamed.
We write the just deduced inequality in a line, remembering the dependence on m:

t t 3
/pm|u§”|2(t)dx —I—/ /|Vu;”|2dmds < C'+K’/pm|uf‘|2(7‘)dx+0'(/ ||Vum||g(s)ds)
Q 7 Jo Q 0
(11.52)
that is out thesis. ll
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11.4.6 A third final estimate

This proposition states a slightly different version of the previous one.

Proposition 11.11. Let Q be a bounded domain in R®. Consider the Navier-Stokes
problem over 0 as in proposition[11.1. Let 5, € C(Q) and T > 0. Let p™ € C([0, T] x
Q) and u™ € CY([0,T); X™) the approzimate solutions built in proposition .

Then there holds the following estimate

3
/ Pl ()dx—i—/ /|Vu;"|2 dr ds < C" +C"Cy" +C’”</ [ Vul5( )ds)

Q

(11.53)

for every t € [0,T]. Here C" is a generic positive constant depending only on || po||Le,
IVuol|l2 and T, but independent of § and m. On the other hand

G" = [ (30 () = Vo[
Proof. We consider again the equation
/Q{(pu;" +p"u™ - Vu™) - ¢+ pVu™ -V} dr =0
for ¢ € X™. Choosing ¢ = u}", we get
/{pm\uﬂz—l—p u™ - Vu™ w4+ pVu™ - V' de =0

Consider now py € H'(Q), that is fixed as in proposition |11.1, We have, using integra-
tion by parts, that

/Vpo-u;"dx—/v-(pou;”)dx—/pov-u;"d:v—()
Q Q 0

since the trace of u}" is zero at the boundary of Q (here we are using the argument
in section ([£.7.1) with «™ € C'(Q2)) and also V - u* = 0 in Q. So we can rewrite the

equality above as

/p |uy”| dx——/pmum-Vum-uzndx—u/Vum-Vulndx—/Vpo-u;”dx
0 Q Q

Observe that
/Vum-Vu;“dx:—/u;n-Aumdx
Q Q

thanks again to the result in section (4.7.1)).
So we have

/ PP dr = — /pmum-Vum~u;”da:+u/u;"‘Aumdx—/meu;"dx:
Q Q 0

= /(—pmum -Vu™ w4+ pAu™ -t — Vpg - u)t) de =
Q
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_ /Q(—\/p_mum V™ 4 \/%[uﬁum = Vo)) - (V™) d

thanks to the fact that p™ > ¢ > 0. In absolute value, we have

/ "y | dx</|—\/ my™ - Vu'™ +—[,uAu — Vpol| WV pmuyt| doe <
Q VP

1
< [ W vunmlas + [ | = V[V <
< [ WVl + [ | = Tl <
E m m m|2 m
< [ 1o o) det [ (e = O 4 om ) da

1
:/pm|Vum|2]um|2da:—i—/(pm)_lmAum—Vpo\de—l——/ P ul P da
Q Q 2 Jo

So we get

1
! / P P < / P P P + / (") uda™ — Vpoda
2 Q Q Q

/ P ul P dr < 2(/pm\Vum]2\um|2dx+/(pm)_1|uAum—Vp0|2da:>
0 Q 0

We can rewrite this inequality at the time 7, that is

that is

/Q () () de < 2( / o () [V () () e+ / (Pm)_l(T)|NAUm(T)—VP0|2dI)
(11.54)
Our aim is to take the limit for 7 — 0.

We have to do some considerations. First of all, for every 7 € [0, 7] we have

P (1) < P () lloo = lIPolloe < llpolloo +1

18Using

for every € > 0 and a,b > 0. This is a particular case of the Young’s inequality. So, if e =2 > 0,

2 20|V 2 9
|\/ﬁ”vu|\u||\/ﬁut|§p‘zt‘ L 20 @24 lul

and

1 plug|*  2p7HpuAu — Vpol?
I <
I\/ﬁ[u u = Vpolllvpu| < ==+ 5
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On the other hand we have (p™)~!(7) < 3. Remember now that

=Y Ap(ut (@),  |Au®)] < [Au(0)| <R V€ [0,T)

k=1
(here | - | is the usual Euclidean norm). Consequentely we have
= Z A )V (2), Au™(x,t) = Z A
k=1 k=1

and finally

= O Api(t)w*(z)

k=1

Moreover we know that A,, € C'([0,7]). So we find the following bounds:

| (z,1)| < R (Z Iw’“(w)|> V(@ ) < R (Z IVw’“(w)|> :
k=1

k=1

[Au™(z,t)] < R (Z IAw’“(:v)|> o (e t) < Rg Y Jwt(e)

k=1
where R := ﬁn%? |0, A,,|. Observe that the bounds are uniform in ¢ and are in L*(Q),
0,

since w® € H?(2). We now have summable bounds for the integrands above: in fact

NP < (ol + DED) <Z|w ) Q) (11.55)

() IV PP < (olloe + DR (ijw |)2(k2m;|wk<x>|)2s

s<||po||w+1>R4(§;|w )(é ’fuoo)zeﬂ(m

where ||w"||o = max |wy| since w* € C*(Q).
0

Finally
(p™) (1) [pAu™ (1) = Vpo|* < 207" (1| Au™*(7) + [Vipo]?) <

< 257! (w(i rAw%)\)Q + W) e 1)

where the summability is dued to fact that p, € H'(Q) and Aw* € L?(Q2). Since the
following limits exist

lim ™ (7)[uf"*(T) = polug™(0)[*,  lim p™ ()| Vu"™(7)[u™|*(7) = po| VU™ [(0) [u™[*(0)
T—0t 70t
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lim (o)~ (1) |pAu™ () — Vpol? = ()~ |du™ (0) — Vo ? (11.56)

T—0t

where p, > 6 > 0. We used the continuity respect with the temporal variable: in
particular, we have, in example

1AW ()= 2™ (O)l2 = 11 ) (A (7)— A (0)) Auw* | < Z e (0)[[| Aw*[|z — 0

as 7 — 0". This means that, provided that we understand the limit along a sequence,
Au™(7,) = Au™(0) almost everywhere in 2.
So, thanks to the Lebesgue dominated convergence, we have that also exist the limits

i | () 2(r) di = / Polul (0)? da

T—0t Q

T—0T

lim (/Qpm(T)|Vum\2(7)!uml2(7)dﬂf) I/QﬁOIVumIQ(O)IumIQ(O) dx

i ([ () e ) = I ) = [ o)t (o) - Ol do

T—0t

So, taking the limit both sides in the inequality (11.54)), we have

Lm | p™ ()" (1) dxz/ lim (o™ (7)|u"*(7)) da

T—0t (9] Q T~>0+

< 2/ Po| V™ [*(0)[u™]*(0) dz + 2/(50)_IIMAU’”(0) — Vpo|* da (11.57)
Q Q
We have already proved that
IVu™[|2(0) < [[Vuollz [[u™[]2(0) < [luoll2

for every u™ approximate solution. So, we can estimate the integrals in (11.57)) as

/ﬁOIVUmF(O)!umF(O) dz < ([[polloo + 1)/ [V [2(0)[u™[*(0) dw <
Q Q

< (Ilpoll + D)llu™ 1% (0) /Q [Vu™[2(0) dz = (Ilpollee + D[u™ |5 (0)IVu™[[5(0) <

< (Ilpollse + D)l (13 (0) I Vo I3
So, using lemma [9.6] it follows that

N

la™(O)llse < e(llAum()12)* (I7a"(0)[12)* < e(|Au™(0)]12)* (| Vuoll>)

Moreover, we know that

[Au™(0)[]2 < [|Au™(0) = Auglls + || Auol|,
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Observe now that
|Au™(0) — Augllz < V5[V (u™(0) — ug)|l2 < V/5[[u™(0) — ugll g2 < 1

for some M € N, and every m > M. In fact we have that «™(0) — ug in X equipped
with the H? norm. So

3 1
[u™(0)]15 < ¢*(1+ [[Auoll2) * [ Vuoll3
for every m > M. Notice that, defining
3 1
Ey = max{c’ (1 + [|Auoll2) * [[Vuoll3, [|w™(0)[15: m = 1,....M — 1}

it holds
||um(0)||io < E, VYm € N

So Fy does not depend on m. Thus, we have
/Qﬁ0|Vum|2(O)|um|2(O) dz < ([lpollee + 1) Eol Vuoll3 (11.58)
Remember now the inequality (11.52)

t t 3
/p|ut|2(t)dx +/ /\Vut\zda:ds§C'+K’/plut|2(7)daz+0’</ HVUHS(S)dS)
Q r Jo 0 0

So taking a sequence 7,, — 07 as n — oo, we have

¢ 3
<(C'+ K' lim /pm|u;”|2(7n)dx+0'</ [Vu™[5(s) ds) < (11.59)
2

0+2WWmMﬁiﬁwVw%+2W(/@JWMMW®—VmFW)+
Q

¢ 3 ¢
—|—C”(/ V™ ||S(s) ds) <O+ 0"C" + C’”(/ V™ ||5(s)ds)?
0 0

where C” is the maximum between the constants that depend only on the initial data

and
——m

Co:/@JWAW®—WWM
Q

Finally, since ||Vu"||3(s) is integrable in timd™| (since u* € C([0,T]; X™)), we have
that . .

/ /]Vu;”|2dxds—>/ /|Vu;”\2d:cds as n — 0o

Tn JQ 0 Q

IV ll2(s) = IV fa(s0)| < IV (s) = Vai (so)ll < D 10: A (8) = B Aman(s0)|[|[ V¥ (|2 = 0
k=1

Y0bserve that

as s — 8. S0, the function is continuous.
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We finally find
t t 3
/me|u;n|2(t)dx+/o /Q|vum2dxdsgc"+c"c_0m+o”</0 IVull8(s) ds) (11.60)

Remark 11.15. In equation (11.59)) we have considered the limit lim / PP (r) do
T7—0 Q

as a number, also estimating it, since we have proved above that the Lebesgue dominate

convergence assures us that it is actually a number. See ((11.55)), (11.56]). i

Remark 11.16. We can also write the estimate as

t
IVa™|5(t) < H+H/ IVu™5(s)ds (11.61)
0

for some constant H > 0 and for every ¢ € [0, 7). In fact, rembember equation ({11.43))
t t t
m m m M Yal m
IV s [ 19 ds s [90(s) < 6219l 46T [ I9ugs) ds
0 0 se(0,t 0

It follows that

t t
sup [Va[3(s) < 62 Vo] + 6 / IVam|[S(s)ds < H + H / IVam|5(s) ds
0 0

s€(0,t)

taking H as the maximum of the two constants. Moreover, ||Vu™|2(s) is continuous,
since

IV |2(s) = Va™[|a(s0)]| < V™ (s) =V (s0)ll2 < D | Auui(8) = Amui (s0) Ve[| = 0
k=1

as s — Sg. S0, since the supremum of a continuous function on an open set is the
maximum of the function on the closure of the set, we have

t
IV ()15 < s [V ()3 < H 4+ H [ [Va"3s) ds
s€[0, 0

This estimate will provide, in future arguments, a local time of existence. [

11.4.7 A further regularity estimate

Proposition 11.12. Let Q be a bounded domain in R®. Consider the Navier-Stokes

problem over §) as in proposition 111 Let p, € C*(Q) and T > 0. Let p € C*([0,T] x
Q) and u™ € C*([0,T]; X™) the approzimate solutions built in proposition|11.1. Then

there holds the following estimate

t t
sup {[| V|| + ||\/pmu;”||§}+/ IVup*||3 ds < HCy" + H exp (H/ V™3 d8>
0 0

7€(0,t)

(11.62)
for every t € [0,T]. Here H is a generic positive constant depending only on ||pol|pe,
IVuglle and T, but independent of § and m. On the other hand

- / (o)~ |u ™ (0) — Vpo[2de
Q

—m

Co
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Proof. We want now to prove this further regularity estimate. We use lemma [1.3]
If we look at estimate (11.61)) and in lemma we choose f(t) = [|[Vu™|3(t) and
fo=H and g(s) := H||Vu™||3(s) and a = 0, then

Va3 < Hresp (1 [ 19 is)as) (11.63)
If 7 is fixed and ¢ < 7 we have
IVum3(t) < H exp (H / t ||Vumué<s>ds) < Hexp (H | WumHé(s)ds)
and so

sup ||[Vu™||3(t) < H exp (H/ ||Vum||§(s)ds) (11.64)
0

te(0,7)

Remember now the following estimates previously deduced:

| W ds+ [V st sup Va0 < Kot Ko [ [V 3s) ds (LT
0 0 te(0,7) 0

where K has been taken as the maximum of the two constants;

t - t 3

/ pm|u’t“]2(t)dx+/ / |Vul*|*deds < C" +C"Cy —1—0"(/ [Vul[S(s) ds) (11.60))
Q 0 Ja 0

We immediately have from (|11.43)) that

sup [V |3(0) < Ko + Ko / IVam[S(s) ds
0

te(0,7)

Moreover, by (11.60)), we get
su [V < ¢+ oo [Ivaige o)
te(0,7 0

using the trick above of taking a time ¢ < 7. Furthermore again by ((11.43)) we have
[ ds+ [ 19un s ds < Kok Ko |90 5G) ds
0 0 0
Observe that from (11.63) it follows
t t
po= [T s <o (1 [ 190 ds) = g0) (169
0 0
In fact, deriving both sides, we have
t
PO = 190180, g0 = #1ve o e (1 [ 190 as)
0
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So, using ), f'(t) ) since
t t

IVa™([S(t) < H|[Vu™|3(t) exp (H/ V™3 d8> = |[Vu™|3(t) < Hexp <H/ N E dS)
0 0

Moreover f(0) =0 < 1 = g(0). So, we have

[ 1w ds = 10 = 700+ [ 1) ds < 00+ /Otg%s)ds:g(t)=exp<H/Otume%ds)

Using ({11.60|) we know for sure that
t - t 3
//|Vu;”|2dxds, sup |[vpmul"||3 < C"+C"Cy —i—C’"(/ ||Vum||g(s)ds) (11.66)
0 JQ 7€(0,t) 0

Moreover we know that ||[Vu™|3: = ||[Vu™||3 + ||[V*u™]|5 and we can study the two
pieces independently. For the first we have

||Vum||2HeXp( / V) ds)

On the other hand, the second can be treated as follows. We have

19202 B2 262w + D (VAL + VA (V)™ 2) =

= K (Vo 3 + Vo (Va™yu™|[3) <
(11.41))

RIVE 3+ Klollse-+ Do a1V 51 <
B 1
<RIV I + € ITu 18 + <[ Tu + <7 )

where C" := K(||polloc + 1) and € > 0. We find, in this way,

O/I/AO

(10" o) V2|3 < KIvpmup 15 + IVu™ |3 + eC™ Ao Vu™ I3

Since € > 0 is arbitrary, we can fix ¢ = then

2C”’A )
V2™ (|3 < 2K[|v/pmuy" || + (C" Ao)? [ Vu™ 1§ + [ Vu™ I3
and so

IVu™ 7 = V™|l + V2™ I3 < 2K |V uy |5 + (C"8o)?[Vu™ I3 + 2] V™ |3

20Here we used the inequality
b < 2 N €/b2
=50

with &/ = 2¢.
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Passing to the supremum for 7 € (0,t) we get

sup [[Vu™|[3 < 2K sup [vpmup"|[3 + (C"Ao)* sup [[Vu™[|3 +2 sup [[Va™||3 <

7€(0,t) 7€(0,¢) 7€(0,t) 7€(0,t)

([T60)+ (1) . o t ° t ’
< 2K{C”+C”CO +C”( / V™ [5(s) ds) }+(C”’A0)2(KU+KO / 7™ [5(s) ds) +
0 0

t
+2(K0 + Ko/ 1Vu™||S(s) ds)
0
Since (1 +y)? < 4(1 + y?) for every y > 0 and also holds (11.65]), we have

B o t 3 t 3
sup [V < 28 { 406 ([ i) braersog{ve ([ Ivanigeas) f+
0 0

7€(0,t)

t
+2<K0+K0/ IVu™|[5(s) d ><c+cc0 +c</ V™ [8(s) s> +c/ IVa™[8(s) ds
0

where C' is the maximum of the constants. If we now consider

t t
sup. {1V i VA 3)+ / IV 3ds < sup [Vt sup [V I3+ / IV 3ds <
7€(0 7€(0 c(0
(11.67)

@60 . . ./ [t 6 5ot 6 Y A 6 ’
< C+CC —l—C(/ ||Vum|]2(5)ds> +C/ HVumHQ(s)ds—l-Q{C’ +C7Cy +C </ ||Vum||2(s)ds> }
0

_ b+ DEy" +D(/ IV [5(s)d ) +c/ V™18 (s)ds

where D = C' + 2C”. But, moreover, we know, from (T1.65 (11.65), that

t 3 t
(/ |yvum||gds> < exp (SH/ Hvumugds)
0 0

t
sup {[[Vu™ |3 + Vw15 }+/O IVui|3ds <

7€(0,t)

¢
<D+ DC" + Dexp (3H/ ||Vum||§d8> + C'exp (H/ ||Vum||§ds> <
0 0

So

t t
< DG + 3D exp <3H/ Hvum\|gds> < HG" + H exp (H/ Hvumugds)
0 0

since exp(a) > 1if o > 0. Here H := max{D,3D,3H}.
We have finally obtained the inequality

t t
sup (19" -+ [V 13} + [ 1913 ds < 66"+ ey (11 [ 190 as)
0

7€(0,t)

(11.68)

Remark 11.17. The constants involved in the inequality depend on the constants intro-
duced before. O I
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11.5 A local time of existence

We now use the estimates deduced in the previous subsections to find a local time of
existence. We have the following proposition.

Proposition 11.13. Let Q be a bounded domain in R3. Consider the Navier-Stokes
problem over  as in proposition|11.1, Let oy € C*(Q) and T > 0. Let p™ € C*(]0,T] x
Q) and v € C*([0,T]; X™) the approzimate solutions built in proposition |11.1. Then
there ezist a time T, € (0,T) and a constant C > 0 such that
sup [|[Vu™|2(t) < C
t€[0,7%]

Here C and T, are positive constants depending only on ||pol|r=, [|[Vuol|l2 and T, but
independent of 6 and m.

Proof. Remember first of all the inequality

t
IVam|B() < H + H / IVa|S(s) ds  (TL61)
0

where H does not depend of 6 and m. In particular, we want to find a time T,
independent of m, § and eventually the size of the domain, and a bound M > 0, such
that
sup [V lo() < M

t€[0,T%]
We star from the inequality we have above. First of all note that we can replace H
with max{H, ||Vugl|3 + 1} > ||Vug|[3. We fix T} € (0,7) and consider T € [0,T}). We
define

fm(s) = [[Vu™|[3(s)

and
sup f™(s) t#0
B(t) := ( s€lbof]
fm(0) t=0

The function § is continuous on [0, 7p], since f™ is continuous on [0,7p]. In fact, let
to € [0, Tp]. We have

ax f™(s) — max f™
Srg[oﬁf (s) sgfo,iﬁ}f (s)

_ )0 (%)
FIOEFIGINNCD
where (%) happens when the maximum of f™ over [0, Tp] is achieved in both cases in

[0, min{¢, 0}, and the case (#x) otherwise. In particular, in the second case we can use
the uniformly continuity of f™ to deduce the smallness of the diﬁerencdﬂ.

On the other hand, observe that, from the inequality above, we have for every | Ty € [0, T}]

To
sup || Vu™||3(t) < H+H/ IVu™(|5(s)ds < H + HTy sup |[Vu™[[5(t) <
0

te[0,To) te[0,To]

2f the maximum is in [0, min{¢,o}), then we have the smallness choosing &; sufficiently small; if it
is in the right boundary of [0, min{¢, ¢¢}], then by uniformly continuity we can choose again d; so that
the difference is small.
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<H+HT sup [[Vu™[l3(t)
te[0,To)
where the supremum is a maximum, because of the continuity of ||[Vu™]|s. So if w :=

sup ||Vu™||2 we have that
[07T0]

w< H+ HTyw?

We consider the polynomial ar, (w) := H + HTiw® — w and the inequality ag, (w) > 0.
We plot in the figure below a qualitative graph of the function aq,.

amy

Ry Ry

Remark 11.18. In the graph are also reported the point w = Ry, R; that will be defined
in a moment. [

So we have
1

SHT,

o (w) =3HTw’—1=0 < w==+

and

I 1
Ny — H+HT
o < 3HT1) THh (3HT1>

1 1 1
— 4+ — (= - =
VI H (3g \/5)
If 77 is very small, in a way depending on H, we have that the minimum is
1

) . . 1
negative. In particular, if o := —

33 /3

ol
=

[Ty, H - I
3HT, (3H): = V3HVT

H+ <0<« H<

(0%
vITH vITH
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Remark 11.19. If H, that depends on the initial data, is bounded, that is H < H,,
uniformly with respect the initial data, we can choose

o _ |af?
T < — < —
H} H3
Note also that a zero wy > 0 of ap,, for 17 > 0, satisfies
1 H Wy — H
0<Ty = 1——) =
! ng( wo) Huw}

Being wy > 0 we have wy > H > ||Vug||3. So every positive zero (that exists because
we imposed the minimum, reached in a positive value, to be negative and moreover
ar, (0) = H > 0) is strictly greater than ||Vul|3.

We define as [0, Ry] an interval that intercepts only the first zero.

So, for every T € [0,77), the supremum w, that is positive, can only live in [0, Ry or
in an interval [R;, 4+00), where the polynomial is positive. Furthermore the supremum
function is continuous in [0,7}). At the time ¢t = 0 we have

B0) = [IVu™[13(0) < [Vuollz < H < wo < Ry

By continuity, living at starting time in the first interval, the function can’t jump beyond
R;. So, for every Ty € [0,77) we have

sup [|Vu™|[3(t) < Ry
te[0,To]

and we can that T, = Tj € (0,77) C (0,7") and we get

sup [|[Vu™]2(t) < v/ Ro (11.69)
t€[0,7%]
with T, and Ry only depending on H and T, that are independent on §, m. |

Remark 11.20. As in remark [11.19, we can consider the existence of Hy. So, we can

|af a
choose T} = Q_HS’ and T, =Ty > 4_1[]5" O

11.5.1 A uniform upper bound for the sequence Cy

As final result of the section, we want to find a uniform upper bound for Cy . In
particular, we prove the following proposition.

Proposition 11.14. Let Q be a bounded domain in R®. Consider the Navier-Stokes
problem over £ as in proposition . Let p, € CYQ) and T > 0. Let p™ €
CH([0,T] x Q) and u™ € C*([0,T]; X™) the approzimate solutions built in proposition
[Z7.1 Consider

—m

& = [ (7o) s (0) = VP
Q

Then there ezists a constant Wy = Wy(0,ug, g) such that

C" < W, VYm e N
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Proof. We have to keep in mind the compatibility condition (11.4)). So, if follows

o = / (Po) |1 Aw™(0) — Vpodr = / (7o) 1 Au™ (0) = 12ty + pdeag — Vipo e <
Q Q
< 257! / (|MAUm(0)—/~LAU0\2+|Po|\9\2) de < 2571472 / A (0)— Aol +26™ ([ pollet1) 911

Moreover, we know that lim || g (g, W) gw" — ug|| g2 = 0.
N—+o00

n’ 'n’-n

Remark 11.21. Observe that, if v, = (v}, v, v3), lir}rﬂ V20,15 = lirf /|V21)n]2da:
n—-+oo n—-+0o0 0

3 3
Vo= 33 Rl Z (wnvnﬁ T 0%+ |a?,3vn|2)
=1

=1 j=1

Finally?]

2 3
Ay ? = va’ |2<§j(|auvl|+|a%2va|+|a§3vzr) s52(|a%1v;|2+|a§2va|2+|a§3v;|2)§5\v2vn|2
=1

and so
/\Avn|2 < 5/ V20, 2z < 5|[on 2
Q Q

this will be useful in a moment. [
In fact, in our case,

2

/ |Au™(0) — Aug|*dz < 5
Q

m
g Ug, W 2w — Up
k=

2
No, if M € N is such that
m 2
Zuo, Qw — Ug <% VYm > M
k=1 2
we can bound the latter term for m > M. In particular we get
G" <257 (4 4 ol + DIGIB) =Wo 9m= M (1L70)

If we rename the sequences (p™,u™) so that they start with m = M, we have that
Co"" < W is true for every element of the sequence {(p™, u™)}men. I

Remark 11.22. There is no trace of this argument in [4]. However, the same authors
take care of this point in their work [5]. O

22Using that, if a,b,¢ > 0, ordering 0 < a < b < ¢,

(a+b4c)? =a® +b* + ¢ + 2ab + 2bc + 2ac < a® + 3b% 4 5¢2 < 5(a® + b + c2)
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11.6 An extraction argument: weak limits of the
approximate solutions

In this section we will use the estimates deduced in the sections above to extract con-
vergent subsequence of the approximate solution. It is clear that, once proved that this
limits exist, we have to ask if they satisfy the original equation. However, the latter
question will be answered in the next section, that is, together with the present section,
the core of the thesis, as clarified in section [0.1]

11.6.1 Weak-star limit function for the sequence u"
In this subsection we prove the following proposition.

Proposition 11.15. Let Q be a bounded domain in R3. Consider the Navier-Stokes
problem over Q as in proposition[11.1. Let 5, € C*(Q) and T > 0. Let p™ € C*([0,T] x
Q) and u™ € CY([0,T]; X™) the approzimate solutions built in propositz'on Then
there exists a function u € L=(0,T,; H*(Q)) and a subsequence {u™ }ren of {u™ }men
such that

*
u™r =y

In other words, for every v € L'(0,Ty; H*(2)) it holds
T

lim (U™ (t),v(t)) g dt :/0 *<u(t),v(t)>Hz dt (11.71)

k—+o0 0

Here T, is the local time provided by proposition|11.15,
Proof. In equation (|11.68]), if we choose t =T, < T', we have
A ——m, A A T*
sup [|Vum (%, < HCY™ + Hexp <H/ ||vum||§ds) <
SG[O,T*] 0

ET70)+(TI69) A 5 - ~ -
< HW, + Hexp (HT.R3) < HW, + H exp (HTR})

On the other hand, since u™ € H}, we have |[u™||s < K||Vu™||2. So,

sup [u™[3 < K* sup [[Vu™|; "< KRy
s€[0,T%] s€[0,T%]
Observing that ||[u™ (|32 = [|[u™]|3 + |[Vu™||%,:, we have

sup [[u™|[32 < sup [lu™[+ sup [[Vu"|7 <
s€[0,T%] s€[0,T%] s€[0,T%]

< K?Ry+ HW, + H exp(HTR?)

and so

4™ oo o112 (2)) = sup ™| g2 < \/KZRO + HWy+ Hexp(HTR2) = K (11.72)
0,7T%
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Going on, keep in mind proposition [5.2] At this point we consider first of all the
functions v™ € C*([0,T.], X™). The space X™ is a finitely generated Banach space,
equipped with the || - ||z norm (since every finitely generated subspace is closed and
so it is a Banach subspace); this space is contained in (H%(Q2), || - ||z2)-

So in particular u™ € L*(0,T,; H*(Q2)). Observe now that, according to proposition

B.2
L>®(0,T,; H*(Q)) ~ (L*(0, T},; H*(Q)))*

where L'(0, T,; H*(Q)) is a separable Banach space. We use now the version of Banach-
Alaoglu theorem in Theorem [2.3] very usefull in PDE issues.

So, if Y = LY(0,T,; H*(R)), we have just proved that u™ is bounded in the dual space
Y*. So, there exists a function v € L>(0, T,; H*(2)) and a subsequence u™* of u™ such
that

u™r

The weak * convergence notion is the usual, i.e. the one introduced in the proposition
£.2l Tt can be translated as
T

lim (u™ (1), v(t)) godt = /OT*(u(t),v(t))szt Vv e LY0,T,; H*(Q)) (11.73)

k——+oo 0

This prove the proposition. i

11.6.2 Weak-star limit for the sequence p™

We now prove a proposition very similar to the previous one.

Proposition 11.16. Let Q be a bounded domain in R®. Consider the Navier-Stokes
problem over € as in proposition . Letpy € C1(Q) and T > 0. Let p™ € CY([0, T] x
Q) and u™ € CY([0,T); X™) the approzimate solutions built in proposition .

Then there exists a function p € L*>(0,T,; L>®(2)) and a subsequence {p"* }ren of
{p™}men such that

P p
In other words, for every v € L*(0,T,; L*(2)) it holds
T.

lim [ (0™ (), 0(t))oe dt = / (), 0(t))oe dt (1L.74)

k—+o00 0

Here T, is the local time provided by proposition [11.15,

Proof. First of all remember that ||p™(t)|ls < ||polloc + 1. So, we have the estimate

sup {[p"[loo(s) < [lpolloc +1
SG[O,T*]

So, as above, the sequence p™ € C([0,T.], C*(Q)) is in L>(0,T.; L=(£2)) and in the
latter space the function is bounded. Moreover

L(0, Ty L()) = (L'(0, To; LH(Q))*
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and so, again by the Theorem 2.3 we have that exist a subsequence p™*» and a function
p € L>(0,T,; L>°(92)) such that

prn = p
that is what we wanted to prove. |

Remark 11.23. Since u"*r is a subsequence of u™*, it is moreover true that
w2y

since every convergence passes to subsequences, being every notion of convergence de-
fined through numerical sequences.
We can say for brevity, renaming the subsequences as u™ and p™,

(™, u™) = (pyu) i L0, T L¥(Q) x H?())

where the meaning of these symbols is that defined in propositions [I1.15 and [T1.16]
A similar argument about subsequences will be used again in future. [

11.6.3 Weak limit for the sequence u}"
We now want to know something more about the derivative u;*. We first prove a lemma.
Lemma 11.3. Let Q be a bounded domain in R, and suppose, as above, that
u™ S in L0, T, H?(9))
with w € L=(0,T,; H*(Q)). Then, it also holds u™ — w in L*(0,T.; H*(Q2)).

Proof. We know that u™ > u  in L>®(0,T,; H*()). Since L>(0,T,; H*(Q)) ~
(L'(0,T,; H*(Q))*, keeping in mind the dual pairing, we have that this means
T*

im [ (), () gedt = /0 (), o)) gedt Yo € LN0, To: H(Q)

m——+00 0

Notice that by the Cauchy-Schwarz inequality, we have that, if v € L?(0, T}, H*(Q)),

1
/ lo(t)|| gz dt < /T. (/ llo(t Hszt) < +o0
0

so that v € LY(0,T,; H*(2)). We have, in this, way that

T

lim (wammﬁuﬁzﬂ*w@ﬂw»mdtvUeHmJ;H%m)

m—-+00 0

that means, looking at the dual pairin, u™ 5o in L2(0,Ty; H*(Q)). Using now
theorem 2.6, since L2(0,7.; H*(2)) is reflexive, we have in particular that u™ —
w in L2(0,T.; H2()). This is what we wanted to prove. il

Now we are ready to prove the following proposition.

% Notice that u™,u € L>(0,T,; H*(Q)) C L*(0, T,; H*(Q)) = (L*(0,T%; H2(Q2))) .
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Proposition 11.17. Let Q be a bounded domain in R3. Consider the Navier-Stokes
problem over  as in proposition[11.1. Let 5, € C(Q) and T > 0. Let p™ € C([0, T] x
Q) and u™ € CY([0,T); X™) the approzimate solutions built in proposition .

Then there exists a function u € L>(0, T,; H?) and a subsequence {u"* }ren of {u™ }imen
such that

*
u™

Moreover, u has the weak derivative u; € L*(0,Ty; Hy(Q)) and it holds
up ™t — in L*(0, T,; Hy(Q2))
Here T, is the local time provided by proposition [11.13,

Proof. To this aim, consider the fact that u™ € L%(0, Ty; HZ(Q)), since w* € H ()

and
Ty Ty Ty
/0 2t = / la 12 dt + / IV dt

and using that u* € H} (Q) = ||[ul*||s < K||[Vu™|s, with K = K(Q),
. (T o s
/ |2 dt < (1 + KQ)/ Va2 dt < (1+K)[HC™ + Hexp(HT. M) <
0 0
< (1+ K[ HW, + Hexp(HTM?)] (11.75)

So we have obtained that u}* € L*(0,T,; Hi(€2)) and the sequence is bounded in this
space, uniformly in m. Moreover, since H}(2) is an Hilbert space, and so a reflexive
Banach space, then L2(0, T; H3(R)) is reflexive, thanks to proposition [5.2] So we can
use theorem [2.5] and we have that there exist v € L*(0, T; H}(§2)) and a subsequence
uy "™ such that

uf™ — v in L*0,T,; Hy(S))

Taking the subsequence my, also in u™* and p™*, and using that convergence of subse-
quences is preserved, we have, renaming the subsequences as (u™, p™, uy"),

(o™, u™) = (p,u) € L(0, T; L*(Q) x H*(2))

ui® = v e L*(0,T.; Hy())

Now we want to prove that u admits a weak temporal derivative and that this derivative
is v, so that v can be renamed ;.

We that v € L>(0,T,; H*(Q2)). This means that
C = ess Supte[O,T*]Hu(t)HHQ < 400
This implies that

Ty
/ lu(®)|| gz dt < CTy < 400
0
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So u € LY(0,T,; H*(2)). Moreover v € L*(0,T,; H}(Q)) C L'(0,Ty; HY(Q)).
In this way, v is the weak derivative of u provided that

T

Orp(t)u(z,t) dt = — /OT* o(t)v(z,t) dt Vo € C°(0,T)

0

We now use lemma [11.3] We have that «™ — w in L?*(0,T,; H*(Q2)). So we start with
our argument. Let A a measurable subset of Q, and ¢ € C°(0,7.). We have, defining
u; = m;(u) and v; = m;(v), where 7; is the projection on the i-th componenﬂ

/A /OT* (Grui + ¢vy) dt dx =

Ty
= / / (b — gl + dpull + p(u)y — p(u]") + pu;) di dx
AJO

Thanks to the regularity of «™ with respect time and the integration by parts, it holds

the equality
T

T
0

0
So, we have

/A/OT*(@UZ- + ¢v;) dt dx = /A/OT*(gzﬁtui — Gul™ — P(uy)" + ;) dt dx =

T. T.
— [ [T oty arass [ [ ot @ de do
AJo AJo
The last term is the sum of two functionals. In particular we can define
T*
fi(w) := / / prw; dt de i€ {1,2,3}
AJo

that maps f; : L*(0,T.; H*(2)) — R. Morover we have

Ty
gi(w) := / ow; dt dx
aJo

that maps g : L?(0,T%; Hy(Q)) — R. The functionals are continuous. To see this, we
first remark a fact. Observe that

L*(0,T,; H*(Q)), L*(0, Ty; Hy () € L*(0,Ty; L*(Q)) ~ L*(Q2 x (0,T,))  (11.76)

Keeping this in mind, we have

Ty T Ty
filw)] < / / (Gullews| dt de < [[6llene / / fwr] d d = ([ looe / / | d dt
AJO AJO 0 A

24The functions are in fact vectors.
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where in the last equality we used the Tonelli theorem for non-negative functions thanks
to the fact that the equivalence (11.76]) remarked above says to us that the function is
measurable. So we have

T, 1 LT
) < e [ \A|2( / \w#dw) < [6hoelAE [ Nl e <
0 0

) T, 3 i T, 3
< oulloml Al TQ( / ||wz-||%dt) < oulloml Al TQ( / ||w||%pdt)

So the functional is continuous. Thus, since u™ — u in L*(0, T}; H*(Q2)), we have

T, T.
lim / / ot dt do = / / ou; dt dx
m=+0 J 4 Jo AJo

The other limit is very similar. In fact, g; is continuous since

Ty
10:0)] < 16llnoc / / wr] dt d < 16]oe / / | dt da

always using the Tonelli theorem and the identification ( ) above. So

i Tk 5 ) T
195(w)] < 1 lloncl Al / ( / |wi|2dx) 0t < 6]l AL / sl dt <

[T L1 T. 3 f T. 3
< ollxll? | ||w||2dt§||¢Hm|,4|2:rg( / ||wr|§dt) <H¢IlmlA|2T2( / ||w|r%pdt)

So also this functional is continuous. We deduce that

liIJrrl // o(uy"); dtd:n—/ qbv,dtdx

since uf® — v in L*(0,T,; H}(Q2)). This means that

// Oru; + ¢v;) dt dz =0

Since the equality is true for every A measurable subset of 2 and every ¢ € C2°(0,T),
we have, at ¢ fixed,

Ty
/ (peu; + ¢v;) dt =0 a.e. in Q
0

In other words
T, T,

Quu; dt = — ov; dt a.e. in ()

0 0
Thus, if ¢ € C>°(0, T,) we have, since the two integrals belong to L*(€2) by the definition

of Bochner integral,
. T.

pru dt = — ¢v dt in L*(Q)
0 0

Here we used the equality component by component of the integralﬁ and the fact that
the equality almost everywhere is the equality in the sense of the Banach space L?(2).
In other words, we can write u; := v € L?(0,T,; H3(€)) in the weak sense.

25See remark
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11.6.4 Boundary condition and incompressibility of the veloc-
ity field
Before claiming and proving the main theorem of the subsection, that will assure im-

portant properties of the velocity field, we have to prove a preliminary proposition, that
will be very useful also in future arguments.

Proposition 11.18. Let Q be a bounded subset of R®. Suppose that we are in the
hypothesis of proposition [I1.17. Then, the sequence u™ with weak-star limit u also
admits a subsequence {u™* }ren such that

u™ —u, Vu™ — Vu in  L*(0,T,; L*(Q2))

Proof. We consider now lemma . In this context, we can choose X = H}(Q) N
H?(Q) with the normlﬂ | Il + 1l - [z Moreover we choose B =Y = L*(Q). The
embedding X < L?(Q2) = B is compact thanks to the Rellich-Kondrachov theorenﬂ.
So, by lemma [7.2] the embedding

L*(0,T,; Hy " H*) N {p: Op € LY0,T,; L*)} — L*(0,T,; L?)

is compact. In particular we follow the hypothesis of lemmal[7.2] In fact, we can consider
the sequence u™. It is in L?*(0,T,; H N H?) and it is bounded, since

1

T* 2 1 1 .
([ g+ o)) < 272 sup < 2725
0 (O,T*)

thanks to the estimate (11.72)). Moreover u}" is in L'(0,T,; L?) and

/ HuznuzdtéTz( / Hul”Hth) STf( / ||u;“HH1dt) <
0 0 0

[L73) — - -
< Ty \/(1 + K [HW, + H exp(HT, M)

So, the sequence of temporal derivatives is bounded in the space. Thus, eventually
passing to a subsequence, we have that

o

u™ — w in L*(0,T,; L*(Q))

26 The space (HE N H2,| - ||i2) is a Banach space. In fact, being a subset of H?, the norm is
well defined and satisfies the properties of the definition of Banach space. Moreover, let w,, a Cauchy
sequence in this space. Then it is a Cauchy sequence in H} and H?, since

lwn = winllgr < [lwp —wmllp2 <e Ym,n=N

So, being w, € H}, H?, we have that, by the completeness of the two spaces, w™ — w’ € H} in H*
and w” — w” € H? in H?. Moreover

lw" = w”l2 < [l = w”[la + "™ = w"|l2 < w" = w"|[gr + [[w" = w”[|z> =0

so that w’ = w” almost everywhere. Moreover, observe that the norm used above || - |g2 + || - || = is
equivalent to || - || g2.

2TIf uy, is a bounded sequence in X, it is in particular a bounded sequence in H{ () (that is injected
— L*(£2)). So we can extract up, — u € L*(Q) in || - ||2.
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Observe now that the inclusion i : L?(0,Ty; H*(Q)) — L*(0,Ty; L*()) is continuous,
since

T % T 2
||v||L2<o,T*;Lz<m>=( / ||v||§dt) s( | el dt) ST
0 0

So, if f € (L*(0,Ty; L*(Q2)))*, we have that

lim  f(i(u™)) = f(i(u))

m——+00

sinee® u™ — w in L2(0,T,; H2(2)). This means that u™ — u in L(0, T,; L*(12)).
Moreover u™ — w in L*(0,T,; L?(f2)), since strong convergence implies weak conver-
gence. The uniqueness of the weak limit leads to

w=u

in the sensd®| of L*(0,T}; L*()), i.e. |[w — ulls = 0 almost every ¢ € (0, 7). So,
T 9 Ty 9
/ ams — ) dt :/ um — w+w—ul]? dt <
0 0

Tk T, T
<2 [l ez [ ol dt =2 [ -l de 0 as ko oo
0 0 0

Now we want to pass to another subsequence for proving the same result for Vu™*.
Consider this time the chain X := H'(Q) C B := L*(Q) =Y.

The inclusion X < B is compact thaks to the Rellich-Kondrachov theorem. So it is
compact also the inclusion

L*(0,T,; HY(Q)) N {p: dwp € L*(0,Ty; L*(Q))} — L*(0,T,; L*(Q))

More precisely, if we consider Vu™*, it is bounded in both the spaces. In fact

T, 1 T, s .
(/ |]Vumk|\H1dt> < (/ \|umk\|H2dt) <T2*K
0 0

thanks to the estimate (11.72)). Moreover, since 0;Vu"™ = Vu;"* thanks to the regu-
larity and the fact that the varible x, ¢ are separated, we have

T. 3 T. ol R - -
([ 1owumigar) = ([ iwuriga) T inw « frexo(aran)
0 0

We have |£(i(w))] < Clli(w)ll 20,12 < Cllullzzo.z.cm2)-
291n fact

||w - u||L2(07T*;L2) = (w —Uu,w — U>L2(O,T*;L2) = <w, w — U>L2(O,T*;L2) - (u,w - u>L2(0,T*;L2) =

= lim (u"™,w—u)r2(7,;L2) — lim (u™

w—UuU)r2 72y =10
m——+oo m——+oo ’ >L (0.7;L2)
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So, passing again to a subsequence, we have that exists w € L?(0,T,; L*(Q2)) such that
Vu™n —w in L*(0,T,; L*(£2))

The strong convergence of u™*n to w is also true, since we only have passed to a subse-
quence. If we prove that w = Vu in the sense of L?(0,T.; L*(£2)), then we conclude.

Remember that u» — v in L*(0,T,; H*(Q))), thanks to lemma [11.3l Moreover we
have Vu™n» — w in L*(0,T,; L*(2)). In fact, consider the gradient operator

V : L*(0,T,; H*(Q)) — L*(0,T.; L*(Q))

v — Vo

The operator is continuous. In fact

T. 3 T. 3
Vol = [ 190l )" < ([ 1ol at) " = ol
0 0

So, if f € (L*(0,T,; L*(Q2)))*, then for every v € L*(0,T,; H*(Q)),
|f(Vo)l < [[Vollzmsez @) < lvll2omsme)
so that f(V-) € (L*(0,T,; H*(2)))*. Then

lim f(Vu™n) = f(Vu)

h—4o00
thanks to the weak convergence of u™*» to w in L?(0,T,; H*(Q2)). This means that
Vu™n — Vu in L*(0,T,; L*(2))

By the uniquess of the weak limit, as above, we have that Vu = w in L?(0,T; L*(Q)),
and so

Ty

T Tk
/ ||Vum’“h—Vu||§dt§2/ Hvumkh_wu;dtm/ | — Vul]? dt = (11.77)
0 0 0

T
:2/ [Vums —w|® dt =0 as h— +oo
0

So we have the thesis. |

We finally prove the main proposition of the subsection.

Proposition 11.19. Let Q be a bounded subset of R3. Suppose that we are in the
hypothesis of proposition . Then, the weak-star limit u € L*(0,T,; H*(Q))) of the
sequence u™ is such that, for almost every t € (0,T,), u(t) € H}(Q) and V - u(t) = 0.
In particular, this means that for almost every t € (0,T%), u(t) € X.

254



Proof. We first remember that, for almost every ¢ € (0, T}), we have u(t) € H(Q2) =
Wh2(Q). So, we can use theorem concerning the trace operator: thanks to this
theorem, we only have to verify that Tu = 0 on 0.

Let u™ the sequence assured by proposition [I1.18, Remember, in particular, that
u™(t) € CY(Q) for every t € (0,7,). In particular, since w"|sq = 0, it is zero on 9Q. It
follows that

Tu™ =0 on 0N

For almost every ¢t € (0,7%), sat € (0,7,)/F, with |E| = 0, we can consider Tu, since
u(t) € HY(Q). So

|Tullz200) = IT(w —u™)||L290) < Cllu — u™|| 1 (q)

Squaring both sides and integrating in (0,7}) we have

Ty Ty
[ 10y e < 07 [ i e = [

Since the two pieces on the right side vanish, we have that

T

T*
u—u"*||? dt+C? YVu—Vu™ |2 dt
2 ; 2

T
/0 T2 50 di =0

This means that for ¢ € (0,7,)/A, with |A] = 0, the trace is ||Tu|/r290)(t) = 0, i.e.
(Tu)(t) = 0 on 9. So, for t € (0,T%)/(AU E), since u(t) € H'(Q), we have that
u(t) € Hy (Q).

It remains to prove the incompressibility condition. We know that, for almost every
t € (0,T.), u(t) € H () and in particular, by the definition of weak derivative,

[ uitonedo == [ dutreds Ve cx@
Q Q

If V - u is the weak divergence, we have that

/Qv ut)p do = ii/gawiui(t)go iy = — i/ﬂui(t)aw do = —/Qu(t) Vi da

=1

Remark 11.24. If we consider the functional
flw) = — / w- Vo dr Yw € L*()
Q

then it is linear and continuous. In fact

|[f(w)] < [lwll2|[ Vel

and so the continuity is proved, as a functional f : L?(Q) — R. [J

255



We know moreover that u™ — u in L*(0,T,; L*()).

In other words
T*

lim |u™ — ul|3 dt =0
k—+oco Jo

and so, using Theorem 3.12, pg. 68 in [24], there exists a subsequence u™*» such that,
for almost every t € (0,T.),

lm ||u™n —ul]2(t) =0
—+00
So, for almost every t € (0,T%),

lim [ u™n(t)- Ve dr = / u(t) - Vo do

On the other hand we have
/umkh(t) Vo dr = —/ Vu™n () de =0
Q Q

since V - u™n (t) = 0 for every ¢ in classic sense, by construction.
It follows that, for almost every t € (0,T%),

/u(t) Vpdr=0 ¢eCr)
Q
In other words, for almost every ¢ € (0,7}) we have V - u(t) = 0 in the weak sense. |

11.6.5 Integrability property of the limits

In order to proceed with the proof of the fact that the pair (u,p) is solution to the
original Navier-Stokes equation, we need to prove the following lemma.

Lemma 11.4. Let Q be a bounded domain of R, and suppose that (u, p) are the func-
tions built in propositions 11.19. Then for almost every t € (0,T,) we have that

pus + p(u - Vu) — pAu € L*(Q)
Moreover, the following integrals are finite
. T. T,
/0 /Q ’p(t)ut(t)-gb‘ dx dt, /o /Q }p(t) (u(t)-Vu(t))-¢| dz dt, /0 /Q |Au(t)(gb{ dx)dt

11.78
Finally

T*
| 0u) + p®utt) - Vute) = psa(o)} de < +0 (11.79)
0
Observe that (11.78)) allows us to write the integrals without the absolute value.
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Proof. For those t such that u(t) € H*(Q) N H}(Q) and p(t) € L>=(N), we have, thanks
to lemma

Ll

lu(®) @ < el Du@®)]2)* (IVu(@)]))

Moreover, we have that

o) ue(t) + p(t)u(t) - Vu(t) — pAu(t)[|2 < |p(E)u()]l2+[[p(E)u(t) - Vu(t)l|2 + pl| Au(t)[|2
We want to estimate the three addends separately. In particular we have
ool = ([ o uRds) < Lol < +o0

since p(t) € L*(Q2). Moreover

lp(t)u(®)-Vu )2 = (/Q Ip(lf)|2IU(1t)-Vu(t)|26i56>é < ||/)(t)||oo(/Q \U(t)l2|W(t)l2dfc>% <

< o) lloollu(®)lloo V()2

that is finite. Finally ||Au(t)|ls < +oo since u(t) € H?*(Q). So, for almost every
€ (0,T,), the function is in L?*(Q).

Moreover, we have the following integrability property. In fact, if ¢ € L*(Q),

Ty Tx
/ / |p(t)us(t)-6| de dt < / 1@l llte 1l < VTl 012, e Sl el 202z
0 0

and

Tk T, Ts
/ / |Au(t) - o] de di < / |Au(t) o]l Glladt < [|6]2v/5 / IV 2u(t)]|adt <
0 Q 0 0

) T. 3 i
< IolaT3 ([ 19 ut )" < VT ol oy
0

and finally

/T*/\P V(b)) - 9| de dt</T* ot ||oo/|u - Vul(t)||gldz dt <

0

T*
< lollz= =@l 6l / () - V(o) de
0

Moreover, since u € H}, |Julls < C1||Vulls and moreover, using (11.40), ||[Vulls <
1172 | Vulls < [9Q]72Co|Vull g < [92]72Cs)jul g2, s0 that

) - Vu(t)]l < ( [ utoPvato) dx) < Ja®) [ Vut) s < Col Colfut)
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and so . .
/ u(t) - Vu(®) | dt < clymfzcg/ ()% dt < +o0
0 0

since u € L*(0, Ty; H*()).

Finally we have to prove

/0 lp(@)ut) + p(E)ut) - Vult) — pdu()[2(E) dt < +oo
It holds the inequality

lo(yun(t)+o(t)u(t)-Vat)—pdu®)|]; < (lpE)u®)lla+]pE)u)- Vu)+u] Au®)]2)”* <
S(lo@)ue ()] + lp()u(t) - Vu)[3 + pllAdu(t)]3) <

(o5l )15 + llp@ IS Au@) 13 Va3 1 Vu®)ll; + pll Au@)]3)
Finally

/0 " ||p(t)ut(t)+p() (t) - Vu(t) — MAU(t)Hz dt <

IN

T T, , , "
§5(/0 IIp(t)Iliollut(t)II%dHc?/0 @121 Au(t)]3 | Vu(t)]3 dt+“/o IIAu(t)||§dt)

T

ulle dt)

that is finite Sinc p e L®0,T,; L), u, € L2(0, Ty; HY(Q)), w € L=(0,T,; H?). 1

T*
3
> 5<||p||%°°(0,T*;L°°)/O HUtHg dt+54c2HpH%w(O,T*;L“’)T*HUH%OO(O,T*;H2)+5N/0

11.7 Further regularity results: the transport equa-
tion

Proposition 11.20. Let Q be a bounded domain in R3. Consider the Navier-Stokes
problem over ) as in proposition . Letpy € CY(Q) and T > 0. Let p™ € C*([0,T] x
Q) and u™ € C*([0,T); X™) the approzimate solutions built in proposition and the
function p € L>=(0,T,; L>(Q)) such that

P p in L®(0,Ty; L®(Q)) (11.80)

We know that hold all the properties proved in section[11.6. Here T, is the local time
provided by proposition|11.15. Then, we have moreover that

p™ = p in L(0,Ty; LP())

30We also used that [|Au(t)|s < v/5||ul| g
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Proof. The whole proof is a rereading of theorem [8.6 In fact, remember that u™ €
L>=(0,T.; H*(Q)) C LY0,T,; WH(Q2)) and V - u™ = 0. Moreover, since u™ — u in
L*(0,T,; L*(2)), we have that u™ converges to u in L'(0, T}; L' (2)). Now, p™ is a weak
solution of

Op" +um-Vp" =0
p"(0) = 7o

and u™ € LY(0,T; Wh1(Q)), V- u™ = 0, so, using theorem [8.2] with p = oo and ¢ = 1,
p™ is a renormalized solution. The initial condition is p™(0) = p, € C*(Q). This im-
plies that for every 8 admissible function 8(p™(0)) — 5(p,) in L'(2). Moreover p™ is
bounded in L*(0,T,; L>*(Q2)), and so in L*>(0,T}; LP(£2)) for every p € [1,00]. Then,
using theorem [8.4] p™ converges to some p, renormalized solution with initial condition
Po, in C([0, To]; LP(2)).

On the other hand, we have that p™ is also a weak solution with initial density p™(0),

that is .
/ ( [ oot omam v daz) it =~ [ poa)ela.0) da
0 Q Q

for every ¢ € CY([0,T.]; H(Q)) with ¢(x,T,) = 0 a.e. in . Thanks to (11.80), and
the fact that ¢, € L'(0,T; L'(2)), it follows that

T, T.
lim / P da dt = / / p py dx dt
m=eoJo o Ja 0 Jo

Moreover, observe that
Ts
/ (/ (pmum — pu) -V d:v) dt‘ =
0 Q

:\/ (/Qmm—p)u.vm) dt_/OT* (/mewm—m-wm) dt] <
< ’/OT (/Q(p’"—p)u-vso daﬁ) dt

Since [|p™ || Lo (0,1,:120(2)) 1s bounded and u™ — w in L*(0, T}; L*(92)), the second addend
vanishes. Moreover, we have

Hp" | oo 0,105 ) 1™ =l L20,7522()) IV @l 220,70 22(2))

Ty
/ (/ lu- Vol dﬁ) dt < ||U||L2(O,T*;L2(Q))||V90||L2(0,T*;L2(Q))
0 Q

so that u-V € L1(0,T,; L'(Q2)). So, thanks again to the weak star convergence (11.80)),

we have .
lim (/(,om—p)u-Vgodx) dt =0

/OT* </ﬂp90t+,0u-Vg0 dx) dt = —/on(x)gp@o) e
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that is, p is a weak solution to the transport equation with velocity field u and initial
density p,. In particular, applying lemma with p = 0o and ¢ = 1, we have that p is
a renormalized solution. Subtracting the two definitions of renormalized solution, we
have that

([0 snae) e [ ( [ 0 sonn oie) a=

In other words B(p)—B(p) € L>(0,T; L>(£2)) is weak solution of the transport equation
with velocity field u € L'(0, T,; W'1(€2)), and initial density p, = 0. Using theorem
with p = oo and ¢ = 1, we have that 5(p) = B(p) for every admissible function S. So,
choosing By such that By/(s) = s if |s| < M, and Sy bounded, C*(R) and admissible,
we have that

p=p  over o] < M, gl < M}

Letting M — oo, we have the equality of the functions in the whole space €2 x (0, T%).

11.8 Weak solution to the incompressible Navier-
Stokes equations

The notion of weak solution for the Navier-Stokes equation (and, clearly, also the trans-
port equation) has been introduced in Chapter . In this section we will, first, provide
a further integral of the momentum equation, verifying, then, that the pair of solutions
(p, u) satisfies also the weak formulation as introduced in Chapter [L0]

We collect here the properties deduced in sections [11.2H11.7]

u™ Souoin L0, T,; HA()), p™ — p in L™=(0,T,; LY()) (11.81)
u = u; in L*(0, T,; HY(2)) (11.82)

Remember also that p™ = p in L>°(0,T,; L=(£2)). Moreover, u™ can be choosen such
that
u™ —u in L*(0,T,; H*(Q)) (11.83)

and
m

u™ —u, Vu" = Vu in  L*0,T,; L*(Q)) (11.84)

11.8.1 Statement of the theorems

In this subsection we prove an integral version of the problem, that in particular implies
the usual definition.

Proposition 11.21. Let Q be a bounded domain of R3. Consider the pair of solution

(u, p), as introduced in sectiond™] 11.7. Then, for every v € X, exists a subset
E, C (0,Ty), with |E,| =0, such that

/(put—l—p(u-Vu)—uAu)-l/dx:O vt € (0,Ty)/E,
0

314 e., with the properties summarized above.
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Corollary 11.1. Let Q2 be a bounded domain of R®. Consider the pair of solution (u, p),
as introduced in sections[11.3{11.7. Then exzists a subset E C (0,T,) with |E| = 0 such
that, for every iy € WOIUQ(Q)

/Q(put—kp(u-Vu)—pAu)-@/)dx:O vt e (0,7,)/F

Theorem 11.3. Let Q be a bounded domain of R®. Consider the pair of solution (u, p),
as introduced in sections . Then for every ¢ € C*([0,T.]; Wolf(ﬂ)) such that
o(x,T,) =0 a.e. in Q, we have

T
/ /(put+p(u~Vu)—uAu)-go(x,t) dx dt =0
o Ja

11.8.2 Proof of proposition [11.21
Remember, from proposition [11.1} that the pair (u™, p™) is such that

/ (P"u* + p™(Vu™u™) -+ pVu™ - Vo do =0 Vo € X™ (11.85)
Q

Remark 11.25. We have extracted a lot of subsequences of u™. So, the sequence that
we are considering is not indexed by the natural numbers, but by a subsequence of N,
m <— n,,. However, the property continues to hold, provided that ¢ € X" with the
right m. UJ

Remark 11.26. We have that, if ¢ € X™,

/Vum-Vqﬁdx:—/Aum~¢d:c
Q Q

using the arguments in section [9.7.3 O

Let, now, E be a measurable subset of (0,7). Then if a function g is in L?(0, T\; X),
it is in particular in LP(E; X) in the sense that

9llzrczx) < 119l zro.rx)

since the LP temporal norm is bigger in a larger domain (and this is true for p = oo
thanks to the property of the supremum, and for p < oo, thanks to the monotonicity
property of the integral operator). Moreover, the integrals

//put ¢ dz dt, //Au ¢ dz dt, //pu Vu) - ¢ dr dt

are defined, as proved in section [11.6.5, provided that ¢ € L?(2). So, if we prove that

lim //pmu;"wmd:c dt://put~¢d:€ (11.86)
m=+oo Jg Ja EJQ

lim //Aum-ymdas dt://Au-(bda: dt (11.87)
m=+o0 Jp Jo EJQ
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lim / /(pmum -Vu™) - v™dx dt = / /(pu -Vu) - ¢ dx dt (11.88)
m=+oo Jg Ja EJQ

for a suitable sequence {v™},, such that ™ — ¢ € X in the H?-norm, we have
practically finished: if we fix ¢ € X and let F change in the measurable subsets of
(0,T%), we have that

/(put +pu-Vu—pAu)-¢de =0 vVte (0,T,)/FE
Q
with |E| = 0, thanks to a well-known result of measure theory. Clearly, in this situation

E = E,, since the integrand function depends on ¢. We now choose the sequence
{v"}.n. We know that for every ¢ € X holds the limit

. By, oF — _
k=1 H?2
So, we can take
V=) (g, ¢F)agh € X (11.89)
k=1

Observe that v € X™, as required in (|11.85)).
So, (11.86)), (11.87)), (11.88]) holds, and thanks to (11.85]), we have the thesis.

Remark 11.27. If (11.86]), (11.87)), (11.88) does not hold for every m € N but only for
a subsequence, the same subsequence where the convergences m hold, we
can consider the same subsequence in v"™; the convergence contlnues to hold, since we
are considering a subsequence. []

We now prove the equalities (11.86), (11.87]), (11.88]).

Proof of equality ((11.86). To prove this first limit, we can write

puyt - v dx dt—//put-qﬁdx dt‘:
Q EJo

put- d:pdt—l—//put—put gbdxdt‘g

//]pmu;”HV — ¢| dx dt+\// pruyt — puy) - ¢ dr dt] <

< [Tl ¢|\2dt+|//pur—pu%pu;"—put)-asdxdﬂg
0

< M5 =0l / g HQ) A [ ] oy dsai [ [ otur—w)ysasar

where Mg = (||pol|oo + 1)v/T%. The first piece is bounded by

T
Mg|[v™ =l (/ [Juf” HHldt> = M |[v™ =0l m2l|ui"(| 2 (0,721 ) — 0 as m — +o0
0
(11.90)
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since [|ug”|| 220,113 (c)) 1s bounded in m. In fact, see i.e. [10, p.723], any weakly con-
vergent sequence is bounded, and we know that u}* — u; in L*(0,T%; Hj(£2)).

In the second piece we use the convegence of p™ to p and, again, the boundness of
uy". We have

Ty
[ ] r=opryodein < [ [ rlion=polarde < [y alon -l <

s( / J Hth> ( / H<pm—p>¢rr%dt) suurupm,mm))( / / r<pm—p>¢12dxdt)

The last term has the first factor bounded, as above; the second term can be treated
as follows:

Lt = ez = [ o7 = pPlofde < llo™ = Pl 11621 =

= ([l = paa)i( [ joldn)t = 1o = plilol < O™ - pIEIV6I:

using that
[vlls < Cl[Vvll (11.91)

for every v € Wy? (and ¢ € H} = W, *(Q)). Finally we get

T é Ts 3
([ [0 = mopar ) < crvona( [ 1 - otgar) <
0

1
< CTZ||Vo|l2 sup |p™ —plls =0 as m — 400
t€(0,T%)

since p™ — p in L*(0,T,; L9(Q2)) for every q > % So choosing ¢ = 3, we have

lim Sup o™ = plls =0

Now we deal with the latter piece, that is

‘// ")) ¢dxdt‘:

We know that u® — w, in L*(0,Ty; H}(£2)), that means

lim f(u") = f(w)

m—-+00

—uy) - (po) dzx dt

for every continuous functional f : L*(0,T.; Hy(2)) — R. So if we consider the func-
tional

://w-(p¢) dv dt Yw € L*(0,T.; Hy ()
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it is well-posed (as we will see in a moment) and linear (thanks to the linearity of the
integrals and the euclidian scalar product). Moreover we have

Ts
lpllal[w][a dt <

T, @
Flw)] < /E / wllpd| de dt < / lwllallp@lls dt < Cy[l6]m /

T. 3 T, 3 i
< cllolln ([ iotae) ([ hwlis de)” < cilolin( sup loll )l o
0 0

te(0,T%)

Observe that, since p™ — p in L>(0,T}; L4(2)), we have p € L>=(0,T,; L*) for ¢ = 4.
This shows the well-posedness of the operator and its continuity. So we have

lim f(u") = f(u)

m——+00

mng[E/Qur-(pgb) da dt:/E/Qut-(pgb) dx dt

This is what we wanted. |

that means

Proof of equality (11.87). Now we deal with another limit. As above, observe that

‘/E/Q(Aum'um—Au~¢)dxdt‘:
//(Aum-um—Aum-gb—i—Aum-gb—Au-gb)d$dt‘§
EBJa

g/E/Q|Aum||ym—gb|d:vdt+ /E/Q(Aum—Au)-(bdxdt'g

T*
</ |1Aum|\2uum—¢\|2dt+' [ [@ur—au-6a dt\
0 E JQ

We know that u™ — u in L*(0,Ty; H*(£2)). So we can choose

f(w) ::/E/QAw-gbdm dt  Yw e L*(0,T,; H*(2))

The linearity of the functional is obvious; well posedness and continuity follows from
this consideration:

T,
F(w)] < / / |Awl||g| de dt < / | w6t

32Since

lpdl13 = /Q o162 dz < llpl*l12M101%]l2 = lollllgllE < CRIplEIVEl3 < CEllplzlol 7
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So

@ T 1 T % 1
P2 VBlole [ Tl < VBl ([ ulipat) " = VBlolaT ol ey
0 0
So the functional f is well-posed and continuous over L?(0,T,; H*()), i.e. it is in

(L*(0,Ty; H?(92)))*.
It follows that

lim //A(um—u)-gbdxdtzo
m—+00 J o Jo

for every ¢ € X. The other piece is immediate noticing that

T, T,
|1 ol = olladt < VB [ el ol
0 0
using equation ((11.72]), that is sup ||u™| g2 < K, we have
[O,T*]

T. T, R

/ | AW |o]|r™—o||odt < V5 | K|[v™ =) g2dt = VEKT,|[v™ =) 2 — 0 as m — +oo
0 0

Proof of equality (11.86). We deal now with the latter limit. As usual, we write

/Jﬂlz(pmum-vum).(um—¢) da:dt—i—/E/Q(pmum.vum_pu.vu).¢dzdt’S

T,
S/ /|pmum~VumHum—¢] dx dt + //(pmum‘Vum—pqu)ﬁdx dt’
o Ja EJo

The first addend can be treated as above. We have

Ty T
/ /\pmum.vum|ym_¢\ dr dt < (HpOHOO—i—l)/ /|um|yvum||ym—¢| de di <
0 [9] 0 Q

Ts T
< (Ilpolloo+1)/0 ™ [[Vu™[[l2][v™ = ¢ll2dt = (Ilpo||oo+1)IIVm—cbIIz/0 ™ [[Vu™[[|2dt

Moreover

[ roun e < e Plali Vel = f oefaod [ (vanitdnt = e s
Q 0 Q

Now we have some Sobolev inequalities. In fact, being u™ € H} (), we know that

[u™ls < Col|Vu™ ||z < Cul[u™ || 2 (11.92)

[Aw]|2 := (/ |Aw|2dm> < (/ 5|V2w|2da@> < V5w g2
Q Q
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where the constant C; depends on €. At the same time, being Vu™ € W2 using

(11.40) we get

IVu™[le < Cof V™ [[wr2 < Col[u™|| 2

Moreover ) )
[Vu™ |4 < Q12| Vu™||g < [2]12 Collu™ || 72

So
™|Vl = ( / ™ 2|V Pda)t < a4V < CuQIECy
It follows that
/ e de < G0y / lum|Zadt < GO0y K*dt = C1|Q| TR
0

Thanks to this bounds, the convergence of the first piece follows from the fact that
|l — ¢|lgz — 0. We deal now with the piece

‘/E/Q(pmum'vum_PU'VU)-¢d;pdt’:
‘// SV p(u” 'V“m_“'vu))'cﬁdxdt‘:
‘//( v p((w” “)'V“m+“'(Vum—Vu>))'cbdxdt’g

‘// VU™ gzﬁdxdt' ‘// um.¢dxdt‘+

pu - (Vu™ —Vu) - ¢ dx dt‘
0

We start with the second addend. We have

|//p<um—u>-wm-¢dx dt|s//|p||um—u||wmu¢|dx it <
E JQ E JQ

Ty
< / ™ = wlls ol V™ 1] ot
0
On the other hand

el Va1l Z/QIPIQWWIQIWM < ol llsNIVu™Fllslllo s =

uESuED
= [lplls V™ [[5l1olI5 < ||p||60202||um||H2||V¢||2 < (||p||60102) *K2(|Voll3

and so

T
[ ot =) Va6 do dil < (©CRIVola) [ ol e <
E JQ 0
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T. 1 T, 1
s<0102KHv¢H2>( / HpH%dt) ( / \|um—u||§dt) <
0 0

. 1
< (C1CyK ||V l|2) T2 ( sup ||p||6) |u™ — ul| r2(0,1502) = 0 as m — 400

te(0,T%)
Here again we know that p € L>°(0,T,; L%) since p™ — p in L>(0,T,; L) with ¢ = 6.

Moreover we used (|11.84)).

A similar argument holds for the term

| / / (7 — ™ -V b de di| < / / 7 — ol [V |glda dt <
E JQ E JQ

T
< [ = lallam 19t
0

We now have

™[V ||l = /Q [ P[Vu™ Pl da < (™51 Vu™ P15 1l ]]s =

= [l 511V ™[5l IIG

and we use the inequalities
[u™ll6 < CilIVU™ (]2 < Cillu™|[m2, I9lle < ColIVoll2 < Cl¢]| a2
since u™, ¢ € HJ (). Moreover, since Vu™ € W2, with we have
IVu™{le < Cs[[Vu™ [ < Cyflu™|| 2

It follows that

i
™ |[Vu™ 6]l < Cillu™ | a2Chllu™ || a2 Collpll e < CLC3C5 K[| a2

Finally

Ty
\ [ = o v s al < cresesiols [ 1o - ple <

< CICLCLKT, ||| 2 S(EIT{ : o™ = pll2 = C{CLCLE T[]l 2| 0™ — Pl e o.1;12(52)) — O
te(0,T%

since p™ — p in L*(0,T,; L9(Q2)) for every q > %

We finally deal with the remaining piece, i.e.

/E/qu-(Vum—Vu)~¢dxdt
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We define, for every w € L?(0,T,; H*(Q)), the functional

f(w) ::/E/qu~Vw~¢dxdt

The functional is obviously linear. It is also well posed and continuous. In fact

T
[/ (w)] S/E/QIPI|UHVwII¢| di dté/o IVwlialllpllull¢l]|2dt

and, since u € H? and ¢ € H},
lollulloll; = /Q P ul?odz < |lp*|lsllful*[lsl[|¢]*]]s =

= llpllglullEl oG < NolECs lullzn CEIIV ol

So we have

T*
) < Ca sup Tl )Co1 Tl [ olel Tl
0

te(0,T%

Remember that sup ||ul|g2 is a number since u € L>(0, T,; H*(Q2)). Finally
te(0,T%)

T. 3 T. 3
|f<w>|soz||u||Loo(o,T*;Hz>cl||v¢>||2( / ||p||§dt) ( / ||Vw||§dt) <

T.

1
" 2
||w||%pdt)

Here ||p||zoe(o,,;26) is a number since p™ — p in L*°(0,T,; L) with ¢ = 6. So the
functional is well-posed and continuous. Since u™ — u in L?(0,T,; H*(Q2)), we have
that

1
< Calllmorar 16T ol oo [
0

fw™ —u) —0 asm — +0o0
In other words
lim //pu~V(um—u)~¢d:cdt:0
EJo

m—-+00

So, we have proved the proposition. i

11.8.3 Proof of corollary

We have already remarked that the zero measure set E found above depends on the
v € X that we fix. What is true is the following assertion.
Let v € X. Then there exists a subset E, C (0,7), with |E,| = 0, such that

/(put+pu-Vu—uAu)-l/d.tE:O te (0,1,)/E, (11.93)
Q
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We now want to generalize the result. We can do vary particular choice of v. For
v=w"m = ¢", element of the basis of X, we set

Em = wm

E::UEm

meN

and

Being countable union of zero measure set, we have that |E| = 0. So, for every m € N
we have

/(put+pu-Vu—uAu) cw™dr =0 Vte (0,T,)/FE (11.94)
Q

Moreover, possibly except over another zero measure set, say A, |A| = 0, the integral
above is well defined, as we have seen in [11.4] since also w™ € L*(Q2). If now v € X,
we can find »™ such that
lim ||P™ —v| < lim [[p" —v|x =0
m——+00 m——+oo
where ™ € X™ is define in ((11.89)) with ¢ = v. This is possible since {w™} is a basis.

So, for those ¢ € (0,T,)/A such that pu; + pu - Vu — pAu € L*(2), as in section [11.6.5]
with t ¢ E, we have

’/(put—f-pu-VU—MAu)-ydx
Q

/(put+pu~Vu—,uAu)-(V—Vm) dx| <
Q

< lp()ue(t) + p(t)u(t) - Vu(t) — pAu(t)[2|lv = v™|2

If we send m — oo we find that the left-side is zero. Here we used that
/(put+pu-Vu—uAu)-l/m drx =0
Q

m

for every t € (0,7)/E, since v := Z<V7 #*)2¢" and so by (11.94) and linearity the

k=1
integral is zero. Finally, for every ¢ € (0,7.)/(AU E) and for every v € X we have

/(put—l—pu-Vu—,uAu) cvdr =20 (11.95)
0

Observe that now A and E does not depend on v.
Moreover, in (9.61)), we have observed that X = Wolf(Q) N H*(Q). So, if ¥ €
WOIf(Q), we have that there exists a sequence, say {v*}ren C C5%(Q2), such that

lim [|o* =4[l < lim [[* = ¢]g1 =0
k—o0 k—o0

Since ¥ are smooth, we have that in particular v* € X. So, for every t € (0,T.)/(AUE),
and k € N we have

/(put+pu-Vu—uAu)-l/kd:v:0
Q

269



It follows that

(pus + pu - Vu — pAu) -1 dx
Q

(pug + pu - Vu — pAu) - (¢ — v*) dz| <
Q

< llpus + pu - Vu = pAullz(t) [ = v*l2 = 0
as k — oo. This means that, for every t € (0,7%)/(AUE), |AUE| < |A|+ |E| =0,

/(put + pu - Vu — pAu) - de =0 (11.96)
0
for every ¢ € Wolf(Q) i

11.8.4 Proof of theorem [11.3

The integral property holds for every time-independent ¢ function in Wolf(Q)

We want to increase the class of functions such that the equality holds. For this purpose,

consider o € C([0, T,]; Wolf(Q)), where (WOI(E(Q), |- | z71) has to be meant as an Hilbert

spac. In particular, a function in this class is in L?(0,T}; WOIUQ(Q)) So, we can use

the theorem above, from [0].
T.

Remember now that / | pus + pu- Vu — pAul|3(t) dt < +oo, as seen in Section [11.6.5
0
So for every ¢ € C'([0, Ty]; WOIC%(Q)) we have

T, T,
‘ / /(put—i-pu-Vu—uAu)-go(x,t) dx dt‘ < / | pur + pu- Vu— pAul|o]|o(t) |2 dt <
o Jo 0

Ts 5 T. é
s( | ot g psalin dt) ( / Hso(t)!lédt) < too
0 0

Moreover, using theorem , for every € > 0 there exists ¢, € L*(0,T,)® Wolf(Q) such
that

lle — SOEHL?(O,T*;W&;E(Q)) <€

So, the estimates above hold with ¢ substituted by ., and, moreover, we have

Ty
/ /(put + pu - Vu — pAu) - p(x,t) de dt =
0o Jo

T.
/ /put—i-pu Vu — pAu) - (ZXES )dxdt

me T,
_Z/ X (t /put+pu Vu— pAu) - hi(z) de dt =0

341t is a closed subspace of the Hilbert space H'(Q) = W12(Q)
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since h; € Wolf(Q) and so we used (11.96)). It follows that

Ty
‘/ /(puteru-Vu—,uAu)-go(m,t) dx dt‘ =
o Jo

_ ‘/OT /Q(pumtpu.vu—uAu) (@ 1) — pu(,1)) da dt' -

Ts
< / s + pu - Vi — pdallallp(t) — u()l2 dt <
0

T ; T %
s( / ||,out+pu-w—um||%dt) ( / IIw(t)—sOa(t)llgdt) <
0 0

T 2
< (/ Hﬂut +pu - Vu — MAUHS dt) HSD - 905HL2(0,T*;W01’5(Q))
. ,

Since the latter piece is small, we have that for every ¢ € C'([0, T.]; Wolf(Q))

T,
/ /(put + pu - Vu — pAu) - o(x,t) de dt =0 (11.97)
0o Jo

So we have proved the theorem. i

11.8.5 The weak solution is a weak strong solution with a pres-
sion gradient term

Theorem 11.4. Let Q be a bounded domain of R®. Consider the pair of solution (u, p),
as introduced in sections . Then, for almost every t € (0,T%), there exists a
function p(t) € L2 () such that p(t) has weak derivative in Q) and

loc
pus + p(u - Vu) — pAu = Vp
Proof. Remember that
Co() C{op € CX(Q): V-¢=0inQ} CWZ(Q)

Thanks to theorem [11.1] there exists a set of zero measure A U E such that for every
¢ € W&g(Q) we have

/(put +pu-Vu—pAu)-¢pde=0 Vte (0,T,)/(AUE)
Q
Using Lemma [6.1], we have that, for a.e. ¢t € (0,T,),
/(put+pu-Vu—uAu)-<,0dx:—/p(t)V-goda: Ve CrQ)
Q Q
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for some p(t) € L2.(Q). If ¢ is a scalar test function and ¢ := 1¢;, we have that

loc
/(put + pu - Vu — pAu); ¢ drv = —/p<t) O de V¢ eCr(Q)
Q Q
This means that
(pue + pu - Vu — pAu); = 0ip(t)

where the derivative is a weak derivative. In other words, for almost every t € (0,7%),
we have
pug + pu - Vu — pAu = Vp(t)

The equality above is to be meant in the weak derivative sense, so it is true almost
everywhere.

Remark 11.28. This theorem immediately gives us an important property of the pair
(u, p): it is a solution in a strong sense. [

11.9 Weak solution to the problem with regular ini-
tial density p,: the momentum equation

We want now to deduce now the weak formulation of the problem, as introduced in
chapter [I0} To do this, we need to derive the functions in classical sense. So, for a
moment, we turn back to the approximate solutions in the following way. In partic-
ular, at first, we have the following theorem. In fact, in the previous paragraph we
deduced an integral weak form of the momentum equation. However, this formulation
doesn’t involve the initial data. In this subsection, we will modify the integral equation,
changing it into the real weak formulation of the problem as introduced in chapter [10}

Theorem 11.5. Let Q be a bounded domain of R3. Consider the pair of solution (u, p),
as introduced in sections with initial data (uo, py), as fized at the beginning
of chapter . Then, for every ¢ € C'([0,T.]; Wolﬁ(Q)) such that ¢(x,T,) = 0 a.e. in
Q, we have

T. T. T.
—/ /pu-gptdxdt—/ /pu-(Vgo)-udxdt+u/ /Vu-Vgodxdt:
o Ja o Ja o Ja

- / Po(z)unlz) - o(z,0) da

Proof. Let ¢ € C'([0,T.); WOIf(Q)) such that ¢(x,T,) = 0 a.e. in . Consider

T*
/ /(pmuln + pmu™ - Vu™ — pAu™) - p(x,t) do dt
o Jao
and remember that
plr+u™-Vp" =0, V.-u"=0
By the regularity in time, we have that

m, m

(P u™ - )y = pM (U™ - ) + p" (W™ ) = plru™ - o+ P (U - @+ u™ - )
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and so
pru o = (P ) — P U™ o — pMu™ - oy =
= (p"u" )+ (W™ - V") (U ) — pMu™ - gy
using the mass equation. On the other hand we have

Vu™- ) =¢- (Vu™) +u™- (V) (11.98)

using the Leibniz rule for weak derivatives, since u™ € C*(Q). So

o V- () B V() = (V)] - (") =
=V(u"-p)- (p"u™) = p"u" - (V) - u™ (11.99)
Moreover we have that, if ¢ is a scalar field and A is vectorial,
A-Vo=V-(64) = $(V- A)
and so, with A = p™u™ and ¢ = u™ - @,
(p"u™) - V(U™ - ) =V (p"u" (W™ - ) = (u™ - )V - (p"u™) (11.100)

using again the Leibniz rule and the fact that p"u™ is regular in x.
Moreover
V-(pmu™) =p"V -u" +u™ - V" =u" - V" (11.101)

since V - u™ = 0.
So we have

mom m (11.100)-+ (11.101) o m m m m
(pum) -V (um - ) EEVEELD G mym om0y — (- @) (u™ - V™) (11.102)

and then

- v (prumy EEVHLDD @ mm (. o)) — (™ ) (u™ -V p™) = pu™ - (V) -

Putting the pieces togheter we have
plut o+ - Vu™ - (p"u™) = (11.103)

= (p"u" - o) = p"u" o + V- (pT U (W™ ) = p"u™ - (V) - u™
The aim is now clear: integration in 2 will remove the divergence term, while integra-
tion in ¢ will provide us an initial time term.
At the same time we have, thanks to ((1.14)),

3
Au™ - p = ZV (@;Vul') = Vu™ - Vo

i=1

In the last equation there is, however, a little problem: the equality is obtained using the
Leibniz rule, but Vu!™ or ¢; aren’t in C'! class. So, we have to use a little approximation
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argument. Since p(t) € Hj(Q), and the boundary 0N is regular, then there exists a
sequence of functions n*(t) € C*(Q) C C>=(Q) such that

lim {|o(t) = ne(t) [l = 0

k—+o0

It follows that

/QAum(a:,t) ~p(x,t) dx'g lim [ Au™(z,t) - ez, t) de =

(1.14]

= Jim (ZZ;:/QV ((ne(z, 1)) Vui"(z,t)) d —/QVum(:c,t) - Vne(z, t) d:c)

k—+4o00

since now we are in classical hypothesis. If we prove that
/ V- ((m(z,t);Vul(z,t)) de =0 Vk,m €N, Vie {1,2,3} (11.104)
Q
then
/ Au™(z,t) - p(x,t) de = —/ Vu"(z,t) - Vo(t) do
Q Q

using the same argument convergence of note 35|
To prove ((11.104)) we use the generalized divergence theorem. In particular, we have

/QV . ((nk(x,t))iVuzn(:c,t)) dr = éﬂT((nk(x,t))iVu;"(x,t)) v do

where v is the outward normal vector.

If we show that the trace is zero we have done. We can use the argument in ,
since u™(t) € H?(Q) and ni(t) € C=(Q2). Since Tni(t) = 0 on 9N (it is a continuous
function over Q and the boundary value is zero), we have the thesis.

So, passing to the integrals, we have

T, T.
/ / Au™(z,t) - p(x,t) de dt = —/ / Vu™(z,t) - Vo(x,t) de dt
o Jao o Ja
Measurability and summability are not a problem in the latter equality, thanks to the

discussion in the chapter dedicated to the Bochner integral.
We now restart from the initial integral equality. We have

Ty
/ /(pmu,?” + VU™ - u"™ — pAu™) - p(z,t) de dt =
o Ja

35 Observe that

/ Au(z,t) - p(z,t) do —/ Au™(x,t) - g (z,t) de| < / |[Au™ (2, t)||o(x, t) — ng(z,t)|dx <
Q Q Q

< [[Au™(@)l2llp2(t) = m()ll2 = 0 as k — +oo
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T*
(T1.103) ™ o o . )
= / /Q(P u™ )y — p"u -¢t+V-(p u™(u -@))—p W (V) -u™ do dt—
0

Tk
—u/ /Aum-gpdxdt:
o Jo

T*
:/ /(pmum'SO)t—pmum'80t+v‘(pmum(um'gfi))—pmum'(V(p)-um dr di+
0 Q

T.
—i—u/ /Vum-Vgodxdt
o Ja

We now have to reach two goals: interchange the integrals in the first term and get
rid of the divergence term.

To interchange the integrals observe that the product p™u™ - ¢ is regular in time;
in particular we can observe that

(P u™ - )y = U™ o+ pMu - o+ pu™ - o € C([0, T3] LA (2)) € L*(0, T L*(2))

So, the function is in L? ((O, T,) x Q), by the isomorphism between the two spaces, and
so by the Fubini theorem

// , du dt = //T , dt dz

Using the FCT with Bochner integrals, we have

/0 (p"u™ @) dt = (p"u™ - p)(t) — co

for almost every t € [0,7,]; here ¢y is a contant in L?(€). Actually the equality holds
for every t € [0,T.], thanks to the regularity in ¢ of the integrand function. So we have

co = (p"u"™ - ¢)(x,0)

See [9, pg. 51-52, th. 4.9]. So, it follows that

[ o), de = () () = (57 ) .0) =

=—(p™u™ - ¢)(x,0) ae z€Q

since p(z,T.) = 0 almost everywhere in €.

It follows that
/ /  dx dt = / (p"u™ - @) (2,0) dz
Q

Our aim is now to show
/ V- (pmu™(u™ ) de =0
Q
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Using the generalized divergence theorem we have

/QV (P (W™ - ) da = /69 T(p"u™(u™ - ¢)) - v dx

We now have to show that the trace is zero. Since the boudary is regular (and the
domain is bounded) we can approach, for almost every t € (0,7%), ¢(t) € H'(Q) with
a sequence 7 (t) € C*(Q2) such that

lim {[[o(t) — ()] =0 (11.105)
k—+o00

m

If we show that p™u™(u™ -n;,) € C*(Q) converges to p™u™(u™ - ) in H', then we have

done, as will be precised later.

Consider
o™ u™ (™ - ne) = "™ (™ - @) [ F = [l p™ ™ (u™ - (ke — @) 7 =
i
— ™ (= ) I+ 17 (7 (- 0) ) B 2
(TT-106)

= sup (ja” Plo"a ) [ = ol + 2sup o™ [ V(0" (e~ ) P
Q
F2sup (fu™ IV (")) I = ol

The first and the third pieces go to zero as k — +oo, thanks to (11.105)). For the
second term we have

V(u™ - (g — 9)) = (s — ) - (Vu™) +u™ - V(i — )

and so
/\v (e — ¢ ))\dw<2/|m—s@! V| d:z:+2/|um\ V(e — o)Pda <

< 2sup IV Pk — oll3 + 2sup W™V (i — )15

that goes to zero as k — +o00, thanks again to (11.105]). So, for almost every ¢ € (0,T%),
we have

(P u™(u™ i) (t) = (p"u™ (W™ - ) (t) in H' as k — +o0

/|u (ke — Q2o P + /|v (e — 9)) ® (P™u™) + (u™ - (1 — )V (p™u™) Pdlr <

< / ™2l — ™ P42 / IV (™ (i — ) |2 o™ 2 / ™ 2l — oV (o™ P <
Q

(11.106)
where we used that |wy ® wa| = |wiwd | < |wy||ws], since it can be meant as a matrix product.
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Since p™u™(u™ - np) € CH(Q), by definition we have for almost every t € (0, T),

T(p"u™ (W™ - ))(t) = lim T(p™u™W™ ni))(t) in L*(0Q)

k—+o0

But T'(p™u™(u™ - ni)) (t) = 0 since the function is in C*(2) and at the boundary the
function is zero, since u™ = 0 on 0f).
Since the limit of a zero sequence in L?*(0Q) is zero, we have that for almost every
t € (0,T.)

T(p"u™ (W™ - ¢))(t) =0 a.e. on 9Q

It follows that
/ V- (p"u (™ @) da = / T(p"u™(u™ - @) v dz =0
Q o9

for almost every t € (0,7,). Then
T
/ / V- (p"u™ (™)) da dt =0
o Jo
So, our initial expression becomes as follows:

Ts
/ /<pmu7tﬂ + p"u™ - Vu — pAu™) - p dr dt =
0o Jo

T*
= / /(Pmum c@)e — pmu™ o+ Vo (pTum (W™ @) — pmu™ - (V) - u™ dr dit+-
o Ja

Ty
—HL/ /Vum-Vgodxdt:
o Jo
Ty Tk
:—/(Pmumw)(%o) dIB—/ /pmum-got d:cdt—/ /pmuW(v@.um de dt+
Q 0 Q 0 Q

T.
—i—,u/ /Vum-Vgpdxdt
o Jao

At this point, we want now to take the limit another time. The first member goes to
zero, since it is the limit from which we started in this section. For the second member
we go in order. First of all we show that

lim (p"u™ - @)(2,0) de = /Qﬁo(:c)uo(x) ~(x,0)dx (11.107)

m—-+00 Q

In fact observe that, since p™(z,0) = py(z) for the choice of the initial data,

/Q Po() (u™ (2, 0)—uo()) o, 0) dr| <

‘/Q(Pmum-go)(:v,o) dx_/gﬁo(f)UO(iU)'w(ﬂS,O)da:

< /Q [Po(@)l[u™ (z,0) = uo(@)lle(2, 0)ldz < sup [po|[[u™(0) = uoll2ll¢(O)l|2 = 0
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as m goes to infinity, since u™(0) goes to up in X, that is in H?-norm.

Now we deal with the second piece. We want to show that

T. T.
lim / pru™ -y dx dt = / / pu - o da dt (11.108)
m=+eo Jo o Jo 0 Jo

Using well know arguments, we have

Tk T

u™ — p"u+ pMu — pu) - o do dt| <

(p"u™ — pu) -y dx dt‘ =

Ty Ty
s/ /|pm|ruM—u||sotrdxdt+/ /\pm—puunwtm:cdts
0 Q 0 Q

Ty T
< (lolle + 1) / ™ — ullalloills de + / 1o™ = pllsliullsllgellsde <
0 0

T, i T, i T,
< Ul 0 [ e —alan) ([ hoitgan) "+ sup 197 = pla [ b
0 0 (0,T.) 0

Observe that

T, BT 1 T. 3
[ atslios ar= e [T ugea) ([ alear) < oo
0 0 0

since u € L=(0,Ti; H?) and ¢, € C([0, T.J; Wy2 ().

So, since at the beginning we can select the sequences with the properties u™ — u in
L?(0,T,; L*) and p™ — p in L>(0,T,; LY) with ¢ > %, we have also the convergence of
this piece.

We now have to prove that

Tx Ty
lim / (Vo) -u™ dx dt = / /pu (Vo) -u dx dt (11.109)

m——+00
T,
‘/ /pmum-(Vgo)-um—pu-(Vgo)-udxdt‘:
o Jo

= ‘/0 */Q(pm_p)“m'(v¢>'“m+p(“m_u)'(VSO)'Um+pu-(V¢)-um—pu.(V¢).u dz dt| <

Ty Ty
< [ [ = oVl iz des [ [ a9l ~ ol do des
0 Q 0 Q

37Using that

We have

1 1 =
lullslleells < 12 [lulls |27 lpelle < Cllullm (@l
since u € L®(0,T,; H?) and ¢; € C(]0, Ty]; Wolf(Q))
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T
+/ / lpu|[Vol|lu™ — u| dz dt (11.110)
o Jo

Remember now that, from (11.77]), we have chosen a sequence such that

T
lim [Vu™ — Vulj3dt =0 (11.111)

m——+00 0

So, we deal with the three pieces in [11.9] in order.
We start with

Tk Ty
| L = Vel i de < [ 19 elallo” = plla e di <
0 Q 0

T*
< sup [[Velz / o™ = pll™ Pl dt
(0,T%) 0

On the other side we have
o™ = pllu™ |13 = /Q 0™ = plPlu™*dz < [|p™ = pPlalllu™*ls = [l0™ = pllgllw™ 1§

where we have used the Holder inequality with p = 3 and ¢ = 3. Since [[u™|s <

A

C||Vu™|2 < Cl|u™|| g2, and u™ € L>(0,T,; H?) with |[u™|| e o,r,:m2) < H, we have

T
[ [l = aivelun e ar < sup [VALT.CR? sup 57 = sl
0o Ja (0,7%) (0,7%)

Since p™ — p in L*(0,T,; L?) for every ¢ > % we have that this piece goes to zero.

The second piece is similar. We have

Ts T
/ / Pl Vlla™| ™ — u| de df < / IV lalllol ™™ — w2 dt <
0 Q 0

Tx
plfa™[[u™ = ulll> dt

< sup [|Veolls /
(OvT*) 0

On the other hand

o™ [[u™ —ul[[5 = /Q o[ Plu —ul*dz < [lp*lls ]| lu™ sl —ullls = [lollglu™ [ 1w —ullg
Since u™, u € H}(Q) for almost every t € (0,T,) (being a numberable sequence), we
have ||u™ — ulls < C||Vu™ — Vul|. Finally we get

T,

T* *
| [iolvellaiiar =l de at < O sup 9l sup ol [ V" - Fulade
0 Q (0,T%) (0,T%) 0

279



Using (11.111)), we have that also this term goes to zero.
The latter term is similar. In fact
T, T, T,
| [ieliveln=a dede < [ 19 plalloullam -l d < sup [Vl [ lpullenula e
0o Jo 0 (0,7%) 0
So, as above,
lpul[u™—ul|[3 = /Q |pul’|u™ —ul*dx = /Q o [ul?[u™ —ul? d < ||| pf|[sllul?||s|||u™ —ul?|ls =

= llpllsluligllu™ = ulls < C*pllgllullsl Va™ = Vull3

Since u € L>(0,T,; H?), we have [Julls < Cllullm < C|ul|g2 and so |Jul| s o,7,:16) <
Clul| oo o,1;m2) < 00. So it follows

T« Tx
[ [ imlveliam = ul do dt <l el [ 196" = Valade
0 Q 0
that vanishes thanks, again, to equation (11.111)).

Finally we have to deal with the easiest piece. We have to prove that

T. T.
lim /Vum-Vgodxdt:/ /Vu-chdxdt
Q 0o Jo

m——+00 0

We have
T*

Vu —Vu) -V dr dt

T
/ / |IVu™ — Vul||Vp| de dt <
0o Jo

T, 1 T, 5
< / IVu™ — Vall, ||wn2dts( | v Vunzdt) ( / ||W||%dt) <
0 0 0

1 L. 3
< T2 sup ||| m (/ |Vu™ — VuH%dt)
[0,T%] 0

that goes to zero as remarked above.

Finally we have

m—-+00

T. T.
= liIE { /(p u™)(x,0) de— / /pmumgp dx dt— / / " (V)u™ de dt+
m——+0o0
Ty
/ /Vu -V dz dt}
T, T, T.
—/ﬁo(x) o(z)-@(x,0)dr— / /pugptdxdt / /pu V) uda:dt—i—u/ /Vqupdxdt

This means that for every ¢ € C*([0, T.]; W 2(Q)) with ¢(z, T.) = 0 almost everywhere
in 0 we have the desired equality. |

T,
0= lim /put + p"u™ - VU — pAu™) - p(z,t) do dt
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11.10 Weak solution to the problem with regular
initial density p,: the transport equation

We have proved the weak formulation of the transport equation. However, to be a
weak solution of the Navier-Stokes equations, the pair (u, p) also have to solve the weak
transport equation, as introduced in chapter [I0] So we have the following theorem.

Theorem 11.6. Let Q be a bounded domain of R®. Consider the pair of solution (u, p),
as introduced in sections with initial data (ug,py), as fized at the beginning
of chapter[11 Then, for every o € C*([0,T.]; H'(Q)) such that ¢(z,T,) = 0 a.e. in §,

we have
T. T.
/ /pgot dx dt +/ /pu Vo dr dt = — / Po(@)p(x,0)dx
o Ja o Ja Q

Proof. Let p € C*([0,T.]; H'(Q)) such that p(x,T,) = 0 a.e. in Q. We have that,
clearly, approximate solutions (p™,u™) are classical solution of the transport equation;
so, following the argument of ([10.5]), we have

/oT* /Q(pm% + "™ - V) (2, t) do dt = — /on(q;)gp(x,O)da:

If we prove that for every test function ¢

T. .
lim / / Py dx dt = / / ppr dx dt
m=+e Jo  Jo 0o Jo

T. T.
lim /pmum-Vgp dx dt—/ /pu-V@ dz dt
m=+eo Jo  Jo 0o Jo

we have that p is a weak solution to the transport equation. We know that p™ — p in
L>(0,T.; L9(2)) for every g € [2,00). So

T
0

Tx T
[ [ =nedza| < ["1m=plaliodadt < o= pllimom oy [ el 0
0 Q 0
We deal now with the other limit. We can write

T. T. T.
/ /(pmum—pu)~Vg0 dx dt = / /(pm—p)um~Vgo dx dt—l—/ / p(u™—u)-Vodx dt
o Jo o Ja o Ja

We can deal with the first integral in a way very similar to the one discussed above. In
fact

Ty Ty Ty
[ [ -mnsoaral < [ [1mplerivasa < [ sl el
0 0 0

where
1™ = pllu™[3 = /Q o™ = pPlu™ Pdx < |]p™ — pll3 w3
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From Sobolev inequalities, since u™ € H{(2), we have ||[u™]|; < C||Vu™||2. So it follows
that

o™ = pl[u™|l2 < Cl[p™ = pllal|Vu™||2 < C|lp™ = pllallu™|| g2

Finally

T T, % T %
0 0 ;

T 1 T 1
* m 2 m12 2 - 2 2
sc( [ o= ol I\szt) ( / ||wu2dt) <
T. ) 3 T, ) 3
< ¢ sup ||pm—pu4( / Hum||H2dt) ( / ||wu2dt) <
(O,T*) 0 0

L T 3
< (JT:K( / HWII%dt) 17" = ol zsziion)
0

since sup ||u™||z2z < K. So this piece goes to zero as m — oo.
[OvT*]

To deal with the other integral, we use that v™ — wu in L*(0,T,; H*(2)). So, we
can consider the functional

T,
f(w) ::/0 /pr-Vgp dr dt Yw € L*(0,T,; H*(Q2))

We now show that this functional is well defined and continuous (it is obviously linear).
We have

Ty Ty
sl < [ [ lpuliVel dode < [ oulal Vel <
0 0

2 1 1
noticing that [|pw|ls = (/Q IPIQIwIde> < pPl3 Ilw?l3 = llpllallwlla < llpllallwllzz,

we have

T.

; T, 1 T, 1
< Dol [ olll Vel de < lolmoman ([ ol de) ([ 190l3ar) <
0 0 0

1

T, L
< lolloaan ([ 19618 ) el imiey
0

So continuity and well-posedness are proved. It follows that

lim f(u™—u)=0

m——+00

and so
T. T.
lim /pmum-Vgp dz dt:/ /pu-Vgp dz dt
m=+o0 Jo Jo 0o Jo
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It follows that, for every ¢ test function ¢ € C*([0, T.]; H'),

T. T,
/ /p(ptdxdt—l—/ /pu Ve dz dt =

Ty
~ lim / (70 + o™ V)@ ) d di = — / Po(2) (e, 0)da
Q Q

m——+00 0

So, we have proved that the limit solution satisfies (in weak sense) the transport equa-
tion.

11.11 A posteriori estimates on the pair (p, u)

Now we have finally found the weak solution to the Navier-Stokes equation, for initial
density p, with certain regularity hypothesis. Now we deduce some useful estimates on
the pair (u, p) of solutions.

11.11.1 Estimates on the density p
In this subsection, we have the following lemma.

Lemma 11.5. Let p(t) € L>(0,T,; L?) the limit solution above. Then it hold the
following properties

0 <p(t) < llpolle + 1, llp@®llg = lIPolly ¥t € (0,72)

Remark 11.29. This properties hold a.e., since a function in LP(0,T; X) is defined a.e.,
being (respect with time) in an L? space. [J

Proof. We know that, for every ¢q € [%, +00), it holds

Jm 1™ = pllze 0109020 = 0

We can fix a point ¢ € (0,T) such that ¢ ¢ I,,, for every m € N, where I, is such that
o™ () — p(O)|lg < |lp™ — pllzeco;Le)) < 00 for every t € (0,7%)/I,. In particular

= U I, has measure zero. So, for ¢ € (0,7,)/I we have
meN

1™ (@) = p(D)llg < 1p™ = plleeo,1i9(0)) = 0

as m — oo. This means that {p"(¢)},, is a Cauchy sequence in L4(Q2). This implies
that there exists a subsequence {p™*(f)}, such that

lim p™(x,t) = p(x,t) ae x €
k—+o00

Since p™(x,t) > §, we have that also
p(z,t) >4 ae ze
Moreover, since p™(z,t) < ||polleo + 1, it follows that

p(z,t) <|lpollc +1 ae. z€Q
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Remark 11.30. We have obtained the limit solutions from "astract” theorems of func-
tional analysis that provide us the solution in a non constructive way. We know that,
in example, p € L>(0,T,; L?). This has to be read in terms of spaces involving time:
we fix a time (almost everywhere) in (0,7,). At this time, p gives back a vector in
L9(Q2) that is a function defined almost everywhere. So, almost every where in time,
we have information about the density almost everywhere in the space. In other words,
stopping the time at a certain point, the configuration of the density at that freezed
time is known almost everywhere. The same holds for the other functions, e.g. the
vectorial velocity u. [

So for a.e. t € (0,7), we have
5< p(t) < lpolloo + 1 (11.112)

where the inequalities hold almost everywhere. We now deduce the second equality.
For almost every t € (0,7) we have

W™ @®lg = [lo@llgl < [l™#) = p®)]ls < oup lp™ = pllg = 0 as m — +oo
€(0, 1%

So that lm {[p"(t)[l, = lp(®)ll, a.e. t€(0,T5). Sice [[p™(t)llg = [[Polly for every
t € (0,7,) and m € N, we have ||p(t)|, = [Pl a.e. t € (0,T%).

Moreover, we have that sup [[p()|[ < [[pollc+1. We know that p € L>(0, T%; L*(€2)).
0,T.

So, if kK € N, we have that
T [lo(0)lle = lo(®)lle: 1 2ol = 70l

provided that ¢ is such that p(t) € L*(Q) for every k. So, if I, is such that p(t) € L*(Q)
and [[p(t)||lx = ||Pollx for every ¢ € (0,T) /I, we have that, for every t € (0,7%)/I, where
I = U Iy, we have p(t) € L*(Q) for every k. So ||p(t)]lec = ||Polloc for almost every

keN
te 7). 1

11.11.2 Estimate on the velocity u

Now, we want to deduce a first estimate on the velocity u. In particular, we prove the
following theorem.

Proposition 11.22. Let Q be a bounded domain of R3. Consider the pair of solution
(u,p), as introduced in sections . Then, there exists a constant C > 0 such
that

sup [|Vu(t)[z < C

(0,T)

Proof. We already know, thanks to the theorem [11.13] that

sup [|[Vu™(t)|2 < C (11.113)

0<t<Tx
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We have already remarked that the sequence {u™},, can be chosen such that
T*

lim |Vu™ — V|3 dt =0

m——+00 0

In other words, as a function of time, ||Vu™ — Vull; — 0 in L*(0,T}).
This means that there exists a subsequence {||Vu"™ — Vu||2(t) }ren such that

lim ||[Vu™ — Vul2(t) =0 a.e. t e (0,7T%)
k—4o00

Moreover we know, using estimate (11.113]), that exists a measure zero set, say A, such
that
[Vu™(t). < C Vte(0,T)/A, Vm eN

If B is the zero measure set such that [|[Vu™ — Vul|2(f) — 0 holds for every t €
(0,T.)/B, we have that, for every t € (0,7,)/(AU B),

Vu@)|z = lim [Vu™@)] < C
k—+o00

Since the bound is true almost everywhere in (0, 7%), we have that sup ||Vu(t)|]s < C,
(0,T.)

that is the thesis. I

11.11.3 A final a posterior: estimate
We finally prove in this section the following theorem.

Theorem 11.7. Let Q be a bounded domain of R®. Consider the pair of solution (u, p),
as introduced in sections|11.2{11.7. Then, there exists a constant C' > 0 such that, for
every t € (0,T%),

t t
sup (9l + IVGul) + [ I9ulids < o) + Coxp (€ [ I9ulias)
0 0

7€(0,t)
(11.114)
where

C(po, tto, po) = / (po) |11ty — Vpol? da
Q

Proof. We start with a similar estimate that we have already proved. Remember

(11.67), that is

t t
o [Vt sup [+ |9 Bds < G+ exo (H / ||Vum||3ds)
0 0

7€(0,t) 7€(0,¢)

t
If we add both sides the term sup |[u™|]3 < K? and / |u™||5 ds < Dy, thanks to
0

7€(0,t)
(11.75)), we have

t
sup (™% + sup [Iv/Emr |2+ / ' Bpds <
0

7€(0,t) 7€(0,t)
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< sup [+ s 9 s IV [ s 19 <
7€(0,t T€(0,¢

TE

t
< Do K2 sup 90 i+ s V7 + / IV |3ds <
T€(0, 0

7€(0,¢)

t
gm+KﬂﬂaWuhmw/meW@
0

Before going on, observe that the inequality can be re-written as

2 2 t t
( sup ||um||H2> +< sup \\/pmu;”\|2> +/ ||u;n||%{1ds§Do+K2+HCo +H exp (H/ ||Vum||§ds>
r€(0,t) r€(0,t) 0 0

since the functions are positive. So, taking the liminf both sides we have

T7€(0,t)

2 t
it { (s ")+ <sup N u’t"\l2> + [ lupias) <
m—++00 T€(0,t) 0
A A~ A‘m A A t
gliminf{Do+K2+Hco + H exp (H/ HVumH%ds)} <
m—-+00 0

t
< lim sup {Do + K2+ HCy" + Hexp (H/ ||vum||§ds> }
m—r+00 0
So, using the properties of limsup and liminﬁ we get

2 2 t
lim inf m lim inf N lim inf "2 ds <
(g&z&%hﬂ (m@st wh)+g$AWMms_

T€(0,t)

A

¢
< Do+ K? + limsup HCy " + limsup H exp (H/ ||Vum|"21ds)
m—400 0

m——+00

38We remark that, if a,,, b, are two positive sequences, then, if n > k € N

(inf an) (fuf bn) < anb = (inf an) (a6 bn) < inf (anbn)

So, sending k — oo, we have, by definition

(lim inf an) (lim infb,,) < liminf a,b

n— o0 n—oo n—oo
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Since u™ = u in L>=(0, T,; H*(Q)) we hav
Full e 00520y < Timinf || oo 0,1:002 )

At the same time we can deduce the analogous inequality for |[/p™u}"|| e (0,2(0))- In
fact, first of all consider that, from equation (11.67)),

sup [|v/pmu||3 < HWy + H exp(HT.M*)
7€(0,t)

and L'(0,t; L*(9)) is a reflexive Banach space, with L>=(0,¢; L*(Q)) ~ (L(0,t; L*(Q2)))*,
we have that, extracting a subsequence,

Vot S w in L(0,t; L2 ()

for some w € L>(0,t; L*(©2)). More precisely, we can extract the subsequence in the
case t = T,, then the weak star convergence is true for every t as explained in the note
below. It follows that

|lwl| Loo0,6:02(0)) < lenlfg Ve ui | oo 0.1:12(0))
We want to prove that |[wl|ze(04r2()) = ||v/PUt]l L (0402(0))- First of all observe that

Vorut — (/puy in L*(0,¢;, L*(Q)). In fact, if f € (L*(0,t; L*(2)))*, we have, with
vp € L0, L*(Q)),

PV = ) = [ (T = v ds =

t
0

= [T = v ds + [ = o ds

The second term goes to zero since uf® — uy; in L(0,Ty; H}(Q2)) and

t t % t %

slnmm¢mmm8s<Au¢mm%Q (Anm%ﬁ
t 3 t 3
S(An¢mmﬁﬁ (A”W%“>

39We use here that a weak-star convergence in L>(0, T\; H?(f2)) implies weak-star convergence in
L>(0,t; H2(Q)) for every t < T,. In fact, if v € L1(0,t; H*(2)), we can define

[t s

v (0,T.) — H*(Q)

V() = o(r) T<t
) 0 T>t
and so v’ € L*(0,T; H*(Q2)) and

t T, T, ¢
lim/ (U™, v) gadt = lim/ (u™, v gadt :/ {(u, ') 2 dt :/ (u,v) g2dt
m Jo m Jo 0 0
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so that the functional is continuous. The first term, on the other hand, can be treated
as follows. We have

(o = Vi o ds| < / |7 — V) lallogll ds <

< ([ 167 = o ds) ([ st ds) _
([ - e as o) (([leng ) <
< s 7 vl [t as) ([ et as)

using that

% %
[ v vattuepar < ([ - vatas) ([ ) = - vt

Observe now that

; ;
(/ y|um|4ds> <K(/ IV ||§ds) < R/ HWy + Hexp(HT. M%) = F,
since / Vw2 dt < [HW, + H exp(HT,M*")]. At the same time
0
; ;
1
W7 =il = ([ 1vim = vatae) " < ([ 10 = oPac) = 1m - ol

using

VI = Valt = Ve = VaIVE™ = Vol < Vo™ = VaIVE™ + Vil = o™ = pl

Finally

¢ 1 — t :
(W = Vot ot 5| < 10" =l Pl [ ol )
0 0

Since p™ — p in L>(0, Ty; L*(Q2)) (since 2 > 3) we have that also this piece converges
to zero. It follows that

HU) - \/_ut||L2 (0,tL2(Q)) — < \/_uty w — \/_Ut>L2(OtL2(Q))

= (w, w — \/ﬁut>L2(o,t;L2(Q)) - (\/ﬁuta w — \/,But>L2(o,t;L2(Q)) =
= lim < /pmu;n,w _ \/ﬁut>L2(0,t;L2(Q)) — mlirfw<‘/pmu?7w - \/ﬁut>L2(0,t;L2(Q)) =0

m——+00

288



The result of the two limits follows from this:

m (Vpmui, w — /) 12(04:02(0) = (W, W — \/PUs) 12(0,622(0)

m——+00

since /pmuf" = w in L(0,¢; L*(Q)) and w — \/puy is in L*(0,¢; L*(Q2)). The inner
product above is extacly the dual pairing between L(0,¢; L*(2)) and its dual space.
Moreover

lim (vpmu, w — \/_Ut>L2(0tL2(Q) <\/_Ut>w \/_ut>L2 0,t;L2(€2))

m——+00

since /pmuy" — \/puy in L*(0,¢; L*(9)), as proved above, and

$0) = [ o= puads

0

is such that

t ¢ 1 ¢ 1
o< [ Tolllo = Voulds < ( / HvH%ds) ( / IIw—\/ﬁutHids)
: )
= ol sz ( [ - ﬁutnzds)
0

Since w — /pu, € L*(0,¢; L*(€)), this means that f is continuous (and it is linear).

It follows that

1
0= = Vpulncaay = ([ 1= voulg as)’
Thus [[w — \/pus]|2 = 0 almost everywhere in (0,¢). This means that

[wllz = llv/puillz ae. in (0,)

It follows that

sup [wl[z = s /Pl
T€(0,t) Te(0t
Finally

sup |[/puella = sup w2 = |[wl|reeo412(0)) < Mminf [|v/p™u® | L 0,402(0))
T€(0,t) 7€(0,t) m—>+00

Finally we want to say something about the term
t
1. . f m12
nirﬂféo/() [[uf" |7 ds

289



Remember that u® — wu; in L*(0,T,; H3(€2)). Since this is a reflexive Banach space,
we have that also u = u; in L2(0,T,; H}(S2)). So in particular in L%(0,t; H}(Q)). Tt
follows that

t 1 t
(/0 HutHl%IldS) = HutHLZ(o,t;Hg(Q)) < lefg}f;of HU?HLQ(OJ;H&(Q)) = Lglgfgf (/0 Hu;”H?{lds)

Putting all the pieces together we get

t
sup (|l + sup [|v/pudl2 + ( / Hutuglds) <
0

T7€(0,t) 7€(0,t)

t
< Do+ K2+ limsup HC," + lim sup H exp <H/ HvumH%dS)
0

m——+00 m——+00
Moreover, we have already proved that
T
lim [Vu™ — Vul|5 dt =0

m—r—+00 0

We can use the following lemma in [3, Th. IV.9, pg. 58|, that is lemma . Using this,
we can find Vu™* such that

lim [|[Vu™ —Vul]3 =0 ae. t€ (0,7}
k—+o00

Moreover, we know that

sup ||[Vu™|y < sup [|[u™| g < K

[7* L *x

So, |[Vu™||3 is bounded, and ||Vul| is the limit of ||Vu™*| almost everywhere. It
follows that, from the Lebesgue dominated convergence theorem,

t t
lim / V|4 ds:/ IVt ds
0 0

k——+oco

If we think to the steps above applied to the subsequence m; we have

t
sup [Jullye + sup ||y/pusll? + ( / 2 ds) <
0

7€(0,t) 7€(0,¢)

t
< Dyt 2+ limsup ™ + H exp (H / uwuéds)
0

m——+00

This can be rewritten as

t
sup (IVulfy + [vpuil) + [ IVulfds < (11.115)
0

7€(0,t)

t
< sup Julye + sup [|lvpul + ( | el ds) <
0

7€(0,t) 7€(0,t)
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t
< Do+ K? +limsup HC, " + H exp (ﬁ/ 1Vl ds>
0

m——+00

We have to compute the limit

lim sup f[C_Om
m——+0oo
We want to prove now thatfl]
limsupCo" < C (P, uo, Po) (11.116)
m—r—+0o0
C(Pos w0, po) < C(po, o, po) (11.117)

In this case, since Au™(z,0) — Aug(z) almost everyf] z € Q, we have, by Fatou’s
Lemma,

C (P o, po) = /(ﬁo)l\umo — Vpo|dz < lilginf/(ﬁo)lluAum(O) — Vpo|*dz =
Q m=ree Jo
= liminfCy " < limsupCy < C(py, uo, po)
m—++00 m—+o00

So, in this case, limsupCy = C (B, to, po) < C(po, to, Po)-

m——+00

If we assume that (11.116])-(11.117) hold, we can deduce the desired estimate. We
consider two cases.

If C(po, uo, po) = 0, the inequality above becomes

t t
sup ([ Vullzn + [lv/ouel2) +/ IVuell3ds < Do + K* + H exp (H/ IVull; dS) <
0 0

7€(0,t)
R R R R R R R R t
< Do+ K*+ (H + Dy + K?)exp ((H + Dy + K?) / | Vul3 ds) <
0

t
< 2(H + Dy + K?) exp ((ﬁ + Dy + f(Q)/ IVull; dS)
0

since
A A A A A A t A A A A A
(H + Dy + K?) exp ((H+D0—|—K2)/ 1Vl ds> > H+ Dy + K* > Dy + K?
0
If C(po, uo, po) > 0, we can take e such that e < C(pg, ug, po). Thus

t
sup (IVallZ + [ly/Buel2) + / IVud2ds <
0

7€(0,t)

40The second inequality is easy; observe that the latter term only depends on the initial conditions.
4In fact
[Au™(0) — Augllz < V5][u™(0) — ug| 72 — 0

so Au™(0) — Aug in L?. This implies that there is a subsequence that converges to Awug almost
everywhere. So we can pass to this subsequence.
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t
< Do+ K? + HlimsupCy " + H exp (ﬁ/ [Vl ds> <
0

m——+00

t
< Do+ K2+ HC(po, o, po) + H exp (H JRAE ds) <
0

-~ F-9 ~ D0+[A(2 A A t 4
< Do+ K +(H+T)C(PO,U07PO)+H6XP H [ [[Vulzds ) <
0
and s we have
. 150+K2 R R t A
<o A+ PN g, o) + Frexp (B [ 9ull ds
0

So, in every case, we can write the inequality in the form

t t
sup (||Vu\|§{1 + ||\/ﬁut]|§) +/ V|3 ds < CC(po, ug, po) + C exp (C’/ V3 ds>
0 0

7€(0,t)

provided that

lim Supc_()m S C(ﬁo: uOupO) S C<p07u07p0)

m—-+00

We now prove this fact. Actually the inequality holds with the limit. In fact, consider
sequence such that Au™(0) — Awug almost everywhere. In particular we have that
|Au™(0) — Auglls — 0. So there exist{™]a function U € L*() such that

|Au™(z,0) — Aug(z)| < U(x) VYm, Vo €

eventually extracting another subsequence and considering the initial inequality adapted
to this subsequence (convergence properties keep to hold as long as the kind of conver-
gence is defined through a numerical sequence). So we can estimate the function

(7o)~ [nAw™(0) = Vpol” < 7" (| Au™(0)] + [Vpol)” < 207" (17| Aw™ (0)” + | Vipo )

Moreover

|[Au™(0)] < [Au™(0) — Aug| + |Aug| < U + |Auy|

42Using that
H+

. Dy+ K2 . .
( 0 )C(Po,uoapo)>Do+K2

43For every k € N there exists my, such that

, 1
[Au™*(0) — Aug|lz < o"

U(z) =Y |Au™(2,0) — Aug(z)| > [Au™"(2,0) — Aug(z)| VheN
keN

m 1
and [|[U]l2 < D [|Au™(0) — Augll2 <> o5 < oo
keN keN
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The function U + |Aug| is in L*(Q) since it is sum of functions in L?(£2). Thus
(Bo) " pAu™(0) — Vpo|? < 2671 ((U + |Aug|)® + | Vpol?) = G

where G € L'(Q).
So the sequence has a summable bound. Then, we can apply the Lebesgue dominated
convergence theorem, and we get

lim C," = lim (o) HuAu™(0) — Vpo|*dr = /(ﬁo)_lmAuo — Vpoldz
Q Q

m—-+00 m—+00

Now we prove (11.117). In fact, in the last integral we want to replace p, with the
initial data py. We have supposed to hold the compatibility condition

pAug — Vo = v/pog

where g € L%*(Q)). The functions py, po are non negative, and py € L°°(£), so in
particulare the initial density is a non negative measurable function. We can consider

Py:={z€Q: po(z) =0} = p;" ({0})

This set is measurable subset of €, since py is measurable and {0} is a Borelian set.
For every x € Py, we know for sure that |uAug — Vpo| = 0 by the equality above. Also
g is a measurable function.

So we can redefine these functions as follows. We set

(o) = {(mx))l v B

00 r € R

and

We now, for sake of semplicity, drop the apices. With this devices, we can write

(v/Po) ! {uAug — Vol = |g]

Observe that now this condition is completely equivalent to the compatibility condition,
keeping in mind the product in the extended positive line 0 - co = 0, as in example
introduced by [24].

Moreover the measurability of the functions is preserved@. Moreover we have that

441n fact let g a measurable function over a measure space (M, M) and let go € [0,0c] and Gy a

measurable set. Then
r) z¢G
) = {9( )z ¢ Go
9o z € Gy

is a measurable function. In fact, if A is an open set, we can discern two cases. If go ¢ A, then
fHA) =971 (A) eM

If gg € A we have
F7HA) = (g7 (A)NGH UGy e M
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po < Po- So, for every = ¢ P,

and if z € Fy

So we have
0 o = VP < [ () g~ Vinlds = [ JgPde < o0
Q Q Q

The latter integral is actually ||¢’[|%, but it holds ||¢’||3 < ||g]|3, since the functions are
equal or |¢'| is zero while |g| > 0. The points where p,* = 0o give no contribution to
the integral. If fact

pol=00 & z€ P = |pAug— Vpy| =0

so that the product between infinity and zero is zero. Since g € L*(92), C(po, uo, po) =
/(po)_lmAuo — Vpol*dz is a number.
Q

Finally we have, for every t € (0,T,),

¢ ¢
sup (||Vu||%11 + H\/ﬁutﬂg) +/ ||Vut||§ ds < CC(pg, ug,po) + Cexp <C/ ||Vu||‘2l ds)
0 0

7€(0,t)

(11.118)

Remark 11.31. Another similar estimate can be deduced without other computation.
In fact, we know that

¢ ¢
lim sup exp (f]/ ||Vum||§ds) < exp (I:I/ C’4ds> < exp (]:IT*C4)
0 0

m——+400

thanks to estimate (11.113]).
So equation (11.115)) becomes

t
sup ([Vullip + [lv/oull3) +/ Vg ||2ds < Do+ K*+limsup HCy ' + H exp (HT.C*)
) 0

Te(0,t m—>+00

This leads to the inequality to

t
sup (19l + lv/Au) + / IVus]l2 ds < CClpo, o, po) + C
0

T€(0,t

11.12 Regularization of the initial density

In this subsection we prove the following lemma.
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Lemma 11.6. Let § € (0,1) and py € L>(S2). Then there exists a reqularized initial
density pos € C1(Q) such that

0 < max{pp,0} < pos < |lpollec +9

Moreover, if we consider these functions as a sequence of functions indized by 6, we
have

(lsir% pos(x) = po(x) for almost every x € Q
%

Remark 11.32. If we choose p, = pos for a fixed ¢, the choice satisfies the hypothesis
, since 6 € (0,1). Moreover, in the following section we will consider sequence
0 = 0. So, in the following proof, from a certain point, we will consider such a
sequence. []

Proof. We have py € L*>(Q2) and Q bounded domain. So, we can consider B =
Bgr(0) 2 Q. We can extend now the function. In particular, we consider

) e po(z) xe€)
pol): {upouoo ve B0

Moreover, define, for every ¢ > 0, B, := {z € B : dist(z,0B) > ¢}. Then, there exists
€ > 0 such that Q) C B. for every ¢ < €.

We define
gos(x) := max{po(z),d}

Clearly gos(x) < ||gos||oc < [|polloc + 6. On the other side, we consider

90s(2) == —gos(x) + |pollc +0 >0

We consider now the regularization
e / 0
Jos(®) := n-(z = y) (905(y) — ) dy = 0
B(z,e) 4

The non-negativity follows from the fact that —gos(x) + [|pollc +6 > 2 if & < || po]|co-
Observe now that

(86%1_r>r(100) Jos() = —po(x) + [|pollc  a.e. € Q (11.119)

We now prove that limit (11.119)) holds. In fact

(o) = (oot + Illo)| = | [ o= 0)(s() = 5+ olo) = Ilo) | <

)
y) =5 +mlr) - 1p0lloo| dy
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Let C' > 0 such that |n(z)| < C for every z € B(0,1). Observe now that

, ) B
905(y) — Y po(z) — ||po||oo‘ = |—max{py(y), 5}+||po||oo+5+po(y)—po(y)—1+po(fr)—||po||oo| <

< [ = max{po(u), 6} + polu)| + 36+ |oofu) — po(@)] <5+ 25+ |ooly) — pol)

since

max{po(y), 6} — po(y) = {

0<d po(y) =0
d—poly) <6 02> po(y)

So we have

1

Fise) = (~ole) + Il <€ (04504 5 [ o) = mlo)l ) 0

B(z,e)

as €,0 — 0, thanks to the Lebesgue theorem.

since it is the regularization of the function. So, for every a > 0, exists € = £(a) such
that

e , 0
G65(7) — gos(x) + 1| <«

for every € < €. So, if we choose a = %, we have
for every & < £(8). So, if £0(8) := 22 < £(§),

So, if now 0 = 0y = 1, we have &1 := £¢(d;), and £, < min{eo(d2), Z}. So, in general

er < min{eo(5), 5’“—2—1}

So ex — 0 and gy5 (7) < ggs, (z) and so the sequence go§ (z) — —po(z) + [|po/|oe from
below. This means that

—Tos,. () + [|polloo + 0k — po(w), 305, () + [|polloo + O > gos, ()
and moreover —ggs () + || pol|s + 6x € C*(Q2), that is the thesis. i
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11.13 Weak and strong solution to momentum equa-
tion with initial density py € L>(Q)

11.13.1 Weak solution to the momentum equations

We now briefly repeat the argument above for another sequence.

The regularized approximation of the previous subsection gives us a sequence of initial
data in the regularity class that we needed. In particular, we have {pos}sc01) € C*()
such that, for every § € (0,1), it holds

0 < max{po(z),0} < pos(x) < ||polloc + &
and moreover it holds the limit

lim pops(x) = po(x) a.e. x € Q (11.120)
6—0

The first inequality above gives us an important information. In fact, we have that

po(z) < max{po(z),d} < pos(x)

and
0 <0 <max{py(r),d} < pos(z) < [[pollec + 0 < [[polloc +1

So, if we choose the initial density py(x) = pos(x), we have that this density satisfies
the hypothesis required in . Under these hypothesis, we have already discussed
the construction of a weak solution to the problem, in the sense that we will clarify
in a moment. We have that exists a pair of solutions (p°,u’) € L*(0,Ty; L>=()) x
L>(0,T.; H*(2)) of weak solution to the INSE, with initial data™| (5y,u0) = (pos, uo),
that is

/OT* /Qpé(‘ﬂt + p°u’ - V) de dt = —/ﬂﬁo(x)cp(x,o) dr = —/Q/)o(s(x)so(x,o) dr

for every p € C1([0,T.]; H'(R2) with o(z,T,) = 0 a.e. in Q; and

T, T. .
—/ /p‘;ué-gotdxdt—/ /p‘sué-ch-udxdt—ku/ /Vué-Vgpdxdt:
o Ja o Ja o Ja

— [ Po(ohuala) - o2.0) dz = [ pus(z)unfe) - (. 0) da
Q Q

for every ¢ € C1([0,T.]; X) with o(x,T,) = 0 almost everywhere in 2.
Remember that T, is independent of the lower bound ¢ of the initial density and also
of the initial density p, itself.
It also exists the weak derivative u? € L2(0,T,; H}()) of u®. Moreover, for such a
solution, we have already proved the following estimates: for every ¢ € (0,7) we have
that

0< p°(t) < lpollee + 1

45Looking at the initial density, it is clear the role of § in (p°, u?).
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1°)llg = llposlly, VW@ < C

t t
?ﬁﬂwﬁﬁp+hﬁ%m@+/HV@ﬁMSCmemmH%%m(C/HVJ%%>
St 0 0

(11.121)
uniformly in . From the family of solutions {(p°,u°) : ¢ € (0,1)} we can consider
a sequence. In fact, if we take § = 9, = % € (0,1) for every m > 2, we hav a
sequence {(p™, u™)}m>2 with the boundaries and the properties above, where § has to
be replaced with m.
With this (more familiar) notation, we now that exists (u, p) € L>(0, Ty; L°°)x L>=(0, T\; H?)
such that

p" = p o in L(0,T.; L®(9)), u™ S u o in L0, T,; H(2))
and morever exists u; € L?(0,Ty; Hy(€Q)) weak derivative of u, and
u” =y in L*(0,T,; Hy(Q))

In fact, looking at section [11.6] we have that the limit-extraction argument is based
only on the features of the functional spaces considered and the estimates above; so,
although in the sequence (p™,u™) has some regularity properties, the extraction
works in the same way in this less regular case.

Finally, the pair (p,u) is the candidate to be out local solution. We have to show
that it is a weak solution with initial data (pg, up) and moreover that the main estimate

(11.121)) holds without §. In particular, using the m-notation, we have that

T*
/ /Pm(wﬁpmum-vw) dz di = —/pogl(x)so(w,o) dzx
0 Q Q

for every ¢ € C'([0, T.]; H () with p(z,T.) = 0 a.e. in ; and

T. T. T.
—/ /pmum-%daﬁdt—/ /pmum-Vg0~ud:cdt—|—u/ /Vum~Vg0d:z:dt:
o Jao o Jao o Ja

= [ pos (@hun(o) - p(,0) do
Q

for every ¢ € C'([0,T.]; X) with ¢(z,T,) = 0 almost everywhere in 2.
Remember moreover that

lim pyi(x) =po(x) ae z el por () < [[pollee +1

1
m——+00 m

So, thanks to the Lebesgue dominated theorem, we have

i [ s @)ple,0) do = [ po(@)p(a.0) do

m—-+00

and

m——+00

lim_ [ pos (2)ule) - 9(2.0) do = [ po(ohuala) - o(2.0) da
Q Q

. - . 1 1
46With an abuse of notation, we consider p™ = pm and u™ = um.
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If we show that the limit in m allows us to get rid of the m in the notation, than we
proved that (p, u) is a weak solution with initial data (pg, uo).

We start with the transport (or mass) equation. Remember that, thanks to the adap-
tation of the DiPerna-Lions compactness result [§], we have that

p" — p in L*(0,T; L7)

since p" is a weak solution and the properties in [11.7] hold: in particular, equation
(11.120) says that for every 8 bounded, B8(pos) — B(po) in L'(Q), and py € L>(9).

Moreover, since |pos(z)| < ||polloc + 1 and there is convergence almost everywhere,
Lebesgue dominated convergence imlies that pgs — po in LP(S2), for every p € [1, c0].
This implies, as proved in section [11.10, that

T. T.
lim / Py dx dt = / / poy dx dt
m=+eo Jo  Jo o Ja

T, T,
lim / pru™ -V dr dt = / / pu -V dr dt
m=too Jo o Jo o Jo

for every ¢ € C'([0, Ti]; H'(2)) such that p(x, T,) = 0 a.e. in Q. So the limit solution
satisfies the weak transport equation. Moreover in section [11.9 we have already proved

that
T. T,
lim /pmum-got dx dt:/ /pu-got dx dt
m——+00

T. T,
lim / (V) -u™ dz dt = / /pu (Vo) - u de dt

m——+00

T, i’
lim /Vum-Vgodxdt:/ /Vu~Vg0dxdt
Q o Ja

m——+00 0

provided that, as above, p™ — p in L*(0,T,; L?). So, also the momentum equation is
satisfied. This is a first result that we were aiming. Observe that all the arguments of
the previous sections recalled here don’t involve the fact that in those previous sections
(p™,u™) are very regular; the arguments we used are only convergences and continuity
of some operators between functional spaces (in particular L spaces involving time).

It remains to prove the main inequality for the weak solution. We have the inequality

t t
p (||Vum||§{1+||\/pmu?||§)+/ V™ ||3ds < CC(po, g, po)+C exp (C/ V™| ds>
0 0

(0,¢]

using the m-notation. The inequality can be written in a slightly different way. In fact,
if we consider the inequality in ([11.115]), we have that this inequality can be written as

t
sup [[Vu™ |3 +sup [V s + [ [[Vep|lads <
(0,4] (0,4] 0

t
< CC(poy, ug, po) + Cexp (C’/ 1Vu™||3 ds) (11.122)
0
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We want now to take the limit on both sides. It is very similar to a calculus already
done. As in section [T.11.3 we have

t
lim in (s(grf IVl + IVmal) + | ||Vu;”||§ds) <
7t 0

m—-+00

m——+00

t
< liminf <CC(p0,uo,po) + Cexp(C’/ HVumH;lds)) <
0

t

< timsup ( CC{pm, o) + Cexp(C [ 70" )
m——+00 0

Always in [11.11.3] we have proved that

[[l| oo 0,652(0)) < lrlfﬁi%f [t | Lo 0,6512(02))

and
sup [[v/pull2 < hmmeV Uy || oo (0,602(92))

7€(0,t)

t 3 t 3
2 < lim i m||2
([l as) < st ([ e as)

It also holds, passing to a suitable subsequence and considering this subsequence at the

beginning,
t t
li Vu™|; ds = Vull; d
Jim [ e as= [l s

Since CC(po, uo, po) is indipendet of m (i.e. of J,,), we have

and

t t
S(élg(||VUI|%1+|lﬁut||§)+/ IIVUI”IlgdSSS(élgIIVUIIEﬁS(EIEII\/ﬁutII%ﬂL/ IV [l3ds <
) 0 ) ) 0

< sup [[ulZet sup II\futHﬁ( / ||utHH1ds)—||uHLw0tH2)+sup II\futH2+( / ||ut||H1ds) <

7€(0,t] 7€(0,] T€(0,t

2 % 2
< (it 1o ) + (Bt IV i) (hrggg( [ eas) ) <

and using the properties of liminﬂ

m—+o00

t
< liminf |Ju™||7 0.6H2(Q) T hmlnf v/ ul||3 ©0429) T liminf/ ||| 7 ds <
m—+oo Jq

4TRemember that if f : [0, +00) — [0, +0oc) is continuous and increasing and a,, > 0 we have

liminf f(a,) = kli)r_‘r_loof(ank) =f (kgrj—loo ank) >f (liminf an)

n—+oo n—+oo

where a,, is the sequence with limit the liminf. Moreover liminfa, < lim a,,.
n—-+oo k——+oo
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t
< timint (10" B geson + VPP Twpisson + | IaBnds) <

Remembering now that, as deduced from the estimates above, sup |u™]|? < K? and
7€(0,t)

t
/ |uy"||3ds < Dy, we have
0

m—r+00

t
< liminf <S(:)lg(|’um|’g+Hvum|ﬁ{1)+H\/pmu;n”%w(Qt;L?(Q))—i_/o (H%”H%HIVUTI@MS) <

m—r+00

t t
< lim inf ( sup 3”1 9 0 e / g2+ / Hwnzds) <
t
imint (&7 Dy sup 9" s+ VT oy + [ 1907 ) -
m o0 7t 0
t
= K?+ Do + lim inf (S(élg IVu™ [F + Ve oo 0 4220 +/ ||VUZ”||3dS) <
b 0
t
< K?+4 Dy + limJirnf <CC(p0,u0,p0) + Cexp (C’/ ||Vu7n||;1ds>> —
m——+0o0 0
R . t
= K+ Dy + CC(po, ug, po) + limJirnf (C’exp (C/ HVumH%ds)> =
m—-—+00 0
R R t
= K? + Do + CC(po, uo, po) + Cexp (C/ HVquds) <
0
R R t t
< (R®+ Dy)exp <c / ||Vu||;*ds) - CC(po, 0, po) + C exp (c / ||Vu||;*ds) _
0 0

t
= (% + Do+ Chexp (€ [ [9uls) + CC(m o) <
0

< Qexp (Q/O ||Vu\|§ds> + QC(po, to, po)

where () := max{f( 24 Do+ C,C }. We have finally proved the inequality

t t
sup (Il + ly/7l) + / IVui]2ds < Qexp (@ / ||Vu||3ds)+@c<po,uO,po>
0,t 0 0

(11.123)
Moreover, in remark [11.31) we have deduced

t
sup, (Va7 + Ve |12) +/ IVui"[[3ds < CC(po, uo, po) + C
0

7€(0,t

So, we have

t
/ VU™ < t<?u1)) ||Vum||?{1> <T, (C’C(po,uo,po) + C’)
0 0,t

301



and

N[

t L T. 3
[ 1w < 73 ([ 1vuriga)” < 7 (cem um) +©)
0 0

This means that
Vu™ e L*(0,T,; HY(Q) N {w: dp € L'(0,T,; L*(2))}

and the sequence is bounded as clear from above. Observe thaﬂ Oy, O™ = 00, u™.
Here, however,

/ Op, 0u™ @ d(z,t) = —/ O 0y, d(z,t) = / U™ 00y, d(z,t) =
Qx(0,T%) Qx(0,Ty) Qx(0,T%)

= / u™0,,0pp d(z, )
Qx(0,T%)

thanks to the Schwarz Lemma for smooth function, and we proceed back to front.
Since H'(Q2) cC L? by the Rellich-Kondrachov theorem, we have that the sequence
{Vu™},, has a subsequence {Vu™}, and a function w € L?(0,T,; L?(2)) such that

i [V = wlor @) =0

We call this subsequence u™ again. Passing to a subsequences, the convergences proved
yet are heredited. We know moreover that u™ — w in L*(0,T.; H*(€2)). We consider
the functional

fv) :=Vv Voe L*0,T,; H*(Q))

Clearly
£ L0, T H*(Q)) — L*(0, To; L*(Q))

and

Ts % T é
Hﬂwmm@ﬂ@f=(éwww%0 s(ﬁ M%MQ — ol oz

so that the functional is continuous. This means thatf®

Vu™ = f(u™) = f(u) = Vu in L*(0,T.; L*(Q))

48Tn the previous application of this theorem, the interchange of derivatives was simply guaranteed
by the fact that the variable were separated.

OTn fact, if T € (L?(0,T%; L3(R2)))*, we can define A(v) := T'(f(v)) for every v € L%(0,Ty; H*(2)).
The operator is continuous, since

|[A(v)] = |T'(f(v)| < C”f(v)HL?(O,T*;L?(Q)) < CHU||L2(O,T*;H2(Q))
It is also linear, since T and f are linear. Then A € (L?(0,T,; H?(£2))*. This means that

im T(Fu™) = lm_ A(u™) = A(u) = T(f(v))

m——+o0 m——+o0

the weak convergence, in L2(0,T,; L?()), of f(u™) to f(u).
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The strong convergence ||Vu™ — wl| r2(0,1.;22()) — 0 implies that the convergence is
also weak, so that

Vu™ = w in L*(0,T,; L*(Q))

Since the weak limit is unique, we have that w = Vu in L?(0,T,; L*(Q2)). So we have
IVu™ = Vull p20m,;200)) < VU™ = wllz2omie2(0) + v = Vull20,15020)) =

= [|Vu™ —w|| 201020 = 0 as m — 400
In other words we have proved that

T
lim [Vu™ — Vul3dt =0

m——+00 0

In other words, as a function of time, |Vu™ — Vull; — 0 in L?*(0,T}).
This means that there exists a subsequence {||Vu"™ — Vul||2(t) }ren such that

lim [[Vu™ — Vul|2(t) =0 ae. t e (0,7Ts)
k—+o00

Moreover we know, using estimate (11.113]), that exists a measure zero set, say A, such
that

|Vu™ ()|l < C Vte (0,T,)/A, VmeN

If B is the zero measure set such that |[Vu™ — Vul|2(t) — 0 holds for every ¢ €
(0,T,)/B, we have that, for every t € (0,7,)/(AU B),

[Vu@)[l2 = lim [[Vu™(@)[]z < C
k—+o00

Since the bound is true almost every-where in (0, 7%), we have that

sup [|[Vu(t)|l. < C (11.124)

0,T%)

11.14 Strong solution to the nonhomoegeneous in-
compressible Navier-Stokes equations

In this section we prove that the pair of solutions (p, u) is a strong solution in the sense of
the definitions of the chapter[I0] While in the next subsection we will show that
the pair (p,u) is automatically strong solution of the momentum equation, subsection
11.14.2] and subsection will specify, respectively, that an higher regularity of the
velocity field holds, and that if we assume more regularity of the initial density, that is
po € HY(Q), the pair (p,u) also satisfies the strong formulation of transport equation.
This concludes our discussion, together with some a posteriori estimates that will be
deduced in remark 11.39

303



11.14.1 Strong solution to the momentum equations with pres-
sure gradient term

In the sections above, in particular in (11.93)), we have proved that if v € X, there
exists a measure zero subset F, C (0,7) such that

/(p‘suf + pu’ - Vil — pAu’) v =0 te€(0,T,)/E,
Q

It is clear that the set E, also depends on the choice of 4, that is the choice of the
regularized initial density data. With the m-notation introduced above, we have that
we can write

/(pmufl +p"u™ - Vu™ — pAu™) v =0 t€(0,T.)/E,m
Q

In particular we can choice v = v™ € X™ C X, where the apex here means that
the function is in the approximate functional space X™. So, if we write for brevity
E,,n» = E,,, we have

/(pmu?‘ +p"u™ - Vu" — pAu") v =0 te (0,T.)/En
Q

On the other hand, for every ¢ € X, there exists a sequence {v"},,ey with v™ € X™
and ||v™ — ¢||gz — 0 as m — +o0.
Since p™ and u™ converges to a hmlt in the same sense as in section [I1.8.1] wi

can restart from the relation ) that holds for every t € (0,T%) U E W1th
meN

| U E,,| = 0. Following the passeges above, we get that if F is a measurable subset of

meN

(0,7%), than

//(put—l—pu-Vu—uAu)'ydx:O Yve X
EJQ

A simple property of measure theory says that if v € X there exists a subset £, C (0,T)
with |E,| = 0 such that

/(put—i—pu-Vu—uAu)-ydx:O te(0,T,)/E,
Q

So, following the arguments in section [11.8.5, we find p(t) € L? () such that

p(t)u(t) + p(t)u(t) - Vu(t) — pAu(t) = V(i)

where Vp is the weak gradient of the pressure term. Clearly, also the argument in
section [11.6.5] are the same, and we use theorem (11.4

304



11.14.2 Further estimates on the velocity field

We have found u = u(t) € H}(Q) N H*(Q) such that, for almost every ¢ € (0,7T}) it
holds

{—uAu(t) +Vp(t) = —p(t)u(t) — p()ult) - Vult) . (11.125)

in
V-u(t)=0

i.e., it is solution to the Stokes solution with force f(t) := —p(t)us(t) — p(t)u(t) - Vu(t).
Then we can observe that u(t) is a 6-generalized solution.
In fact, consider ¢ € (0,7,)/E, where |E| = 0. Then the following properties hold.

e ue H*Q) C DY(Q).

. /Qé;ui(ﬁxigo) dm:—/g(v-u)go di =0

e We know that u € H%(Q) C W'6(Q). Since u € X, we have that

m

Z(u, w')ow' — u

i=1

lim =0
m—0o00

H?2

We define ™ := Z(u, w')pw’ € X. The function u™ is a linear combination of
i=1

eigenfunctions, and we know that w’ € C'(€2). Moreover, Tw’ = u|sg = 0, and

V -w' = 0. Since also w* € C'(Q), we have that Tw" = 0 also in the sense of

W8(Q). So, w' € W, %(Q) and also u™ € W, *(Q). So, we find

™ — wllwre = (u™ = ull¢ + | Va™ = Fulld)* < flu™ — ulls + [[Vu™ ~ Vullg
But ||[u™ — ulls < Clju™ — u|| g and [|[Vu™ — Vullg < C'||Vu™ — Vul| 1, so that
lu™ = ullwre < C"Ju"™ = ullg2 = 0
as m — oo. Being Wy °(Q) closed, we have that also u € W, °(Q).
e Observe that f(t) € L5(2). In fact we have
lpulle < [lpllsclluells < [lpllocll V]2 < oo (11.126)
(- V) lls < Noloella - Tl < NollollllolValls < (11.127)
< eM||plloo (I Aull2)* ([[Vull2)¥ [|Vullm < oo
thanks to and lemma 0.6, So we can consider, if ¢ € C5%.(Q),

—pAu+Vp=f = —plAu-p+Vp-o—f-¢=0

_u/QAu-goda:Jr/va-goz/Qf-soz<f,s0>
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Since ¢ € C§%,(€2), and, being Vp € G(R), (Vp, g) = 0 for every g € Cg5, () C
L%(Q), then

—u/QAu-sodl‘z (f, o)
On the other hand

3 3 3
—M/Au-gpdx:—uZ/Aui-goid:B:—,uZ/ (Z@%ﬂi)'%dfl?:
Q i=1 /@ i=1 Y&\ j=1

3 3

3
:—MZZ(—/ﬁxjui-axjsoi) :MZ/VW'V% dx:u/Vu-Vso
0 — Ja Q

i=1 j=1

since also ¢ € C5°(€2).

So we proved that the function is a 6-generalized solution. We now use theorem [0.§
We deduce that
92l + in lp + cllis < ClLfll

1 .
Using that [[p+clli6 = ([lp+clle+[IVPIE)* = IVplls, and so that inf [p+cllvs > [ Vpls,

we have

2
IV2ull§ + 1Vplls < (IV*ulls + 1Vplls)™ < 2C(lpuell§ + o (u - Vu) )

So, thanks to (T1.126)-(T1.127), and the fact that |[p(t)|lcc < ||pollee + 1,

IV2ulls < C"(IVuell3 + [lu - Vullg)

Moreover ||Vul|2 < M||u||3:, and so, thanks to (11.127),
1
IVulfyre = (IVulls + IV2ullg)* < [IVull§ + V2l < C"(IVuellz + llullze + [lulle)

So, using estimate ((11.123)), we havelﬂ

t t t t
/O ||Vu|r%w,ﬁsc"( / IVeall? dt + / lullle dt + / fulle dt) <

<" (Q exp (Q/ ”Vu”%ds) + QC(po,Umpo))
0

50Using also that that

lullz < ClIVullz < ClIVulg: = sup lull 7 = sup (lull3 + IVulFn) < (C+ 1)(83119) IVl 7o
it )t ,t

and so using (11.123]) we have

¢
(su;; ||u||%12 <(C+1) (Q exp <Q/ ||Vu||§ds> + QC(po,uo,pO))
0.t 0
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So equation (11.123) can be rewritten as

t t t
?ﬁOWW%+MﬁM@+AHVM§®+AIVW%ﬁwﬁQﬂM?AHW%dQ+QﬂmwMM
,t

(11.128)

11.14.3 Strong solution to the transport equation

In the sections above we have found a weak solution to the problem; in particular we
constructed a pair of weak solution (u, p). Here u is a weak velocity field; in this section
we want to regularize the density solution p of the mass equation in the INSE system.
We have the following theorem.

Theorem 11.8. Let u € L>®(0,T,; Wy * () NW?2(Q)) the weak divergence-free velocity
field (that is V - u = 0) constructed in the sections above. Remember that

V2u € L*(0,T.; L°(2)) (11.129)

Let p € L>(0,T.; L*(Q)) a weak solution to the transport problem

(11.130)

pr+V-(pu)=0 in (0,7,) x
p(0) = po mn

with py € L*(Y). Then, if we also suppose py € HY (), p is a strong solution to the
transport equation with p € L>(0,T,; H*(Q)) and it holds the estimate

t
Hp(t)HHl < ”pOHHl exp (0/ HquWust) Vite [O,T*) (11.131)
0

Remark 11.33. Notice that here we have added a further hypothesis on the initial
density pg, that now suppose an integrability property also for the weak derivative.

Remark 11.34. The weak solution obtained in the previous sections is p € L>(0, T,; L>°(£2)).
So, this density is in particular in L>(0, T}; L*(Q2)) since

sup o m—am(/mxtwﬁ <mm(/m)wdﬁ 101} sup [|p(®)oe < +o0

0,7 (0,T3)

Proof of theorem [11.8 In this section p € L*(0, T,; L?) will always represent the weak
solution in the hypothesis of theorem that is the weak solution built in the previous
sections.
From the construction of the velocity field explained in the sections above, we have that
u € L=(0,T,; H?): the hypothesis remark that V-u = 0 and u € L>(0, T,; Dy> N D>?).
Moreover, we are supposing VZu € L*(0,T,; L°(€2)). All these hypothesis will help us
to prove the statement.

We want to approach the initial density and the velocity field, so that the problem
can be considered as a classical problem. First consider the density py.
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Remark 11.35. We want an external approximation also for the initial density. Since
the domain is bounded, we can consider an extension of the function to the whole R3,
that is po € H'(R3) such that

1ol a1 3y < C”[lpoll (o)

This new initial density coincides almost everywhere in 2 with the old one. Since
H'(R3) = H}(R3), as already observed, we have that exists a sequence p? € C°(R3) C

C*>(Q), such that
lim oo — phllmiory < lim [|po = pyll sy = 0

for every Q' C R3. Moreover, for every k € N exists my, such that

SRS

165 N ey = ool ey < llpo — oo, |1 re) <

So
lim ||on, [0y < [lpoll o) (11.132)

h—o00

So, the approximating sequence can be chosen with the property (11.132). Observe
that the sequence does not depend on €. [

We also want to regularize also the velocity field, so that equation con be
considered in classical sense. In particular, we want a (possibly) smooth field u with
zero boundary values and a divergence free property. Remembering that u € HJ(2) and
V -u = 0 in the weak sense, we have that a simple convolution will assure a divergence
free property for the regularized function; however, the mollification would modify the
boundary values. So we have to proceed with caution.

Remark 11.36. In particular observe that the following extension of v in the whole R3
space maintain the properties underlined above

auﬁw:{y%” e

and
Vu(z,t) =€

Vu(z,t) = {O rd 0

In particular w € L>(0,T,; H*(Q2)). Weak derivatives continue to hold. In fact the
equality

/ u(x,t)p,, do = / u(z,t)p,, doe = —/ Op,u(x,t)p do = —/ Oy, u(x,t)p dx
R3 Q 9] R3

holds for sure if p € C>°(Q); if this is not true, but ¢ € C>(R?), then we can approx-

imate the intersection of the support of ¢ and {2 with smooth functions from inside.
Thus, it follows V -u(t) = 0. Moreover V*u € L*(0, T,; L°(Q)) and the weak derivative
argument continues to hold.

308



Observe moreover that u(t) € H}(Q), since the approximation with test functions of u
can be extended to an approximation of u by defining as zeroE| the test function outside
Q. 0

At this point we observe that u € L?(0,T,; H*5(2)). In fact by the hypothesis on u we

have, thanks to ((11.40)),
|IVullg < M||Vul|g < oo

Moreover

T. T. T. 2
/ V2|2 dt < oo, / [Vu|| dt < M2/ | Vul|Fdt < MQT*< sup HVUHH1> < 00
0 0 0 (0,T%)

since u € L>(0,T,; H?). So, in particular,

Tx Ts
o / IVl (s) ds < 02/ IVl 10y ds < 02</
0 0 0

Tx Tx
||vu\|§dt+/ ||v2u||§dt> < 0
0

(11.133)
since

NS

1
IVullfe = (IVulg + [ V2ulg)

Obviously, u € L*(0,Ty; L%(Q)).
So, by properties of L?-Banach valued functions space, we have that, if X is a
Banach space, exists u” € C*([0,7.]; X) such that®™]

IVullg + IVullg

hm ||Un — u||L2(O,T*;X) = 0
n—00

If we choose
X :={pc Hy(Q)NW?>?P: V-4=0inQ}

equipped with the norm || - || x := || - [|26. It clearly is a Banach spacd™)] This implies
that
T. 3 T. 3
i ([70Vuloay =0 =t ([ 19neiza) = ([ vl ar)
(11.134)

51Clearly the smoothness is maintained.

520bserve that, if a,b > 0, a® + 0% < (a? + b?)® = a5 + 3a?b? + 3a2b* + bS.

53See theorem

541t is obviously a vector space and the norm is well defined. Consider now a Cauchy sequence ¢y,
and remember that ) is bounded. For every € > 0 we have that exists K such that

ok — Pullae <e  Vk,h>K

Since ||¢r — ¢nll12 < C|l¢k — énll2.6, and so, being Sobolev spaces complete, ¢, — ¢ € H! N W26,
Being ¢ € H{, that is closed, moreover ¢ € H}. Finally, for every ¢ € C2°(2) we have

/¢-V<pdx= lim /(bk-V(pdm:O

that is V - ¢ = 0 in the weak sense in ).
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and u" € H}(Q), with V - u™ = 0 in Q. Furthermore we also have
nh_)f{.lo HVU” - VUHLQ(O,T*;LG) =0

Moreover, we want to regularize the function also respect with the xz-variable. To this
aim, we define the set A,, such that

Ay = {x € Q°: dist(x,00) > l}
m

So we can consider €2, := Af .

We set

W, 1) = / (& — )" (3, 1) dy

where the field u” has to be understood as in remark [11.36, At fixed ¢ € [0, 7], this
convolution is clearly smooth in x thanks to properties of convolution. Moreover, it is
continuos as a function of two variables, In fact, if (zg,%y) € Q, X [0, T%] we have that

[u™" (2, t) — u"™" (20, t0)| < | (2, t) — W (2o, t)| + [ (0, ) — w20, t0)| <
< ’/Q (1 (2 =) = (20 —y)) u"(t,y) dy’Jr’/Q M (20 —y) (W (t, y) —u" (to, y)) dy| <

< ] [ =) = a0 =) w.0) dy' o — a8, ) — (o,

Since u™ € C*([0,1,]; X), we can find §; > 0 such that ||u"(t,-) — u"(to,")[2 < 5. On
the other hand, since 7,,(r) is uniformly continuos on R, there exists do > 0 such that

19
|z — 20| = |[(x —y) — (w0 —Y)| <2 = [Mm(T —¥) = N0 — Y)| < 3

it follows that

[ () =" (o, to)| < 5[ (8 a5 (0 —) 2.0, < g(t%aﬁ (¢ ,->||2+||nm<xo—->||z,9m)

Moreover, thanks to the convolution properties, the z-derivative is continuos over {2,
and, thanks to the theorem [3.2]

V(e 1)) = \ | ola = v dy\ < ( [ e =P dy)%nwmt)ng <

< ([, e - >|2dy)%max verc o= ( [ |2dz) mass V(1)

so that

sup [V ||oo_( / (2 |2dz) mass V(1)

tel0,7y]
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so u™" € C([0,T.]; C1 ().
Finally we underline other two properties of the field «™". In particular, if x € 0€2,,,
we have

u™"(z,t) = /Q N (2 —y)u"(y,t) dy =0

since u"(y,t) = 0 if y € B(x, W%) Moreover,

Vu™(x,t) = / N (z —y)V - u"(y,t) dy =0

m

since V - u™(y,t) = 0 by the definition of u™. So, we can use this velocity field to solve
the transport problem

p(0) = pgy

By the classical theory exposed at the beginning of chapter [§] we have a solution p™"
in the classical sense. Considering this solution, we now do some classical estimates.
We have

Opp™" +u™ - Vp™" =0 = 0;0,,p™" + Op,u™" - V™" ™" VO, p"™" =0

Multiplying this equality by 0,,p™" we have
(ataxjpm,n)axjpm,n + (axjum,n .V pm) axjpmm + (um,n . vaxjpm,n)axjpm,n =0
and so
1 m,n m,n m,n m,n m,n m,n m,n
500w, PP (O u™" - V) O™ - (T NV Dy o) Oy p = 0
Since V - u™"™ = 0, we have that
\va (|pg,n|2um,n) — |pg,n|2(v_um,n) _|_um,n .V‘p;r;,n|2 —_ um,n ‘V|P3?n’2 — 2(um,n ‘V,OZ?n)PZ?n
So, it follows
1 m,n |2 m,n m,n m,n 1 mn|2 , mmn
§at|axjp ’ ‘ + (axju V™ )al'jp i §V ’ (lpycj7 | u ) =0

Summing over j and integrating on 2, we have

3 3
1 1
5/ 8t|me’”|2dx+§ :/ (8mjum,n,vpm,n)axjpm,n dx+§ E / V'(|pg’”|2 um,n) dr =0

Since u™" is zero on 0f1,,, through the divergence theorem we have that

3
/ at|vpm,n|2d$ = _22/ (axjumm . vpm,n)axjpm,n dr
Q o e
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So, estimating, we have

d

| P <€ [ 10l Vo s < OVl [ V5P
Qm

Qn Qm

and so by Gronwall’s inequality

t
19 Ola, = [ 9@ ([ e o) e ([ OVl ds) <

Q
) ¢
< Hpm’n(O)HHl(Qm) exp (/ Cl|Vtmnlloo.0m (5) ds) (11.136)
0
Remember that |p™"(t)]2.0,, = [lp™"(0)|2,q,., since this holds for the solutions of

transport equation with the incompressibility condition V - v™" = 0. We have

1™ )71 0, = 10" O30, + V™" ()3 0,, <
2 2 t
< Hpm,n(o)”ZQm + ||pm,n(O>HH1(Qm) exp </0 C’||Vum,n\|oo7gm(8) dS) <

t
< QHpm’n(O)Hi{l(Qm) exp (/0 Cl| V| so.0., (5) ds)

using that exp(a) > 1 for every a > 0. Taking the square root we have

t
16" Ol < VI Oy 59 ([ €IVl (9 d5) = (11130

t
= V2, 0 ([ €Il (5) )

We consider now the term ||V, 5/l c.0.,- We know that

V™" () oo, = sup

TEQm,

[ ol =90 00) | < 190 Ol
since 0 < / N (z — 1) dy < / Nm(z — y) dy = 1. If follows that
O R3

t
I oy < Vo8l 59 ([ C190cnle) i)

where Q C Q,, C Q. If follows that, for n € N fixed,

Ty

C'|Vu™|| oo () ds) =Ny Vte(0,T)
(11.138)

1 (Ol < VAl exp ( 0

Taking the supremum, we have
1™ oo 01311 (2) < Ao
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The space L>°(0,T,; L*(€2)) is the dual space of L'(0,T,; L?(2)) that is separable since
L*(Q)) is separable and the exponent is > 1. So, thanks to a versione of Banach-
Hanaoglu, p™" and Vp™" are bounded in its dual space L>(0,T.; L*(Q2)) and then
there exists a subsequence my, and p", f™ € L>°(0,T.; L*(€2)) such that

pmk,n N pn7 mek,n N fn in Loo<07 T*, LQ(Q))

Clearly f™ = Vp". In fact, for every ¢ € C°(Q2 x (0,T%)),

/ 00,0 de = lim POy, ¢ dr =

Qx(0,T%) k=t Jax(0,12)

~ - lim Or "6 d = — / f1¢ da
k=+00 Jax(0,1) Qx(0,T%)

Remark 11.37. Observe that ¢ and its derivatives are bounded and p™ € L*>(0, T; L*(2)).

So .
/ ( / |ﬁ“|2|azi¢|2dx) 0t < M7 o gmmey < o0
0

Q
So p"0,,¢ € L*(0,T,; L*(2)) and so, as we have already discussed, it is in L*((0, T}) x )
and the Fubini theorem holds. The same is true for f;. U

It holds moreover that
1Pl 20,2220 < Hminf {|p" [ roeo,mir20)s [IVP" oo msr20) < Hminf [Vp™ | o o.12:02(0)
It follows that

19" | o 0.7 () < 19" [ Lo 0,122y + VP || Lo (0,1522(0)) <

< limint 0™ ™| Lo (0,1:12(0) + lim inf [V ™| Lo 0.1 22(02) <

< timinf (0™ o522 + IV 0iri020) <

T

< 2Bl exp [ CITw ) ds)
0

So

T

17 oo < 22l e ew ([ CI9eIate) as) | (11130
0

Before going on, we want to say somthing about ||u™" — u||12(01,;12). Observe that

[ (@) 22 = o w™ (& 2 < g [l 1u™ () |2

using Young’s inequality for convolutions. So, it follows that
[ () = u"(8)][ L2 < Cllu™(t, )2
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that has summable square, being u" € L?(0,T,;L?). Since moreover, |u™"(t) —
u™(t)]|2.0 — 0 as k — oo, being  C Q; bounded, we have

T*
/ |u™ ™ (t) — u(t)||5 dt — 0 (11.140)
0
as k — co. With the same argument, we have that
V2™ 6 = (110, + V2" ()6 < g 11V (@, )l

and, being V2u" € L?(0,T,; L%), and being Q C €, bounded ||V2u™"(t)—V?u"(t)||¢ —
0 as k — oo. It follows that

T
/ V20 () — V2 ()2 dt — 0 (11.141)
0

as k — oo. Thus, these convergence allow us to prove that the limit p" is a strong
solution to the transport equation. We now prove this fact. Consider, for every k£ € N,

P?k M e vpmkun =0 over ) x (07T*) (11142)

Remark 11.38. As in remark [11.37] ¢ is bounded together with its derivatives, while
P s in L(0, Ty; L2()) and also u™™ - Vp™e", In fact, we have that

1
sup ||umkn mek nHL2 < Sup </ |umk n| |mek n|2dx> S
(OT*)

Q2 sup [u™*"[ sup [|[Vp"™ |12
Qx(0,T%) 0,T%

The second factor is bounded thanks to the estimate . On the other hand
we have that the other term is bounded thanks to the regularity of the velocity field.
So, the integrand is in L?(0,T,; L?(2)) and so in L*(Q x (0,T})) € LY(Q x (0,T})).
Moreover, Fubini holds. []

Using the definition of weak derivative, we have

[ e = [ (@9 g d)
Qx(0,T) Qx(0,T%)

for every ¢ = p(z,t) € C°(2 x (0,7})). Using the Fubini-Tonelli theorem, we have

Ts Ts
// R, it i — // (™ - Vg™ o dt da (11.143)
QJo QJo

Our aim is to prove, strarting from ((11.143)), that

T*
// P s dtd;z:—// Vﬁ" @ dt dx (11.144)

for every ¢ € C°(2 x (0,7})); that is

o= —u"-Vp" (11.145)

314



in the sense of weak derivative. So we prove (11.144]).
Our purpose is now to pass from (11.143) to (11.144) with a limit argument. We have
quite immediately that

T. T,
lim // P dt da = // P oy dt dx
k—=+oo.Ja Jo QJo

M,

thanks to the weak star convergence of p
dual pairing). It remains to prove that

T, T*
lim / / umE ) o dt do = / / ) ¢ dt dx
k—+o0

With the usual devices, we have

" to p" (and the integral operator above is the

Ty

(u™s" - VpE —u V") @ dt da

T
(umk7n . me]mn _ un . vakvn + un . mekvn _ un . vﬁn) SD dt dx S

B 0 Q
T*
/ /(um’“" —u") - Vo™ "y dx dt’ +
0 Q

The first limit follows from Hélder’s inequality. In fact

T, T,
‘/o /Q(Umk’n —u)- Vo™ dx dt‘ < /0 [u™ ™ — ™[ p2() Vo™ ™ oll L2 (0) <

1

T* L T* 9 2
< </0 [u™" — |7 q dt) (/0 Hme’“’"SOIILQ(Q)dt>
Observe that

Ty Ty
/0 IV 5|24 di = /0 ( /Q Ime’“’”IQIsO\de)dtS — /0 IV 57 22 dt <

(0,T%)xQ
and using (11.138))

T

Vet — V") ¢ dx dt‘ <

T*
< sup o A2 dt < oo
(0,T%)xQ 0

Since ™" — u™ in L2(0, Ty; L%(R)), thanks to (11.140)), we have that this first limit vanishes.
For the second piece, remember that ¢ € C2°(Q x (0,7%)). So, in particular

T*
0 Q

since Vp™™ 5 V5" in L(0,Ty; L2(Q)) and bein u™p in L(0,T,; L*(R2)). So we have
the thesis
T, T*
/ / Py dt do = / / ) ¢ dt dx (11.147)

T, T, 3
/ lu" ol L2 :/ (/ |u”<p|2dm> dt < MT, sup ||u"]|2(q) < oo (11.146)
0 0 Q (0,T)

where M is a bound for ¢ and u™ € L*(0,Ty; H?(Q)).
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for every p € C°(Q2x(0,Ty)). We now have to consider again the estimate (11.139)). Moreover,
thanks to remark [I1.35] being €, C Q, for every m € N, we have that

P62 () < PG IEr (0, Hm o5z < loollmir) < lleollr@s) < Cllpollmiq)

and so
limsup [|p™"(0)[| a1(q,,,) < limsup 5],y < C”llpoll e (@)

On the other hand the bound ||p§lg1(q,) < |lpollg: + 1 holds for every n large enough. It
follows that equation (11.139]) becomes

T

170 < 2V2 (ool + 1) exp ([ €IV (o) s ) (11.148)

Observa that

T, T, 1 T,
/ V™| oo (s) ds < ﬁ(/ V™2, (s) ds) " < Cﬁ(/ V™16 (s) ds) :
0 0 0

Since the later integral converges, thanks to (11.141), we have that [|p" ||z 1.;m1(q)) 18
bounded, for n large enough. So, we have that there exists a subsequence ny and two function
D, f such that

pr=p, Vot = fin L0, Ty; LP(9))

In particular, repeating the arguments above, we have
1Pl oe 0,22:22 () < Wmnf [[p" | oo 0 12 22(0), VPllLoe(0,1522(0) < Bmnf [V [ oo 0,2.:22(0)

Moreover, equation (|11.148]) can be rewritten as

Ty

12" | o 0,1 mr1 () < 2V2(Jlpoll g + 1) exp < ; [V |lwre(s) d5>

and so

1Pl oo 0,21 (2)) < lim inf (12" | oo 0,112 (00) + IVE™ | oo 0,102 (02)) <
T*
< liminf4\/§HpthH1(Ql)exp </ C'|[Vu™ ||yyi6(s) ds) <
h—o0 0

T
< tmnsup 421 oy exp ([ €I o) ds)
0

h—o00

T, T.
Since now / |Vu""|lwie ds — / |Vul|lwie ds thanks to equation ((11.134)), we have
0 0

Ts
Pl < Cloollnexo (€ [ (9l as)

Finally, p is a strong solution of the transport equation. In fact (|11.144)) can again be passed
to the limit. In fact, since u™ — w in L?(0,T; L?), the equation

T, T,
/ / Py dt doe = / / (u™ - Vp™) ¢ dt dx
QJo QJ0
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can be passet to the limit with the same devices used above. So we have
p=-u-Vp

Moreover, the same argument applied to the two sequences prove that this is also a weak
solution. In fact, let ¢ € C°(2 x [0,T%)). We have

my mg, n

(P ") = pi o+ p

(P ") = Py + V- (0p™ uTET) — pTRT R N = 0

and integrating over Q x (0,7}) we have

Ty T

Thus, since

/Q (™) (,0) dir = /Q o ()pl, 0) da

T. T,
/ / PRy dx dt — / / oy dr dt
0 Q 0 Q

since ¢ € L1(0,T,; L?(2)), we have finally

T. T
‘ / / prE e N o dx dt — / / p'u" - Vo dx dt‘ =
0 Q 0 Q
T, T.
_ ‘ / /(pmk,numk,n — Py Ve de dt — / /(pnun — p"Ee" ) -V dx dt‘
0 Q 0 Q

that vanishes since u" - Vi € L>®(0,Ty; L?(Q)) and p™ " converges in weak star to p" in
L>(0,T; L*(Q)) as k — oo. Moreover, we have, if M is a bound for Ve,

and

T T
(pmk,numkm _ pmk,nu”) -V dx dt‘ < M/ / ‘pmkvnHumk,n _ un| dx dt <
0 Q

Tk
<M /0 108 2y ™ — |2 dt <

Ts 2
< M( sup Hpmk’”HB(Q)) vT*(/O ™" = 12 dt)

0,7,

Remember that sup [[p"™*"||;2(q) < Ap thanks to equation (11.138). So, we have that also
0,T.)

this term vanishes, since u™*" — u™ in L?(0,T,; L?(Q2)). This means that, for every ¢ €
Ceo(Q < [0,T3)),

T. T.
/ 6 (x)e(x,0) dx—/ /p o do dt = / / " V) do dt (11.149)

that is, p" is also a weak solution in Q x (0,7}) with velocity filed u". Moreover, using the
convergence of p™, and the fact that ™ — w in L?(0,Ty; L?), we can take the limit in

Ts Tx
- [ @0 o= [ [ s [T [ g @ ve) drar
Q 0 Q 0 Q
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as h — oo, observing this time that

’/ngh(x)sO(%O) dx — /on(ﬂf)@(%o) dz| < llpg" = poll 2@ 1€ (0)ll 2() — 0

So we have that

T, T
—/ po(z)e(z,0) dx —/ /pcpt dz dt :/ /p (u . Vnp) dx dt
Q 0 Q 0 Q

that is, p is a weak solution to the transport equation with velocity field w and initial data
po. Strong and weak solutions coincide (p = p): We know, by hypothesis, that p is a
weak solution to the problem on the whole © x (0,7T}). This means that

Ty
/ / (gt + pu - Vo) (x,1) d dt = — / po(@)p(z, 0)de
0 Q Q

for every ¢ € C(Q2 x [0,T%)). But, according to [8], or section using in particular
uniqueness theorem weak solutions are unique. This means that p = 5 over  x [0,T}).
So, we have that p is a strong solution of the transport equation over €2 x (0, 7%). This actually
proves the theorem. |

Remark 11.39. This theorem proves the first part of . The second part follows from the

fact that p, = —u - Vp and the regularities abov@ Finally the equation is proved in
section O

56Tn particular, we have
lu-Vpl3 = /Q u-Vp|* dz < ||ull||Vpl3

that is uniformly bounded in (0,7) thanks to lemma and u € L>(0,T,; H*(Q2)) and (11.131).
57 Actually, in this section it is proved only the belonging to L?(0,T; L%(2)). However, the fact that
Vp € L>=(0,Ty; L*(Q)) follows from

llous + pu - Vu — pAully < [v/plloollVpuillz + llpllocllu - Vullz + pl Aull2

that is uniformly bounded over (0, T}) thanks to (11.114) and the fact that
- Vull3 = /Q u- Vul* de < [ull§]|Vulli < ClIVul3[VulZ:
since 2 is bounded. Moreover remember that u € L%°(0, T,; H?(Q2)).
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