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Abstract

KAM theory predicts that a completely integrable Hamiltonian, under perturbation of
sufficiently small magnitude, preserves almost all invariant tori except for a small set
estimated by the square root of the perturbation size.
Such estimate is not entirely accurate because there are no effective techniques to take
into account the tori formed by the presence of the perturbation, which we refer to
as "secondary." For nearly a decade, L. Biasco and L. Chierchia have been addressing
this problem —the total measure of invariant tori— motivated by the unresolved 1985
conjecture by Arnol’d, Kozlov, and Neishtadt.
The conjecture anticipated that the measure would be controlled by the size of the
perturbation without the square root. To analyze and solve this problem, it was neces-
sary to develop innovative and brilliant techniques, which have been described in the
"Singular KAM Theory" published in 2023.
Thanks to this theory, it is possible to estimate the measure of these invariant tori
accurately and meticulously as it has never done before, and the final result aligns
with the conjecture, namely, that the measure is proportional to the perturbation size
up to corrections.
However, this work has only been carried out for quasi-integrable Hamiltonians that
we call "Natural" or "Mechanical" (i.e., Hamiltonians of the form y2

2 ` fpxq).
The goal of this thesis is to extend the result to more general Hamiltonians, particularly
in the first part we present the generalization for those system with a generic integrable
and convex part hpyq but always with a perturbation depending only on positions fpxq,
while in the second part for those Hamiltonian with a radius of analyticity on the angles,
i.e. on the x, that is different for each component (for Biasco and Chierchia was one
value for each component).
The final part of the thesis intends to head towards the application of Singular KAM
theory to some models of physical interest. To get into specifics, we consider the re-
stricted, circular and planar three-body problem and we study the Fourier coefficients
of the Hamiltonian that describes the system. We provide a new expansion of these
coefficients that significantly improves numerical and analytical work, and, because of
this, we study crucial properties like the presence of zeros and their analyticity.
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Introduction

Quasi-periodic motions in Hamiltonian systems

Perturbation theory is one of the most relevant technique used in all the branches of
physics: from classical to non-relativistic quantum mechanics, as well as in nuclear and
atomic physics, but also in fluid dynamics and up to quantum field theory. Therefore,
developing a perturbation theory in a rigorous and formal way has always been one of
the crucial ambitions for mathematicians.
It’s crucial to understand the primordial motivations that led us to use this kind of
perturbative approach. Precisely for that reason, we have to notice that maybe the
first relevant application of this theory coincides with one of the earliest problems in
nature that has amazed and intrigued man since the most ancient historical times: the
motion of celestial bodies.
This planetarian problem comes from basics observation of “regularity” in mechanisms
such as the rising and the setting of the sun or monthly change of moon phases or
the seasons. So astronomy began to grow and develop more sophisticated methods:
calculation started to predict future positions and regularity of the motions of other
planets. In this way, due to an increased knowledge of earth’s non centrality in the vast
solar system, men began to think about catastrophic question, and research started
focus on these more natural questions:

Will we continue orbiting around the sun preserving our stability?
Which kind of fate awaits our planet?

Is there a risk that in a small period of time we will find ourselves far from solar
system?

The richness of these doubts led mathematicians to develop techniques and notions
that nowadays underlie the theory of “dynamical system”.
In order to make our model, the solar system can be viewed as a 10 bodies system
attracting each other with gravitational force: Sun has the biggest mass M , while the
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other planets has m1, ...,m9 masses. If we want to make a perturbative approach, we
firstly have to consider our toy model.
For this reason we can start neglecting the attraction exerted by the other planet and
consider only the interaction between the Sun and a single planet, that we can call
Earth. This problem is very easy and studied from first years of high school; it leads
us to simple differential equation that one can solve obtaining the famous Kepler’s
laws : Earth orbits around Sun with following a trajectory represented by an ellipse of
which one of the foci is occupied by the Sun. This motion is eternally periodic and so
completely stable for all time.
Now we want to extend this result to the motion of 10 bodies. In a first
approximation, we notice that M " mi for all i “ 1, ..., 9 (in fact the heaviest planet
is Jupiter with mJ « 1, 90 ˆ 10

27kg, but mJ
M « 1 ˆ 10

´3) and so we can initially
neglect interaction between planets, thinking solar system as the sum of 10 "single
planet"-problem. In this way we have obtained a completely solvable system where
each single planet will describe his elliptic trajectory indipendently from the others
bodies. If we traduce this motion from a mathematical view, indicating !i the
revolution frequency of planet with mass mi, the motion during the time is
quasi-periodic, namely is represented by a trigonometric series like

ÿ

j“pj1,...,j9qPZ9

cje
2⇡ip!¨jqt (0.0.1)

where ! ¨ j “ j1!1 ` j2!2 ` ... ` j9!9.
When the solutions to the Newtonian equations of motion are only quasi-periodic, we
say that the system is integrable, and its Hamiltonian (i.e. its energy) can be always
write as a function that depends only on momenta, namely if we indicate with q the
positions and with p the momenta such that pp, qq P M Ä R2n, one has

H pp, qq “ hppq.

Having this kind of motions means completely stability for all time, so it is clear that
the question we should pay attention to is whether such quasi-periodic motions will
persist if we consider mutual gravitational attraction between planets.
This problem has occupied the minds of the world’s greatest mathematicians during
XVII and XIX century, without positive results, until they came to the truth: this
problem cannot be completely solved. Although they did not achieve great results,
the researchers of the time developed revolutionary approaches and techniques that
have survived to our days.
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One of these new approaches developed in those years was precisely to consider the
problem as a perturbation of the planetary system without interaction. This method
is based on the study of the Hamiltonian function defined by

H pp, qq “ hppq ` fpp, qq
where f describes the presence of interaction and is small w.r.t. the integrable part.
In order to take into account this smallness, given a suitable norm || ¨ || on space of
the real analytic functions, we can say that

||fpp, qq|| “ ", for a fixed 0 † " ! 1

or equivalently to consider

H pp, qq “ hppq ` "fpp, qq
with ||fpp, qq|| “ 1.
This opened the way to the perturbation theory.
A lot of brilliant mathematicians like Lagrange, Weierstrass and Poincarè (that can
be considered the father of modern theory) have worked during their life to develop a
rigorous perturbation theory, but they have failed due to the presence of the famous
small divisors : integer linear combination of unperturbed frequencies !i, that appear
at denominator when we consider the influence between planets, and lead to
divergent series.
In fact, if one were looking for solutions to the perturbed problem like 0.0.1, in the
expression of coefficient cj one would find at denominator the expression

! ¨ j
and if there were exists an integer vector j P Z9 such that ! ¨ j “ 0 or ! ¨ j § " ! 1,
the coefficient would be devergent.
In general when ! ¨ j “ 0, we say that they are in resonance. These resonances can
occur in various systems, such as mechanical, electrical, or acoustic systems. When
these effects happen, the system absorbs energy from the external force and starts
vibrating with a larger amplitude, and disasters such as the collapse of bridges or
buildings may be associated with resonances.
For planetary motion we can see that resonances are not a fake complication made by
mathematician, but real problems. In fact if we consider the orbits of Pluto and
Neptune 1

TN « 60 223 days « 5, 2033 ˆ 10
9s ñ !N « 1, 2075 ˆ 10

´9 Hz
1All the planets data are taken from https://nssdc.gsfc.nasa.gov/
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TP « 90 560 days « 7, 8244 ˆ 10
9s ñ !P « 8, 0302 ˆ 10

´10 Hz

we notice that

2!N ´ 3!P « 5, 94 ˆ 10
´12 Hz “ 0, 00000000000594Hz « 0Hz

and in the same way also, for example, Jupiter’s moons Io and Europa are in a
resonance with each other:

!IO « 4, 109ˆ10
´5 Hz !EUR « 2, 047ˆ10

´5 Hz ñ !IO´2 !EUR « 1, 5ˆ10
´7 Hz « 0

and many others.
This problem due to the presence of small divisors in the pertubation theory has
remaind unsolved until 1954. In that year, the great russian mathematician
Kolmogorov published his famous paper "On the Conservation of Conditionally
Periodic Motions under Small Perturbation of the Hamiltonian", in which he stated
the well-known:
KAM theorem

2
, 1954. if the pertubation is sufficiently small, most of the

quasi-periodic motions of the unperturbed system with "non–resonant" frequencies are
preserved (if the unperturbed system satisfies a non–degeneracy condition).3

We do not want to focus our attention on the history that is related to this paper,
even though it is very interesting and fascinating. For a complete historical and
mathematical view one can see [24].
The approach on which the proof of the Kolomogorov theorem is based is rather
innovative: it is a construction of an iterative algorithm that converges very fast
(inspired by Newton’s method of tangents) and in some way "kills" the pertubation
by conjugating the Hamiltonian to an unperturbed system. This is possible because is
made in several steps: in the first step one conjugates the Hamiltonian to a system in
which the perturbation is quadratically smaller, and then keeps making it smaller and
smaller until it disappears (doing "infinite" steps). The rate at which this scheme
converges is crucial: it causes the numerators to decrease so as to absorb the
divergences of the small denominators. This method was a huge breakthrough in the
world of dynamical systems and opened a new way of approaching serious problems
like celestial mechanics, billiards, and in recent years PDEs, etc.

2In addition to Kolmogorov’s work, the name is due to the contributions made to this theory by
Arnol’d (1963 - [11]) and Moser (1967 - [37]).

3The non–degeneracy condition is that the unperturbed frequency map must be a diffeomorphism.
The original proof made by Kolmogorov to his theorem in his 1954 work is incomplete, for full demon-
stration one can see for example [23].
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Reading to the statement, the first question that appear is what does most of the
quasi-periodic motions mean in this context. To be more precise, we might ask: given
a generic phase space M Ä R2n, which is the measure of the quasi-periodic motions
that are preserved by the perturbation?
Roughly speaking, the answer is quite easy: KAM theorem ensures that the
quasi–periodic motions that are preserved are the ones that correspond to
Diopanthine frequencies. These unperturbed frequencies satisfy

|!pyq ¨ k| • �

|k|⌧ for all k P Znzt0u

for �, ⌧ ° 0, i.e. are "quite far" from resonance. One can easily verify that set of
Diophantine frequencies, that we call ⌦�,⌧ , has

meas p⌦�,⌧ q § Op�q
and, since the optimal condition to apply KAM theorem is that " �´2 À 1 where " is
the size of the perturbation, 4 the right choice of � is Op?

"q such that

meas p⌦�,⌧ q § Op?
"q.

Using the fact that the frequency map is a diffeomorphism, the measure of
frequencies for which quasi-periodic motions are preserved corresponds to the
measure of actions for which the same holds. So if we call Q" the quasi-periodic
trajectories of the perturbed system, one can conclude that

meas pM zQ"q § Op?
"q.

We usually call the set M zQ" as "non-torus" region.
This result can be readily understood by looking at a crucial 1-dimensional example:
the pendulum case.
Consider a point particle that moving moves under the effect of a small cosinuisodal
potential (a small harmonic oscillator) with kinetic energy 1

2p
2 on a 1-dimensional

ring (or, for the more advanced reader, on the 1-dimensional torus), i.e. consider

H pq, pq “ 1

2
p2 ` " cos q, pp, qq P pB Ä Rnq ˆ r0, 2⇡q mod 2⇡.

As we know from the basic courses of mechanics, the phase space (i.e. the space of
positions and momenta) can be approximately drawn as

4In this heuristic introduction we leave the details for which it is necessary to impose this condition.
We notice that with the Kolmogorov’s 1954 proof one can only has � "´4 À 1, this optimality of "´2

was obtained by Arnold with his new proof of KAM theorem in 1963 ([11]).
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Looking at the perturbed phase space, the blue trajectories are the deformation of
the unperturbed motions (that are blue straight lines), so are the effective
"preserved" trajectories that are expected by KAM theorem, and are usually called
"primary tori". Furthermore, inside these blue line, one can find the red line that
describes the outline of two eyes that is called "separatrix".
In this case, however, we can directly compute the area that enclosed by separatrix,
and so we can calculate the measure of the region in which one cannot find the
primary KAM tori, i.e. the quasi-periodic motion expected by KAM theorem. Indeed,
the separatrix in the phase space is expressed by the relation

H pq, pq “ 1

2
p2 ` " cos q “ " ñ ppqq “ ˘2

a
"p1 ´ cos qq

so if one wants to compute the area enclosed by the separatrix in r0, 2⇡q one finds

Area “ 4

ª 2⇡

0

a
"p1 ´ cos qqdq “ 8⇡

?
" “ Op?

"q

as we have found in the above argument. So we have checked that in this case
meas pM zQ"q § Op?

"q where Q" represents the quasi-periodic trajectories preserved
by the perturbation that were present in the " “ 0 case.

The most important remark that we notice from this example is that the separatrix
encloses some new quasi–periodic motions that did not appear in the unperturbed
case, so they were formed by the presence of the perturbation. They are called
"secondary tori".
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These secondary tori are also present directly in nature, and we can find them, for
example, in some particular systems in celestial mechanics, like in the motion of two
moons of Saturn.
Saturn is surrounded by a crowded family of rings and moons, and two of those
moons – Epimetheus and Janus – orbit Saturn so close together that it seems as
though their different orbital speeds should make them crash into each other. But due
to the complex interplay of their mutual gravitational attraction and their very
slightly different distances from Saturn, they never get closer than about 15,000
kilometers from each other. Instead of crashing, they exchange orbital positions in a
gravitational do-si-do once every four years, in a dance that takes 100 days to play
out.
Here is how the dance works. Epimetheus and Janus are small, irregularly-shaped
moons with diameters of about 120 and 180 kilometers, respectively. Both are on
slightly eccentric orbits around Saturn. Their orbits around Saturn differ in size by
only 50 kilometers. In 2004, Epimetheus was the inner of the two satellites. Because it
was closer to Saturn, Epimetheus traveled at a faster angular rate than Janus, so
inner Epimetheus slowly, inexorably caught up to outer Janus. As the two
approached each other in their orbits, Epimetheus tugged on Janus from behind as
Janus tugged on Epimetheus with equal and opposite force.

Figure 1: Foto taken from https://francis.naukas.com

The mutual tugging caused them to exchange angular momentum. Epimetheus
gained momentum and rose in orbit as Janus lost an equivalent amount of
momentum and fell. Because Janus is four times more massive than Epimetheus, it
fell four times less than Epimetheus rose. The switch of orbital altitudes made Janus
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– still ahead of Epimetheus in its orbit – the faster of the two. As a result, Janus
crept ahead, and will continue to do so until catching up with Epimetheus again in
2010. The figure 1.1 below explains the behavior schematically. The closeness of the
two moons is exaggerated – Epimetheus and Janus never approach closer than about
15,000 kilometers from each other, roughly 100 times their diameters.
This periodic motion of Janus and Ephimetheus would not exist if there was no
perturbation (the attraction between the moons) and therefore represent what we call
a secondary torus.
So, since KAM theorem is only about primary tori, a question that appears naturally
is

Which is the total measure of quasi periodic motions in a small-perturbed system?
(including primary and secondary tori)

Arnol’d, Kozlov and Neishtad in [9] 1985 conjectured an answer to this fundamental
question.
Conjecture. (ref. [9], Remark 6.8, p.285) It is natural to expect that in a generic
system with three or more degrees of freedom the measure of the ‘non-torus’ set has
order " (...).
So the presence of secondary tori causes the change of the estimate on the measure of
"non-torus" zones, i.e., the complementary of quasi-periodic trajectories, from Op?

"q
to Op"q.
One can find an upper bound on the measure of the "non–torus" set in agreement
with this conjecture for a generic class of Hamiltonian systems in the brilliant
"Singular KAM theory" (see [4]) developed by Luca Biasco and Luigi Chierchia
between 2015 and 2023.
Let us briefly review the strategy developed by Biasco and Chierchia in order to
achieve this result:

• Analogously to what is done in Nekhoroshev theory (compare [25], [41]), fixed a
maximal size of resonances K to be considered, one covers the action space
intro three regions:

1. Non Resonant set R0, (in which |! ¨ k| ° ↵ @ k P Znzt0u) after high order
averaging, classical KAM theory yields the existence of primary maximal
KAM tori up to a set of measure Op?

"ep´cKqq.
2. A Neighborhood of double and higher resonances R2 (in which ! is in

resonance with two or more indipendent vectors of Zn) of measure "Kc,
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where no perturbative analysis is possible because the dynamic is
equivalent to a "-free dynamic, so this is completely included in non torus
set.5

3. a
?
"Kc–neighborhood R1 of simple resonances, in which ! is in resonance

with one vector k P Zn, but |! ¨ `| ° ↵ for all ` with no component in the
direction of k.

So we notice that main game has to be played on the simple–resonance
neighborhood, in order to consider secondary tori and improving estimates (in
classic KAM we don’t consider secondary tori so that non torus set includes
completely also R1 and this set is order

?
".)

• In neighborhoods of single resonance k P Zn one can perform high-order
averaging theory developed in [1] such that the Hamiltonian is conjugated to

Hkpy, xq “ H̄kpy, x1q ` "fkpy, xq; fk « ep´cKq, H̄kpy, x1q “ hkpyq ` "gkpy, x1q.

• Then the following step is to conjugate the infinitely-many 1-degree Hamiltonian
H̄k in action-angles variables, but this would be very difficult because one must
have uniform control in all parameters as this transformation must be done for
all k. In order to do this, following [2], we show that one can conjugate all H̄k

to a specific class of Hamiltonian call “Standard form” Hamiltonian,

Hstdpp, q1q “ p1 ` ⌫pp, q1qqp21 ` Gpp, qq.
For high values of k this standard form has essentially the portrait of a
pendulum (i.e. is essentially p21 ` cospqq) so it is easy to study. For low values of
k this form is quite more complicate because is only a system with
finitely-many and non degenerate critical points.

In this way the problem is moved to study action-angles variables for generic
standard form systems, and that’s the main point of [3]. In this work
action-angle transformation is fully described for this class of Hamiltonians, and
the analytic proprieties of this variables are discussed. In particular in [3] Biasco
and Chierchia have studied the behavior of actions function in the limit as the
energy approaches the critical values that will play a main role in our intent:

I1pEcrit ˘ �zq “ apzq ` bpzq z logpzq; a, b analytic.

This result will be crucial for our result.
5One of the most difficult open problem in dynamics is to rigorously prove that in a "-free system

the "non torus" set has Op1q measure.
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• Now, we apply the action-angle transformation that we call �k to the original
system near simple resonance

Hk “ Hk ˝ �kpy, xq “ hkpIq ` "f̃kpI,'q; f̃k « ep´cKq.

• The last problem we have to tackle in order to apply classical KAM theory to
this Hamiltonian above, is checking the non degenerate condition on the new
integrable part. Obviously this problem is not trivial only near critical points,
namely with the standard form Hamiltonian in his action-angles variables.
That’s a very delicate question, and it becomes more serious when the distance
in energy from the separatrices goes to zero, where problem becomes a singular
perturbation problem with dramatic singularities. This problem is taken into
account in the outstanding "Twist Theorem” proved in [4].

• At this point, choosing carefully the various free parameters of the game, a
suitable KAM Theorem yields the existence of maximal primary and secondary
KAM tori, which fill the complementary phase set of R2 ˆ Tn up to a set of
measure exponentially small with K.

Choosing K « | log "|, it follows the result up to logarithm correction.
The main goal of this thesis is to extend Singular KAM theory to a broader class of
Hamiltonian systems and to start a possible application of this theory to some
relevant physical models in order to obtain some interesting new estimates on the
total measure of the invariant tori for these nearly-integrable systems.

Description of the thesis

The work is divided into three chapters, each of which presents a different result.
Here we will not present the rigorous results but we will do only an heuristic
discussion. The formal results will be written in each chapter.
In the first section we generalize Singular KAM theory to spatial perturbation of
convex Hamiltonian systems. To be more precise, the result of Biasco and Chierchia
is done for natural systems described by

H pp, qq “ 1

2
p2 ` "fpxq, pp, qq P pB Ä Rnq ˆ Tn

where Tn “ Rnzp2⇡Znq and with f that satisfy a precise but generic condition that we
will see later in this work. In the first chapter we present the generalization of the
result to systems characterized by

H pp, qq “ hppq ` "fpxq pp, qq P B Ä Rn ˆ Tn

13



where h is a completely generic integrable and convex Hamiltonian (and with the
same class of potential f).
The main difference of this part w.r.t. to original result is the conjugation to standard
form Hamiltonian near critical points. In particular, in the convex case, the surface in
which the critical points lie is completely generic. Therefore, the conjugation becomes
a local discourse and must be accomplished in small neighborhood of each critical
point. This causes great technical difficulties because it will be necessary to cover the
phase space in neighborhoods in which such conjugation is done, and all parameters
have to be simultaneously uniform in k and in the choice of the critical point around
which we are conjugating the system.
The second chapter generalize the result to a wider class of Hamiltonian by extending
their domain of analyticity. To be more precise, in [4], the authors consider a
Hamiltonian that is real analytic on a complex neighborhood of the phase space that
is

Br ˆ Tn
s :“

§

yPB
tz P Cn

: |z ´ y| § ru ˆ tx P Cn
: |Im x| § suzp2⇡Znq.

Here we generalize the result for Hamiltonians that are real analytic of a complex
neighborhood of the torus that has different complex widths for each direction,
namely for a positive components vector s P p0,`8q ˆ ... ˆ p0,`8q Ä Rn we have
considered

Br ˆ Tn
s :“

§

yPB
tz P Cn

: |z ´ y| § ru ˆ tx P Cn
: |Im xi| § siuzp2⇡Znq @ i “ 1, ..., n.

This choice is quite more natural, especially in view of potential applications, e.g., to
celestial mechanics, where typical physical potentials do have this asymmetry.
For this part the main difference w.r.t. the Biasco and Chierchia’s work is about
averaging, normal forms and the uniform behaviour of large Fourier modes of the
potential. In particular, every argument must be made component by component, but
one must be careful because every condition one wants to impose must be one for all
directions.
In this way we have extended the result to a class of functions that is much more
general in the integrable part (moving from the kinetic case to the convex case) and
that also has a more general class of potentials (with different strips of analyticity for
each direction of the angles).
In the third and last chapter we focus on a possible application of Singular KAM
theory to celestial mechanics, in particular, we consider the Restricted, planar,
circular three-body problem which is usually called RCP3BP.
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Roughly speaking this model describe the bounded planar motion of a "zero mass"
body subject to the gravitational field generated by two primary bodies revolving on
circular Keplerian orbits (which are assumed to be not influenced by the small body).
When the mass ratio of the two primary bodies is small the RCP3BP is described by
a nearly-integrable Hamiltonian system with two degrees of freedom; in a region of
phase space corresponding to nearly elliptical motions with non small eccentricities,
the system is well described by Delaunay variables.
In order to apply this new theory our main goal is to check the condition that Biasco
and Chierchia impose on the generic potential, to the disturbing function of RCP3BP.
For this reason we focus on the Fourier coefficients of the perturbation. We develop a
new expansion of them in terms of Hansen coefficients that makes the numerical work
much simpler and allows us to find the asymptotic for small values of eccentricity and
major axis. Furthermore, we study two main proprieties of the coefficients that will
be important to control the Singular KAM condition: the presence of zeros for high
Fourier modes, and their domain of analyticity.
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Chapter 1

Singular KAM Theory for spatial

pertubations of convex Hamiltonian

systems

1.1 Set up and some standard definitions
Let n • 2, we consider analytic Hamiltonian systems composed of the sum of an
integrable part (in the sense of Arnold-Liouville) and a small perturbation. Namely,
indicating the flat n-dimensional torus by Tn

:“ Rnzp2⇡Znq, and making use of stan-
dard action-angle coordinates py, xq P B Ä Rn ˆ Tn where B is is the closure of a
bounded connected open non empty set Rn, associated to the symplectic two-form
⌦ :“ ∞n

i“1 dxi ^ dyi, we are interested in those systems described by

Hpy, xq “ H"py, xq “ hpyq ` "fpy, xq (1.1.1)

where " is a small parameter measuring the size of the analytic perturbation "f w.r.t.
the analytic integrable part h.
Let r, s ° 0 and | ¨ | be the standard Euclidean norm, we define

Br :“
§

yPB
tz P Cn

: |z ´ y| § ru,

Tn
s :“ tx P Cn

: |Im x| § suzp2⇡Znq.

Assume that H" in 1.1.1 admits an holomorphic extension for some r, s ° 0 on the
complex domain Br ˆ Tn

s Ä C2n.
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We call the Hamiltonian flow associated to H" at time t �t
H"

py0, x0q “: pyptq, xptqq,
representing the solution to the standard Hamiltonian equations

#
9y “ ´BxH"py, xq
9x “ ByH"py, xq

#
yp0q “ y0
xp0q “ x0

ñ ⌦pXH" , ¨q “ JprH"q:

where J is the standard symplectic matrix.

Remark 1.1.1. For " “ 0, system 1.1.1 is integrable in the sense of Arnol’d-Liouville,
and its phase space is foliated by primary invariant tori carrying quasi-periodic motions.

Now we have to recall some standard definitions.

Definition 1.1.1 (MAXIMAL KAM TORI). A set T Ä M “ B ˆ Rn is called a maximal
KAM torus for a real analytic Hamiltonian H : M fi›Ñ R if there exist a real analytic
embedding � : Tn fi›Ñ M and a Diophantine frequency vector ! P Rn such that T “
�pTnq, and for each z P T , �t

Hpzq “ �px ` !tq, where x “ �´1pzq.

Definition 1.1.2 (GENERATORS OF 1D MAXIMAL LATTICES). Let Zn
› be the set of

integer vectors k ‰ 0 in Zn such that the first non–null component is positive:

Zn
› :“ tk P Zn

: k ‰ 0 and kj ° 0 where j “ minti : ki ‰ 0uu

Gn denotes the set of generators of 1d maximal lattices in Zn, namely, the set of vectors
k P Zn

› such that the greater common divisor (gcd) of their components is 1:

Gn
:“ tk P Zn

› : gcdpk1, ..., knq “ 1u (1.1.2)

for K • 1, we set:
Gn
K :“ Gn X t|k|1 § Ku (1.1.3)

Definition 1.1.3 (1D FOURIER PROJECTORS). Given a zero–average real analytic pe-
riodic function

f : x P Tn fi›Ñ fpxq “
ÿ

Znzt0u
fke

ik¨x (1.1.4)

and fixed a vector k P Znzt0u, we denote by ⇡Zkf the (real analytic) periodic function
of one variable ✓ P T given by

✓ P T fi›Ñ ⇡Zkfp✓q :“
ÿ

jPZ

fjke
ij✓ (1.1.5)
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We will also refer to the projection on the Fourier modes of the resonant maximal
sublattice Zk as

pZkfpxq :“
ÿ

jPZ

fjke
ijk¨x. (1.1.6)

Notice the relation between these two functions

⇡Zkfpk ¨ xq “ pZkfpxq (1.1.7)

and that one has the following (unique) decomposition:

fpxq “
ÿ

kPGn

⇡Zkfpk ¨ xq “
ÿ

kPGn

pZkfpxq. (1.1.8)

Definition 1.1.4 (RESONANCES). Given k P Gn, a resonance Rk with respect to the
Hamiltonian hpyq is the set ty P Rn

: !pyq ¨ k “ 0u where ! : y P Rn Ñ !pyqi “
Byihpyq. We call Rk,` a double resonance if Rk,` “ Rk XR` with k and ` in Gn linearly
indipendent; the order of a double resonance is given by maxt|k|1, |`|1u.
Definition 1.1.5 (MORSE FUNCTIONS WITH DISTINCT CRITICAL VALUES). A C2-
function of one variable ✓ fi›Ñ F p✓q is a Morse function if its critical points are non-
degenerate, i.e., F 1p✓0q “ 0 ùñ F 2p✓0q ‰ 0; "distint critical values" means that if
✓1 ‰ ✓2 are distinct critical points, then F p✓1q ‰ F p✓2q.
Definition 1.1.6 (�-MORSE FUNCTIONS). A C2pT,Rq Morse function F with distinct
critical values is called a �-Morse function, with � ° 0, if

min
✓PT

p|F 1p✓q| ` |F 2p✓q|q • �, min
i‰j

|F p✓iq ´ F p✓jq| • �, (1.1.9)

where ✓i P T are the critical points of F.

Definition 1.1.7 (BANACH SPACES OF REAL ANALYTIC PERIODIC FUNCTIONS AND
NORMS). For s ° 0 and n P N, consider the Banach space of zero-average real analytic
periodic functions on Tn with finite norm

}f}s :“ sup
kPZn

|fk|e|k|1s, (1.1.10)

and denote by Bn
s its closed unit ball. Besides the norm } ¨ }s, we shall also use the

following two (non equivalent) norms

|f |s :“ sup
Tn
s

|f |, ||| f |||s :“
ÿ

kPZn

|fk|e|k|1s. (1.1.11)
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Note that in general }f}s § |f |s § ||| f |||s.
For functions (not necessarily holomorphic in y) f : Br ˆ Tn

s fi›Ñ C we will also use
the norms

|f |B,r,s “ |f |r,s “ sup
BrˆTn

s

|f |, ||| f |||B,r,s “ ||| f |||r,s “ sup
yPBr

ÿ

kPZn

|fkpyq|e|k|1s

}f}B,r,s “ }f}r,s :“ sup
BrˆTn

s

|fkpyq|e|k|1s.
(1.1.12)

For a function depending only on y P Br we use |f |B,r “ |f |r “ supBr
|f |.

Remark 1.1.2. Those three norms are obviously not equivalent. Indeed, for any � ° 0,
one has

}f}r,s § |f |r,s § ||| f |||r,s §
ˆ
coth

np�
2

q ´ 1

˙
}f}r,s`� §

ˆ
2n

�

˙n

}f}r,s`� (1.1.13)

Definition 1.1.8 (COSINE-LIKE FUNCTION). Let 0 § g § 1
4 . We say that a real analytic

function G : T1 fi›Ñ C is g-cosine-like if, for some ⌘ ° 0 and ✓0 P R one has

|Gp✓q ´ ⌘ cos p✓ ` ✓0q|1 :“ sup
T1

|Gp✓q ´ ⌘ cos p✓ ` ✓0q| § ⌘g (1.1.14)

Notice that this notion is invariant by rescalings: G is g-cosine-like if and only if �G
is g-cosine-like for any � ° 0.

At this point we are ready to point out our two assumptions on the Hamiltonian in
1.1.1 (one for the integrable part and one for the perturbation) and state our main
result. For the issue that we are proving, we have to take the pertubation in a special
class of function defined in the following

Definition 1.1.9 (THE CLASS OF POTENTIAL Gn
s ). We denote by Gn

s the subset of
functions f P Bn

s such that the following two proprietis hold:

lim inf
kPGn:|k|1Ñ8

|fk|e|k|1s|k|n1 ° 0, (1.1.15)

@ k P Gn, ⇡Zkf is a Morse Function with distinct critical values. (1.1.16)

Remark 1.1.3. As it’s proved in [2], this class of function is generic in Bn
s , in the sense

that Gn
s contains an open and dense set in Bn

s .
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Assumptions 1.1.1. For the rest of the work we will assume two proprieties on our
Hamiltonian in 1.1.1 that characterize the spatial pertubation of convex Hamiltonian
systems:
i) The integrable part hpyq is a �-convex function of the action variable, i.e. for all
⇠ P Rn and y P B the following holds:

xB2
yhpyq ⇠, ⇠y “

nÿ

i,j“1

ˆ
Byiyjhpyq

˙
⇠i⇠j • �|⇠|2. (1.1.17)

Convex maps are in part particular KAM Non-degenerate function, i.e. the map

y P Br Ñ !pyq :“ Byhpyq P ⌦ :“ !pBrq Ñ Bp0,Mq Ä Rn, where M :“ sup
Br

|!pyq|
(1.1.18)

is a global diffeomorphism of B into ⌦, where we have denoted with Bpy0, rq “ ty P
Cn

: |y ´ y0| § ru. Namely we are imposing that

det

ˆB2h

By2
˙

‰ 0 (1.1.19)

and as consequence, h has a finite number of non degenerate critical points. Moreover,
we define the Lipschitz constants of ! as

L̄´1|y ´ y0| § |Byhpyq ´ Byhpy0q| § L|y ´ y0|, @ y, y0 P Br. (1.1.20)

ii) The perturbation f P Gn
s .

For all details concerning this new class of pertubation see [2], now we briefly discuss
only the most important proprieties without proves.
As we will see in the other part of this work, our strategy depends in a crucial way
on the size of the vector k P Znzt0u generating the resonance. In particular, we will
distinguish between a finite number of "low Fourier modes" of f and an infinite number
of "high Fourier modes" of the same function. In order to be able to distinguish between
these two classes, we need to introduce the "cut-off" function:

Definition 1.1.10 (FOURIER CUT-OFF FUNCTION). Given � P p0, 1s and n, s ° 0

define the following "Fourier cut-off function":

N “ Np�; s, nq :“ 2maxt1, 1
s
log

cn
sn�

u, where cn :“ 2
44p2n

e
qn
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Remark 1.1.4. Note that this choice of cut-off function satisfies

N • 2cs, where cs :“ maxt1, 1
s

u. (1.1.21)

We will refer to "high Fourier modes" for |k|1 • N, while the lower ones are for |k|1 † N.
For low modes we can only note that since 1.1.16 holds, for all k P Gn such that |k|1 § N

there exists � ° 0 such that
⇡Zkf is �-Morse. (1.1.22)

For the high modes, instead, we have to study the

Uniform behaviour for high Fourier modes.

If f satisfies 1.1.15 it follows immediatily from basic analysis that one can find 0 † � § 1

such that
|fk| • �e´|k|1s|k|´n

1 ° 0, @ k P Gn, |k|1 • N (1.1.23)

With this simple propriety and the above choice of N one can show that, for |k|1 • N,
⇡Zkf is very close to a shifted rescaled cosine function:

Proposition 1.1.1. Let � ° 0 and f P Gn
s . Then, for any k P Gn such that |k|1 • N,

⇡Zkf is 2
´40-cosine-like in the sense of the above Definition.

Proof. As in [2], we shall prove something slightly stronger that will be useful for our
intent, namely, that there exists ✓k P r0, 2⇡q such that

⇡Zkfp✓q “ 2|fk|
ˆ
cos p✓ ` ✓kq ` F k

› p✓q
˙
, F k

› p✓q :“ 1

2|fk|
ÿ

j•2

fjke
ij✓ (1.1.24)

with F k
› p✓q P B1

1 and
|F k

› |1 § |||F k
› |||1 § 2

´40. (1.1.25)

Indeed, by definition of ⇡Zk
f ,

⇡Zk
fp✓q :“

ÿ

jPZ z t0u
fjke

ij✓ “
ÿ

|j|“1

fjke
ij✓ `

ÿ

|j|•2

fjke
ij✓ ,

and, defining ✓k P r0, 2⇡q so that ei✓k “ fk{|fk|, one has

1

2|fk|
ÿ

|j|“1

fjke
ij✓ “ Re

´ fk
|fk|e

i✓
¯

“ Re eip✓`✓kq “ cosp✓ ` ✓kq ,
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which yields (1.1.24). Now, since f P Bn
s it is |fk| § e´|k|1s and, by (1.1.23), |fk| •

�|k|´n
1

e´|k|1s. Therefore, for |k|1 • N, one has

|||F k
› |||

1

p1.1.24q“ 1

2|fk|
ÿ

|j|•2

|fjk|e|j| § |k|n
1
e|k|1s

2�

ÿ

|j|•2

|fjk|e|j|

§ |k|n
1
e|k|1s

2�

ÿ

|j|•2

e´|j|p|k|1s´1q

§ 2e2|k|n
1

�
e´|k|1s “ 2

n`1e2

sn�
e´ |k|1s

2

´ |k|1s
2

¯n

e´ |k|1s

2

§
´
2n

es

¯n 2e2

�
e´ Ns

2 § 2
´40 , (1.1.26)

where the geometric series converges since |k|1s • Ns • 2 (by (1.1.21)) and last in-
equality follows by definition of N in (1.1.10).

Proposition 1.1.2. Let � ° 0 and f P Gn
s . Then, for any k P Gn such that |k|1 • N,

⇡Zkf is |fk|-Morse.

Proof. As we did in the above proposition, we get
ˇ̌
ˇ
⇡Zk

f

2fk
´ cosp✓ ` ✓kq

ˇ̌
ˇ
1

p2.2.5q“ |F k
‹ |1 § |||F k |||1

p2.2.6q
§ 2

´40 , (1.1.27)

which implies that the function F :“ ⇡Zk
f{p2fkq is C2–close to a (shifted) cosine:

Indeed, by Cauchy estimates } ¨ }C2 § 2| ¨ |1, so that

}F ´ cosp✓ ` ✓kq}C2 “ max
0§j§2

max
T

|Bj
✓pF ´ cosp✓ ` ✓kqq| § 2|F k

‹ |1
p2.2.9q

§ 2
´39 .

By Lemma 2.2.1 we see that F is p1´ 2
´38q–Morse, and the claim follows by rescaling.

Main Results

As we said before, with our system we could use classical KAM Theory that ensures
the existence of a set of relative Lebesgue measure 1´Op?

"q of primary invariant tori
carrying quasi-periodic motions. In particular, for fixed � ° 0, ⌧ • n ´ 1, the invariant
tori of the integrable system whose associated frequencies !pyq satisfy the Diophantine
condition

|k ¨ !pyq| • �

|k|⌧1
@ k P Znzt0u
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persist under any sufficiently small perturbation. One can obtain this kind of result
seeing only at primary tori, that, apart from a set of order

?
" up to correction, one

expects to find where there is no resonance. The aim of this work is, according to
what Biasco and Chierchia have done, taking in count also tori that appears thanks to
perturbation (just think to the case of the standard pendulum inside the separatrices)
that we in general call secondary tori.
In general, region near double or higher order resonances is not expected to contain
a large set of invariant tori, as its dynamics is essentially non perturbative. In fact
in this domain, after the partial averaging taking into account the resonances under
consideration, normalizing the deviations of the “actions” from the resonant values by
the quantity ", normalizing time, and discarding the terms of higher order, we obtain
a Hamiltonian of the form hpyq ` fpxq, which does not involve a small parameter.
Returning to the original variables we obtain a “non–torus” set of measure ".

So it remains to find and expect secondary tori to appear in region with singular
resonance, as we will see in the following pages. For this reason the main result of this
work is the following

Theorem 1.1.1. Let n • 2, s ° 0, B a compact set of Rn, b :“ 11n ` 7, f P Gn
s

with }f}s “ 1 and h a convex and integrable hamiltonian. Then, there exist a constant
c ° 1, such that for all K and " ° 0 satisfying

K • c , " Kb § 1 , (1.1.28)

the following holds. There exist three sets R2 Ñ B, A Ñ BˆTn, T Ñ Rn ˆTn such that:

(i) B ˆ Tn Ñ pR2 ˆ Tnq Y A Y T ;

(ii) R2 is a neighborhood of double resonances of order smaller than K satisfying the
measure estimate

measR2 § c‹ " K
b ,

where c‹ is a suitable constant depending only on n;

(iii) A is exponentially small with respect to K:

measA § e´K{c
;

(iv) T is union of maximal KAM tori for the Hamiltonian Hpy, x; "q :“ hpyq `"fpxq.

Choosing K :“ c| log "| it follows that
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Corollary 1.1.1. Under the assumptions of the theorem above, there exists 0 † "0 † 1

such that for " † "0, all points in B ˆ Tn lie on a maximal KAM torus for H" in 1.1.1,
except for a subset whose measure in bounded by c̄ "| log "|� where c̄ “ 1 ` p2⇡qnc›c�.

The two degrees of freedom is special: in this case the only double resonance is the
origin and one can take as R2 a disk of measure "a with any 0 † a † 1 getting a set of
KAM tori of exponential density in the complementary of R2 ˆ T2.

Corollary 1.1.2. Let the assumptions of Theorem 1.1.1 hold and let n “ 2. Then,
there exists 0 † "o † 1, such that for " † "o and 0 † a † 1, all points in the set
ty P B : |y| ° "a{2u ˆ T2 lie on a maximal KAM torus for H in 1.1.1, except for an
exponentially small set of measure bounded by e´1{p2c"âq, with â :“ p1 ´ aq{24.

1.2 Averaging, covering and normal forms
In this section, we discuss the high order normal forms of generic natural systems
1.1.1, especially in neighbourhoods of simple resonances. On one hand, apart from a
finite (although arbitrarily large) number of simple resonances of order less than N, the
secular (averaged) Hamiltonians have a uniform normal form with a potential close to
a shifted cosine. On the other hand, the secular Hamiltonians at simple resonances of
order less or equal than N admit a simple normal form.

Normal form lemma. The first technical lemma allows to average out non-resonant
Fourier modes of the perturbation f on suitable non-resonant regions, and allows for
"arbitrary small" analyticity loss in the angle variables, a fact which will be crucial in
our applications.

Lemma 1.2.1 (Normal form lemma with "small" analyticity loss.). Let r, s,↵ ° 0,
K P N, K • 2, B Ä Rn and let ⇤ be a lattice of Zn. Let

Hpy, xq “ hpyq ` fpy, xq

real-analytic on Br ˆ Tn
s Ä C2n with |f |r,s † 8. Assume that Br is p↵,Kq non-resonant

modulo ⇤ and that
✓› :“ 2

11K2

↵rs
|f |r,s † 1. (1.2.1)

Then, there exists a real-analytic symplectic change of variable

 : py1, x1q P Br› ˆ Tn
s› fiÑ py, xq P Br ˆ Tn

s , where r› :“ r

2
, s› :“ sp1 ´ 1

K
q (1.2.2)
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satisfying
|y ´ y1|1 § ✓›

27K
r, max

1§i§n
|xi ´ x1

i| § ✓›
16K2

s, (1.2.3)

and such that

H ˝  “ h ` g ` f›; where p⇤g “ g, p⇤f› “ 0, (1.2.4)

with
||| g ´ p⇤f |||r›,s› § 1

K
✓›||| f |||r,s, ||| f› |||r›,s{2 § 2e´pK´2qs̄||| f |||r,s, (1.2.5)

where s̄ :“ mint s
2 , log

8
✓› u.

For the full demonstration see [1]

First Covering. The covering lemma is slightly different w.r.t. the one in [1]. Indeed,
in order to extend our result to generalized natural system, we shall enlarge the zone
with two or more degree of resonances.

Lemma 1.2.2 (First covering lemma). Let h be KAM non-degenerate and let ! denote
its gradient. Fix K • 6K0 • 12 and ↵ ° 0. Then, the domain B can be covered by three
sets Ri Ñ B,

B “ R0 Y R1 Y R2 (1.2.6)

so that the following holds.
a) R0 is p↵

2 , K0q completely non-resonant (i.e. non-resonant modulus t0u), namely,

y P R0 ùñ |!pyq ¨ k| • ↵

2
, @ 0 † |k|1 § K0. (1.2.7)

b) R1 “ î
kPGn

1,K0
R1,k, where, for each k P Gn

1,K0, R
1,k is a closed neighbourhood of a

simple resonance ty P B : !pyq ¨ k “ 0u, which is p3↵Kn`4{|k|, Kq non-resonant modulo
Zk, namely

y P R1,k ùñ |!pyq ¨ k| † ↵ ; |!pyq ¨ `| • 3↵Kn`4

|k|1
, @ ` P Zn, ` R Zk, |`|1 § K. (1.2.8)

c) R2 contains all the resonance of order two or more and has Lebesgue measure small
with ↵2: more precisely, there exists a costant c ° 0 depending only on n and M such
that

measpR2q § cpn,Mq↵2
K
2n`3 (1.2.9)
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The proof of this proposition is written in the section 5 of [1]. We just want to
remark that the covering tRiu is the pull back of a covering in frequency space:

Ri
:“ ty P B : !pyq P ⌦iu (1.2.10)

where the ⌦i’s are defined as follow

⌦
0
:“ t! P BMp0q : min

kPGn
1,K0

|! ¨ k| ° ↵

2
u. (1.2.11)

Instead, to define ⌦1, denoting with pK
k the orthogon al projection on the subspace

perpendicular to k, we use

⌦
1,k

:“ t! P Rn
: |! ¨ k| † ↵, |pK

k !| † M, and |pK
k ! ¨ `| ° 3↵Kn`4

|k| , @ ` P Gn
1,KzZku

R1,k
:“ ty P B : !pyq P ⌦1,ku

⌦
1
:“

§

kPGn
1,K0

⌦
1,k.

(1.2.12)

Finally, the set ⌦2 is just the union of neighbourhoods of exact double resonances: if
we call

Rk,` :“ t! ¨ k “ ! ¨ ` “ 0u, k P Gn
1,K0 , ` P Gn

1,K, ` R Zk, (1.2.13)

then

⌦
2
k,` :“ t|! ¨ k| † ↵u X t|pK

k !| † Mu X t|pK
k ! ¨ `| § 3↵Kn`4

|k| u

⌦
2
:“

§

kPGn
1,K0

§

`PGn
1,K

`RZk

⌦
2
k,`.

(1.2.14)

Remark 1.2.1. As we will see in the next part of this section, the right choice of ↵
for our aim is ↵ :“ ?

"K
9
2n`2, where " is the size of the perturbation in 1.1.1, so that

measpR2q § c›pn,Mq " Kb, with b :“ 11n ` 7 (1.2.15)

Proof. of 1.2.9. First observe that from the definitions of R0, R1,k and R2 in (1.2.11),
(1.2.12) and (1.2.13), it follows immediately that

R2 Ñ
§

kPGn
Ko

§

`PGn
K

`RZk

R2
k,` , (1.2.16)
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with

R2
k` :“

 
y P B : |! ¨ k| † ↵; | ⇡K

k ! ¨ `| § 3↵Kn`4

|k|
(
, pk P Gn

Ko , ` P Gn
K z Zkq . (1.2.17)

Let us, then, estimate the measure of R2
k,` in (1.3.13). Denote by v P Rn the projection

of ! onto the plane generated by k and ` (recall that, by hypothesis, k and ` are not
parallel); then,

|v ¨ k| “ |! ¨ k| † ↵ , | ⇡K
k v ¨ `| “ |⇡K

k ! ¨ `| § 3↵Kn`4

|k| . (1.2.18)

Set
h :“ ⇡K

k ` “ ` ´ `¨k
|k|2k . (1.2.19)

Then, v decomposes in a unique way as v “ ak ` bh for suitable a, b P R. By (1.2.18),

|a| † ↵

|k|2 , | ⇡K
k v ¨ `| “ |bh ¨ `| § 3↵Kn`4

|k| , (1.2.20)

and, since |`|2|k|2 ´ p` ¨ kq2 is a positive integer (recall, that k and ` are integer vectors
not parallel),

|h ¨ `| p1.2.19q“ |`|2|k|2 ´ p` ¨ kq2
|k|2 • 1

|k|2 .

Hence,

|b| § 3↵Kn`4

|k| . (1.2.21)

Then, write ! P ⌦2
k,` as ! “ v ` vK with vK in the orthogonal complement of the plane

generated by k and `. Since |vK| § |!| † M and v lies in the plane spanned by k and `
inside a rectangle of sizes of length 2↵{|k|2 and 6↵K|k| (compare (1.2.20) and (1.2.21)),
we find

measp⌦2
k,`q § 2↵

|k|2 p6↵Kn`4|k|q p2Mqn´2 “ 3 ¨ 2n Mn´2 ↵2 Kn`4

|k| , @
"

k P Gn
Ko ,

` P Gn
K z Zk .

Thus, since
ÿ

kPGn
Ko

|k|´1 § c Kn´1
o for a suitable c “ cpnq, and since Ko § K{6, (1.2.15)

follows immediately taking
c‹ “ c

2 ¨ 3nM
n´2L̄´1.
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Averaging. Using normal form lemma and the covering lemma we are able to state
the averaging theorem for non resonant and simply resonant zones.
To perform averaging, we need to introduce a few parameters (Fourier cut–offs, a small
divisor threshold, radii of analyticity) and some notation. Let K, K0, ⌫ and ↵ such that

K • 6K0 • 12, ⌫ • 9

2
n ` 2 ↵ :“ ?

"K⌫ . (1.2.22)

For a generic k P Gn
1,K0 we define

r0 :“
↵

4LK0
“ ?

"
K
⌫

4LK0
; r1

0 :“
r0
2
; rk :“

↵

L|k| “ ?
"
K
⌫

L|k| ; r1
k :“

rk
2
; řk :“

rk
2Kn`1

s0 :“ sp1 ´ 1

K0
q; s1

0 :“ s0p1 ´ 1

K0
q; s› :“ sp1 ´ 1

K
q; s1

› :“ s›p1 ´ 1

K
q

✓̄ :“ 2
14n2n L

s2n`1K2⌫´2n´3
; ✓ :“ 2

2pn´2qk✓̄; s1
k :“ |k|1s1

›
(1.2.23)

Theorem 1.2.1 (Averaging theorem). Let H" as in 1.1.1 with }f}B,r,s “ 1 and let
1.2.22,1.2.23 holds. There exists a costant b0 “ b0pn, sq ° 1 such that if K0 • b0, the
following holds.
a) There exists a symplectic change of variables

 0 : R0
r1
0

ˆ Tn
s1
0

fi›Ñ R0
r0 ˆ Tn

s0 (1.2.24)

such that
H" ˝ 0 :“ hpyq ` "g0pyq ` "f 0py, xq, xf 0y “ 0 (1.2.25)

with g0 and f0 real analytic on R0
r1
0

ˆ Tn
s1
0

and satisfies

|g0 ´ xfy|R0,r1
0

§ ✓̄, ||| f 0 |||R0,r1
0,s

1
0

§ 2

ˆ
2nK0
s

˙n

e´pK0´3qs{2. (1.2.26)

b) for any k P Gn
1,K0 there exists a symplectic change of variables

 k : R1,k
r1
k

ˆ Tn
s1› fi›Ñ R1,k

rk
ˆ Tn

s› (1.2.27)

such that

Hk “ H" ˝ k “ hkpyq ` "gkpy, k ¨ xq ` "fkpy, xq
“ hpyq ` "gk0pyq ` "gkpy, k ¨ xq ` "fkpy, xq, pZkf

k “ 0
(1.2.28)
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where gk0 is real-analytic on R1,k
r1
k
, gkpy, ¨q P B1

s1
k

for every y P R1,k
r1
k
, fk is real-analytic

on R1,k
r1
k

ˆ Tn
s1›

, and

|gk0 |R1,k,r1
k

§ ✓, ||| gkpy, k ¨ xq ´ pZkfpy, xq |||R1,k,r1
k,s

1
k

§ ✓.

||| fk |||R1,k,r1
k,

s›
2

† 2

ˆ
2nK

s

˙n

e´pK´3q s
2 .

(1.2.29)

c) Finally,
||| ⇡y 0 ´ y |||r1

0,s
1
0

§ r0
27K0

, ||| ⇡y k ´ y |||r1
k,s

1›
§ rk

27Kn`1
(1.2.30)

and, for every fixed y P B, ⇡x 0py, ¨q and ⇡x kpy, ¨q are diffeomorphisms on Tn.

Remark 1.2.2. i) Observe that r0 § rk § ?
"K⌫{L, and we have to impose the

condition rk § r (where r is the analyticity radius of the unperturbed Hamiltonian,
which here is a free parameter). So we have to verify the smallness condition

" § r2L2

K2⌫

but one can take r “ K⌫

L so that the condition becomes simply " § 1.
ii) In order to apply lemma 1.2.1, we want to check condition 1.2.1 with our parameters
in 1.2.23. But since ||| f |||r,sp1´1{Kq § p2nK

s qn||f ||B,r,s, with simple replacing of parameters
and calculation (remember that, for part b we use that |k| § K), the condition 1.2.1
becomes

K
2⌫´n´4 • 2

13`nnnLe
s{2

sn`1
. (1.2.31)

Our choice of ⌫ and b0 ensures that K
2⌫´n´4 • K

8n • b8n0 , so that by taking b0 large
enough 2.5.15 holds.
iii) if we define

✓0 “ 1

K6n`1
• ✓ • ✓̄ (1.2.32)

and by taking b0 large enough, the smallness condition 2.5.10 becomes

|g0|r1
0

§ ✓0, ||| f 0 |||r1
0,s

1
0

§ e´K0s{3 (1.2.33)

while the condition 2.5.13 becomes

|gk0 |r1
k

§ ✓0; ||| gk ´ ⇡Zkf |||r1
k,s

1
k

§ ✓0; ||| fk |||r1
k,s›{2 § e´Ks{3. (1.2.34)
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For the rest of the work we will refer to these simplier smallness conditions.
iv) We remeber that if a set B is p↵, Kq non resonant modulo ⇤ for h, then the complex
domain Br is p↵´LrK, Kq non resonant modulo ⇤, provided LrK † ↵. In fact, if y P Br

there exists y0 P B such that |y ´ y0| § r and |!py0q ¨ k| • ↵ for all k P Znz⇤, |k|1 § K.
Thus, for such k’s one obtains

|!pyq ¨ k| “ |!py0q ¨ k ´ p!py0q ´ !pyq ¨ kq| • |!py0q ¨ k| ´ LrK • ↵ ´ LrK.

Proof. In this work we do only a brief overview of the proof, for more details see [1]
a) By the choice of r0, the domain R0

r0 is p↵{4, K0q completely non-resonant because
R0 is p↵{2, K0q completely non-resonant, so we can apply normal form lemma 1.2.1 to
H" in 1.1.1 with f,B, r,⇤,↵,K, s replaced respectively by "f,R0, r0, t0u, ↵4 , K0, s0. The
estimates on 2.5.10 come directly from estimates on 1.2.5.
b) By the definition of rk, the domain R1,k

rk
is p3↵Kn`4{|k| ´ ↵K{|k|, Kq non-resonant

modulo Zk, so that it is p↵Kn`4{|k|, Kq non-resonant modulo Zk . So we can use again
lemma 1.2.1 with f,B, r,⇤,↵,K, s replaced by "f,R1,k, rk,Zk, ↵K

n`4

|k| , K, s›.
Part c comes directly from estimates in 1.2.3.

For high Fourier modes, a more precise and uniform normal form can be achieved:

Lemma 1.2.3 (Cosine-like Normal Forms). Let H" be as in 1.1.1 with f P Gn
s and

let 1.2.22,1.2.23 hold. There exists a constant c0 “ c0pn, s, �q • maxtN, b0u such that
if K0 • c0 then the following holds. For any k P Gn

K0
such that |k|1 • N, then the

Hamiltonian Hk in 2.5.12 takes the form:

Hk “ hkpyq ` 2|fk|"rcos pk ¨ x ` ✓kq ` F k
› pk ¨ xq ` gk› py, k ¨ xq ` fk

› py, xqs (1.2.35)

where ✓k and F k
› are as in proposition 1.1.1 and

gk› :“ 1

2|fk| pg
k ´ ⇡Zkfq, fk

› :“ 1

2|fk|f
k (1.2.36)

Moreover gk› py, ¨q P B1
1 (for every y P R1,k

r1
k
), ⇡Zkfk

› “ 0, and one has

||| gk› |||r1
k,1

§ ✓ :“ 1

K5n
, ||| fk

› |||r1
k,

s›
2

§ e´Ks{7. (1.2.37)

Remark 1.2.3. This lemma is essentialy Theorem 2.1 of [1] and it’s proved for the
first time in section 7 of [1], but with some different notation. So in order to avoid any
problems, we’re going the write the proof with our notation.
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Proof. The hypotesis above implies theorem 2.5.1, so that the results of averaging
theorem 2.5.1 hold. From 1.2.36 it follows that gk “ ⇡Zkf ´2|fk|gk› which togheter with
1.1.24 and the form of Hk in 2.5.12 implies 1.2.35. Now we have to prove estimates in
1.2.37. Since |k|1 • N, recalling 1.2.23, one have

s1
k “ |k|1sp1 ´ 1

K
q2 ° Ns

4

5
° 1 (1.2.38)

in this way gk› py, ¨q is bounded on a ‘large’ angle–domain of size larger than 1 and has
zero average since gk› py, ¨q P B1

|k|1,s1›
. Now we have to use an elementary proprety of our

norm: if s1 § s, then for any N • 1

fpy, xq “
ÿ

|k|1•N

fkpyqeik¨x ùñ ||| f |||r,s1 § e´ps´s1qN||| f |||r,s. (1.2.39)

So, if we remember that K • 6K0 and if we take c0 large enough we obtain

||| gk› |||r1
k,1

:“ 1

2|fk| ||| g
k ´ ⇡Zkfq |||r1

k,1
§ |k|n1e|k|1s

2�
||| gk ´ ⇡Zkfq |||r1

k,1

§ |k|n1e|k|1s

2�
e´ps1

k´1q||| gk ´ ⇡Zkfq |||r1
k,s

1
k

§ |k|n1e✓0
2�

e|k|n1 ps´s1›q

§ K
n
0e

2�K6n`1
e2sK0{K § 1

K5n
“ ✓

(1.2.40)

using also 1.1.23, 2.5.20 and 1.2.23.
With similar argument, possbly increasing c0 one has

||| fk
› |||r1

k,s›{2 § |k|n1e|k|1s

2�
||| fk |||r1

k,s›{2 § |k|n1e|k|1s

2�
e´Ks{3

§ K
n
0

2�
e´Ksp 1

3´ K0
K

q § K
n

2�6n
e´Ks{6 § e´Ks{7.

(1.2.41)

Second Covering. The averaging symplectic maps  0, k of theorem 2.5.1 move
boundaries by

?
"K⌫ , so one cannot use the secular Hamiltonians to describe the dy-

namics all the way up to the boundary of B ˆ Tn. Such a problem may be overcome
introducing a second covering that, thanks to the differences in the averaging process,
is slightly different from the one in [2]. In fact, regarding single–resonance zone, the
real domains where one applies the map  k are quite smaller w.r.t. to the ones in [2].

Definition 1.2.1.

R̃0 “ Re pR0
r1
0{2q R̃1,k “ Re pR1,k

řk q, k P Gn
K0

(1.2.42)
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Lemma 1.2.4 (Second covering lemma).

iq R0 ˆ Tn Ñ  0pR̃0 ˆ Tnq
iiq R1,k ˆ Tn Ñ  kpR̃1,k ˆ Tnq, @ k P Gn

K0

iiiq R2
:“ DzpR0 Y R1q Ñ

§

kPGn
K0

§

`PGn
K

`RZk

R2
k,`

(1.2.43)

where R2
k,` is the pull back of the following set in frequency space

⌦
2
k,` :“ t|! ¨ k| † ↵u X t|pK

k !| † Mu X t|pK
k ! ¨ `| § 3↵Kn`4

|k| u. (1.2.44)

Remark 1.2.4. (i) Notice that from the definition of of rR1,k in (2.6.1), one has that

rR1,k
r1
k{2 Ñ R1,k

r1
k
. (1.2.45)

(ii) Relations in (2.6.1) allow to map back the dynamics of the averaged Hamiltonians
in 2.5.1 so as to describe the dynamics also arbitrarily close to the boundary of the

starting phase space.

For the proof of the Covering Lemma we shall use the following immediate consequence
of the Contraction Lemma1:

Lemma 1.2.5. Fix y0 P Rn, r ° 0 and let � : D2rpy0q Ñ Cn be a real analytic map
satisfying

sup

D2rpy0q
|�pyq ´ y| § W (1.2.46)

for some 0 † W † r. Then, y0 P �pBrpy0qq.
Proof. Let V0 :“ Brp0q. Solving the equation �pyq “ y0 for some y P Brpy0q is equivalent
to solve the fixed point equation w “  0pwq :“ ´ py0 ` wq for w P V0 having set
 pyq :“ �pyq ´ y. By (1.2.46) it follows that  0 : V0 Ñ V0 and by the mean value
theorem and Cauchy estimates we get that, for every w,w1 P V0,

| 0pwq ´  0pw1q| “ | py0 ` wq ´  py0 ` w1q| § M

r
|w ´ w1| ,

showing that  0 is a contraction on V0 (since M{r † 1) and the claim follows by the
standard Contraction Lemma.

1As usual D denotes the closure of the set D.
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Proof. of Lemma 2.6.1 For iq we start by proving that

@ py0, xq P R0 ˆ Tn , D! py, x0q P rR0 ˆ Tn
:  opy, xq “ py0, x0q . (1.2.47)

Define
W :“ ro

27Ko

(1.2.23)“ ↵

211K2o

† ↵

210K2o

“: r † ↵

27Ko

(1.2.23)“ r1
o

4
. (1.2.48)

Fix py0, xq P R0 ˆ Tn and let �pyq :“ ⇡y opy, xq. Then, by (1.2.48),

sup

D2rpy0q
|�pyq ´ y| § sup

Dr1
o

py0q
|�pyq ´ y| § |⇡y o ´ y|r1

o,s
1
o

p1.2.30q
§ W .

Thus, by Lemma 1.2.5, since by (1.2.48) 2r † r1
o{2, by definition of rR0, we have that

y0 P ⇡y o

`
Brpy0q ˆ txu

˘
Ñ ⇡y o

` rR0 ˆ txuq ,
which implies that  opy, xq “ py0, x0q with x0 P Tn proving (1.2.47). Now, observe
that the map py0, xq P R0 ˆ Tn fiÑ py, x0q P rR0 ˆ Tn in (1.2.47) is nothing else than
the diffeomorphism associated to the near–to–identity generating function y0 ¨ x `
 0py0, xq of the near–to–identity symplectomorphism  o. Thus, for each y0 P R0, the
map x P Tn fiÑ x0 “ x ` By0 0py0, xq is a diffeomorphism of Tn with inverse given by
x0 P Tn fiÑ x “ x0 ` �py0, x0q for a suitable (small) real analytic map �. Therefore,
given py0, x0q P R0 ˆ Tn, if we take x “ x0 ` �py0, x0q in (1.2.47) we obtain that there
exist py, xq P rR0 ˆ Tn such that py0, x0q “  0py, xq, proving point iq.
For point iiq the strategy is the same. We start by proving that

@ k P Gn
Ko , @ py0, xq P R1,k ˆ Tn , D! py, x0q P rR1,k ˆ Tn

:  kpy, xq “ py0, x0q . (1.2.49)

Fix k P Gn
Ko and define

W :“ rk
27Kn`1

(1.2.23)“ ↵

27L |k| Kn`1
† ↵

26L |k| Kn`1
“: r † řk

2

(1.2.23)“ ↵

4L |k| Kn`1
. (1.2.50)

Fix py0, xq P R1,k ˆ Tn, and let �pyq :“ ⇡y kpy, xq. By (1.2.50) and using that 4řk † r1
k

one has

sup

D2rpy0q
|�pyq ´ y| § sup

D2řk
py0q

|�pyq ´ y| § |⇡y k ´ y|2řk,s› § |⇡y k ´ y|r1
k,s›

p1.2.30q
§ M .

Thus, by Lemma 1.2.5 we have

y0 P ⇡y k

`
Brpy0q ˆ txu

˘
Ñ ⇡y k

` rR1,k ˆ txuq ,
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which implies that  kpy, xq “ py0, x0q for some x0 P Tn proving (1.2.49). Now, observe
that the map py0, xq P R1,kˆTn fiÑ py, x0q P rR1,kˆTn in (1.2.49) is nothing else than the
diffeomorphism associated to the near–to–identity generating function y0 ¨x` kpy0, xq
of the near–to–identity symplectomorphism  k. Thus, for each y0 P R1,k, the map
x P Tn fiÑ x0 “ x ` By0 kpy0, xq is a diffeomorphism of Tn with inverse given by
x0 P Tn fiÑ x “ x0 ` �py0, x0q for a suitable (small) real analytic map �. Therefore,
given py0, x0q P R1,k ˆ Tn, if we take x “ x0 `�py0, x0q in (1.2.49) we obtain that there
exist py, xq P rR1,k ˆ Tn such that py0, x0q “  kpy, xq, proving the second point of the
lemma.
For the last point if y P R2 then, since y R R0, there exists k P Gn

Ko such that |! ¨k| † ↵,
in which case, since y R R1, there exists ` P Gn

K z Zk such that | ⇡K
k ! ¨ `| § 3↵Kn`4

|k| , hence
y P R2

k,` for some k P Gn
Ko and ` P Gn

K z Zk.

Normal form Theorem In the normal form around simple resonances the ‘av-
eraged Hamiltonian’ gk in 2.5.12 depends on angles through the linear combination
k ¨ x, which, since k P Gn, defines a new well–defined angle x1 P T. This fact calls for
a linear symplectic change of variables, that can be possible thanks to the following
conseguence of Bezout’s lemma:

Lemma 1.2.6. Let the hypotheses of theorem 2.5.1 hold.
i) For any k P Gn there exists a matrix pA P Zn´1ˆn such that

A :“
ˆ
k
pA

˙
“

ˆ
k1...kn

pA

˙
P SLpn,Zq,

| pA|8 § |k|8, |A|8 “ |k|8, |A´1|8 § pn ´ 1qn´1
2 |k|n´1

8 .

(1.2.51)

ii) Let �0 be the linear, symplectic map on Rn ˆ Tn onto itself befined by

�0 : py, xq fi›Ñ py, xq “ pAT
y, A´1

xq. (1.2.52)

Then, #
x1 “ k ¨ x
xi “ ∞

j
pAijxj @i “ 2, ..., n

#
y “ y1k ` pATpy
py :“ py2, ..., ynq (1.2.53)

moreover, letting

D
k
:“ A´T R̃1,k,

#
r̃k :“ rk

c1|k|
s̃k :“ s

c1|k|n´1

, c1 :“ 5npn ´ 1qn´1
2 (1.2.54)
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we find

�0 : D
k
r̃k

ˆ Tn
s̃k

fi›Ñ R̃1,k
r1
k{2 ˆ Tn

s›{2, �0pDk ˆ Tnq “ R̃1,k ˆ Tn. (1.2.55)

Proof. i) From Bezout lemma it follows that: given k P Zn, k ‰ 0 there exists a
matrix A “ pAijq1§i,j§n with integer entries such that Anj “ kj @ 1 § j § n, detA “
gcdpk1, ...k1q “ 1 pk P Gnq, and |A|8 “ |k|8.

ii) �0 is symplectic since it is generated by the generating function y ¨ Ax. Fur-
thermore, y P D

k
r̃k

if and only if y “ y0 ` z with y0 P D
k and |z| † r̃k. Thus,

|AT z| § n|k||z| † n|k|r̃k † r1
k

2
. (1.2.56)

Since y0 P D
k ùñ AT

y0 P R̃1,k, we have that AT
y P R̃1,k

r1
k{2.

Regarding the x variable, we notice that, for any 1 § j § n, since x P Tn
s̃k

|ImpA´1
xqj| “ |

ÿ

i

ImpA´1qjixi| † npn ´ 1qn´1
2 |k|n´1s̃k § s›

2
† s1

›. (1.2.57)

Finally we are ready to state the most important theorem of this section that will
allow us to work with Hamiltonian in simpler form (especially near semple risonance).

Theorem 1.2.2 (Normal form Theorem). Let H" be as in 1.1.1 with f P Gn
s with the

cutoff function N as in definition 1.1.10, and let 1.2.23, 1.2.22 hold. There exists a
constant c0 “ c0pn, s, �q • maxtN, b0u such that, if K0 • c0, k P Gn

K0
, and D

k, r̃k, s̃k as
in 1.2.54, then there exist real-analytic symplectic maps

 0 : R0
r1
0

ˆ Tn
s1
0

fiÑ R0
r0 ˆ Tn

s0 ,  
k
:“  k ˝ �0 : D

k
r̃k

ˆ Tn
s̃k

fiÑ R1,k
rk

ˆ Tn
s› (1.2.58)

where  k is defined in 2.5.11 and �0 in 1.2.52, having the following proprieties.
i)

H0py, xq “ H" ˝ 0py, xq :“ hpyq ` "g0pyq ` "f 0py, xq, (1.2.59)

with g0 and f 0 satisfying 2.5.19 and xf 0y “ 0.
ii) Hk in 2.5.12, in the symplectic variables py, xq takes the form

Hkpy, xq :“ Hk ˝ �0py, xq “ Hkpy, x1q ` "fkpy, xq, py, xq P D
k
r̃k

ˆ Tn
s̃k

f
kpy, xq :“ fkpAT

y, A´1
xq. (1.2.60)

where the "secular Hamiltonian"

Hkpy, x1q :“ hkpyq ` "gkpy, x1q, hkpyq :“ hpAT
yq ` "gk0pyq; (1.2.61)
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is a real-analytic function for y P D
k
r̃k

and x1 P T1
s1
k
, futhermore g

kpy, ¨q P B1
s1
k

and the
following estimates hold:

|gk0|r̃k § ✓0; ||| gk ´ ⇡Zkf |||r̃k,s1
k

§ ✓0; ||| fk |||r̃k,s̃k § e´Ks{3. (1.2.62)

iii) if |k|1 • N, there exists ✓k P r0, 2⇡q such that

Hk “ hpAT
yq ` "gk0pyq ` 2|fk|"rcospx1 ` ✓kq ` F k

› px1q ` g
k
›py, x1q ` f

k
›py, xqs (1.2.63)

where F k
› is as in 1.1.24 and satisfies F k

› P B1
1 and |F k

› |1 § 2
´40. Moreover g

k
›py, ¨q P B1

1

for every y P D
k
r̃k

, ⇡Zkf
k
› “ 0 and one has

||| gk› |||r̃k,1 § ✓, ||| fk› |||r̃k,s̃k § e´Ks{7. (1.2.64)

Proof. First relation in 1.2.58 is 2.5.8, for the second one we only have to remember
that s›

2 § s1
› and the thesis comes from the definition of  0 and  k in the previous

results.
i) Follows from part aq of theorem 2.5.1.
ii) Equations 1.2.60,1.2.61 follow immediately from the definition of the symplectic

map �0 in the prevoius lemma that acts on 2.5.12. Estimates in 1.3.29 comes from 2.5.20
calling

g
k
0pyq :“ gk0pAT

yq , g
kpy, x1q :“ gkpAT

y, x1q . (1.2.65)

iii) follows directly by proposition1.1.1 and lemma 1.2.3 with the definition of y
and x and the notation

g
k
› :“ 1

2|fk|
`
g
k ´ ⇡Zk

f
˘
, f

k
› :“ 1

2|fk| f̄
k (1.2.66)

noting that, w.r.t. lemma 1.2.3 gk› py, x1q “ gk› pAT
y, x1q and that fk› py, xq “ fk

› pAT
y,A´1

xq.

Remark 1.2.5. (i) Beware that, while  o is a map close to the identity,  k is not, as
it is the composition of a linear transformation2 with a near–to–identity map.
(ii) Point (iii) in Theorem 1.2.2 shows that the secular Hamiltonian Hk (obtained dis-
regarding the exponentially small perturbation fk

› ) has a potential, which is Op1{K5nq–
perturbation of the ‘cosine–like function’

cospx1 ` ✓kq ` F k
› px1q , where |F k

› |1 § 2
´40 .

2Namely, the symplectic transformation, the generating function of which is given by y ¨ Ax, and
which maps the resonant combination k ¨ x to the ‘resonant’ angle x1.
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This means that for |k|1 • N, the secular Hamiltonians at simple resonances all look the

same, allowing, in particular, for a uniform analysis in terms of action–angle variables
(compare § 1.4 below).
Notice also that the perturbation fk

› , which is bounded by e´Ks{7 has a factor |fk| in front
of it and that such a factor, in turn, may be exponentially small (since |fk| „ e´|k|1s

for large |k|1).
(iii) For later use we observe that3

Ko • N • 2cs , where cs :“ maxt1, 1{su . (1.2.67)

In this way near non-resonant zone we average out non-resonant Fourier modes of
f , in order to apply KAM theory with exponentially small perturbation. Near simple
resonance, instead, we are now ready to study our secular hamiltonian, in particular we
would like to analyze the action-angles variables of these functions and their analytic
structure.

1.3 Conjugations near simple resonance
We want firstly to analyze integrable part of the secular Hamiltonian that is

hkpyq “ hpyq ` "gk0pyq real analytic on D
k
r̃k
. (1.3.1)

Lemma 1.3.1. hk in (1.3.1) satisfies the following twist property

inf
yPDk

ˇ̌
B2
y1

rhkpyqs
ˇ̌

• �k :“
�|k|2

1

2n
° 0. (1.3.2)

Proof. The proof is based on the fact that h is a convex function and using Cauchy
estimates. Indeed by construction

B2
y1

rhkpyqs “
ÿ

i,j

ˆ
pAT qi,1 pAT qj,1 Byiyjhpyq ` "pAT qi,1 pAT qj,1 Byiyjgk0pyq

˙
. (1.3.3)

For the second part we use Cauchy estimates to obtain

sup

yPDk

|
ÿ

i,j

pAT qi,1 pAT qj,1 Byiyjgk0pyq| § |AT |28|Byiyjgk0 |r̃k{2 § |k|282|gk0 |r̃kp r̃k
2

q´2 §

§ |k|288✓0
c21L

2|k|4
"K2⌫

§ 8 cpnqc21L2

"K15n´1

(1.3.4)

3If s • 1 then N • 2 • 2{s, while if s † 1 then the logarithm in (1.1.10) is larger than one, so that
N • 2{s also in this case.
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while for the first part we use �´convexity of h and the form of the matrix A in 1.2.51

inf
yPDk

|
ÿ

i,j

A1,i A1,j Byiyjhpyq| “ inf
yPDk

|
ÿ

i,j

ki kj Byiyjhpyq| • �|k|22 • �|k|2
1

n
. (1.3.5)

where we have used the standard norm equivalence |k|1 § ?
n|k|2. In this way we have

obtained, with an inverse triangular inequality:

inf
yPDk

|B2
y1
hk| “

ÿ

i,j

ˇ̌
ˇ̌pAT qi,1 pAT qj,1 Byiyjhpyq ` "pAT qi,1 pAT qj,1 Byiyjgk0pyq

ˇ̌
ˇ̌

• inf
Dk

ˇ̌
ˇ̌
ÿ

i,j

pAT qi,1 pAT qj,1 Byiyjhpyq
ˇ̌
ˇ̌ ´ sup

Dk

ˇ̌
ˇ̌
ÿ

i,j

"pAT qi,1 pAT qj,1 Byiyjgk0pyq
ˇ̌
ˇ̌

• �|k|2
n

´ 8 cpnqc21L2

K15n´1
• �|k|2

2n
“: �k

(1.3.6)

choosing K sufficiently big such that 8 cpnqnc21L2

�|k|2K15n´1 § 1
2 .

Definition 1.3.1. We call "critical points" of hk the n ´ 1 dimensional elements of
the following set

Zk :“
 
y P D

k
: By1rhkpyqs “

nÿ

i“1

`
A1,i Byihpyq ` "A1,i Byigk0pyq

˘
“ 0

(
. (1.3.7)

Remark 1.3.1. This set Zk is a closed set because it is the preimage of a closed set
({0}) via a continuous function. Moreover, by definition R1,k Ä B is compact, so also
D

k
r̃k

is compact, and Zk Ä D
k
r̃k

is a compact set.

Remark 1.3.2. In order to stress the notation that we are going to use for the rest of
the work, in accordance with lemma 1.2.6 we are using

y “ AT
y, such that y P rR1,k ñ y P D

k . (1.3.8)

Furthermore, we are going to use the following convention: given a vector y P Rn,
we will denote by ŷ “ py2, ..., ynq the vector of the last n ´ 1 coordinates such that
y “ py1, ŷq.
Remark 1.3.3. Using the Implicit Function Theorem, for every ȳ P Zk, one can find
two neighborhoods of radii 0 † ⇢1, ⇢2 § r̃k{8 and a function ⌘k real analytic on |ŷ´ ˆ̄y| §
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⇢2 such that for every |y1 ´ ȳ1| § ⇢1 one has y1 “ ⌘kpŷq. Moreover, the function
⌘k representing the first component of the surface is unique in this neighborhood.
Quantitative details regarding analyticity radii of the implicit function will be given in
the proof of Proposition 1.3.1.

Lemma 1.3.2. In D
k
r̃k

there exists a finte number of ⌘k.

Proof. It is a simple application of implicite function theorem. In fact, if we assume
that this cardinality is infinite, one can take a sequence t⌘jkujPN Ä Wk, that would admit
a convergent subsequence in r´R,Rs Q y1 for the topological propriety of compact sets.
This implies a contradiction with respect to implicit function theorem, which state that
the local solution of By1hk “ 0 is unique in a small neighborhood of each point in Zk.
So it is impossible to have accumulation of critical functions.

Furthermore, hk is convex, so there is only a single critical function ⌘k that is globally
defined on xDk. For Implicit function Theorem, one can fix a neighborhood where ⌘k
represent the unique solutions to the equation By1hk “ 0. In this way one can associate
a critical point ȳ to the couple p⌘k, p̄yq.
Instead of considering a critical point, we consider the graph of its associated critical
function:

Definition 1.3.2. We call "critical surface" associated to critical function ⌘k of hk the
following set:

Sk “
 
y P Zk : y “ p⌘kppyq, pyq; i.e. the graph of ⌘k

(
. (1.3.9)

Remark 1.3.4. In D
k there is obviously only one critical surface Sk.

Now we have to enlarge the non–resonant zone (and restrict the single–resonance re-
gion) introducin a scaling constant C on the bound on small divisors.

Definition 1.3.3. Let h be KAM non–degenerate and let !pyq denote its gradient. For
k P Gn

1,K0 We denote by

R0
:“ ty P B : |!pyq ¨ k| • ↵

2C
@ 0 † |k|1 § K0 .u

R1,k
:“ ty P B : |!pyq ¨ k| § ↵

C
; |!pyq ¨ `| • 3↵Kpn`4q

|k|1
, @ ` P Zn, ` R Zk, |`|1 § K.u

R2
:“ Bz

`
R0 Y

§

kPGn
K0

R1,k
˘

(1.3.10)
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where C “ Cpn, L, �q “ 12c1nL
� • 1 is a constant, and consequently we define

rR1,k “ Re pR1,k
řk q ; Ďk :“ A´T rR1,k

; řk “ rk
2 Kn`1

. (1.3.11)

The choice of C will be clarified in lemma 1.3.4.

Remark 1.3.5. As we have done in the previous section, it is straightforward to see
that

R2 Ñ
§

kPGn
Ko

§

`PGn
K

`RZk

R2
k,` , (1.3.12)

with

R2
k` :“

 
y P B : |! ¨ k| † ↵

C
; | ⇡K

k ! ¨ `| § 3↵Kn`4

|k|
(
, pk P Gn

Ko , ` P Gn
K z Zkq . (1.3.13)

Remark 1.3.6. Averaging procedure is essentially the same. For the non resonant
region R0, it is ↵{2C completely non–resonant, so the paramaters taken in (1.2.23) are
the same except

r0 Ñ r0 :“
↵

4L C Ko
; r1

0 Ñ r1
0 :“

r0
2

(1.3.14)

so that R0
r̄0 is ↵{4C completely non–resonant, and one can apply 1.2.1 with f,B, r,⇤,↵,K, s

replaced respectively by "f,R0, r0, t0u, ↵
4C , K0, s0 obtaining

 0 : R
0
r1
0

ˆ Tn
s1
0

fiÑ R0
r0 ˆ Tn

s0 such that
H0py, xq “ H"˝ 0py, xq :“ hpyq ` "g0pyq ` "f 0py, xq r.a. on R0

r1
0

ˆ Tn
s1
0

|g0|r1
0

§ ✓0, ||| f 0 |||r1
0,s

1
0

§ e´K0s{3.

(1.3.15)

Regarding the single–resonant zone, instead, second covering lemma 2.6.1 and normal
form theorem 1.2.2 holds in the same way with same parameters because they depend
on how the single–resonant zone is non–resonant modulo Zk, and not on how the small
divisors are near zero (that is the term with C that is different from the old one), so
that there exists

 
k
:“  k ˝ �0 : Ď

k
r̃k

ˆ Tn
s̃k

fiÑ R1,k
rk

ˆ Tn
s› ; with R1,k ˆ Tn Ñ  kpR̃1,k ˆ Tnq (1.3.16)

such that, if Hk is the one in (2.5.12), in the symplectic variables py, xq it takes the
form

Hkpy, xq :“ Hk ˝ �0py, xq “ Hkpy, x1q ` "fkpy, xq, r.a. on Ď
k
r̃k

ˆ Tn
s̃k

Hkpy, x1q :“ hkpyq ` "gkpy, x1q
(1.3.17)

and (1.2.62) equivalently holds with D
k Ñ Ď

k.
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Now the strategy is the following: thanks to the strong proprety of convexity, we can
prove that the set Ď

k is a tubular neighborhood of the critical surface Sk, that is the
content of the following:

Lemma 1.3.3. Ďk is contained in a proper tubular neighborhood around Sk, i.e. Ďk Ñ
D

k
› where

D
k
› :“ ty P Rn

: D ȳ P Sk : |py ´ p̄y| † r̃k
16

; |y1 ´ ȳ1| † 6
n c1 rk
2 K |k| ` 3

2

↵

C �k
u

Proof. By definition, we know that if y P R1,k thanks to the form of the matrix A in
(1.2.6)

|Byhpyq ¨ k| “ |By1hpyq| † ↵

C
ùñ |By1hkpyq| § |By1hpyq| ` "|By1gk0pyq| † 3

2

↵

C
. (1.3.18)

taking K big enough. But thanks to Lagrange theorem and twist of hk (see (1.3.6)) we
also notice that for a generic point ȳ P Sk

By1hkpyq “ By1hkpȳq`B2
y1
hkpryq ¨ |y1 ´ ȳ1|, for ry : ry1 P py1, ȳ1q, such that

|By1hkpyq| “ |B2
y1
hkpryq ¨ |y1 ´ ȳ1||

p1.3.6q
• �k|y1 ´ ȳ1| ,

(1.3.19)

so that by (1.3.18)

AT
y P R1,k ñ D ȳ P Sk : |y1 ´ ȳ1| † 3

2

↵

C �k
. (1.3.20)

In this way we can characterise also our set of interest: if y P rR1,k, or equivalently
y P Ďk, for (1.3.11) there exists a point py P R1,k such that

|y´py| § řk ñ |y1´py1|
p1.2.6q

§ |A´1|8|y´py|
p1.2.6q

§ c1|k|n´1
1

řk
p1.2.23q“ c1|k|n´1

1

rk
2 Kn`1

p1.2.22q
§ 6

n c1 rk
2 K |k|

(1.3.21)
and so, using a triangular inequality we can say that

y P Ďk ñ D ȳ P Sk : |y1 ´ ȳ1| § |y1 ´ py1| ` |py1 ´ ȳ1| † 6
n c1 rk
2 K |k| ` 3

2

↵

C �k
. (1.3.22)

For this reason we can define

D
k
› :“ ty P Rn

: D ȳ P Sk : |py´p̄y| † r̃k
16

; |y1´ȳ1| † 6
n c1 rk
2 K |k| `3

2

↵

C �k
u such that Ďk Ñ D

k
› .

(1.3.23)
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Our goal is to perform the classical action-angles variable transformation in which
hkpyq`"gkpy, x1q become integrable. But since we are near critical surface the situation
is quite complicate because the first derivative of hk is near zero. In order to overcome
to this problem, one can conjugate the hamiltonian to a natural system with generic
morse potential called standard form system.
In few words, a standard 1D–Hamiltonian (which depends on pn ´ 1q external pa-
rameters) is a one degree–of–freedom Hamiltonian system close to a natural system
with a generic potential, which may be controlled essentially by only one parameter,
namely, the parameter  appearing in Eq. (1.3.27) below; here, ‘essentially’ means,
roughly speaking, that  governs the main scaling properties of the Hamiltonian Hk.
What is particularly relevant is that the  parameter of the secular Hamiltonians Hk

is shown to be independent of k. The uniformity in k of the scaling proprieties of the
standard form Hamiltonians allows to analyze global analytic properties: for example,
the action–angle map for standard Hamiltonians, as discussed in [3], depends only on
the parameter  and therefore can be used simultaneously for all the secular Hamilto-
nians Hk, allowing for a nearly–integrable description of H on R1,k ˆ Tn with uniformly
exponentially small perturbations

1.3.1 Standard form near critical surfaces

Definition 1.3.4 (STANDARD FORM HAMILTONIANS). Let pD Ñ Rn´1 be a bounded
domain, R ° 0, and D :“ p´R, Rq ˆ pD. We say that a real analytic Hamiltonian H5 is
in "standard form" with respect to standard symplectic variables pp1, q1q P p´R, Rq ˆ T
and "external actions" pp “ pp2, ..., pnq P pD if H5 has the form

H5pp, q1q “ p1 ` ⌫pp, q1qqp21 ` Gppp, q1q, (1.3.24)

where

• ⌫ and G are real analytic functions defined on, respectively, Dr ˆ Ts and pDr ˆ Ts

for some 0 † r § R and s ° 0;

• G has zero average and there exists a function Ḡ (the "reference potential") de-
pending only on q1 such that, for some � ° 0,

Ḡ is � ´ Morse, xḠy “ 0; (1.3.25)
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• the following estimates hold:
$
’&

’%

supT1
s

|Ḡ| § ✏,

sup pDrˆT1
s

|G ´ Ḡ| § ✏µ,

sup pDrˆT1
s

|⌫| § µ,

for some 0 † ✏ § r
2

216
, 0 § µ † 1. (1.3.26)

We shall call p pD, R, r, s, �, ✏, µq the analyticity characteristics of H with respect to the
unpertubed potential Ḡ.

Remark 1.3.7. (i) If H5 is in standard form, then � and ✏ satisfy the relation4 ✏{� •
1{2. Furthermore, one can always fix a number  • 4 so that:

1{ § s § 1 , 1 § R{r §  , 1{2 § ✏{� §  . (1.3.27)

Such a parameter  rules the main scaling properties of these Hamiltonians.
(ii) A Hamiltonian in standard form H5 has the analytic features of its reference natural
Hamiltonian

H̄5 :“ p21 ` Ḡpq1q .
In particular, for µ small with respect to 1{, H5 has the same finite (because of analyt-
icity) number of equilibria (which lie on the q1 axis) of Ḡ and in the same relative order,
which is also preserved by the corresponding critical energies; compare Lemma 1.4.2
below.
(iii) Hamiltonians in standard form are particularly suited for the analytic theory of
action–angle variables (in neighborhoods of separatrices) as developed in [3], where the
notion of Generic Standard Form has been introduced. Such action–angle variables will
be reviewed below.
(iv) The smallness of the ‘adimensional ratio’ ✏{r2 in (1.3.26) is needed in the analytic
theory of action-angle variables for Hamiltonians in standard form developed in [2],
however the factor 1{216 is rather arbitrary and not optimal.

In this part we want to study the symplectic transformation that we need to conjugate
secular hamiltonian in 1.2.61 with a standard form hamiltonian according to definition
1.3.4, so we consider

Hkpy, x1q :“ hkpyq ` "gkpy, x1q, hkpyq :“ hpyq ` "gk0pyq; (1.3.28)
4By 1.3.26, � § |Ḡp✓iq ´ Ḡp✓iq| § 2maxT |Ḡ| § 2✏.
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that is a real-analytic function on py, x1q P D
k
r̃k

ˆ T1
s1
k
, futhermore g

kpy, ¨q P B1
s1
k

and the
following estimates hold:

|gk0|r̃k § ✓0; ||| gk ´ ⇡Zkf |||r̃k,s1
k

§ ✓0; ||| fk |||r̃k,s̃k § e´Ks{3. (1.3.29)

We want to perform this conjugation to a standard form in a properly neighborhood
of critical surface of hk. So let ⌘k be a critical function and let Sk its critical surface
associated. Consider a critical point is this surface ȳ P Sk. We need to be very careful
on the dependence upon the resonant vector k. In order to control this dependence, we
introduce new parameters depending on k:

š :“
#
s1
k, if |k| † N

1, if |k| • N

, % “ r̃k
8
, µ “ 1

K6n`1

� :“
#

2"�
|k|2 , if |k|1 † N

2"|fk|
|k|2 , if |k|1 • N

, s :“
#
mint s

2 , 1u, if |k| † N

1, if |k| • N

,

�k :“
#
1, if |k|1 † N

|fk|, if |k|1 • N

, such that ✏ “ cs
8"

|k|2�k “: cs"k�k ;

R :“ 6
n c1 rk
2 K |k| ` 3

2

↵

C �k
` %

8
Dpȳ1, p̄yq :“ ty P Rn

: |py ´ p̄y| § %; |y1 ´ ȳ1| § Ru .
(1.3.30)

Remark 1.3.8. (i) Since |fk| § 1 one has:

|�
k
| § 1 . (1.3.31)

(ii) Since p1 ´ 1
K
q´2 † 2, by definition of s1

k in 1.2.23, one has

s § 2š . (1.3.32)

With the following result, we cover the entire critical surface with a finite and controlled
number of neighborhood D where we can perform our standard form conjugation. The
main point is that in the real space this union of D cover the surface, while in the
complex space it is contained in the complex neighborhood of Ďk where Hk is analytic.

Lemma 1.3.4. One can find an integer value J and ȳ1, ....ȳJ P Zk such that the fol-
lowing hold

iq
J§

j“1

Dpȳj,1, p̄yjq Ö D
k
› Ö Ďk iiq

J§

j“1

D3%pȳj,1, p̄yjq Ñ Ďk
r̃k (1.3.33)
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Proof. Let ` “ %
64 , and we consider the grid formed by square Qi of side ` with vertices

in k`, k P Zn. Now, since the % ° `, we have just moved the estimates from the
number of neighborhood to the number of square with non-empty intersection with
Sk. Moreover for implicit function theorem we know that in a right neighborhood of a
critical point

By1hkp⌘ppyq, pyq “ 0

and for fundamental calculus theorem

|By1hpy1, pyq| “ |
ª y1

0

B2
t hpt, pyqdt|| By1

By1
| • �|y1||k1| (1.3.34)

so that thanks to convexity of hk, and Cauchy estimates we have that

� |⌘kppyq|
p1.3.6q

§ |By1hpyq| “ "|By1gk0pyq| ùñ sup

yPDk
r̃k

|⌘k| § 2"k�kµ

� r̃k
(1.3.35)

so we can finally estimates the squares with the product between the maximum number
of squares crossed by Sk in y1 direction (which is estimated by the bound on the
derivative of ⌘k times the diameter of the set in which it is defined) and the number
of squares into which we have divided the y2, ...yn (which is estimated by the ratio
between diameter of the set and side of squares) direction:

J § 2

ˆ
"k�km

� r̃2k K
6n`1

` 1

˙ˆ
m

`

˙n´1

(1.3.36)

where m “ diam xDk› . In this way, using that 6n c1 rk
2 K |k| ` 3

2
↵

C �k
` %

8 ° 6n c1 rk
2 K |k| ` 3

2
↵

C �k
, by the

definition of D
k
› one can easily obtain

D
k
› Ñ

§

j“1,...,J

Dpȳj,1, p̄yjq (1.3.37)

For the complex extensions in iiq, on the n ´ 1 "dumb" directions it comes directly
from the fact that 4% “ r̃k{2 § r̃k, while for the first direction we have to be careful.
For the imaginary part of this first action there are no problems because 3% § r̃k “ 8%,
while for the real part we need

R ` 3% § 8%
(1.3.30)ñ 6

n c1 rk
2 K |k| ` 3

2

↵

C �k
` %

8
` 3% § 8% (1.3.38)

that is equivalent to ask that
3

2

↵

C �k
§ 39

8
% ´ 6

n c1 rk
2 K |k|1

(1.3.30)“ 39

64

rk
c1|k|1

´ 6
n c1 rk
2 K |k|1

(1.3.39)
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taking K • 32
23c

2
16

n one can obtain

3↵n

C �|k|2
1

(1.3.2)“ 3

2

↵

C �k
§ 1

4

rk
c1|k|1

“ 1

4

↵

L c1 |k|2
1

ñ 3↵n

C �|k|2
1

§ 1

4

↵

L c1 |k|2
1

(1.3.40)

that is satisfied taking C • 12c1nL

�
.

Before starting the main proposition of this section, we have to define a special class
of diffeomorphisms that will be useful for our intent.

Definition 1.3.5. Given a domain D̂ Ñ Rn´1, we denote by G: the abelian group of
symplectic diffeomorphisms  g of pR ˆ D̂q ˆ Rn given by

pp, qq P pRˆD̂qˆRn  gfiÑ pP,Qq “ pp1`gpp̂q, p̂, q1, q̂´q1Bp̂gpp̂qq P pRˆD̂qˆRn , (1.3.41)

with g : D̂ Ñ R smooth.

Remark 1.3.9. The group properties of G: are trivial:

idG: “  0 ,  
´1
g “  ́ g ,  g ˝ g1 “  g`g1 . (1.3.42)

Notice that, unless Bp̂g P Zn´1, maps  g P G: do not induce well defined maps
5

q P Tn fiÑ pq1, q̂ ´ q1Bp̂gpp̂qq P Tn ,

a fact that will create a problem in applying the theory of this and next part to the
normalized Hamiltonians Hk of Theorem 1.2.1.

Proposition 1.3.1. For all k P Gn
K0

let Hk be the secular hamiltonian as in 1.2.61 and
and, for c “ cpnq ° 1 large enough, set

⇢2 :“
�2k r̃

3
k

c |k|2
1
M2

, ⇢1 :“
�k r̃2k

c |k|1M
§ % .

Let Sk be the critical surface of hk, and ȳ P Sk a critical point. The following statements
hold:
(i) In the neighborhood of ȳ defined by Dpȳ1, ˆ̄yq, Hk is symplectically conjugated to a

5In general, given A P SLpn,Zq and a 2⇡–multi–periodic function f : Rn Ñ Rn, we identify the Rn–
map x P Rn Ñ fpxq “ Ax`gpxq P Rn with the Tn–map given by ✓ P Tn Ñ F p✓q “ ⇡Tn

`
Ax`fpxq

˘
P Tn

where ✓ “ x ` 2⇡Zn and x Ñ ⇡Tn pxq “ x ` 2⇡Zn is the projection of Rn onto Tn.
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suitable Hamiltonian in standard form Hk (according to definition 1.3.4). In particular,
for p P Dp0, ˆ̄yq, there exists real analytic symplectic transformation

�› : pp, qq P Dp0, ȳq ˆ Rn Ñ py, xq “ �›pp, qq P R2n , (1.3.43)

such that6: �› fixes p̂ and q1; for every p̂ P D̂pȳ1, ˆ̄yq the map pp1, q1q fiÑ py1, x1q is
symplectic; the pn` 1q–dimensional map �̌› depends only on the first n` 1 coordinates
pp, q1q, is 2⇡–periodic in x1 and one has

�̌› : pp, q1q P D⇢1`2⇢2,⇢2p0, ˆ̄yq ˆ T1
š1

Ñ py, x1q P D⇢1,⇢2pȳ1, ˆ̄yq ˆ T1
š1

Hk ˝ �̌›pp, q1q “ hkp0, p̂q ` 1

2
B2
p1h

kp0, p̂q Hkpp, q1q.
(1.3.44)

where, given B a subset of Rn, we denote by Br,r1 “ î
yPBtz P Cn

: |z1´y1| § r, |ẑ´ŷ| §
r1u.
(ii) Hk has reference potential

Ḡk
:“ 2"

|k|2
1

⇡Zkf (1.3.45)

and analicity characteristic

D̂ :“ D̂pˆ̄yq , r :“ ⇢2, R, s1, �, ✏, µ , (1.3.46)

with  given by
 “ pn, s, �q :“ maxt4cs, cs{�u. (1.3.47)

(iii) The map �› is obtained as composition of two symplectic maps:

�› “ �2 ˝ �1 , (1.3.48)

where:

‚ �1 :“  g1
P G: for a suitable real analytic function g1pŷq satisfying

|g1 |⇢2 † 2"k�k

� ⇢2
µ ; (1.3.49)

where � is the convexity-constant of h.

‚ �2pp, qq “ pp1 `⌘2 , p̂, q1, q̂`�2q for suitable real analytic functions ⌘2 “ ⌘2pp̂, q1q
and �2 “ �2pp̂, q1q satisfying

|⌘2 |2⇢2,š1 † 2"k�k

� ⇢2
µ , |�2 |2⇢2,š1 † 2"k�k

� ⇢22
µ . (1.3.50)

6We are omitting the dependence upon vector k on the coordinates in this statement.
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Remark 1.3.10. (i) The main point of the above theorem is item (ii), which shows
that the ‘simply–resonant Hamiltonians’ Hk in 2.7.2 are in uniform Generic Standard
Form. The word ‘uniform’ refers to the fact that the parameter  (defined in 2.7.5 and
satisfying (1.3.27)) – which rules the scaling properties of the normalized Hamiltonians
Hk – does not depend upon k, allowing, e.g., for a uniform (in k P Gn

Ko) treatment of
action–angle variables (compare next Section).
(ii) There is, however, a drawback in the construction of the above normal forms,
namely, that the map �1 appearing in the definition of �› (item (iii) in the above
theorem), do not induce well defined maps on Tn; compare Remark 1.3.9. Therefore,
a non trivial homotopy issue will have to be faced in considering the global secondary
nearly–integrable structure of the system near simple resonances. On the other hand,
the map �2 is well defined also on Tn.

Proof. We want to use the Implicit Function Theorem to put all the critical points
of hk to zero, i.e. we want to find ⌘kpŷq such that By1hkp⌘kpŷq, ŷq “ 0 in a proper
neighborhood of the fixed critical point ȳ P Sk.
So we use Theorem 3.5.1 in Appendix A with

Bnpy0, rq “ B1pȳ1, ⇢1q, Bmpx0, sq “ Bn´1pˆ̄y, ⇢2q;

F py1, ŷq “ By1hkpy1, ŷq , T “ 1

B2
y1
hkpȳ1, ˆ̄yq such that ||T || § 1

�k
.

(1.3.51)

Now we check the hypotesis of theorem 3.5.1. For the second condition, using the
assumption on h in (1.1.18), we know that for every y P D

k
r̃k

|By1hk| § |By1hpyq| ` "|By1gk0pyq|
(1.1.18)

§ |k|1M ` "O
ˆ

1

Kb

˙
§ 2|k|1M (1.3.52)

taking K big enough. Furthermore, due to Cauchy estimates we have

|B2
y1
hkpyq|r̃k{2 § 2

r̃k
|By1hkpyq|r̃k

(1.5.1)
§ 2

r̃k
2|k|1M “ 4|k|1M

r̃k
. (1.3.53)

Then, by using a one dimensional Lagrange theorem and by considering the fact that
ȳ P Sk, we obtain the following estimate:

sup

Bpˆ̄y,⇢2q
|By1hkpȳ1, ŷq| § |By1hkpȳq| ` sup

Bpˆ̄y,⇢2q
|B2

y1
hkpȳ1, ŷq||ŷ ´ ˆ̄y|

(1.3.53)
§ 4|k|1M

r̃k
sup

Bpˆ̄y,⇢2q
|ŷ ´ ˆ̄y| § 4|k|1M ⇢2

r̃k
.

(1.3.54)
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Finally, using the fact that
⇢1

2||T || • ⇢1 �k
2

we can write

sup

Bpˆ̄y,⇢2q
|By1hkpȳ1, ŷq| § ⇢1

2||T || ñ 8|k|1M
�k r̃k

§ ⇢1
⇢2

. (1.3.55)

Regarding the first condition in (3.5.2), we notice that

sup

Bpȳ1,⇢1qˆBpˆ̄y,⇢2q

ˇ̌
ˇ̌
ˇ1 ´ B2

y1
hkpy1, ŷq

B2
y1
hkpȳ1, ˆ̄yq

ˇ̌
ˇ̌
ˇ “ sup

Bpȳ1,⇢1qˆBpˆ̄y,⇢2q

ˇ̌
ˇ̌
ˇ
B2
y1
hkpy1, ŷq ´ B2

y1
hkpȳ1, ˆ̄yq

B2
y1
hkpȳ1, ˆ̄yq

ˇ̌
ˇ̌
ˇ

(1.3.51)
§ 1

�k
sup

Bpȳ1,⇢1qˆBpˆ̄y,⇢2q
|B2

y1
hkpy1, ŷq ´ B2

y1
hkpȳ1, ˆ̄yq|

§ 1

�k
sup

Bpȳ1,⇢1qˆBpˆ̄y,⇢2q
|B3

y1
hk||y ´ ȳ| ,

(1.3.56)

where, as we did before, in the last inequality we used the one-dimensional Lagrange
theorem. Then Cauchy estimates ensure

|B3
y1
hkpyq|r̃k{2 § 8

r̃2k
|By1hkpyq|r̃k

(1.5.1)
§ 8

r̃2k
2|k|1M “ 16|k|1M

r̃2k
. (1.3.57)

Combining (1.3.56) and (1.3.57) together we have

sup

Bpȳ1,⇢1qˆBpˆ̄y,⇢2q

ˇ̌
ˇ̌
ˇ1 ´ B2

y1
hkpy1, ŷq

B2
y1
hkpȳ1, ˆ̄yq

ˇ̌
ˇ̌
ˇ

(1.3.56),(1.3.57)
§ 1

�k

16|k|1M
r̃2k

sup

Bpȳ1,⇢1qˆBpˆ̄y,⇢2q
|y ´ ȳ|

p⇢1,⇢2•0q
§ 16|k|1M

�k r̃2k
p⇢1 ` ⇢2q .

(1.3.58)

So in order to comply with (3.5.2) we impose

sup

Bpȳ1,⇢1qˆBpˆ̄y,⇢2q

ˇ̌
ˇ̌
ˇ1 ´ B2

y1
hkpy1, ŷq

B2
y1
hkpȳ1, ˆ̄yq

ˇ̌
ˇ̌
ˇ § 1

2
ñ 4|k|1M

�k r̃2k
p⇢1 ` ⇢2q § 1

8
. (1.3.59)

Finally, as ⇢2 “ ⇢1
�k r̃k

|k|1M
by (1.3.55), we can say that a choice that satisfies both (1.3.59)

and (1.3.55) simultaneously is

⇢1 :“
�k r̃2k

c |k|1M
§ r̃k

8
“: %, ⇢2 “ �2k r̃

3
k

c |k|2
1
M2

§ % , (1.3.60)
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for a constant c ° 1 large enough.
Hence, by the Implicit Function Theorem there exists one function ⌘kpŷq holomorphic
in D̂⇢2pȳq, such that ȳ1 “ ⌘kpˆ̄yq, and

By1hkp⌘kpŷq, ŷq “ By1hp⌘kpŷq, ŷq`"By1gk0p⌘kpŷq, ŷq “ 0 for |⌘kpŷq´ȳ1| § ⇢1, @ |ŷ´ ˆ̄y| † ⇢2.

Then we define the symplectic transformation �1 as
#
y1 “ ⌘kpŷq ` I1
ŷ “ Î

#
x1 “ '1

x̂ “ '̂ ´ x1Bŷ⌘kpŷq ,
�̌1 : pI,'1q P D⇢1`⇢2,⇢2p0, ˆ̄yq ˆ T1

š1
Ñ py, x1q P D⇢1,⇢2pȳ1, ˆ̄yq ˆ T1

š1
,

(1.3.61)

in which we have used the fact that, as in (1.3.35) we have the following estimates

|⌘k|⇢2 § 2"k�k

� ⇢2
µ § ⇢2 (1.3.62)

Furthermore, by Cauchy estimates, taking c large enough we have |B2
I1h

kpIq| • �k{2, @ Ik P
D⇢1`⇢2,⇢2p0, ˆ̄yq. With the same procedure as above, with Implicit Function Theorem we
solve

BI1HkpvkpÎ ,'1q, Î ,'1q “ BI1hkpvkpÎ ,'1q, Îq ` "BI1gkpvkpÎ ,'1q, Î ,'1q “ 0

for |vkpÎ ,'1q| § ⇢2, @ |Î ´ ˆ̄y| † ⇢2 ˆ T1
š1

(1.3.63)

So for " small enough, we found our symplectic transformation �2

#
I1 “ vkpÎ ,'1q ` p1
Î “ p̂

$
’&

’%

'1 “ q1
�p'1, Îq “

≥'1

0 vkd'̃1 ´ '1xvky'1q
'̂ “ q̂ ´ BÎ�p'1, Îq

�̌2 : D⇢1`2⇢2,⇢2p0, ˆ̄yq ˆ T1
š1

ÑD⇢1`⇢2,⇢2p0, ˆ̄yq ˆ T1
š1

(1.3.64)

where vk is 2⇡-periodic in '1 and with the same idea as in (1.3.35) we have |xvky'1 |⇢1`⇢2 §
|vk|⇢1`⇢2,š1 § 2"k�k

� ⇢2
µ, moreover it is easy to see that |�|⇢1`2⇢2,š1 § 4"k�k

� ⇢2
µ. Finally, ap-

plying the composition �̌› “ �̌2 ˝ �̌1, we have the last Hamiltonian holomorphic in

t|Re p1| † R ` ⇢1 ` 2⇢2; | Im p1| † ⇢1 ` 2⇢2uˆt|Re pp̂´ˆ̄yq| † %`⇢2; | Im pp̂´ˆ̄yq| † ⇢2uˆT1
š1

given by

Hkpvk ` p1, p̂, q1q “ Hkpvk, p̂, q1q ` p21

ª 1

0

p1 ´ tqB2
p1Hkpvk ` tp1, p̂, q1qdt

“ Ekpp̂q ` Ek
0Hk, Hk :“ p1 ` ⌫kpp, q1qqpp1q2 ` Gkpp̂, q1q,

(1.3.65)

where
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• Ekpp̂q :“ hkp0, p̂q;

• Ek
0 “ 1

2B2
p1h

kp0, p̂q;

• ⌫kpp, q1q “ 1
Ek

0

≥1
0p1 ´ tqrB2

p1h
kpuk ` vk ` tp1, p̂q ´ B2

p1h
kpȳq `

` "B2
p1g

kpuk ` vk ` tp1, p̂, q1qsdt;

• Gkpp̂, q1q :“ 1
Ek

0

≥1
0p1 ´ tqB2

p1h
kpuk ` tvk, p̂qpvkq2dt ` "gkpuk ` vk, p̂, q1q;

• Ḡkpq1q :“ 2"
|k|2

1
⇡Zk

fpq1q

Remark 1.3.11. Point (iii) follows calling ⌘k “: g1 , and vk “: ⌘2, BÎ� “: �2, omitting
the depence on k for simplicity of notation.

Now we have to check the uniform behaviour on k of the analyticity characteristic of
this "standard hamiltonian". We notice that

?
" § �kr̃

2
k{cM, |vk| § ⇢2

|uk ` vk ` tp1 ´ ȳ1| § 2⇢2 § r̃k{4 @ 0 § t § 1, |Ek
0 | • �k{2, �k § 2M 1{r̃2k

and using Cauchy estimates and the fact that ⇢2 § %, we obtain

|⌫k|⇢2,s1
k,1

§ 2

�k

“ r̃k
4

` 2"#o

ˆ
r̃k
32

˙´2 ‰
§ r̃k

2�k
` 2 050#oL2c21|k|4

K2⌫
§ 1

K6n`1
:“ µ (1.3.66)

Regarding Ḡk, for the case of |k|1 † N:

|Ḡk|s1 § 2"

|k|2
1

|⇡Zk
f |s1{2 “ 2"

|k|2
1

ÿ

j‰0

|fjk|e
|j||k|1s1

s1 § 8"

|k|2
1

e´s1{2

2p1 ´ e´s1{2q † 8"

|k|2
1

1

s5
(1.3.67)

while for |k|1 • N one has

|Ḡk|1 “ 4"

|k|2
1

|fk|| cos p✓ ` ✓kq ` F k
› p✓q|1 § 8"

|k|2
1

|fk|. (1.3.68)

So that |Ḡk|s § ✏ as defined in (1.3.30). Moreover, for |k|1 † N one has

|Gk ´ Ḡk|⇢2,s1
k,1

§ r̃3k
162

` 2"

|k|2
1

#o § "

|k|2
1

„ ?
"K3⌫

c31L
3|k|6

1

` 2#o

⇢
§ ✏ #o :“ ✏ µ. (1.3.69)
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while for |k| • N, reminding that gk has the form in (2.6.15) and ⇡Zkf in (1.1.24), one
has

|Gk ´ Ḡk|⇢2,1 § r̃3k
162

` 2"

|k|2
1

|fk||gk›|⇢2,1 § ✏ # § ✏ µ. (1.3.70)

In this way we can look to the parameters defined in (1.3.30) and (1.3.60), so that
analyticity characteristic of Hk are given in (2.7.4).
The smallness condition ✏ § r

2{216 is guaranteed taking K large enough, and finally by
the definition in (1.3.30) one has

✏

�
“

$
&

%

4cs

�
if |k|1 † N

4cs if |k|1 • N

(1.3.71)

so that with the definition of  in (2.7.5) the condition in (1.3.27) is easily verified due
to the choice of parameters in (1.3.30).
So we have obtained the conjugation to an hamiltonian in Standard form in a neigh-
borhood of each critical point ȳ of a fixed critical surface. Moreover we have showed
that we can cover Ď

k with a finite number of neighborhood in which one can conjugate
the secular hamiltonian to a standard form hamiltonian, so that we have a standard
form hamiltonian defined on the entire Ď

k.

Now we apply Singular KAM theory made by Biasco and Chierchia in [4] with the
standard form Hamiltonian made for the convex case.

1.4 Action-angles variables for 1D standard Hamilto-
nians

In this subsection we review the general theory of action–angle variables for Hamilto-
nian systems in standard form as developed in [3], where complete proofs may be found.
This would be so useful for our intent because our Hamiltonian near simple resonance
is conjugated with a standard form Hamiltonian near critical surfaces. If we transform
this Hamiltonian with its action-angles coordinates we can try to apply classical KAM
theory obtaining an estimate on Secondary tori.

Topology of the phase space of 1D Hamiltonians in standard form

We begin by describing the topological structure of the p̂–dependent phase space of
a givern Hamiltonian pp1, q1q fiÑ H5pp1, p̂, q1q in generic standard form according to
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Definition 1.3.4. We will refer to D to a generic neighborhood of a fixed critical point
ȳ P Sk defined in (1.3.30) in which we have done the standard form conjugation.
For a fixed p̂ P D̂, we take as phase space of H5 the subset of R ˆ T given by

M “ Mpp̂q :“ tpp1, q1q P R ˆ T
ˇ̌
H5pp1, p̂, q1q † E5u , E5 :“ R

2 ` Rr , (1.4.1)

where R and r are as in Definition 1.3.4. Although such sets depend on the parameter
p̂ P D̂, for µ small enough, they are close to a box:

Lemma 1.4.1. Let H5 be as in Definition 1.3.4 and M be as in (1.4.1), and assume
that7

µ § 1{p4q2 . (1.4.2)

Then, for all p̂ P D̂, one has
`

´ R ´ r
3 , R ` r

3

˘
ˆ T Ñ Mpp̂q Ñ

`
´ R ´ r

2 , R ` r
2

˘
ˆ T . (1.4.3)

The simple proof is given in Appendix of [4].
Since the reference potential Ḡ is a �–Morse function, it has 2N critical points, for
some N P N, with different critical values. Let ✓̄0 P r0, 2⇡q be the unique point of
absolute maximum of the reference potential Ḡ of H5. Then, the relative strict non–
degenerate maximum and minimum points of Ḡ, ✓̄i P r✓̄0, ✓̄0 ` 2⇡s, (0 § i § 2N) follow
in alternating order, ✓̄0 † ✓̄1 † ✓̄2 † . . . † ✓̄2N :“ ✓̄0 ` 2⇡, in particular, ✓̄i are relative

maxima/minima points for i even/odd. The corresponding distinct critical energies will
be denoted by

Ēi :“ Ḡp✓̄iq , Ē2N “ Ē0 being the unique global maximum of Ḡ . (1.4.4)

By the Implicit Function Theorem, for µ small enough with respect to , one can
continue the 2N critical points ✓̄i of Ḡ obtaining 2N critical points ✓i “ ✓ipp̂q of Gpp̂, ¨q
for p̂ P D̂. The corresponding distinct critical energies become

Ei “ Eipp̂q :“ Gpp̂, ✓ipp̂qq . (1.4.5)

Furthermore, for µ small , the functions ✓ipp̂q and Eipp̂q preserve the same order of ✓̄i
and Ēi. Indeed, from Definition 1.1.9 and the Implicit Function Theorem, the following
result proven in [3] holds8:

7Recall the definition of  in (1.3.27).
8See Lemma 3.1 in [3].
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Lemma 1.4.2. Let H5 be as in Definition 1.3.4 and assume that9

µ § 1{p2q6 . (1.4.6)

Then, the functions ✓ipp̂q and Eipp̂q defined above are real analytic in p̂ P D̂r and

supp̂PD̂r |✓ipp̂q ´ ✓̄i| § 2✏µ
�s

, supp̂PD̂r |Eipp̂q ´ Ēi| § 33✏µ . (1.4.7)

Furthermore, the relative order of ✓ipp̂q and Eipp̂q is, for every p̂ P D̂r, the same as that
of, respectively, ✓̄i and Ēi.

Therefore, under the assumption (1.4.6), we see that the phase space M is disconnected
by the separatrices 10 into exactly 2N ` 1 open connected components Mi “ Mipp̂q,
for 0 § i § 2N , which can be labelled so that:

‚ the odd regions M2j´1 (for 1 § j § N) contain the elliptic points p0, ✓2j´1q and
have as boundary parts of separatrices; topologically, such regions are discs;

‚ the outer even regions M0 and M2N are homotopically non trivial annuli bounded
by the most external separatrices and one of the two curves H´1

5 pE5q;

‚ when N ° 1, the inner even regions M2j (for 1 § j § N ´ 1) are homotopi-
cally trivial annuli11 whose boundary is given by two pieces of separatrices (with
different energies).

More formally, we can define the 2N`1 regions Mi in terms of suitable energy intervals
pEpiq

´ , Epiq
` q as follows.

Let Ei be the critical energies defined in (1.4.5), and let E5 the reference energy defined
in (1.4.1).

Definition 1.4.1. (i) (Outer regions) For i “ 0, 2N , let Ep0q
´ “ Ep2Nq

´ :“ E0, and
Ep0q

` “ Ep2Nq
` :“ E5. Then, the ‘lower outer region’ Mp0q is the connected component

of H´1
5

`
pEp0q

´ , Ep0q
` q

˘
contained in tp1 † 0u, while the ‘upper outer region’ Mp2Nq is the

connected component of H´1
5

`
pEp2Nq

´ , Ep2Nq
` q

˘
contained in tp1 ° 0u.

(ii) (Inner region, N “ 1) When N “ 1, Mp1q is just the region enclosed by the unique
separatrix H

´1
5 pE0q; the orbits in Mp1q have energies ranging in the critical interval

9Notice that condition (1.4.6) is stronger than (1.4.2).
10I.e., the stable manifolds (curves) of the hyperbolic points p0, ✓2jq.
11I.e., annuli in the cylinder R ˆ T which are contractible.
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rEp1q
´ , Ep1q

` q :“ rE1, E0q.
(ii) (Inner regions, N ° 1) Define Epiq

´ :“ Ei.
For i odd, let Epiq

` :“ mintEi´1, Ei`1u and define Mpiq as the connected component of
H

´1
5

`
rEpiq

´ , Epiq
` q

˘
containing the elliptic equilibrium p0, ✓iq.

Finally, for 0 † i “ 2j † 2N even, define

j´ :“ maxt` † j
ˇ̌
E2` ° E2ju , j` :“ mint` ° j

ˇ̌
E2` ° E2ju , Epiq

` :“ mintE2j´ , E2j`u ;

and define Mpiq as the connected component of H´1
5

`
pEpiq

´ , Epiq
` q

˘
whose boundary con-

tains the hyperbolic point p0, ✓iq.
Notice that the phase space M is the union of the regions Mpiq and the singular
zero–measure set S “ Spp̂q formed by the N separatrices:

M “ Mpp̂q “
2N§

i“0

Mi Y S “
2N§

i“0

Mipp̂q Y Spp̂q . (1.4.8)

Below we shall also consider the following pn ` 1q–dimensional domains:

M̌ :“ tpp, q1q s.t. p̂ P D̂, pp1, q1q P Mpp̂qu ,
M̌i

:“ tpp, q1q s.t. p̂ P D̂, pp1, q1q P Mipp̂qu . (1.4.9)

Notice that
î

0§i§2N M̌i covers M̌ up to a set of measure zero.

Arnol’d–Liouville’s action/energy functions

Let E P rEi
´pp̂q, Ei

`pp̂qs and let �i be the (possibly, piece–wise) smooth closed curve in
the clusure of Mipp̂q given by

�i “ �ipE, p̂q :“ tpp1, q1q P Mipp̂q s.t. H5pp1, p̂, q1q “ Eu ,
oriented clockwise12; for 2 § j § N consider also the trivial curves �ij “ tppj, sq : s P Tu.
Then, the classical Arnol’d–Liouville’s action functions are given by

Ipiq
1 pEq “ Ipiq

1 pE, p̂q :“ 1

2⇡

¿

�i

p1dq1 ,

Ij “ 1

2⇡

¿

�i
j

pjdqj “ pj
2⇡

ª

T
dqj “ pj , @ 2 § j § N .

12For the non contractible curves (i “ 0, 2N) the orientation is ‘to the right’ on M2N , ‘to the left’
on M0.
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The action function E Ñ I i1pE, Îq is strictly monotone and its inverse is, by definition,
the energy function I1 Ñ E

ipI1, Îq. We also define Ī i1 :“ I i1|µ“0 and its inverse function13

Ē
i
:“ E

i|µ“0.
We can now describe the fine analytic properties of the action/energy functions.

Critical holomorphic behaviour and action estimates

The first result describes the exact behaviour of the action functions as the energy
approaches the critical energy of separatrices and contains estimates on the derivatives
of the action functions that will play a central rôle in the discussion on the twist Hessian
matrix in § 1.6. The following theorem has been proven in [3, Theorem 3.1].

Theorem 1.4.1. Let H5 be a Hamiltonian in standard form as in Definition 1.3.4, let
 • 4 be such that (1.3.27) holds and let 2N be the number of critical points of the
reference potential Ḡ. Then, there exists a suitable constant c “ cpn, q • 2

83 such
that, if 14

µ § 1{c2 § 1{p2166q , (1.4.10)

then, for all 0 § i § 2N and Î P D̂, the action functions E P pEi
´pÎq, Ei

`pÎqq fiÑ I i1pE, Îq
verify the following properties.
(i) (Universal behaviour at critical energies) There exist functions �i

´pz, Îq,
 i

´pz, Îq for 0 § i § 2N , and, functions �i
`pz, Îq,  i

`pz, Îq, for 0 † i † 2N , which
are real analytic in a complex neighborhood of the set tz “ 0u ˆ D̂ and satisfy

I i1
`
Ei

¯pÎq ˘ ✏z, Î
˘

“ �i
¯pz, Îq `  i

¯pz, Îq z log z , @ 0 † z † 1{c , Î P D̂ . (1.4.11)

the functions �i
˘pz, Îq,  i

˘pz, Îq are real analytic on tz P C : |z| † 1{cu ˆ D̂r, where
satisfy:

sup

|z|†1{c, ÎPD̂r

`
|�i

˘| ` | i
˘|

˘
§ c

?
✏ ,

sup

|z|†1{c, ÎPD̂r{2

`
|BÎ�i

˘| ` |BÎ i
˘|

˘
§ cµo , µo :“

?
✏
r
µ

(1.3.26)
§ 2

´8µ .
(1.4.12)

Moreover,
|�i

˘ ´ �̄i
˘| , | i

˘ ´  ̄i
˘| § c

?
✏µ , (1.4.13)

13Note that when µ “ 0, H5 becomes simply H̄5 “ p21 ` Ḡpq1q.
14Note that (1.4.10) implies the hypothesis of Lemma 1.4.2. Thus, in particular also H5 has 2N

critical points.
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where �̄i
˘ :“ �i

˘|µ“0 and  ̄i
˘ :“  i

˘|µ“0.
(ii) (Limiting critical values) The following bounds at the limiting critical energy
values hold:

| i
`p0, Îq| • ?

✏{c , 0 † i † 2N , @ Î P D̂r ,
| 2j

´ p0, Îq| • ?
✏{c , 0 § j § N , @ Î P D̂r ,

 i
`p0, Îq ° 0 , 0 † i † 2N , @ Î P D̂ ,

 2j
´ p0, Îq † 0 , 0 § j § N , @ Î P D̂ ,

(1.4.14)

while, in the case of relative minimal critical energies, one has, @ Î P D̂, 0 † z † 1{c,

�2j´1
´ p0, Îq “ 0 ,  2j´1

´ pz, Îq “ 0 , @ 1 § j § N . (1.4.15)

(iii) (Estimates on derivatives of actions on real domains) The derivatives of
the actions with respect to energy verify, on real domains, the following estimates:

inf
pEi

´,Ei
`q

BEI i1 • 1

c
?
✏
, @ Î P D̂ , @ 0 † i † 2N ; (1.4.16)

min
 

BEI2N1 , BEI01
(

• 1

c
?
E ` ✏ , @E ° E2N , @ Î P D̂ .

(iv) (Estimates on derivatives of actions on complex domains and perturba-

tive bounds) For � ° 0 satisfying

cµ § � § 1{c , (1.4.17)

define the following complex energy–domains:

E i
� :“

$
&

%

tz P C : Ēi
´ ´ ✏{c † Re z † Ēi

` ´ �✏ , | Im z| † ✏{cu , i odd ,
tz P C : Ēi

´ ` �✏ † Re z † Ēi
` ´ �✏ , | Im z| † ✏{cu , i even , i ‰ 0, 2N ,

tz P C : Ēi
´ ` �✏ † Re z † Ēi

` , | Im z| † ✏{cu , i “ 0, 2N .
(1.4.18)

Then, for 0 § i § 2N , the functions I i1 and Ī i1 are holomorphic on the domains E i
�ˆ D̂r,

and satisfy the following estimates:

sup

Ei
�ˆD̂r{2

|BÎI i1| § c2 µo , sup

Ei
�

ˇ̌
BE Ī i1

ˇ̌
§ c2

| log �|?
✏

, sup

Ei
�ˆD̂r

ˇ̌
BEI i1 ´ BE Ī i1

ˇ̌
§ c2µ

�
?
✏
. (1.4.19)

Remark 1.4.1. Eq. (1.4.15) confirms the known analyticity at minima of actions as
function of energy.
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We finally report a remarkable property of standard Hamiltonians H5, whose reference
potential Ḡ is close enough to a cosine. In such a case, in fact, one has uniform concavity
of the second derivative of the energy function:

Proposition 1.4.1. Assume that, for some ✓0 P R, Ḡ satisfies

|Ḡp✓q ´ cosp✓ ` ✓0q|1 :“ sup
T1

|Ḡp✓q ´ cosp✓ ` ✓0q| § 2
´40 . (1.4.20)

Then N “ 1 and
B2
I1 Ē

1pĪ11 pEqq § ´ 1

27
, @E P pĒ1, Ē2q .

Also this result is proven in [3]; compare Proposition 5.12 there.

Arnol’d–Liouville’s action–angle variables in n d.o.f.

Let us now discuss the Arnol’d–Liouville’s action–angle variables for the Hamiltonian
H5 viewed as a n degrees of freedom Hamiltonian on the 2n–dimensional phase space
M̌i ˆ Tn´1.
For every fixed p̂ ” Î P D̂, the map pp1, q1q Ñ Ipiq

1

`
H5pp1, Î , q1q, Î

˘
can be symplectically

completed with the angular term15 pp1, q1q Ñ 'piq
1 pp1, q1; Îq “ 'piq

1 pp1, Î , q1q.
Defining the normal domains16

Bi
:“

 
I “ pI1, Îq | Î P D̂, Ipiq

1 pEi
´pÎq, Îq † I1 † Ipiq

1 pEi
`pÎq, Îq

(
, (1.4.21)

we see that, by construction, the map17

pp, q1q P M̌i Ñ pI,'1q “
`
Ipiq
1 pH5pp, q1q, Îq, Î ,'piq

1 pp, q1q
˘

P Bi ˆ T

is surjective and invertible; let us denote by

�̌i
: pI,'1q P Bi ˆ T Ñ pp, q1q P M̌i , pp̂ “ Îq ,

its inverse map. Note that such ‘Arnol’d-Liouville suspended’ transformation �̌i inte-
grates H5, i.e.,

H5 ˝ �̌ipI,'1q “ E
piqpIq , dp1 ^ dq1|Î“ const “ dI1 ^ d'1 . (1.4.22)

15Such completion is unique if one fixes, e.g., 'piq
1 pp1, 0; Îq “ 0.

16Recall Definition 1.4.1. For i odd, Ipiq
1 pEi

´pÎq, Îq “ 0, which is the action of the elliptic point.
17Recall the definition of M̌i in (1.4.9).
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By the standard Arnol’d–Liouville construction of the angle variables, one sees easily
that the complete symplectic action–angle map �i

: pI,'q fiÑ pp, qq has the form

�ipI,'q “
"

p⌘i, Î , i, '̂ ` �iq , if 0 † i † 2N ,
p⌘i, Î ,'1 ` i, '̂ ` �iq , if i “ 0, 2N ,

(1.4.23)

where ⌘i,�i, i are function of pI,'1q only and are 2⇡–periodic in '1, and, in the case
i “ 0, 2N, sup |B'1 

i| † 1.

By construction, �i
: Bi ˆ Tn onto›Ñ M̌i ˆ Tn´1

is a global symplectomorphism, and by
(1.4.22), one has

pH5 ˝�iqpI,'q “ pH5 ˝ �̌iqpI,'1q “ E
piqpIq , @ 0 § i § 2N . (1.4.24)

Next, we introduce suitable decreasing subdomains Bip�q of Bi depending on a non
negative parameter � so that Bip0q “ Bi and such that the map �i has, for positive �,
a holomorphic extension on a suitable complex neighborhood of Bip�q ˆ Tn.
Define

�max “ �maxpÎq :“
`
E`pÎq ´ E´pÎq

˘
{✏ , �̄max :“

`
Ē` ´ Ē´

˘
{✏ . (1.4.25)

Notice that, by (1.3.27), Definitions 1.1.9, 1.3.4, and 1.3.26 one has

1{ § �{✏ § �̄max § 2 ; (1.4.26)

notice also that, by (1.4.7), we have18

|�max ´ �̄max | § 63µ , �max • 1{2 . (1.4.27)

Then, for 0 § � § �max define19:

ai�pÎq :“ I i1pEi
´pÎq ` �✏, Îq , @ 0 § i § 2N ,

bi�pÎq :“
"

I i1pEi
`pÎq ´ �✏, Îq , @ 0 † i † 2N

I i1
`
E5, Î

˘
, i “ 0, 2N .

(1.4.28)

aipÎq :“ ai0pÎq , bipÎq :“ bi0pÎq , @ 0 § i § 2N ,

Bip�q :“ tI “ pI1, Îq : Î P D̂ , ai�pÎq † I1 † bi�pÎqu , 0 § � § �max .
18Recall that µ § 1{c2 and c • 283 (compare Theorem 1.4.1).
19Recall the definition of E5 in (1.4.1).
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Remark 1.4.2. (i) By the above definitions one has that

a2j´1pÎq :“ a2j´1
0 pÎq “ I2j´1

1 pE2j´1
´ pÎq, Îq ” 0 , (1.4.29)

reflecting the analyticity at the elliptic points; compare Remark 1.4.1–(i) above.
(ii) By (1.4.21) and (1.4.28) one sees that Bi “ Bip0q “ î

0†�†�max
Bip�q.

The holomorphic properties of the Arnol’d–Liouville symplectic maps are described in
following theorem, proven in [3, Theorem 4.1]. Recall the definition of the constant c
in Theorem 1.4.1.

Theorem 1.4.2. Under the hypotheses of Theorem 1.4.1 there exists a constant ĉ “
ĉpn, q • 4c2 depending only on n and  such that, taking

µ § 1{ĉ , (1.4.30)

the symplectic transformation �̌i extends, for any 0 § i § 2N and 0 † � § 1{ĉ, to a
real analytic map

�i
:

`
Bip�q

˘
⇢
�

ˆ Tn
�
�

Ñ Drp0, p̄yq ˆ Tn
s{4 , @ 0 † � § 1{ĉ , (1.4.31)

where
⇢

�
:“

?
✏
ĉ �| log �| , �

�
:“ 1

ĉ| log �| . (1.4.32)

Now, let 0 † � § 1{ĉ, then the function E
i admits a holomorphic extension on

`
Bip�q

˘
⇢
�

,

where, setting �̂ :“ �| log �|3, one has
ˇ̌
BI1Ei

ˇ̌
§ ĉ

a
✏` |Ei| ,

ˇ̌
B2
I1E

i
ˇ̌

§ ĉ
�̂
,

ˇ̌
B2
I1Î

E
i
ˇ̌

§ ĉµo

�̂
,

ˇ̌
B2
Î
E
i
ˇ̌

§ ĉ
`?

✏
r
I i1 ` µo

�̂

˘
µo ;

(1.4.33)
furthermore, defining

D5
:“ p´R ´ r{3, R ` r{3q ˆ pDpp̄yq , M̌ip�q :“ �̌ipBip�q ˆ Tq , (1.4.34)

one has

meas
`
pD5 ˆ Tq z

§

0§i§2N

M̌ip�q
˘

§ ĉ
?
✏measppDpp̄yqq �| log �| . (1.4.35)

Remark 1.4.3. Observe that, by 1.3.30, (1.3.31), 1.2.22, (1.4.10), 1.2.23, 2.7.2 and
2.7.5, it is20

1{ † š{4 , "k�k
r

µ † r{6 , 4"k�k
r2

µ † š
2203 † š{220 . (1.4.36)

Thus, since21 � § 1{ĉ, by (1.4.10), �
�

in (1.4.32) satisfies

�
�

† š{220 . (1.4.37)
20Recall that " † 1; see 1.1.1.
21Recall the hypotheses of Theorem 1.4.2.
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1.5 Secondary nearly–integrable structure at simple
resonances

Now we go back to the original system in the simply–resonant zones governed by the
Hamiltonians Hkpy, xq in 1.2.60 and discuss their global nearly–integrable structure
with exponential small perturbations (compare Theorem 1.5.1 below).
As mentioned above (see item (ii) in Remark 1.3.10), the problem here is that the
symplectic transformations of Proposition 1.3.1, which put the simply–resonant Hamil-
tonians Hk in 2.7.2 in standard form, are, in general, not well defined in the fast angles

q̂ “ pq2, ..., qnq, making the construction of global action–angle variables for the full
Hamiltonians Hkpy, xq in 1.2.60 not straightforward.
To overcome such homotopy problems, we shall exploit the particular group structure
of the various symplectic transformations involved, and show that, introducing a spe-
cial ad hoc conjugacy, one can indeed obtain globally well defined symplectic maps;
see, in particular, (1.5.21) below.

Special sets of symplectic transformations

We shall introduce three special classes of symplectic transformations, which will be
used in the proof of Theorem 1.5.1.

Definition 1.5.1. (a) Given a domain D̂ Ñ Rn´1, G denotes the formal22 group of
symplectic transformations of the form

pp, qq P D ˆ Tn �fiÑ pP,Qq “ p⌘, p̂, q1 ` , q̂ ` �q P Rn ˆ Tn ,

where: D Ñ Rn is a normal smooth domain23 over D̂, the functions ⌘, ,� depend on
pp, q1q, are 2⇡–periodic in q1 and the pn ` 1q–dimensional the map

pp, q1q fiÑ �̌pp, q1q “ p⌘, p̂, q1 ` q
is injective.
(b) Given a domain D̂ Ñ Rn´1, G0 denotes the set of smooth symplectic transformations
of the form

pp, qq P D ˆ Tn �fiÑ pP,Qq “ p⌘, p̂, , q̂ ` �q P Rn`1 ˆ Tn´1 ,

where D Ñ Rn is a normal smooth domain over D̂; the functions ⌘, ,� depend only
on pp, q1q and are 2⇡–periodic in q1.

22See Remark 1.5.1–(iii) below.
23I.e., D “ tpp1, p̂q : ↵pp̂q † p1 † �̂pp̂q , p̂ P D̂u where ↵ and � are smooth function on D̂.
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Let us collect a few observations and discuss the main properties of such classes, but,
first of all, notice that all the above maps leave fixed the variable p̂ P D̂ Ñ Rn and the
set D̂. Thus, in the following discussion, the domain D̂ is fixed once and for all.

Remark 1.5.1. (i) The Arnol’d–Liouville map �i in the outer cases (1.4.23) (i “
0, 2N) belongs to G (since sup |Bq1 | † 1), while �i in the inner case (1.4.23) (0 † i †
2N) belongs to G0 .
Notice also that �2 in Theorem 1.3.1–(iii) is a near–to–the–identity symplectic map
belonging to G.
(ii) In the definition of G and G0 , the functions ⌘ and  are scalar functions, while �
has pn ´ 1q components. Notice that, since � is assumed to be symplectic, these maps
are such that

d⌘^ dq1 ` d⌘^ d ` dp̂ ^ d� “ dp1 ^ dq1 , p� P Gq ,
d⌘^ d ` dp̂ ^ d� “ dp1 ^ dq1 , p� P G0q.

(iii) All maps in the group G: in Definition 1.3.5 have a common domain of definition,
i.e., pRˆD̂qˆRn. On the other hand, every map  P G has its own domain of definition
D. Thus, the composition  1 ˝ 2 of two maps in G

 1 : D1 ˆ Tn Ñ Rn ˆ Tn ,  2 : D2 ˆ Tn Ñ Rn ˆ Tn

is well defined only when the compatibility condition  2

`
D2ˆTn

˘
Ñ D1ˆTn

is satisfied.
This is the reason why the cautionary word ‘formal’ appears in the definition of G.
However, as already noticed, all maps in G verify ⇡p̂pDq “ D̂, which is fixed a priori.
(iv) If � P G, by definition �̌ is injective, so that also � itself is injective. Furthermore,
for any fixed p, the map q1 Ñ Q1 “ q1 ` is a continuous injective map on the circle
T1, hence it is surjective, and, therefore, it is a smooth (orientation preserving) circle
diffeomorphism. Thus, q Ñ Q “ pq1 `  , q̂ ` �q is a global diffeomorphism of Tn, and
� : D ˆ Tn Ñ �pD ˆ Tnq Ñ Rn ˆ Tn

is a global symplectomorphism.
Notice also that if �,�1 P G and the composition �˝�1

is well defined, then �˝�1 P G.
(v) The definition of the first pn ` 1q component of any member of the above families
depends only on the first pn` 1q variables pp, q1q. Therefore, any finite compositions of
maps  i P G: YGYG0 , 1 § i § m, whenever the composition is well defined, satisfies

 i P G: Y G Y G0 ùñ p 1 ˝ ¨ ¨ ¨ ˝ mqq “ p ̌1 ˝ ¨ ¨ ¨ ˝  ̌mq . (1.5.1)

(vi) Finally, one readily verifies that the following property holds:

� P G0 and  P G: Y G ùñ  ˝ � P G0 . (1.5.2)
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Action–angles variables for the secular standard Hamiltonians Hk at simple

resonances

For each k P Gn
Ko , we may apply the theory of § 1.4 to the secular Hamiltonians described

in Theorem 1.3.1 in standard form H5 “ Hk; see 2.7.3 and 2.7.5.
By (1.4.24), we get that, for every k P Gn

Ko and 0 § i § 2Nk, the Arnol’d–Liouville map

�i
: Bi

k ˆ Tn onto›Ñ M̌i
k ˆ Tn´1 (1.5.3)

integrates Hk, i.e.:

pHk ˝�iqpI,'q “ pHk ˝ �̌iqpI,'1q “ E
piq
k pIq , @ 0 § i § 2Nk , (1.5.4)

where Bi
k, M̌i

k and E
piq
k correspond to Bi, M̌i and E

piq in § 1.4 in the case24
H5 “ Hk.

Beware that, even if sometimes, for ease of notation, we do not report the depen-
dence upon the resonance label k P Gn

Ko , we are treating different Hamiltonians in the
neighbourhoods of simple resonances labelled by k P Gn

Ko .
Finally, we shall use the following notations: Given a function g : D̂ Ñ R, we shall
denote by jg the translation

jgppq :“ pp1 ` gpp̂q, p̂q . (1.5.5)

Notice that, by the definition of  g in (1.3.41), one has

 ̌gpp, q1q “ pjgppq, q1q . (1.5.6)

Global action–angle variables at simple resonances

We are now ready to state and prove the first step of the proof of Theorem 1.1.1,
which consists in showing how to construct symplectic action–angle maps which put a
generic nearly–integrable natural systems, near critical surfaces of simple resonances,
for all k P Gn

Ko , into uniform analytic nearly–integrable form with exponentially small

perturbations:
Let Sk be a critical surface of hk, and let Drpȳq the neighborhood of a point of this
surface in which one can do the standard form conjugation as be shown in proposition
1.3.1. Let assumptions 1.3.30, 1.2.23 and 1.2.22 hold; let c0 be as in Theorem 1.2.2,

24Compare, in particular, (1.4.8) and (1.4.9) for the definitions of Mi
k and M̌i

k; (1.4.21) for the
definition of Bi

k; (1.4.28) and (1.4.25) for the definition of Bi
kp�q; the definition of M̌i

kp�q is given
(1.4.34).
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and ĉ as in Theorem 1.4.2 with  as in (2.7.5). Let g1 be as in (ii) of Theorem 1.3.1,
and define

Bi
k :“

"
Bi
k , if 0 † i † 2Nk ,

j́ g›

`
Bi
k

˘
, if i “ 0, 2Nk ,

g› :“ ´g1 . (1.5.7)

Then, the following result holds.

Theorem 1.5.1. (Secondary nearly–integrable structure at simple resonances)

There exists c› “ c›pn, s, �, �q • maxtc0 , ĉu such that if Ko • c›, then for any k P Gn
Ko,

0 § i § 2Nk, there exist real analytic symplectomorphisms

�i
k : B

i
k ˆ Tn Ñ Re pDrp0, p̄yqq ˆ Tn , (1.5.8)

such that, if E
i
k “ E

i
kpIq is the integrable Hamiltonian Hk of Theorem 1.3.1 in its

Arnol’d–Liouville action variables, rEik :“ E
i
k ˝ jg› , and ĥ

k
is as in Theorem 1.3.1, then

Hi
k :“ H ˝ �i

kpI,'q “ hi
kpIq ` "f i

kpI,'q , with:

hi
k :“ h

i
k , h

i
k :“

#
jkppIq ` jk0 ppIqEik , if 0 † i † 2Nk ,

jkppIq ` jk0 ppIqrEik if i “ 0, 2Nk .

(1.5.9)

Furthermore, for 0 † � § 1{c› define:

⇢› :“
?
✏

c›Kno
�| log �| , �› :“ 1

c›Kno | log �| ,

Bi
kp�q :“

"
Bi
kp�q , if 0 † i † 2Nk ,

j́ g›

`
Bi
kp�q

˘
, if i “ 0, 2Nk ,

@ 0 § � † 1{c› . (1.5.10)

Then, �i
k admits a holomorphic extension

�i
k : pBi

kp�qq⇢› ˆ Tn
�› Ñ Drp0, p̄yq ˆ Tn

s› (1.5.11)

and the perturbation f i
k in (1.5.9) satisfies the exponential estimate

sup

pBi
kp�qq⇢› ˆTn

�›

|f i
k| § e´Ks{3 . (1.5.12)

Remark 1.5.2. (i) Notice that, since µ “ 1{K5n (see (1.3.30)), and since25

K ° Ko • c› ° c ,

25The constant c is defined in Theorem 1.4.1.
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condition (1.4.30) – which is stronger than condition (1.4.10) – is implied by the as-
sumption Ko • c› .
Observe also that from the definitions of the constants in Theorem 1.5.1, Theorem 1.4.1
and from (1.4.27) it follows that

c› • c • 2
83 • 2

14 , �max • 2
12{c› . (1.5.13)

Finally, we remark that, recalling the definitions of ⇢
�

and �
�

in (1.4.32), since c› • ĉ,
one has

⇢› † ⇢
�
, �› † �

�
. (1.5.14)

(ii) In the proof of the theorem the maps �i
k are explicitly given; compare (1.5.19) and

(1.5.25) below.

The following simple lemma will be one of the key points of the proof of Theorem 1.5.1.
Recall Definition 1.5.1.

Lemma 1.5.1. Let � : pp, qq P D ˆ Tn fiÑ p⌘, p̂, q1 `  , q̂ ` �q P Rn ˆ Tn be in G,
 g P G:, and denote by ⌧g� the map

⌧g� :“ ⌧g�pp, qq :“
`
⌘g ` g, p̂, q1 ` g, q̂ ` �g ´ gBp̂g

˘
, (1.5.15)

where for a function u : D ˆ T Ñ Rm, ug denotes the map

ug :“ u ˝  ̌́ g : jgpDq ˆ T Ñ Rm . (1.5.16)

Then, ⌧g� belongs to G and it is a symplectomorphism satisfying

⌧g� : jgpDq ˆ Tn onto›Ñ
`
 ̌g ˝ �pD ˆ Tnq

˘
ˆ Tn´1 , (1.5.17)

and
p⌧g�qq “ p⌘g ` g, p̂, q1 ` gq “  ̌g ˝ �̌ ˝  ̌́ g . (1.5.18)

Proof. First observe that since ⌘g, g,�g are 2⇡-periodic in q1, the map

q P Tn fiÑ ⇡Q⌧g�pp, qq “
`
q1 ` g, q̂ ` �g ´ gBp̂g

˘
P Tn

is a well defined Tn–map and (1.5.18) follows immediately by direct computation.
Thus, p⌧g�qq is injective being the composition of three injective maps, and, therefore,
the whole map ⌧g� is injective, and (1.5.17) follows. To check symplecticity, just note
that, locally, on the universal cover R2n, ⌧g� coincides (as it is immediate to check)
with the composition  g ˝ � ˝  ́ g of three symplectic maps. Hence ⌧g� is symplectic
and the claim follows.
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Proof. of Theorem 1.5.1 We start by defining the maps �i
k.

Consider, first, the inner case 0 † i † 2Nk. Recall Definition 1.5.1. By Theorem 1.3.1–
(iii), �› is the composition of maps in G: and G while, for 0 † i † 2Nk, �i P G0

(Remark 1.5.1–(i)). Hence, by (1.5.2), it follows that �› ˝�i P G0 and we may define26

�
i
› :“ �› ˝�i , �i

k :“  
k ˝ �i

› : Bi
k ˆ Tn Ñ Rn ˆ Tn , p0 † i † 2Nkq , (1.5.19)

provided the composition is well defined. To check that this is the case, we observe that
by (1.5.1), (1.4.31), (1.3.32), (2.7.2), (1.5.14) for 0 † � § 1{ĉ, we get

�̌
i
› “ p�› ˝�iq̌ “ �̌› ˝�̌i

: pBi
kp�qq⇢

�
ˆT�

�
Ñ Drp0, p̄yqˆTš , p0 † i † 2Nkq , (1.5.20)

thus the composition is well defined and (1.5.19) is well posed.
Let us now consider the outer case i “ 0, 2Nk. In this case �i P G (Remark 1.5.1–(i)).
Recalling the definition in (1.5.15)–(1.5.16), by Lemma 1.5.1, we may define

�
i
› :“ �2 ˝ ⌧g1�

i , pi “ 0, 2Nkq . (1.5.21)

Recalling that �2 P G, by Lemma 1.5.1 and Remark 1.5.1–(iv), �i
› P G, provided the

compositions are well defined. To check that this is the case, as above, it is enough to
control the complex domains of the first pn` 1q components. By (1.5.18) (used twice),
(1.3.42), (2.7.6), and (1.5.1), one finds27

�̌
i
› “ �̌› ˝ �̌i ˝  ̌g› , pi “ 0, 2Nkq . (1.5.22)

Then, by (1.5.40), we get,

jg›

`
pBi

kp�qq⇢1
�

˘
Ñ

`
jg›

`
Bi

kp�q
˘˘

⇢
�

p1.5.10q“
`
Bi
kp�q

˘
⇢
�

, where ⇢1
�
:“ ⇢

�

n`2 , pi “ 0, 2Nkq .
(1.5.23)

Observing that  ̌g› pp, q1q “
`
jg› ppq, q1

˘
, by (1.5.22), (1.5.23), (1.4.31), (1.3.32) and

(2.7.2), we get, for 0 † � § 1{ĉ,

�̌
i
› : pBi

kp�qq⇢1
�

ˆ T�
�

Ñ Drp0, p̄yq ˆ Tš , pi “ 0, 2Nkq . (1.5.24)

Thus, the composition is well defined and (1.5.21) is well posed. So, we may define:

�i
k :“  

k ˝�i
› : Bi

k ˆ Tn Ñ Rn ˆ Tn , �
i
› as in p1.5.21q , pi “ 0, 2Nkq . (1.5.25)

26 k appears in Theorem 1.2.2. Recall that, when 0 † i † 2Nk, Bi
k :“ Bi

k.
27Recall that g› “ ´g1 ; compare (1.5.7).
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We can, now, prove (1.5.9). Recall the definition of f̄k in Theorem 1.2.2 and define

f i
k :“ f ˝ �i

k
p1.2.60q“ f̄k ˝ �i

› , p0 § i § 2Nkq . (1.5.26)

Then, by definition of �i
k in (1.5.19) and (1.5.25), we have, for 0 § i § 2Nk,

Hi
k :“ H ˝ �i

kpI,'q :“ H ˝ k ˝ �i
›

p1.2.60,1.5.26q“ Hk ˝ �i
› ` "f i

k . (1.5.27)

Since Hk in (1.2.61) depends only on the first pn`1q variables, by (1.5.20) and (1.5.22),
we find

Hk ˝ �i
› “ Hk ˝ �̌i

› “
"

Hk ˝ �̌› ˝ �̌i , if 0 † i † 2Nk

Hk ˝ �̌› ˝ �̌i ˝  ̌g› , if i “ 0, 2Nk ,
(1.5.28)

and, by (2.7.2) and (1.5.4),

Hk ˝ �̌› ˝ �̌i “ jk ` jk0E
piq
k . (1.5.29)

Thus, (1.5.9) follows from (1.5.27), (1.5.28), (1.5.29) and (1.5.6).
Next, we show that �i

k has, for 0 † � § 1{c› , a holomorphic extension satisfying
(1.5.11). To do this we have to consider the last n ´ 1 components of �i

›, namely
⇡
'̂
�

i
› “ �̂

i
›. By definition of �i

› in (1.5.19) and (1.5.21) it follows that

�̂
i
›pI,'q “

"
'̂ ` �i›pI,'1q , if 0 † i † 2Nk ,
'̂ ` �i›

`
jg› pIq,'1

˘
, if i “ 0, 2Nk ,

(1.5.30)

with; g› is defined in (1.5.7); �2 is as in Theorem 1.3.1–(iii).

�i› :“ �i ` �5
2

` i BÎg› , �5
2
pI,'1q :“

"
�2pÎ , iq , if 0 † i † 2Nk ,
�2pÎ ,'1 ` iq , if i “ 0, 2Nk .

(1.5.31)
Now, we claim that

| i|⇢
�
,�
�

† 3

4
š , @ 0 § i § 2Nk . (1.5.32)

Indeed, if 0 † i † 2Nk, (1.5.32) follows directly from (1.4.31) and (1.3.32); in the case
i “ 0, 2Nk, (1.5.32) follows again from (1.4.31) and (1.3.32) observing that

| i|⇢
�
,�
�

“ |p'1 ` iq ´ '1|⇢
�
,�
�

§ s

4
` �

�
† 3

4
š .
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Next, since ⇢1
�

“ ⇢
�
{pn ` 2q, by (1.5.23), (1.5.31), (1.4.31), (1.3.32), (2.7.8), (1.4.36),

(1.4.37), (1.5.32), (1.5.40), we find, for every 0 § i § 2Nk, and for every 2 § ` § n,

| Im �̂i
›`|⇢1

�
,�
�

§ | Im p'` ` �i›`q|⇢
�
,�
�

§ | Im p'` ` �i`q|⇢
�
,�
�

` |�5
2
|⇢

�
,�
�

` | i|⇢
�
,�
�

|BÎg› |⇢
�

§ š

2
` š

220
` 3

4
pn ` 1qš † 2nš . (1.5.33)

Thus, by (1.5.20), (1.5.24) and (1.5.33), we get

�
i
› : pBi

kp�qq⇢1
�

ˆ Tn
�
�

Ñ Drp0, p̄yq ˆ Tn
2nš , p0 § i § 2Nkq .

We need, now, an elementary result on real analytic functions:

Lemma 1.5.2. Let g : Dr ˆ Tn
s Ñ C be a real analytic function satisfying | Im g| § ⇠.

Then, for every 0 † ⇣ § 1{2, one has

sup
D⇣rˆTn

⇣s

| Im g| § 8⇣⇠ .

Now, define
⇣ :“ 1

16 c1cs K
n
o

. (1.5.34)

Then, since |k| § Ko, by (2.7.2), (1.3.30), we find

8⇣p2nšq † 16n⇣ Ko maxt1, su p1.5.34q“ maxt1, su
c1 cs K

n´1
o

“ s

c1K
n´1
o

p1.3.30q“ s̃k .

Thus, by Lemma 1.5.2 (applied with g “ �̂
i
›` for 2 § ` § n, ⇣ as in (1.5.34) and ⇠ “ 2š),

it follows that

�
i
› : pBi

kp�qq⇢› ˆ Tn
�› Ñ Drp0, p̄yq ˆ Tn

s̃k
, p0 § i § 2Nkq ,

with ⇢› and �› as in (1.5.10), provided

c› :“ maxtc0 , ĉ c1 cs 16 pn ` 2qu .

In conclusion, (1.5.11) follows by the definition of �i
k in (1.5.19), (1.5.25) and by

(1.2.58).
Finally, estimate (1.5.12) follows at once from (1.5.26), (1.5.11) and (1.3.29). The proof
is complete.
The following measure estimate will play a crucial rôle in the proof of Theorem 1.1.1.
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Proposition 1.5.1. For every 0 § � † 1{c›, the following measure estimate holds28:

meas
``
Drp0, p̄yq ˆ Tn

˘
z

§

0§i§2Nk

�i
k

`
Bi

kp�q ˆ Tn
˘˘

§ c› meas
` rR1,k ˆ Tn

˘
�| log �| .

(1.5.35)

Proof. Since �̌i
› depends only on the first pn`1q variables, by (1.5.30), (1.5.19), (1.5.22)

and the definitions of Bi
kp�q in (1.5.10) and M̌i

kp�q in (1.5.3), one has
�

i
›
`
Bi

kp�q ˆ Tn
˘

“ �̌
i
›
`
Bi

kp�q ˆ T
˘

ˆ Tn´1 “
`
�̌› ˝ �̌ipBi

kp�q ˆ Tq
˘

ˆ Tn´1

p1.4.35q“
`
�̌› ˝ M̌i

kp�q
˘

ˆ Tn´1 . (1.5.36)
Analogously, one has

�
´1
› pDrp0, p̄yq ˆ Tnq “ �̌

´1
› pDrp0, p̄yq ˆ Tq ˆ Tn´1 . (1.5.37)

Observe also that, by (2.7.7), (2.7.8) and (the second estimate in) (1.4.36) it follows
that29

�̌
´1
1

˝ �̌´1
2

pDp0, p̄yq ˆ Tq Ñ
`
p´R ´ r{3, R ` r{3q ˆ pDrpp̄yq

˘
ˆ T “ pD5 ˆ Tq . (1.5.38)

Then30, recalling Theorem 1.2.2, using the fact that p kq´1 and �´1
› are diffeomor-

physms preserving Liouville measure, we find
measpDrp0, p̄yq ˆ Tn z î

�i
kpBi

kp�q ˆ Tnqq
p1.5.19,1.5.25q“ measpp kq´1pDrp0, p̄yq ˆ Tnq z î

�
i
›pBi

kp�q ˆ Tnqq
p2.6.1q

§ measppĎk ˆ Tnq z î
�

i
›pBi

kp�q ˆ Tnqq
“ measp�´1

› pĎk ˆ Tnq z î
�

´1
› �

i
›pBi

kp�q ˆ Tnqq
p1.5.36,1.5.37q“ p2⇡qn´1

measp�̌´1
› pĎk ˆ Tq z î

M̌i
kp�qq

p2.7.6,??q“ p2⇡qn´1
measp�̌´1

1
˝ �̌´1

2
pDp0, p̄yq ˆ Tqz î

M̌i
kp�qq

p1.5.38q
§ p2⇡qn´1

measpD5 ˆ Tz î
M̌i

kp�qq
p1.4.35q

§ p2⇡qn´1ĉ
?
✏measppDpp̄yqq �| log �|

p1.3.30q† p2⇡qn´1ĉ R measppDpp̄yqq �| log �|
“ ĉ

2⇡
measp rR1,k ˆ Tnq �| log �| ,

28The sets rR1,k are defined in (1.2.6).
29Observe that �̌´1

1
pp, qq “ pp1 ´ g1pp̂q, p̂, q1q and �̌´1

2
pp, qq “ pp1 ´ ⌘2pp̂, q1q, p̂, q1q. Recall the

definition of D5 in (1.4.34).
30The unions are over 0 § i § 2Nk.
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which yields (1.5.35) since c› • ĉ.

Remark 1.5.3. The measure estimate (1.5.35) holds in view of the covering property
(2.6.1), which takes care of the deformations near the boundaries.
The logarithmic correction is unavoidable and is related to the Lyapunov exponents of
the hyperbolic equilibria issuing the separatrices of the secondary integrable systems
at simple resonances.

The final result of this section deals with the size of the domains Bi
k, which depends

on k and actually grows with k. It is therefore important to control such a growth.

Proposition 1.5.2. Assume that31 ↵ † 1. Then, there exists a constant č “ č pnq ° 1

such that
diamBi

k § č |k|n´1 , measBi
k § č . (1.5.39)

Proof. For the purpose of this proof, we denote by ‘c’ suitable (possibly different)
constants greater than one and depending only on n.
Since ↵ † 1, by the definition of Bi

k in (1.4.21), by (1.3.27) and the definition of R in
(1.3.30), we have, for every 0 § i § 2Nk,

diamBi
k § c

`
R ` diam D̂

˘
† cp1 ` diam D̂q .

Since
| yAT I| “ |AT

`
0
Î

˘
| • |Î|

}A´1} • |Î|
c|k|n´1 ,

by definition of pD, it follows that diamBi
k § c|k|n´1⇢2 § c1|k|n´1, proving the first

relation in (1.5.39) in the case 0 † i † 2Nk.
In the case i “ 0, 2Nk, we need to estimate the Lipschitz constant of32

gi. By Cauchy
estimates, one sees that

|g› |2r † 4"
�|k|2

µ
r

† c2c0
2

?
"

�K14n`5 , |B
Î
g› |r § 4"µ

�r|k|2r2 § c
c0

K14n`3 † 1
4 , (1.5.40)

by taking Ko big enough (recall that K • 6Ko). Hence33,

|B
Î
g› |r § n ` 1 , LipDr

pjg› q § n ` 2 , (1.5.41)

31Notice that, since � “ 2p⌫ ` nq, the hypothesis ↵ “ "K⌫ † 1 is implied by the second condition in
(1.1.28).

32
g› is defined (1.5.7).

33 LipBpgq denotes absolute value of the Lipschitz constant of a function g over a domain B.
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choosing č suitably, the first relation in (1.5.39) follows also in this case.
Let us check the second relation in (1.5.39). Since �i

k in (1.5.8) is symplectic, we have

measBi
k “ 1

p2⇡qn measpBi
k ˆ Tnq “ 1

p2⇡qn meas
`
�i

kpBi
k ˆ Tnq

˘

p1.5.8q
§ meas

`
Re p rR1,k

rk
q
˘
.

Now, since rR1,k Ñ B and rk § ↵ † 1, choosing č suitably, also the second relation in
(1.5.39) follows, and claim (i) has been proved.

1.6 Twist at Simple Resonance
In this section we discuss the main issue in singular KAM theory developed by Bi-
asco and Chierchia, namely, the twist of the integrable (rescaled) secular Hamiltonians
h
i
k in (1.5.9) near simple resonances and, in particular, in neighborhoods of secular

separatrices, where the action become singular.
In general, it has to be expected that there are points where the twist of the secular

Hamiltonians h
i
k vanishes; compare [4, Remark 4.1]. Furthermore, and more impor-

tantly, when approaching separatrices, the evaluation of the twist becomes a singular

perturbation problem, where no standard tools can be applied and a new strategy is
needed.
Our approach – which exploits in an essential way the fine analytic structure of the ac-
tion functions described in Theorem 1.4.1 – roughly speaking, consists in constructing
a suitable differential operator with non–constant coefficients, which does not vanish on
(a suitable regularization of) the Kolmogorov’s twist determinant. This will be enough
to prove that the Liouville measure of the set where the twist is smaller than a positive

quantity ⌘ may be bounded, uniformly in k, by a power of ⌘. This is the content of the
Twist Theorem 1.6.1 below.

Twist Theorem near simple resonances (statement)

To state the Twist Theorem we need to introduce two parameters (⇠ ° 0, m • 1) which
measure the non–degeneracy (in a suitable sense to be specified below) of the energy as
function of actions in the inner regions 0 † i † 2Nk. This requires some preparation.

Non–degenerate functions and theirs sub–levels

First, let us recall a standard quantitative definition of non–degenerate functions.
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Definition 1.6.1. Given ⇠ ° 0, an open set A Ñ R and f P CmpA,Rq, we say that f
is ⇠–non–degenerate at order m • 1 on A (or, in short, p⇠,mq–non–degenerate), if

inf
xPA

max
1§j§m

|f pjqpxq| • ⇠ . (1.6.1)

An important property of non–degenerate functions is that one can easily estimate
the measure of their sub–levels:

Lemma 1.6.1. Let f be a p⇠,mq–non–degenerate function on a bounded interval pa, bq
and let34 M :“ }f}Cm`1pa,bq. Then, there exist a constants cm ° 1 depending only on m
such that, for all ⌘ ° 0, one has

meastx P pa, bq : |fpxq| § ⌘u § cm
⇠1{m

`
M
⇠ pb ´ aq ` 1

˘
⌘1{m .

The proof of this lemma can be found, e.g., in [48, Lemma B.1].

Non–degeneracy of the rescaled reference potentials for |k|1 § N

Consider a general Hamiltonian (1.3.4) in standard form, recall Definition 1.4.1, recall
(1.4.28), and define also, for 0 § � § �̄max (defined in (1.4.25)),

āi :“ ai|µ“0 , b̄i :“ bi|µ“0 , āi� :“ ai�|µ“0 , b̄i� :“ bi�|µ“0 , @ 0 § i § 2Nk . (1.6.2)

In the following, we shall explicitly indicate the dependence upon the reference potential
Ḡ and write, e.g, Ī i1,Ḡ, ĒiḠ, āiḠ, b̄iḠ for Ī i1, Ēi, āi, b̄i, respectively.

Definition 1.6.2. Given H5 in standard form with reference potential Ḡ, we denote by

F
i
Ḡpxq :“ pB2

I1 Ē
i
Ḡq

`
āiḠ ` pb̄iḠ ´ āiḠqx

˘
, @ x P p0, 1q , p0 † i † 2Nkq , (1.6.3)

the ‘normalized second derivative of the energy function within separatrices’.

These functions satisfy a remarkable rescaling property:

Lemma 1.6.2. If FiḠ is as in Definition 1.6.2, then, for any � ° 0, one has FiḠ “ F
i
�Ḡ.

Proof. Indeed, from the definition of actions, there follows easily that

Ī i1,�ḠpEq “
?
�Ī i1,ḠpE{�q , Ē

i
�ḠpI1q “ �ĒiḠpI1{

?
�q , @� ° 0 . (1.6.4)

34}f}Cm`1pa,bq :“ max0§j§m`1 suppa,bq |f pjq|.
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Indeed, considering the case i “ 2Nk (the other cases being similar), one has

Ī2Nk

1,�Ḡ
pEq “ 1

2⇡

ª 2⇡

0

b
E ´ �Ḡpxqdx “

?
�

2⇡

ª 2⇡

0

c
E

�
´ Ḡpxqdx “

?
�Ī i1,ḠpE{�q ,

which proves the first equality in (1.6.4), which, in turns, implies immediately the
second inequality. From (1.6.4), then , follows that

āi�Ḡ “
?
�āiḠ , b̄i�Ḡ “

?
�b̄iḠ , (1.6.5)

and the claim follows at once from (1.6.4) and (1.6.5).
Let us go back to the Hamiltonians in standard form Hk of Theorem 1.5.1, and let
us prove that the functions F

i
Ḡ – and hence Ē

i
�Ḡ – with Ḡ as in (??), are p⇠,mq–non–

degenerate.

Lemma 1.6.3. For every 0 † i † 2Nk, the function F
i
Ḡ defined in (1.6.3) is p⇠,mq–

non–degenerate for some ⇠,m ° 0.

Proof. We consider only the case i odd, the even case being similar. Deriving (??) we
get, for µ “ 0,

B3
I1 Ē

ipĪ i1pEqq “ ´ B3
E Ī

i
1pEq

`
BE Ī i1pEq

˘4 ` 3

`
B2
E Ī

i
1pEq

˘2
`
BE Ī i1pEq

˘5 . (1.6.6)

By (1.4.11)–(1.4.16) (which hold also for Ī i1, corresponding to µ “ 0), we have that the
dominant term in (1.6.6) as z :“ pĒi

` ´ Eq{✏ Ñ 0
` has the form ´1{pc3z2 log4 zq with

c :“  i
`p0q|µ“0. Then,

lim
EÑpĒi

`q´

ˇ̌
B3
I1 Ē

ipĪ i1pEqq
ˇ̌

“ lim
I1Ñpb̄iq´

ˇ̌
B3
I1 Ē

ipI1q
ˇ̌

“ `8 .

By (1.6.3) we obtain
lim
xÑ1´

|BxFiḠpxq| “ `8 . (1.6.7)

Moreover BxFiḠpxq is analytic in a neighborhood of x “ 0 (recall in particular (1.4.15)).
Assume now by contradiction that (2.7.9) does not hold, namely that there exists a
sequence xm P p0, 1q such that

|Bj
xF

i
Ḡpxmq| † 1{m, @ 1 § j § m.

By (1.6.7), up to a subsequence, xm converges to some x̄ P r0, 1q such that Bj
xF

i
Ḡpx̄q “ 0

for every j • 1. By analyticity we would have that FiḠ is constant on r0, 1q leading to
a contradiction with (1.6.7).
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This lemma allows us to introduce uniform non–degeneracy parameters ⇠ ° 0 and m • 1

for the function F
i
Ḡ in (1.6.3) associated to the reference potentials Ḡ

p??q“ 2"
|k|2 ⇡Zk

f , for
k P Gn, |k|1 † N and 0 † i † 2Nk. Indeed, by Lemma 1.6.2,

F
i
Ḡ “ F

i
2"

|k|2 ⇡Zkf
“ F

i
⇡Zkf

, (1.6.8)

and, by (2.3.1), every potential ⇡Zk
f is �–Morse. By the above Lemma 1.6.3, every

function in (1.6.8) is p⇠,mq–non–degenerate for some ⇠,m ° 0. We therefore can define
uniform "–independent non–degeneracy parameters ⇠, m by setting:

Definition 1.6.3. Let F
i
⇡Zkf

be as in Definition 1.6.2 with rescaled reference potential

Ḡ “ ⇡Zk
f . We define ⇠ ° 0 and m • 1 to be, respectively, the largest and smallest

number such that all the functions F
i
⇡Zkf

, for 0 † i † 2Nk, k P Gn
with |k|1 § N, are

p⇠, mq–non–degenerate (Definition 2.7.1).

The Twist Theorem

Let 1.3.30, 1.2.23 e 1.2.22 hold, let  be as in (2.7.5), let ⇠, m be as in Definition 1.6.3,
let Bi

k be as in (1.5.7), let hik be as in (1.5.9), and define

�o :“ |k|´2n . (1.6.9)

Then, the following result holds.

Theorem 1.6.1. There exists a constant c0 “ c0pn, , ⇠, mq ° 1 such that, for Ko • c0,
k P Gn

Ko, 0 § i § 2Nk, and 0 † ⌘ † �o{25, one has:

meas
` 

I P Bi
k :

ˇ̌
det B2

Ih
i
kpIq

ˇ̌
§ ⌘

(˘
§ c0p|k|2n⌘qbmeasBi

k , b :“ mint 1
9n4 ,

1
m
u .

(1.6.10)

The proof of this theorem is particularly complicated and it will not be reported in
this work, for complete details one can read [4].
The proof is based on checking non degenerate condition of the twist determinant, and
there is a crucial division between two cases. Far from separatrices the strategy is es-
sentially perturbative, and the twist comes from the non degeneracy condition satisfied
by the twist determinant of the reference hamiltonian. Near separatrices, instead, the
situation is dramatically difficult because in such regions perturbative arguments do
not hold, and, in particular the energy function E

i is singular at the boundary (corre-
sponding to separatrices) and its derivatives diverge as the boundary is approached.
Furthermore, Ei and Ē

i “ E
i|µ“0 have singularities in different points. Exploiting the

singularity structure described in Theorem 1.4.1, they have proved that a suitable
regularization of the twist determinant is a non–degenerate function.
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1.7 Maximal KAM tori and proof of the main results
In this final section we show that primary and secondary maximal KAM tori of H span
the complementary of R2ˆTn apart from an exponentially small (in 1{K) set and prove
the main result of this chapter.
To construct such tori we shall use the following ‘KAM theorem’.

Theorem 1.7.1 ([46]). Fix n • 2 and let D be any non–empty, bounded subset of Rn.
Let

Hpp, qq :“ hppq ` fpp, qq
be real analytic on Dr ˆ Tn

s , for some r ° 0 and 0 † s § 1, and having finite norms

M :“ |B2
ph|r , |f|r,s . (1.7.1)

Assume that the frequency map p P D Ñ ! “ Bph is a local diffeomorphism, namely,
assume:

d :“ inf
D

| det B2
ph| ° 0 , (1.7.2)

and let d› :“ d{Mn and r› :“ d
2
›r. Then, there exists C˚ “ C˚pnq ° 1 such that, if

✏ :“ |f|r,s
Mr2

§ d
8
› s4pn`1q

C˚
, (1.7.3)

there exists a set T Ñ pDr› X Rnq ˆ Tn formed by primary KAM tori such that35

meas
`
pD ˆ Tnq z T

˘
§ C

?
✏ , C :“

`
max

 
d
2
›r , diam D

(˘n ¨ C˚
dn`5› s3pn`1q . (1.7.4)

This statement is an immediate corollary of Theorem 1 in36 [46].

Remark 1.7.1. (i) Note that in the formulation of Theorem 1.7.1 the action domain
D is a completely arbitrary bounded set and that the smallness quantitative condition
(1.7.3) depends on D only through its diameter, which in our application depends on
k. For a similar statement, which takes into account the geometry of D, see [47].
(ii) We point out that the smallness condition (1.7.3) can be rewritten as

|f|D,r,s § r2d8 s4n`4

C˚ M8n´1
. (1.7.5)

35Here ‘meas’ denotes the outer Lebesgue measure.
36In Theorem 1 of [46] take ⌧ “ n and substitute � with its maximal value 2 ¨ n! d´1

› (see (14) of
[46]).
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(iii) Finally, observe that, since37
d› § 1, estimate (1.7.4) implies

meas
`
pD ˆ Tnq z T

˘
§

`
max

 
r , diam D

(˘n ¨ C˚ Mn
2`5n´1{2

dn`5 s3n`3r

b
|f|D,r,s . (1.7.6)

KAM tori in the non–resonant region

Proposition 1.7.1. Let the assumptions of Theorem 1.2.2 hold. There exists a constant
Co “ Copn, sq • c0 such that, if Ko • Co, then there exists a family of primary maximal
KAM tori T 0 invariant for the Hamiltonian H in 1.1.1, satisfying

meas
`
pR0 ˆ Tnq z T 0

˘
§ Co

?
" e´Kos{6 . (1.7.7)

Remark 1.7.2. The above result is essentially classical, and, in fact, no genericity
assumptions on the potentials are needed. However, there is one delicate point related
to the KAM tori near the boundary. Indeed, primary tori oscillates, in general, by a
quantity of order

?
", and naive applications of classical KAM theorems would leave

out regions near the boundary of the phase space of measure „ ?
". Such a problem is

overcome by using the second covering in 2.6.1; compare, also, Remark 1.2.5–(ii).

Proof. of Theorem 1.7.1 We apply the KAM Theorem 1.7.1 to the nearly–integrable
Hamiltonian Ho in Theorem 1.2.2–(ii). More precisely, we let38

hppq “ hppq ` "goppq , f “ "f o , D “ R0 , r “ r1
0

2
“

?
"K

9
2n`2

16CKo
, s “ mint s

2 , 1u .

By 2.5.19 and Cauchy estimates we get

M § 2M

r2
, |f|r,s § "e´Kos{3 .

If Ko is taken large enough (larger than a constant despending on n and s) the KAM
smallness condition (1.7.5) is satisfied, and the KAM Theorem 1.7.1 yields the existence
of a set rT 0 of invariant tori for the Hamiltonian Ho in Theorem 1.2.2–(ii), which, by39

(1.7.6), satisfy
meas

`
pR0 ˆ Tnq z rT 0

˘
§ Co

?
" e´Kos{6 , (1.7.8)

37Indeed the absolute value of any eigenvalues of the symmetric matrix B2
ph is bounded by M, which

implies d § supD |det B2
ph| § M

n .
38Recall Theorem 1.2.2,
39Notice that the hypothesis K † "´1{p9n`4q implies that r † 1, so that max

 
d2M´2nr , diam D

(
“ 2.
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for a suitable constant Co “ Copn, sq large enough (so that also the condition on Ko

is met). Since the map  o in (1.2.2) is symplectic, the family of tori T 0
:“  op rT 0q is

formed by KAM invariant for H in (1.1.1). Lemma (2.6.1) and the bound (1.7.8) imply
(1.7.7).

KAM tori near simple resonances

Now, we turn to the construction, in all neighbourhoods of simple resonances, of families
of primary tori for the nearly–integrable Hamiltonians Hi

k of Theorem 1.5.1, for all
k P Gn

Ko and 0 § i § 2Nk. Note that such tori correspond, in the inner case 0 † i † 2Nk,
to secondary tori for the Hamiltonian H.
Let us introduce zones Bi

kp�, ⌘q Ñ Bi
k, which are �–away in energy from separatrices

and where the twist is bounded away from zero by a quantity ⌘ ° 0, namely (recall
(1.5.10), (1.5.7)), let us define:

Bi
kp�, ⌘q :“ tI P Bi

kp�q s.t. | det B2
Ih

i
kpIq| ° ⌘u Ä Bi

k . (1.7.9)

Proposition 1.7.2. (KAM tori for Hi
k) near critical surface Let the assumptions

of Theorem 1.5.1 hold. There exist positive constants C̄1 “ C̄1pn, s, �q ° 1 and C1 “
C1pn, s, �, �q • c› such that the following holds. Let k P Gn

Ko, 0 § i § 2Nk; 0 § j § P
0 † � § 1{c› and 0 † ⌘ † 1{2. Then, if

K • C1 log
1

�⌘
, (1.7.10)

there exists a set T i,j
k of maximal KAM tori for the Hamiltonian Hi

k in (1.5.9) such
that

meas
`
pBi

kp�, ⌘q ˆ Tnq z T i,j
k

˘
§ C̄1e

´Ks{7 . (1.7.11)

Proof. We apply the KAM Theorem 1.7.1 to the Hamiltonian Hi
k of Theorem 1.5.1

with (recall (1.5.9) and (1.5.10)):

h “ hi
k “ h

i
k , f “ "f i

k , D “ Bi
kp�, ⌘q ,

r “ ⇢› “
?
✏

c›K
n
o

�| log �| , s “ �› “ 1

c›K
n
o | log �| . (1.7.12)

Note that, by (1.5.13), 0 † � § 1{c› § 1{8, which implies easily r § r and s § 1. Also,
since c› • ĉ (see Theorem 1.5.1) and K

n
o • 2

n • n, one has ⇢› § ⇢
�
{n.

In the following arguments we denote by cp¨q possibly different constants depending
only on the quantities inside brackets.
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We first have to estimate M in (1.7.1), namely, B2
Ih

i
k. By (1.4.33), (1.4.12) and (1.4.10)

we get

sup

pBi
kp�qq⇢

�

ˇ̌
B2
IE

i
ˇ̌

§ nĉ

�
. (1.7.13)

In the case 0 † i † 2Nk, by (1.5.10), we have Bi
kp�q “ Bi

kp�q. Therefore, recalling
(1.5.9), we can bound |B2

Ih
i
k| by cpn, s, �q{�.

The estimate on |B2
Ih

i
k| in the case i “ 0, 2Nk needs some extra attention. In particular

fix i “ 2Nk (the case i “ 0 being analogous). Recalling the definition of jg› in (1.5.5),
(1.5.7) we have that B2

I jg› depends only on Î and not on I1. Moreover by (1.2.22),
(1.2.51), (2.7.7), (1.3.30) and Cauchy estimates we get

sup

ÎPD̂3r

|BIjg› | § cpnq , sup

ÎPD̂3r

|B2
I jg› | § cpnq|k|2?

"K⌫
. (1.7.14)

Recalling Definition 1.4.1, (1.4.33) and (1.3.30), we have that

sup

pB2Nk
k p�qq⇢

�

|E2Nk | § 4R
2 “ 4"K2⌫

|k|4 .

Then, by (1.4.33) and (1.3.30) we get

sup

pB2Nk
k p�qq⇢

�

|BI1E2Nk | § ĉ
a
8cs" ` 4"K2⌫ |k|´4 § 4ĉ

?
"K⌫ |k|´2

(taking K • cs defined in (1.3.30)). Finally, recalling also (1.5.10), (1.5.23), (1.7.13),
(1.7.14) , we get by the chain rule

sup

pB2Nk
k p�qqr

ˇ̌
B2
I

`
E
2Nk ˝ I›

˘ˇ̌
§ cpn, s, �q

�
.

By (1.7.1), (1.7.12), (1.5.9), (and that r § r), we finally get

M § |k|2 cpn, s, �q
�

, @ 0 § i § 2Nk . (1.7.15)

Next, by (1.7.12) and (1.5.12),
|f|r,s § " e´Ks{3 . (1.7.16)

By (1.7.2), (1.7.12) and (1.7.9), we get

d • 2
´n|k|2n⌘ and

M
n

d
§ cpn, s, �q

�n⌘
. (1.7.17)
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By (1.3.30), (1.1.23) and using Ko § 6K, we have:

"

✏
§ K

n`2
o

8cs�
eKos§ K

n`2

6n`3cs�
eKs{6 . (1.7.18)

It is now easy to check, by (1.7.15), (1.7.16), (1.7.17) and (1.7.18), that the KAM
smallness condition (1.7.5) is satisfied taking K as in (1.7.10) with C1 large enough. By
the KAM Theorem 1.7.1 we, then, obtain a set T i,j

k of invariant tori for the Hamiltonian
in (1.5.9), which, in view of (1.7.6) and by (1.7.15), (1.7.16), (1.7.17) and (1.7.18),
satisfies (1.7.11) with a suitable constant C̄1 “ C̄1pn, s, �q; in particular, note that, by
(1.5.39) and (1.7.12), the maximum in (1.7.6) is estimated by cpnqKn2

o .
This result holds near a single fixed point of a critical surfaces, now we have to

taking into account also the secondary tori for H that comes from Hk near simple
resonance but far from critical points.
Putting together these KAM statements and the Twist Theorem 1.6.1, the proof of the
main result follow easily.

Proof of Theorem 1.1.1 and its corollaries

Since f P Gn
s , there exist �, � ° 0 such that (1.1.23) and (2.3.1) hold with N as in

(1.1.10). Let
Ko :“ K{6 ,

with K • 12 and let ↵ be as in 1.2.22. Then and we may let the Definitions 1.3.30,1.2.23
hold. Let c0 “ c0pn, s, �q be as in Theorem 1.3.1, and assume that40

K • 6c0 . (1.7.19)

Then, Theorem 1.3.1 holds and we may define the parameters ⇠ ° 0 and m • 1

as in Definition 1.6.3 with respect to standard Hamiltonians Hk (with |k|1 § Ko) of
Theorem 1.3.1–(ii).
We now let b † 1 as in (1.6.10), C1 “ C1pn, s, �, �q be as in Proposition 1.7.2, and define

⌘ :“ e
´ K

C1 p1`bq , � :“ ⌘b . (1.7.20)

Notice that, with such definitions, it is

K “ C1 log
1

�⌘
, (1.7.21)

40Eq. 1.7.19 implies that K ° 12.
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(compare (1.7.10)).
With these premises, let us turn to the proof of the claims of Theorem 1.1.1.
Claim (ii) has already been proven in 1.2.15 above.
Next, we define the set of maximal KAM tori T for H as it appears in item (iv) of the
theorem.
Let Co “ Copn, sq as in Proposition 1.7.1.There exists a constant

ĉ “ ĉpn, s, �, �, mq • maxtCo, 2C1c›{bu ,

such that, if K • ĉ, then

K
2n⌘

p1.7.20q“ K
2ne

´ K
C1 p1`bq § 1 .

Assume that
K • ĉ . (1.7.22)

Then, � “ ⌘b in (1.7.20) is smaller than 1{c› and (recall (1.6.9))

⌘ § �o
25

† 1

2
. (1.7.23)

Thus, in view of (1.7.21), by (1.7.22) the assumptions of Propositions 1.7.1 and 1.7.2
are satisfied, and we can define the following families of tori41:

$
’&

’%
T 1,k
i,j :“ �i

kpT i,j
k q , T 1,k

:“
J§

j“1

§

0§i§2Nk

T 1,k
i,j , T 1

:“
§

kPGn
Ko

T 1,k ,

T :“ T 0 Y T 1 .

(1.7.24)

where, for a fixed k,
î

0§i§2Nk
T 1,k
i,j are the tori founded on a single neighborhood of

a point ȳ of a single surface Sk, so
î

P represent the sum over all the neighborhoods
that cover Sk, so that

î
P

î
0§i§2Nk

T 1,k
i,j represent all the tori near first resonance for

a fixed k. Summing over k we can obtain the total union of tori for simple resonance
near surfaces. Observe that T i

k are invariant tori for Hi
k in (1.5.9), while T 1,k

i , T 1 and
T 0 are invariant for the original Hamiltonian H.
Thus, T is a family of maximal KAM tori for H as in item (iv) of Theorem 1.1.1.
Claim (i) follows, now, immediately by (2.5.1), setting

A :“
`
pR0 Y R1q ˆ Tn

˘
z T . (1.7.25)

41T i
k is defined in Proposition 1.7.2, T 0 in Proposition 1.7.1 and �i

k in (1.5.11).
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It remains to prove claim (iii), namely, the exponential measure estimate on A.
Observe that by (1.7.25) and (1.7.24)

A Ñ
`
pR0 ˆ Tnq z T 0

˘
Y

`
pR1 ˆ Tnq z pT 1q

˘

Ñ
`
pR0 ˆ Tnq z T 0

˘
Y

§

kPGn
Ko

�0pĎk ˆ Tnq z T 1,k . (1.7.26)

We now need the some elementary results:

Lemma 1.7.1. Let F P C2pT,Rq, ✓̄ and 0 † c † 1
2 are such that42 }F ´cosp✓` ✓̄q}C2 §

c. Then, F has only two critical points and it is p1 ´ 2cq–Morse.

Proof. By considering the translated function ✓ Ñ F p✓ ´ ✓̄q, one can reduce oneself to
the case ✓ “ 0 (note that F is �–Morse, if and only if ✓ Ñ F p✓ ´ ✓̄q is �–Morse).
Thus, set ✓̄ “ 0, and note that, by assumption |F 1| “ |F 1 ` sin ✓ ´ sin ✓| • | sin ✓| ´ c,
and, analogously, |F 2| • | cos ✓| ´c. Hence, |F 1| ` |F 2| • | sin ✓| ` | cos ✓| ´ 2c • 1´ 2c.
Next, let us show that F has a unique strict maximum ✓0 P I :“ p´⇡{6, ⇡{6q (mod 2⇡).
Writing F “ cos ✓ ` g, with g :“ F ´ cos ✓, one has that F 1p´⇡{6q “ 1{2 ` g1p⇡{6q •
1{2 ´ c ° 0, and, similarly F 1p⇡{6q § ´1{2 ` c, thus F has a critical point in I,
and, since ´F 2 “ cos ✓ ´ g2 • cos ✓ ´ c •

?
3{2 ´ c ° 0, F is strictly concave in

I, showing that such critical point is unique and it is a strict local minimum. In fact,
similarly one shows that F has a second critical point ✓1 P p⇡ ´ ⇡{6, ⇡ ` ⇡{6q where F
is strictly convex, so that ✓1 is a strict local minimum; but, since in the complementary
of these intervals F is strictly monotone (as it is easy to check), it follows that F
has a unique global strict maximum and a unique global strict minimum. Finally,
F p✓0q ´ F p✓1q •

?
3 ´ 2c ° 1 ´ 2c and the claim follows.

Lemma 1.7.2. If G is �–Morse, then the number 2N of its critical points is bounded
by ⇡

a
2maxR |G2|{�.

Proof. If ✓i and ✓j are different critical points of G, then, by Taylor expansion at order
two and by 1.1.6 one has � § |Gp✓iq ´ Gp✓jq| § 1

2pmaxR |G2|q|✓i ´ ✓j|2, which implies
that the minimal distance between two critical points is at least

a
2�{maxR |G2|, from

which the claim follows.
Thanks to this lemmata we can state the useful

Lemma 1.7.3. If f P Bn
s satisfies (2.3.1), then, for any k P Gn, the number 2Nk of

critical points of ⇡Zk
f is bounded by c̄ :“ maxt4, ⇡

a
8{�u.

42}F }C2 :“ max0§k§2 sup |F pkq|. Note that, by Cauchy estimates, }F }C2 § 2|F |1.

81



Proof. Consider first the case |k|1 • N. By previous lemmata, F k
› :“ ⇡Zk

f{2|fk| satisfies

|F k
› ´ cosp✓ ` ✓kq|1 § 2

´40 .

Thus, by Cauchy estimates we get }F k
› ´cosp✓`✓kq}C2 § 2

´39, so that by Lemma 2.2.1
it follows that 2Nk “ 4.
For the case |k|1 § N by (2.3.1) we know that ⇡Zk

f is �–Morse, and since }f}s § 1

we have sup
R

|p⇡Zk
fq2| §

ÿ

j‰0

|fjk|j2 §
ÿ

j‰0

e´|j|j2 † 4. Then, by Lemma 1.7.2, the claim

follows also in this case.
Obviously, the hypothesis of this lemma are met by our fixed potential in Gn

s , and
the following measure estimate holds.

Lemma 1.7.4. Let � as above in (1.7.20) and c̄ as in Lemma 1.7.3. Then, for any k
in Gn

Ko, one has

meas
`
�0pĎk ˆ Tnq z T 1,k

˘
§ meas

`
pR1,k ˆ Tnq z T 1,k

˘
§

§ c› meas
` rR1,k ˆ Tn

˘
�| log �| ` c̄ max

0§i§2Nk

meas

´`
Bi

kp�q ˆ Tn
˘
zT i

k

¯
.

(1.7.27)

Proof. Since �i
k in Theorem 1.5.1 is a diffeomorphism, one has

pR1,k ˆ Tnq z T 1,k p1.7.24q“ pR1,k ˆ Tnq z
´ §

0§i§2Nk

�i
kpT i

k q
¯

Ñ
´`

R1,k ˆ Tn
˘

z
§

0§i§2Nk

�i
k

`
Bi

kp�q ˆ Tn
˘¯

Y
§

0§i§2Nk

�i
k

´`
Bi

kp�q ˆ Tn
˘
zT i

k

¯
,

then, passing to measures, using (1.5.35), the fact that �i
k is symplectic and Lemma

1.7.3, we get (1.7.27).
Now, assume that, together with (1.7.19) and (1.7.22), it is also K • c0 . Then, recalling
(1.7.23), Theorem 1.6.1 holds. Thus, recalling (1.7.9), observing that

Bi
kp�q “

 
I P Bi

k s.t. | det B2
Ih

i
kpIq| § ⌘

(
Y Bi

kp�, ⌘q ,
by (1.6.10) and (1.7.11) we get

meas
`
pBi

kp�q ˆ TnqzT i
k

˘
§ c0p|k|2n⌘qbmeasBi

k ` C̄1e
´Ks{7 . (1.7.28)

Now, by (1.7.26), (1.7.7), (1.7.27), (1.7.28), (1.5.39), (1.7.20) and since |k|1 § Ko “ K{6
we get, for a suitable constant43 c1 “ c1 pn, s, �, �, ⇠, mq,

measpAq § c1 K
2ne´K{c‹ , c‹ :“ max

 
36{s, 2C1{b

(
. (1.7.29)

43To get (1.7.29), use the following: " § K
´� † 1 (compare (1.1.28)); meas

` rR1,k ˆ Tn
˘

§ cpnq, as
rR1,k Ä ty : |y| § 2u; | log �| “ b

C1 p1`bqK; measBi
k § č by (1.5.39); #Gn

Ko † p2Ko ` 1qn.
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Finally, let
c “ cpn, s, �, �, ⇠, mq • 1 ` c‹ (1.7.30)

be such that, if K • c, then c1 K2ne´K{c‹ § e´K{p1`c‹q. Then, if K • c, claim (iii) follows,
and the proof of Theorem 1.1.1 is complete.

Remark 1.7.3. Notice that T 0 is a family of maximal primary tori for H, and so are
the families T 1,k

i for all k P Gn
Ko and i “ 0, 2Nk. On the other hand, T 1,k

i for all k P Gn
Ko

and 0 † i † 2Nk are families of maximal secondary tori for H. In particular these
families do not bifurcate from integrable tori.
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Chapter 2

Generalizing the angles analyticity

domain

2.1 Set up and weighted norms
Let n • 2, we consider analytic Hamiltonian systems composed of the sum of an
integrable part (in the sense of Arnold-Liouville) and a small perturbation. Namely,
indicating the n-dimensional torus by Tn

:“ Rnzp2⇡Znq, and making use of standard
action-angle coordinates py, xq P B Ä RnˆTn where B is a compact set in Rn, associated
to the symplectic two-form ⌦ :“ ∞n

i“1 dxi ^ dyi, we are interested in those systems
described by

Hpy, xq “ H"py, xq “ hpyq ` "fpy, xq (2.1.1)

where " is a small parameter measuring the size of the analytic perturbation "f w.r.t.
the analytic integrable part h.
In this part we want to generalize the result done in 1 to an Hamiltonian which has
different width of analyticity stripes for each component of the n-dimensional action
variable.
Precisely, Let r ° 0 and s P Rn

` a vector with positive components (i.e. si ° 0 @ i “
1, ..., n) and | ¨ | be the standard Euclidean norm on vectors u P Cn (and its subspaces);
‘bar’, as usual, denotes complex–conjugated, we define

Br :“
§

yPB
tz P Cn

: |z ´ y| § ru,

Tn
s :“ tx P Cn

: |Im xi| § si @ i “ 1, ..., nuzp2⇡Znq.
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Assume that H" in 2.1.1 admits an holomorphic extension for some r ° 0, s P Rn
` on

the complex domain Br ˆ Tn
s Ä C2n.

Let the definitions in 1 from 1.1.1 to 1.1.6 and 1.1.8 holds. We need to change some
definitions with respect to the first chapter. For the rest of this chapter we will use the
following notation: given s P Rn

` we denote by

s5 :“ min
i“1,...,n

si, s7 :“ max
i“1,...,n

si (2.1.2)

Moreover we will often use the following two trivial estimates, for s P Rn
`, k P Rn

|k|1 s5 §
nÿ

i“1

|ki|si § |k|1 s7 § |k|1 |s|1 . (2.1.3)

Definition 2.1.1 (BANACH SPACES OF REAL ANALYTIC PERIODIC FUNCTIONS AND
NORMS). For s P Rn

` and n P N, consider the Banach space of zero-average real analytic
periodic functions on Tn with finite norm

}f}s :“ sup
kPZn

|fk|e|k1|s1`...`|kn|sn , (2.1.4)

and denote by Bn
s its closed unit ball. Besides the norm } ¨ }s, we shall also use the

following two (non equivalent) norms

|f |s :“ sup
Tn
s

|f |, ||| f |||s :“
ÿ

kPZn

|fk|e
∞n

i“1 |ki|si . (2.1.5)

Note that in general }f}s § |f |s § ||| f |||s.
For functions (not necessarily holomorphic in y) f : Br ˆ Tn

s fi›Ñ C we will also use
the norms

|f |B,r,s “ |f |r,s “ sup
BrˆTn

s

|f |, ||| f |||B,r,s “ ||| f |||r,s “ sup
yPBr

ÿ

kPZn

|fkpyq|e
∞n

i“1 |ki|si

}f}B,r,s “ }f}r,s :“ sup
BrˆTn

s

|fkpyq|e
∞n

i“1 |ki|si .
(2.1.6)

For a function depending only on y P Br we use |f |B,r “ |f |r “ supBr
|f |.

Remark 2.1.1. The three norms are obviously not equivalent. Indeed, for any � “
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p�1, ..., �nq P Rn
` with �5 :“ min

i“1,...,n
�i , one has 1

}f}r,s § |f |r,s § ||| f |||r,s §
ˆ
coth

np�5
2

q ´ 1

˙
}f}r,s`� §

ˆ
2n

�5

˙n

}f}r,s`� (2.1.7)

Remark 2.1.2. Given fpy, xq “ ∞
kPZn fkpyqeik¨x and a sublattice ⇤ of Zn, we denote

by ⇡⇤ the projection on the Fourier coefficients in ⇤, namely

⇡⇤f :“
ÿ

kP⇤
fkpyqeik¨x . (2.1.8)

and by ⇡K
⇤ its “orthogonal” operator (projection on the Fourier modes in Zn z⇤):

⇡K
⇤f :“

ÿ

kR⇤
fkpyqeik¨x .

Obviously
||| ⇡⇤f |||r,s , ||| ⇡K

⇤f |||r,s § ||| f |||r,s . (2.1.9)

Remark 2.1.3. Given N ° 1, one can consider the standard following ’truncation’
and ’high–mode’ operators TN and TK

N :

TNfpy, xq :“
ÿ

|k|1§N

fkpyqeik¨x , TK
Nfpy, xq :“

ÿ

|k|1°N

fkpyqeik¨x . (2.1.10)

Note that ⇡⇤ and TN commute. Note, also, that

|||TNf |||r,s , |||TK
Nf |||r,s § ||| f |||r,s , (2.1.11)

and that if s1
i § si @i “ 1, ..., n

|||TK
Nf |||r,s1 § e´p∞n

i“1psi´s1
iqqN ||| f |||r,s . (2.1.12)

Lemma 2.1.1. For all y P Br, |||�py, ¨q py, ¨q |||s § |||�py, ¨q |||s||| py, ¨q |||s.
1We have

ÿ

kPZnz0
e´ ∞

i |ki|�i §
ÿ

kPZnz0
e´|k|1�5 “ cothnp�5{2q ´ 1. Moreover cothn x ´ 1 § pn{xqn.

Indeed for 0 † x § 1 the estimates follows by cothx † 2{ sinhx † 2{x. In the case x ° 1 we have

cothn x ´ 1 § p1 ` e1´2xqn ´ 1 § np1 ` 1{eqn´1e1´2x § pn{xqn ,

where in the second inequality we have used that p1` yqn § 1`np1` 1{eqn´1y for 0 § y § 1{e, while
in the last one we exploit maxx•1 xne´2x “ pn{2eqn.
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Proof. The k-th Fourier coefficient of � is p� qk “ ∞
m �k´m m. Hence

|||�py, ¨q py, ¨q |||s “
ÿ

k

|p� qkpyq|e
∞

i |ki|si

§
ÿ

k

ÿ

m

|�k´mpyq|e
∞

i |ki´mi|si ¨ | mpyq|e
∞

i |mi|si

“ |||�py, ¨q |||s||| py, ¨q |||s.

(2.1.13)

Remark 2.1.4. The space of functions f : Tn
s Ñ Cm endowed with the sup–norm | ¨ |s

or the `1–Fourier norm ||| ¨ |||s is a Banach algebra, while tf : Tn
s Ñ Cm

: }f}s † 8u is
just a Banach space (not a Banach algebra). However, the norm } ¨ }s is particularly
suited to describe tf : Tn

s Ñ C : }f}s † 8u as a probability space.

Remark 2.1.5. If fpxq P Bn
s and fk denotes its Fourier coefficients of mode k, one has

that
|fk| § }f}se´p|k1|s1`...`|kn|snq (2.1.14)

As we have done in the first chapter, in order to apply singular KAM Theory, when
k is a generator of maximal 1d-lattices, we want to control in a quantitative way the
k-Fourier coefficient from below. For this reason, we introduce the following class of
potential

Definition 2.1.2 (THE ANALYTIC CLASS Gn
s ). We denote by Gn

s the subset of functions
f P Bn

s such that the following two properties hold:

lim
|k|1Ñ`8

kPGn

|fk|ep|k1|s1`...`|kn|snq|k|n
1

° 0 , (2.1.15)

@ k P Gn , ⇡Zk
f is a Morse function with distinct critical values .

Remark 2.1.6. (i) A simple example of function in Gn
s is given by

fpxq :“ 2

ÿ

kPGn

e´p|k1|s1`...`|kn|snq
cospk ¨ xq .

Indeed, one checks immediately that

}f}s “ 1 , lim
|k|1Ñ`8

kPGn

|fk|ep|k1|s1`...`|kn|snq|k|n
1

“ `8 , ⇡Zk
fp✓q “ 2e´p|k1|s1`...`|kn|snq

cos# .

(ii) The critical points of an analytic Morse function on T, by compactness, cannot
accumulate, hence, there are a finite, even number of them, which are, alternately, a
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relative strict maximum and a relative strict minimum. In particular, if G is �–Morse,
then the number of its critical points can be bounded by ⇡

a
2max |G2|{�. Indeed, if

✓ ‰ ✓1 are critical points of G, then, by definition one has

� § |Gp✓q ´ Gp✓1q| § 1
2pmax |G2|q distp✓, ✓1q2 ,

which implies that the minimal distance between two critical points is
a
2�{max |G2|

and the claim follows.

2.2 Uniform behaviour of large-mode Fourier projec-
tions

If a function f P Bn
s satisfies (2.1.15), then, apart from a finite number of Fourier

modes, its Fourier projections ⇡Zk
f are close to a shifted rescaled cosine, a fact that

allows, e.g., to have a uniform analytic theory of high order perturbation theory.
To discuss this matter, let us first point out that for any sequence of real numbers taku
and for any function Np�q such that lim�Ó0 Np�q “ `8 one has

lim ak ° 0 ñ D � ° 0 s.t. ak • � , @ k • Np�q . (2.2.1)

We shall apply this remark to the minimum limit in (2.1.15) with a particular choice
of the function Np�q, namely, calling s5 “ min

i“1,...,n
si we define Np�q “ Np�;n, sq as

Np�q :“ 2 max

!
1 ,

1

s5
log

cn
sn5 �

)
, cn :“ 2

44

ˆ
2n

e

˙n

. (2.2.2)

For later use, we point out that2

N • 2cs , where cs :“ max
 
1,

1

s5

(
. (2.2.3)

From (2.2.1) it follows that if f satisfies (2.1.15), one can find 0 † � § 1 such that

|fk| • �|k|´n
1

e´p∞n
i“1 |ki|siq , @ k P Gn , |k|1 • N . (2.2.4)

The main feature of the above choice of N is that, for |k|1 • N, ⇡Zk
f is very close to a

shifted rescaled cosine function:
2In fact, if s5 • 1 then N • 2 • 2{s5, while if s5 † 1 then the logarithm in (2.2.2) is larger than

one, so that N • 2{s5 also in this case.
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Proposition 2.2.1. Let � ° 0, f P Bn
s and assume (2.2.4). Then, for any k P Gn with

|k|1 • N, ⇡Zk
f is 2

´40–cosine–like (Definition 1.1.8).

Proof. We shall prove something slightly stronger, namely, that there exists ✓k P r0, 2⇡q
so that

⇡Zk
fp✓q “ 2|fk|

`
cosp✓ ` ✓kq ` F k

‹ p✓q
˘
, F k

› p✓q :“ 1

2|fk|
ÿ

|j|•2

fjke
ij✓ , (2.2.5)

with F k
› P B1

1 and (recall the definition of the norms in 2.1.1)

|F k
› |1 § |||F k

› |||1 § 2
´40 . (2.2.6)

Indeed, by definition of ⇡Zk
f ,

⇡Zk
fp✓q :“

ÿ

jPZ z t0u
fjke

ij✓ “
ÿ

|j|“1

fjke
ij✓ `

ÿ

|j|•2

fjke
ij✓ ,

and, defining ✓k P r0, 2⇡q so that ei✓k “ fk{|fk|, one has

1

2|fk|
ÿ

|j|“1

fjke
ij✓ “ Re

´ fk
|fk|e

i✓
¯

“ Re eip✓`✓kq “ cosp✓ ` ✓kq ,

which yields (2.2.5). Now, since f P Bn
s it is |fk| § e´p∞n

i“1 |ki|siq and, by (2.2.4), |fk| •
�|k|´n

1
e´p∞n

i“1 |ki|siq. Therefore, for |k|1 • N, one has

|||F k
› |||

1

p2.2.5q“ 1

2|fk|
ÿ

|j|•2

|fjk|e|j| § |k|n
1
e´p∞n

i“1 |ki|siq

2�

ÿ

|j|•2

|fjk|e|j|

§ |k|n
1
ep∞n

i“1 |ki|siq

2�

ÿ

|j|•2

e´|j|pp∞n
i“1 |ki|siq´1q

§ 2e2|k|n
1

�
e´p∞n

i“1 |ki|siq “ 2
n`1e2

sn5 �
e´ 1

2 p∞n
i“1 |ki|siq

´ |k|1s5
2

¯n

e´ 1
2 p|k|1s5q

§
´
2n

es5

¯n 2e2

�
e´ Ns5

2 § 2
´40 , (2.2.7)

where the geometric series converges since |k|1s5 • Ns5 • 2 (by (2.2.3)) and last
inequality follows by definition of N in (2.2.2).

Remark 2.2.1. In fact, the particular form of N is used only in the last inequality in
(2.2.7).
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Next, we need an elementary calculus lemma:

Lemma 2.2.1. Assume that F P C2pT,Rq, ✓̄ and 0 † c † 1{2 are such that

}F ´ cosp✓ ` ✓̄q}C2 § c ,

where }F }C2 :“ max0§k§2 sup |F pkq|. Then, F has only two critical points and it is
p1 ´ 2cq–Morse (Definition 1.1.6).

Proof. By considering the translated function ✓ Ñ F p✓ ´ ✓̄q, one can reduce oneself to
the case ✓̄ “ 0 (F is �–Morse, if and only if ✓ Ñ F p✓ ´ ✓̄q is �–Morse).
Thus, we set ✓̄ “ 0, and note that, by assumption |F 1| “ |F 1 `sin ✓´sin ✓| • | sin ✓|´c,
and, analogously, |F 2| • | cos ✓| ´c. Hence, |F 1| ` |F 2| • | sin ✓| ` | cos ✓| ´ 2c • 1´ 2c.
Next, let us show that F has a unique strict maximum ✓0 P I :“ p´⇡{6, ⇡{6q (mod 2⇡).
Writing F “ cos ✓ ` g, with g :“ F ´ cos ✓, one has that F 1p´⇡{6q “ 1{2 ` g1p⇡{6q •
1{2 ´ c ° 0, and, similarly F 1p⇡{6q § ´1{2 ` c, thus F has a critical point in I,
and, since ´F 2 “ cos ✓ ´ g2 • cos ✓ ´ c •

?
3{2 ´ c ° 0, F is strictly concave in

I, showing that such critical point is unique and it is a strict local minimum. In fact,
similarly one shows that F has a second critical point ✓1 P p⇡ ´ ⇡{6, ⇡ ` ⇡{6q where F
is strictly convex, so that ✓1 is a strict local minimum; but, since in the complementary
of these intervals F is strictly monotone (as it is easy to check), it follows that F
has a unique global strict maximum and a unique global strict minimum. Finally,
F p✓0q ´ F p✓1q •

?
3 ´ 2c ° 1 ´ 2c and the claim follows.

From Proposition 2.2.1 and Lemma 2.2.1 one gets immediately:

Proposition 2.2.2. Let � ° 0, f P Bn
s and assume (2.2.4). Then, for every k P Gn

with |k|1 • N, the function ⇡Zk
f is |fk|–Morse.

Proof. As in the proof of Proposition 2.2.1, we get
ˇ̌
ˇ
⇡Zk

f

2fk
´ cosp✓ ` ✓kq

ˇ̌
ˇ
1

p2.2.5q“ |F k
‹ |1 § |||F k

‹ |||1
p2.2.6q

§ 2
´40 , (2.2.8)

which implies that the function F :“ ⇡Zk
f{p2fkq is C2–close to a (shifted) cosine:

Indeed, by Cauchy estimates } ¨ }C2 § 2| ¨ |1, so that

}F ´ cosp✓ ` ✓kq}C2 “ max
0§j§2

max
T

|Bj
✓pF ´ cosp✓ ` ✓kqq| § 2|F k

‹ |1
p2.2.9q

§ 2
´39 .

By Lemma 2.2.1 we see that F is p1´ 2
´38q–Morse, and the claim follows by rescaling.

From Proposition 2.2.1 and Lemma 2.2.1 one gets immediately:
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Proposition 2.2.3. Let � ° 0, f P Bn
s and assume (2.2.4). Then, for every k P Gn

with |k|1 • N, the function ⇡Zk
f is |fk|–Morse.

Proof. As in the proof of Proposition 2.2.1, we get
ˇ̌
ˇ
⇡Zk

f

2fk
´ cosp✓ ` ✓kq

ˇ̌
ˇ
1

p2.2.5q“ |F k
‹ |1 § |||F k

‹ |||1
p2.2.6q

§ 2
´40 , (2.2.9)

which implies that the function F :“ ⇡Zk
f{p2fkq is C2–close to a (shifted) cosine:

Indeed, by Cauchy estimates } ¨ }C2 § 2| ¨ |1, so that

}F ´ cosp✓ ` ✓kq}C2 “ max
0§j§2

max
T

|Bj
✓pF ´ cosp✓ ` ✓kqq| § 2|F k

‹ |1
p2.2.9q

§ 2
´39 .

By Lemma 2.2.1 we see that F is p1´ 2
´38q–Morse, and the claim follows by rescaling.

2.3 Genericity
In this section we prove that Gn

s is a generic set in Bn
s .

Definition 2.3.1. Given n ° 0, s P Rn
`, 0 † � § 1 and � ° 0 and N as in (2.2.2) we

call Gn
s p�, �q the set of functions in Bn

s which satisfy (2.2.4) together with:

⇡Zk
f is �´Morse , @ k P Gn , |k|1 § N . (2.3.1)

Then, the following lemma holds:

Lemma 2.3.1. Let n ° 0, s P Rn
`. Then, Gn

s “
§

�Pp0,1s
�°0

Gn
s p�, �q.

Proof. Assume f P Gn
s and let 0 † �0 § 1 be smaller than limit inferior in (2.1.15).

Then, there exists N0 such that |fk| ° �0|k|´n
1

e
∞

i |ki|si , for any |k|1 • N0, k P Gn. Since
lim�Ñ0 N “ `8, there exists 0 † � † �0 such that N ° N0. Hence, if |k|1 • N and
k P Gn, (2.2.4) holds.
Since ⇡Zk

f is, for any |k|1 § N, a Morse function with distinct critical values one can,
obviously, find a � ° 0 for which (2.3.1) holds. Hence f P Gn

s p�, �q.
Now, let f P î

Gn
s p�, �q. Then, there exist � P p0, 1s and � ° 0 such that (2.2.4) and

(2.3.1) hold. Then, (2.1.15) follows immediately from (2.2.4). By Proposition 2.2.1, for
any k P Gn with |k|1 ° N, ⇡Zk

f is 2´40–cosine–like, showing (Lemma 2.2.1) that ⇡Zk
f is

Morse with distinct critical values also for |k|1 • N. The proof is complete.
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Proposition 2.3.1. Gn
s contains an open and dense set in Bn

s .

To prove this result we need a preliminary elementary result on real analytic periodic
functions:

Lemma 2.3.2. Let F “ ∞
Fjeij✓ be a real analytic function on T. There exists a

compact set � Ñ C (depending on Fj for |j| • 2) of zero Lebesgue measure such that if
the Fourier coefficient F1 does not belong to �, then F is a Morse function with distinct
critical values.

Proof. Without loss of generality we may assume that F has zero average. Then, letting
z :“ F1 P C, we write F as

F p✓q “ zei✓ ` z̄e´i✓ ` Gp✓q :“ zei✓ ` z̄e´i✓ `
ÿ

|j|•2

Fje
ij✓ . (2.3.2)

When G ” 0 the claim is true with � “ t0u.
Assume that G ı 0. Observe that, since G is real–analytic, the equations F 1p✓q “ 0 “
F 2p✓q are equivalent to the single equation z “ 1

2e
´i✓

`
iG1p✓q ` G2p✓q

˘
, which, as ✓ P T,

describes a smooth closed ‘critical’ curve �1 in C.
Observe also that F has distinct critical points ✓1, ✓2 P T with the same critical values
if and only if the following three real equations are satisfied:

F 1p✓1q “ 0 , F 1p✓2q “ 0 , F p✓1q ´ F p✓2q “ 0 . (2.3.3)

We claim that if z, ✓1, ✓2 satisfy (2.3.3) then

z “ ⇣p✓1, ✓2q , gp✓1, ✓2q “ 0 , (2.3.4)

with ⇣ and g real analytic on T2 given by

⇣p✓1, ✓2q :“

$
&

%

i
2pei✓1´ei✓2 q

`
G1p✓1q ´ G1p✓2q ` iGp✓1q ´ iGp✓2q

˘
, for ✓1 ‰ ✓2 ;

1
2ei✓1

`
G2p✓1q ` iG1p✓1q

˘
, for ✓1 “ ✓2 ,

gp✓1, ✓2q :“
`
1 ´ cosp✓1 ´ ✓2q

˘`
G1p✓1q ` G1p✓2q

˘
´ sinp✓1 ´ ✓2q

`
Gp✓1q ´ Gp✓2q

˘
.

Indeed, summing up the the third equation in (2.3.3) with the difference of the first
two equations multiplied by ´i, we get

2pei✓1 ´ ei✓2qz ´ i
`
G1p✓1q ´ G1p✓2q ` iGp✓1q ´ iGp✓2q

˘
“ 0 ,
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which is equivalent to z “ ⇣p✓1, ✓2q. Then, by definition gp✓1, ✓1q “ 0, while if ✓1 ‰ ✓2,
substituting z “ ⇣p✓1, ✓2q in the first equation in (2.3.3) and multiplying by 1´cosp✓1´
✓2q we get gp✓1, ✓2q “ 0 also for ✓1 ‰ ✓2. Thus, (2.3.4) holds.
Next, we claim that the real analytic function gp✓1, ✓2q is not identically zero. Assume
by contradiction that g is identically zero. Then gp✓2 ` t, ✓2q ” 0 for every ✓2 and
t, and taking the fourth derivative with respect to t evaluated at t “ 0, we see that
G3p✓2q ` G1p✓2q “ 0, for all ✓2. The general (real) solution of the such differential
equation is given by Gp✓2q “ cei✓2 ` c̄e´i✓2 ` c0, with c P C, c0 P R, which contradicts
the fact that, by definition, Gj “ 0 for |j| § 1. Thus, gp✓1, ✓2q is not identically zero
and, therefore, the set Z Ñ T2 of its zeros is compact and has zero Lebesgue measure3.
Clearly, also the set �2 :“ ⇣pZq Ñ C is compact and has zero measure, and, therefore,
if we define � “ �1 Y �2, we see that the lemma holds also in the case G ı 0.

Proof. of Proposition 2.3.1 Let G̃n
s p�, �q denote the subset of functions in Gn

s p�, �q
satisfying the (stronger) condition4

|fk| ° � e´∞
i |ki|si , @ k P Gn , |k|1 • N “ Np�q , (2.3.5)

and let G̃n
s “

§

0†�§1
�°0

G̃n
s p�, �q . We claim that G̃n

s is an open subset of Bn
s . Let f P G̃n

s p�, �q

for some 0 † � § 1, � ° 0 and let us show that there exists 0 † �1 § �{2 such that if
g P Bn

s with }g ´ f}s † �1 § �{2, then g P G̃n
s p�1, �1q with �1

:“ mint�, �e´s5Np�{2qu{2.
Indeed

|f̃k|e
∞

i |ki|si • |fk|e
∞

i |ki|si ´ }g ´ f}s ° � ´ �1 • �{2 , @ k P Gn , |k|1 • Np�q ,

namely g satisfies (2.3.5) with �{2 instead of �. We already know that ⇡Zk
f is �́ Morse

@ k P Gn, |k|1 † Np�q. Moreover, by Proposition 2.2.3, we know that ⇡Zk
f is |fk|–Morse

for k P Gn with |k|1 • Np�q. In conclusion, by (2.3.5), we get that ⇡Zk
f is 2� 1́ Morse

@ k P Gn, |k|1 † Np�{2q. Since the } ¨ }s–norm is stronger than the C2–one, taking �1

small enough we get that ⇡Zk
g is � 1́ Morse @ k P Gn, |k|1 † Np�{2q.

Let us now show that G̃n
s is dense in Bn

s . Fix f in Bn
s and 0 † � † 1. We have to

find g P G̃n
s with }g ´ f}s § �. Let � :“ �{4 and denote by fk and gk (to be defined)

be the Fourier coefficients of, respectively, f and g. It is enough to define gk only
for k P Zn

› since, for k P ´Zn
› we set gk :“ ḡ´k, since g must be real analytic. Set

gk :“ fk for k P Zn
› zGn. For k P Gn, |k|1 • Np�q, we set gk :“ fk if |fk|e

∞
i |ki|si ° �

3Compare, e.g., Corollary 10, p. 9 of [50].
4Here, we explicitly indicate the dependence on �, while n and s are fixed. Recall that Np�q is

decreasing.
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and gk :“ 2�e´p∞i |ki|siq otherwise. Consider now k P Gn, |k|1 † Np�q. We make use
of Lemma 2.3.2 with F “ ⇡Zk

g, z “ F1 “ gk. Thus, by Lemma 2.3.2, there exists a
compact set �k Ñ C (depending on Fk for |k| • 2) of zero measure such that if gk R �k

the function ⇡Zk
g is a Morse function with distinct critical values. We conclude the proof

of the density choosing |gk| † e´p∞i |ki|siq, |fk ´ gk| § �e´p∞i |ki|siq with gk R �k.

2.3.1 Full measure

Here we show that Gn
s is a set of probability 1 with respect to the standard product

probability measure on Bn
s . More precisely, consider the space5

D
Zn› , where D :“ tw P

C : |w| § 1u, endowed with the product topology6. The product �-algebra of the Borel
sets of DZn› is the �–algebra generated by the cylinders

Â
kPZn›

Ak, where Ak are Borel
sets of D, which differs from D only for a finite number of k. The probability product
measure µb on D

Zn› is then defined by letting

µb
` â

kPZn›

Ak

˘
:“

π

kPZn›

|Ak| ,

where | ¨ | denotes the normalized (|D| “ 1) Lebesgue measure on D. The (weighted)
Fourier bijection7

F : fpxq “
ÿ

kPZn›

fke
ik¨x ` f̄ke

´ik¨x P Bn
s Ñ

 
fke

∞
i |ki|si(

kPZn›
P `8pZn

› q (2.3.6)

induces a product topology on Bn
s and a probability product measure µ on the product

�-algebra B of the Borellians in Bn
s “ F´1

`
D

Zn›
˘

(with respect to the induced product
topology), i.e., given B P B, we set µpBq :“ µbpFpBqq. Then one has:

Proposition 2.3.2. Gn
s P B and µpGn

s q “ 1.

Proof. First note that, for every �, � ° 0 the set Gn
s p�, �q is closed with respect to the

product topology. Indeed for every k P Gn the set tf P Bn
s s.t. |fk| • �|k|´n

1
e´p∞i |ki|siqu

is a closed cylinder. Moreover also the set tf P Bn
s s.t. ⇡Zk

f is �–Morseu is closed
w.r.t the product topology. In fact we prove that the complementary E :“ tf P
Bn
s s.t. ⇡Zk

f is not �–Morseu is open w.r.t the product topology. Indeed if f˚ P E there
5Zn

› was defined in 1.1.2.
6By Tychonoff’s Theorem, DZn

› with the product topology is a compact Hausdorff space.
7f is real analytic so that f´k “ f̄k.
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exists a r ° 0 small enough such that Er :“ tf P Bn
s s.t. }⇡Zk

f ´ ⇡Zk
f˚}C2 † ru Ñ E.

Define the open cylinder

E⇢,J :“ tf P Bn
s s.t. |fjk ´ f˚

jk| † ⇢

|j|2 e
´|j|p∞i |ki|siq for j P Z , 0 † |j| § Ju .

We claim that E⇢,J Ñ Er for suitably small ⇢ and large J (depending on r and s).
Indeed, when f P E⇢,J

}⇡Zk
f´⇡Zk

f˚}C2 § 3

ÿ

j‰0

|j|2|fjk´f˚
jk| § 3⇢

ÿ

0†|j|§J

e´|j|p∞i |ki|siq`6

ÿ

|j|°J

|j|2e´|j|p∞i |ki|siq † r

for suitably small ⇢ and large J . Therefore E⇢,J Ñ Er Ñ E and E is open in the product
topology. In conclusion, taking the intersection over k P Gn, we get that Gn

s p�, �q is
closed with respect to the product topology.
Recalling Lemma 2.3.1, we note that Gn

s can be written as Gn
s “

§

hPN

Gn
s p1{h, 1{hq. Thus

Gn
s is Borellian.

Let us now prove that µpGn
s q “ 1. Fix 0 † � § 1 and denote by Gn

s p�q be the subset of
functions in Bn

s satisfying (2.2.4) and such that ⇡Zk
f is a Morse function with distinct

critical values for every k P Gn. Recall (2.3.6) and define

P� :“ FpGn
s p�qq Ñ `8pZn

› q .

Fix ĝ “ pgkqkPZn› zGn P `8pZn
› zGnq with |gk| § 1 for every k P Zn

› zGn. Consider the
section

Pĝ
� :“

 
ǧ “ pgkqkPGn , |gk| § 1 s.t |gk| • �|k|´n

1
if |k|1 • N , gke

´p∞i |ki|siq R �k , if |k|1 † N

(
,

where the sets �k (depending on ĝ) were defined in the proof of Proposition 2.3.1 so
that, for every k P Gn, |k|1 † N, if gke´p∞i |ki|siq R �k then the function8

gke
´p∞i |ki|siqei✓`ḡke

´p∞i |ki|siqe´i✓`
ÿ

|j|•2

ĝjke
´|j|p∞i |ki|siqeij✓ “ ⇡Zk

f , with f :“ F´1pgq , g “ pǧ, ĝq ,

is a Morse function with distinct critical values. Then, since every �k has zero measure

µb |`8pGnqpPĝ
�q “

π

kPGn,|k|1•N

p1 ´ �2 |k|´2n
1

q • 1 ´ c�2 ,

8Recall (2.3.2).
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for a suitable constant c “ cpnq. Since the above estimate holds for every ĝ P `8pZn
› zGnq,

by Fubini’s Theorem we get

µb |`8pGnqpPĝ
�q “ µbpP�q “ µpGn

s p�qq • 1 ´ c�2 .

Then,
µpGn

s q “ lim
�Ñ0`

µpGn
s p�qq “ 1 .

Assumptions 2.3.1. Also in this case, For the rest of the work we will assume two
proprieties on our Hamiltonian in 2.1.1:
i) The integrable part hpyq is a �-convex function of the action variable (see Assumpion
1.1.1 in Chapter 1) and we will call L as the Lipschitz constant of h. This function is
supposed to be real-analytic on Br where B is a compact subset of Rn and r ° 0.
ii) The perturbation f P Gn

s .

2.4 A normal form lemma with “small” analyticity
loss

In this section, as we have done in Chapter 1, we describe an analytic normal form
lemma for nearly–integrable Hamiltonians H"py, xq “ hpyq ` "fpy, xq, which allows
to average out non–resonant Fourier modes of the perturbation f on suitable non–
resonant regions, and allows for “very small” analyticity loss in the angle variables, a
fact, which will be crucial in our applications. In this case, we have to do something
different because each analyticity stripe has different width. These differences are only
technical.
We recall ([51], [25]) that, given an integrable Hamiltonian hpyq, positive numbers ↵, K
and a lattice ⇤ Ä Zn, a (real or complex) domain U is p↵, Kq non–resonant modulo ⇤
(with respect to h) if

|h1pyq ¨ k| • ↵ , @ y P U , @ k P Zn z⇤ , |k|1 § K . (2.4.1)

As in the first chapter, the main point of the following “Normal Form Lemma” is that
the “new” averaged Hamiltonian is defined, in the fast variable (angle) domain, in a
region “almost equal” to the original domain, “almost equal” meaning a complex strip
with of width sip1 ´ 1{Kq for each component if s is the vector of width of the initial
angle analyticity. More precisely, we have:
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Proposition 2.4.1 (Normal form with “small” analyticity loss).
Let r ° 0, s P Rn

`,↵ ° 0, K P N, K • 2, B Ñ Rn, and let ⇤ be a lattice of Zn. Let

Hpy, xq “ hpyq ` fpy, xq (2.4.2)

be real–analytic on Br ˆ Tn
s with ||| f |||r,s † 8. Assume that Br is (↵,K) non–resonant

modulo ⇤ and that
#› :“ 2

11K2

↵ rs7
||| f |||r,s † 1 . (2.4.3)

where s7 :“ min
1§i§n

si. Then, there exists a real–analytic symplectic change of variables

 : py1, x1q P Br› ˆ Tn
s› fiÑ py, xq P Br ˆ Tn

s with r› :“ r{2 , s› :“ sp1 ´ 1{Kq9

(2.4.4)
satisfying

|y ´ y1|1 § #›
27K

r , max
1§i§n

|xi ´ x1
i| § #›

16K2
s5 , (2.4.5)

and such that
H ˝ “ h ` f 5 ` f› , f 5

:“ ⇡⇤f ` TK
K ⇡

K
⇤f (2.4.6)

with
||| f› |||r›,s› § 1

K
#›||| f |||r,s , |||TK ⇡

K
⇤f› |||r›,s› § p#›{8qK 8

eK
||| f |||r,s . (2.4.7)

Moreover, re-writing (2.4.6) as

H ˝ “ h ` g ` f›› where ⇡⇤g “ g , ⇡⇤f›› “ 0 , (2.4.8)

one has
||| g ´ ⇡⇤f |||r›,s› § 1

K
#›||| f |||r,s , ||| f›› |||r›,s{2 § 2e´pK´2qs̄||| f |||r,s , (2.4.9)

where
s̄ :“ min

"
s5
2
, log

8

#›

*
. (2.4.10)

Remark 2.4.1.

(i) As we have just said, the “novelty” of this lemma is that the bounds in (2.4.7)
and the first one in (2.4.9) hold on the arbitrary large angle domain Tn

s› with
s› “ sp1´1{Kq, that will be crucial for our work (as we have just seen in chapter
one). The drawback of the gain in angle–analyticity strip is that the power of K
in the smallness condition (2.4.3) is not optimal: for example in [25] the power of
K is one (but s› “ s{6, which would not work in our applications).

9Given a vector ⇠ P Rn, with the notation a⇠ with a P R we intend the vector with component
pa⇠qi “ a⇠i for all i “ 1, ..., n.
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(ii) Having information on non–resonant Fourier modes up to order K, the best
one can do is to average out the non–resonant Fourier modes up to order K,
namely, to “kill" the term TK ⇡K

⇤f of the Fourier expansion of the perturbation.
This explains the “flat” term f 5 “ ⇡⇤f ` TK

K ⇡
K
⇤f surviving in (2.4.6) and which

cannot be removed in general. Now, think of the remainder term f› as
f› “ ⇡⇤f› `

`
TK
K ⇡

K
⇤f› ` TK ⇡

K
⇤f›

˘
;

then, ⇡⇤f› is a p#›||| f |||r,s{Kq–perturbation of the part in normal form (i.e., with
Fourier modes in ⇤), while TK

K ⇡
K
⇤f› is, by (2.1.12), a term exponentially small

with K (see also below) and TK ⇡K
⇤f› is a very small remainder bounded by

8p#›{8qK ||| f |||r,s{eK.

(iii) We note that (2.4.8) follows from (2.4.6). Indeed we take
g “ ⇡⇤f ` ⇡⇤f› , f›› “ TK

K ⇡
K
⇤f ` ⇡K

⇤f› “ TK ⇡
K
⇤f› ` TK

K ⇡
K
⇤pf› ` fq .

Then the first estimate in (2.4.9) follows by the first bound in (2.4.7) and (2.1.9).
Regarding the second estimate in (2.4.9), we first note by (2.4.7) and (2.1.12)
(used with f ù f› N ù K, r ù r›, s ù s›, and � ù 1

2s ´ 1
K s so that

s› ´ � “ s{2 and e´pK`1q�5 § e´pK´2qs5{2)

|||TK
Kf› |||r›,s{2 “ |||TK

Kf› |||r›,s›´� § e´pK`1q�5 ||| f› |||r›,s› § e´pK´2qs5{2#›
K

||| f |||r,s .
By (2.1.9), (2.4.7) and (2.1.12) we get

||| f›› |||r›,s{2 § |||TK ⇡
K
⇤f› |||r›,s{2 ` |||TK

Kf› |||r›,s{2 ` |||TK
Kf |||r›,s{2

§ p#›{8qK 8

eK
||| f |||r,s ` e´pK´2qs5{2p#›{K ` e´3s5{2q||| f |||r,s

§ 2e´pK´2qs̄||| f |||r,s .
(iv) For comparison with standard normal form theory like the one in [25] see Remark

4.1,iv in [1], the considerations are essentially the same.
In order to do this procedure we need some technical lemmata that are slightly different
from the standard one (e.g. [25]).
Given a function � we denote by X t

� the hamiltonian flow at time t generated by � and
by “ad” the linear operator u fiÑ ad�u :“ tu,�u and ad

` its iterates:
ad

0
�u :“ u , ad

`
�u :“ tad`´1

� u,�u , ` • 1 ,

as standard, t¨, ¨u denotes Poisson bracket10.

10Explicitly, tu, vu “
nÿ

i“1

puxivyi ´ uyivxiq.
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Recall the identity (“Lie series expansion”)

u ˝ X1
� “

ÿ

`•0

1

`!
ad

`
�u “

8ÿ

`“0

B`
tpu ˝ X t

�q
`!

ˇ̌
ˇ
t“0

, (2.4.11)

valid for analytic functions and small �. We recall the following technical lemma, a
slightly different version of the lemma B.3 of [?].

Lemma 2.4.1. For r ° 0, s P Rn
` and ⇢ ° 0, � P Rn

` such that ⇢ † r, �i † si @ i “
1, ..., n, for B Ñ Rn and denoting by �5 :“ min

i
�i one has

sup
yPBr

ÿ

1§i§n

||| Bxi�py, ¨q |||s´� § 1

e�5
|||� |||r,s , sup

yPBr´⇢

max
1§i§n

||| Byi�py, ¨q |||s § 1

⇢
|||� |||r,s ,

Proof. For the x-derivatives we have

sup
yPBr

ÿ

1§i§n

||| Bxi�py, ¨q |||s´� “ sup
yPBr

ÿ

1§i§n

ÿ

k

|ki||�kpyq|e
∞

i |ki|psi´�iq

§ sup
yPBr

ÿ

1§i§n

ÿ

k

|ki||�kpyq|e
∞

i |ki|psi´�5q

§ sup
t•0

te´t�5 ¨ |||� |||r,s

§ 1

e�5
|||� |||r,s

(2.4.12)

uniformly for all y P Br. For the partial derivative with respect to yi at a point y in
Br´⇢ we write

Byi�py, xq “ 1

2⇡i

ª

�

�py ` ⇠, xq
⇠

d⇠ (2.4.13)

with a circle � in the yi plane around the origin of radius ⇢. We obtain

||| Byi� |||s § 1

2⇡

ª

�

|||�py ` ⇠, ¨q |||s
|⇠| d|⇠| § 1

⇢
|||� |||r,s (2.4.14)

uniformly in y P Br´⇢.

Lemma 2.4.2. For r, r0, ⇢ ° 0; s, s0, � P Rn
` such that 0 † r´⇢ † r0, 0 † si´�i † ps0qi

for all i “ 1, ..., n one has

||| tu,�u |||r´⇢,s´� § 1

e

ˆ
1

pr0 ´ r ` ⇢q�5
` 1

ps0 ´ s ` �q5 ⇢

˙
|||u |||r0,s0 |||� |||r,s. (2.4.15)
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Proof. The proof is a simple application of the previous lemma noting that fixing
y P Br´⇢ one has

||| Byiupy, ¨q ¨ Bxi�py, ¨q |||s´� §
ÿ

i“1,...,n

||| Byiupy, ¨q |||s´�||| Bxi�py, ¨q |||s´�

§ max
1§i§n

||| Byiupy, ¨q |||s´�

ÿ

1§i§n

||| Bxi�py, ¨q |||s´�

§ 1

pr0 ´ r ` ⇢q |||u |||r0,s0 ¨ 1

e�5
|||� |||r,s.

(2.4.16)

Likewise for ||| Bxiupy, ¨q ¨ Byi�py, ¨q |||s´�

Lemma 2.4.3. Let r, r0, ⇢ ° 0; s, s0, � P Rn
` such that 0 † ⇢ † r § r0 ´ ⇢, and

0 † �i † si § ps0 ´ �qi for all i “ 1, ..., n. Then if |||� |||r0,s0 † 1
2⇢�5, one has

|||u ˝ X1
� |||

r´⇢,s´�
§

ˆ
1 ´ 2

⇢�5
|||� |||r0,s0

˙´1

|||u |||r,s. (2.4.17)

Proof. Consider the expression in 2.4.11. For ` • 1, let ⇢̃ “ 1
`⇢, �̃ “ 1

`�. Let ||| ¨ |||i :“
||| ¨ |||r´i⇢̃,s´i�̃ for 1 § i § `. Using the above lemmata We then have

||| adi
�u |||

i
§ 1

e

ˆ
1

ps0 ´ s ` i�̃q5⇢̃
` 1

pr0 ´ r ` i⇢̃q�̃5

˙
|||� |||r0,s0 ||| adi´1

� u |||
i´1

.

§ 2

e⇢̃�̃5

1

` ` i
|||� |||r0,s0 ||| adi´1

� u |||
i´1

(2.4.18)

Hence,

||| ad`
�u |||

r´⇢,s´�
§

ˆ
2

e⇢̃�̃5

˙` `!

p2`q! |||� |||`r0,s0 |||u |||r,s. (2.4.19)

Now observing that ˆ
2

e⇢̃�̃5

˙`
1

p2`q! §
ˆ

2

⇢�5

˙`

(2.4.20)

we arrive at

|||u ˝ X1
� |||

r´⇢,s´�
§

ÿ

`•0

1

`!
||| ad`

�u |||
r´⇢,s´�

§
ÿ

`•0

ˆ
2

⇢�5

˙`

|||� |||`r0,s0 |||u |||r,s

“
ˆ
1 ´ 2

⇢�5
|||� |||r0,s0

˙´1

|||u |||r,s.

(2.4.21)
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Lemma 2.4.4. Let r0, ⇢ ° 0; s0, � P Rn
` such that 0 † ⇢ † r0, and 0 † �i † ps0qi for

all i “ 1, ..., n. Assume that

#̂ :“
4e|||� |||r0,s0
⇢ �5

§ 1 . (2.4.22)

Then for every r1 ° 0; s1 P Rn
` such that ⇢ † r1 § r0, �i † s1

i § ps0qi, the time-1-flow
X1

� of vector field X� define a good canonical transformation

X1
� : Br1´⇢ ˆ Tn

r1´� Ñ Br1´⇢{2 ˆ Tn
s1´�{2 (2.4.23)

satisfying
|y ´ y1|1 § #̂

⇢

4e
, max

1§i§n
|xi ´ x1

i| § #̂
�5
4

(2.4.24)

Moreover let r ° 0; s P Rn
` such that r ° ⇢, si ° �i for all i, and set for i “ 1, ..., n

r̄ :“ mintr0, ru , s̄i :“ mintps0qi, siu .
Then for any j • 0

|||u ˝ X1
� ´

ÿ

`§j

ad
`
�u |||

r̄´⇢,s̄´�

§
ÿ

`°j

1

`!
||| ad`

�u |||
r̄´⇢,s̄´�

§ 2p#̂{2qj||| tu,�u |||r̄´⇢{2,s̄´�{2 (2.4.25)

for every function u with |||u |||r,s † 8.
In particular when r § r0, si § ps0qi for all i “ 1, ..., n

|||u ˝ X1
� ´ u |||

r´⇢,s´�
§

ÿ

`•1

1

`!
||| ad`

�u |||
r´⇢,s´�

§ 2#̂ |||u |||r,s , (2.4.26)

|||u ˝ X1
� ´ u ´ tu,�u |||

r´⇢,s´�
§ #̂2 |||u |||r,s , (2.4.27)

Proof. We first note that by Lemma 2.4.1 (applied with r0 ù r, s0 ù s) for every
py, xq P Br0´⇢ ˆ Tn

s0´� we have

|Bx�py, xq|1 § 1

e�5
|||� |||r0,s0 “ #̂⇢

4e
§ ⇢

4e
, max

1§i§n
|Byi�py, xq| § 1

⇢
|||� |||r0,s0 “ #̂�5

4
§ �5

4
.

Then (2.4.23) holds.
For h • 1, set for brevity

||| ¨ |||i :“ ||| ¨ |||r̄´ ⇢
2 ´i⇢̃,s̄´�

2 ´i�̃ , 0 § i § h , ⇢̃ :“ ⇢

2h
, �̃ :“ �

2h
.
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We get

||| adi
�tu,�u |||

i

(2.4.15)
§ 1

e

ˆ
1

⇢̃ps0 ´ s̄ ` i�̃ ` �{2q5
` 1

�̃5pr0 ´ r̄ ` i⇢̃ ` ⇢{2q

˙
|||� |||r0,s0 ||| adi´1

� tu,�u |||
i´1

§ 8h2

e⇢ �5

1

h ` i
|||� |||r0,s0 ||| adi´1

� tu,�u |||
i´1

,

and, iterating,

||| adh
�tu,�u |||

h
§ 8h2

e⇢�5

h!

p2hq! |||� |||r0,s0 ||| tu,�u |||r´⇢{2,s´�{2 § h!p#̂{2qh||| tu,�u |||r´⇢{2,s´�{2

by Stirling’s formula. Then
ÿ

h•j

1

ph ` 1q! ||| ad
h`1
� u |||

r̄´⇢,s̄´�
§

ÿ

h•j

1

h ` 1
p#̂{2qh||| tu,�u |||r´⇢{2,s´�{2

proving (2.4.25) in view of (2.4.22).
Finally (2.4.26) and (2.4.27) follows by (2.4.25) and since ||| tu,�u |||r̄´⇢{2,s̄´�{2 § 2e´1#̂|||u |||r,s
by (2.4.15).

Given K • 2 and a lattice ⇤, define

f 5
:“ ⇡⇤f ` TK

K ⇡
K
⇤f ; fK

:“ f ´ f 5 “ TK ⇡
K
⇤f ,

so that we have the decomposition (valid for any f):

f “ f 5 ` fK , f 5
:“ P⇤f ` TK

K ⇡
K
⇤f , fK

:“ TK ⇡
K
⇤f . (2.4.28)

Lemma 2.4.5. Let r ° 0; s P Rn
` and ⇢ ° 0; � P Rn

` such that ⇢ † r, �i † si @ i “
1, ..., n. Consider a real–analytic Hamiltonian

H “ Hpy, xq “ hpyq ` fpy, xq analytic on Br ˆ Tn
s . (2.4.29)

Suppose that Br is (↵,K) non–resonant modulo ⇤ for h (with K • 2). Assume that

#̌ :“ 4e

↵ ⇢�5
||| fK |||r,s § 1 . (2.4.30)

Then there exists a real–analytic symplectic change of coordinates

 :“ X1
� : Br` ˆ Tn

s` Q py1, x1q Ñ py, xq P Br ˆ Tn
s , r` :“ r ´ ⇢ , ps`qi :“ si ´ �i ,
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generated by a function � “ �K “ TK ⇡K
⇤� with

|||� |||r,s § 1

↵
||| fK |||r,s , (2.4.31)

satisfying
|y ´ y1|1 § #̌

⇢

4e
, max

1§i§n
|xi ´ x1

i| § #̌
�5
4
, (2.4.32)

such that
H ˝ “ hpy1q ` f`py1, x1q , f` :“ f 5 ` f› (2.4.33)

with
||| f› |||r`,s` § 4#̌ ||| f |||r,s . (2.4.34)

Remark 2.4.2. Notice that, by (2.4.28) and (2.4.34), one has

fK
` “ fK

› , ||| f` |||r`,s` § ||| f› |||r`,s` ` ||| f |||r,s § p1 ` 4#̌q||| f |||r,s . (2.4.35)

Moreover notice also that

f 5
` ´ f 5 p2.4.33q“ f 5

› ùñ ||| f 5
` ´ f 5 |||

r`,s`
§ ||| f› |||r`,s`

p2.4.34q
§ 4#̌||| f |||r,s . (2.4.36)

Proof. Let us define

� “ �py, xq :“
ÿ

|m|§K,mR⇤

fmpyq
ih1pyq ¨ meim¨x ,

and note that � solves the homological equation

th,�u ` fK “ 0 . (2.4.37)

Since Br is (↵,K) non–resonant modulo ⇤ the estimate (2.4.31) holds. We now use
Lemma 2.4.4 with parameters r0 ù r, s0 ù s. With these choices it is #̂ “ #̌, and,
by (2.4.30) #̌ § 1. Thus, (2.4.22) holds and Lemma 2.4.4 applies. (2.4.32) follows by
(2.4.24). We have

H ˝ “ h ` f 5 ` f›

with
f› “ ph ˝ ´ h ´ th,�uq ` pf ˝ ´ fq .

Since

h ˝ ´ h ´ th,�u “
ÿ

`•2

1

`!
ad

`
�h “

ÿ

`•1

1

p` ` 1q!ad
`
�th,�u (2.4.37)“ ´

ÿ

`•1

1

p` ` 1q!ad
`
�f

K ,
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we have

|||h ˝ ´ h ´ th,�u |||r`,s` §
ÿ

`•1

1

`!
||| ad`

�f
K |||

r`,s`

p2.4.26q
§ 2#̌ ||| fK |||r,s § 2#̌ ||| f |||r,s .

Finally, applying again Lemma 2.4.4 with u “ f , by (2.4.26), we get ||| f ˝ ´ f |||r`,s` §
2#̌ ||| f |||r,s, proving (2.4.34) and concluding the proof of Lemma 2.4.5.
As a preliminary step we apply Lemma 2.4.5 to the Hamiltonian H “ h` f in (2.4.29)
with ⇢ “ r{4 and � “ s{2K. By (2.1.9), (2.1.11), (2.4.28) and (2.4.3) hypothesis
(2.4.30) holds, namely

#´1 :“
2
5eK

↵ rs5
||| fK |||r,s § 1 . (2.4.38)

Then there exists a real–analytic symplectic change of coordinates

 ´1 : Br0 ˆ Tn
s0 Q pyp0q, xp0qq Ñ py, xq P Br ˆ Tn

s , r0 :“
3

4
r , ps0qi :“

ˆ
1 ´ 1

2K

˙
si ,

for all i “ 1, ..., n, satisfying

|y ´ yp0q|1 § #´1
r

16e
, max

1§i§n
|xi ´ xp0q

i | § #´1
s5
8K

, (2.4.39)

such that

H˝ ´1 “: H0 “ hpyp0qq`f0pyp0q, xp0qq , f0 “ f 5`f› , f 5
:“ P⇤f`TK

K ⇡
K
⇤f , (2.4.40)

with
||| f› |||r0,s0 § 4#´1||| f |||r,s . (2.4.41)

Recalling (2.4.28) and (2.4.40) we get

fK
0 “ fK

›

and, by (2.4.41) and (2.4.38),

||| fK
0 |||r0,s0 § 4#´1||| f |||r,s § 2

7eK

↵ rs5
||| f |||2r,s . (2.4.42)

Then, setting

#0 :“ � ||| fK
0 |||r0,s0 with � :“ 2

5eK3

↵ rs5
, (2.4.43)
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we have

#0 §
ˆ
2
6eK2

↵ rs5
||| f |||r,s

˙2 (2.4.3)
§ p#›{8q2 § 1

26
. (2.4.44)

Finally, since f 5
0 ´ f 5 “ f 5

› by (2.4.36) we get

||| f 5
0 ´ f 5 |||r0,s0 § 4#´1||| f |||r,s

(2.4.38)
§ 2

7eK

↵ rs5
||| f |||2r,s

(2.4.3)
§ 1

4K
#›||| f |||r,s . (2.4.45)

The idea is to construct  by applying K times Lemma 2.4.5.
Let

⇢ :“ r

4K
, �i :“

si
2K2

,

rpjq
:“ 3

4
r ´ j⇢ , spjq

:“
ˆ
1 ´ 1

2K

˙
s ´ j� , ||| ¨ |||j :“ ||| ¨ |||rpjq,spjq ,(2.4.46)

Fix 1 § h § K and make the following inductive assumptions:
Assume that there exist, for 1 § j § h, real–analytic symplectic transformations

 j´1 :“ X1
�j´1

: Brpjq ˆ Tn
spjq Q pypjq, xpjqq Ñ pypj´1q, xpj´1qq P Brpj´1q ˆ Tn

spj´1q ,

generated by a function �j´1 “ �K
j´1 with

|||�j´1 |||j´1 § 1

↵
||| fK

j´1 |||
j´1

, (2.4.47)

satisfying

|ypj´1q ´ ypjq|1 § #j´1
r

16eK
, max

1§`§n
|xpj´1q

` ´ xpjq
` | § #j´1

s5
8K2

, (2.4.48)

such that

Hi :“ Hj´1 ˝ j´1 “: h ` fj “ h ` fK
j ` f 5

j (2.4.49)

satisfies, for 1 § j § h, the estimates

#j §
˜
2
8K2||| f |||r,s
↵rs5

¸j`1
(2.4.3)“

ˆ
#›
8

˙j`1

, ||| f 5
j ´ f 5

j´1 |||
j

§ 1

�

ˆ
#›
8

˙j`1

, (2.4.50)

where

#j :“ �|fK
j |j . (2.4.51)
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Let us first show that the inductive hypothesis is true for h “ 1 (which implies j “ 1).
Indeed by (2.4.44) we see that we can apply Lemma 2.4.5 with f ù fK

0 and #̌ ù
#0 “ �||| fK

0 |||. Thus, we obtain the existence of  0 “ X1
�0

, generated by a function
�0 “ �K

0 with

|||�0 |||r0,s0 § 1

↵
||| fK

0 |||r0,s0
(2.4.42)

§ 2
7eK

↵2rs5
||| f |||2r,s , (2.4.52)

satisfying (2.4.47) and11 (2.4.48), so that ph ` fK
0 q ˝ 0 “: h ` f̃1 and, by (2.4.33) and

(2.4.34),

||| f̃1 |||1 § 4#0||| fK
0 |||0

(2.4.44)
§ 1

4
||| fK

0 |||0
(2.4.42)

§ 2
5eK

↵rs5
||| f |||2r,s . (2.4.53)

We have that f1 “ f̃1 ` f 5
0 ˝ 0. Then12

fK
1 “ f̃K

1 ` pf 5
0 ˝ 0 ´ f 5

0qK , f 5
1 ´ f 5

0 “ f̃ 5
1 ` pf 5

0 ˝ 0 ´ f 5
0q5 . (2.4.54)

Write

f 5
0 ˝ 0 ´ f 5

0 “ pf 5
0 ´ f 5q ˝ 0 ´ pf 5

0 ´ f 5q ` pf 5 ˝ 0 ´ f 5 ´ tf 5,�0uq ` tf 5,�0u .

By (2.4.26) (with u ù f 5
0 ´ f 5, r ù r0, s ù s0) we have

||| pf 5
0 ´ f 5q ˝ 0 ´ pf 5

0 ´ f 5q |||1 § 2#0||| f 5
0 ´ f 5 |||0 § 2

4eK

↵rs5
||| f |||2r,s

by (2.4.44) and (2.4.45). By (2.4.25) with u ù f 5, � ù �0, j ù 1, r̄ ù r0, s̄ ù s0,

||| f 5 ˝ 0 ´ f 5 ´ tf 5,�0u |||1 § 2#0||| tf 5,�0u |||r0´⇢{2,s0´�{2 § 2
9K3

↵2r2s25
||| f |||3r,s

(2.4.3)
§ K

4↵rs5
||| f |||2r,s ,

by (2.4.44), (2.4.52) and (2.4.15) (with f ù �0, g ù f 5). Analaogously by (2.4.15)
we get

||| tf 5,�0u |||1 § 2
4K2

ers5
|||�0 |||0||| f |||r,s

(2.4.52)
§ 2

11K3

↵2r2s25
||| f |||3r,s

(2.4.3)
§ K

↵rs5
||| f |||2r,s .

Summarizing:

||| f 5
0 ˝ 0 ´ f 5

0 |||1 § 2
6K

↵rs5
||| f |||2r,s .

11Note also that pfK
0 q5 “ 0

12Note that pf 5
0qK “ 0 and pf 5

0q5 “ f 5
0.
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Then, by (2.4.53) and (2.4.54) we get

||| fK
1 |||1 , ||| f 5

1 ´ f 5
0 |||1 § 2

7K

↵rs5
||| f |||2r,s (2.4.55)

checking (2.4.50) in the case h “ j “ 1.

Now take 2 § h § K and assume that the inductive hypothesis holds true for 1 § j § h
and let us prove that it holds also for j “ h ` 1. By (2.4.50) and (2.4.3) we can apply
Lemma 2.4.5 with f ù fK

h and #̌ ù #h. Thus, we obtain the existence of  h “ X1
�h

,
generated by a function �h “ �K

h with

|||�h |||h
(2.4.47)

§ 1

↵
||| fK

h |||h
(2.4.51)“ #h

↵�
, (2.4.56)

so that ph ` fK
h q ˝ h “: h ` f̃h`1 and, by (2.4.33) and (2.4.34),

||| f̃h`1 |||h`1 § 4#h||| fK
h |||h

(2.4.51)“ 4

�
#2
h

(2.4.50)
§ 4

�
p#›{8q2h`2

(2.4.3)
§ 1

23h´2�
p#›{8qh`2 § 1

24�
p#›{8qh`2 ,

(2.4.57)
since h • 2. We have that fh`1 “ f̃h`1 ` f 5

h ˝ h. Then13

fK
h`1 “ f̃K

h`1 ` pf 5
h ˝ h ´ f 5

hqK , f 5
h`1 ´ f 5

h “ f̃ 5
h`1 ` pf 5

h ˝ h ´ f 5
hq5 . (2.4.58)

Writing

f 5
h “ f 5 ` pf 5

0 ´ f 5q `
hÿ

m“1

f 5
m ´ f 5

m´1

we have

f 5
h ˝ h ´ f 5

h “ tf 5,�hu
`f 5 ˝ h ´ f 5 ´ tf 5,�hu
`pf 5

0 ´ f 5q ˝ h ´ pf 5
0 ´ f 5q

`
hÿ

j“1

´
pf 5

j ´ f 5
j´1q ˝ h ´ pf 5

j ´ f 5
j´1q

¯
(2.4.59)

where  h “ X1
�h

. By (2.4.15) with f ù �h, g ù f 5, r0 ù rpjq, s0 ù spjq, we get,
by (2.4.47) and (2.4.51),

||| tf 5,�hu |||h`1 § 2
4K2

ers5
|||�h |||h||| f |||r,s § 2

4K2#h

e↵rs5�
||| f |||r,s

(2.4.3)“ 1

e24�
p#›{8q#h

(2.4.50)
§ 1

e24�
p#›{8qh`2 .

13Note that pf 5
hqK “ 0 and pf 5

hq5 “ f 5
h.
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By (2.4.25) with u ù f 5, � ù �h, h ù 1, r̄ ù rphq, s̄ ù sphq, reasoning as above
we get

||| f 5 ˝ j ´ f 5 ´ tf 5,�hu |||h`1 § #h||| tf 5,�hu |||rphq´⇢{2,sphq´�{2 § #h

4e�
p#›{8qh`2 § 1

26e�
p#›{8qh`2

by (2.4.50) and (2.4.3). By (2.4.26) (with u ù f 5
0 ´ f 5, r ù rphq, s ù rphq) we have

||| pf 5
0 ´ f 5q ˝ h ´ pf 5

0 ´ f 5q |||h`1 § 2#h ||| f 5
0 ´ f 5 |||h § 2

8eK

↵rs5
||| f |||2r,s#h § 1

4�
p#›{8qh`2

by (2.4.45), (2.4.50), (2.4.43) and (2.4.3). Analogously, for 1 § j § h, by (2.4.26) (now
with u ù f 5

j ´ f 5
j´1)

||| pf 5
j ´ f 5

j´1q ˝ h ´ pf 5
j ´ f 5

j´1q |||
h`1

§ 2#h||| f 5
j ´ f 5

j´1 |||
h

§ 2

�
p#›{8qh`j`2

by (2.4.50). Then by (2.4.3)

|||
hÿ

j“1

´
pf 5

j ´ f 5
j´1q ˝ h ´ pf 5

j ´ f 5
j´1q

¯
|||
h`1

§ 2

7�
p#›{8qh`2 .

Whence:
||| f 5

h ˝ h ´ f 5
h |||h`1 § 4

7�
p#›{8qh`2 .

Then by (2.4.57) we get

||| f̃h`1 |||h`1 ` ||| f 5
h ˝ h ´ f 5

h |||h`1 § 1

�
p#›{8qh`2 .

By (2.4.58) we get (2.4.50) with j “ h ` 1. This completes the proof of the induction.
Now, we can conclude the proof of Proposition 2.4.1. Set

 :“  ´1 ˝ 0 ˝ ¨ ¨ ¨ ˝ K´1 .

Notice that, by (2.4.46), rpKq “ r{2 “ r› and spKq “ sp1 ´ 1{Kq “ s›. 14

By the induction, it is

H ˝ “ HK´1 ˝ K´1
p2.4.49q“ h ` fK “: h ` f 5 ` f› , (2.4.60)

14Given a vector ⇠ P Rn, with the notation a⇠ with a P R we intend the vector with component
pa⇠qi “ a⇠i for all i “ 1, ..., n.
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with f 5 “ ⇡⇤f ` TK
K ⇡

K
⇤f (recall (2.4.6)). Note that by (2.4.50) and (2.4.44)

Kÿ

j“1

#j´1 §
Kÿ

j“1

p#›{8qj § #›{7 . (2.4.61)

Since py1, x1q “ pypKq, xpKqq by (2.4.39), (2.4.48) and triangular inequality we get

|y1 ´ y|1 § |y ´ yp0q|1 `
Kÿ

j“1

|ypjq ´ ypj´1q|1 § r#´1

16e
` r

16eK

Kÿ

j“1

#j´1

(2.4.61)
§ r

16e

ˆ
#´1 ` #›

7K

˙
(2.4.38)

§ r

16e

ˆ
#›
8K

` #›
7K

˙
,

then (2.4.5) follows (the estimate on the angle being analogous).
Since TKPK

⇤ f
5 “ pf 5qK “ 0 (for any f , recall (2.4.28)) we have

|||TKP
K
⇤ f› |||r›,s› “ ||| fK

K |||K
p2.4.51q“ �´1#K

p2.4.50q
§ �´1p#›{8qK`1 “ p#›{8qK 8

eK
||| f |||r,s ,(2.4.62)

proving the second estimates in (2.4.7).
Finally, (using that K • 2 and that #› § 1)

||| f› |||r›,s›
p2.4.60q“ ||| fK ´ f 5 |||K

p2.4.28q“ ||| fK
K ` f 5

K ´ f 5 |||K

§ ||| fK
K |||K ` ||| f 5

0 ´ f 5 |||0 `
Kÿ

j“1

||| f 5
j ´ f 5

j´1 |||
j

(2.4.45),p2.4.50q
§ ||| fK

K |||K ` 1

4K
#›||| f |||r,s ` 1

�

Kÿ

j“1

p#›{8qj`1

p2.4.62q,(2.4.61)
§ p#›{8qK 8

eK
||| f |||r,s ` 1

4K
#›||| f |||r,s ` #2

›
56�

§ 1

K
#›||| f |||r,s ,

(2.4.63)

which proves also the first estimate in (2.4.7).

2.5 Averaging
Regarding geometry of resonances there is no difference between this case and the
prevoius case in chapter 1. In fact, the analiticity stripes of the action-angle variables
do not influence in any way the geometry of resonances.
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So we recall the first covering lemma proved in section 5 of [1] and written in the first
chapter of this work. In order to face the notation and the definition of resonances we
are going to write down once again only the first covering lemma.

Lemma 2.5.1 (First covering lemma). Let h be KAM non-degenerate and let ! denote
its gradient. Fix K • 6K0 • 12 and ↵ ° 0. Then, the domain B can be covered by three
sets Ri Ñ B,

B “ R0 Y R1 Y R2 (2.5.1)

so that the following holds.
a) R0 is p ↵

2C , K0q completely non-resonant (i.e. non-resonant modulus t0u), namely,

y P R0 ùñ |!pyq ¨ k| • ↵

2C
, @ 0 † |k|1 § K0. (2.5.2)

where C “ Cpn, L, �q “ 12c1nL
� • 1 is a constant.

b) R1 “ î
kPGn

1,K0
R1,k, where, for each k P Gn

1,K0, R
1,k is a closed neighbourhood of a

simple resonance ty P B : !pyq ¨k “ 0u, which is p3↵Kpn`3q{|k|, Kq non-resonant modulo
Zk, namely

y P R1,k Ñ |!pyq ¨ k| § ↵

C
; |!pyq ¨ `| • 3↵Kpn`3q

|k| , @ ` P Zn, ` R Zk, |`|1 § K. (2.5.3)

c) R2 contains all the resonance of order two or more and has Lebesgue measure small
with ↵2: more precisely, there exists a costant c ° 0 depending only on n such that

measpR2q § cpnq↵2
K
2n`2 (2.5.4)

This lemma is equivalently written in the first part of this thesis.

Remark 2.5.1. If a set B Ñ Rn
is p↵, Kq non–resonant modulo ⇤ for h, then the

complex domain Br is p↵´L|r|K,Kq non–resonant modulo ⇤,
15

provided L|r|K † ↵,

where L is the Lipschitz constant of ! on the complex domain Br.

Indeed, if y P Br there exists y0 P B such that |yi ´ py0qi| † ri @i “ 1, ..., n ñ |y´y0| †
|r| and |!py0q ¨ k| • ↵ for all k P Zn z⇤, |k|1 § K. Thus, for such k’s, one has

|!pyq ¨ k| “ |!py0q ¨ k ´ p!py0q ´ !pyqq ¨ k| • |!py0q ¨ k| ´ L|r|K • ↵ ´ L|r|K .

15|r| :“
ˆ

n∞
i“1

r2i

˙1{2
if r is a vector, and it is the standard modulus if r ° 0 is a number.
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In our case, i.e. r ° 0 is a number, obviously Br is p↵´LrK,Kq non–resonant modulo
⇤. So R1,k

r̃k
is

ˆ
3↵Kpn`3q

|k| ´ L↵r̃k

˙
non-resonant mod Zk ñ

ˆ
↵Kpn`3q

|k|

˙
non-resonant mod Zk

(2.5.5)

As in the previous chapter, we want to perform averaging in which the actions remains
more stable, so we need to introduce a few parameters (Fourier cut–offs, a small divisor
threshold, radii of analyticity) and some notation. Let K, K0, ⌫ and ↵ such that

K • 6
s7
s5
K0 • 6K0 • 12, ⌫ • 9

2
n ` 2 ↵ :“ ?

"K⌫ . (2.5.6)

For a generic k P Gn
1,K0 we define

r0 :“
↵

4LCK0
“ ?

"
K
⌫

4LCK0
; r1

0 :“
r0
2
; rk :“

↵

L|k| “ ?
"
K
⌫

L|k| ; r1
k :“

rk
2

s0 :“ sp1 ´ 1

K0
q P Rn

`; s1
0 :“ s0p1 ´ 1

K0
q; s› :“ sp1 ´ 1

K
q P Rn

`; s1
› :“ s›p1 ´ 1

K
q

#̄ :“ 2
14n2n L

s2n`1
5 K2⌫´2n´3

; # :“ 2
2pn´2qk#̄; s1

k :“ |k|1s1
›

(2.5.7)

Remark 2.5.2. Observe that r0 § rk § ?
"K⌫{L, and we have to impose the condition

rk § r (where r is the analyticity radius of the unperturbed Hamiltonian, which here
is a free vector of parameters, and r indicates the smallest component). So we have to
verify the smallness condition

" § r2L2

K2⌫

but one can take r “ K⌫

L so that the condition becomes simply " § 1.

Remark 2.5.3. With the choice of parameters in 2.5.7 one can notice that choose a
"vector" of different analiticity stripes for the actions is pointless. In fact the value of
r0 and rk depends only on ↵ and K that are numbers that do not depend on the original
analiticity stripe r. If one wants to consider an initial "vector" of different analiticity
stripes r “ pr1, ..., rnq for the actions the only consideration that changes is that one
has to ask the condition r0 § rk § r5 instead of r0 § rk § r.
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Theorem 2.5.1 (Averaging theorem). Let H" as in 2.1.1 with }f}B,r,s “ 1 and let
2.5.6,2.5.7 holds. There exists a costant b0 “ b0pn, sq ° 1 such that if K0 • b0, the
following holds.
a) There exists a symplectic change of variables

 0 : R0
r1
0

ˆ Tn
s1
0

fi›Ñ R0
r0 ˆ Tn

s0 (2.5.8)

such that
H" ˝  0 :“ hpyq ` "g0pyq ` "f 0py, xq, xf 0y “ 0 (2.5.9)

with g0 and f0 real analytic on R0
r1
0

ˆ Tn
s1
0

and satisfies

|g0 ´ xfy|R0,r1
0

§ #̄, ||| f 0 |||R0,r1
0,s

1
0

§ 2

ˆ
2nK0
s5

˙n

e´pK0´3qs5{2. (2.5.10)

b) for any k P Gn
1,K0 there exists a symplectic change of variables

 k : R1,k
r1
k

ˆ Tn
s1› fi›Ñ R1,k

rk
ˆ Tn

s› (2.5.11)

such that

Hk “ H" ˝  k “ hkpyq ` "gkpy, k ¨ xq ` "fkpy, xq
“ hpyq ` "gk0pyq ` "gkpy, k ¨ xq ` "fkpy, xq, pZkf

k “ 0
(2.5.12)

where gk0 is real-analytic on R1,k
r1
k
, gkpy, ¨q P B1

s1
k

for every y P R1,k
r1
k
, fk is real-analytic

on R1,k
r1
k

ˆ Tn
s1›

, and

|gk0 |R1,k,r1
k

§ #, ||| gkpy, k ¨ xq ´ pZkfpy, xq |||R1,k,r1
k,s

1
k

§ #.

||| fk |||R1,k,r1
k,

s›
2

† 2

ˆ
2nK

s5

˙n

e´pK´3q s5
2 .

(2.5.13)

c) Finally,
||| ⇡y 0 ´ y |||r1

0,s
1
0

§ r0
27K0

, ||| ⇡y k ´ y |||r1
k,s

1›
§ rk

27Kn`1
(2.5.14)

and, for every fixed y P B, ⇡x 0py, ¨q and ⇡x kpy, ¨q are diffeomorphisms on Tn.

Remark 2.5.4. i) In order to apply lemma 2.4.1, we want to check condition 2.4.3 with
our parameters in 2.5.7. But since ||| f |||r,sp1´1{Kq § p2nK

s5
qn||f ||B,r,s, with simple replacing
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of parameters and calculation (remember that, for part b we use that |k| § K), the
condition 2.4.3 becomes

K
2⌫´n´4 • 2

13`nnnLes5{2

sn`1
5

. (2.5.15)

Our choice of ⌫ and b0 ensures that K
2⌫´n´4 • K

8n • b8n0 , so that by taking b0 large
enough 2.5.15 holds. To be more specific for the non resonant part, taking b0 large
enough one has

#› ù #0
› :“ 2

15
LK3o ||| f |||r0,sp1´1{Koq
K2⌫s5p1 ´ 1{Koq

p2.5.6q† 2
16 LK3o

s5K2⌫

´
2nKo
s5

¯n

p2.5.6q
§ 2

13nn L

sn`1
5

1

K2⌫´n´3

2.5.15§ e´s5{2 § 1 , (2.5.16)

while for the resonant part one has

#› ù #k
› :“ 2

11
LK2|k|2" ||| f |||rk,sp1´1{Kq

↵2s5p1 ´ 1{Kq
p2.5.6q

§ 2
n`10nn L

sn`1
5

1

K2⌫´n´4

p2.5.15q
§ e´s5{2 § 1 , (2.5.17)

ii) if we define
#0 :“

1

K6n`1
• # • #̄ (2.5.18)

and by taking b0 large enough, the smallness condition 2.5.10 becomes

|g0|r1
0

§ #0, ||| f 0 |||r1
0,s

1
0

§ e´K0s5{3 (2.5.19)

while the condition 2.5.13 becomes

|gk0 |r1
k

§ #0; ||| gk ´ ⇡Zkf |||r1
k,s

1
k

§ #0; ||| fk |||r1
k,s›{2 § e´Ks5{3. (2.5.20)

For the rest of the work we will refer to these simplier smallness conditions.

Proof. a) By the choice of r0, the domain R0
r0 is p↵{p4Cq, K0q completely non-resonant

because R0 is p↵{p2Cq, K0q completely non-resonant, so taking b0 big enough in such
a way that 2.4.3 holds, we can apply normal form lemma 2.4.1 to H" in 2.1.1 with
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f,B, r,⇤,↵, K, s replaced respectively by "f,R0, r0, t0u, ↵
4C , K0, s0. The estimates on

2.5.10 comes from 2.4.9 in this way

sup

R0
r1
0

|go ´ xfy| § #0
›

´
2nKo
s5

¯n p2.5.6q
§

´nK

s5

¯n

#0
›

(2.5.16),p2.5.7q
§ #̄ ,

||| f 0 |||R0,r1
0,s

1
0

§ 2e´pKo´2qs5p1´1{Koq{2
´
2nKo
s5

¯n

§ 2

´
2nKo
s5

¯n

e´pKo´3qs5{2 .

b) By the definition of rk, the domain R1,k
rk

is p↵Kpn`3q{|k|, Kq non-resonant modulo Zk.
So taking b0 big enough we can use again lemma 2.4.1 with f,B, r,⇤,↵, K, s replaced
by "f,R1,k, rk,Zk, ↵K

n`3

|k| , K, s›.
For this part, using 2.4.5

||| gk ´ ⇡
kZf |||R1,k,r1

k,s
1
k

§ 1

K

´
2nK

s5

¯n

#k
›

(2.5.17),p2.5.7q
§ # ,

||| fk |||R1,k,r1
k,s›{2 § 2e´pK´2qs5p1´1{Kq{2

´
2nK

s5

¯n

§ 2

´
2nK

s5

¯n

e´pK´3qs5{2 ,

Lemma 2.5.2 (Cosine–like Normal forms). Let H be as in (2.1.1) with f P Bn
s satisfying

(2.2.4) and let (2.5.7) hold. There exists a constant c0 “ c0pn, s, �q • maxtN , b0u such
that if Ko • c0 then the following holds. For any k P Gn

Ko such that |k|1 • N, then the
Hamiltonian Hk in (2.5.12) takes the form:

Hk “ hkpyq`"gkopyq`2|fk|"
“
cospk ¨x`✓kq`F k

› pk ¨xq`gk› py, k ¨xq`fk
› py, xq

‰
, (2.5.21)

where ✓k and F k
› are as in Proposition 2.2.1 and:

gk› :“ 1

2|fk|
`
gk ´ ⇡Zk

f
˘
, fk

› :“ 1

2|fk|f
k . (2.5.22)

Furthermore, gk› py, ¨q P B1
1 (for every y P R1,k

r1
k
), ⇡Zk

fk
› “ 0, and one has:

||| gk› |||r1
k,1

§ # :“ 1

K5n
, ||| fk

› |||r1
k,

s›
2

§ e´Ks5{7 . (2.5.23)

Observe that, under the assumptions of Lemma 2.5.2, by (2.5.6) and (2.2.3) it is

K • 6Ko • 6N • 12cs • 12 . (2.5.24)
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Proof. First of all observe that the hypotheses of Lemma 2.5.2 imply those of Lemma 2.5.1
so that the results of Lemma 2.5.1 hold.
From (2.5.22) it follows that gkpy, ✓q “ ⇡Zk

fp✓q ` 2|fk|gk‹ py, ✓q, which together with
(2.2.5) and (2.5.12) of Lemma 2.5.1, implies immediately the relations (2.5.21). To
prove the first estimate in (2.5.23), we observe that, since |k|1 • N, recalling (2.5.6)
and (2.5.24) one has

s1
k,5 “ |k|1s5

`
1 ´ 1

K

˘2 ° Ns5 4
5 ° 1 . (2.5.25)

Thus, gk› py, ¨q is bounded on a ‘large’ angle–domain of size larger than 1 and has zero
average (since gk› py, ¨q P B1

|k|1s1›
). Now, recall the smoothing property (2.1.12) (with

N “ 1), recall that Ko § K{6, and take c0 large enough. Then,

||| gk› |||r1
k,1

p2.5.22q
:“ 1

2|fk| ||| gk ´ ⇡Zk
f |||r1

k,1

p2.2.4q
§ |k|n

1
e
∞

i |ki|si

2�
||| gk ´ ⇡Zk

f |||r1
k,1

p2.1.12,2.5.25q
§ |k|n

1
e
∞

i |ki|si

2�
||| gk ´ ⇡Zk

f |||r1
k,s

1
k

¨ e´p|s1
k|1´nq p2.5.20q

§ |k|n
1
en

2�
#o e

∞
i |ki|psi´s1›iq

p2.5.7q“ |k|n
1
en

2�
#o e

∞
i

|ki|
K

si

`
2´ 1

K

˘ p2.5.19q
§ K

n
oe

n

2�

1

K6n`1
e2|s|1 Ko

K § 1

K5n

p2.5.23q“ # .

Furthermore, possibly increasing c0 , one also has

||| fk
› |||r1

k,
s›
2

p2.5.22q“ 1

2|fk| ||| fk |||r1
k,

s›
2

p2.2.4q
§ |k|n

1
e
∞

i |ki|si

2�
||| fk |||r1

k,
s›
2

p2.5.20q
§ |k|n

1
e
∞

i |ki|si

2�
e´ Ks5

3

§ K
n
o

2�
e´Ks5 1

3`Ks7 Ko
K § K

n

2� ¨ 6n e´Ks5{6 § e´Ks5{7 .

where we have used the fact that K0
K

§ s5
6s7

.

2.6 Normal form theorem
As in the first chapter, we need a second covering lemma

Definition 2.6.1.

R̃0 “ Re pR0
r1
0{2q R̃1,k “ Re pR1,k

qrk q, qrk “ rk
2Kn`1

, k P Gn
K0

(2.6.1)
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Lemma 2.6.1 (Second covering lemma).

R0 ˆ Tn Ñ  0pR̃0 ˆ Tnq
R1,k ˆ Tn Ñ  kpR̃1,k ˆ Tnq, @ k P Gn

K0

R2
:“ DzpR0 Y R1q Ñ

§

kPGn
K0

§

`PGn
K

`RZk

R2
k,`

(2.6.2)

where R2
k,` is the pull back of the following set in frequency space

⌦
2
k,` :“ t|! ¨ k| † ↵u X t|pK

k !| † Mu X t|pK
k ! ¨ `| § 3↵K{|k|u. (2.6.3)

for this proof one can see [2]

Lemma 2.6.2. Let the hypotheses of Lemma 2.5.2 hold.
(i) For any k P Gn

Ko there exists a matrix Â P Zpn´1qˆn such that16

A :“
ˆ
k

Â

˙
“

ˆ
k1 ¨ ¨ ¨ kn

Â

˙
P SLpn,Zq ,

|Â|8 § |k|8 , |A|8 “ |k|8 , |A´1|8 § pn ´ 1qn´1
2 |k|n´1

8 .
(2.6.4)

(ii) Let �0 be the linear, symplectic map on Rn ˆ Tn onto itself defined by

�0 : py, xq fiÑ py, xq “ pATy,A´1
xq . (2.6.5)

Then,

x1 “ k ¨ x , y “ y1k ` Â
T ŷ ,

“
ŷ :“ py2, ...,ynq

‰
. (2.6.6)

Furthermore, letting17

D
k
:“ A

´T rR1,k ,

#
r̃k :“ rk

c1 |k|
ps̃kqi :“ 1

c1 |k|n´1 si
, c1 :“ 5npn ´ 1qn´1

2 , (2.6.7)

with A as in (i), we find

�0 : D
k
r̃k

ˆ Tn
s̃k

Ñ rR1,k
r1
k{2 ˆ Tn

s›{2 , �0pDk ˆ Tnq “ rR1,k ˆ Tn . (2.6.8)

16SLpn,Zq denotes the group of nˆ n matrices with entries in Z and determinant 1; |M |8 , with M
matrix (or vector), denotes the maximum norm maxij |Mij | (or maxi |Mi|).

17 rR1,k is defined in (2.6.1); recall, also, (2.5.7).
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(iii) Hk in (2.5.12), in the symplectic variables py, xq “
`
py1, ŷq, x

˘
, takes the form:

Hkpy, xq :“ Hk ˝ �0py, xq “ Hkpy, x1q ` "f̄kpy, xq , py, xq P D
k
r̃k

ˆ Tn
s̃k
, (2.6.9)

where the ‘secular Hamiltonian’

Hkpy, x1q :“ hkpyq ` "gkopATyq ` "gkpATy, x1q , f̄kpy, xq :“ fkpATy,A´1
xq (2.6.10)

is a real analytic function for y P D
k
r̃k

and18
x1 P Tps1

kq1 .

proof of Lemma 2.6.2 (i) From Bézout’s lemma it follows that19:
given k P Zn

, k ‰ 0 there exists a matrix A “ pAijq1§i,j§n with integer entries such

that Anj “ kj @ 1 § j § n, detA “ gcdpk1, ..., k1q, and |A|8 “ |k|8 .

Hence, since k P Gn, gcdpk1, ..., k1q “ 1, and (2.6.4) follows20.
(ii) �0 is symplectic since it is generated by the generating function y ¨ Ax.
The relations in (2.6.6) follow at once from the definition of �0 .
Let us prove (2.6.8): y P D

k
r̃k

if and only if y “ y0 ` z with y0 P D
k and |z| † r̃k. Thus,

|AT z|
p2.6.4q

§ n|k||z| † n|k|r̃k
p2.6.7q† rk

4

p2.5.7q“ r1
k

2
.

Since, by definition of D
k, ATy0 P rR1,k, we have that ATy P rR1,k

r1
k{2.

Let, now, x belong to Tn
s̃k

.Then, for any 1 § j § n, recalling the definitions of s› and
s1

› in (2.5.7), we find

ˇ̌
ˇ Im pA´1

xqj
ˇ̌
ˇ “

ˇ̌
ˇ

nÿ

i“1

pA´1qij Im xj

ˇ̌
ˇ

p2.6.4q† npn ´ 1qn´1
2 |k|n´1ps̃kqj

p2.6.7q
§ ps›qj

2
† ps1

›qj .

Thus, A´1
x belong to Tn

s1›
, and (2.6.8) follows.

(iii) Eq.’s (2.6.9)–(2.6.10) follow immediately from the definition of the symplectic map
�0 in (2.6.5) and (2.6.6). The statement on the angle–analyticity domain of Hk follows
from part (b) of Lemma 2.5.1.

Finally we are ready to state the following
18Recall (2.5.7).
19See Appendix A of [1, p. 3564] for a detailed proof.
20Notice that the bound on |A´1|8 follows from D’Alembert expansion of determinants, observing

that for any m ˆ m matrix M, one has |detM| § mm{2|M|m8
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Theorem 2.6.1 (Normal Form Theorem). Let H be as in (2.1.1) with f P Bn
s sat-

isfying (2.2.4) with N as in (2.2.2), and let (2.5.7) hold. There exists a constant21

c0 “ c0pn, s, �q • maxtN , b0u such that, if Ko • c0, k P Gn
Ko, and D

k, r̃k, s̃k are
as in (2.6.7), then there exist real analytic symplectic maps

 o : R0
r1
o

ˆ Tn
s1
o

Ñ R0
ro ˆ Tn

so ,  
k
: D

k
r̃k

ˆ Tn
s̃k

Ñ R1,k
rk

ˆ Tn
s› (2.6.11)

having the following properties.
(i) Hopy, xq :“

`
H ˝  o

˘
py, xq “ hpyq ` "g0pyq ` "f 0py, xq,, with g0 and f 0 satisfying

(2.5.19) and xf 0y “ 0.
(ii)

Hkpy, xq :“ H ˝ kpy, xq “ Hkpy, x1q ` "f̄kpy, xq , py, xq P D
k
r̃k

ˆ Tn
s̃k
, (2.6.12)

where

HkpATy,x1q :“ hkpATyq ` "gkpy,x1q, hkpATyq :“ hpATyq ` "gk0pyq; (2.6.13)

is a real analytic function for y P D
k
r̃k

and x1 P Tps1
kq1 . In particular g

kpy, ¨q P B1
s1
k

for
every y P D

k
r̃k

. Furthermore, the following estimates hold:

|gko|r̃k § #o “ 1

K6n`1
, ||| gk ´ ⇡Zk

f |||r̃k,s1
k

§ #o , ||| f̄k |||r̃k,s̃k § e´Ks5{3 . (2.6.14)

(iii) If |k|1 • N, there exists ✓k P r0, 2⇡q such that

Hk “ hpATyq`"gk0pyq`2|fk|"rcospx1`✓kq`F k
› px1q`g

k
›py,x1q`f

k
›py, A´1xqs (2.6.15)

where F k
› is as in Proposition 2.2.1 and satisfies F k

› P B1
1 and |F k

› |1 § 2
´40.

Moreover, gk› py, ¨q P B1
1 (for every y P D

k
r̃k

), fk› “ 0, and one has

||| gk› |||r̃k,1 § # “ 1
K5n

, ||| fk› |||r̃k,s̃k § e´Ks5{7 . (2.6.16)

Proof. The first relation in (2.6.11) is (2.5.8). Define

 
k
:“  k ˝ �0 . (2.6.17)

Then, since ps›qi{2 † ps1
›qi for all i “ 1, ..., n (compare (2.5.7)), by (2.6.8) we get the

second relation in (2.6.11).
21b0 is defined in Lemma 2.5.1.
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(i) follows from point (a) of Lemma 2.5.1.
(ii) (2.6.12), (2.6.13) and (2.6.14) follow from, respectively, (2.6.9), (2.6.10), (2.5.20)
and point (ii) of Lemma 2.6.2 setting

g
k
opyq :“ gkopATyq , g

kpy, x1q :“ gkpATy, x1q . (2.6.18)

(iii) follows by Proposition 2.2.1 and Lemma 2.5.2. In particular (2.6.15) follows from
(2.5.21). Furthermore,

g
k
› :“ 1

2|fk|
`
g
k ´ ⇡Zk

f
˘
, f

k
› :“ 1

2|fk| f̄
k (2.6.19)

and noting that gk› py, x1q “ gk› pATy, x1q and that, by (2.6.10), fk› py, xq “ fk
› pATy,A´1

xq,
we see that (2.6.16) follows from (2.5.23) and (2.6.8).
Now, in order to apply Singular KAM Theory there are three more steps to do. This
steps are analogous to the ones in chapter 1, so we will briefly report the main strategies.

2.7 An outline of conclusion

2.7.1 Step 2: Secondary nearly–integrable structures

After averaging on each neighbourhood R1,k ˆ Tn, the strategy is straightforward: put
the 1 degree–of–freedom systems into Arnol’d–Liouville action–angle variables of the
averaged system getting Hamiltonians of the form hkpIq ` "f̃kpI,'q with a perturbing
function f̃k « ep´cKq, check Kolmogorov’s non–degeneracy of hkpIq (i.e., that its Hes-
sian is uniformly invertible), apply a classical KAM Theorem showing that that the
KAM tori cover the region outside the non–perturbative set up to an exponentially
small term.
However, there arise major technical problems to overcome. In short: in order to gain
significantly on the measure of KAM tori (passing, from the classical density of 1 ´
Op?

"q to 1 ´ Op"| log "|bq, or better in the n “ 2 case), one hast to analyze the
dynamics close to the singularities of the action–angle variables, namely, close to the
‘secular separatrices’ appearing in the averaged systems. Here ‘close’, means, essentially,
exponentially close (i.e., Ope´Kq). But then, near separatrices, no perturbative approach
is possible, and checking Kolmogorov’s non–degeneracy become a singular perturbation
problem.
To carry out the above strategy, it essential to have full control of the analytic properties
of the action–angle variables of the averaged systems near their singularities. In [3], such
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a theory has been worked out for so–called ‘Standard Form Hamiltonians’, namely,
one–degrees–of–freedom real–analytic Hamiltonians

H5pp, q1q “ p1 ` ⌫pp, q1qqp21 ` Gpp̂, q1q ,
where: pp1, q1q P R ˆ T are symplectic variables, p “ pp1, p2, ..., pnq, p̂ :“ pp2, ..., pnq are
external parameters (‘dumb actions’), ⌫ is small, and G is close to a reference Morse
potential Ḡpq1q; for precise quantitative definitions, see Definition 1.3.4 below22.
In Singular KAM Theory an important step (carried out in [2]) is to show that the
averaged Hamiltonian can be put in Standard Form for every Fourier mode k with23

|k|1 § K having a uniform analytic control of the standard form H5 (which depend on
k).
The proposition is the following

Proposition 2.7.1. For all k P Gn
K0

let Hk be the secular hamiltonian as in 1.2.61 and
and, for c “ cpnq ° 1 large enough, set

⇢2 :“
�2k r̃

3
k

c |k|2
1
M2

, ⇢1 :“
�k r̃2k

c |k|1M
§ % .

Let Sk be the critical surface of hk, and ȳ P Sk a critical point. The following statements
hold:
(i) In the neighborhood of ȳ defined by Dpȳ1, ˆ̄yq, Hk is symplectically conjugated to a
suitable Hamiltonian in standard form Hk (according to definition 1.3.4). In particular,
for p P Dp0, ˆ̄yq, there exists real analytic symplectic transformation

�› : pp, qq P Dp0, ȳq ˆ Rn Ñ py, xq “ �›pp, qq P R2n , (2.7.1)

such that24: �› fixes p̂ and q1; for every p̂ P D̂pȳ1, ˆ̄yq the map pp1, q1q fiÑ py1, x1q is
symplectic; the pn` 1q–dimensional map �̌› depends only on the first n` 1 coordinates
pp, q1q, is 2⇡–periodic in x1 and one has

�̌› : pp, q1q P D⇢1`2⇢2,⇢2p0, ˆ̄yq ˆ T1
š1

Ñ py, x1q P D⇢1,⇢2pȳ1, ˆ̄yq ˆ T1
š1

Hk ˝ �̌›pp, q1q “ hkp0, p̂q ` 1

2
B2
p1h

kp0, p̂q Hkpp, q1q.
(2.7.2)

22For example, a crucial property of action–angle variables for standard form Hamiltonians is that,
near critical energies Ec (corresponding to hyperbolic equilibria and separatrices), the action I1 as
function of energy is given by I1pEc ˘ ✏zq “ apzq ` bpzq z logpzq for suitable analytic functions a, b
where ✏ is a suitable reference energy (and everything depends on the external pn´1q dumb actions).

23To be more precise, for every k with |k|1 § K, having components with no common divisors, and
positive first non–null component.

24We are omitting the dependence upon vector k on the coordinates in this statement.
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where, given B a subset of Rn, we denote by Br,r1 “ î
yPBtz P Cn

: |z1´y1| § r, |ẑ´ŷ| §
r1u.
(ii) Hk has reference potential

Ḡk
:“ 2"

|k|2
1

⇡Zkf (2.7.3)

and analicity characteristic

D̂ :“ D̂pˆ̄yq , r :“ ⇢2, R, s1, �, ✏, µ , (2.7.4)

with  given by
 “ pn, s, �q :“ maxt4cs, cs{�u. (2.7.5)

(iii) The map �› is obtained as composition of two symplectic maps:

�› “ �2 ˝ �1 , (2.7.6)

where:

‚ �1 :“  g1
P G: for a suitable real analytic function g1pŷq satisfying

|g1 |⇢2 † 2"k�k

� ⇢2
µ ; (2.7.7)

where � is the convexity-constant of h.

‚ �2pp, qq “ pp1 `⌘2 , p̂, q1, q̂`�2q for suitable real analytic functions ⌘2 “ ⌘2pp̂, q1q
and �2 “ �2pp̂, q1q satisfying

|⌘2 |2⇢2,š1 † 2"k�k

� ⇢2
µ , |�2 |2⇢2,š1 † 2"k�k

� ⇢22
µ . (2.7.8)

The proof is essentially the same of the previous chapter, with all the same local
discussion. There are some minor differences due to the fact that now the analyticity
strip is a vector, by these difficulties are very easy to overcome. For this reason, we will
omit the proof.

2.7.2 Step 3: Twist

Once all the secular systems (as k varies) are piut into action–angle variables, in or-
der to construct KAM tori, one has to check Kolmogorov’s non–degeneracy (or some
other weaker non–degeneracy assumption). This is not a perturbative problem as one
approaches critical energies, where lie the primary and secondary tori which contribute
essentially in the change of order of measure of persistent tori. This is the main problem
solved in [4], where the following result has been proven:

121



Theorem 2.7.1 (The twist theorem). The Liouville measure of the phase set where
the twist determinant of the secular Hamiltonians Hkpy, x1q ` "fkpy, xq in (??) (with
respect to their action variable) is smaller than a positive quantity ⌘ may be bounded,
uniformly in k, by a power of ⌘.

The approach is based on the following

Definition 2.7.1. Given ⇠ ° 0, an open set A Ñ R and f P CmpA,Rq, we say that f
is ⇠–non–degenerate at order m • 1 on A (or, in short, p⇠,mq–non–degenerate), if

inf
xPA

max
1§j§m

|f pjqpxq| • ⇠ . (2.7.9)

indeed one can show that these non–degenerate functions satisfies

Lemma 2.7.1. Let f be a p⇠,mq–non–degenerate function on a bounded interval pa, bq
and let25 M :“ }f}Cm`1pa,bq. Then, there exist a constants cm ° 1 depending only on m
such that, for all ⌘ ° 0

meastx P pa, bq : |fpxq| § ⌘u § cm
⇠1{m

`
M
⇠ pb ´ aq ` 1

˘
⌘1{m .

so roughly speaking, the proof consists in constructing a suitable differential operator
with non–constant coefficients, which does not vanish on (a suitable regularization of)
the Kolmogorov’s twist determinant. In this way using the above lemma the theorem
follows.
Far from separatrices the strategy is essentially perturbative, and the twist comes
from the non degeneracy condition satisfied by the twist determinant of the reference
hamiltonian. Near separatrices, instead, perturbative arguments do not hold, and, in
particular the energy function E

i is singular at the boundary (corresponding to separa-
trices) and its derivatives diverge as the boundary is approached. Furthermore, Ei and
Ē
i “ E

i|µ“0 have singularities in different points.
In order to deal with these problems, in [4] one defines

Definition 2.7.2. We denote by F the set of functions of the form

fpz, Îq “ zh
ÿ̀

j“0

ujpz, Îq logj z , (2.7.10)

25}f}Cm`1pa,bq :“ max
0§j§m`1

sup
pa,bq

|f pjq|.
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where h, ` P Z with ` • 0 and the uj are real analytic functions. 26 We say that
fpz, Îq “ O%ph, `q if f P F as in (2.7.10) and there exists % ° 0 such that

~f~% :“ sup
0§j§`

sup
tzPC:|z|†%u

ÎPD̂

|uj| † `8 .

in such a way that there exists a suitable differential operator with non–constant coef-
ficients

L “
m̄ÿ

j“1

ajpzqBj
z; m̄ “ 3n2 ´ 2n ´ 1

such that
Lr�̄s “ n̄!3n̄`1p3n̄q! �3n̄ ` O%p1, 3n̄ ` 1q ,

where �̄ is a suitable regularization of the twist determinant, n̄ “ n ´ 1 and � “ �ppIq
is a smooth function of the last "dumb" action. In this sense the twist determinant
is non–degenerate and applying lemma 2.7.1 one can conclude the proof of the twist
theorem.

2.7.3 Step 4: Primary and secondary maximal KAM tori

At this point, choosing carefully the various free parameters of the game, a suitable
KAM Theorem (like the one in [46]) yields the existence of maximal primary and
secondary KAM tori, which fill the complementary phase set of R2 ˆ Tn up to a very
small set.
Concerning the non–resonant set, the hamiltonian is conjugated to the sum of an
integrable system and an exponentially small term, so that by classical KAM theory,
it follows that this set is filled by primary27 KAM tori up to a set of measure of order
Ope´Kos5q.
For the case in D

k
› there is much more work to do. In particular we have to use

carefully the estimates of the Twist theorem, but the result is always an exponentially
small measure of the non–torus set in each neighborhood of a single critical point in
which we have done the Standard form conjugation. Then, having a control of the finite
number of neighborhoods that cover the entire D

k
› , one can find the measure of the

non–torus set in R1 that is always exponentially small.
26Given a vector I P Rn, we will denote by Î “ pI2, ..., Inq the vector of the last n ´ 1 coordinates

such that I “ pI1, Îq.
27Primary tori are smooth deformation of the flat Lagrangian integrable (" “ 0) tori.
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In this way, calling A “ ppR1 YR0q ˆTnqzT , where T is union of the maximal primary
and secondary tori for H, one has proved that measpAq § c e´K{c1 for some constants
c, c1 that summed to the double resonances ( measpR2q § c2" K

b for some constants
c2, b) and choosing K « | log "| gives us the desired result.
Theorem 1.1.2 is due to the fact that the two degrees of freedom is special: in this case
the only double resonance is the origin and one can take as R2 a disk of measure "a with
any 0 † a † 1 getting a set of KAM tori of exponential density in the complementary
of R2 ˆ T2.
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Chapter 3

Application to celestial mechanics

The intent of this chapter is to apply Singular KAM Theory to some physical relevant
models in order to obtain some interesting new estimates on the total measure of
the invariant tori for these nearly-integrable systems. The system that we consider is
the Restricted, planar, circular three body problem which from now on will be called
RCPTBP.
Roughly speaking this model describe the bounded planar motion of a "zero mass"
body subject to the gravitational field generated by two primary bodies revolving on
circular Keplerian orbits (which are assumed to be not influenced by the small body).
When the mass ratio of the two primary bodies is small the RCPTBP is described
by a nearly-integrable Hamiltonian system with two degrees of freedom; in a region of
phase space corresponding to neaerly elliptical motions with non small eccentricities,
the system is well described by Delaunay variables.
Before diving up into the application of singular KAM theory, we are going to study
briefly the considered model from a physical and a mathematical point of view. This
first part is based on [21],[20],[52].

3.1 The restricted three-doby problem
First of all we want introduce our model starting for the restricted three-body problem;
then we will add the other semplifications. The restricted 3BP is simply a "zero mass"
body subject to the gravitationale attraction by as assigned two-body system. To de-
scribe mathematically such system, let P0, P1, P2 be three bodies (viewed as "point
masses" because for the gravitational field we can consider all the masses concentrated
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in the center of mass) with masses m1,m2 and m3 interacting only through the gravi-
tational attraction.
If upiq P R3, i “ 0, 1, 2 denote the position of the bodies in some (intertial) reference
frame (and assuming, without loss of generality, that the gravitational constante g is
one), the Newton equations for this system have the form

d2up0q

dt2
“ ´m1pup0q ´ up1qq

|up1q ´ up0q|3 ´ m2pup0q ´ up2qq
|up2q ´ up0q|3 ;

d2up1q

dt2
“ ´m0pup1q ´ up0qq

|up1q ´ up0q|3 ´ m2pup1q ´ up2qq
|up2q ´ up1q|3 ;

d2up2q

dt2
“ ´m0pup2q ´ up0qq

|up2q ´ up0q|3 ´ m1pup2q ´ up1qq
|up2q ´ up1q|3 .

(3.1.1)

The restricted three-body problem with "primary bodies" P0 and P1 is, by definition, the
problem of studying the bounded motions of the system 3.1.1 after having set m2 “ 0,
i.e. of the system

d2up0q

dt2
“ ´m1pup0q ´ up1qq

|up1q ´ up0q|3 ;

d2up1q

dt2
“ ´m0pup1q ´ up0qq

|up1q ´ up0q|3 ;

d2up2q

dt2
“ ´m0pup2q ´ up0qq

|up2q ´ up0q|3 ´ m1pup2q ´ up1qq
|up2q ´ up1q|3 .

(3.1.2)

Notice that the equations for the two primaries P0 and P1 decouple and describe an
unperturbed two-body system, which can be solved and the solution can be plugged into
the equation for up2q, which becomes a second-order, periodically forced equation in
R3.

3.2 Delaunay action-angle variables for the two-body
problem

In this section we take the two-primaries-body problem and we review the classical
Delaunay action-angle variables construction developed in [Delaunay 1860].
The equation of motion of the two bodies P0 and P1 of masses m0 and m1, interacting
through gravtiational (setting g “ 1) are given by

d2up0q

dt2
“ ´m1pup0q ´ up1qq

|up1q ´ up0q|3 ;
d2up1q

dt2
“ ´m0pup1q ´ up0qq

|up1q ´ up0q|3 ; upiq P R3 (3.2.1)
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As it is well known, the total energy, momentum and angular momentum are preserved.
We shall therefore fix an inertial frame tk1, k2, k3u, with origin in the center of the mass
and with k3-axis parallel to the total angular momentum. In such frame we have

up0q
3 ” 0 ” up1q

3 , m0u
p0q ` m1u

p1q “ 0. (3.2.2)

Now we pass to a heliocentric frame by letting

px, 0q :“ up1q ´ up0q, x P R2. (3.2.3)

In view of (3.2.1) and (3.2.2), the equations for x become

:x “ ´M
x

|x|3 , M :“ m0 ` m1. (3.2.4)

This equation is obviously Hamiltonian: let µ ° 0 and set

HKeppx,Xq :“ |X|2
2µ

´ µM

|x| , X :“ µ 9x, (3.2.5)

then 3.2.4 is equivalent to the Hamiltonian equation associated to HKep with respect
to the standard symplectic form dx^dX, the phase space being R2zt0u ˆR2; the (free)
parameter µ is traditionally chosen as the "reduced mass" m0m1

M .
The motion in the u-coordinates is recovered (via 3.2.3 and 3.2.2) by the relation

up0q “
ˆ

´ m1

M
x, 0

˙
, up1q “

ˆ
´ m0

M
x, 0

˙
(3.2.6)

The dependence of the Hamiltonian on x through the absolute value suggests to intro-
duce polar coordinates in the x-plane and, in order to get a symplectit transformation,
one is led to the symplectic map �pc : ppr,'q, pR,�qq Ñ px,Xq given by

�pc :

$
’&

’%

x “ rpcos', sin'q,
X “ pR cos' ´ �

r sin', R sin' ` �
r cos'q,

dx1 ^ dX1 ` dx2 ^ dX2 “ dr ^ dR ` d' ^ d�.

(3.2.7)

The variables r and ' are commonly called, in celestial mechanics, the orbital radius
and the longitude of the planet P1. In the new symplectic variables the Hamiltonian
takes the form

Hpcpr,', R,�q :“ HKep ˝ �pcpr,', R,�q “ 1

2µ

ˆ
R2 ` �

2

r2

˙
´ µM

r
. (3.2.8)
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Figure 3.1: The geometry of the Kepler two-body problem

The variable ' is cyclic, i.e. BHpc{B' “ 0 so that � ” const. This fact implies that
Hpc is actually a one-degree-of-freedon Hamiltonian system and is therefore integrable.
The momentumn variable � conjugated to ' is obviously an integral of motions and

9' “ BHpc

B' “ �

µr2
ñ � “ µr2 9' ” const. (3.2.9)

Remark 3.2.1. The total angular momentum C in the inertial frame referred to the
center of mass denoting the standard "vector product" with ˆ, is given by

C “ m0u
p0q ˆ 9up0q ` m1u

p1q ˆ 9up1q. (3.2.10)

With as easy calculation this expression is equivalent to

C “ m0m1

µM
x ˆ X (3.2.11)

and using polar coordinates it becomes

C “ k3
m0m1

M
r2 9' “ k3

m0m1

µM
�; (3.2.12)

thus if µ is chosen to be the reduced mass m0m1
M , then � is exactly the absolute value

of the total angular momentum.

The analysis of the pr, Rq motion is quite standard and well known in the literature:
introducing the "effective potential"

Veff prq :“ Veff pr;�q :“ �
2

2µr2
´ µM

r
, (3.2.13)
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one is led to the "effective Hamiltonian" (parameterized by �)

Heff “ R2

2mu
` Veff prq, R “ µ 9r. (3.2.14)

Figure 3.2: The effective potential of the two-body problem

The motion on the energy level H´1
eff pEq is bounded (and periodic) if and only if

E P rEmin, 0q, Emin :“ Veff prminq “ ´µ3M2

2�2
, rmin :“ �

2

µ2M
. (3.2.15)

For E P pEmin, 0q, the period T pEq is given by

T pEq “ 2

ª r`pEq

r´pEq

drb
2
µpE ´ Veff prqq

(3.2.16)

where r˘pEq “ r˘pE;�q are the two real roots of E ´ Veff prq “ 0, i.e.

E ´ Veff prq “: ´E

r2
pr` ´ rqpr ´ r´q,

r˘pE;�q “
µM ˘

b
pµMq2 ` 2E�2

µ

´2E
.

(3.2.17)

The integral in 3.2.16 is readily computer yielding Kepler’s second law

T pEq “ 2⇡M

ˆ
µ

´2E

˙3{2
. (3.2.18)
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Let us now integrate the motion in the pr,'q coordinates. The equations of motion in
such coordinates are given by

9' “ �

µr2
, 9r2 “ 2

µ
pE ´ Veff prqq. (3.2.19)

By symmetry arguments, it is enough to consider the motion for 0 § t § T pEq
2 ; fur-

thermore, we shall choose the initial time so that rp0q “ r´ (i.e., at the initial time
the system is at the "perihelion"): the corresponding angle will be a certain '0 and we
shall make the (trivial) change of variables

' “ '0 ` f, so that rp0q “ r´pEq, fp0q “ 0. (3.2.20)

The angle f is commonly called the true anomaly; the angle '0 (i.e., the constant angle
between the perihelion line, joining the foci of the ellipse and the x1 axis) is called the
argument of the perihelion (compare figure 3.1)

Equations 3.2.19 become
#

9f “ �
µr2 , fp0q “ 0

9r2 “ 2
µpE ´ Veff prqq, rp0q “ r´pEq (3.2.21)

Eliminating time (for t P p0, T pEqq, 9r ° 0) we find

f “ �

ª r

r´pEq

d⇢{⇢2a
2µpE ´ Veff p⇢qq “ arccos

ˆ rmin
r ´ 1b
1 ´ E

Emin

˙
. (3.2.22)

Setting

e “
c
1 ´ E

Emin
, p :“ rmin, (3.2.23)

we know from the litersture that the motion of P0 and P1 describe two ellipses of
eccentricity e P p0, 1q with common focus in the center of mass (known as the first
Kepler law)

Let now recall some basic features of the geometry of an ellipse. Let a • b ° 0 denote
the semi-axis; the cartesian equation of an ellipse with respect to a reference plane
px1, x2q P R2 with orighin chosen as the middle point of the segment joining the two
foci is given by ˆ

x1

a

˙2

`
ˆ
x2

b

˙2

“ 1, (3.2.24)
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where 2a is the (constant) sum of distances between a point of the ellipse x and the
foci, and ˆ

˘ a

c
1 ´ p b

a
q2, 0

˙
(3.2.25)

are the coordinates of the foci. As we just know, the number

e “
c
1 ´ p b

a
q2 (3.2.26)

is called the eccentricity of the ellipse that, in our case, is expressed in 3.2.23. As it
follows from 3.2.25, the distance c between one focus and the center of the elliopse is
given by

c “ e a (3.2.27)

Figure 3.3: Ellipse of eccentricity e “ 0.78

Now, if one inctrocues polar coordinates pf, rq in the above x-plane taking as pole the
focus O “ pc, 0q, as f the angle between the x1-axis and the axis joining O with the
point x on the ellipse and r “ rpfq as the distance |x ´ O|, one can find from simple
geometrical consideration the following focal equation

r “ rpfq :“ p

1 ` e cos f
, (3.2.28)
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where p is called the parameter of the ellipse and is given by

p “ ap1 ´ e2q “ b2

a
. (3.2.29)

The angle f is called the true anomaly.

Moreover, one can describe the above ellipse by the following parametric equations

x1 “ a cos u, x2 “ b sin u (3.2.30)

where u is the angle between the origin of the plane and the planet during his elliptical
motion. This angle u is called the eccentric anomaly.

Figure 3.4: Ellipse parameters

Thus a point x on the ellipse has the double representation

x “ pa cos u, b sin uq “ pea ` r cos f, r sin fq (3.2.31)
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which relates the true and the eccentric anomalies. In particular, one finds:

r cos f “ apcos u ´ eq,
r sin f “ b sin u “ a

?
1 ´ e2 sin u,

r “ ap1 ´ e cos uq,

tan
f

2
“

c
1 ` e

1 ´ e
tan

u

2
,

AreapEpfqq “ ab

2
pu ´ e sin uq,

(3.2.32)

where
Epfq :“ tx “ xpr1, f 1q : 0 § r1 § rpfq, 0 § f 1 § fu. (3.2.33)

So joining the focal equation in 3.2.28 with the change of variable in 3.2.20, for our
case we get

r “ p

1 ` e cosp' ´ '0q
, (3.2.34)

and it follows immediately from the geometrical considerations made above (with our
notation) that

r˘ “ p

1 ¯ e
, r` ` r´ “ 2a, p “ ap1 ´ e2q, r˘ “ ap1 ˘ eq. (3.2.35)

From the definition of Emin in 3.2.15, the expression for E ´ Veff in 3.2.17, and the
relations 3.2.23, 3.2.35 one finds

Emin “ ´µM

2p
, E “ ´µM

2a
, E ´ Veff “ µM

2a

ˆ
e sin u

1 ´ e cos u

˙2

. (3.2.36)

Remark 3.2.2. Since we will later assume the two-body-Keplerian motion to be circu-
lar, we notice trhat this circular motion is obrained for the minimal value of the energy
E “ Emin “ ´µ3M2

2�2 . In such a case

e “ 0, r ” p “ rmin “ �
2

µ2M
; (3.2.37)

the constant angular velocity and the period are respectively given by

!circ “ µ3M2

�3
, Tcirc “ 2⇡

�
3

µ3M2
. (3.2.38)
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Eliminating � in 3.2.37 and 3.2.38, one gets

!circ “
c

M

r3
, Tcirc “ 2⇡

c
r3

M
. (3.2.39)

Thus the motion in the x-variables is given by

xptq “ rpcosp'0 ` !circtq, sinp'0 ` !circtqq. (3.2.40)

We now turn to the construction of the action angle variables. For E P pEmin, 0q, we
denote the energy level at a fixed value of � by

SE :“ tpr, Rq : Heff pr, Rq “ Eu. (3.2.41)

The area ApEq encircled by such a curve in the pr, Rq-plane is given by

ApEq “ 2

ª r`pEq

r´pEq

b
2µpE ´ Veff prqqdr “ ´2⇡µM

c
µ

´2E
�. (3.2.42)

Thus, by the theorem of Liouville-Arnold the action variable is given by

IpEq “ ApEq
2⇡

“ ´µM�

c
µ

´2E
, (3.2.43)

which, inverted, gives the form of the effective Hamiltonian in the action-angle variables
p✓, Iq (and parametrized by �):

hpIq :“ hpI;�q :“ ´ µ3M2

2pI ` �q2 . (3.2.44)

Furthermore (again using Liouville-Arnold theorem) the symplectic transformation be-
tween pr, Rq (in a neighborhood of a point with R ° 0) and the action-angle variables
p✓, Iq, for the Hamiltonian Heff is generated by the generating function

S0pI, r;�q :“
ª pr,R`pr;Iqq

pr´phpIqq,0q
Rdr; R`pr; Iq :“

b
2µphpIq ´ Veff prqq (3.2.45)

where the integration is performed over the curve ShpIq oriented clockwise : the ori-
entation of ShpIq and the choice of the base point as pr´phpIqq, 0q is done so that an
integration over the closed curve gives `ApEq and so that ✓ “ 0 corresponds to the
perihelion position.
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Figure 3.5: Level curves of the effective Hamiltonian

The full symplectic transformation (in the four dimensional phase space of Hpc)

�aa :

#
p✓, , I, Jq Ñ pr,', R,�q
d✓ ^ dI ` d ^ dJ “ dr ^ dR ` d' ^ d�

(3.2.46)

will be generated by the generating function

S1pI, J, r,'q :“ S0pI, r; Jq ` J', pJ “ �q. (3.2.47)

The form of hpIq suggests to introduce one more (linear,symplectic) change of variables
given by

�´1
lin :

#
⇤ “ I ` J, � “ J,

� “ ✓, � “  ´ ✓
(3.2.48)

The variables p�, �,⇤,�q are the celebrated Delaunay variables for the two-body-problem.
If we set

�D :“ �pc ˝ �aa ˝ �lin (3.2.49)
be the above analysis we get

hKep ˝ �Dp�, �,⇤,�q “ hKepp⇤q :“ ´µ3M2

2⇤2
. (3.2.50)
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The symplectic trasformation �aa ˝ �lin is generated by (� “ J “ �)

S2p⇤,�, r,'q : “ S0p⇤´ �, r;�q ` �'

“
ª r

r´phKepp⇤qq

d

´µ4M2

⇤2
` 2µ2M

⇢
´ �2

⇢2
d⇢ ` �'

“
a
2µ

ª r

r´phKepp⇤qq

b
hKepp⇤q ´ Veff p⇢;�qd⇢ ` �'.

(3.2.51)

Replacing E by hKepp⇤q and � with � in the expression for the eccentricity e in 3.2.23
(recall the definition of Emin in 3.2.36) one finds

e “ ep⇤,�q “
d

1 ´
ˆ
�

⇤

˙2

. (3.2.52)

Recalling the relation between the parameter p (in the focal equation for an ellipse),
the eccentricity and the major semi-axis (see 3.2.35), from 3.2.52 it follows that

a “ ⇤
2

µ2M
, ⇤ “ µ

?
Ma. (3.2.53)

Remark 3.2.3. Recall that

� “ � “ µM

m0m1
|C|, C :“ total angular momentum, (3.2.54)

so that
� ° 0. (3.2.55)

Recall also that
Emin “ ´µ3M2

2�2
, (3.2.56)

so that E ° Emin means, by 3.2.50
� † ⇤. (3.2.57)

The momentum space tL,Gu is therefore the positive cone t0 † � † ⇤u.
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The angle � is computed from the generating function S2:

� “ BS2

B⇤ “
c

µ

2

µ3M2

�3

ª r

r´

d⇢a
hKepp⇤q ´ Veff p⇢;�q

“
c

µM

2a

1

a

ª r

r´

d⇢a
hKepp⇤q ´ Veff p⇢;�q

3.2.36“ 1

a

ª r

r´

1 ´ e cos u

e sin u

3.2.32“
ª u

0

p1 ´ e cos uqdu

“ u ´ e sin u

3.2.32“ 2⇡
AreapEpfqq
AreapEp2⇡q ,

(3.2.58)

where we have used the fact that ⇢ as a function of u P r0, ⇡s is a strictly increasing
function and that ⇢p0q “ r´.
In view of 3.2.58, � is called the mean anomaly. Analogously, the angle � is recognized
to be argument of the perihelion '0 introduced above

� “ BS2

B� “ ' ´ �
ª r

r´

1a
2µphKepp⇤q ´ Veff p⇢qq

d⇢

⇢2

3.2.22“ ' ´ f
3.2.20“ '0.

(3.2.59)

In order to conclude this classical section, we review some important analytical features
about the eccentric anomaly u and the true anomaly f in terms of the Delaunay
variables.

The Kepler equation
� “ u ´ e sin u,

can be inverted for |e| † 1 for the implicit function theorem. In particular we use this
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Figure 3.6: The Delaunay angles.

theorem to show that
du

d�
“ 1

1 ´ e cos u

“ 1

2⇡

ª 2⇡

0

d�

1 ´ e cos u
`

8ÿ

n“1

cospn�q
⇡

ª 2⇡

0

cospn�qd�
1 ´ e cos u

“ 1

2⇡

ª 2⇡

0

du `
8ÿ

n“1

cospn�q
⇡

ª 2⇡

0

costnpu ´ e sin uqudu

“ 1 ` 2

8ÿ

n“1

Jnpneq cospn�q,

(3.2.60)

so that

up�, eq “ � ` 2

8ÿ

n“1

Jnpneq
n

sinpn�q (3.2.61)

where Jnpxq is the Bessel function of the first kind, i.e. if �pzq represents the Gamma
function

Jnpxq “
8ÿ

m“1

p´1qm
m! �pm ` n ` 1q

ˆ
x

2

˙2m`n

. (3.2.62)

Since in our specific case n is an integer, the expression below becomes

Jnpxq “
8ÿ

m“1

p´1qm
m! pm ` nq!

ˆ
x

2

˙2m`n

, s.t. J´n “ p´1qnJn. (3.2.63)
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and it is well known in the literature that
d

dx
rxnJnpxqs “ xnJn´1pxq ñ J 1

npxq “ Jn´1pxq ´ n

x
Jnpxq. (3.2.64)

The most important part of this result is the expansion of u in power of e that helps
us to know its behaviour in for small eccentricity:

u :“ � ` erup�, eq

“ � ` e sinp�q ` e2

2
sinp2�q ` e3

8
p´ sinp�q ` 3 sinp3�qq ` Ope4q

(3.2.65)

where ũ is analytics in � P T and |e| † 1.
As we have seen in 3.2.35, we have a precise relation between the true anomaly f and
the eccentric anomaly u, so that we can express f for |e| † 1 in terms of Bessel function,
i.e. we can know its expansion in e powers

f “ fp�, eq :“ � ` e rfp�, eq

“ � ` 2

8ÿ

k“1

1

k

„ `8ÿ

n“´8
Jnp´keq pe

2
q|k`n|

⇢
sinpk�q

“ � ` p2e ´ 1

4
e3q sinp�q ` 5

4
e2 sinp2�q ` 13

12
e3 sinp3�q ` Ope4q.

(3.2.66)

The longitude ' is simply ' “ � ` f and can, therefore, be expressed as a function of
�, �,⇤,�.
From 3.2.35 we know r “ ap1 ´ e cos uq, such that we find

r

a
“ r0p�, eq

a

“ 1 ´ e cos� ` e2

2
p1 ´ cos 2�q ` 3

8
e3pcos� ´ cos 3�q ` ...

(3.2.67)

where e “ ep⇤,�q and a “ ap⇤q :“ ⇤2

µ2M .

3.3 The restricted, circular, planar three-body prob-
lem viewed as nearly-integrable Hamiltonian sys-
tem

Let us go back to the system in 3.1.2. Since we shall study the planar three-body problem,
we will assume that the motion takes place on the plane hosting the Keplerian motion
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of P0 and P1, i.e. the two primaries bodies. This amounts to require

upiq
3 ” 0 ” 9upiq

3 , i “ 0, 1, 2. (3.3.1)

Notice that, since we are considering the restricted problem (i.e. we have set in 3.1.1
m2 “ 0), the "conservation laws" are those of the two-body system P0´P1: in particular
the total angular momentum is parallel to the u3-axis (consistently with 3.3.1 ) and
the center of mass (and hence the origin of the u-frame) is simply

m0u
p0q ` m1u

p1q “ 0. (3.3.2)

Next, we pass, to heliocentric coordinates:

pxp1q, 0q :“ up1q ´ up0q, pxp2q, 0q :“ up2q ´ up0q, xp1q, xp2q P R2 (3.3.3)

which transform 3.1.2 into

:xp1q
:“ ´M0

xp1q

|xp1q|3 , M0 :“ m0 ` m1,

:xp2q
:“ ´m0

xp2q

|xp2q|3 ´ m1
xp1q

|xp1q|3 ´ m1
xp2q ´ xp1q

|xp2q ´ xp1q|3 .
(3.3.4)

In view of 3.3.2 the motion in the original u-coordinates is related to the motion in the
heliocentric coordinates by

up0q “
ˆ

´m1

M0
xp1q, 0

˙
, up1q “

ˆ
m0

M0
xp1q, 0

˙
, up2q “

ˆ
xp2q´m1

M0
xp1q, 0

˙
. (3.3.5)

The equation in 3.3.4 describes the decoupled two-body system P0 ´ P1, which has
been discussed in the previous section.
In the RCPTBP such motion is assumed to be circular.
It is convenient to fix the measure units for lenghts and masses so that the (fixed)
distances between the two primary bodies is one and the sum of their masses is one:

distpP0, P1q “ 1, M0 :“ m0 ` m1 “ 1. (3.3.6)

Notice that the period of revolution of P0 and P1 around their center of mass (the
"year") is, in such units, 2⇡; the xp1q-motion is simply (compare 3.2.40)

pxp1q
circptq “ pxp1q

circpt0 ` tq :“
ˆ
cospt0 ` tq, sinpt0 ` tq

˙
. (3.3.7)
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Even though the ststem of equations 3.3.4 is not a Hamiltonian system, the equations
in 3.3.4 taken separately are Hamiltonian: we have already seen that the first of the
two equations (the one for xp1q) represent a two-body system; the second one represent
a 2

1
2 -degree-of-freedom Hamiltonian system with Hamiltonian

rH1pxp2q, Xp2q, tq :“|Xp2q|2
2µ

´ µm0
1

|xp2q| ` µm1

ˆ
xp2q ¨ pxp1q

circptq
˙

´ µm1
1

|xp2q ´ pxp1q
circptq|

,

pxp2q, Xp2qq P R2zt0u ˆ R2, t P T,
(3.3.8)

with respect to the standard symplectic form dxp2q ^ dXp2q; here, µ ° 0 is a free
parameter. To make the system 3.3.8 autonomous, we introduce a linear symplectic
variable T conjugated to time ⌧ “ t:

rH1pxp2q, Xp2q, ⌧, T q :“|Xp2q|2
2µ

´ µm0
1

|xp2q| ` T ` µm1

ˆ
xp2q ¨ pxp1q

circp⌧q
˙

´ µm1
1

|xp2q ´ pxp1q
circp⌧q|

,

pxp2q, Xp2qq P R2zt0u ˆ R2, p⌧, T q P T,
(3.3.9)

Remark 3.3.1. In the limiting case of a primary body with mass m1 “ 0, the Hamil-
tonian rH1 describes a two-body system with total mass M “ m0 reflecting the fact
that the asteroid mass has been set equal to zero.

If the mass m1 does not vanish but it is small compared to the mass of m0, the system
3.3.9 may be viewed as a nearly-integrable system. This is more transparent if we use,
for the integrable part, the Delaunay variables introduced in prevoius section. Recall
in particular that the symplectic transformation �D, mapping the Delaunay variables
to the original Cartesian variables, depends parametrically also on µ and M and that
M is now m0. Next, we choose the free parameter µ so as to make the Keplerian part
equal to ´1

2⇤2 (see 3.3.12 below) and we introduce also a perturbation parameter " closely
related to the mass m1 of the primary body:

µ :“ 1

m2{3
0

, " :“ m1

m2{3
0

“ m1

p1 ´ m1q2{3 . (3.3.10)

Now, letting

p�, �,⇤,�q “ �´1
D pxp2q, Xp2qq,

p�D

ˆ
p�, �,⇤,�q, p⌧, T q

˙
:“

ˆ
�Dp�, �,⇤,�q, p⌧, T q

˙
,

(3.3.11)
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we find that

rH2 :“ rH1 ˝ p�D “ ´ 1

2⇤2
` T ` "

ˆ
xp2q ¨ xp1q

circp⌧q ´ 1

|xp2q ´ xp1q
circp⌧q|

˙
, (3.3.12)

where, of course, xp2q is now a function of the new symplectic variables.
Let us now analysize more in detail the perturbing function in 3.3.12. Recalling the
definition of ' in 3.2.7, one sees that the angle between the rays p0, xp2qq and p0, xp1q

circq
is ' ´ ⌧ .

Figure 3.7: Angle variables for the RCPTBP

Therefore, if we let
r2 :“ |xp2q|, (3.3.13)

we get

rH2 “ ´ 1

2⇤2
` T ` "

ˆ
r2 cosp' ´ ⌧q ´ 1a

1 ` r22 ´ 2r2 cosp' ´ ⌧q

˙

:“ ´ 1

2⇤2
` T ` "Rpr2,', ⌧q

(3.3.14)

Recall 3.2.59 that ' “ � ` f and that f :“ � ` e rfp�, eq. Thus

' ´ ⌧ “ f ` � ´ ⌧ “ � ` � ´ ⌧ ` e rfp�, eq. (3.3.15)
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Such relations suggests to make a new linear symplectic change of variables, by setting

p�´1
lin :

#
L “ ⇤, G “ �, pT “ T ` �,
` “ �, g “ � ´ ⌧, p⌧ “ ⌧.

(3.3.16)

Now, recalling 3.2.67, 3.3.6 and 3.3.10 we see that

a “ L2

µ2M
“ m1{3

0 L2, (3.3.17)

so that, in the new symplectic variables, it is:

' ´ ⌧ “ f ` g “ fp`, eq ` g “ ` ` g ` e rfp`, eq,
r2 “ r0p`, eq “ m1{3

0 L2p1 ´ e cos up`, eqq.
(3.3.18)

where, as above, e “ epL,Gq “
a
1 ´ pG{Lq2.

Notice that the positions 3.3.10 and 3.3.6 define implicitly m0 and hence m1{3
0 as a

(analytic) function of ":

m0p"q “ 1 ´ " ` 2

3
"2 ´ 1

3
"3 ` ...,

m0p"q1{3 “ 1 ´ "

3
` 1

9
e2 ´ 2

81
e3 ` ....

(3.3.19)

Thus, introducing the functions

a" :“ a"pLq :“ m0p"q1{3L2
:“

ˆ
1 ´ "

3
` "2

9
´ 2"3

81
` ...

˙
L2

⇢" :“ ⇢"p`, epL,Gqq :“ a"pLq
ˆ
1 ´ e cospup`, eqq

˙

� :“ �p`, epL,Gqq :“ epL,Gq rfp`, epL,Gqq “
„
2 arctan

ˆc
1 ` e

1 ´ e
tan

u

2

˙
´ `

⇢

(3.3.20)

we get
rH3 :“ rH2 ˝ p�lin “ ´ 1

2L2
` pT ´ G ` "F"p`, g, L,Gq (3.3.21)

where

F"p`, g, epL,Gq, a"pLqq :“ ⇢" cosp` ` g ` �q ´ 1a
1 ` ⇢2" ´ 2⇢" cosp` ` g ` �q

. (3.3.22)
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The variable p⌧ si cyclic (this is the reason for having introduced p�lin) and the linear
constant of motion pT can be dropped from rH3. The final form of the Hamiltonian for
the restricted, circular, planar, three-body-problem is:

Hrpcp`, g, L,Gq :“ ´ 1

2L2
´ G ` "F"p`, g, L,Gq

:“ H0pL,Gq ` "F"p`, g, L,Gq;
(3.3.23)

the phase space is the two dimensional torus T2 times the positive cone t0 † G † Lu.
The symplectic form is the standard d` ^ dL ` dg ^ dG.
In order to apply in some way singular KAM theory, we firstly have to check non-
degeneracy propriety of the unperturbed hamiltonian. Given a function f : R2 Ñ R,
for the rest of this work we are going to call Qf the hessian matrix of f . In this way,
with a simple calculation one obtain

QH0 “
ˆ

B2
LH0pL,Gq BLBGH0pL,Gq

BGBLH0pL,Gq B2
GH0pL,Gq

˙
“

ˆ
´ 3

L4 0

0 0

˙
. (3.3.24)

So this is a degenarate matrix, and we cannot use it.
Our idea is to consider the square of the initial hamiltonian, knowing that from a
dynamical point of view there is no difference.
Thanks to this result we can consider

H2p`, g, L,Gq “ H2
rpcp`, g, L,Gq :“

ˆ
H0pL,Gq ` "F"p`, g, L,Gq

˙2

:“ H2
0 ` "

ˆ
2H0F" ` "F 2

"

˙ (3.3.25)

and notice that the hessian of the unpertubed problem now is

QH2
0

“
ˆ

5
L6 ` 6G

L4 ´ 2
L3

´ 2
L3 2

˙
ùñ

#
TrpQq “ 2 ` 5

L6 ` 6G
L4

detpQq “ 6p 1
L6 ` 2G

L4 q. (3.3.26)

So one can calculates its eigenvalues

�1,2 “ 1

2

„
2 ` 5

L6
` 6G

L4
˘

c
p2 ` 5

L6
` 6G

L4
q2 ´ 24p 1

L6
` 2G

L4
q
⇢

(3.3.27)

since the term 2 ` 5
L6 ` 6G

L4 ° 2 and thanks to the positivity of L,G is really easy to
check that the eigenvalues are both positive. So this integrable part is non degenerate
and H0 is also a strictly convex function of actions.
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Now we have to concentrate on the perturbation, checking if this function belongs to
the special class of analytic functions that we have studied in the first part of this work,
i.e. if the potential belongs to Gn. In order to do this we want to know the analytic
form of this potential and its Fourier series.
The potential as written in 3.3.22 is quite untractable. So the first approximation that
we are going to do is to neglect every term that is Op"q (motivated by the " that
multiplies the potential), so that we obtain

F0p`, g, epL,Gq, apLqq :“ ⇢ cosp` ` g ` �q ´ 1a
1 ` ⇢2 ´ 2⇢ cosp` ` g ` �q

:“ A0p`, g, epL,Gq, apLqq ` B0p`, g, epL,Gq, apLqq.
(3.3.28)

where
apLq :“ L2

; ⇢p`, epL,Gq, apLqq :“ ap1 ´ e cospuqq (3.3.29)
As we have seen above, we can consider F0 as a function of `, g, a, e.
Now for some reasons that will become clear later, is useful to do the following sym-
plectic change of variables that maps pL,G, `, gq Ñ pL, G, `, gq as follows

r�´1
:

#
` Ñ `, L Ñ L :“ L ´ G

g Ñ g :“ ` ` g, G Ñ G :“ G
(3.3.30)

In this way

F0 ˝ r�p`, g, apL, Gq, epL, Gqq “ ⇢ cospg ` �q ´ 1a
1 ` ⇢2 ´ 2⇢ cospg ` �q

H0 ˝ r�pL, Gq “ ´ 1

2pL ` Gq2 ´ G

(3.3.31)

where

apL, Gq :“ pL ` Gq2; ⇢p`, apL, Gq, epL, Gqq :“ ap1 ´ e cospuqq; � “ �p`, epL, Gqq.
(3.3.32)

Due to the simplicity of this change of variable, for the rest of the work I will omit the
presence of r� calling F0 ˝ r� :“ F0 and H0 ˝ r� :“ H0.

3.3.1 Analytic continuation

In this section we find the analyticity radii of the perturbing function, i.e. we will find
the size of the complex neighborhood in which this function is analytic. Since our model
depends in a crucial way by the solution to the Kepler equation, fistly we will anaylize
analyticity of the eccentric anomaly, and then we will consider the complete potential.
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Proposition 3.3.1. The solution to the Kepler Equation, i.e. the Eccentric Anomaly
u : p`, eq P T ˆ p0, 1q Ñ T admits an analytic complex continuation

u : Ts ˆ te P C : 0 † |e| † e0u Ñ T� (3.3.33)

such that

� “ arccosh

ˆd
1

2

ˆ
1 ` 1

|e|2 p1 `
a

p|e|2 ` 1q2 ´ 4e2q
˙˙

s “ � ´
b

p Im eq2 cosh2p�q ` e2 sinh2p�q
(3.3.34)

and |e|2 “ pRe eq2 ` p Im eq2.

Proof. The map
W : T Ñ T, u Ñ u ´ e sin u (3.3.35)

is diffeomorphic if and only if |e| † 1 (it is an easy check studying the derivative), that
is our case. Let us now consider its analytic continuation. We will call the complex
anomaly ru “ u ` iu1 and complex eccentrictiy re “ e ` ie1

ÄW : TC Ñ TC, ru Ñ r̀“ ru ´ re sin ru (3.3.36)

We are interested in determining if ÄW is an analytic diffeomorphism (at least locally),
in every point of a set T ˆ p´u1

max, u
1
maxq. Hence, we want to determine the singular

points of ÄW . Consider the function pRe ÄW , Im ÄWq : pRe ru, Im ruq Ñ pRe r̀, Im r̀q, it
has the same singular points as ÄW . This function is defined by the formulas

#
Re ÄW “ ` “ u ´ e sinpuq coshpu1q ` e1

cospuq sinhpu1q
Im ÄW “ `1 “ u1 ´ e1

sinpuq coshpu1q ´ e cospuq sinhpu1q (3.3.37)

The derivative is ÄW 1pruq “ 1 ´ re cospruq so that there is a singular point if and only if
#
Re pre cospruqq “ 1

Im pre cospruqq “ 0.
(3.3.38)

In the real variables it gives
#
e sin u sinh u1 “ e1

cos u cosh u1

e cos u cosh u1 ` e1
sin u sinh u1 “ 1.

(3.3.39)
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The first case that one has to take into account is when the eccentricity is real, i.e. e1 “
0. In this case, if 0 † |e| † 1 there exists two singular points pu, u1q “ p0,˘ arccoshp1{eqq
for e ° 0 and respectively p⇡,˘ arccoshp1{eqq for e † 0. Now, let us concentrate to the
complex case, i.e. e1 ‰ 0. For the sake of simplicity, we consider that e • 0. Assume
u P r0, 2⇡s, e1 ° 0, u1 ° 0 (by symmetry of the equations, the study of this case is
enough to compute the other case) the first equation gives

e2p1 ´ cos
2puqq sinh2pu1q “ pe1q2 cos2puq cosh2pu1q. (3.3.40)

such that $
&

%

cospuq “ e sinhpu1q?
e12 cosh2pu1q`e2 sinh2pu1q

sinpuq “ e1 coshpu1q?
e12 cosh2pu1q`e2 sinh2pu1q

.
(3.3.41)

Notice that there exists two solutions (obtained by adding ⇡ to the first solution) of
the first equation in T. The second equation can now be written as

e2 coshpu1q sinhpu1q ` e12
coshpu1q sinhpu1q “

b
e12 cosh2pu1q ` e2 sinh2pu1q (3.3.42)

Let |e|2 “ e2 ` e12 ° 0, squaring this equation and using hyperbolic trigonometry
identities, we obtain a unique possible values of u1 that is

� “: u1
max “ � “ arccosh

ˆd
1

2

ˆ
1 ` 1

|e|2 p1 `
a

p|e|2 ` 1q2 ´ 4e2q
˙˙

. (3.3.43)

Now, for t § � consider

ÄW : Ut “: T ˆ p´t, tq Ñ gpUq
pu, u1q Ñ pu ´ e sinpuq coshpu1q ` e1

cospuq sinhpu1q,
u1 ´ e1

sinpuq coshpu1q ´ e cospuq sinhpu1qq
(3.3.44)

we want to find s “: `1
max such that g´1 is a analytic diffeomorphism on the set

Tˆp´s, sq and its image is contained in the set U�. It is therefore enough to concentrate
on the minimum of `1 when u varies. Besides, we show that this value is maximum for
� “: u1

max, which means that the maximum value s “: `1
max on which there exists a

diffeomorphism is as well a singular point of Kepler’s equation. Indeed, we have

`1 “ u1 ´ e1
sinpuq coshpu1q ´ e cospuq sinhpu1q, (3.3.45)

and for u1 “ u1
max “: �, the location of a minimum of this function is a point for which

u and u1 goes to zero at the same time. Therefore, the width `1
max “: s corresponds to

the minimal value of `1 such that the inverse map has a singular point.

147



Now, equations in 3.3.41 was giving:
$
&

%

cospuq “ ˘ e sinhpu1q?
e12 cosh2pu1q`e2 sinh2pu1q

sinpuq “ ˘ e1 coshpu1q?
e12 cosh2pu1q`e2 sinh2pu1q

.
(3.3.46)

injecting in the equation of `1, it gives

`1 “ u1 ¯
b
e12 cosh2pu1q ` e2 sinh2pu1q. (3.3.47)

For
b
e12 cosh2pu1q ` e2 sinh2pu1q • 0 the minimum of the right term is `1 “ u1 ´

b
e12 cosh2pu1q ` e2 sinh2pu1q. As said before, this value is maximal in the set u1 P r´�, �s

when u1 “ u1
max “: �.

The width s is hence given by the formula

s :“ `1
max “ � ´

b
e12 cosh2p�q ` e2 sinh2p�q. (3.3.48)

Notice that for small values of e, e1 (that is our case) this value is positive.

Proposition 3.3.2. Consider the perturbing function in 3.3.31

F0p`, g, a, eq “ ⇢ cospg ` �q ´ 1a
1 ` ⇢2 ´ 2⇢ cospg ` �q

. (3.3.49)

This function admits a complex continuation that is analytical in t` P Tsu ˆ tg P
T�u ˆ te P C : 0 † |e| † e0u ˆ ta P C : 0 † |a| † a0u where

� “ arccosh

ˆ
1 ` a2

2a

˙

s “ � ´
b

p Im eq2 cosh2p�q ` e2 sinh2p�q
(3.3.50)

and

� “ arccosh

ˆd
1

2

ˆ
1 ` 1

|e|2 p1 `
a

p|e|2 ` 1q2 ´ 4e2q
˙˙

. (3.3.51)

Proof. Studying the perturbing function for ` “ 0, we have singularities for

cosrg “ 1 ` a2

2a
(3.3.52)
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solving for rg “ g ` ig1 we finds
#
Re pcosrgq “ 1`a2

2a ñ cos g cosh g
1 “ 1`a2

2a

Im pcosrgq “ 0 ñ sin g sinh g
1 “ 0.

(3.3.53)

In this way, as we have done in the above proposition, we can find the value

� :“ g
1
max “ arccosh

ˆ
1 ` a2

2a

˙
(3.3.54)

For the width s, our perturbing function depends on ` via the eccentric anomaly u, so
it is a analytic composition of that function, and that is why the analyticity width is
the same as the eccentric anomaly.

3.3.2 Expansion of the perturbing function

1Since our conditions on potential regard mainly its Fourier coefficients, in this section
we want to obtain the Fourier expansion of the perturbing function. There is a standard
and simpler way of doing that, and it is based on the well-known Laguerre polynomials
expressed in terms of the Hansen coefficients.
In order to do this, we have start considering the hamiltonian in 3.3.14 before using
the Delaunay variables, with perturbing function

Rpr2,', ⌧q “ r2 cosp' ´ ⌧q ´ 1a
1 ` r22 ´ 2r2 cosp' ´ ⌧q

(3.3.55)

where the expression for r2 is shown in 3.2.67, while in Delaunay variables ' ´ ⌧ “
g ` ` ` �p`, eq.
For this kind of function that arises from gravitational force in 1782 Legendre finds an
useful expansion on some polynomials (then extended by Laplace) such that they can
be expressed by the generating formula

1a
1 ` z2 ´ 2z⇠

“
8ÿ

n“0

znPnp⇠q; pin our case ⇠ “ cosp' ´ ⌧q, z “ r2q (3.3.56)

or equivalently by the differential equation (which we are most often used to)

´ d

d⇠
rp1 ´ ⇠2q d

d⇠
Pnp⇠qsp⇠q “ npn ` 1qPnp⇠q. (3.3.57)

1I want to thank Giacomo Longaroni for the useful discussions about this expansion.
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These Legendre polynomials that we have called Pn can be expressed as

Pnp⇠q “
rn{2sÿ

k“0

pn,k⇠
n´2k (3.3.58)

where the notation rn{2s represent the largest integer less than or equal to n{2 (namely,
the floor of n{2) and

pn,k “ p´1qk
2n

p2n ´ 2kq!
k!pn ´ kq!pn ´ 2kq! . (3.3.59)

For instance, the explicit expression of the first few Legendre polynomials when the
argument ⇠ is equal to cosp' ´ ⌧q (as the form of the RCPTBP perturbing function
suggests) are

P0pcosp' ´ ⌧qq “ 1; P1pcosp' ´ ⌧qq “ cosp' ´ ⌧q

P2pcosp' ´ ⌧qq “ 1

4
` 3

4
cos 2p' ´ ⌧q

P3pcosp' ´ ⌧qq “ 3

8
cosp' ´ ⌧q ` 5

8
cos 3p' ´ ⌧q

P4pcosp' ´ ⌧qq “ 9

64
` 5

16
cos 2p' ´ ⌧q ` 35

64
cos 4p' ´ ⌧q

P5pcosp' ´ ⌧qq “ 54

64
cosp' ´ ⌧q ` 35

128
cos 3p' ´ ⌧q ` 63

128
cos 5p' ´ ⌧q.

(3.3.60)

In this way one can obtain an expasion

Rpr2,', ⌧q “ r2 cosp' ´ ⌧q ´ P0pcosp' ´ ⌧qq ´ r2P1pcosp' ´ ⌧qq ´
8ÿ

j“2

Pjpcosp' ´ ⌧qqrj2

“ ´p1 `
8ÿ

j“2

Pjpcosp' ´ ⌧qqrj2q

(3.3.61)

In order to obtain some better expansion, one can do a classical computation (see
[75],[73]) that is for all r2 P r0, 1q

p1 ` r22 ´ 2r2 cosp' ´ ⌧qq´1{2 “
`
1 ´ r2 exp p´ip' ´ ⌧qq

˘´1{2`
1 ´ r2 expp´ip' ´ ⌧qq

˘´1{2

“
8ÿ

p“0

8ÿ

q“0

p2pq!p2qq!
22p`2qpp!q2pq!q2 exp

`
ipp ´ qqp' ´ ⌧q

˘
rp`q
2

(3.3.62)
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and, with n “ p ` q, and after changing q to n ´ q,

“
8ÿ

n“0

ˆ nÿ

q“0

p2qq!p2n ´ 2qq!
22npq!q2ppn ´ qq!q2 exp

`
ip2q ´ nqp' ´ ⌧q

˘˙
rn2 . (3.3.63)

Thus, comparing two expression above with 3.3.56, for 0 § q § n we have

Pnpcosp'´tqq :“
nÿ

q“0

rFq,n exp
`
ip2q´nqp'´⌧q

˘
:“

nÿ

q“0

p2qq!p2n ´ 2qq!
22npq!q2ppn ´ qq!q2 exp

`
ip2q´nqp'´⌧q

˘

(3.3.64)
such that the perturbing function becomes

R “ ´1 ´
8ÿ

n“2

ˆ
r2
a

˙nˆ nÿ

q“0

rFq,n exp
`
ip2q ´ nqp' ´ ⌧q

˘˙
an

“ ´1 ´
8ÿ

n“2

nÿ

q“0

Fq,n exp
`
ip2q ´ nqp' ´ ⌧q

˘
an; Fq,n :“ rFq,n

ˆ
r2
a

˙n

,

(3.3.65)

using Delaunay variables in 3.3.15 we write ' ´ ⌧ “ f ` g and the above expression
becomes

F0 “ ´1 ´
8ÿ

n“2

nÿ

q“0

Fq,n exp
`
ip2q ´ nqf

˘
exp

`
ip2q ´ nqg

˘
an. (3.3.66)

where F0 is the name given to the perturbing function R when is composited with p�´1
lin

as shown in 3.3.16. Now the crucial point is that the coefficients Fq,n can be expressed
in terms of Delaunay variables p`, g, apLq, epL,Gqq via the Hansen coefficients Xn,m

k peq
defined for n,m P Z such that

ˆ
r2
a

˙n

exp
`
imf

˘
“

`8ÿ

k“´8
Xn,m

k peq exp
`
ik`

˘
. (3.3.67)

In the next section we will review some key features and proprieties of these coefficients.
Thus we have

F “ ´1 ´
8ÿ

n“2

nÿ

q“0

`8ÿ

k“´8
rFq,nX

n,2q´n
k peq exp

`
irp2q ´ nqg ` k`s

˘
an.

“ ´1 ´
8ÿ

n“2

nÿ

r“´n

1 `8ÿ

k“´8
rF r`n

2 ,nX
n,r
k peq exp

`
iprg ` k`q

˘
an

“ ´1 ´
8ÿ

n“2

nÿ

r“´n

1 `8ÿ

k“´8

pr ` nq!pn ´ rq!
22npp r`n

2 q!q2ppn´r
2 q!q2X

n,r
k peq exp

`
iprg ` k`q

˘
an

(3.3.68)
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where
∞ 1 indicates that the sum is over every term between ´n and n separated by 2,

i.e. r “ 2j with j “ ´n
2 , ...,

n
2 .

Thanks to the parity of the perturbing function, we just know that

F0pa, e, `, gq “ ´1 ´
8ÿ

n“2

nÿ

r“´n

1 `8ÿ

k“´8

pr ` nq!pn ´ rq!
22npp r`n

2 q!q2ppn´r
2 q!q2X

n,r
k peqan cosprg ` k`q

“ ´1 ´
8ÿ

n“2

n{2ÿ

p“´n{2

`8ÿ

k“´8

p2p ` nq!pn ´ 2pq!
22nppp ` n

2 q!q2ppn
2 ´ pq!q2X

n,2p
k peqan cosp2pg ` k`q

(3.3.69)

and applying the change of variables j1 “ n ` r; m1 “ n ´ r such that j1,m1 “
0, 2, 4, 6...,`8 (they count only the even number ) and j1 ` m1 “ 2n • 4, one can
obtain (keeping in mind that r “ j1´m1

2 and n “ j1`m1
2 )

F0pa, e, `, gq “ ´1´
8ÿ

j1,m1“0
j1`m1•4

1 `8ÿ

k“´8

j1
!m1

!

2j
1`m1pp j1

2 q!q2ppm1
2 q!q2

X
j1`m1

2 , j
1´m1
2

k peqa j1`m1
2 cos

ˆ
j1 ´ m1

2
g`k`

˙

(3.3.70)
that with a rescalation j1 “ 2j,m1 “ 2m becomes

F0pa, e, `, gq “ ´1 ´
8ÿ

j,m“0
j`m•2

`8ÿ

k“´8

p2jq!p2mq!
4j`mpj!q2pm!q2X

j`m,j´m
k peqaj`m

cos

ˆ
pj ´ mqg ` k`

˙

(3.3.71)
A crucial propriety that we will understand in the section dedicated to Hansen coeffi-
cients is that Xn,m

k “ Xn,´m
´k .

So in general we have reached our expansion in Fourier coefficients such that

F0pa, e, `, gq “ ´1 ´
8ÿ

j,m“0
j`m•2

`8ÿ

k“´8
fj,m,kpa, eq cospk` ` pj ´ mqgq;

fj,m,kpa, eq :“ rfj,mXj`m,j´m
k peqaj`m

:“ p2jq!p2mq!
4j`mpj!q2pm!q2X

j`m,j´m
k peqaj`m

(3.3.72)

where F0 is the name given to the perturbing function R when is composited with p�´1
lin

as shown in 3.3.16.
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From 3.3.69, fixing pr, kq in N ˆ Z one can obtain the expression for the Fourier
coefficient of the perturbing function

fr,k “
8ÿ

n“r

1 2pr ` nq!pn ´ rq!
22npp r`n

2 q!q2ppn´r
2 q!q2X

n,r
k peqan (3.3.73)

Remark 3.3.2. Thanks to analytical proprieties of this function, one can compute the
above coefficients also with its taylor coefficients for |e|, |a| † 1 near pe, aq “ p0, 0q, i.e.

F0pa, e, `, gq “
ÿ

n,m•0

fn,mpa, eq cospn` ` mgq “
ÿ

j,k•0

F 0
j,kp`, gqejak (3.3.74)

where F 0
j,k represent the coefficients of the Taylor series of F0.

Thanks to [54] we can use the following expansion for Hansen coefficients (for k “ m`s)
if s “ k ´ m • 0

Xn,m
m`speq “p´1qs

ˆ
e

2

˙s 8ÿ

t“0

" tÿ

j“0

jÿ

p“0

ˆ
n ` m ` 1

j ´ p

˙pm ` sqp
p!

s`jÿ

q“0

ˆ
n ´ m ` 1

s ` j ´ q

˙pm ` sqq
q!

p´1qq

„
2

ˆ
2t ´ n ` s ´ p ´ q ´ 2

t ´ j

˙
´

ˆ
2t ´ n ` s ´ p ´ q ´ 1

t ´ j

˙⇢*ˆ
e

2

˙2t

(3.3.75)

where binomial coefficient
`´µ

p

˘
where µ ° 0 must be computed as being equal to

p´1qp
`
µ`p´1

p

˘
, p being always positive.

If s “ k ´ m † 0, one can use the fact that Xn,m
k “ Xn,´m

´k to calculate Xn,m
m`speq “

Xn,´m
´m´speq using the formula in 3.3.75. In this way it is easy to see that, for s “ k´m • 0,

the leading term is for t “ 0, i.e. it is ek´m, and the same holds for ´s “ m ´ k • 0

with the right change of sign, namely that the leading term is em´k.
So thanks to this formula, it is clear that Xn,m

k peq “ ope|k´m|q, i.e. using 3.3.73, that

fr,kpa, eq “ tr,k e
|r´k| ar

“
1 ` Ope2; aq

‰
(3.3.76)

and so for e, a small enough the form of the coefficient tr,k is crucial. From expansions
3.3.73 we also know that

tr,k “ 2p2rq!
22rpr!q2 rXr,r

k s (3.3.77)

where rXr,r
k s indicates the coefficient that multiplies the term e|k´r| in the e-power

expansion of the Hansen coefficient.
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As we can see from 3.3.75, in the series expansion of the Hansen coefficient, the eccen-
tricity has a power expressed by s ` 2t, so in order to evaluate the coefficient of the
leading term (e|k´r|), we have to look at the term with

s ` 2t “ |k ´ r|

so it is clear that we have to distinguish between two cases:
Case r ´ k † 0: for our intent, w.r.t. 3.3.75 we set n “ m “ r and s “ k ´ r, and if we
want the term tr,k we need s` 2t “ |k ´ r| that means, for r † k, k ´ r ` 2t “ k ´ r ñ
t “ 0.

rXr,r
k s “ p´1qk´r

2k´r

ˆ
2r ` 1

0

˙ k´rÿ

q“0

ˆ
1

k ´ r ´ q

˙
kq

q!
p´1qq

„
2

ˆ
k ´ 2r ´ q ´ 2

0

˙
´

ˆ
k ´ 2r ´ q ´ 1

0

˙⇢
.

(3.3.78)
so that the first binomial coefficient that involves q is different from zero only if q “ k´r
or q “ k ´ r ´ 1 and such that

rXr,r
k s “ p´1qk´r

2k´r

“ kk´r

pk ´ rq!p´1qk´r ´ kk´r

pk ´ rq!
k ´ r

k
p´1qk´r

‰
“ kk´r

2k´r pk ´ rq!r1 ´ k ´ r

k
s

“ ´ 1

2k´r

r kk´r

k pk ´ rq! .
(3.3.79)

Finally for this case (k ° r) we have obtained

t´
r,k “ ´ p2rq!

2r`k´1pr!q2
r kk´r

k pk ´ rq! . (3.3.80)

Case r ´ k ° 0: Now, setting always s “ k ´ r, in order to control only the dominant
term, we have to ask that s ` 2t “ |k ´ r| “ r ´ k namely that t “ r ´ k. So from
3.3.75 we have

rXr,r
k s “p´1qk´r

ˆ
1

2

˙r´k" r´kÿ

j“0

jÿ

p“0

ˆ
2r ` 1

j ´ p

˙
kp

p!

k´r`jÿ

q“0

ˆ
1

k ´ r ` j ´ q

˙
kq

q!
p´1qq

„
2

ˆ´k ´ p ´ q ´ 2

r ´ k ´ j

˙
´

ˆ´k ´ p ´ q ´ 1

r ´ k ´ j

˙⇢*
.

(3.3.81)

We start analyzing the sum in q; in order to make the binomial coefficient different
from zero, one finds the condition k ´ r ` j • 0, i.e. j • r ´ k, but since the index j
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goes from 0 to r ´ k, the only possible contribution is from j “ r ´ k, and so q “ 0. In
this way the expression becomes

rXr,r
k s “ p´1qk´r`1

ˆ
1

2

˙r´k" r´kÿ

p“0

ˆ
2r ` 1

r ´ k ´ p

˙
kp

p!

„
2

ˆ´k ´ p ´ 2

0

˙
´

ˆ´k ´ p ´ 1

0

˙⇢*

“ p´1qk´r`1

2r´k

" r´kÿ

p“0

ˆ
2r ` 1

r ´ k ´ p

˙
kp

p!

*
.

(3.3.82)

Notice that this sum has contributes different from zero until 2r ` 1 • r ´ k ´ p, i.e.
p • ´pr ` k ` 1q. So if r ` k ` 1 † 0 the contributions different from zero start from
p “ ´pr ` k ` 1q.
So finally we have found the following

t`
r,k “ p´1qk´r`1 p2rq!

23r´k´1pr!q2
r´kÿ

p“0

ˆ
2r ` 1

r ´ k ´ p

˙
kp

p!
. (3.3.83)

So finally
fr,kpa, eq “ tr,k e

|r´k| ar
“
1 ` Ope2; aq

‰
(3.3.84)

with

tr,k “

$
’&

’%

´ p2rq!
2r`k´1pr!q2

r kk´r

k pk´rq! if k • r

p´1qk´r`1 p2rq!
23r´k´1pr!q2

r´k∞
p“0

`
2r`1
r´k´p

˘
kp

p! if r ° k.
(3.3.85)

Where k “ r the expressions are completely equivalent, and obviously when k “ 0

all terms of the sum are null except the one with p “ 0 when we use the convention
0
0 “ 1.

3.4 On the Hansen Coefficients
In this section we are going to review the standard theory about Hansen coefficients
used in the expansion of the RCPTBP perturbing function.

Hansen coefficient(Cefola [59]) is an important class of functions which frequently occur
in many branches of Celestial Mechanics such as planetary theory (Newcomb [66]) and
artificial satellite motion (Allan[53]; Hughes[62]). Moreover , there are extensive forms
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of Hansen like expansions (Klioner et. al. [64] ; Sharaf [69], [70]) which play important
roles in the expansion theories of elliptic motion.
As we have seen in the expansion of the RCPTBP perturbing function, Giacalia ([60])
noted that Hansen’s coefficients appears in satellite theory in expression of the disturb-
ing function due to the primary and due to the presence of a third body and they are
usually called Eccentricity Functions. He derived recurrence relation for these functions
and their derivatives, as they appear in the evaluation of geopotential and third body
perturbations of an artificial satellite.
Also in [61], he proved Hansen’s coefficients for Fourier series in terms of the mean
anomaly correspond to a rotation of the orbital plane proportional to the eccentricity
of the orbit. They are given in terms of Bessel functions and generalized associated
Legendre functions which arise through the transformation of spherical harmonics un-
der rotation. In [63], Hughes computed tables of analytical expressions for the Hansen
coefficients xn,˘m

o peq and x´pn`1q,˘m
o peq when 1 § n § 30 and 0 § m § n.

In [56], Branham derived a recursive calculation of Hansen coefficients which are used
in expansions of elliptic motion by three methods: Tisserand’s method, Von Zeipel-
Andoyer method with explicit representation of the polynomials required to compute
the Hansen coefficients and von Zeipel-Andoyer method with the value of the polyno-
mials calculated recursively. Vakhidov ([72]) studied in detail efficient approximations
of Hansen coefficients using polynomials in terms of the eccentricity.
He and Zhang ([65]) used Hansen coefficients to compute general perturbations of the
asteroids of Flora group due to Jupiter. Breiter et.al ([57]) show that most of the
theory of Hansen coefficients remains valid for x�j

k , when � is a real number, also, the
generalized coefficients can be applied in a variety of perturbed problems that involve
some drag effects.
Sadov ([68]) deals analytically with the properties of Hansen’s coefficients in the theory
of elliptic motion considered as functions of the parameter ⌘ “

?
1 ´ e2 where e is the

eccentricity.
We are going to use this coefficients only to study some behaviours of the Fourier
coefficients of the disturbing functions, but in order to do this, we firstly recollect some
crucial proprieties of these coefficients.
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3.4.1 Computation of Xn,m
0 and X´pn`1q,m

0

As we have seen before in 3.3.67 the general Hansen coefficient Xn,m
k peq is a function

of the orbital eccentricity and is defined bu the generating function
ˆ
r

a

˙n

eimf “
`8ÿ

k“´8
Xn,m

k peq eik`. (3.4.1)

where n,m and k are integers which may be positive or negative, r the radius vector,
a the semi-major axis, e the orbital eccentricity, f the true anomaly and ` the mean
anomaly. The individual coefficients being given by the integral

Xn,m
k peq “ 1

2⇡

ª 2⇡

0

ˆ
r

a

˙n

cospmf ´ k`qd`. (3.4.2)

that shows easily that Xn,m
k “ Xn,´m

´k .
A number of authors have given extensive table of these coefficients, the most important
are by Cayley (1861) and Newcomb (1895) and Cherniack (1972) but they are quite
tedious and time consuming. We prefer following the expansion by Hughes [63] starting
by compute Xn,m

0 and X´pn`1q,m
0 for 1 § n § 30 and 0 § m § n.

If we put k “ 0, then the integrals 3.4.2 for Xn,m
0 and X´pn`1q,m

0 become

Xn,m
0 “ 1

2⇡

ª 2⇡

0

ˆ
r

a

˙n

cospmfqd`, X´pn`1q,m
0 “ 1

2⇡

ª 2⇡

0

ˆ
a

r

˙n`1

cospmfqd`.
(3.4.3)

On putting m “ ´m into 3.4.3 it is obvious that Xn,m
0 “ Xn,´m

0 and X´pn`1q,m
0 “

X´pn`1q,´m
0 , therefore it is only necessary to obtain relations for positive m. If the

integrals 3.4.3 are evalueted (see for example [Kozai,1973])

Xn,m
0 “

ˆ
´ e

2

˙mˆ
n ` m ` 1

m

˙
F

ˆ
m ´ n ´ 1

2
,
m ´ n

2
,m ` 1; e2

˙
,

X´pn`1q,m
0 “

ˆ
´ e

2

˙m
1

p1 ´ eqp2n´1q{2

rpn´m´1q{2sÿ

j“0

1

2j

ˆ
n ´ 1

2j ` m

˙ˆ
2j ` m

j

˙
e2j,

(3.4.4)

where F p q is the standard hypergeometric function and r s denotes the nearest lowest
integer. From these equations, replacing the hypergeometric functional expressions, one
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can obtain the recursive formulae (see [Cefola and Broucke,1975]) for Xn,m
0

Xn`1,m
0 “ p2n ` 3q

pn ` 2q Xn,m
0 ´ pn ` 1 ´ mqpn ` 1 ` mq

pn ` 1qpn ` 2q p1 ´ e2qXn´1,m
0

eXn,m`1
0 “ 1

pn ´ m ` 1qpepn ` m ` 1qXn,m´1
0 ` 2mXn,m

0 q,
(3.4.5)

the corresponding recoursive relations for X´pn`1q,m
0 are

pn ´ m ` 1qpn ´ m ´ 1qX´pn`3q,m
0 “ pn ` 1q

p1 ´ e2qrp2n ` 1qX´pn`2q,m
0 ´ nX´pn`1q,m

0 s

X´pn`1q,m
0 “ 1

pn ´ m ´ 1qr2pm ` 1q
?
1 ´ e2X´pn`1q,pm`1q

0 `

` pn ` m ` 1qe2p1 ´ e2q3{2X´pn`1q,pm`2q
0 s.

(3.4.6)

The tables of some of the Hansen coefficients Xn,m
0 for 1 § n § 30 and 0 § m § n are

now given (taken by [73])
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Figure 3.8: Explicit formulae for some of the Hansen coefficients
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3.4.2 Computation of Xn,m
k and X´pn`1q,m

k when k ‰ 0.

If k ‰ 0 then the computation of Xn,m
k and X´pn`1q,m

k presents some difficulty in that
the analytical expressions for such coefficients do not terminate, consequently the series
have to be truncated at some particular order in the eccentricity.
Since most planets and satellites both natural and artificial have small or moderate
eccentricities (0 § e § 0.1), a series expansion in the eccentricity is usually fine.

Xn,m
k “

ÿ

q

pXn,m
k,q eq (3.4.7)

The coefficients pXn,m
k,q with shifted indices are known as Newcomb’s operators defined

as follows
Xn,m

⇢,� “ pXn,m
m`⇢´�,⇢`� (3.4.8)

in such a way that the expansion in 3.4.7 becomes the well-known

Xn,m
k “

ÿ

⇢´�“k`m

Xn,m
⇢,� e⇢`�. (3.4.9)

For � “ 0, knowing that Xn,m
0,0 “ 1 and Xn,m

1,0 “
ˆ
m ´ n

2

˙
, the recursive relations are

easily founded
4⇢Xn,m

⇢,0 “ 2p2m ´ nqXn,m`1
⇢´1,0 ` pm ´ nqXn,m`2

⇢´2,0 , (3.4.10)

while for � ‰ 0 the relation

4�Xn,m
⇢,� “ ´ 2p2m ` nqXn,m´1

⇢,�´1 ´ pm ` nqXn,m´2
⇢,�´2 ´ p⇢ ´ 5� ` 4 ` 4m ` nqXn,m

⇢´1,�´1`

` 2p⇢ ´ � ` mq
ÿ

j•2

p´1qj
ˆ
3{2
j

˙
Xn,m

⇢´j,�´j

(3.4.11)

is used. From the above relations we notice that Xn,m
⇢,� “ 0 whenever ⇢ or � is negative,

and that
Xn,m

⇢,� “ Xn,´m
�,⇢ if � ° ⇢. (3.4.12)

As we can see, when k ‰ 0 the recursive relations are more more complicate than the
ones for k “ 0. Indeed in a computational way, the more rapide mode to calculate
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these Hansen coefficients with k ‰ 0 is using the Bessel function as is shown in [74]. In
particular we will use the following expansion, known as Wnuk’s method:

Xn,m
k “p1 ` �2q´pn`1q

8ÿ

t“´8
En,m

k´tJtpkeq,

2p1 ´ e2qdX
n,m
k

de
“ ´ 2m

e
Xn,m

k ´ pn ` mqeXn,m
k ` 2kp1 ´ e2q3{2

e
Xn,m

k ´
p2n ` 4mqXn,m´1

k ´ pn ` mqeXn,m´2
k ,

(3.4.13)

where

� “ e

1 `
?
1 ´ e2

,

En,m
k´t “

$
’’&

’’%

p´�qk´t´m
8∞
s“0

`
n´m`1

k´t´m`s

˘`
n`m`1

s

˘
�2s, pk ´ t ´ m • 0q,

p´�qt´k`m
8∞
s“0

`
n`m`1

t´k`m`s

˘`
n´m`1

s

˘
�2s, pk ´ t ´ m † 0q,

(3.4.14)

and Jtpkeq is the Bessel function of ke, for which the following relation holds (for t † 0

or ke † 0)
J´tpkeq “ Jtp´keq “ p´1qtJtpkeq.

3.5 Checking the Singular KAM condition for the
perturbing function

2 The new expansion of the Fourier coefficient of the perturbing function of RCP3BP
developed on the previous section allow us to check the Singular KAM condition, i.e.
to check thar for high Fourier modes, exists a � such that

|fr,kpa, eq| • � e´|r|s´|k|�, (3.5.1)

where s and � are the analyticity strips of the disturbing function w.r.t. the two angles
`, g.
To be more precise, we are neglecting the polynomial part on that condition because
it is present only to adjust the measure of the set Gn

s (to be 1). In fact, the polynomial
term, for high Fourier modes is negligible w.r.t. the exponential term.

2Regarding this section, I would like to warmly thank Prof. Corrado Falcolini for his invaluable
help.
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If there is presence of zeros on fr,kpa, eq for high Fourier modes, the condition (3.5.1) will
be certainly false. So our request implies (as a necessary but not sufficient condition)
the absence of zeros on the analytic function fr,kpa, eq.
In order to study the zeros of this coefficient, is useful to do some numerical work so
that we can computer explicitly the Coefficients. If one uses the expansion in [21] with
the Legendre polynomials, this numerical work will be not very precise and very long
to do. The expansion in Hansen coefficient makes it more reliable and so much faster
(moving from computations that take hours to a few minutes), since they are obtained
from iterative and quite simple relations.
To make this clear, we show some Fourier coefficients computed using Mathematica,
keeping in mind the following notation used in the previous section:

F p`, g, a, eq “
ÿ

rPN

ÿ

kPZ

fk,rpa, eq cosprg ` k`q;

fr,kpa, eq “ tr,k e
|r´k| ar

“
1 ` Ope2; aq

‰
:“ tr,k e

|r´k| ar
“
1 ` Fr,kpa, eq

‰
.

Since our expansion allows us to compute coefficients at very high modes with arbitrary
precision, we will not show coefficients related to small modes (which are really easy
to compute), but only those with really high Fourier modes that do not appear in the
literature.
We want to stress that every coefficient shown in the following pages is computed in
not more than 10 seconds. In the following figures one can see a list that represents

tr, k, tr,k, r, |r ´ k|,Fr,kpa, equ.

The truncation has been chosen so as not to make the figures too large but can be
increased without changing the computation time too much.
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Figure 3.9: r “ 85, k “ 90.

Figure 3.10: r “ 117, k “ 112.
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Figure 3.11: r “ 207, k “ 215.

Figure 3.12: r “ 503, k “ 507.
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Figure 3.13: r “ 810, k “ 813.

Figure 3.14: r “ 999, k “ 937.

Now that we have this power of computation, we can directly check wheter the consid-
ered coefficients have zeros, i.e. we want to find whether there exists pa, eq P p0, 1qˆp0, 1q
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such that
Fr,kpa, eq “ ´1.

In order to do this, we have represented this zeros as implicit function epaq such that
Fr,kpa, epaqq ´ 1 “ 0. The complete result is in the following figure.

Figure 3.15: Zeros of fk,rpa, eq for some r, k truncated to 8
th order. In red some planets

value of pe, aq.

The figure gives us rather negative results. There are a lot of Zeros, and if one increases
the value of the modes one finds that the zeros accumulate more and more towards the
origin. This tells us that it is not possible to find a region of space pa, eq in which one
is uniformly far from zeros of the Fourier coefficients.

So, one must change the approach and try something different. The idea suggested
by S. Barbieri in his [15] is that it is normal that a smooth function in general has
zeros, but it is more complicated that the sum of several smooth functions has zeros
(because there must be coincident zeros). For this reason we check if there are zeros
in fr,kpa, eq ` f2r,2kpa, eq, or in fr,kpa, eq ` f3r,3kpa, eq. This condition, for S. Barbieri,
should be sufficient to apply Singular KAM Theory. In the following figures we show
our result.
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Figure 3.16: Zeros of fk,rpa, eq ` f2k,2rpa, eq truncated to 10
th order. .
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Figure 3.17: Zeros of fk,rpa, eq ` f3k,3rpa, eq truncated to 10
th order.

A question that appear naturally looking at this figures is if these behaviours
change by modifying the order of truncations. So we have done the same drawings
changing the order, but the result is that from a certain order onwards, the figures
remain stable.
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Figure 3.18: How the "double zeros" changes under the modification of truncation order
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Figure 3.19: How the "double zeros" changes under the modification of truncation order
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Figure 3.20: Some "double" intersection point at order 30.

171



Fortunately we have enough numerical power to be able to consider coefficients with
valid truncation order, i.e. to represent the real behaviour of the functions. After noting
the presence of a great number of double zeros, we try to draw "triple zeros".

Figure 3.21: Zeros of fk,rpa, eq ` f2k,2rpa, eq ` f3k,3rpa, eq truncated to 10
th order.

Now this truncation is not enough because with f3k,3r the modes become really huge and
if one wants to have some real behaviour of that function, one has to deeply increase the
truncation order. Finally, we can say that these numerical results are very negative. The
condition on the potential necessary to use Singular KAM theory seems inapplicable
to RCP3BP because of the continued presence of zeros in the Fourier coefficient. In
particular, these zeros seem to accumulate toward the origin by increasing the value
of the Fourier modes, so there does not seem to be a rectangle in the pa, eq space in
which one can apply this theory. The only hope left concerns the summation of three
multiple Fourier modes, but that seems a pretty complicated plan.
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A quantitative version of the Implicit

Function Theorem

Theorem 3.5.1 (Implicit Function Theorem). Setting Bnpy0, r1q :“ ty P Cn
: |y´y0| §

r1u, let
F : py, xq P Bnpy0, rq ˆ Bmpx0, sq Ä Cn`m fi›Ñ F py, xq P Cn

be a continuous function with continuous Jacobian matrix ByF ; assume that ByF py0, x0q
is invertible and denote by T its inverse. Assume also that

sup

Bpy0,rqˆBpx0,sq
||In ´ TByF py, xq|| § 1

2

sup

Bpx0,sq
|F py0, xq| § r

2||T ||
(3.5.2)

Then, all solutions py, xq P Bpy0, rq ˆ Bpx0, sq of F py, xq “ 0 are given by the graph of
a unique continuous function g : Bpx0, sq Ñ Bpy0, rq satisfying, in particular

sup

Bpx0,sq
|g| § 2||T || sup

Bpx0,sq
|F py0, xq|. (3.5.3)

Moreover, if F is real-analytic, then so is g on its domain.

This version of Implicit Function Theorem is taken from Appendix A of [22] with some
different notations.

Proof. Let X “ CpBmpx0, sq,Bnpy0, rqq be the closed ball of continuous function from
Bmpx0, sq to Bnpy0, rq w.r.t. the sup-norm || ¨ ||8 (X is a nonempty metric space with
distance dpu, vq :“ ||u ´ v||) and denote �py; xq :“ y ´ TF py, xq.
Then, u Ñ �puq :“ �pu, ¨q maps CpBmpx0, sqq into CpCmq and, since

By� “ In ´ TFypy, xq,
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from the first relation in (3.5.2), it follows that is a contraction.
Furthermore, for any u P CpBmpx0, sq,Bnpy0, rqq,

|�puq ´ y0| § |�puq ´ �py0q| ` |�py0q ´ y0| § 1

2
||u ´ y0||8 ` ||T || ||F py0, xq||8

§ 1

2
r ` ||T || r

2||T || “ r

showing that � : X Ñ X. Thus, by Contraction lemma 3, there is a unique g P X such
that �pgq “ g, with is equivalent to F pg, xq “ 0 @x.
If F py1, x1q “ 0 for some py1, x1q P Bpy0, rq ˆ Bpx0, sq, it follows that

|y1 ´ gpx1q| “ |�py1; x1q ´ �pgpx1q, x1q § ↵|y1 ´ gpx1q|

which implies that y1 “ gpx1q and that all solutions of F “ 0 in Bpy0, rq ˆ Bpx0, sq
coincide with the graph of g.
Finally, (3.5.3) follows by observing that

||g´y0||8 “ ||�pgq´y0||8 § ||�pgq´�py0q||8`||�py0q´y0||8 § 1

2
||g´y0||8`||T || ||F py0, ¨q||8,

finishing the proof.

Remark 3.5.1. (i) If F is periodic in x or/and real on reals, then (by uniqueness) so
is g.
(ii) If F is analytic, then so is g (Weierstrass theorem, since g is attained as uniform
limit of analytic functions).

3Given a non-empty complete metric space pX, dq with a contraction mapping T : X Ñ X (i.e.
there exists k P r0, 1q such that dpT pxq, T pyqq § kdpx, yq), then Contration lemma states that T admits
a unique fixed-point x˚ P X.
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