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Abstract

In [Féj04] Jacques Féjoz completed and gave the details of Michel Herman’s proof
of Arnold’s 1963 theorem on the stability of planetary motions. This result pro-
vided the existence of ��� maximal invariant tori for the planetary �����	��
 -body
problem, with ���� , in a neighborhood of Keplerian circular and coplanar move-
ments, under the hypothesis that the masses of the planets are sufficiently small
with respect to the mass of the “Sun”. In this thesis we prove an analogous re-
sult in analytic class, i.e., we prove, under the same hypotheses listed above, the
existence of real-analytic maximal invariant tori for the planetary ��������
 -body
problem. The proof is based on the cited article by J. Féjoz and on a 2001 paper
by H. Rüßmann. First we prove a general quantitative theorem about existence
of maximal KAM tori for nearly-integrable Hamiltonian systems near elliptic
lower dimensional tori. Then, using [Féj04], we obtain a set of initial data, in
the phase space of the Hamiltonian model for a planetary system, with strictly
positive Lebesgue measure, leading to quasi-periodic motions with ������� fre-
quencies.

In appendix A and B we give a complete and detailed proof of Kolmogorov’s
original 1954 KAM theorem. In appendix C we briefly review Rüßmann’s theory,
contained in [Rüßm01], about lower dimensional elliptic invariant tori for nearly-
integrable Hamiltonian systems.
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0.1 Notations

1. Let ������� or ��� , 	 �
	 always means 	 �
	 	 � � 	 � ��	 	 �������	 � � 	 	 if not
otherwise specified.

2. Let ����� � and �  the usual � -dimensional torus � �� �����  , we define for� and ��� � the following sets:

��� � �!� � � � �#"$&%&')(�* �+� � �,	 * �-�
	/. �10 �
� 2 � � ( �3�+�  �4	 Im �/56	1.7� � Re �/58� � �9;: � ��<&<&<=� 0�>

we will also use sometimes the notation �  �?� 
 instead of � 2 ; if �!�7��� we
denote � �1@ � � � �A� � � 
�BC� � <

3. Let '����  a domain and �3� ' �EDF�
G a real-analytic function, we put

	 ��	 H3� �!IKJ $$&% H 	 � �L� 
�	
and if � can be holomorphically extended on a ' � � we denote

	 ��	 �M� �N	 ��	 HPOQ� �RIKJ $$&% HPOQ� 	 � �L� 
�	S<
4. Let TU�WVM� , with V �X� or � , a domain and � ��T �EDYV [Z\V^]S_`] aa -times continuously differentiable function. We denote

�Ab%� �&<&<&< �cb6d�
�� �?V � 
 dfe �EDhg d � �Ai 
 �Ab%� �&<&<&< �cb6d 
��3V  Z3V ]S_`]
as the a -th derivative of � in i �+T (with the convention g d � �Ai 
 �Ab 
�� � � �Ai 

for a � � ); moreover we write 	 g d � �Ai 
 �Ab d 
�	 �j	 g d � �Ai 
 �Ab �&<&<&< �cb 
�	 and
define 	 g d � �Ai 
�	1� � kml #nc%porq/sut nvt wyx � 	 g d � �Ai 
 �Ab d 
�	
where 	zM	 is some norm in V {Z3V^]S_`] . For any '���T we write

	 g d � �Ai 
�	 H3� �!IKJ $| % H 	 g d � �Ai 
�	1}!~j<
The Banach space of all � -times continuously differentiable function � �T �ED��  Z�� ]S_`] , (where T is an open subset of � � ), with bounded deriva-
tives up to order � is defined by �,� �AT �K� �Z���]S_`] 
 provided with norm

	 � 	 � � � �Ukml #�K�/dv� � 	 g
d � 	 � .�~�<
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5. ) 	 � , for ������O , denotes the standard symplectic matrix

) 	 � � �
� � ��� �� � ��� <

6. For any � � : ����O we define

� , 5 � � ( ���3�
, 	�	 ��	 � � : 0 <

Other definitions or notations that are used only in some parts of the thesis will
be introduced when necessary.
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Chapter 1

Summary

“ ...l’Amor che move il sole e l’altre stelle. ”
Dante Alighieri. Divina Commedia, Paradiso, Canto XXXIII.

The main body of this thesis is divided into four chapters and three appendices.

In chapter 2 we review H. Rüßmann’s theory about existence of analytic max-
imal KAM tori for nearly integrable Hamiltonian systems. All results provided
are obtained from the paper [Rüßm01] where, actually, Rüßmann proves a much
more general result about existence of lower dimensional invariant tori.

At the beginning of section 2.1 we introduce two definitions of weak non-
degeneracy conditions; the term “weak” is used here to underline the difference
with respect to the classical non-degeneracy conditions in the history of KAM
theory (see for example A.N. Kolmogorov’s 1954 theorem in appendix A). The
first definition presented is the so called “Arnold-Pyartli condition”, used by M.
Herman to prove a very general and elegant theorem about existence of invariant
tori for � � nearly-integrable Hamiltonian systems. Immediately after the def-
initions of non-degeneracy, weak non-degeneracy and extreme non-degeneracy
in the sense of Rüßmann are given. Some simple examples and remarks follow
together with a brief discussion of the relations between the two different non-
degeneracy conditions.

In section 2.2 we prepare for the statement of Rüßmann’s theorem on maxi-
mal invariant tori; we introduce the concept of approximation function, used to
control in a more general way (than the classical diophantine inequalities) the
small denominators appearing in the problem and give the fundamental definition
of index and amount of non-degeneracy of a real-analytic function. Soon after,
we present a somewhat quantitative statement of Rüßmann’s theorem obtained
putting together different results contained in the article cited above.
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In section 2.4 we provide an explicit estimate for the size of the perturbation
in Rüßmann’s theorem. We remark that this estimate has been deduced consid-
ering the case of maximal tori all along Rüßmann’s paper and simplifying some
numerical values with the imposition of more strict upper bounds.

As ending to this chapter, in section 2.5 we discuss with some more details
Rüßmann’s theorem about existence of non-resonant frequencies under the hy-
pothesis of non-degeneration of the frequency application (i.e., the gradient of
the integrable part of the considered Hamiltonian function). We have chosen to
investigate this aspect of Rüßmann’s work (see [Rüßm01, Part IV] for complete
details) not only for its technical beauty, but to serve an important purpose. We
aim to prove that it is not necessary to use the literal definition of index of non-
degeneracy � given by Rüßmann (see section 2.2 and definition 2.2.2); indeed, it
will be shown that this quantity may be replaced by any integer ��	� � , as well
as the related amount of non-degeneracy may be substituted by the amount cor-
responding to �� (see remarks in subsection 4.3.3). Actually, there is also another
reason for the exposition of this matter: by the construction described the reader
will understand how it is possible to control the non-resonant frequencies with
the classical diophantine inequalities instead of using an approximation function
(see subsection 4.3.5 for details). This aspect, apparently trivial, is fundamental
to apply Rüßmann’s theorem to properly degenerate Hamiltonian systems, i.e.,
nearly-integrable systems whose integrable part does not depend upon all the ac-
tion variables, as for example the Hamiltonian model for the many-body problem.

In chapter 3 we prove the first part of a general theorem about analytic and
properly degenerate Hamiltonian systems. We infer existence of a positive mea-
sure set of initial data, in the phase space of the considered Hamiltonian function,
leading to quasi-periodic motions laying on analytic Lagrangian (maximal) KAM
tori. This theorem is an analogous, performed in analytic class, of M. Herman’s
KAM theorem contained in [Her98] (a proof can be also found in [Féj04]). Her-
man’s theorem is extremely elegant and very general since it establishes also the
existence of lower dimensional tori for properly degenerate Hamiltonian systems
(while we will only prove the existence of maximal KAM tori in the general theo-
rem as well as in the application to planetary systems). A non-properly degenerate
version of Herman’s theorem is Rüßmann’s theorem discussed in chapter 2 (case
of maximal tori) and appendix C (general case of lower dimensional tori). Indeed,
this last theorem is the one we will apply to prove our KAM theorem.

In section 3.1 we start introducing the general Hamiltonian setting. We con-
sider a real-analytic nearly-integrable Hamiltonian in the form � ��� � � � , where
� is a “small” positive parameter; in particular we require that the average of the
perturbation with respect to the angles, we shall call � � , possesses an elliptic equi-
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librium point, say, in the origin. Then we give general formulations of the results
proved in chapter 3 and 4; theorem 3.1.1 states the main result and is followed
by a brief description of the strategy of the proof made through theorems 3.1.2,
3.1.3 and 3.1.4. The first of this three theorems is proved in the whole remaining
of chapter 3. The scheme adopted is a classical one, as well as the majority of
the results used and applied, and reflects for most aspects Herman’s scheme in his
general KAM theorem (see [Féj04, theorem 60]). The proof runs as follows. Sec-
tion 3.2 contains the exposition of a well known theory of dynamical systems that
is averaging theory. Using the hypothesis of non-degeneracy in the sense of Rüß-
mann of �;� � ��� , we localize the initial action variables in an open ball where
we can apply a corollary of a general result taken from [Val03] (theorem 3.2.1 in
this thesis). Averaging theory permits the removal of the dependence upon the
angle variables up to any chosen and fixed order greater than � . Unfortunately,
it causes at the same time a little shift of order � � � 
 of the elliptic equilibrium
initially possessed by ��� . Thus, in section 3.3 we find a symplectic transforma-
tion that restores the original equilibrium. Subsequently, we use a well known
result by K.Weierstraß to diagonalize the quadratic part of the function obtained
composing ��� with the symplectic transformations made so far.

Next, in section 3.4, a general formulation of a classical theorem, usually
called “Birkhoff’s normal form theorem”, is provided. Following the ideas in
[Zeh94, pages 43-44], we give a detailed and quantitative proof about existence
of a symplectic map that puts an Hamiltonian into Birkhoff’s normal form up to
a certain arbitrarily fixed order. The most important aspect to underline is that we
give an explicit evaluation of the domains of the transformation.

In the first part of section 3.5 we perform the passage to symplectic polar coor-
dinates that represent angle-action variables for the integrable part of the Hamil-
tonian considered. Subsequently we make a rescaling of the new angle-variables
with a conformally symplectic map which casts the Hamiltonian in a simple form
very similar to that considered in Rüßmann’s theorem 2.3.1. More precisely, the
Hamiltonian system obtained so far is a degenerate case of the system considered
in Rüßmann’s theorem, i.e., the Hamiltonian function obtained has the same form
of Rüßmann’s Hamiltonian, with the difference that in the first the dependence
upon the small parameter � appears also in its integrable part.

Chapter 4 is dedicated to the application of Rüßmann’s theorem and consti-
tutes the most original part of this thesis.

In section 4.1 we analyze the frequency application of the integrable part of
the Hamiltonian

�
� obtained through the different steps performed in chapter 3.

This “new” frequency application is related to the initial one by the following two
aspects: their difference is � � � 
 and the last components of the new frequency
application (that is the components given by the first Birkhoff’s invariant) are
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multiplied by a factor proportional to � . Thus, assuming sufficient condition on
� , we prove that the frequency application of

�
� is non-degenerate in the sense of

Rüßmann. Moreover, imposing further upper bounds, we are able to control the
index and amount of non-degeneracy of this frequency application and relate them
to the index and amount of the initial one. This key passage, necessary to apply
Rüßmann’s theorem and at the same time to give an explicit estimate for the size
of the initial perturbation, is performed in section 4.2.

The following section 4.3 describes with full details the application of Rüß-
mann’s theorem for maximal invariant tori. We consider and analyze every single
quantity and constant involved in Rüßmann’s estimate for the size of the pertur-
bation; in particular we focus our attention on how they change order in � when
our degenerate case is taken into consideration. This allows us to determine, in
subsection 4.3.11, a sufficient lower bound for the order to which we may remove
the dependence upon the initial angles (with averaging theorem) and the order up
to which we may apply Birkhoff’s normal form theorem. Particular attention may
be paid to subsection 4.3.5 where we explain the different choice, with respect
to Rüßmann, for the control of the small denominators and show how our choice
is effectively possible in Rüßmann’s theorem. In subsection 4.3.11 we determine
sufficient conditions on � to apply Rüßmann’s theorem and finally, in section 4.4,
we gather all other conditions imposed on � in chapter 3 and in sections 4.1 and
4.2.

The main part of this thesis ends with chapter 5 where we review the re-
sults contained in [Féj04, pages 45-62]. In the cited pages J. Féjoz completes M.
Herman’s work on the spatial planetary ��� � ��
 -body problem proving the non-
planarity of the planetary frequency application. Then, applying Herman’s general
KAM theorem about ��� invariant tori he finally obtains a proof of Arnold’s 1963
theorem on planetary motions in the � � case (theorem 63 in [Féj04] 1). In partic-
ular J. Féjoz proves that the spatial planetary frequency map � , formed by ��� � �
frequencies, does not satisfy any linear relation on an open and dense subset with
full Lebesgue measure of the secular space (i.e., the “collisionless” space of the
ellipses described by the planets). This is equivalent to prove the non-degeneracy
of � in the sense of Rüßmann on the same open set and is the fundamental re-
sult we use to apply our KAM theorem for analytic invariant tori to the spatial
planetary problem.

1Actually, in [Arn63b] V.I. Arnold announced a somewhat stronger result: “If the masses,
eccentricities and inclinations of the planets are sufficiently small, then for the majority of initial
conditions the true motion is conditionally periodic and differs little from Lagrangian motion with
suitable initial conditions throughout an infinite interval of time ��������� ”. However Arnold
proved this statement only in the case of the planar three-body problem and gave indications on
how to generalize this result but, apparently, nobody has ever succeeded in implementing Arnold’s
indications.
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We can describe the structure of chapter 5 as follows. First we introduce the
general setting of the Hamiltonian model for the spatial planetary problem; start-
ing from Newton’s equation we pass to heliocentric coordinates and regard the
problem considered as a perturbation of � decoupled two-body problems. Further
on in section 5.1, we perform the passage to Poincaré coordinates and describe
their relations with the elliptic orbital elements.

In section 5.2 we define the secular Hamiltonian as the average, made with
respect to the angle-variables, of the perturbative function expressed in Poincaré
variables. Then we summarize how is it possible to put the secular Hamiltonian
into the form considered in the general KAM theorem stated in section 3.1. In
particular, results contained in [Poi07], [Rob95] and [Las91] (to which we always
refer for all the details) are used to express, with the help of Laplace’s coefficients,
the quadratic part of the secular Hamiltonian in a very remarkable and simple
form.

Section 5.3 starts with some preliminary lemmata and a proposition concern-
ing the eigenvalues of a symmetric matrix which is a “perturbation” of a diagonal
matrix. In subsection 5.3.1 we use the results just shown to check Arnold-Pyartli
condition for the planetary ��� � ��
 -body problem in the plane. First of all the fre-
quency map, composed by � � frequencies, is complexified on a certain connected
domain, using the analycity of the Hamiltonian function expressed in Poincaré
variables and the holomorphic extension of Laplace’s coefficients. Then, the de-
velopment of the quadratic part of the secular Hamiltonian for small ratios of the
semi major axes yields the non-planarity of the frequency map on an open and
dense subset of the secular space with full Lebesgue measure.

In subsection 5.3.2 the non-planarity of the frequency application for the spa-
tial problem is discussed. It is immediately observed that the non-degeneracy
condition is not verified in this case. In fact, the spatial planetary frequency appli-
cation satisfies two (and only two) linear relations: the first is due to the presence
of a null frequency whereas the second is a strange resonance remarked for the
first time in his generality by M. Herman (indeed it is usually called “Herman’s
resonance”).

To suppress this two linear relations Féjoz follows an intermediate strategy
between Herman and Arnold. If we denote � plt the Hamiltonian function of the
spatial planetary problem expressed in Poincaré variables, Féjoz’ idea is to con-
sider a modified Hamiltonian ��� � � � plt � � � 	� where

�
is a real parameter and

� � denotes the third component of the total angular momentum. The frequency
application of ��� extends for all

���
�
�

the frequency application of � plt and does
not verify “Herman’s resonance”. Moreover, the restriction to the symplectic sub-
manifold of vertical total angular momentum suppresses also the linear relation
given by the null eigenvalue so that the non-planarity of the frequency application
is satisfied for ��� . Thus, theorem 3.1.1 gives an open set of initial data with full

11



measure, leading to quasi periodic motions for the flow of � � laying on invariant
analytic Lagrangian tori. Finally, since � plt and � � commute, they possess the
same Lagrangian tori so that the result is established also for � plt.

The second part of this thesis is constituted by three appendices: in appendix A
and B we review the classical KAM theory while in appendix C a summary of the
more recent Rüßmann’s theory on the construction of analytic lower dimensional
invariant tori is presented.

In appendix A we discuss the result gave by Kolmogorov in his 1954 theorem
on the persistence of quasi-periodic motions for analytic nearly-integrable Hamil-
tonian systems. In [Kol54] the Russian mathematician stated a general theorem
and outlined a brief sketch of the proof; he showed how periodic motions for inte-
grable systems still persist under the addition of a perturbation, provided that this
last is small enough and assuming a non-degeneracy hypothesis on the quadratic
part of the integrable part of the Hamiltonian function. Using his brilliant ideas
we prove a quantitative version of his results (theorem A.1.2), providing also an
explicit estimate for the size of the perturbation.

In subsections A.1.1 and A.1.2 some useful preliminary estimates are given. In
section A.2 we describe Kolmogorov’s main idea and perform the first step of the
iteration process needed to put the Hamiltonian function considered into “Kol-
mogorov’s normal form”. Then, in section A.3 we discuss the iterative scheme
and finally prove the convergence.

Appendix B contains a classical result concerning the measure of maximal in-
variant tori carrying quasi-periodic motions (usually called “Kolmogorov’s tori”)
for nearly-integrable analytic Hamiltonian systems. A brief description of the
general setting is made in the first two sections. In section B.3 we use Whitney’s
extension theorem (formulated and proved in [Whi34]) to extend the symplectic
map gave by Kolmogorov’s theorem (i.e., the map that puts the given Hamilto-
nian function into Kolmogorov’s normal form) to a � � map. From the regularity
of this extension, with the help of some classical diophantine estimates, we obtain
the main result in theorem B.4.1: the measure of the complement of the union
of maximal invariant KAM tori in the phase space of a nearly-integrable analytic
Hamiltonian system is proportional to the size of the perturbation.

The thesis ends with appendix C where we describe Rüßmann’s theorem for
the existence of lower dimensional tori in nearly-integrable Hamiltonian systems.
This remarkable result, contained in [Rüßm01], is obtained with the hypothesis
of weak and extreme non-degeneration in the sense of Rüßmann of the frequency
application. We remark once again how Rüßmann’s theory for nearly-integrable
Hamiltonian system and his concept of non-degeneracy are fundamental in our
work (it is obvious!) but have also influenced Herman’s work on the matter and
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vice versa 2.
The contents of appendix C can be briefly described as follows. Section C.1

contains a bit of preliminaries: we recall the definition of approximation function;
we expose with some details the complete theory of index and amount of non-
degeneracy for a weakly non-degenerate and extreme real-analytic function; we
define the amount of degeneracy for such functions and give a useful estimate
for the exponent of a matrix function. Then we state a quantitative version of
Rüßmann’s main theorem and in subsection C.2.1 we give an explicit estimate
for the size of the perturbation. The two following subsections are dedicated to
a brief description of Rüßmann’s strategy and iterative scheme. Subsection C.2.4
contains the survey of Rüßmann’s conditions needed to carry out the � -step of the
iterative scheme for ��� � . It is motivated by our statement of Rüßmann’s theorem
which is slightly different from the original. In fact, in our formulation we add
a term to the Hamiltonian function considered by Rüßmann; then, we verify that
the initial conditions indicated by Rüßmann hold for this new Hamiltonian so that
we are allowed to enter Rüßmann’s scheme without any further modifications.

2In [Rüßm01] we read: “I thank M. Herman for his permanent interest in the realization of this
work and I thank him also that he has emphasized, at every turn, that the discovery of invariant
tori under the condition of weak non-degeneracy is my work, in particular in the case ��������� .”
(here ��������� means the case of maximal tori).
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Chapter 2

Rüßmann’s theory on maximal
KAM tori

2.1 Non-degeneracy conditions

In this section we give definitions of some different kinds of non-degeneracy con-
ditions under which invariant tori for an unperturbed Hamiltonian system persist
with the addition of a small perturbation. In particular we are interested in the
weak non-degeneracy conditions defined by A. S. Pyartli (and widely used and
developed by M.Herman and J.Féjoz in [Féj04]) and by H. Rüßmann.

Definition 2.1.1. Let
� � � � � �EDU��G a parametrized curve of class �,G�� � ��� 
 ,

where � is a compact interval,
�

is said to be non-planar at � � � � if

� "���� � �-� � 
 � ��� �-� � 
 �&<&<&< � � � G�� ��� �-� � 
	� �� � > (2.1.1)

�
is said to be non-planar (homogeneously non-planar for Herman) if it is non-

planar at all points ��� � (or equivalently if it is not contained in any vectorial
hyperplane).

�
is said to be planar at � �f� � (in � ) if it is not non-planar at � �f� �

(in � ). Instead
�

is called essentially non-planar (non-planar for Herman) if for
every open subset )�
�� the image

� � ) 
 is not contained in an affine hyperplane.

Let T�
 ��� be a closed ball and
� �
T � D ��G a parametrized curve;

�
is called non-planar at the point �{� T if there exist an immersion  � ����� &�
,D
�AT � � 
 , where � is an interval of � , such that the curve

���  is non-planar at & ; it is
non-planar if it is non-planar at all point �M��T while it is essentially non-planar
if its local image is nowhere contained in an affine hyperplane.

The so called “non-degeneracy condition of Arnold-Pyartli” consists in the
non-planarity of the frequency vector of the unperturbed Hamiltonian system. The
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most important issues related to this non-degeneracy condition and the properties
of such non-degenerate functions, are extensively discussed in [Pya69].

Definition 2.1.2 (Rüßmann non-degeneracy condition). Let T a domain (a
non-void open connected set) of ��� :

� a real-analytic function
�
� � � � �&<&<&< � � G 
 �4T �ED ��G is called non-

degenerate if for any �  � �&<&<&< �  G 
���� G�� (
� 0

(� � � ���� �  G � G �� �
(if and only if the range � �AT 
 of � does not lie in any ��� � ��
 -dimensional
linear subspace of ��G ); we call

�
degenerate if it is not non-degenerate;

� a real-analytic function � � �c� 
��6T �ED���G�Z�� , is weakly non-degenerate
if
�

is non-degenerate;

� defining the following subset of � ,
� , ' � (

� �3� , 	�� � �c�	� �� � �`	 � 	 ��}�� 0 �
� , '�
 � (

� �3� , 	��� � � � ��� � �c�	� �� � � 9 �C�3� G � � . 	 � 	 � }�� 0
we call a weakly non-degenerate function � � �c� 
 extreme if � , ' �!� , '�
 .

We remark that in this chapter we will use exclusively the hypothesis of non-
degeneration since we discuss Rüßmann’s theory only in the case of maximal
tori. On the other hand, in appendix C, the condition of weakly and extreme non-
degeneracy will be considered since Rüßmann’s complete results in the case of
lower dimensional tori are exposed.

2.1.1 Remarks and examples

We now make some simple but important remarks:

1. We start remarking the equivalence of the non-planarity of a curve
� � � �ED��G and the fact that

�
is not contained in any vectorial hyperplane (or any

linear subspace of positive codimension in � G ).
In fact if

�
is contained in a linear subspace ��� ��G there exists b �� � in��G such that b� � �-� 
 � � for every � � � ; by derivation

b� � �-� 
 � � � b� ��� �-� 
 ���� �!b  � � G�� ��� �-� 

and therefore

b� � �-� 
 � b  ��� �-� 
 ������ b� � � G�� ��� �-� 
 � �
15



for every �m� � ; then, since
� � � � �&<&<&< � � � G�� ��� verify a linear combination

we have � "���� � �-� 
 � � � �-� 
 �&�� � � � G�� ��� �-� 
	� � � < (2.1.2)

for every ��� � that is the definition of planarity.
On the other hand if

�
is planar on � , since it verifies equation (2.1.2) there

exists i � �Ai � �&<&<&< �ci G�� � 
��3��G , i �� � , such that

i � � �-� 
 � i � ��� �-� 
 ������ i G�� � � � G�� ��� �-� 
 � � <
for all �4��� . Let : �{� ��kml # ( : �

� �&<&<&< � � ���M	 i 5 �� � 0 , then, by the last
equation,

�
verifies on � the ordinary differential equation of order : �

� � 5 � � �-� 
 ��� �i 5 �
� i � � �-� 
 � i � ��� �-� 
 ������ i 5 � � � � � 5 � � ��� �-� 
�� < (2.1.3)

Choose now � � � G in the orthogonal space generated by the vectors

(
� � 5 � �-� � 
 0 5 x � s � � � s 5 � � � for some � � in � ��� � ; then �m � �-� 
 verifies equation

(2.1.3) with the initial conditions

�  � �-� � 
 � � �	�  ��� �-� � 
 ���� �
�  � � 5 � � ��� �-� � 

and therefore �  � �-� 
 � � in � .

2. It can be easily observed that the essential non-planarity implies the non-
planarity since

�
is essentially non-planar from definition 2.1.1 if for every

open )�
��

�  � �-� 
 �  �� � � 9 �m��� G � 9 8��� � 9 � � ) (2.1.4)

therefore by taking  � � , ) � � ��� � and using the continuity of
�

we
have

�  � �-� 
 �� � � 9 �m��� G � 9 � � � (2.1.5)

that is, by the previous remark, the non-planarity of
�

3. By remark 1 and definition 2.1.2 we obtain for a curve
� �%� 
!� �ED � G

the equivalence

�
is non-planar in � � ���� �

is non-degenerate in � < (2.1.6)

This equivalence underlines very well the different aspect of the two defini-
tions which, nevertheless, describe the same geometrical property of a func-
tion. In particular, the non-planarity describes a local behavior of the con-
sidered function while Rüßmann’s non-degeneracy condition has a global
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nature. This is also clear from the two different settings in which this defi-
nitions are given.

The same equivalence in (2.1.6) holds if
�

is defined on a closed ball T 
� � .

4. As far as an analytic function
�

is considered, the notion of essential non-
planarity can be expressed by

�  � �-� 
 �  �� � � 9 �m��� � � 9 8��� � 9 � � �3< (2.1.7)

To be as much clearer as possible we provide some elementary examples of
functions belonging to the different categories of non-degeneration:

1. A non-planar (or non degenerate) but not essentially non-planar curve is� �-� 
�� � � � � 
��N� 	 ; in fact
� "���� � �-� 
 � � � �-� 
�� � � for every ��� � while� �-� 
` � � � � 
�� � � � . An example of a non-planar curve that is not essentially

non-planar but whose (global) image
� ��� 
 is not contained in any affine

plane is � � ����� � � � ��� D �-� � ��
��	� � � s ��
 �	�-� � � ��� 	 
�� � � s ��
 <
2. A degenerate function that is weakly non-degenerate but not extreme is
� � �c� 
[� � � � ��
��ED � 	 Z � defined by

� �-� 
 � � � � � 
 and � �-� 
 � �	 � ; in
fact � �' ��� ��� � �	 while � �
`' �!� �� (since � � ��� ��
  � �-� 
�� �`� �-� 
�� � ).

3. A degenerate function that is weakly non-degenerate and extreme is given
by � � �c� 
 � � � � � � 
 � �� � � since � �
`' �!� �' �!� ��� � �	 ;
an example of a degenerate function, weakly non-degenerate and extreme
with � 	
`' ��� 	' � � 	 �� � 		 is � � �c� 
 � � � � � � 
 ��� �� � � �� � 
 � .

Next we state some simple results that will help to better comprehend the
strong relation between non-planarity and non-degeneration. As already observed,
the main difference consists in the regularity of the functions considered in this
two definitions. In fact, both may be regarded as geometrical properties with
the only difference that local properties of analytic functions may become global
properties (for instance the property of being not contained in any vectorial hy-
perplane) while this is not true for finitely many times differentiable functions.

Lemma 2.1.1. Let � a non-void interval of � and a ��� �ED ��G a parametrized
curve of class � , � � ��� 
 . If the image of a is contained in a vectorial hyperplane of��G then function

g �-� 
 � � "�� � a �-� 
 � a � �-� 
 �&<&<&< � a � G�� ��� �-� 
 �
is constantly vanishing on � . On the other hand, if g �-� 
 � � for every � � � , there
exists an open set )�
�� such that a � ) 
 is contained in vectorial hyperplane.
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Proof The proof of this result is quite immediate and can be found in [Féj04,
page 33] �

Proposition 2.1.1. Let
� �8T 
 ��� �ED ��G (where T is a domain) a real-

analytic function; if
�

is non-planar at * �f�+T then
�

is non-degenerate in T .

Proof By definition 2.1.1 if
�

is non-planar at ��� in T there exists an immer-
sion ��� � 
W� � D (where � is a compact interval) such that � �-� � 
 � * � and� � � �-� 
 is non-planar � � . Therefore, denoting a �-� 
 � � � � �-� 
 , we have

� "���� a �-� � 
 � a � �-� � 
 �&<&<&< � a � G�� ��� �-� � 
	� �� � >
by continuity there exists

� . � � . dist �-� � � � � 
 such that

� "���� a �-� 
 � a � �-� 
 �&<&<&< � a � G�� ��� �-� 
	� �� �
for every �^� � � � �-� � � � � � � � ��� � 
 . This implies, by the preceding lemma, thata ��� � 
 is not contained in any vectorial hyperplane, i.e., for all C�7� G it results
that M a �-� 
 is not constantly zero for �8��� � . By the definition of a we have that
for every 8����G the function � � � * 
 is never constantly vanishing for * � � ����� 
 ;
it follows that for every {�-��G ^ � does not constantly vanish on T which the
statement �

Another simple observation that will turn out to be fundamental is the follow-
ing:

Remark 2.1.1. Let
� � * ��T�
 ��G �EDY��G a non-degenerate (non-planar)

function then �� � � * ��� 
��+T Z � 
7� G Z;� , � DU� G defined by �� � * ��� 
 �
� � * 
for every �m� � , is non-degenerate (non-planar) on TNZ � .

2.2 Preliminaries to Rüßmann’s theorem

Definition 2.2.1 (Approximation function). A continuous function � ��� � �S~ 

D� is called an approximation function if:

1. � � � � � 
 � � ��&�
 � � �-� 
M� � for
� } &,. � . ~ ;

2. � � ��
 ��� so that � ��&�
 � � for any
� } &�} � ;

3. &
�
� ��&�
 ��� ��ED �

for any �7� � so that IKJ $ �	� � & � � ��&�
 
� . ~ for all �!� �
and � � � ;

4. � ������� �� � � �  �� w .�~ .
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In his work [Rüßm01], Rüßmann uses an approximation function to perform
in a most general way the control on the small divisors; in fact, since invariant tori
have to be constructed requiring a priori certain arithmetical properties that the
frequencies of quasi-periodic motions lying on this tori should have, it is necessary
to establish in advance a certain control on the small divisors appearing in the
construction. This is done in the proof of Kolmogorov’s theorem (see appendix A)
by requiring for the frequency vector

�
the diophantine condition 	 �� � 	 � ��	 ��	 ��� .

However it would be clearer in the statement of theorem 2.3.1 the role played by
the approximation function. As a possible choice of an approximation function
we indicate

� �L� 
 �
� � � } �3} �� � � $ � ����� � � �

for a chosen � .	� 1.

Lemma 2.2.1. Let �p58�1T �EDU�
G�� be real-analytic and non-degenerate functions
defined on a domain TN�7�  , for each : � ��<&<&< � . Consider

�
� � G 
 Z-��)Z;� G
	

and let  � � (� �&<&<&< � �� 
^� � be some parameters. If we define � � � Z�T �EDh�
as the real-analytic function (with respect to the * variables)

� �  � * 
 �
�
5 x � �  5 � �v5 � * 
 � (2.2.1)

and � as the following subset of
�

� � (  � � (� �&<&<&< � �� 
��
� 	�	  5�	 	 � � 9;: � ��<&<&< � 0 �

then for any non-void compact set � 
�T there exist numbers � � ��� ��� ����� 
 ���
and � ��� � ����� 
�� � such that

kml #�K� � � � � 	 g � � �  � * 
�	 ��� 9 8��� � 9 * ��� (2.2.2)

(here the derivatives are obviously taken with respect to the * variables).

Proof The proof of this lemma can be found in [Rüßm01, page 185] �
Observe that if we consider a function � as in (2.2.1), then the function

�  � * 
��
� Z+T �ED kml #�K�/dv� � 	 g

d � �  � * 
�	
1We remark in advance that when we will try to apply Rüßmann’s theorem for our purposes,

we will not be able to use an approximation function to control the small denominators but we will
be forced to use classical diophantine inequalities. Details can be found in section 4.3.5.
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is continuous in
� Z3T for every ����� . Therefore the number

� � ���=����� 
�� � k�����S%��Es t � t w x � kml #�K�/dv� � 	 g
d � �  � * 
�	

is well defined for any compact set � 
�T and verifies � � ���=��� ��� 
�}�� � ���=� 	 ��� 

for every

� }N� �{}N� 	 . Then by Lemma 2.2.1 we can well define the numbers� ��� ����� 
 and � � ���=� �(��� 
 as follows

Definition 2.2.2. We call index of non-degeneracy of � with respect to � the first
integer � � such that � � ���=� � ��� 
M� � (while � � ���=����� 
 � � for every � .7� � ); we
call the number � � ���=� � � ����� 
 ��� 
 amount of non-degeneracy of � with respect to
� .

Now we give the definition of the index and amount of non-degeneracy of
the real-analytic function

�
. In Rüßmann’s theorem such function will be the

“frequency map” of the unperturbed Hamiltonian system considered.

Definition 2.2.3. Let � 
N��� be a compact set, T��N��� a domain containing
� and

� � * � T �ED ��G a real-analytic and non-degenerate function. Let
� � � (  �X��� �!	 6	 	 � � 0 , we define � ��� � ��� 
 � ��O , the index of non-
degeneracy of

�
with respect to � , as the first integer such that

�-� � k�����S%��Es�� %�� kml #�K�/dv� � �
		 g d 	 �  � � � * 
 ��	

	 		 � � (2.2.3)

where � ��� � � ��� 
 is called amount of non-degeneracy of
�

with respect to � .

We just observe that this definition is well posed since 	 �  � � � * 
 ��	
	

is a function
in the form considered in (2.2.1) with � ��� , � � � � 	 � � and � � � � 	 � � ,
with the only difference that the parameters  � �  	 are not independently varying
in �!Z �!�7� � Z�� � but have been chosen to coincide.

2.3 Statement of Rüßmann’s Theorem on maximal
KAM tori

As far as we consider only the case of maximal tori (� ��
 � � in Rüßmann’s
notation), the main theorem contained in [Rüßm01] can be formulated as follows:

Theorem 2.3.1 (Rüßmann’s theorem for maximal tori). Let � be an open con-
nected set of ��� and

� �L� � * 
 ��� � * 
 � � �L� � * 
 (2.3.1)
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a real-analytic Hamiltonian defined for

�L� � * 
�� � � Z �
endowed with the standard symplectic form � *

� ��� . Let g a complex domain
on which � can be holomorphically extended; let � be any non-empty compact
subset of � with positive � -dimensional Lebesgue measure meas � � � � and let� ��g be an open set such that

�  Z�� � � < (2.3.2)

Choose �+� � � � ��
 such that

�  ��� 
MZ � ������� 
 � � (2.3.3)

and � � � @ ��� 
 � � . Define
� � * 
 �
		 � � � * 
 ,

� � � 	 � 	 � O ��� (2.3.4)

and assume that the function
� � � 
 � � �ED�� �

is non-degenerate. Then for any � � with
� . � �;. meas � � there exist positive

numbers � � and � (see section 2.4 for details) depending on
� ����� � � � � � � , such

that assuming

	 �C	 -} �� � � (2.3.5)

and taking real numbers � � � � � verifying

� � � � (2.3.6)

� � �
� � ���
� � �


w
(2.3.7)

there exists a compact subset � � � with meas � � � meas � � � � � and a
bi-lipschitz mapping � � �Ai ��� ��� 
���� Z � � Z�� �EDFg (2.3.8)

where � is an open neighborhood of the origin in ��� such that
� the mapping

��� ��� 
 e �ED �L� � * 
 �
� �Ai ��� ��� 
 (2.3.9)

defines, for every i!��� , an holomorphic canonical transformation on
�z� � 2 �� � Z���� and ��� � Z � � �P� � "! Z���� ! ��� � 2 � Z ��� �
for sufficiently small �m� � ;
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� the transformed Hamiltonian is in the form:

� � � �Ai ��� ��� 
 
 � � � �Ai 
 ��� � � �Ai 
 ��� � � � �c	 � 	 	 
 (2.3.10)

for every i ��� and ��� ��� 
�� � � � 2 �� � Z���� ;
� the new frequency vector

� � satisfies for all i in � the diophantine inequal-
ity 	 �� � � � �Ai 
 ��	 � � � �c	 � 	 	 
 � 9 � �3� � � (

� 0 <
Finally, we observe that the transformed Hamiltonian system possesses the

solutions

� � � � �Ai 
 � � � � � (2.3.11)

so that the system described by � in (2.3.1) possesses the invariant torus

�L� � * 
 �
� �Ai ��� � � 


for � in �  , with quasi-periodic flow (2.3.11) for all i in � .

2.4 Estimate for the size of the perturbation in Rüß-
mann’s theorem

We now display an admissible value of � � (the size of the perturbation) in 2.3.1
remarking that the result we give here is obtained by Rüßmann’s estimate in
[Rüßm01, page 171] considering the case of maximal tori (� � � ) all along the
procedure followed to reach such an estimate; moreover the presence of some nu-
merical quantities (just absolute numbers) has been simplified by imposing more
strict upper bounds.

To be as much clearer as possible we recall briefly the role played by the dif-
ferent quantities involved in the estimate, always referring to C.2.1 for definitions
and further explanations:

� � ��� � � ��� 
 is the amount of non-degeneracy of the real-analytic and non-
degenerate “frequency map”

�
, while � � � � ��� � ��� 
 is its index of non-

degeneracy; observe that for a non-degenerate function the amount of de-
generacy � � � ��� 
 equals � .
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� � � ��� and � � are chosen as in the statement and � � is defined as the diameter
of � , i.e., � � ��IKJ $ $&s �S%�� 	 � � * 	 ;� let � ��� � �S~�� �EDh� the chosen approximation function, in according with
definition 2.2.1, we choose and fix � � � � such that � �-� � 
,} � � � � O ��� and
the following inequality holds� �� � ���� �

� �-� 

� �
� 	 } � ���� �

���r� � � ���� � � 	 � � 
 > (2.4.1)

moreover we define

� �p� � ��IKJ $�	� � & � � ��&�
 
� � . ~
(that is bounded by hypothesis on � );

� We define

� � � � � � O 	 � ��� � �1� � � � � � ��
 (2.4.2)

� � � � � � O � �?� � � ��
 � � O 	� � � O � � 	�p� � � � � � ��
 > (2.4.3)

and

� � ��� � � O � � ��� � 
 q w � � � �� � � � 
w � �`� � ��� � � � � ! � ��� � � �w � � �	� 
w � �
� �w

(2.4.4)

and set

� � k���� ( � � � � 0 (2.4.5)

� � � � � �-� � 
 � � � � O ���� �
 � � � � ��
 (2.4.6)

� Let �� ���  �ED�� defined by

�� �L� 
 ��� � � 

��� ��� w 	 �
	1. �
� 	 �
	 � �

we consider
� ��&�
 � �� ��&�


� �����
�� �-� 
P� � � � � �
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and then define for �����
� ��� � � 
 ��� � � � IKJ $nc%

�
qEs t nvt w x �

� � � ��
5 x �

�: � 	 g 5 � ��&�
 �Ab 5 
�	 � & (2.4.7)

with � ��� � � 
 ��� ;

then a possible value for � � is given by

� � � � �
� � �Lk���� ( � � � �
	 � �
� 0 
 	 (2.4.8)

where

� �U� � � � �-� � 
 � � � � O ����
� 	�� O � k����

� � � �
� �����

�
	 � � � � �-� � 
 � � � � O ����
� 	 	

�
� � �

� � � �
�
� � �

�
� � w� � �

�
� � � � � �K� �
� �	� � � � � � � ��� �=� � 
 < (2.4.9)

2.5 Existence of non-resonant frequencies

We now follow Rüßmann’s work to show how maximal invariant tori for the
nearly-integrable Hamiltonian system considered in 2.3.1 can be constructed. We
always refer to [Rüßm01, pages 178-203] for further details and for the proofs of
results we just cite here as well as for the complete result concerning the construc-
tion of lower dimensional invariant tori.

2.5.1 Description of the iteration process

The initial condition of the iteration process are:

1.
� � � �EDh��� is a real-analytic function defined on a domain (an open and
connected set) ���7��� that is non-degenerate in the sense of Rüßmann (see
definition 2.1.2);

2. � 
 � is a chosen and fixed compact set with meas � � � � ;
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3. �+� � � � ��
 is chosen small enough to verify

��� @ ���+� �
and

��� ��� � � ��� � 
 is the holomorphic extension of
� 	 � O @ � ; it follows that���

is bounded on ��� ��� so that we can well define

� � �N	 ��� 	 � O 	�� � � < (2.5.1)

We will often use the same notation
�

to identify both the real function and
its holomorphic extension when there will be no ambiguity.

4. � �f� ��� ,
� �f� ��� � � � � with � � � � � ��� 
 to be determined and

� �f� � ��� 	 � � .
At the beginning of the iteration process we take

� � � � � 		 � � 	 � . �� and

� .�� �f} k���� ( � � � � ��� � 	 0 � � .	�;.
�+�,}�� � � � ��
� d,� ��� � � � d � �
d ��� � � � d for a � � � � �&<&<&< (2.5.2)

where positive numbers � � � �� 	� � � � ���+� will be later determined. Moreover � is a
chosen approximation function (see definition 2.2.1), and � �-� 
 � ��� � � O ��� � �-� 

for any � � � ; � � � � is a fixed real number and

�Ed,� ��� � � ��� �-� � 
 � � d 
 (2.5.3)

for a � � (observe that by the properties of � we obtain � �,. �Ed 
 . �Ed w for any
� . a �M. a 	 ).

With the framework described the general step of the iteration process works
out recursively as we shall see now; if � d ���� , � d � �,d � � d and

� d ��� � � d 

are given for some a � � (where � � , � � and

� � have been set before) then we
determine �,dcO � , � dcO � and

� dcO �{� � �AT dcO � 
 as follows: we choose an arbitrary
function � � d,��� �AT d�
 such that

	 � � d/	 ���8} �
d� � (2.5.4)

and define

� � d � �
�
i � �,d�	 	 �� � � d �Ai 
 ��	 � �� � � �-�Ed 
 9 � . 	 � 	 	 } �Ed � > (2.5.5)

then we take ��dcO � ��� � d and if � � d ���� we set
� dcO � � ���,dcO � ��� dcO ��� � dcO � � � d �
� � d/	 � � � 
 < (2.5.6)
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2.5.2 Theorem about existence of non-resonant frequencies

The following theorem ([Rüßm01, theorem 16.7]) states the possibility to carry
out the general step of the iteration process infinitely many times, assuring the ex-
istence of non-resonant frequency vectors at each step as well as the convergence
of the scheme.

Theorem 2.5.1 (Existence of non-resonant frequency vectors). For any

� � � � � � meas � � 
 (2.5.7)

there exist positive real numbers ��� � �� � 	 � � � ���+� such that choosing

� .
��.
�+� � � . �3. � �
� .�� � } � � � � � �f} ��� � 	

(2.5.8)

the iteration process described above can be carried out for any a � � with the
resulting sets ��d and the functions

� d possessing the following properties:

1. � ��� � � � � � �� � � � with

� � � � ��
d x � �,d

�
� � > (2.5.9)

2. the sequence (
� d 0 d %�� converges uniformly on � � to a function

�
� (that is

therefore continuous on � � );

3. let

� � ( i ��� � 	 	 �� �
�
� �Ai 
 ��	 � � � �c	 � 	 	 
 9 �C�3� � � (

� 060 (2.5.10)

then
meas � � � � meas � � � meas � � � � � < (2.5.11)

Furthermore let � �f����O and �-� � be such that

k�����S%�� kml #�K�/dv� � �
		 g d 	 �  � � ��	 	 		 � � (2.5.12)

for any ,�3��� with 	 6	 	 � � , � � as defined in (2.5.1), � � � diam � and � ��� � � 
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as defined in (2.4.7); then, we can take

� � � � �� � (2.5.13)

� � � � � � O 	 � ��� � 
 q w � � � �� � � � 
w � �`� � ��� � � � � ! � � � �1� � � � �w � � � �w (2.5.14)

� � � � � � � ��
� � � � ��� �=� � 


� � � � � � �1� � � � (2.5.15)

� � 	 � �
� � � � � ��
 � �-� � 
 � � �

� � � 
 (2.5.16)

with

� � � � � � O 	 � ��� � �1� � � � � � ��
 (2.5.17)

� � � � � � O � �?� � � ��
 � � O 	� � � O � � 	�p� �
� �?� � � ��
��� � � � � � � ��
 � 	 (2.5.18)

accordingly to section 2.4.

We dedicate the remaining part of this section to the explanation of the proof
that Rüßmann gives to this theorem. We will focus our attention on some parts
and underline the fact that we are searching for the existence of maximal tori
performing some proofs of intermediate results in the case � � � (with refer to
Rüßmann’s notation).

2.5.3 Theorems on the measure of a set defined by small divi-
sors

We start citing an important result given and proved by Rüßmann in [Rüßm01,
pages 180-183]:

Theorem 2.5.2. Let � �X� � be a non-empty compact set with diameter � � �IKJ $ $&s �S%�� 	 � � * 	1�
�

and define
�
��� �/@ � for some �+� � . Let � � �,� � O � � � �K� 


(for some � �f��� ) be a function such that

k�����S%�� kml #�K�/dv� � � 	 g
d � � * 
�	 ��� (2.5.19)

with � � � . Then for any function �
� � � � � � � �K� 
 satisfying 	��� � � 	 � ���} �	 � and

any
� . � } �

�r� � � � (2.5.20)
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we can estimate

meas � (�* ���F�,	 �� � * 
�	6} � 0 }�T{� � � �� � � � 
w � �`� � ��� � � � � ! � �

� �

� � �
� 	 � 	 � � O ��
(2.5.21)

with

T �	� � ��� � 
 q w �?� � � ��
 � � O 	�?� � � ��
�� < (2.5.22)

A proof of this theorem, in the case �
�
�
� , can be found in [Pya69] where it

appeared for the first time.
Here we state a simple lemma that we are going to use in next theorem’s proof:

Lemma 2.5.1. Let
� ��� � �,� � � �K��GM_rG 
 for some open set

� � ��� and � � � ,
then it results 	 � �C	 ��[}�� � 	 � 	 ��z	 �C	 ��
where 	�P	 �� is defined in 0.1.4.

Proof The proof is immediate and can be easily obtained by Leibniz rule

g d � � ��
 �Ai 
 �Ab d 
 � �
� O65 x d

a �� � : � g � � �Ai 
 �Ab � 
 g 5 � �Ai 
 �Ab 5 

for any bm����� with 	 b 	 	 ��� and i � � . Therefore

	 g d � � ��
 �Ai 
 �Ab d 
�	1} �
� O65 x d

a �� � : � 		 g � � �Ai 
 �Ab � 
 		 		 g 5 � �Ai 
 �Ab 5 
 		 }�� � 	 � 	 ��z	 �C	 ��
which gives the statement if we take the IKJ $ over b , i and a .

Let
� � � � ��� �ED ��� a real-analytic and non-degenerate function, let

� � � be a compact set with diameter � � ��IKJ $ $&s �S%�� 	 ��� * 	f�
�

and take� � � � � ��
 such that �
� � � ��� @ � � � . We recall that by lemma C.1.2 there exist

numbers � �f��� and �-� � such that

k�����S%�� kml #�K�/dv� � �
		 g d 	 �  � � � * 
 ��	

	 		 � � (2.5.23)

for every  ����� . Then we can state the following result:

Theorem 2.5.3 (Measure of a set defined by small divisors). Let
�

as consid-
ered above and �

� � �,� � � �T �K��� 
 , satisfying the estimates

	 � 	 � ��� � 	 �� 	 � ��� } � � � 	 � 	 � � O ��� } ��� (2.5.24)

	 � � �
� 	 � ��� } �

� � � O 	 � � (2.5.25)
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for some � � � ��� � � and let � the chosen approximation function (see definition
2.2.1). Moreover let

� . ���,. meas � � and

� . �+} � � � � � � � O 	 � ��� � 
 q w � � � �� � � � 
w � �`� � ��� � � � � ! � � � � � �w � � �	� 
w � �
� �w

(2.5.26)
with

� � � � � � O � �?� � � ��
 � � O 	�?� � � ��
�� ��� �p� � 
 	 � 	� > (2.5.27)

then the measure of the set

� � �� 
 � � ( i ���h�4	 �� � �
� �Ai 
 ��	 � � � �c	 � 	 	 
 � 9 �C�3� � � (

� 060 (2.5.28)

can be estimated by
meas � � � �� 
 � meas � � � � � < (2.5.29)

Furthermore if 	 � 	 � ��� } � � we can take � � �	� � � .
We remark that a complete proof of this result, even in the case � �� � and� ��� � �ED�� G with � �

��� , can be found in [Rüßm01, pages 189-193].
Proof Let

��� � * 
 � �
� �� � � � * 
 � and �

��� � * 
C� �
� �� � �

� � * 
 � by hypotheses we
have

��� � �
��� � �4� � � �T �K� 
 . Setting

� � � � � * 
 � � 	 �� � � � * 
 ��	
	 	 � 	 � 		 �

� 	� � * 
�	 � 	 �
		

� �� � � � * 
 � � 	 �� � �
� � * 
 ��	

	 	 � 	 � 		 � �
� 	� � * 
�	 � 	 �

		
(accordingly to (C.1.7) in which we consider also the case of frequencies � �
� � �c� 
 of lower dimensional tori) it results

	 � � � � � � �� � � 	 � ��� �

					

���

	 � 	 	
�
�
�

	 � 	 	 �
�
���

	 � 	 	
�
�
�
�

	 � 	 	
					
� �
��

	 � � � � 	 � ��� �

				
���

	 � 	 	
�
�
�

	 � 	 	
				
� �
�� <

Now for every
� } a }�� � , i � �

�
and bm����� with 	 b 	 	 ��� we have

				
g d ��� �Ai 
 �Ab d 
	 � 	 	

				 �
	 �� �cg d � �Ai 
 �Ab d 
 ��		 � 	 	 } 	 g d � �Ai 
 �Ab d 
�	1} 	 � 	 � ���

having used the definition of 	v�	 � ��� in 0.1.4. Since analogous estimate can be done

for �
���

and
��� � �

���
instead of

���
, taking the IKJ $ over b �ci and a we obtain

	 � 	 � �	 	 ��� 	 � ��� } 	 � 	 � ��� 	 � 	 � �	 			 ����
			 � ��� } 	 �� 	 � ��� 	 � 	 � �	 			 ��� � �

��� 			 � ��� } 	 � � �
� 	 � ��� >
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observe that for what concerns the estimate regarding
�

only, we can replace � �
with any integer ( � � � � for instance) since

�
is real-analytic. We now write the

identity

���

	 � 	 	
�
�
�

	 � 	 	 �
�
���

	 � 	 	
�
�
�
�

	 � 	 	 �
� ���

	 � 	 	 �
�
���

	 � 	 	�� �
�
�

	 � 	 	 �
�
���

	 � 	 	
� �
�
�

	 � 	 	 �
�
�
�
�

	 � 	 	��
obtaining by the preceding estimates, the definition of � � � � and � �� � � and lemma
2.5.1 for the �,� � -norm of a product

	 � � � � � � �� � � 	 � ��� }�� � �
			 ��� � �

��� 			 � ���	 � 	 	
	 � � � 	 � ���	 � 	 	 � � � �

			 � �
� � �

�
�
�
			 � ���	 � 	 	

			 ����
			 � ���	 � 	 	

}�� � � 	 � � �
� 	 � ��� 	 � 	 � ��� � � � � 	 � � �

� 	 � ��� 	 �� 	 � ��� � � � � � 	 � 	 � ��� ��	 �� 	 � ��� ! 	 � � �
� 	 � ���

}�� � � O � � ��	 � � �
� 	 � ��� } �� �m<

Furthermore if we consider the two cases
�
�
�

and �
�
�
�
, which imply respec-

tively
���
�
�

and �
���
�
�
, we have

	 � � � � 	 � ��� �

				
���

	 � 	 	
�
�
�

	 � 	 	
				
� �
�� }�� � � � 	 � 	 � ��� ! 	 }�� � � � 	�

	 � �� � � 	 � ��� �

					
�
���

	 � 	 	
�
�
�
�

	 � 	 	
					
� �
�� }�� � � � 	 � 	 � ��� ! 	 }�� � � � 	�

	 � � � � 	 � � O ��� �

				
���

	 � 	 	
�
�
�

	 � 	 	
				
� � O �
�� }�� � � O � � 	 � 	 � � O ��� ! 	 }�� � � O � � 	� <

Now we are in a position to apply theorem 2.5.2 with � � � � � � 	 ��[��� � �
� �K� 
 


�4� � O � � �
� �K� 
 , �

�
� � �� � � � �4� � � �

� �K� 
 and �T �!T obtaining

meas ��� i � �
� � � �� � � } ��� } � �


� � (2.5.30)

whenever
� . � } �

�r� � � � (2.5.31)

and with � given by

� �	� � ��� � 
 q w �?� � � ��
 � � O 	�?� � � ��
�� � � � �� � � � 
w � �`� � ��� � � � � ! � �� �
�uO 
� �

� � � O � � 	�
(2.5.32)
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(see (2.5.21), (2.5.22) and the estimate on 	 � � � � 	 � � O ��� ). Now by the definition of� � �� 
 in (2.5.28) we have

� � � � �� 
 � ( i ���h�4	 �� � � �Ai 
 ��	6. � � �c	 � 	 	 
 � 9 �C�3� � � (
� 060

�

� �1i ���h�4	 �� � � �Ai 
 ��	 	 . �-� � �c	 � 	 	 
 
 	 � 9 �C�3� � � (
� 0��

�

�

�
i ���F� 			 ���� 			 	 . �-� � �c	 � 	 	 
 
 	 � 9 �C�3� � � (

� 0 � �
� �Mi ���h�4	 � �� � � 	 	 .

� � � �c	 � 	 	 
	 � 	 	 � 	 � 9 �C�3� � � ( � 0�� <
Then in view of (2.5.30) applied with

�
�

� � � �c	 � 	 	 
	 � 	 	 � 	 (2.5.33)

it results

meas � � � � � � �� 
 
�} meas � "
� %�� q���	 ��
 � i ���F�,	 � �� � � 	 	 .

� � � �c	 � 	 	 
	 � 	 	 � 	 � }
} �

� %��1q ��	 ��
 meas � �^i ���F�,	 � �� � � 	 	 .
� � � �c	 � 	 	 
	 � 	 	 � 	 � }

} � �
w� � �
� %��1q ��	 ��
 � � �c	 � 	 	 
	 � 	 	 �

w� � <
To estimate this last sum we observe that the function &;� � � �S~ 
 e � D � ��&�
 & � �
is strictly decreasing because � is itself decreasing (see condition � in definition
2.2.1); therefore in view of 	 � 	 � } 	 � 	 	 for any �C�3��� we have

�
��x � � � �c	 � 	 	 
	 � 	 	 �

w� � } �
��x � � � �c	 � 	 � 
	 � 	 � � w� � � ��

d x ���� �
t � t �
x d ���� � � � a 
a �

w� � <
Denoting now � d�� ��� ��� t � t � �/d � � � � a � ��
 � � � for a � ��O and � � � � , we
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can continue the above chain of equalities writing

��
d x ���� �

t � t �
x d ���� � � � a 
a �
w� �
�

��
d x � � ��d � ��d � � 


� � � a 
a �
w� �
�

�

��
d x � ��d

� � � a 
a �
w� �
�
��
d x � ��d

� � � a � ��
a � � �
w� �
�

�

��
d x � � � �

a � ��
 � � ��� � dcO �d � �� & � � � ��&�
 & � � � w� � � � &�}
} � � �� � � � & � ��
 � � ��� �� & � � � ��&�
 & � � � w� � � � & �
� � � � � & � ��
 � � ��� � � ��&�
 & � � � w� � 			 � � � � �

� �
� � � & � ��
 � � �

� � ��&�

& �

w� � � & �

��� � � � � � � � �� � � & � ��
 � � �
� � ��&�


& �
w� � � &

having used in this last equality the property &
�
� ��&�
 ��� �� D �

for ����� and � � ��
 �
� (recall once again definition 2.2.1). Now since � � & � ��
 � } � � &�
 � ��� we may
write

� � � � � � � � �� � � & � ��
 � � �
� � ��&�


& �
w� � � &�}

} � � � � � � � � � � � � �� & �1� � � � w� � � & � � ��&�
 
� � ! 	 � &,} (2.5.34)

} � � � � � � � � � � � ��� �p� � 
 	
� �
� & �1� � � � w� � � & �

�	� � � ��� � � � �E�
�E� � � � � �p� � 
 	 } � � O � ��� �p� � 
 	 <

Finally we come back to the beginning of this chains of inequalities estimating

meas � � � � � � �� 
 
 � meas � ��� meas � � � �� 
 } � � O � � �
w� � ��� �p� � 
 	 < (2.5.35)

Therefore in order to get (2.5.29), that is meas � � � �� 
 � meas � � � � � , we must
require

� � O � � �
w� � ��� �p� � 
 	 } � �
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which is satisfied by means of �-} � � as in (2.5.26) together with (2.5.27) and in
view of � as taken in (2.5.32).

To complete the proof we still have to assure that condition (2.5.31) is satisfied
with our choice of � in (2.5.33). From the property verified by

�
in (2.5.23) (which

is a consequence of its non-degeneracy as we show in appendix C) we have

�-} 	 � � � � 	 � � O ��� }�� � � O � � 	�

�\} 	 � � � � 	 � ��� }�� � � � 	� (2.5.36)

having used the estimate done before during the proof. From this two inequalities,
the definition of � � in (2.5.27) and � �p� � � � we derive

� � � � � � O � �?� � � ��
 � � O 	�?� � � ��
�� ��� �p� � 
 	 � 	� ���?� � ����
 � � � O � � 	� ���?� � ����
 � < (2.5.37)

and by hypothesis we have

� � . meas � � }�� �`� � 
 � < (2.5.38)

Now observe that the first terms that constitute � � in (2.5.26) verify

� � O 	 � ��� � 
 q w � � � �� � � � 
w � �`� � ��� � � � � ! � � ��� �`� � 
 � ��� �
so that we obtain, together with (2.5.33), ��} � , (2.5.26), (2.5.37) and (2.5.38),

� } � 	 } �-� � 
 	 } � � �`� � 
 � ��� � � �1� � � � � O � � � � 
 � � �
� � � �

� �`� � 
 ��� � � � �?� � � ��
 �� � � � � �
� �r� � � � 
 � � } �

�r� � � �
To complete the proof we observe that if 	 � 	 � ��� } � � from (2.5.25) and � �

��� � � 	� we obtain

	 � � �
� 	/} � ��

which gives

	 �� 	 � ��� } 	 � 	 � ��� ��	 � � �
� 	 � ��� } � � � � �� < (2.5.39)

Thus, taking �
� ���
� � �m� � � � , with � � � �

� we have that also �
� ���
� � � ��� � �4� � � � is a common upper bound for 	 � 	 � ��� and 	 �� 	 � ��� as shown. Continuing

this procedure we obtain a sequence of common upper bounds �
� 5 � � � � � ;

moreover, from the recursive relation �
� 5KO ���

� � � � �� � � 5 � we can infer that the
sequence tends to � � �

so that we can effectively take � � �
as a common upper

bounds for the two norms considered �
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2.5.4 Links and Chains

In the following pages we complete the proof of theorem 2.5.1 displaying Rüß-
mann’s theory of links and chain for the construction of non-resonant frequencies
on an arbitrarily non-empty compact set contained in the domain of the action-
variables. The full detailed construction of non-resonant frequencies (in the case
of lower dimensional tori) can be found in [Rüßm01, pages 198-203].

Definition 2.5.1. Let ��d!�U��� a non-empty set and
� d!� � � � d �K�
� 
 where� d�� ���,d ��� d (see (2.5.2) for � d ), we call � d � � �,d � � d 
 a link.

The initial link in our iterative scheme is given by � � � � � �(� � � 
 with � � and� � as in subsection 2.5.1.

Definition 2.5.2. A link �Md � � �,d � � d 
 is said to be open if ��� d �� � where we
recall

� �d � �
�
i ���,d 	 	 �� � � d �Ai 
 ��	 � �� � � �-�Ed�
 9 � .�	 � 	 	 } �Ed � (2.5.40)

(see subsection 2.5.1 for the definition of ��d ).
Definition 2.5.3. If a link �Md is open, we call a link �MdcO � � � �,dcO � � � dcO � 
 a
successor of �Md if

�,dcO � ��� � d � � dcO � � � � d �
� � d�
�	 � � � 
 � � dcO � ���,dcO � ��� dcO � (2.5.41)

where � � d is an arbitrarily chosen function in � � � d �K�
� 
 satisfying the estimate

	 � � d/	 �[} �
d� � (2.5.42)

(according to the framework described in subsection 2.5.1).

Finally we denote ��� a if �;} a . ~ or ��. a � ~ and give the following

Definition 2.5.4. A collection of links

��� � 
 �K� ��� d �
�� 	 ��� �(�
� � �&<&<&< �
� d 
 if a .�~
��� �(�
� � �&<&<&< 
 if a � ~

is called a chain if � � O � is a successor of � � for any
� } ��. a . The initial link� � is itself considered as a chain. A chain is said to be maximal if a . ~ and� d is not open (i.e., � � d � � ) or a � ~
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Since we would like to work with ��� -functions
� �(� � � �&<&<&< defined on the

same open set (say �
� � ��� � @ � ), we give here the following result:

Theorem 2.5.4. Let � ����� be a non-empty set, ��� � and � � � � � �ED �
G
be an holomorphic and bounded function assuming real values on � � (we will
always think � � � ). Then there exists a � � -function �� ����� �EDR��G such
that �� �L� 
 � � �L� 
 for every � � � and the following estimates hold for everya
�
� � � �&<&<&< :

IKJ $$&%
�
q IKJ $nc%

�
q�s t nvt w x �

			 g d �� �L� 
 �Ab d 
 			 } � ��� � a 
� d IKJ $$&%�� O�� 	 � �L� 
�	 (2.5.43)

with � ��� � a 
 not depending on � and increasing in a as defined in (2.4.7).

Let � � � � � �(� � � 
 the initial link, we define its extension �� � by

�� �f� � � � � � � �(� �
� � 
 with �

� � � � 	 ��
where �

� � � � �1@ � . Thus we may attach to the chain ��� � 
 � � � the extended
chain � �� � 
 � �� � .

We want now to define the extended chain of any assigned chain ��� � 
 ������� � .
Consider � � � � � � � � �K�
� 
 , for

� } �3. a , i.e., the functions defining the chain
��� � 
 ������� � , we may apply to each of this functions theorem 2.5.4 with � � � � � ,
� ��� � , � ��� � , obtaining

�� � � � �� � 	(�&��Q� � � � �
� ��� 
 such that

�� � � 	 � � � � � � 	 � � for
� } �;. a <

Moreover by the estimate in (2.5.43) we have

	 g � �� � � 	1} � ��� �=� 
 � �1�� � �
� � (2.5.44)

in view of (2.5.42). Now we are in position to define recursively � � -functions on
�
�
�����1@ � as follows

�
� �f� � � 	 �� � �

� � O � � � �
� � �

�� � � (2.5.45)

for any
� } ��. a . Furthermore by induction we can easily obtain

�
� � 	 � � � � � 	 � � for

� } ��� a < (2.5.46)

As this recursively construction shows, each link � � of the chain ��� � 
 �K� ��� d pos-

sesses a well defined extension �� � � � � � � � � � �
� � 
 . Therefore, in the sense de-

scribed, we can call �� � O � � � � � O � � � � O � � �
� � O � 
 a successor of �� � accordingly to
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definitions, and define the extended chain

� �� � 
 �K� ��� d �
�� 	 � �� �(� �� � �&<&<&< � �� d 
 if a .�~
� �� �(� �� � �&<&<&< 
 if a � ~

as an extension of the chain ��� � 
 �K� ��� d .
Lemma 2.5.2 (Estimates for extended chains 1). Let

� } ��. � �� , (where
� is chosen accordingly to (2.5.2)) and ��� � 
 �K� ��� d be a chain with extension

� �� � 
 �K� ��� d .
Then for every

� } � } ��� a it holds

	 g � � �� � � �
� 2 
�	 ��[} � ��� � a 
 � �� � � � �

� � � � �1��� � 2 � � � � � �1��� � �
� � � � � �1��� (2.5.47)

and consequently

	 �� � � �
� �`	 � �� } � ��� �=� 
 � �� � � � �

�
� � � � � �1��� (2.5.48)

where � ��� �=� 
 is defined in (2.4.7). Moreover, for any
� } ��� a it results

	 �� � 	 � �� } � �� � � � ��} � ��� �=� 
 � �� � �
�

� � � � � �1���
Proof From the recursive construction described before we get �

� � � �
� 2 �� � � 2 ���� � � � � � � � and with estimate (2.5.44) we have

	 g � � �� � � �
� 2 
�	 ��[}

� � ��
5 x 2 	 g �

� � � 5�	 �� } � ��� �=� 
� �

� � ��
5 x 2

� 5
� �5

} � ��� �=� 
 � �� � � � �
� � ��
5 x 2
� � � � �1��� � 5 } � ��� �=� 
 � �� � � � �

� � � � �1��� � 2 � � � � � �1��� � �
� � � � � �1��� <

As a consequence we get for every : � � � � �&<&<&< �=��. � ��
	 g 5 � �� � � �

� � 
�	 ��C}�� ��� � : 
 � �
� � � 5 �

�
� � � � � � 5 � >

now, since
� � � �8. � and � ��� � : 
 is increasing in : , the right member of the above

inequality is increasing and therefore

	 � �� � � �
� � 
�	 � �� ��kml #�K�`5c� � 	 g

5 � �� � � �
� � 
�	 ��[} � ��� �=� 
 � �� � � � �

�
� � � � � �1��� <
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From this last inequality and Cauchy’s estimate we infer

	 �� � 	 � �� } 	 �� �`	 � �� � 	 �� � � �
� �`	 � �� } � �� � � � ��} � ��� �=� 
 � �� � �

�
� � � � � �1��� �

Lemma 2.5.3 (Estimates for extended chains 2). Let � �� � 
 �K� � �/d � � and extended

chain with �� � � � � � � � � � �
� � 
 and assume that � � in (2.5.2) satisfies

� �f} �
� � � � � ��
 � �-� � 
 � � �

� � � 
E< (2.5.49)

Then we have 	 �� � 	 ��[} � � � � (2.5.50)

for any
� } � } a ; furthermore for any function

�� � ��� � � �
� �K��� 
 verifying the

estimates 	 �� 	 ��C}�� � � � (2.5.51)

and

	 �� � �
� � 	 ��C} � � � � � �

� � � � � � � � 
 (2.5.52)

for any
� } �;} a , we have

� ��� � � � � � �� � �,d � � � d � �
� %��1qcs t � t w � � � � � � �� 
 (2.5.53)

where � � � �� 
�� � ( i ���h�4	 �� � �� �Ai 
 ��	 � � � �c	 � 	 	 
 0
Proof To prove (2.5.50) it is sufficient to observe that from (2.5.4) with ��� �

we have

	 ���� 	 ��[} � � � � �
� � � � � }�� � � �

� � � � � ��
 � �-� � 
�}�� � � �

having used hypothesis in (2.5.49), �+� � � � � � and � �-� 
 } � .
For what concerns the remaining part of the statement we just have to prove

d�
5 x � � 5��

�� 
 � � � d
since the other inclusions in (2.5.53) are given by the construction of the compacts
� � ��� � �&<&<&< ���,d and the definition of ��� d in (2.5.40). We start showing

� � � �� 
�� � � � � � � i � � �E	 �� � �
� � �Ai 
 ��	 � �

� � �-�
� 
 � (2.5.54)
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for all �;� ��� with 	 � 	 	 } � � and
� � � � such that �+} a . If i belongs to � � � �� 


then 	 �� � �� �Ai 
 ��	 � � � �c	 � 	 	 
 so that it results

	 �� � �
� � �Ai 
 ��	 � 	 �� � �� �Ai 
 ��	�� 	 �� � �

� � �Ai 
 � �� �Ai 
 ��	 � � � �c	 � 	 	 
 � 	 � 	 	 	 �� � � �� 	 �� �
� � � �-� � 
 � � �

� �
� � � � � �
� � � � � � � � �-� � 
 � �

� � � � � ��

� �
� � � �-� � 


� � � �

� � � �-� � 
 � �
� � � � � ��


� � �
� � �  � �-� � 
 � �

� � �-�
� 


having used of hypotheses (2.5.52) and (2.5.49), inequalities �+} � �C} � � and
�-} � � and � �-� � 
 � � � �  O �� � � �-� � 
 �  O �� . So, we have proved inclusion (2.5.54)
which gives

� � � ��� � B �

t � t w � � � � � � � � � B �

t � t w � � � � � � �� 

for ��} a . Finally, from � � O � ��� � , for any

� } ��. a , and induction we obtain

� � d � � ��B �

t � t w � � � � � � �� 
 � �

t � t w � � � � � � �� 
 �

Theorem 2.5.5 (Theorem on chains). Let � be the chosen approximation func-
tion according to definition (2.2.1) and assume that

� � � � � � meas � � 
 (2.5.55)

and � .
�;.	�+� � . �3}�� �
� .�� � } � � � � .�� �f} ��� � 	

(2.5.56)

for �+� � � � �� � � and � � 	 as in (2.5.13), (2.5.14), (2.5.15) and (2.5.16) respectively.
Then the following is true

1. Any maximal chain is infinite.

2. For any infinite chain ��� � 
 �K� � � � , with � � � � � � � � � 
 , the limit
� d � D �

�
exists uniformly on

� � � � ��
d x � �,d

�
� �

so that
�
� � � � �ED���� is continuous. Furthermore, if we define

� � � � ( i ��� � �4	 �� � � � �Ai 
 ��	 � � � �c	 � 	 	 
 � 9 �C�3� � 0 (2.5.57)

we have the estimate

meas � � � � meas � � � � meas � � � � � (2.5.58)
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Proof Let ��� � 
 �K� � �/d � � be a maximal chain (that is ��� d as in (2.5.40) is

empty) and let � �� � 
 �K� � �/d be its extension with �� � � � � � � � � < �� � 
 . By Cauchy’s

estimate and �
�
��� �1@ � we have

	 � 	 � ��� } � ��� � �1� � 	 � 	 � O 	�� } � ��� � �1� � � � � � ��
�� � � � (2.5.59)

and analogously

	 � 	 � � O ��� }��?� � � ��
�� � � � � � O ��� � � � � ��
�� � ��� > (2.5.60)

then referring to estimates (2.5.24) and the last statement in theorem (2.5.3), we
can take

� � �{� � � � � �r� � � � �1� � � � � � ��
 (2.5.61)

From
� .
��.
� � and the choice of � � in (2.5.13) we have

� �f. � ��
such that we can meet hypothesis in lemma 2.5.2 and obtain, with � �X� � and
� � a in (2.5.47),

	 �� d � �
� �`	 � ��� } � ��� �=� � 
 � �� � � � ��

�
� � � � � �1��� } � ��� �=� � 


� � �
� � ��

�
� � � � � �1���

} �
� � � �

�
� � � O 	 � �

where � � has been taken from (2.5.17) and � � is defined in (2.5.61). Moreover
�
� d is a � � -function on �

�
since it is a member of an extended chain (it is the

extension of
� d ) and it holds

	 �� d/	 � ��� } 	 �� �`	 � ��� ��	 �� d � �
� ��	 � ��� } � � � �

� � � O 	 � � } � � � � �� .�� � (2.5.62)

where we used �\. �r� � � 	� as we proved in (2.5.36). Then to apply theorem 2.5.3
with �

� d � �
�

it is sufficient to observe that � � in (2.5.26), with � � in (2.5.27),
equals � � in (2.5.14) with � � in (2.5.18) once that ��� has been inserted from
(2.5.60). Therefore it results

meas � � � �� d 
 � meas � � � � � � � (2.5.63)

where

� � �� d 
 � ( i8���F�,	 �� � �
� d �Ai 
 ��	 � � � �c	 � 	 	 
 � 9 �C�3� � � (

� 060 < (2.5.64)
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Now by (2.5.56) and (2.5.16) we have

� � } ��� � 	 } �
� � � � � ��
 � �-� � 
 � � �

� � � 
 (2.5.65)

such that we can meet hypothesis (2.5.49) in lemma (2.5.3) with
��
� �
� d ; more-

over 	 �� d/	 � ��� } � � � � by (2.5.50) with � � a and (2.5.52) follows (always with��
� �
� d ) from (2.5.47) with � � � , � � a and � � � . Then lemma 2.5.3 and

(2.5.63) yield

� � d � "t � t w � � � � � � �� d 
 � ( i ��� � 	 �� � �
� d �Ai 
 ��	 � � � �c	 � 	 	 
 9 � . 	 � 	 	 }��Ed 0 �

� � � �� � 
 �� �^<
So, we have reached a contradiction to the maximality of the considered chain
��� � 
 �K� � �/d � � .

Now � �-} � � � � � permits once again the application of lemma 2.5.2, witha
� ~ and

� }�� }�� � , to the infinite chain ��� � 
 �K� � � � ; by inequality (2.5.47)

we can infer that the extended chain � �� � 
 is a Cauchy sequence in �,� � � � �K��� 

(since

� .	� and � � �\���;� � ). Then there exists �
�
� � �4� � � � �K��� 
 such that

�
� � � � ��ED �

�
� (2.5.66)

uniformly in �,� � � � �K��� 
 . Thus, performing this limit in (2.5.62) and (2.5.62) we
get

	 �� � � �
� ��	 � ��� } �

� � � O 	 � � � 	 �� � 	 � ��� } � �

so that we are able to apply theorem 2.5.3 with �
�
� �
�
� obtaining

meas � � � �� � 
 � meas � � � � � � (2.5.67)

where as usual we denote

� � �� � 
 � ( i8���F�,	 �� � �
�
� �Ai 
 ��	 � � � �c	 � 	 	 
 � 9 �C�3� � � (

� 060 < (2.5.68)

Now we want to apply once again lemma 2.5.3 with
��
� �
�
� . Clearly the

links � �(�
� � �&<&<&< �
� d of the considered chain form a finite chain; the two estimates
(2.5.51) and (2.5.52) can be obtained by taking the limit for � D ~ in the rela-
tions obtained before when we applied lemma 2.5.3 with

��
� �
� d . Then, as above,

we have
�,d � � � d � �

t � t w � � � � � � �� � 
 � � � �� � 
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for a � � � � �&<&<&< , where
�

t � t w � � � � � � �� � 
 � ( i ���F�,	 �� � �
�
� �Ai 
 ��	 � � � �c	 � 	 	 
 9 � . 	 � 	 	 } �Ed 0

and � � �� � 
 is given by (2.5.64) with �
�
� instead of �

� d . Thus by means of the
definition of � � and (2.5.67) it results

� � �
��
d x �

� d � � � �� � 
 �� � >
Now, since �

� � 	 � � � � � 	 � � , for any ����� , we have

� � 	 � � � �
� � 	 � � � � ��ED �

�
� 	 � � � � � � (2.5.69)

where this convergence is uniform on � � . As a consequence � � �� � 
 � � � B� � �� � 
 � � � and by (2.5.67) we finally obtain

meas � � � � meas � � � � meas � � � � � �
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Chapter 3

Properly degenerate Hamiltonian
systems

3.1 Statement of results

Let
�

be an open set in �  , � some open neighborhood of the origin in � 	-, and �
a “small” real and positive parameter, we consider an Hamiltonian function in the
form

� � ��� � ����� � � 
 ��� ��� 
 ��� � ��� � ����� � � 
 (3.1.1)

real-analytic for
��� � ������� � � 
 
�� �  Z � Z�� � � �

(3.1.2)

endowed with the standard symplectic form

� � � � � � ��� � � �f< (3.1.3)

Let � � � � � � � � � be such that � possesses an holomorphic extension on

� 2 Z � � � Z��
� 
 � � �
� <

We assume that � is in the form

� ��� � ����� � � 
 � � ��������� � � 
 � � � ��� � ����� � � 
 with
�
�

�
� � ��� � ����� � � 
P� � � �

where

� � ������� � � 
 � � � � ��� 
 �
,�
5 x � �
5���� 


� 	5 � � 	5
� � � 	�������� � � 
 (3.1.4)

with IKJ $� % ��� � 	 � 	�������� � � 
�	6}  ��	 ��� � � 
�	 � � 9 ��� � � 
����
� 
 (3.1.5)
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for some  �f� � .
Now, observe that the Hamiltonian ��� � � � possesses for every � �3� � the

invariant lower dimensional torus

� � � � � �  Z ( � � 0 Z (
� 0 
 �

with corresponding quasi-periodic flow

� �-� 
 � � � �� � ��� � 
 ��� � � � �� � ��� � 
 � � � � � � �-� 
	� � � ��� �-� 
 � � �-� 
 
	� � <
Disregarding the elliptic singularity in every single elliptic plane �)5 �p5 , we aim to
find Lagrangian invariant tori for � � , i.e., maximal tori in the form

�  O ,� � s � � �  Z ( � � 0 Z ( ��� � � 
����
	-, �
	 ���/5(� �p5 
�	 � � 5 � 9;: ��� �&<&<&< � � 0

for � � in
�

and � �3� , with � 5 � � .
The main theorem we are going to prove in this and next chapter is the follow-

ing.

Theorem 3.1.1. Let � � ��� � ����� � � 
 � � ��� 
 � � � ��� � ����� � � 
 be the real-analytic
Hamiltonian described above. Assume that the “frequency map”, i.e., the real-
analytic application

� � � �ED � � � ��� 
 �c� � ��� 
 �&<&<&< �c��, ��� 
 
 ���  Z�� , � (3.1.6)

is non-degenerate in the sense of Rüßmann (definition 2.1.2). Then, provided that
� is sufficiently small, in any neighborhood of �  Z ( � � 0 Z (

� � � 0 
 �
there exists

a positive measure set of phase space point belonging to analytic maximal KAM
tori for � � carrying quasi-periodic motions.

We observe that theorem 3.1.1 is an analogous, in analytic class, of M. Her-
man’s KAM theorem in [Her98] (a proof can be also found in [Féj04]). This last
theorem is based on a ��� local inversion theorem on “tame” Fréchet spaces due to
F. Sergeraert and R. Hamilton which, in turn, is related to the Nash-Moser implicit
function theorem (refer to [Ham74] for an elegant proof given by R. Hamilton).
In [Féj04], J. Féjoz applies the cited KAM theorem by M. Herman to the plan-
etary ��� � ��
 -body problem; analogously, at the end of chapter 5, we are going
to apply theorem 3.1.1 to the results given by J. Féjoz on the non-degeneration of
the planetary frequency application (a discussion of J. Féjoz’ results is provided
in chapter 5 but we always refer to [Féj04] for more detailed proofs).

The proof of theorem 3.1.1 is performed in three main steps. The first step,
carried out in this chapter, consists in the proof of the following theorem.
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Theorem 3.1.2. Assume that the “frequency map”

� � � �ED � � � ��� 
 �c� � ��� 
 �&<&<&< �c��, ��� 
 
����  Z�� ,
is non-degenerate in the sense of Rüßmann. Chose and fix an integer � � � and
an open set � 
 � . Then, there exists an open ball

T  ��� � � � 
�� � � � ���  �4	 ��� � ��	1. � � 
��
so that, provided � is small enough (see inequality ((4.4.5)) and section 4.4), there
exists a canonical transformation

� ��� ��� � � � � ��� 
C� �  Z+T  � � � � �  
�Z � , Z3T , � � � � 
 � D
�ED ��� � ����� � � 
�� �  Z3T  ��� �(� � 
 Z�� (3.1.7)

such that
�
� �
� � � � � � � assumes the form

�
� � ��� � � � � ��� > � 
 � � � � � ��� � ��� � 
 ��� �� ��� � ��� � 
�� � ��

�� ��� � ��� � 
  � � � ��� � 


��� � s � � O � � � � � ��� � 
 ��� � � �� � � � � � ��� > � ��� � 
 � �� 	 ��� � � � � ��� > � ��� � 
 � (3.1.8)

where � � in �L��O 
 , is a chosen point having euclidean norm � � , � � s � � O � � is a poly-
nomial of degree � � � depending on � and ��� � � � , �� ,

�� ,
�� � and

�� 	 are
real-analytic functions.

Furthermore it results

IKJ $�
�
� � � s ��� � � 	

�� � � 	 � � � � 
 (3.1.9)

(see (3.3.30)) and proposition 3.3.1 for details).

The proof of this theorem is performed in sections 3.2, 3.3, 3.4 and 3.5. Chap-
ter 3 is then dedicated to the application of Rüßmann’s theorem in the case of
maximal (Lagrangian) tori to

�
� � . In sections 4.1 and 4.2 we prove

Theorem 3.1.3. For small enough � (see inequality (4.4.8) and section 4.4), the
frequency application of the torus �  O ,� s � of the integrable part of

�
� � , i.e., the real-

analytic function

�� ��� � � ��� 
 �+T  � � � � �  
�Z3T 	-, � � � � 
 �ED
� �
� � � � �� �

� � � (3.1.10)
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where
� ��� � �

� � � � � � �� � �
�� 	 
 , is non-degenerate in the sense of Rüßmann.

Furthermore if �� and �� denote the index and amount of non-degeneracy of
the initial frequency application in (3.1.6), with respect to a compact set � 
T ���� �(� � �  
 , then

�� � and
�� � , the index and amount of non-degeneration of

�� � with
respect to a suitable compact set � 
!T  � � � � �  
�Z3T , � � � � 
 , verify

�� �
} �� and
�� � � ���� O 	 ��
 < (3.1.11)

To conclude, in section 4.3 we will control how the quantities involved in the
estimate of the size of the perturbation in Rüßmann’ theorem 2.3.1 change their
order in � when

�
� � is considered, obtaining

Theorem 3.1.4. If we take

� � � �� � �� � ��
 	 � � �� 	 � � � �`b � �`� � � � �  
 �� � � �
in theorem 3.1.2 and � is small enough (see (4.3.53) and subsection 4.3), then it
is possible to apply Rüßmann’s theorem for maximal KAM tori to

�
� � obtaining

�-� � (whose final determination takes place in (4.3.39)) and a positive measure
set of phase space points corresponding to quasi-periodic motions with �-� �cb 
 -
Diophantine frequencies.

Observe that in this last results the frequencies
�
� � � � � � 	(�&<&<&< � �  
 of the

KAM tori obtained are �-� �cb 
 -Diophantine, i.e.,

	 �  � 	 � �	 � 	 n �
� �cbm� �
while in Rüßmann’s theorem 2.3.1 the control on the frequencies is performed
in a more general way through an approximation function (definition 2.2.1); we
display the details of this difference in subsection 4.3.5 and give a complete expo-
sition of the application of Rüßmann’s theorem in section 4.3.

3.2 Averaging theory

Let � be a real-analytic function for ��� � ����� � � 
 in �  Z T�Z!�+Z �
where T 
7�  is

an open set and � and
�

are two open neighborhoods of the origin in � , . Assume
that � admits an holomorphic continuation on � 2 Z Tf�
Z��M���^Z � ��� and possesses
the following Fourier’s expansion

� ��� � ����� � � 
 � �
� %��

�
� � ������� � � 
 �

�

� � �
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then we denote with
� � � 2 s � s ��� s ��� the norm given by

� � � 2 s � s ��� s ��� � � �
� %�� � � IKJ $� � _�� � � _�� � � 	 �

� ������� � � 
�	 � � t � t 
 2 <
We now display a well known issue of classical theory of dynamical systems,
providing a general formulation of what is known as “averaging theorem”:

Theorem 3.2.1 (Averaging theorem). Let � ��� � ����� � � 
4� � � ��� 
 � � ��� � ����� � � 

a real-analytic Hamiltonian function on

gX� � � 2 Z3Tf� Z �M��� Z � ��� (3.2.1)

where � and
�

are two neighborhoods of the origin in � , , and denote
� ��� 
�� �

� � ��� 
 . Let � be a sub-lattice of �  and suppose that
�

satisfies the non-resonance
condition 	 � ��� 
z � 	 � �\� �
for all 	 � 	1} �

, � ���� and for all �m�+T � ; suppose also that
� ����� and

� � � 2 s � s ���K���8� � �^} � � �
� � �, � � (3.2.2)

where � � � ��k���� ( � & � �	���	
�0 and �, � � � � � � � 
 � � . Then there exists a real-analytic
symplectic transformation

��� � �� � ���� �� � �� 
 � �  � � Z+T � w Z � � �w Z � � �w �ED ��� � ����� � � 
��+g
such that

���� � � � � � ��� � � ��
where � is in normal form

� � �� � �� � �� � �� 
 � �
� %	 �

� � ���� �� � �� 
 � �
�

� ��
(3.2.3)

and the two following inequalities hold

� � �
�

t � t ��� s � %	 �
� � � � � �� � � ��s � w s � �w s � �w } � � �,

� � � 	 (3.2.4)

�
�� � � ��s � w s � �w s � �w } � ��� �� ��< (3.2.5)

Moreover the projections of � � �� � �� � �� � �� 
 satisfy the estimates

��	 �� ���^	 � � 	 ���� ��	 � �	� 	 �� � �
	 � �	
 	����� ��	/}�� � � � ��<
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Proof A proof of this theorem can be found in [Val03, Appendix A] �

Corollary 3.2.1. Let ��. � and � � ��� � ����� � � 
 � � ��� 
 � � � ��� � ����� � � 
 a real-
analytic Hamiltonian function on � � � � 2 Z+Tf�fZ �M��� Z � ��� define

��� � � � � 2 s � s ��� s ��� <
Let � ��� an arbitrarily fixed real number and

�
�
�� � � � ��
 ���� ��K� � (3.2.6)

suppose that
�
�
� � satisfies

	 � ��� 
z � 	 � � � � � 9 � �3�  � � . 	 � 	 � } � � 9 �m�+Tf� > (3.2.7)

then under the condition

�K� ���� ��K� } � � �
��, � � � ��
 (3.2.8)

where ��, � � � � � � � � � � 
 and � � � � k���� ( � � � �	���	
�0 , there exists an analytic
symplectic transformation

� �
� � �� � �� � �� � �� 
 � �  � � Z3T � w Z � � �w Z � � �w � D ��� � ����� � � 
���� (3.2.9)

such that
�� �
� � � � � � � ��� � � ��

with �
�
� � �� � �� � �� 
 (3.2.10)

satisfying
� � � � � � � � w s � �w s � �w } ��,

� � � �K� 
 	 (3.2.11)

where

� � � � ��� ���� �� � �� 
 � �
� ��� 
 

�
�

�
� � �� � �� � �� � �� 
 � ��

is the average (with respect to the angles variables) of � ; besides

�
�� � � �rs �w s � �w s � �w } � �K� 
 � < (3.2.12)
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Proof The proof of this statement can be easily obtained by the preceding
formulation of averaging theorem; taking � � (

� 0 in (3.2.3) we can derive the
independence of � from the angle variables �� ���  � � (equation (3.2.10)) and ob-
tain inequality (3.2.11) directly from (3.2.4). Moreover with the choice of

�
in

(3.2.6), estimate (3.2.12) holds by mean of (3.2.5); observe that hypothesis (3.2.8)
is needed accordingly with this choice of

�
in order to meet hypothesis (3.2.2) in

theorem 3.2.1 �
We state now a lemma showing how this corollary can be applied for � in an

open set (say an open ball) under the hypothesis of non-degeneration in the sense
of Rüßmann of

�
�
� � .

Lemma 3.2.1. Let � be a domain in �! and �7� �-��� �ED ��G a real-analytic
and non-degenerate function in the sense of Rüßmann (see definition 2.1.2). Then
for any chosen and fixed

� � � there exist a point � � ��� , a radius � � � � and a
real number � � � such that for any �m�+g���� ��� � 
 
!�  it results

	 � ��� 
  � 	 � � � 9 � �3� G with
� . 	 � 	 � } � < (3.2.13)

Proof Enumerate as �%� � � 	 �&<&<&< � � � (with � � � ��� � � 
 ) all the vectors with
integers coordinate in � G having norm less than � � � , i.e.,

( ��5 0 �5 x � �!� G � � 

and set

�v5 � * 
 � � � * 
z ��5z<
Under the hypothesis of non degeneration, �+� is a non-vanishing analytic func-
tion on � (because � does not satisfy any linear relation on � ) then there exists
� �,��� such that 	 � � ��� � 
�	E� � and by continuity there exists a radius � � (we may
assume to be less than the analycity radius of � in ��� ) such that 	 ��	)� � holds ong{� 
 ��� � 
 . Now since � 	 is also a non-vanishing real-analytic function there exists
� 	 in g{� 
 ��� � 
 B�� such that 	 � 	���� 	 
�	Q� � Once again by continuity there exists � 	 ,
which we may assume to be less than dist ��� 	(� � g{� 
 ��� � 
1B�� 
 , such that 	 � 	���� 
�	1� �
for every � in g�� w ��� 	 
 . Then we have both 	 � ��	 and 	 � 	`	 greater than

�
on the whole

ball g{� w ��� 	 
 .
Applying recursively the scheme described we may find � � � � 	 �&<&<&< � � � in � and� � � � 	 ���� � � � � � such that

��< �=5 �+g{� �  
 ���=5 � � 
�B�� � 9 �{} : } �
�/<�g{� � ���=5 
���g{� �  
 ���=5 � � 
 � 9 ��} : } �
�Q< 	 � � ��� 
�	 �&<&<&< �`	 �v5 ��� 
�	1� � � 9 �m�+g{� � ���=5 
 � 9 �{} : } ��<

48



In particular for every ���\g�� q ��� � 
 we have 	 � � ��� 
�	 �`	 � 	 ��� 
�	 �&<&<&< �`	 � � ��� 
�	)� � . By
the open map theorem this functions assume their minima on � g � q ��� � 
 therefore
the proof of the statement follows taking � � � � � � � � , � � � � � q	 and

� � � k����5 x � s � � � s � ��� �� %�� � � 	 �v5 ��� 
�	 �

Lemma 3.2.2. Let � � �c� 
-�4T 
 �  �ED � +Z � , a real-analytic and non-
degenerate function; let &�� � such that � � �c� 
 can be holomorphically extended
on T � , and let

� � and
� 	 two positive integers greater than � ; then there exists� } & , �\� � and � � �+T such that

��� �� %�� � � � � � 	 � ��� 
z � 	 � � � 9 � .�	 � 	 � } � �

��� �� %�� � � � � � 	 � ��� 
  � 	 � � � 9 � .�	 � 	 � } � 	 < (3.2.14)

where g{����� � 
 � ( �m�+�  �4	 ��� � ��	1. �10 as usual.

Proof Since � � �c� 
 is non-degenerate in the sense of Rüßmann on T obvi-
ously both

�
and � are non-degenerate on T . Applying lemma 3.2.1 with ��� �

and � � T we obtain � � �+T , � � } & and ��� � � such that

��� �� %�� � 
 � � 
 � 	 � ��� 
z � 	 � ��� � 9 � . 	 � 	 � } � �

and we may assume g�� 
 ��� � 
8��T � . Now with � � � and � � T � 
 ��� � 
zB��  we
may find � } � � , � 	 � � and � � � Tf� 
 ��� � 
 B��  , with g{����� � 
8� g{� 
 ��� � 
 , such
that

��� �� %�� � � � � � 	 � ��� 
  � 	 � � 	 � 9 � . 	 � 	 � } � 	z<
The proof ends taking � ��k���� ( � � � � 	 0 �

Consider now � � ��� � � � as in (3.1.1) real-analytic on
�

� � � 2 Z � � � Z �
� 
 .
Let � be an open set contained in

�
(with the same notation of theorem 3.1.2) Let

� � � �*	 ��� two fixed integers to be later determined, we take

� � � �� � � � � ��
 ���� ��K�
and apply lemma 3.2.2 (with T � � and & � � � ) in order to find �\� � , � . � } �
and � �f� � such that

	 � ��� 
z � 	 � � � � � 9 � �+�  � � . 	 � 	 � } � � � 9 �m�+g{����� � 
 (3.2.15)
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and

	 � ��� 
  � 	 � � � � � 9 � �3� , � � . 	 � 	 � } �*	(� 9 �m�+g{����� � 
 (3.2.16)

where � � �c� 
 is the frequency application of ��� (see (3.1.6)). Notice that under
the hypotheses made g������ � 
 � � � � . Then, assuming

�K� ���� ��K� } � � �
�, � � � � ��
 (3.2.17)

and in view of (3.2.15), we may apply corollary 3.2.1 to � � with � Z �
��g 
� 	�, , �	� � �	
 � � � and T � ( � � 0 (which implies T � ��g{����� � 
 ). Thus, we obtain

a real-analytic and symplectic transformation

� �� � � �� � �� � �� � �� 
���� � � � �  � � Z,T � w Z,g � 
w �ED ��� � ����� � � 
���� �f� � � 2 Z,Tf� Z,g{� 

(3.2.18)

where we denote from now on

T � � � � �m�+�  �,	 � ��� �`	/. � � � g � ��� � 
 � (3.2.19)

that cast � � in the form

� �� � � � � � � �� ����� � � �� <
By equation (3.2.12) we have for the initially fixed ��� ���

�
�� ��� 
 }�� �K� 
 � 
 (3.2.20)

where � is the Fourier’s norm of �

��� � � � � � � < (3.2.21)

Moreover � verifies (3.2.10) (i.e., it is independent from the new angles �� ) and
satisfies 	 � � � � ��	 � w s � 
w } �,

� � � � 	 (3.2.22)

(since 	�P	1� �N	�Q	 	 } �  � ) where

�,�� � � � � � � � � � � 
 (3.2.23)

and � � � ��k���� ( � � � �
	� 0�> (3.2.24)

therefore, we may write

� � �� � �� � �� 
 � � � � � ���� �� � �� 
 � �
� � ���� �� � �� 
 with 	 �� 	 � w s � 
w } �,

� � � � �K� 
 	 (3.2.25)
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obtaining

� �� � �� � �� � �� � �� 
 � � � �� 
 ��� � � � ���� �� � �� 
 � �
� � ���� �� � �� 
 � �� � �� � �� � �� � �� 
E<

Now recalling the form of ��� in (3.1.4) and using estimates (3.2.20) and (3.2.25),
we set � 	 �� � �

� and � � 
 �� � �� , and rewrite � �� in the form

� �� � �� � ���� �� � �� 
 ��� � �� 
 � � � � � � ���� �� � �� 
 ������ � ���� �� � �� 
 � � � � 
 �� � �� � ���� �� � �� 
E< (3.2.26)

where

� � � ���� �� � �� 
 � � � ��� �� 
 �
,�
5 x � �
5�� �� 


�� 	5 � �� 	5
� � � 	�� ���� �� � �� 
 (3.2.27)

with IKJ $�� % � � w 	 � 	�� ���� �� � �� 
�	1}  ��	 � �� � �� 
�	 � � (3.2.28)

the functions �� and �� are real-analytic on ��� and the following bounds hold:

	 � �`	 � w s � 
w } �
	 �� 	 � w s � 
w } �,

� � � � 	
	 ��
	 � 
 } � � 
 (3.2.29)

(having used again 	�P	1� �N	�P	 	 } �  � ).
3.3 Elliptic equilibrium for

�
�
������

We now consider the real-analytic Hamiltonian function on � �
� � �� � �� � ���� � 
 � � ��� ���� �� � �� 
 ������ � �� � �� � �� 


as it appears in (3.2.26). As equation (3.2.27) together with (3.2.28) show, �
�
�

� �� � �� 
 � � is an elliptic equilibrium point for � � � � ; since this equilibrium is per-
turbed by the presence of ���� our aim is to find an analytic and symplectic transfor-
mation � 	� , � � � 
 close to identity, such that

� � � 	� possesses an elliptic equilibrium
in the origin.

Define
� � �� � �� � ���� � 
 � � � �� � � ���� �� � �� � � 
 � � �
 � � ���� �� � ���� � 
 !
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and recall that from the definition of � � in (3.2.27) we have

� � �� � � � � � � 
 � �

and � "�� � � �� s �
 � � � ���� � � � � � 
 �
,
� x �

� �
5�� �� 
 ! 	 � �
where both equations are verified for every �� �WT � w . Then we can apply the
Implicit Function Theorem to find two real-analytic functions �� and ��

� �� � �� 
 � � �� � � 
 �+T � w Z ( 	 �r	1. � � 0 �ED �
�� � ���� � 
 � �� � ���� � 
 ! �+g � (3.3.1)

with � � and � to be later determined, such that

� �� � �
���� �� � ���� � 
 � �� � ���� � 
 � � ! � � � � �
 � �

���� �� � ���� � 
 � �� � ���� � 
 � � !
for every �� � T � w and 	 �r	
. � � . To determine a possible value of � � , as well as
estimate the codomain of �� and �� (which we expect to be

� � � 
 ), we are going
to use the estimates given by a quantitative formulation of the Implicit Function
Theorem (see for instance [Chi97, page 150]); setting

� � � T � w Z ( 	 �r	1. � � 0 and� � � g � we have to choose � � and � in order meet the following two inequalities

IKJ $� � _�� �
			 � 	-, � � � �� 
 � � �� s �
 � � � ���� �� � ���� � 


			 } �� (3.3.2)

IKJ $� �
			 � � ���� � � � � � 


			 } �� � 	 � 	 � � (3.3.3)

where

� � �� 
 � � � � �� s �
 � � � ���� � � � � � 
 � � � ��� � 	� �� s �
 � � � ���� � � � � � 
 � � � �
� diag

� � � � � � �� 
 �&<&<&< �c��, � � � �� 
 �c� � � � � �� 
 �&<&<&< �c��, � � � �� 
 ! <
We start by (3.3.3) to see how small � can be fixed finding a lower bound for

the size of the image of the two implicit functions; since

� � ���� � � � � � 
 � � � � �� s �
 � �� � �� � � � � 

we have

IKJ $� �
			 � � ���� � � � � � 


			 } � �4IKJ $�� % � � w
			 � � �� s �
 � �� � ���� � � � 
 			 } � � �� � 	 �� 	 � w s � 
w } � � � �,�� 	

� � � � �
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where we used Cauchy’s estimate (with a loss of analycity � 
	 ) and the estimate on	 �� 	 in (3.2.29). Now, to satisfy (3.3.3) we may take

� � � � � �,�� 	
� 	 � � � � � � � � �,&� 	

� � � � � IKJ $�� % � � w 	 � � �� 
�	 (3.3.4)

since, in view of (3.2.16), we have

IKJ $�� % � � w 	 � � �� 
�	 � kml #5 x � s � � � s , IKJ $�� % � � w
�

	 �
5�� �� 
�	 �
�
k����5 x � s � � � s , ��� ��� % � � w 	 �
5�� �� 
�	 � � � } �

�
< (3.3.5)

This proves that � can be chosen of order � . Let now verify under which conditions
on � � inequality (3.3.2) can be satisfied:

IKJ $� � _�� �
			 � 	-, � � � �� 
 � � �� s �
 � � � �� � �� � �� � � 


			 �

� IKJ $� � _�� �
			 � 	-, � � � �� 
 � 	� �� s �
 � � � ��� ���� �� � �� 
 ������ � ���� �� � �� 
 ! 			 �

� IKJ $� � _�� �
			 � 	-, � � � �� 
 � � � � � �� 
 � � 	� �� s �
 � � 	 � �� � �� � �� 
 ��� � 	� �� s �
 � �� � �� � �� � �� 
 � 			 }

} �
�
� IKJ $� � _�� �

			 � 	� �� s �
 � � 	 � ���� �� � �� 

			 ��� ��IKJ $� � _�� �

			 � 	� �� s �
 � �� � ���� �� � �� 

			 �

having used the particular form of � � in (3.2.27). Then it is sufficient to require
that both members in the last expression are smaller than �� . By (3.2.28), the usual
Cauchy’s estimate and assuming � � } � 
	 , we obtain

�
�
IKJ $� � _�� �

			 � 	� �� s �
 � � 	 � ���� �� � �� 

			 } �
� � 	 IKJ $� � w _ �Ew��

			 � 	�� ���� �� � �� 

			

}  �
� � 	 IKJ $�Ew�� 	 � �� � �� 
�	 � ��� �  ���

�
�	� � �,  � � 	

� � � � � � � �
and this is bounded by �� if we impose

� � }�b%� � � � � � � �=� 	 with b%� � � � � � �, � � � < (3.3.6)

Now if we assume

� �M}�b 	 � 	 � � � 	�� 	 with b 	f� � � � � �, � � � (3.3.7)
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with the definition of � in (3.3.4) we obtain � � } � 
	 and applying Cauchy’s
estimate once again and (3.2.29) we have

� �
�
IKJ $� � _�� �

			 � 	� �� s �
 � �� � ���� �� � �� 

			 } � �
�

IKJ $� � w _ � � 

�

			 � 	� �� s �
 � �� � ���� �� � �� 

			 }

} � � � �
� � 	� 	 �� 	 � w s � 
w } � � �

� �,�� 	
� 	 � � � 	� }

�� <
For clearness and further references we display here what has just been proved:

Lemma 3.3.1. Let �^} � � with

� � � � � � � �, � � � � 	 � � � 	�� 	 k����
�
�

 � � � � � � (3.3.8)

(that is both conditions (3.3.6) and (3.3.7)) and define

�m� � � �,&� 	
� 	 � � � 	� � (3.3.9)

(with � as in (3.2.15), � � , �, and � defined respectively in (3.2.24), (3.2.23) and
(3.2.21)). Then there exist two real-analytic functions

�� � �� � � ���� � 
 �+T � w Z ( 	 �r	/. � � 0 �ED �� � ���� � 
 � �� � ���� � 
 �+g � (3.3.10)

such that

� �� � �
���� �� � ���� � 
 � �� � ���� � 
 � � ! � � � � �
 � �

���� �� � ���� � 
 � �� � �� � � 
 � � ! < (3.3.11)

Consider now the real-analytic symplectic transformation � 	� generated by

*  �� �	� � � �� � * � � 
 
  � ���� �� � * � � 
 
 <
We claim that � 	� is the desired transformation, that maps the � � � ���� into an
Hamiltonian which possesses an elliptic equilibrium in � � � 
 
 � � . The following
lemma shows how the domain of � � can be well controlled for small enough � .
Lemma 3.3.2. Let �^} k���� ( � 	 � � � 0 , with

� 	f� � � � � � �, � � � � 	 � � 	� 	 (3.3.12)

and � � in (3.3.8), then we have

� 	� � �L� � * � � � 
 
���� 	f� � �  � � Z+T �
� Z3g � 


� �ED � �� � ���� �� � �� 
���� �
where

� � � � �  � � Z+T � w Z+g � 
w < (3.3.13)
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Proof As it can be seen by the definition of its generating function, � 	� is
given by:

�� � *
�� � � � � �� �� � * � � 
 � ��� �� � * � � 
 
 � � �� �� � * � � 
 

�� � � � �� � * � � 

�� � 
 � �� � * � � 
E<

Now, since � �� � * � � 
 � �� � * � � 
 
 belong to g � with � } � 
� , having assumed �m} � �
(see the claim after (3.3.6)), it results

	 �� � * � � > � 
�	�} 	 ��	 ��	 �� � * � � 
�	6}
� �� � �m} � �

�

	��� � * � � > � 
�	�} 	 
 	 ��	��� � * � � 
�	1}
� �� � �m} � �

� <
The estimate for the domain of the angles � runs as follows :

	 �� �L� � * � � � 
 > � 
�	6} 	 �
	 ��	 � �� �� � * � � 
�	 �K	 ��	 ��	 �� � * � � 
�	 
 ��	 � �� �� � * � � 
�	 	 
 	�}
} �

� ��	 � �� �� � * � � 
�	
� � �� � � ! ��	 � �� �� � * � � 
�	

� �� }
} �

� �	�c	 � �� �� � * � � 
�	 ��	 � �� �� � * � � 
�	 

� �
�

having used once again �m} � 
� ; then by Cauchy’s estimate we obtain

IKJ $�S% � �
�
s t � t � � w 	 � �� �� � * � � 
�	6} IKJ $�S% � � w s t � t � � w

� � 	 �� � * � � 
�	1}
� � IKJ $t � t � � w � � � 
 (3.3.14)

where the same estimates holds for �� � * > � 
 ; therefore, recalling the definition of
� � � � � 
 in (3.3.9) and using (3.3.12) we have

	 �� �L� � * � � � 
 > � 
�	6} �
� � � � �� � � � 
 � � � � �

� �,�� 	
� 	 � � � � 	f}

} �
� � � � � � �� } �

� � �� � � � �
having used � � } � � �
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In view of this lemma and of the particular choice of � 	� the new Hamiltonian
� 	� � � �� � � 	� has the form

� 	� �L� � * � � � 
 
 ��� � * 
 ��� �� � * � � � 
 
 ��� � 
 �� �L� � * � � � 
 
 (3.3.15)

where
��
� � � � ������ 
 � � 	� and

�
� � �� � � 	� are real-analytic functions for

�L� � * � � � 
 
�� �  � � Z+T �
� Z+g � 


� � � 	 < (3.3.16)

Moreover, denoting as done before
�
� � � � ���� , � 	� satisfies, in view of (3.3.11),

� , �� � * �
� � � 
 � � �� � �

���� �� � ���� � 
 � �� � ���� � 
 � � ! � �
� ] �� � * �

� � � 
 � � �
 � �
���� �� � ���� � 
 � �� � �� � � 
 � � ! � � <

Therefore we can write

�� � * � � � 
 
 � �� ��� * 
 � �� � � � � 
 
 � �' � * 
 � � � 
 
 � � �� � � * � � � 
 
 (3.3.17)

where

�� ��� * 
 �
�� � * �
� � � 


�
' � * 
 � �

	� , s ] � �� � * �
� � � 


�� ��� * � � � 
 
 � ��
� x �
�
�

� , s ] � �� � * �
� � � 


� � � � � � 
 
 � < (3.3.18)

Furthermore by (3.2.29) we can estimate the norm of
�� with

	 �� � * � � � 
 
�	 � w } 	 � ��� ���� �� � �� 
 ������ � ���� �� � �� 
�	 � 
 }�� � �,
� � � � 	 � �

�
��� (3.3.19)

so that we have

	 �� ��� * 
�	 �� } �
���

	 �' � * 
�	 � � } � �� 	� 	 �� � * � � � 
 
�	 � w } �
�
� 	�
�

���E<
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By definition of
�� � in (3.3.18) we have for � � � 
 
 in g � 


�

IKJ $�S% � �
�

	 �� ��� * � � � 
 
�	�} ��
� x �

	 � �� , s ] � �� � * �
� � � 
�	 �

�

� � 	 � � � 
 
�	 � }
} ��

� x �
� �� � �

�

	 �� � * � � � 
 
�	 � w 	 � � � 
 
�	
�

� � 	 � � � 
 
�	 � }
}  �� ��

�
���

��
� x �
� �  �

�

	 � � � 
 
�	 � }  �
� �� �

�
����	 � � � 
 
�	 � < (3.3.20)

From equation (3.3.17) we obtain

	 �� ��� * � � � 
 
�	 � w } 	 �� � * � � � 
 
�	 � w ��	 �� ��� * 
�	 �� �
� 	�
� � 	
�
' � * 
�	 �� } �

�
���E< (3.3.21)

We now focus on the � �3Z � � matrix function
�
' real-analytic on T �

� to show
that it admits a diagonal form � � � 
 close to diag �A� �c� 
 where � � �A� � �&<&<&< �c��,�
 .
By definition of

�
' ,
�� ,

�
� � � ������ and � 	� it results

�
' � * 
 � � 	� , s ] � �� � * �

� � � 
 � � 	� , s ] �
		 � , s ] � x �

� ��� � �L� � * � � � 
 
 
 �
� � 	� , s ] �

		 � , s ] � x �
� � * � ��� �� � * � � 
 � 
 � �� � * � � 
 
 �

� � 	� �� s �
 � � � � � * � �� � * � � 
 � �� � * � � 
 
 ������ � * � �� � * � � 
 � �� � * � � 
 
�� �
� diag �A� � * 
 �c� � * 
 
 � �

	� �� s �
 � � 	 � * � �� � * � � 
 � �� � * � � 
 
 �
� � � 	� �� s �
 � �� � * � �� � * � � 
 � �� � * � � 
 
E<

As already shown during the estimates needed to prove the existence of �� � * � � 
and �� � * � � 
 and to find them suitable domains, the two following estimates are
true

IKJ $�S% � � w
		 � 	� �� s �
 � � 	�� * � �� � * � � 
 � �� � * � � 
 


		 }�� � �,  �=� 	
� 	 � � � � �

� IKJ $�S% � � w
		 � 	� �� s �
 � �� � * � �� � * � � 
 � �� � * � � 
 


		 }�� � �, � 	
� � � � 	� �
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having used condition (3.3.6). Then, if we define the following � ��Z � � matrices

' � * 
 � � �
' � * 
 ) 	-,

T�� * 
 � � diag �A� � * 
 �c� � * 
 
 ) 	-,
� � * 
 � � � 	� �� s �
 � � � ��� * �

� � � 
 ������ � * �
� � � 
 
 ) 	-, (3.3.22)

it results
' � * 
 �!T�� * 
 ��� � � * 
 (3.3.23)

with

	 ' 	 � � } 	 �' 	 � � } �
�
� 	�
�

���

	 T;	 �� } kml #5 x � s � � � s , IKJ $�S% � � 	 �
5�� * 
�	6� � � 	

	 �C	 �� } � � �, � 	
� � � � 	� kml # �  � � �� � � � � � � � < (3.3.24)

Here is a preliminary lemma which will be useful also later:

Lemma 3.3.3. Let T � � � * � g 
 � ��ED ���1_r� be two matrix functions,
� . �f. � a real parameter and assume 	 � "�� T�� * 
�	 � � n for every * ��g . Then
if

�^} � n
� � � � � kml # ( � T � � � � � 0 �1� � (3.3.25)

where here we denote
� � � � ��IKJ $ �S%�� kml # � s 5 x � s � � � s � � � 5�� * 
 , it results

	 � "����AT�� * 
 ��� � � * 
 
�	 �
� n
�

for every * ��g .

Proof Denoting by
� � the group of permutation on � elements, we have

� "�� �AT���� ��
 �
�
, %�� q

� i � , � ��� ��� (� , � ��� � �� � i � , � � � ���  � , � � � � �

�

�
, %�� q i � ,

� ���Q��  � , � � � � ��
� x �

�
, %�� q

� � � � � � � 
 i � , � ��� ��� (� , � ��� � ��
�� � � � � � � � 
 i � , � � � ���  � , � � � � � � "�� T�� � � � 
E< (3.3.26)
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Calling ��5�� � 
 the : -th term in the sum that constitutes � � � 
 and using �C. � ,we
obtain for every : ��� �&<&<&< � �

	 ��5 � � 
�	/} �
, %�� q

� 	 i � , � ��� 	 ��	  � , � ��� 	 � 	 �  5 , � 5 � 	 � 	 i � , � � � 	 ��	  � , � � � 	 � }
} � � � �

�
, %�� q �

� T � � � � � 
 � � � } � � � � � � � �?kml # ( � T � � � � � 0 
 � <
Therefore 	 � � � 
�	1} ��	 ��5 � � 
�	 � � � � � � � � � �?kml # ( � T � � � � � 0 
 � (3.3.27)

so that with the hypothesis on �

	 � "����AT���� ��
�	 � 	 � "�� T	� � � � 
�	 � 	 � "�� T;	�� 	 � � � 
�	 � � n
� � � �

Observe that from equation (3.3.26) and inequality (3.3.27) we also get

	 � "�� ��' � ���=T � 
�	1} 	 � "���' � 	 ��� � � � � � � �Ekml # ( � ' � � � � T � � 0 � (3.3.28)

for every ��Z � matrices ' � and T � .
We are now ready to state the following

Proposition 3.3.1. Consider ' �cT � � as defined in (3.3.22) with ' �!T���� � for
� . �^. � , ��� � � 	 � � � as defined in (3.3.24) and assume

�f} k���� � � � � � 	 
 � � � ��� � �� � � � 	-,
� � � � � ��
�� 
 	 � 	-, < (3.3.29)

Then the eigenvalues of ' � * 
 are � � purely imaginary analytic functions , with

IKJ $�S% � �
�

	 �� � * 
 � � � * 
�	1}��
	-, � � � 
�� � �fk���� ( � � � � 	 
 � � � ��� � �� 0 � 	-, � � (3.3.30)

Proof First of all, from classical arguments about symplectic quadratic forms
of Hamiltonian, we can infer that the symmetric matrix ' �

�
' ) 	-, has an ellip-

tic equilibrium point at the origin or equivalently possesses all purely imaginary
eigenvalues � � ��
5 for : � � �&<&<&< � � . What follows is the proof of estimate (3.3.30),
that is

��
5 is � � � 
 close to �
5 for every : � � �&<&<&< � � . Let � � �&<&<&< � 	-, be the eigen-
values of T , i.e.,

� � � * 
 �
�� 	 � � � � * 
 if ��}�� } �
� � � � � , � * 
 if � � ��}��C}�� �
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as it can be easily seen by definition of T � diag �A� �c� 
 ) 	-, . Consider the real-
analytic function

� � * � � � � 
 �
� "�� ��' � * 
 � � �(	-, 
 � � "�� �AT�� * 
 ��� � � * 
 � � �(	-, 
4<

Observe that � � * �
� � � � � * 
 
 �

� "����AT�� * 
 � � � � * 
 � 	-, 
 � � and

�
� � � � * �

� � � � � * 
 
 �
�
� �
				 � x ���

	-,
5 x � ��� � * 
 � �15�� * 
 
 �

�

	-,
5 x � s 5 �x � ��� � � * 
 � �15 � * 
 


�
�
�

for every : � � �&<&<&< � � and * �+T �
� in view of (3.2.14). Therefore for every fixed � ,

it is possible to apply the Implicit Function Theorem in order to find two positive
numbers � � ��� and a real-analytic function

�� � � � * � � 
��+T �
� Z ( 	 �r	/. � � 0 � � � � �ED ( 	 � � � � 	1. � 0 � � � �

such that � � * � � �
�� � � * � � 
 
 �

�
for every � * � � 
f�

� � . We now proceed as already
done previously to determine possible values of � � and � with the aim to prove
that � can be taken of order � obtain the statement. Let

� � * 
 � � �� � � � * � � � � � � * 
 
 � �
�
�

	-,
5 x � s 5 �x � ��� � � * 
 � �15 � * 
 
 �

�
(3.3.31)

in view of (3.2.14) it results 	 � � � * 
 � �15�� * 
�	 � �\�
�

for every : �� � and * ��T �
�

which leads to IKJ $�S% � �
�

	 � � * 
�	6} �
� � 	-, <

Furthermore the definition of � and inequality (3.3.28) applied with ' � �#T �
� � � 	-, and T � �	� give

	 � � * � � � �
� 
�	�} 	 � "�� �AT � � � � 	-, 
�	 ��� � � � 
�� � � � 	-, � � kml # ( � T � � � � 	-, � � � � � 0 	-,

} � � � � 
�� � � � 	-, � � kml # ( � � 	(� � � 0 	-,
for every � � � * 
��

� � , since

� 	 � kml #5 x � s � � � s 	-, IKJ $�S% � �
�

	 � � � * 
�	S<
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Therefore the inequality IKJ $ � � 	 � � * � � � �
� 
�	1} �	 � 	 � 	 � � can be satisfied by taking

�m� � � � � 
�� � 	-, � �fkml # ( � � 	(� � � 0 	-, � � � 	-, �
which proves, for sufficiently small � � to be next determined, the estimate in
(3.3.30).

The second inequality to met is

IKJ $� � _�� �
				 � � � � * 


�
� � � � * � � � � 


				 } �� < (3.3.32)

we start observing that by the formula in (3.3.26) we have � � * � � � � 
 �
� "����AT �

� � 	-, 
 � � � � �ci � 5 � * 
 �  � 5 � * 
 
 , therefore

�
� � � � * � � � � 
 �

�
� �
� "�� �AT � � �(	-, 
 � �

� �
	-,
5 x � ��� � �15 
 �

	-,�
� x �


5 �x � ��� � �15 


and it follows

				 � � � � * 

�
� � � � * � � � � 


				 �
					 � �


5 �x � ��� � � * 
 � �15 � * 
 
 �

�
	-,�
� x �


5 �x � ��� � �15 


					 �

�

					 � �

5 �x � � � � �15

� � � �15 � � �
� �x � 5 �x � ��� � � �15 
 � �  5 �x � ��� � �15 


					 �

�

					 � �

5 �x � � � � �15

� � � �15 � � �
� �x � 5 �x � s � � � � �15

� � � �15 �
� � � � �
� � � � � �

					 < (3.3.33)

Define now

b�5�� * 
 �
� � * 
 � � � � * 
� � � * 
 � �15�� * 


and observe that from (3.2.14), definition of
� � , definition of � and condition

(3.3.29) it results

	 b�5 � * 
�	1}
�
�
� � � � 
�� � � � 
 � 	-, kml # ( � � 	 � � � 0 	-, � � 	-, �^} �

for any * �+T �
� ; then


5 �x � � � � �15

� � � �15 � � 5 �x � � � � � � � � � � �15
� � � �15 � � 5 �x � � � � b�5 
 ��� � � �Ab�5 
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with 	 � �Ab�5 
�	1}�� � � � � ��
�� � ��
�	 b�5�	1} � � � � ��
�� �
�

and the following estimate holds for every
� �
���

					

5 �x � s � � � � �15

� � � �15 �
					 �

					

5 �x � s � � � � b�5 


					 }

5 �x � s � � � ��	 b�5�	 


} � �	� � � � � 
��?	 b�5�	/}�� � � � ��
�� <
We now come back to (3.3.33) and obtain

					 � �

5 �x � � � � �15

� � � �15 � � �
� �x � 5 �x � s � � � � �15

� � � �15 �
� � � � �
� � � � � �

					 }
} 	 � �Ab�5 
�	 � �

� �x � 5 �x � s � 				 � � �15
� � � �15

				
				
� � � �
� � � � �

				 }
}�� � � � ��
�� �

�
�	� � � � ��
�� �

� �x � 				 � � � �
� � � � �

				 }
}�� � � � ��
�� �

�
�	� � � � ��
�� � � � � ��
 �

�
� � � � 
�� �

�

so that estimate (3.3.32) holds by means of the definition of � and hypothesis
(3.3.29) �

This easy corollary runs as a consequence:

Corollary 3.3.1. The eigenvalues of
�
'*) 	-, �!T	��� � (see (3.3.22)) verify

��� ��S% � ��
5�� * 
 � ��� ��S% � �
�

	 ��
5�� * 
�	 �
�

� � � � (3.3.34)

k����5 
 �x 5 w ��� ��S% � �
�
	 ��
5 
 � * 
 �

��
5 w � * 
�	 �
�

� � � > (3.3.35)

under hypothesis (3.3.29) on � .

Proof The first inequality is given by

��� ��S% � �
�
	 ��
5�� * 
�	 � ��� ��S% � �

�
	 �
5�� * 
�	 �#IKJ $�S% � �

�

	 ��
5�� * 
 � �
5�� * 
�	 �
� � � � � � 
�� � 	-, � �fk���� ( � � � � 	 
 � � � ��� � �� 0 � 	-, � � � � � � � � � �
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having used (3.2.14), (3.3.29) and (3.3.30). For what concerns the second prop-
erty, let : � �� : 	 then, using the same inequalities we just referred to, it results

��� ��S% � �
�
	 ��
5 
 � * 
 �

��
5 w � * 
�	 � ��� ��S% � �
�

� 	 �
5 
 � * 
 � �
5 w � * 
�	 � 	
��
5 
 � * 
 � �
5 
 � * 
�	 �

� 	 ��
5 w � * 
 � �
5 w � * 
�	 ! � � � � kml #5 x � s � � � s 	-, IKJ $�S% � �
�

	 ��
5 � * 
 � �
5�� * 
�	 �
� � ��� � � 
�� � 	-,vO � � �fk���� ( � � � � 	 
 � � � ��� � �� 0 	-, � � � ��� � � � � � �

Now, as already observed several times before, we may consider the quadratic
form associated to the matrix

�
' to be definite positive (up to establishing every

result for �
�
' and then change the sign). Therefore, we can now perform the

symplectic diagonalization of the matrix
�
' , i.e., the quadratic part of Hamiltonian�� in (3.3.17), through the following well-known classical result by K. Weierstraß

Proposition 3.3.2 (Weierstraß Diagonalization). Let
�� 	 be a real-analytic func-

tion on � 	 (see (3.3.16)) in the form

�� 	�� * � � � 
 
 � �� � � � � 
 
 � �' � * 
 � � � 
 
 �
where

�
' � * 
 is a � �[Z�� � symmetric and positive definite matrix for every * �+T �

� ,
then there exists a real-analytic and linear symplectic transformation

� �� � � �� � �* � �� � �
�
 � �  � � Z+T �
� Z3g � 


� � � � � �ED �L� � * � � � 
 
���� 	 (3.3.36)

such that �* � * and

�� 	 � � �� � �
� 	�� �* � �� � �
�
 � ��

,�
5 x �

��
5�� �* 

�
�� 	5 � �
 	5 � (3.3.37)

where
�� � �&<&<&< � ���, are uniquely determined by

�� 	 ; indeed � � �� � �&<&<&< ��� � ���, are the
� � eigenvalues of the matrix

�
'*) 	-, .

With this results we obtain that the Hamiltonian function � 	� in (3.3.15) can
be transformed into an Hamiltonian

� �� � �� � �* � �� � �
�
 � � 	� � � �� � �� � �* � �� � �
 
 � � � �* 
 ��� �� � � �* 
 �
� �

�
,�
5 x �

��
5�� �* 

�
�� 	5 � �
 	5 � ��� �� � � �* � �� � �
�
 ��� � 
 �� � � �� � �* � �� � �
�
 (3.3.38)
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where, in view of (3.3.20) and (3.3.21), �
� � � �� � � � �� verifies

	 �� ��� �* � �� � �
 
�	 � � }�� ���� (3.3.39)

IKJ $��S% � �
�

	 �� ��� �* � �� � �
 
�	1}  �
� �� �

�
����	 � �� � �
 
�	 � 9 � �� � �
 
��+g � 


� (3.3.40)

(see (3.3.19) for
�

��� ) and �� � � �� � � �� is bounded by

	 �� �`	 � � } � � 
 < (3.3.41)

3.4 Birkhoff’s normal form

Now, we want now to put the real-analytic Hamiltonian function �
� � appearing

(3.3.38) into Birkhoff’s normal form up to any chosen order � 	 � � . More pre-
cisely we aim to find a real-analytic transformation �

�
� such that �

� � � � � � is an even
polynomial of degree � � w	 � in the new elliptic variables plus a remainder of order
greater than � 	 . Here is a preliminary lemma that proves how the first Birkhoff’s
invariant of �

� � are non-resonant up to order � 	 for sufficiently small � :
Lemma 3.4.1. Let �

�� � � �* 
 �&<&<&< ���
���, � �* 
 the eigenvalues of

�
' � �* 
 ) 	-, for �* � T �

�

as found in proposition 3.3.1, we define the real-analytic function
�� � �* 
 �

� �� � � �* 
 �
��!	�� �* 
 �&<&<&< �

���, � �* 
 ! > (3.4.1)

if we assume

�^} k���� � � � � � 	 
 � � � ��� � �� � � � 	-, �
� 	-, � � � � ��
�� 	 �*	

(3.4.2)

then
�� is non-resonant of order � 	 and in particular it results

	 �� � �* 
  � 	 �
�

� 9 � �+� 	-, with
� .�	 � 	 � } �*	 (3.4.3)

and for all �* in T �
� .

Proof The proof runs as a consequence of the following chain of inequalities
that hold for any � in � 	-, and �* in T �

� in view of (3.2.14), (3.3.30) and hypothesis
(3.4.2):

	 �� � �* 
  � 	 � 	 � � �* 
  � 	�� 	
�� � �* 
 � � � �* 
  � 	 �

�

� � 	
�� � �* 
 � � � �* 
�	 	 � 	 	

� � � � � � � 	-, � � � 
��=k���� � � � � 	 
 � � � � � � �� � � � 	-, � �r	 � 	 � �
� � � �

�

� � ��� ��
 	 �*	
	 � 	 � � � � � � � � � � �
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We now provide a general formulation of Birkhoff’s normal form theorem:

Theorem 3.4.1. Let � be a real-analytic function on g � � ��� 	-, of the form

� � � 
 �
,�
5 x �

�
5
�
� � 	5 ��� 	5 � � � � � 
 (3.4.4)

near the elliptic equilibrium point
�
�
�
, where

�
� ��� � �&<&<&< ��� , ���+� �&<&<&< ��� ,�
 , with	 � � � 
�	6} �!�`	 � 	 � for all

� �+g 	-,� � for some �!�f� � . Let � be such that

IKJ $� %�� �
	 � � � 
�	�} � 	 � � � � � (3.4.5)

for every �-} � � . If we assume that the linear invariants � � �A� � �&<&<&< �c��, 
 are
non resonant of order & , that is

�u� � � � ��bm� � 9;: �3� , with
� .�	 : 	 � } & � (3.4.6)

for some b!} � , then there exist numbers
� . � � . � } � � , � � � � and an

analytic symplectic diffeomorphism

�;� � � � � � 
 
��+g{��� �ED �
� ��� ��� 
��+g{� � (3.4.7)

leaving the origin and the quadratic part of � invariant (i.e., � � � 
 � � � � �c	 � 	 	 
 ),
such that

� � � � � ��� � �&<&<&< � � , 
 ��� � � � 
 (3.4.8)

where

� �
is a polynomial of degree � �	 � in the variables � � ��� � �&<&<&< � � ,�
 , with

�=5 � ��
� � 	5 � 
 	5 � (3.4.9)

for all : ��� �&<&<&< � � , having the form

� ��� 
 � �u� � � � � �� ��� ��� � � ���� (3.4.10)

for some ��Z � matrix � ;

� 	 � � 	1} � � 	 � � � 
 
�	 � O � .
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In addition the polynomial
�

is uniquely determined by � and does not depend on
the choice of � . From this we infer that the coefficients of

�
are local symplectic

invariants of � usually called Birkhoff invariants.
Furthermore � � and � can be determined as follows:

�
�
� � � with

� � � �
� � � � & � ��
 ,

� b � !

w

(3.4.11)

� � �
� �� � �

� � 	 � � (3.4.12)

Proof The proof we provide here follows [Zeh94] for what concerns the main
idea and the algebraic part (existence and of � ) and consists of an additional an-
alytic part for the determination of � and � � (the radii of the complex domains on
which � can be well defined). We proceed with an iterative scheme and assume
that � is already in normal form up to order � � � , for some � � � , that is

� � � 	 � � � ���� � � G�� � � � G ����
where �,5 is an homogeneous polynomial of order : . We look for an analytic
symplectic map � , with � � � 
 � � and � � � � 
 � id that puts � into normal form
up to order � . Let � be an homogeneous polynomial (to be determined later) of
degree � � � , we take

� � � 
 � " #%$
� � ,Q	 � x � (3.4.13)

as the � -time map of the Hamiltonian vector field
���

; in other words, let � �-� > � 
 �� � � � � ��� 
 the solution of the Cauchy’s problem�� 	 �
� �-� 
 � ) � � ��� �-� 
 


� � � 
 � � ��g{��� (3.4.14)

we have � � � 
 � � � � > � 
 . As it can be immediately seen � � � 
 is a symplectic trans-
formation because it belongs to the flow of an Hamiltonian vector field, � � � 
 � �
and � � � � 
 � id since � � � 
 � � � ) � � � � 
 � �� . By Taylor’s expansion of
� � �%" #%$ ��� in � at � � � we obtain

� � � � � � " #%$
� � ,P	 � x � � � � ( � � � 0 � (6( � � � 0 � � 0 �� �
� � 	 ���� � G�� � �	� � G � ( � 	(� � 0 
 ���� (3.4.15)

where this last dots stand for terms of order higher than � and (  �& 0 denotes the
usual Poisson brackets. As it can be easily seen through the map � it is possi-
ble to modify � , and in particular � G , by terms of the form ( � 	(� � 0 that are
homogeneous polynomial of degree � .
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Let
� G the vector space of homogeneous polynomial of degree � and let �

the linear operator defined by

� � � G �ED � G
� e �ED ( � 	(� � 0 <

We first infer that
� � � 
 , the Kernel of � , and � � � 
 , the range of � , are supple-

mentary, i.e.,
� � � 
 � � � � 
 � � G and

� � � 
1B � � � 
 � ( � 0 ; in addition, if � } &
we can described

� � � 
 by:� � � 
 � ( � 0 for � �	��� �
� � � 
 � span ( �

�

� �
� 
� <&<&< � ���, 	�� , 5 x � ��5 � � 0 for � �	��� � ��< (3.4.16)

To prove this two sentences we start by diagonalizing � in
� G ; we make a change

of symplectic coordinates going to complex variables

� �
�� � ��� � � � 


� �
�� � ��� � � � 
E< (3.4.17)

In this new set of symplectic coordinates we have � 5 �15 � �
	 ��� 	5 � � 	5 
 , � 	 �� � � , 5 x � �
5�� � 5 �15 
 and it results

� � �
�

�
�


 � ( � 	(� �
�

�
� 0
�
� �

,�
5 x � �
5 ( � 5 �15 � �

�

�
� 0
�

�
� �

,�
5 x � �
5 � �15 � � � � 5 � � ����� �	� 
 � � 5 � ��5 � � ����� �	� � � 
 � �

�
� � �u� � � � � � �

�

�
�

(3.4.18)

for every � � � � � , , where � � 5 � �\� , is given by � � 5 �� �
� 5 � . By this last chain of

equalities we obtain that
� � � 
 consists of monomials �

� � � with
�
��� (since � is

non-resonant up to order � } & ) that is, in terms of the old symplectic variables
��� ��� 
 , what stated in (3.4.16) (with � as defined in (3.4.9)); this obviously proves
also the complementarity of

� � � 
 and � � � 
 .
Let

�
� � t � t O t � t x G � � � �

� � � � � G then we have the decomposition
�
�
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� � � ���
, with

� � � � � � 
 and
��� � � � � 
 given by

� �
�

�
t � t O t � t x G s ��x � � � � �

�

�
�

(3.4.19)

� �
�

�
t � t O t � t x G s � x �

� � � �
�

�
� <

With
�
� � G (with refer to equation (3.4.15)) we have

� G � ( � 	(� � 0 � � �G � � �G � ( � 	(� � 0
therefore we just need to solve

� �G � ( � 	(� � 0 � � (3.4.20)

since the elements of the Kernel of � have exactly the desired normal form (as
stated in (3.4.16)). Using equalities in (3.4.18) we obtain

( � 	(� � 0 � ( � 	(�
�

t � t O t � t x G
� � � � � � � 0 � �

t � t O t � t x G
� � � ( � 	(� �

�

�
� 0
�

�

�
t � t O t � t x G

� � � � � � � � � 
 � � � �
t � t O t � t x G

� � � �u� � � � � � �
�

�
�

�

�
� �

�
t � t O t � t x G s ��x � � � � �u� � � � � � �

�

�
� >

then, if
� �G � � ��� 
 �

�
t � t O t � t x G s ��x � i � � �

�

�
�

(3.4.21)

we can solve equation (3.4.20) by taking

� � � ��� 
 � �
t � t O t � t x G s ��x � �

� i � �
�u� � � � � � �

�

�
� < (3.4.22)

We have so proved the existence of a map � , defined by (3.4.13) and (3.4.22),
which puts � G into normal form; we shall call this map � G so that the wanted
final map � in (3.4.7) is

�;� � � � � � � � � � �� � � � < (3.4.23)

The proof of the uniqueness of the map � is quite simple and can be found in
[Zeh94].

68



We now focus our attention on one single step of the iteration process needed
to obtain � and on the analytic determination of the domain and codomain of � G .
For easier notations we put �

� 	�� � � � and define �
� G�� ��� as the Hamiltonian

function after � � � ( � � � ) steps, which means

�
� G�� ��� � � �

� G�� 	�� � � G�� � ���� � �
� 	�� � � G � � G�� � � �� � � �

is already in normal form up to order � � � . Let

� G � � � � � � 
 
��+g 	-,���� � � 
 �ED �
� ��� ��� 
��+g 	-,� � � � 
 > (3.4.24)

the map that casts �
� G�� ��� into �

� G � in normal form up to order � � � , we aim to
estimate � �G and � G and in particular their dependence on the coefficients of order
� of �

� G�� ��� and on b (as in (3.4.6)).
We have already shown before that � G can be obtain through the analytic so-

lution of Cauchy’s problem (3.4.14) at the time � � � , where now � � and � have
to be replaced respectively with � �G and

� G � � ��� 
�� �
�

t � t O t � t x G s ��x � �
� i � G�� ���� �

�u� � � � � � �
�

�
�

(3.4.25)

where � � ��� 
 have to be considered as functions of ��� ��� 
 (see (3.4.17)) and the
apex � � � on i � � indicates that �

� G�� ��� is taken into consideration. Now, to
obtain such a (relatively) wide time of existence for the solution � � � � � 
 as � � � ,
we are forced to make some strong requirements on � G and � �G in order to assure
that that the norm of � is sufficiently small as well as the domain of the initial
data g{���� . We search � � � � � 
 (solution of (3.4.14)) as the solution of a fixed point
problem. Let �F� ��� � g �� � � 
 �cg 	-,� � � � 
 � provided with 	 �
	�� � IKJ $ � %�� 

 � ��� 	 � �-� 
�	 ,
consider the map

��� � �ED �
� �-� 
 e �ED � � � �

� ) � � �G ��� ��&�
 
P� &
where � �G is a suitable homogeneous polynomial of degree � such that

� �G ��� ��� 
 � � G � � ��� ��� 
 ��� ��� ��� 
 
 (3.4.26)

We initially show that � is a contraction for sufficiently small � G : let � , � be in �
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and � as determined in (3.4.25)

	 � ��� 
 � � � � 
�	 �
				
� �

� )�� � � �G ��� ��&�
 
 � � � �G � � ��&�
 
���� &
				 }

} � �

� 	 )�� � � �G ��� ��&�
 
 � � � �G � � ��&�
 
�� 	 � &,} IKJ $
� 

 � ��� 	

� � �G ��� �-� 
 
 � � � �G � � �-� 
 
�	 }
} IKJ $

�
w ��

�

� ���
	 g 	 � �G 	 	 � � ��	

where g 	 � �G stands for the � �-Z � � matrix of the second derivatives of ���G and
this last equality holds because of Lagrange’s Theorem. In view of (3.4.26), to
estimate the norm of � �G on g 	-,	 � � it is sufficient to estimate the norm of � ong 	-,

	 � 	y� �

(according to (3.4.17)); then we obtain

IKJ $
�Ew �

�

	 � �G ��� ��� 
�	�} IKJ $
� w�� w �

�

	 � G � � ��� 
�	6}
�

t � t O t � t x G s ��x � 	 i � G�� ���� � 		 �u� � � � � ��	 � 
 � G 
 G }
} �b IKJ $t � t O t � t x G 	 i

� G �� � 	 � 
 � G 
 G �
t � t O t � t x G

�,} �b � G � GG
in view of the non-resonance condition (3.4.6) satisfied by � and having defined

� G � � 
 G � � � � ��
 	-, IKJ $t � t O t � t x G 	 i
� G�� ���� � 	S< (3.4.27)

By Cauchy’s theorem it results (always with refer to the original variables
�
�

��� ��� 
 )
	 � � �G 	 � �

} 	 � � �G 	 � w � �
} �� 	 � �G 	 	 � �

} �b � G � G�� �G
	 g 	 � �G 	 � �

} �� G 	
� � �G 	 � w � �

} �� 	G 	 � �G 	 	 � �
} � b � G � G�� 	G >

since we need 	 g 	 � �G 	 � �
. � to have a contraction it is sufficient to impose

� G }
� b � G �



�  w < (3.4.28)

Now we have to find sufficient conditions on the domain of the initial data
(i.e conditions on � �G ) under which � � � 
 is contained in � ; let ��� � , by the
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preceding estimates and using (3.4.28) it results

	 � ��� 
�	 �
				
� �

� �

� ) � � �G ��� ��&�
 

				 } � �G ��	 � � �G 	 � �

} � �G � 	 � �G 	 	 � �� G
} � �G � �b � G s , � G�� �G } � �G �

� G�
and therefore it is sufficient to take

� �G } �� � G < (3.4.29)

To conclude we need to show that the choices of � and � � in (3.4.11) and
(3.4.12) are possible. From what proved before, every single map � G for � �

�%�&<&<&< � & can be defined from g 	-,� � � 
 and have its image contained in g 	-,�� �
provided

this radii verify

�� G }
� b � G �



�  w

and � G O �M} �� �� G (3.4.30)

(that is inequality (3.4.28) and (3.4.29) with a simple change of notation) where
� G is defined in (3.4.27). If we set �

� 	�� � � � and define recursively �
� G � �

�
� G�� ��� � � G for � ���%�&<&<&< � & , assuming (3.4.30) and

�� G } � G (3.4.31)

it is easy to see that the maps � G for � ���%�&<&<&< � & can be well defined and com-
posed as in (3.4.23). Now by the assumptions made each function �

� G � is real-
analytic on g 	-,� � � 
 where we define

� �f� � � � < (3.4.32)

Furthermore we infer that �
� G � has its norm bounded by � � 	G O � (for � in

(3.4.5)) on g � � � 
 . Indeed, every Hamiltonian function �
� G � can be written in the

form �
� G � � � 
 � ��

� G � � � 
1 �  � for some appropriate ��
� G � real-analytic on g 	-,� � � 
 ;

moreover if �� is a real-analytic function on g�� � such that � � � 
 � �� � � 
  �  � , it
results ��

� G � � �� � � � � �� � � G�� � � � G and therefore

	 � � G � 	 � � � 
 } � 	G O � 	 ��
� G � 	 � � � 
 } � 	G O � 	 �� 	 � � } � 	G O � �

having used (3.4.5). Now, by Cauchy’s estimate, the definition of � G in (3.4.27)
and the preceding inequality we have

� G � 
 G � � � � ��
 	-, IKJ $t � t O t � t x G
�
� � � � 				 � G �

� G�� ��� � � � � 

� � � � � �

				 }
} 
 G � � � � ��
 	-, 	 � � G�� ��� 	 � �

� GG } 
 G � � � � ��
 	-, �
� G�� 	G <
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Thus, we may fulfill the first condition in (3.4.30) by requiring

�� G }
�

�



�  wG � G
 with
�

� G � � �
 	 � � � � ��
 	-, b � < (3.4.33)

Now our aim is to find a sequence of �� G and � G verifying�
��
�

	 �� G } ��



�  wG �� � G � �f� � � �
� G O �M} �� �� G � ���%�&<&<&< � &�< (3.4.34)

Observe that
�

� G } � since we assumed bm} � and � � � ; thus the first condition
in (3.4.34) as well as (3.4.31) can be satisfied for every � ���%�&<&<&< � & taking

�� G � �
�

w
�
 � G with

� � � � �
 	 � � & � ��
 	-, b � (3.4.35)

while the second condition in (3.4.34) can be met simply defining

� G O �M� � �� �� G � � 	�� G with
� 	f� � �

� � �

w
� <

This definitions permit the construction of the map � as described before and give
as a consequence the definitions of � � � �� � in (3.4.11) (with (3.4.32)) and

� � � � � � O � � � 	�� � � � � � 		 � � � � � � 		 � � (3.4.36)

as it is in (3.4.12) since
�
�
�

w
� 
 � � �

We now apply theorem 3.4.1 with

� � �* � �� � �
 
 � ��
,�
5 x �

��
5�� �* 

�
�� 	5 � �
 	5 � � �

� � � �* � �� � �
 
 (3.4.37)

where � �� � �
 
 play the role of ��� ��� 
 and �
� � of � , the * -variables are considered as

fixed parameters varying in T �
� , � � � � 
� , & � �*	 and b � � � in view of lemma

3.4.1. Then there exists a real-analytic symplectic transformation

�
�
� � � � � � ��� � � 
�� �  � � Z T �

� Z g{����� � � � �ED � �� � �* � �� � �
�
 � �  � � Z T �
� Z g � �� � � � ��

(3.4.38)
where ��� � � 
 are the variables � � � 
 
 in (3.4.7),

�
� �� and � � �* (i.e., if � ��� � �
 


is a generating function of the map � then � ��� � �
�
 � �  �* is a generating function
of �

�
� ), which puts � into Birkhoff’s normal form up to order � 	 (that is into the

form (3.4.10)).
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To determine the two radii of the elliptic variables’ domains we need to find a
suitable value for � in (3.4.5). We start estimating

	 � � �* � �� � �
 
�	 � � } ��� 	
� 	� 	 � � ���� �

in view of (3.3.39) (see (3.3.19) for
�

��� ). Now, since � possesses only terms of
order greater than two in � �� � �
�
 (see also (3.3.40)), we may write for any � �� � �
�
 ing � 
�

IKJ $�S% � �
�

	 � � �* � �� � �
 
�	1} ��
� x 	

			 �
�

� �, s �] � � � �* �
� � � 


			 �
�

� � 	 � �� � �
 
�	 � }

} ��
� x 	
�  
� � �

�

	 � � �* � �� � �
 
�	 � � 	 � � � 
 
�	 � � 	 	 � � � 
 
�	 	 }
} � 	� 	� � � � 	

� 	� 	 � � ���� � �� � x 	
�  
� �

�

	 � � � 
 
�	 	 } � � � 	 � �  ���� � � 	� � 	 � � � 
 
�	 	 >
since � 
� � � �� for any choice of � � � (see (3.4.11) where � plays the role of � ��
and remind b;} � ), we may consider ��} � 


� (instead of ��} � � � � 
� ) in (3.4.5),
so that we are allowed to take

�j� ��kml # � � � 	 � �  ���� � � 	� � � � < (3.4.39)

Then, equations (3.4.11) and (3.4.12) give the following suitable definitions of � ��
and � � in (3.4.38) (respectively � and � � in theorem (3.4.1))

� �� � � � � � and � � � �
� �� � �

� w � 	 � � (3.4.40)

with
� � � �

� � � � �*	 � ��
 ,
� � � !


w
(3.4.41)

in view of all the agreements previously made.
With the domains just defined, from theorem (3.4.1) we obtain that � can be

transformed into

� � � ��� � � 
�� � � � �
�
� � � � � ��� � � 
 � � � � ��� � � 
 ��� � w � � ��� � � 
 (3.4.42)

for any � � � � ��� � � 
 in � � (see (3.4.38)), where � is a polynomial of degree �\� �
� � w	 � in the variables � � ��� � �&<&<&< � � , 
 with

�=5 � �� ��� 	5 � � 	5 
 �
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depending also on � �+T �
� , in the form

� � � ��� � � 
 � �� � � 
S � � '
� 	�� � � 
 � ��� 
 	 � '

� ��� � � 
 � ��� 
 � �{�� � '
� � � � � 
 � ��� 


�

(3.4.43)

where '
� 5 � � � 
 is a real-analytic tensor of order : in � , , and � � w is a real-analytic

function on T �
� Z3g{��� verifying

IKJ $� % � �
�

	 � � w � � ��� � � 
�	6} � � w 	 ��� � � 
�	 � w O � � 9 ��� � � 
��+g{��� (3.4.44)

for some � � w � � . Then the new Hamiltonian function �
�
� � � � �� � �

�
� (see

(3.3.38) for � �� ) assumes for every � � � � ��� � � 
���� � the form

�
�
� � � � � ��� � � 
 � � � � 
 ��� �� ��� � 
 � �

�
,�
5 x �

��
5�� � 
 ��� 	5 � � 	5 
 ��� � � � ��� � � 
 �
� � � � w � � ��� � � 
 ��� � 
 �� � � � � � ��� � � 
 (3.4.45)

where �� � � �� � � �
�
� .

Now we aim to estimate the coefficients '
� 5 � of � and the constant � � ap-

pearing in (3.4.44). For the uniqueness of the Taylor coefficients, for every : �
� � �%�&<&<&< � � � w	 � we have

'
� 5 � � � 

� 5 �

� 	?5� � s 
 � � � � � � � � 

� � : 
�� �

� 	?5� � s 
 � � � � � � � � 

� � : 
��

where this last equality holds because of (3.4.44) and the definition of � . Therefore
Cauchy’s estimate and easy calculations, together with (3.3.39), yield

IKJ $� % � �
�

	 ' � 5 � � � 
�	1} � 5
� � : 
�� IKJ $� % � �

�

			 � 	?5� � s 
 � � � � � � � � 
 			 } � 5
� � � 
 	?5 	 � � � ��� � � 
�	

�

� }
} � 5
� � � 
 	?5 	 � � �* � �� � �
 
�	 � �� } � 5

� � � 
 	?5 	 � � �* � �� � �
�
�	 � � }
} � 5
� � � 
 	?5 �  � 	 � � 	 � 	� � � ���� � } � 5

� � � 
 	?5
� 	� � 	 (3.4.46)

where � is defined in (3.4.39). Moreover, from equations (3.4.42), (3.4.43) and
(3.4.44), we can write

� � w � � ��� � � 
 � ��
5 x � w O �

� 5 � � s 
 � � � � � � � � 
: � � ��� � � 
 5
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whence for every ��� � � 
 in g � �w it results

IKJ $� % � �
�

	 � � w � � ��� � � 
�	6} ��
5 x � w O �

			 � 5 � � s 
 � � � � � � � � 
 			 �
�: � 	 ��� � � 
�	 5 }

} 	 ��� � � 
�	 � w O � ��
5 x � w O �

	 � � � ��� � � 
�	 � �

� � � 
 5
� � �
� �
5 � � � w O ��� }

} 	 ��� � � 
�	 � w O �
� � � 
 � w O �

��
5 x � w O � 	 � � �* � �� � �
�
�	 � �� �

� 5 � � � w O ��� }

} 	 � � �* � �� � �
 
�	 � �

� � � 
 � w O � 	 ��� � � 
�	 � w O � } � � 	� � 	 	 ��� � � 
�	 � w O �
� � � 
 � w O �

so that we can take

� � w � � �
� � � 
 � w O �

� 	� � 	 (3.4.47)

in (3.4.44).

3.5 Symplectic polar coordinates

We aim now to find a symplectic transformation casting �
�
� in a simpler form than

(3.4.45) and that serves three main purposes:

� the new variables are action-angle variables for the integrable part of the
new Hamiltonian function;

� the domain of the new actions is a neighborhood of the origin in �  O ,
(which will allow a further rescaling);

� under some hypotheses we are going to make, the elliptic singularity in
every symplectic plane ���Q5 � �p5 
 can be avoided.

Let � � � � � � the center of the ball T �
� �!g  �

�
��� � 
 (see notation (3.2.19) and section

3.2) and take

� � � � � � � �&<&<&< ��� �5 
 � �L��O 
 , with 	 � � 	1} �
��� �
� � 
 	 (3.5.1)

� � � �� ���� �
� � 
 	
� 	 � � 	 � � < (3.5.2)
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Now we consider the transformation

�
�
� � � � � � � � ��� 
�� �  � � Z+g  �

�
Z � , � Z+g , � � � �w � � � � �ED � � � � � � � � � 
 ��� �

where � � � � � � with
� 58� � � � �5 � ��5 � � 	 � � � (3.5.3)

for every : � � �&<&<&< � � and g �� denotes for � � � and � � � � � the open ball of
radius � and center

�
in �
� , i.e.,

g �� � � ( �3��� � �4	 �
	/} � 0 < (3.5.4)

As it can be easily seen �
�
� is a symplectic map with generating function

� � � � � � � � � 
 � �  � � � � � 
 � � �  � �
,�
5 x � �

� 	5
�
� � ��� ��� � 5 
 >

from its image is effectively contained in � � (see (3.4.38)) since, from (3.5.1) and
(3.5.2)

	 � 5�	/} 		 � �5 � ��5 		 
w � 	 � } �
�
��� 	 � � 	

�
�
�

� �
� 	 � � 	 �

� �
� <

The transformed Hamiltonian function, real-analytic on � � , is given by

�
�
� � � � � � � ��� 
 � � �

�
� � �

�
� ��� � � � � � 
 ��� �� ��� � � � � 
 �

� �
�

,�
5 x �

��
5�� � � � � 
 � � �5 � � �5 
 ��� � � � � � � � ��� � � � 
 �

� � � � � w � � � � � � � ��� > � � 
 ��� � 
 �� � � � � � � � ��� 
 (3.5.5)

where, in view of � �c5 � � 	5 � � 	5 �N	 � 56	 	 � � �5 � ��5 , we have

� � � � � � � ��� � � � 
 � � � � �
�
� �

� 	 ww ��
5 x 	

'
� 5 � � � � � � 

� 5 � � � � � � 
 5 (3.5.6)

(see (3.4.43) for � � � ��� � � 
 ) and � � � w � � � � w � �
�
� verifies (in view of (3.4.44))

IKJ $� % � �
�

	 � � � w � � � � � � � ��� > � � 
�	/} IKJ $� % � �
�

	 � � w � � ��� � � 
�	6} � � w 	 ��� � � 
�	 � w O � }

} � � w 	 � � � � 	 	 w � 
w } � � w
� �
� �

	 w � 
w 	 � � 	 	 w � 
w > (3.5.7)
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moreover �� � � �� � � �
�
� is bounded on � � by � � 
 .

We now choose and fix � � in (3.5.1) in order to have

	 � � 	 �	� � (3.5.8)

and consider the homothety ' � on � � � �  � � Z+g  �
�
Z � , � Z3g , � � � �w given by

' ��� � � � � � � ��� 
 �ED � � � � � � � � � � 
E< (3.5.9)

It is well known that though ' � is not a symplectic change of coordinates (unless
� � � ), it is conformally symplectic, i.e., it preserves the structure of Hamilton’s
equations (and therefore of the solutions of the dynamical system considered), if
we take as new Hamiltonian function �

�

� � � �� �
�
� � ' � . Explicitly we have

�
�

� � � � � � � ��� 
 � �
� � �

� � ��� � 
 � �� ��� � � ��� � 
 � ��
�� � � � ��� � 
  � � � ��� � 
 �

� � � � � � ��� � ��� � ��� � 
 ��� � � w � � � ��� � � � � � � > � � 
 �
� � � 
 � � �� � � � � � � � ��� 
 (3.5.10)

where �� � � �� � � ' � and � � is defined in (3.5.6). Besides inequality in (3.5.7) and
the choice made in (3.5.8) give

	 � � � w � � � ��� � � � � � � > � � 
�	1} � �� w � 	 w � 
w (3.5.11)

for every � � � � ��� 
��+g  �
�
Z � , � Z+g , � , having defined

� �� w � ��� 	 w � 
w � � w < (3.5.12)

Therefore we can move � � � w to the perturbative part of �
�

� ; more precisely we
choose �*	 � � � � � � and define � as

� � � � � � � � �*	 � �
� < (3.5.13)

Then the perturbation of �
�

� can be written as

� � � � � � � � ��� > � 
 � � � � w � � � ��� � � � � � � > � � 
 ��� � �� � � � � � � � ��� 
 (3.5.14)

which can be estimated by

	 � �S	 � � } ��� �� w � � � O � 
 � � (3.5.15)

where � �� w is defined in (3.5.12) (together with (3.4.47), (3.3.19) and (3.3.24))
and � is defined in (3.2.21).
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Chapter 4

Rüßmann’s tori for properly
degenerate systems

4.1 Non-degeneration of the frequency application

Define
� � as the integrable part of the Hamiltonian function �

�

� in (3.5.10), i.e.,

� � � � � ��� � ��� � ��� � 
 � � � � � � � � ��� � 
 � �� � � � � ��� � 
 � (4.1.1)

� ��
,�
5 x �

��
5�� � � ��� � 
 � � �5 ��� ��5 
 � � � ��
5 x 	

'
� 5 � � � � ��� � 

� 5 � � � � ��� � 
 5

where we wrote the explicit expression for � � � � � � � � ��� � � � � 
 in (3.5.6) using
� � w	 � � � � � �	 � � � � � (in view of (3.5.13)); recall that in view of �^. � and the
choice of � � � � � , O 
 with 	 � � 	 �	� � , � � is real-analytic on g  �

�
Zfg , � where here and

from now on, we are coherent with notation in (3.5.4). Our aim is now to show
that the frequency application of the torus �  O ,� � s � � of

� � is non-degenerate in the
sense of Rüßmann under the hypothesis of non-degeneration of the “unperturbed
frequency application”

��� �m�+g � ��� � 
�BC�  �ED � � ��� 
 �c� � ��� 
 �&<&<&< �c��, ��� 
 
����  Z;� , (4.1.2)

where
� ��� 
^� � � � ��� 
 and g � ��� � 
 (denoted before with T � ) is the ball where we

localized initially in order to have conditions in (3.2.14) satisfied simultaneously
for any fixed � � � �*	 ��� .

We start trying to establish a relation between � , the frequency application of
the integrable part of the Hamiltonian ��� considered initially, and the frequency
application of

� � that we shall call
�� � ; we will show that

�� � is
� � � 
 -close to a
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slight modification of � that is still non-degenerate, obtaining as a consequence
the non-degeneration of

�� � for small enough � .
The frequency application of

� � is given by

�� � � � � � � � ��� � ��� � 
 � �
� �
� � � � � � � ��� � ��� � ��� � 
 � �� �

� � � � � ��� � ��� � ��� � 
 �
(4.1.3)

for any � � ��� 
 �+g  �
�
Z+g , � ; more explicitly we can compute

�
� � � � � � � � � � ��� � ��� � 
 � � � � � ��� � 
 ��� �

�� �
� � � � � ��� � 
 �

� ��
,�
5 x �
� ��
5
� � � � � ��� � 
 � � �5 ��� ��5 
 ��� � �

�
� � � � � ��� � ��� � ��� � 
 (4.1.4)

where � � � � � ��� � ��� � ��� � 
 � � � � �5 x 	 H � �	� � � � O � ���	 � � � � � ��� � 
 5 (see (3.5.6)), and

�
� �

� � � � � ��� � ��� � ��� � 
 � �
�
�� � � � ��� � 
 ��� � �

�
� � �

� � ��� � ��� � ��� � 
 (4.1.5)

with
�� � �

�� � �&<&<&< � ���,�
 as usual. We can immediately notice that � � � � is � � � 
 -
close to

� � � � � � � 
 , that is a non-degenerate function on g  �
�
B{�  since � � as been

chosen to coincide with � � and therefore

( � � 0 ��� � g  �
�
BC�  ! 
�g{����� � 
 BC�  <

Analogously � ��� � � � � � is � � � 
 -close to the non-degenerate function � � � � � � � 
 �
�A� � � � � � � � 
 �&<&<&< �c��, � � � � � � 
 
 since

�� is � � � 
 -close to � and � � � � is a function of
order 1 in � � � � � 
 (being � � a function of order 	 � 	 	 ). The following proposition
displays the details of this observations:

Proposition 4.1.1. Let

� � � � � ��� � ��� � ��� � 
 � �
� �
� � � � � � � � �&� ��� � ��� � 
 � � �

�
� �

� � � � � ��� � ��� � ��� � 
 �
(4.1.6)

then for any � � ��� 
 �+g  �
 � Z3g , �w it results

		 � � � � � ��� � ��� � ��� � 
 �
� � � � ��� � 
 		 } � ��< (4.1.7)

where

� � � T � s ,(' 	-,�
� �
�
� �
�� � (4.1.8)
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with � defined in (3.4.39), � � in (3.2.24),�
�����
����

	
T � s , � � � � � 
�� � � � � ��� � � ��
 , � � � � � �
' �U� � kml # � � � � 
� � � �

� � � ( � � �
 � � � 0 <

(4.1.9)

Proof First of all we translate the domain of � in (4.1.2) considering � �� � � 
 �
� � � � ��� � 
 given by

� �� � � �+g  �
�
� D � � � � � � � � 
 �c� � � � � � � � 
 �&<&<&< �c��, � � � � � � 
 
����  Z�� , (4.1.10)

real-analytic and non-degenerate on g  �
�

since � � � � � and �^.	� . Now we define

� � � � � ��� � ��� � ��� � 
 � �
� � � � � � � ��� � ��� � ��� � 
 � � � � � ��� � 


� 	 � � � ��� � ��� � ��� � 
 � �
�
�
� �

� � � � � ��� � ��� � ��� � 
 � � � � � ��� � 
 (4.1.11)

so that it results

� � � � � ��� � ��� � ��� � 
 � � �� � � 
 � � � � � � � ��� � ��� � ��� � 
 ��� 	 � � � ��� � ��� � ��� � 
 �
(4.1.12)

In view of (4.1.4) and the definition of � � we have

	 � � � � � ��� � ��� � ��� � 
�	/} �r	 � � �� ��� � � ��� � 
�	 �
� ��

,�
� x � 	 � �

��
5�� � � ��� � 
�	 		 � � �5 ��� ��5 
 		 ���r	 � � � � � � � ��� � ��� � ��� � 
�	S<
Then we can estimate

IKJ $� %��
�
�
 �
	 � � �� � � � � ��� � 
�	1} � �� IKJ $� %��

�
�
�

	 �� � � � � ��� � 
�	1} � �
�

����
in view of (3.3.19), while from (3.3.24), (3.5.8) and (3.5.1) we obtain for every �
in g , �

IKJ $� %��
�
�
 �
	 � � ��
5�� � � ��� � 
�	 		 � � �5 ��� ��5 
 		 } � �� IKJ $� %��

�
�
�

	 ��
5 � � � ��� � 
�	 � 	 � � 	 ���r	 � 	 � }

} � � � 	� � 	 � � 	1} � � � 	� �
� �
� � 
 	 }  � 	

� � � � � ! 	 } � 	 � 	�
�  � <
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Furthermore the definition of � � in (3.5.6) and the estimate of '
� 5 � in (3.4.46)

yield for every � in g , �

IKJ $� %��
�
�
 �
	 � � � � � � � ��� � ��� � ��� � 
�	/} � �� IKJ $� %��

�
�
�

	 � � � � � ��� � ��� � ��� � 
�	/}

} � �� IKJ $� %��
�
�
�

� � ��
5 x 	

		 '
� 5 � � � � ��� � 
 		
� 5

		 � � � � 		 5 } � ��
� � ��
5 x 	

� � 	� 	 � � � 
 	?5 � � 	 � � 	 

5 }

} � � � � � 
 � � 	� �
having used � 	 � � 	z} � � � 
 	 from (3.5.1). Putting together this three estimates we
obtain

IKJ $� %��
�
�
 �
	 � � � � ��� 
�	/} ��

�
� �
�

��� � � 	 � 	�
�  � � � � � � 
 �

� 	� � �^}
} ��
�
� �
�

��� � � � �
� � � 	� � �^} � � � � � 
 �� � � (4.1.13)

where we used �Y� � � 	 � � 	 and � � 	� � �  ����8� � � ���� from the definition
of � in (3.4.39) and � 	� } � .

Analogously from (4.1.5) and the definition of � 	 it results

	 � 	�� � � ��� � ��� � � � � 
�	/} 	 �� � � � ��� � 
 � � � � � ��� � 
�	 � �� 	 � � � � � � � ��� � ��� � ��� � 
�	 >
for what concerns the first term, from (3.3.30) we have

IKJ $� %��
�
�
�

	 �� � � � ��� � 
 � � � � � ��� � 
�	1}�� 	-, � � � 
�� � �fk���� ( � � � 	 
 � � � � � � �� � 0 � 	-, � �
(4.1.14)

while � � � � can be estimated for every � �+g  �
�

as follows:

�
� IKJ $� %�� � �w

		 � � � � � � � ��� � ��� � ��� � 
 		 } � � IKJ $� %�� � � 	 � � � � � ��� � ��� � ��� � 
�	/}

} � � IKJ $� %�� � �
� � ��
5 x 	

	 ' � 5 � � � � ��� � 
�	
� 5

		 � � � � 		 5 } � �
� � ��
5 x 	

� � 	� 	 � � 	 � � 	 
 5
� � � 
 	?5 }

} � � 	 � � 	 
 	
�

� � 	� 	 � � � 
 �
� � ��
5 x 	

� � 	 � � 	 
 5 � 	
� � � 
 	 � 5 � 	�� }

� � � � 
 � � 	� 	 � � � 
 � � (4.1.15)
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where we used once again � 	 � � 	 � �^}�� � � 
 	 .
Now we search for an easy expression as an upper bound for 	 � 	`	 . First of all

from the definitions of � in (3.4.39) and
�

��� in (3.3.19) we obtain

� �
 	 � ����� 	� �  	 � �, � 	

� � � � 	� ��� � �, � 	
� � � � 	� > (4.1.16)

thus, from the definition of '*� in (4.1.9), � � in (3.3.24) and � � � 	 , we obtain

� ' � � kml # ( � 	(� � � 0 < (4.1.17)

Therefore the second member in (4.1.14) can be estimated by

� � , � � � 
�� � �;kml # � � 	
�

� � �
� � 	-,

� �^}�� � , � � � 
�� � � � �
�
� 	-, ' 	-,� � ��<

For what concerns the last member in (4.1.15) we recall the definition of � � in
(3.4.40) and

�
in (3.4.41) and compute

� � 	� 	 � � � 
 � �
�  	
� 	�
� �
� � �

� � w � �
�

�  	
� 	� � � � � � �*	 � ��
 ,

� �
� � w � � �  �

�
� 	 � w � � �

} � � � � � �*	 � ��
 , � � � w � � � �
�
� 	 � w � � �� 	� <

Putting together this two last estimates with (4.1.14) and (4.1.15) and observing
that � � ,vO � } � � � � � �*	 � ��
�� ,

� � � w � � � (remind �*	 � � ), for any � � ��� 
 �\g  �
 � Z g , �w
we obtain

	 � 	�� � � ��� � ��� � ��� � 
�	/}�� � � 
�� � � � � � � �*	 � ��
 , � � � w � � � � �
�
� 	-, ' 	-,� �

� � � � � 
� 	�
� �
�
� 	 � w � ��� � �^} � � � 
�� � � � � � � �*	 � ��
 , � � � w � � ' 	-,�

� �
�
� �
�� 	� �^}

}�T ' 	-,�
� �
�
� �
�� 	� �

having used '*� � � , � 	� } � , the definition of � in (4.1.9) and taking

TN� � �� � � � 
�� � � � � ��� � � ��
 , � � � � � � � �� T � s , (4.1.18)
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in view of �*	 � � � � � from (3.4.42). Now, combining this last result with
(4.1.13) we have

IKJ $
�

�
�
 � _ �

�
�w 	 � �

� � ��� � ��� � ��� � 
�	/} IKJ $
�

�
�
 � _ �

�
�w
� 	 � � � � � ��� � ��� � ��� � 
�	 �

� 	 � 	�� � � ��� � ��� � ��� � 
�	 � } � � � � � � 
 �� � � T ' 	-,�
� �
�
� �
�� 	� � }

}�T ' 	-,� � � �
�
� � � � � � � �

�
�� 	� � }�T � s , ' 	-,�

� �
�
� �
�� �

since T � � � � � , ' � � � , �\} � and � � } k���� ( � � � � 	� 0 with � .	� �
We now cite a result by Rüßmann concerning the relation between non degen-

eracy and Taylor’s coefficients of a real-analytic function:

Proposition 4.1.2. Let �+�6TN�7��� �ED���G (where T is a domain) a real-analytic
function. If the Taylor series

� � * 
 �
�
5 % � q

� * � i 

5

: � �
� 5 � �Ai 


of � in some point i{� T contains � linearly independent coefficients, i.e., exist: � �&<&<&< � : G in �
� such that

� "���� � � 5 
 � �Ai 
 �&<&<&< � � � 5 � � �Ai 
	� �� � �
then � is non-degenerate. Conversely, if � is non-degenerate then in any point i �T there exists a set of � linearly independent coefficients (obviously depending
on i ).

We now use this proposition to prove that the non-degeneracy of � implies the
non-degeneracy of ��� for small enough �
Proposition 4.1.3. Assume � in (4.1.2) is non-degenerate in the sense of Rüß-
mann then there exist

�
�
� ��� � � � 
 � � and a � a ��� � � � 
 ����O such that if

�^} �

� � a � 
  O , � �  ! �  O , � d k���� � �
� � � � 	 �

�
� � �

 O , �
(4.1.19)

with
� � �  O , �A� � � � ��
��

then � � in (4.1.6) is non-degenerate.
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Proof Let � �� be the real-analytic and non-degenerate function for � in g  �
�

considered in (4.1.10), then from (4.1.12) we have

� � � � � � � � ��� � ��� � 
 ��� �� � � 
 � � � � � � � ��� � ��� � ��� � 
 ��� 	 � � � ��� � ��� � ��� � 
 �
with � � ��� 	 defined in (4.1.11) and verifying

	 � � � ��� 	 
�	1} � �
for � in (4.1.8) with (4.1.9). Now, from proposition 4.1.2 there exist � � � vectors: � ��� �&<&<&< � : �  O , � ���  such that

� "�� � � 5 � 
 �� � �� � � 
 �&<&<&< � � 5 �
� � � �� � �� � � 
 � �� �

and we may additionally assume without loss of generality

	 : � ��� 	 � } 	 : � 	�� 	 � }���Q} 	 : �  O , � 	 � < (4.1.20)

Recalling the definition of � �� , we define for � in g , �w the following matrices:

' � � � � 5 � 
 �� � � � � �(��� � ��� � 
 �&<&<&< � � 5 �
� � � �� � � � � �(��� � ��� � 
 �

T � � � � 5 � 
 �� � � � � 
 �&<&<&< � � 5 �
� � � �� � � � � 
 �

� � � �
� � � 5 � 
 �� � � � ��� 	 
 � � �(��� � ��� � 
 �&<&<&< � � 5 �

� � � �� � � � ��� 	 
 � � �(��� � ��� � 
 � <
From what initially observed, it results ' ��T � � � ; we may then apply lemma
3.3.3 obtaining 	 � "�� ' 	 � �	 	 � "�� T;	 �� � for small enough � , and as a consequence
the non-degeneration of ��� � � ��� 
 in view of proposition 4.1.2. By lemma 3.3.3 a
sufficient condition to impose on � is

�^} 	 � "�� T;	
�  O , �A� � � � ��
�� kml # ( � T � � � � � 0 � �  O , � < (4.1.21)

Observe now that each element i � � of the matrix T verifies, by Cauchy’s estimate
and (4.1.20),

	 i � � 	/}
 /t 
 t 
 � �� t 
 t 
 IKJ $� %��

�
�
�

	 � �� � � 
�	1}
 /t 
 t 
 	 ��	 � �� t 
 t 
 IKJ $� %��

�
�
�

� � � � 	 � � � 
�	6}
 /t 
 t 
 	 ��	 � �� t 
 t 
 ��� � � � 	 
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where �-� � : �  O , � (the multi-index with greatest norm), � �m� ��	 � 	 � and � 	 � �	 � 	 � . Furthermore we can estimate the norm of � � �  � � 
 observing that for every
� in g �w
	  � � 	/} � �

 /t 
 t 
 � �� t 
 t 
 IKJ $� %��
�
�
�

	 � � � � � ��� � ��� � ��� � 
 ��� 	 � � � ��� � ��� � ��� � 
�	/}  /t 
 t 
 � �� t 
 t 
 �
in view of (4.1.6), (4.1.11) and (4.1.12). From this two estimates and the definition
of
� � �

given in lemma 3.3.3, we obtain

� T � } IKJ $� s � x � s � � � s  O , 	 i �
� 	1}  /t 
 t 
 	 ��	 � �� t 
 t 
 ��� � � � 	 


� � � } IKJ $� s � x � s � � � s  O , 	  �
� 	/}  t 
 t 
 	 ��	 � �� t 
 t 
 �!<

The statement follows taking in (4.1.19)a ��� � � � 
 � � 		 : �  O , � 		 � (4.1.22)

� ��� � � � 
�� � 			 � "���� � 5 � 
 �� � � � � 
 �&<&<&< � � 5 �
� � � �� � � � � 
�� 			 (4.1.23)

and using (4.1.21) �
In view of this last result we prove, through an immediate corollary of propo-

sition 4.1.2, the non-degeneracy of
�� � in (4.1.3):

Lemma 4.1.1. Let
�
� � � � � � 	 
��N� �Z � , a non-degenerate function on a

domain TN�7� MZ�� , , then for any fixed � in � � (
� 0 , � � � � � � 	 
 is non-degenerate

on T .

Proof Let i be any chosen point in T , since
�

is non-degenerate, by proposi-
tion 4.1.2 there exist : � � : 	(�&<&<&< � :  O , ���  O , such that� "���� � � 5 
 � �Ai 
 �&<&<&< � � � 5

� � � � �Ai 
	� �� �
that is

� "�� ���
� � 5 
 �� � � 5 
 �	

...
...

� � 5
� � � �� � � 5

� � � �	

���� �
�
� <

Now observe that for every �^��� it results

� "�� ���
� � 5 
 �� � �

� 5 
 �	
...

...
� � 5

� � � �� � �
� 5
� � � �	

� �� � � , � "�� ���
� � 5 
 �� � � 5 
 �	

...
...

� � 5
� � � �� � � 5

� � � �	

� ��
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which proves, together with proposition 4.1.2 and � �� � the statement �
Proposition 4.1.4. Under condition (4.1.19) the frequency application

�� � (see
(4.1.3)) of the integrable part of �

�

� (that is
� � in (4.1.1)) is non-degenerate in the

sense of Rüßmann.

Proof The proof is immediately obtained by proposition 4.1.3, which gives
the non degeneracy of ��� , and lemma 4.1.1 applied with

� 5 � � � 5 �� , for : � � � � ,
together with definitions (4.1.6) and (4.1.3) �

4.2 Index and amount of non-degeneracy

In the preceding section we proved the non-degeneracy of
�� � (defined in (4.1.6)

with
� � in (4.1.1)), i.e., the frequency application of the integrable part of the

Hamiltonian function �
�

� . This means that �
�

� meets the main hypothesis in the-
orem 2.3.1 but since

�� � depends on � (for instance it possesses � components of
order � in � ), a direct application of Rüßmann’s theorem for maximal tori is not
possible unless the perturbative part of �

�

� is of a certain higher order in � than
simply � . Actually, we showed that the perturbation of �

�

� (see (3.5.10)) can be
moved to order � �	� in � , where � can be chosen arbitrarily and fixed at the be-
ginning of the process that conjugates the initial Hamiltonian � � to �

�

� . Therefore
we are now concerned in establishing a suitable value for � so that it is possible
to apply Rüßmann’s theorem to �

�

� with * � � � ��� 
 and ��� � � � � 
 , finding maxi-
mal tori for � � as a consequence. We shall see how each quantity involved in the
estimate of � � , the size of the perturbation in Rüßmann’s theorem for Lagrangian
tori, changes order in � when

�� � is considered instead of a frequency application
independent from � so to be able to determine a priori a lower bound to impose
on � (or equivalently on � � and �*	 ). In this section we focus on the index and
amount of non-degeneracy.

Let � 
���� be a compact set, T � ��� a domain containing � and � � * �T �ED �
G a real-analytic and non-degenerate function. Moreover, let � � (  ���� �4	 6	 	 ��� 0 and
� �  � * 
�� �!Z+T �EDU� the following function

� �  � * 
 � 	 �  � � ��	
	 < (4.2.1)

We observe that
� �  � * 
 is a function in the form considered in lemma 2.2.1 (equa-

tion (2.2.1)) with � � � , � � � � 	 � � and � � � � 	 � � , with the only differ-
ence that the parameters  � �  	 are not independently varying in �\Z �!�7���{Z����
but have been chosen to coincide; however this will not influence our purposes as
it might be easily noticed. If we define now numbers

� � ���=����� 
�� � k�����S%��Es t � t w x � kml #�K�/dv� � 	 g
d � �  � * 
�	 (4.2.2)
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verifying obviously
� � ��� � ��� 
�} � � ��� � ��� 
�}�<&<&< � (4.2.3)

we stated in lemma 2.2.1 (actually for a much wider class of functions) that there
exists a first integer � � ��� ��� ����� 
 such that

� � ���=� ��� ����� 
 ��� 
 � � > (4.2.4)

we called this integer the index of non-degeneracy of � with respect to � while
� � ���=� ��� ����� 
 ��� 
 , denoted with an abuse of notation � � ����� 
 , is the amount of
non-degeneracy of � with respect to � .

We now consider the real-analytic application � in (4.1.2) and fix a compact
and convex set � 
 �  with positive � -dimensional Lebesgue measure and a
number � � � � � � ��
 such that

� � � � �f� � and � ��� � 
�g  �
 � ��� � 
 (4.2.5)

(which implies ���/@ � � 
!g  �
 � ��� � 
�B[�  ). Then we define

�� � � ����� � � 
 � index of non-degeneracy of � with respect to �
�� � � ��� � � 
 � amount of non-degeneracy of � with respect to �7<

In this section our aim is to see how the index and amount of non-degeneracy of�� � are related to �� and �� , with respect to suitable compact sets in their domains of
definition. For further details on the index and amount of non-degeneracy refer to
lemma C.1.2, definition C.1.3 and proposition C.1.2, where in this last issue only
the condition with : � � has to be considered since we take

�
� � and ' � �

establishing the correspondence

� ���
� ����
�N	 � 	 � 		 	 �� � � ��	 	 <

Let � �� � � 
 � � � � � ��� � 
 as in (4.1.10) (we remind � � � � � and �f.	� ) and

� �f� � � � ���  � � � � � � � � (4.2.6)

it results

k����� %�� � kml #�K�/dv�
��
				
� d
� �
		 �  � � �� � � 
 � 		 	

				 ��k����� %�� � kml #�K�/dv�
��
				
� d
� � 	 �  � � � � � ��� � 
 ��	 	

				 �

� k����� %�� � kml #�K�/dv�
�� �
d 					 �

d 	 �  � � � � � ��� � 
 ��	 	
� �

					 � k����� % � kml #�K�/dv�
�� �
d 					 �

d 	 �  � � � � 
 ��	 	
� �

					 �

� � �� k����� % � kml #�K�/dv�
��
					
� d 	 �  � � � � 
 ��	 	

� �
					 � � �� ��-� �
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where we used the convexity of � � (deriving from the convexity of � ) and
� ��� �

(since � �f� � ) to obtain � ��� � implies � � ��� � � � . Therefore, denoting

� �� �!� ����� �� ��� � 
 � the index of non-degeneracy of � �� with respect to � �
we have just proved

� �� } �� and � ��� �� � �� � � 
 � � �� �� (4.2.7)

according to the definition in (4.2.2).
Consider now ��� as in (4.1.6), with

� � in (4.1.1) and its derivatives computed
in (4.1.4) and (4.1.5). Let � � 
7� , be an arbitrarily chosen and fixed compact set
such that

� ��� � and � � 
�T , �
�
> (4.2.8)

then we define
��� ��� � Z�� � (4.2.9)

where � � is in (4.2.6) for � verifying (4.2.5). Notice that his compact set � has
nothing to do with the domain of the parameters  in the previously reminded
definition of index and amount of non-degeneracy (in fact, from now on we will
explicitly write the space of parameters each time they appear).

Now, we denote

� � �!� ����� � � � 
 � index of non-degeneracy of ��� with respect to �+<
and state a preliminary lemma:

Lemma 4.2.1. Let

T��L� 
 � �Ai � 
 � � � � � �L� 
 
 �y� � 
 s � � � s � � � � 
 O � w �
� � � 
 O � w � G

a tensor of order � in ��� 
 O � w defined for � in a compact subset � of ��� 
 Z+��� w
(for instance T is an � -th derivative of an � -times continuously differentiable
function from � to � ). Consider

T � �L� 
 � �Ai � 
 � � � � � �L� 
 
 �y� � 
 s � � � s � � � � 
 �
� �  � G

then 	 T��L� 
�	 � 	 T � �L� 
�	
for every � � � , where the norms of the tensors are the same defined in 0.1.4 for
the � -th derivatives of � -times continuously differentiable functions.

Proof Let �m����� 
 with 	 ��	 	 � � such that

	 T � �L� 
�	/� � kml #nc%
���
s t nvt w x � 	 T � �L� 
 �Ab G 
 	 �N	 T � �L� 
 � � G 
z	
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set �
� � ��� � �&<&<&< � � 
������ 
 Z���� w ; obviously 	 � 	 	 ��� therefore

	 T��L� 
�	/� � kml #nc%
�
q 
 � q w s t nvt w x � 	 T��L� 
 �Ab G 
z	 � 	 T��L� 
 � � G 
z	 �

�

					
�

�y� � 
 s � � � s � � � � 
 O � w
i � 
 � w�� � � � �

� � 
 � w � � � � �

					 �
					

�
�y� � 
 s � � � s � � � � 


i � 
 � w�� � � � �

� � 
 � w � � � � �

					 �

� 	 T � �L� 
 � � G 
z	 �N	 T � �L� 
�	
where we used � � � � � for any

� 5 � � � � � �
We are now ready to obtain the following result

Proposition 4.2.1. If we assume

�^} ��� � k����
� �
� ��� � � � 	 
 �

�
� � � �� ��� � (4.2.10)

then it results

� �
} �� and � ��� � � �� � � 
 � � �� ��
� < (4.2.11)

Proof By inequality in (4.1.7) we have � � ��� ��� � with

	 � � � � � � � ��� � ��� � 
�	/} �
for any � � ��� 
 �+g  �
 � Z3g , �w . Thus, for any

� } a } �� it results

				
� d
� �
		 �  � � � � � ��� � ��� � ��� � 
 � 		 	

				 � � d
					
� d 	 �  � � ��� � ��	 	

� �
					 �

� � d
					
� d 	 �  � � ��	 	
� � ��� �

d 	 �  � � � �  ��� ��	
� � ��� 	 �

d 	 �  ��� ��	 	
� �

					 �

� � d
					
� d 	 �  � � ��	 	
� �

					 � � �
dcO � kml #� � s � � %��

				
� d 	 �  � � � �  ��� ��	

� �
				 �

� � dcO 	 kml #� � s � � %��
					
� d 	 �  ��� ��	 	
� �

					

where the omitted arguments of � and � are � � ��� � � 
 and � � � � � � ��� � � � � 
 respec-
tively, and we agree to use this notation during this proof. Now using Cauchy’s
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estimate and the uniform estimates on the norms of � and � we obtain for any
8���  O , with 	 6	 	 ���

kml #� � s � � %��
				
� d 	 �  � � � �  ��� ��	

� �
				 }

a �� d � IKJ $� � � O � 
 � _ � 
 	 �  � � � �  ��� ��	6}
} a �� d � IKJ $� � O � 
 	 �m	 IKJ $� � � O � 
 � _ � 
 	 �C	1}

a �� d � ��� � � � 	 
 � } �� �� �� � ��� � � � 	 
 �
and analogously

kml #� � s � � %��
					
� d 	 �  ��� ��	 	
� �

					 }
a �� d � IKJ $� � � O � 
 � _ � 
 	 �  ��� ��	

	 } a �� d � IKJ $� � � O � 
 � _ � 
 	 �C	
	 } �� �� �� � � 	

where we have used
� } a } �� and � �4. � . Substituting this last two estimates

at the end of the first chain of inequalities and using hypothesis (4.2.10), it results
				
� d
� �
		 �  � � � � � � ��� � ��� � ��� � 
 � 		 	

				 � � d
					
� d 	 �  � � ��	 	
� �

					 �

� � � dcO � �� �� �� � ��� � � � 	 
 ��� � dcO 	 �� �� �� � � 	 � � d
					
� d 	 �  � � ��	 	
� �

					 �
� d ��
�

for any
� } a } �� , � � ��� 
 ��� and  ���  O , with 	 6	 	 ��� .

Therefore we obtain

k����� � s � � %�� kml #�K�/dv�
��
					
� d 	 �  � � � � � � ��� � ��� � ��� � 
 ��	 	

� �
					 �

�jk����� � s � � %�� kml #�K�/dv�
�� �
d � 					 � d 	 �  � � ��	 	� �

					 �
��
�
� �

� � �� � k����� %�� � kml #�K�/dv�
��
					
� d 	 �  � � ��	 	
� �

					 �
��
�
� � ���� ��

� � � (4.2.12)

for any ����  O , with 	 6	 	 � � . We now apply lemma 4.2.1 with � � � � ��� 
 ,
� � �N� � � 	 � � , � � a � � � � �&<&<&< � �� (in the case a � � there nothing to prove
since there are no derivatives) and

T d �
� d 	 �  � � � � � ��� 
 ��	 	

� � � � � � �  O , � d

T �d �
� d 	 �  � � � � � ��� 
 ��	 	

� � � � �  � d
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in order to obtain
					
� d 	 �  � � � � � ��� 
 ��	 	

� � � �
					 �

					
� d 	 �  � � � � � ��� 
 ��	 	

� �
					

for any
� } a } �� , � � ��� 
4� � and ��\�  O , with unitary Euclidean norm. This

inequality, together with (4.2.12), yields

k����� � s � � %�� kml #�K�/dv�
��
					
� d 	 �  � � � � � � ��� � ��� � ��� � 
 ��	 	

� � � �
					 �

� k����� � s � � %�� kml #�K�/dv�
��
					
� d 	 �  � � � � � � ��� � ��� � ��� � 
 ��	 	

� �
					 �

���� ��
� � �

which implies the statement �
Now recall that we defined (in equation (4.1.6))

� � �
� � � ���� � � � 	��� � �

� �
� � � � � � �

�
� �

� � � ���  Z�� , (4.2.13)

(where the argument of the functions involved is � � � � � � ��� � � � � 
 as usual) and
consider �� � � � �� � ���� �

�� � 	��� ! �
� �
� � � � � �� �

� � � (4.2.14)

the frequency application of the integrable part of �
�

� . We can trivially observe
that

�� � is obtain from ��� by rescaling its last � components by a factor �	 ; this fact
allows to formulate the following results

Proposition 4.2.2. Let ��� be the real-analytic function for � � ��� 
3� g  �
�
Z g , �w

considered before and define
�� � � the index of non-degeneracy of

�� � with respect to � > (4.2.15)

then, for any
� . �^.	� we have

�� �
} �� and � � �� � � �� � � 
 � ���� O 	 ��
 (4.2.16)

Proof Let  � � (� �  	 
 ��� �Z;� , with 	 6	 	 ��� define

� � � ��� � (� �  	 
 ��kml #�K�/dv�
��
					
� d 	 �  � � ���	 	
� � � �

					 �Ukml #�K�/dv�
��
							

� d 			 � (� � � � ���� � ���  	(� � � 	��� �
			
	

� � � �
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for � � ��� 
 �+g  �
�
Z+g , �w ; by definition of

�� � we obtain

� � � ��� � (� � ��  	 ! ��kml #�K�/dv�
��
							

� d 			 �  � �� � � � ��� 
 � 			 	
� � � �

							
<

Observe now that for any � � ��� �  � �  	 
 and � ��� the following equality holds

� � � ��� � � (� � �  	 
 � � 	 � � � ��� � (� �  	 
E< (4.2.17)

Set now for any given  � �  � �  	 
 with 	 6	 	 ���
����� �

�
	 (��	 		 � � 	� 	  	`	 		 � �

�
and

�(� � � (���� � � 	f� � �  	
� ���

so that it results

	 �(��	 		 ��	 � 	`	 		 �
�
	 (��	 	 � � 	� 	  	`	 	 � �-� 	� 
 � � � ��<

Then by the definition of � we obtain for any � � ��� 
 ���
kml #�K�/dv�

��
					
� d 	 �  � �� ���	 	
� � � �

					 � � � � ��� � (� � ��  	 ! � � � � ��� � ��� �(� � ��� � 	 
 �

� ��� � � � ��� ���(� ��� 	 
 � � 	� kml #�K�/dv�
��
					
� d 	 � � �(� ��� 	 
 � � ���	 	

� � � �
					 � � 	� � �� ��� � � �� O 	 ��
 � �

having used 	 � � � ��� 	 
�	 	 � � ; this proves (4.2.16).

4.3 Determination of
�

and sufficient conditions to
apply Rüßmann’s theorem

We now refer to the estimate of � � (the admissible size of the perturbation in Rüß-
mann theorem) given in section 2.4 and analyze each quantity involved, focusing
in particular on how they change order in � when �

�

� is considered. Our aim is to
apply the above mentioned estimate to the perturbative part of �

�

� , that is � � as it
appears in (3.5.14). Recall that we estimated

	 � �S	 � � } ��� �� w � � � O � 
 � � (4.3.1)
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where
� � � �  � � Z+g  �

�
Z � , � Z3g , � � � �w

with � defined in (3.5.2), � �� w in (3.5.12) (together with (3.4.47), (3.3.19) and
(3.3.24)), � in (3.2.21), � � � is an arbitrarily fixed integer and

� . ��. � .
Thus, understand how � � depends on � will make possible a suitable choice of �
imposing

��� �� w � � � O � 
 � � } �� � � < (4.3.2)

We take into consideration the Hamiltonian function �
�

� (which plays the role
of � in theorem 2.3.1) real-analytic for � � � � � � ��� 
�� � �Z+T  �

�
Z � , Z3T ,� , where

T �� � �!g �� B[� � � ( �3��� � �,	 �
	1. � 0 (4.3.3)

(see notation (3.5.4)), having holomorphic expansion on � � . As a consequence,
with refer to the statement of theorem 2.3.1, we have the following correspon-
dences

�z� � � �Z � , � T �!T  �
�
Z+T ,� � g � � �

�
� � � � � � � � ��� 
�� * � �

� � � 
 �

� � � �
� � � � �^<
(4.3.4)

4.3.1 Choice of the initial compact set

First of all, we fix
� � � �!T , �

�
� � �+��� , �4	 �
	1. � � (4.3.5)

accordingly to condition 4.2.8. Now, we need to fix a compact set � 
!T  �
�
Z�T ,� ,

with positive �A� � � 
 -dimensional Lebesgue measure, and a number ��� � � � ��

satisfying (2.3.3). We take � ��� , where

��� ��� � Z�� �

is taken as in definition (4.2.9), with � � verifying

� � ��� � 
�g  �
 � (4.3.6)

(see (4.2.6) and (4.2.5)) and the arbitrary choice of ��� is replaced by the above
definition. Then a suitable value for � could be

�+� � �
� � < (4.3.7)
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In fact, assuming �^} ��� � (which is implied for sufficiently small �� by inequality
(4.4.8)), it results

� ����� � � � � Z�� � 
 �����+��� � � ����� 
 Z � � � ����� 
 �
�
� � � � �� ! Z � � � � �� ! 
�� � � ��� � 
 Z � � � � �� ! 



�g  �
 � Z+g , �w < (4.3.8)

Moreover, to completely satisfy inclusion (2.3.3), we need to verify �  O , � � �
�  � � Z�� , � < For this purpose we assume � }�� and observe that by (3.5.1) and

(3.5.8) we have � � } �� � � � 
 	 which trivially implies �+} �� � � � � 
 	 ; thus, using the
definition of � in (3.5.2) with (3.5.8) and �^} �,} � ���� � , we obtain

�
� � } �� ���� �{} �� ���� �

� � 
 	
� � �

�� ���� � �
� � 
 	
� 	 � � 	 � � <

Therefore we can conclude

�  O , � �+�����  � � 
QZ ��� , � � 
 � � �  � �
� � ! Z � � , � �

� � ! ���  �
 � Z � , � (4.3.9)

which gives, together with the inclusion obtained before,

���  O , ��� 
MZ � � ����� 
 � � < (4.3.10)

where the choice of � has been made in (4.3.7).

4.3.2 Parameters related to the initial compact set

The diameter of � ��� �fZ�� � is given by � � � �!IKJ $ $&s �S%�� 	 � � * 	 and verifies

� � } diam � � � diam � � } � � � � ��<
By (2.4.5) and (2.4.4) we notice that the estimate given in (2.4.8) is decreasing in� � (that is the diameter of the compact set � in theorem 2.3.1); therefore we may
take � �f� � � � � (4.3.11)

in the definition of � � .
Now, referring to theorem 2.3.1 we have to choose and fix a parameter

� .
� �-. meas  O , � . A well-known formula for the volume of a � -ball with fixed
radius gives

meas , � � � meas ,�T , �
�
�  �, � , with  �, � � ���

� w , � � � �
� ! �

� < (4.3.12)
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Therefore, if we consider the compact set � � (which is directly determined by the
choice of the initial compact and convex set � in (4.2.6)), we have to fix � � � such
that

� . � � � .  �, meas � � �  �, meas � (4.3.13)

and consider
� � � � � � � , (4.3.14)

in the estimate for the size of the perturbation of �
�

� .

4.3.3 Choice of index and amount of non-degeneracy

The frequency application of the integrable part of �
�

� is the real-analytic function�� � � � � ��� � ��� � ��� � 
 for
� � ��� 
 �+g  �

�
Z+g , � (4.3.15)

defined in (4.1.3) (see also (4.1.1), (4.1.4) and (4.1.5)). In section 4.1 we proved
that

�� � is non-degenerate, for small enough � (condition (4.1.19)). Moreover, let�� � denote the index of non-degeneracy of � � with respect to � , �� and �� denote
respectively the index and amount of non-degeneracy of � (defined in (4.1.2))
with respect to the compact set � ��T �

� ��� � 
 initially considered, we proved

�� �
} �� and � � �� � � �� � � 
 � ���� O 	 ��
 (4.3.16)

(see section 4.2 for definitions and details).

Remark 4.3.1. In section 2.5 we showed how it is possible to construct an itera-
tive process to obtain non-resonant frequencies as stated in theorem 2.5.1. Now
observe that the numbers � � � � � �� � � �� � 	 appearing in the cited theorem can be
found as function of � � � ��O and � � � verifying (2.5.12). Two such numbers
can be obviously the index and amount of non-degeneracy of

�� � . However this is
not necessary: in fact, as section 2.5 clearly explains, it is possible to choose any
integer �� � � ��� �� � � � 
 ( � index of non-degeneracy of

�� � with respect to � ) and
and any

� . ��7} � � �� � � �� � � 
 to obtain the same results. Therefore, accordingly
to (4.3.16), we can take

� � � �� and � � ���� O 	 ��
 (4.3.17)

in the estimate for the size of the perturbation.

Remark 4.3.2. Apparently the choice of �� � �� � and the associated value ��}
� � �� � � ���� � 
 could increase the estimated value of � � ; however, this advantage
brings the necessity to compute a greater number of derivatives when an explicit
value for � � is searched.
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4.3.4 Norm of the frequency application

Since we defined

� � �
� � � ���� � � � 	��� � �

� �
� � � � � � �

�
� �

� � �
�� � � � �� � ���� �

�� � 	��� ! �
� �
� � � � � �� �

� � �
(where the argument of all the functions considered is � � � � � � ��� � � � � 
 ) it results

IKJ $� O ��� 	
�� � � � ��� � ��� � ��� � 
�	/}#IKJ $� O ��� 	 � � � � ��� � ��� � ��� � 
�	S< (4.3.18)

Furthermore by (4.3.8), lemma 4.1.1 and the definition of � � in (4.2.6) we have

IKJ $� O ��� 	 � � � � ��� � ��� � ��� � 
�	/} IKJ $
�

�
�
 � _ �

�
�w 	 � � � � ��� � ��� � ��� � 
�	/}

}�IKJ $
�

�
�
 �
	 � � � � ��� � 
�	 �
� �^} � � � � 	 ��� �!<

Therefore, in the estimate for � � we may take

� � � � � � � � 	 �
� (4.3.19)

as upper bound for 	 �� �S	 � O ��� .
4.3.5 Approximation function and control on the small divisors

In his work [Rüßm01] Rüßmann uses what he calls an “approximation function”
to control the small denominators appearing in the problem with diophantine in-
equalities of the form 	 �  � 	 � � � �c	 � 	 	 

where

�
� � � � � � 	(�& � � � 
 is the “frequency map”. We remark that

�  � are the only
kind of small divisors appearing in the problem when we consider the maximal
case, i.e � � � � 
 with refer to Rüßmann’s notation at the beginning of his work
[Rüßm01, page 123].

On page ���  of his work, Rüßmann defines an approximation function as a
continuous function �!� � � �S~�� �EDU� verifying the following four properties

1. � � � � � 
 � � ��&�
 � � �-� 
M� � for
� } &�. ��.�~ ;

2. � � ��
 ��� so that � ��&�
 ��� for any
� } &�} � ;
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3. &
�
� ��&�
 ��� ��ED �

for any ��� � so that

� � � � �!IKJ $�	� � &
�
� ��&�



� .�~ (4.3.20)

for all ��� � and ��� � ;
4. the following integral is finite� �

� ���� �
� ��&�


� &
& 	 .�~�< (4.3.21)

However this definition of approximation function would create an unsur-
mountable problem in the application of Rüßmann’s theorem to �

�

� . Without
going into details, we just observe that the choice of � � � � � 
 as in (4.3.7) would
force the choice of � � � � � � � � 
 for some � � � in order fulfill the second con-
dition in (2.4.1). Then, in view of condition 4.3.5.3, � �-� � 
 would be of order
greater than �

|
for any i ��� . Now, since we have a perturbation of order � � for a

fixed �F� � (see (4.3.1)) and the definition of � � in (2.4.8) together with (2.4.9)
requires � � } � � �-� � 
 , we reach a contradiction.

To overcome this problem we claim, and prove next, that the control on the
small divisors can be performed with a function in the form

�

� ��&�
 �
�� 	 � � } &�} �

& � n & � �
(4.3.22)

with bm� �A� � � 
 �� (4.3.23)

instead that with an approximation function as defined by Rüßmann.
First of all observe that

�

� is continuous and trivially verifies properties 4.3.5.1,
4.3.5.2 and 4.3.5.3 while it does not fulfill condition 4.3.5.3.

Remark 4.3.3. In Rüßmann’s work the property 4.3.5.3 of the approximation
function � is used only in the second inequality on top of page � � � and in the
chain of inequalities at the beginning of page � � � (inequality (2.5.34) in this the-
sis).

Lemma 4.3.1. The two inequalities just cited can be obtained with
�

� in (4.3.22)
(and b in (4.3.23)) instead of � .
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Proof On page � � � of [Rüßm01] we find the following inequalities

� 	d � � � � 	�� � d } �
� � O �����  w���d � � � � 	�� � d }

� � � �
� �-� � 
 �

�  w���
(4.3.24)

where
� � � and � d , with a � � , are defined in subsection 2.5.1, � � � ��	�

�� (see
[Rüßm01, 14.10.6] accordingly to (2.5.2) with � � in (2.5.13) and � � � �� as fixed
in (13.1) by Rüßmann), � � � � � , � � � 	 �	 � , � � � � verifies (4.3.27), � � � is defined
in (4.3.20) and � is sufficiently large. The inequality formed by the first and the
last member in (4.3.24) is used immediately after to obtain

��
d x � �Ed

� � � � 	�� � d }
� � � �
� �-� � 
 �

�  w��� ��
d x �

�
�Ed .�~ (4.3.25)

where the convergence of this last sum is proved in lemma � �Q< � on page �  � in
Rüßmann’s paper. First of all observe that in the first inequality in (4.3.24) it is
sufficient to take

� � � �
� � ��� � � �

� �  
� ��� �� � � (4.3.26)

in view of �Ed,� � � � � . Now we consider
�

� instead of � and consequently define
�� �-� 
 � � � � �  O ,vO ��� �

� �-� 
 ��� � �  O ,vO �uO n �
�

�Ed � � �� � � � �� � �

� � 
 � � d ! � �

� � � � � �	 � � � � � 

where

�

� � verifies (4.3.27) (with
�

� instead of � ). We claim that an analogous
estimate as in (4.3.24) can be obtain to make the series in (4.3.25) converge (with�


instead of



for


� � � � d ). Indeed

�

� 	d � � � � 	�� � d } �

�
� � O �����  w���d � � � � 	�� � d �

�
�

�
� O �d �

� �-�Ed 
 � � d�

� �-�Ed 
 � �  w���
}

}
� �

�
� O � � nd

�

� �-�Ed 
 �

� � �  O ,vO ���d � ��� d � �  w���
�

� �

�
� O � � nd

�� �-�Ed 
 � ��� d � �  w���
}
� �
� �-� � 
 �

�  w���
having used the definitions of

�� and
�

�Ed � � and

bm� �A� � � 
 ������{� � �  � ��� � � �  
� ��� �� � � � ��<
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Thus we obtain

��
d x �

�

�Ed � � � � 	�� � d }
�

�
� � �

� � 
 � �  w��� ��
d x �

�
�

�Ed �
��� � �

� � 
 � �
 w��� �

� � �� ��
d x �
� � �	 � � � � � 
 .�~

in view of
� . � and ��� � . It should be noted that we did not need lemma � �Q< �

on [Rüßm01, page 156] to prove the convergence of the considered sum since our
choice of

�

� as approximation function permitted an explicit expression for
�

�Ed .
The second inequality in which Rüßmann uses property 4.3.5.3 (inequality

(2.5.34) in this thesis, on page � � � in [Rüßm01] with � ��� ) is the following� �
� & � �  O ,vO �uO w �� � � &  O , � ��&�
 
 �� ! 	 � &,} � � �

 O , � �� � 	
� �
� & � �  O ,vO �uO w �� � � &

} ��
� �	�A� � � 
 �� � � �

 O , � �� � 	
once we have replaced � � with �� accordingly to (4.3.17) (see (2.5.12) in theorem
2.5.1 for � � ), � with � � � and where � �

�� is defined in (4.3.20). Now we consider,
as already done before,

�

� in (4.3.22) as approximation function in the place of � ;
then, in view of (4.3.23), it results� �

� & � �  O ,vO �uO w�� �
�
&  O , �

� ��&�


�� � 	 } � �

� & � �  O ,vO �uO w �� � � &  O , � 	 �� ! 	 � &,}
} � �

� & � �  O ,vO �uO w �� � � ��
� �	�A� � � 
 �� <

We observe that a different estimate for this integral could have been obtained if
we were not searching for an estimate similar to Rüßmann’s one �
Remark 4.3.4. The second inequality considered in lemma 4.3.1 is fundamental
for the choice of � in theorem 2.5.3. In fact the term ( ���!� � � and � � � �� in our
notation) that exists in Rüßmann’s determination of � (see for instance [Rüßm01,
14.10.8]) does not appear in our choice of � (see section 4.3.7). and has to be
replaced by � in theorem 2.5.3 with the choice of

�

� as approximation function.

Remark 4.3.5. We conclude this part observing that if
�

� is defined as in (4.3.22)
for some bm� �A� � � 
 �� we have

 � k��� � &
� �

� ��&�
 � � for any
� } ��.7b
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and IKJ $�	� � &
� �

�

� ��&�
 ��� for any

� } ��. b
�� � � }���} ��

(confront with property 4.3.5.3).

4.3.6 Determination of
�
�

Let
�

� be a given approximation function as in (4.3.22) then, according to Rüß-
mann’s theorem, we have to choose and fix a number

�

� � � � such that

�

� �
�

� � 
 } � � �  O ,vO ��� and
� �

�� � ���� �
�

� �-� 

� �
� 	 } � ���� �

��� �� �A� � � 
 ���� � � 	 � �A� � � 
 

(4.3.27)

(see for instance section 2.4 where � plays the role of � � � ).
With our definition of

�

� the first condition on
�

� � becomes

�
�

� n� } � �
�
 O ,vO ��� �� �

� � � �
� � � � 
	 < (4.3.28)

For what concerns the second condition, we set

  O ,�� � ���� �
� � � �A� � � 
 ���� � � 	 � �A� � � 
 
 (4.3.29)

so that we have to fulfill � �
�� � ���� �

�

� �-� 

� �
� 	 }   O , � �� (4.3.30)

in view of � � � �� � as in (4.3.7). Now we assume
�

� ��� � so that ���� � } �

w for

any � �
�

� � ; then, by definition of
�

� it results� �
�� � ���� �

�

� �-� 

� �
� 	 �!b

� �
�� � ���� �

� 	 � � }�b � ��� � � �� � w � �`b
�

�

w
�

so that we may fulfill both conditions in (4.3.27) with

�

� � �
� �`b ��
  O , �

	 �
� 	 < (4.3.31)

Furthermore, also
�

� � � � is satisfied as the following chain of inequalities shows:� �`b ��
  O , �

	 �
� 	 � � �`b �� 
 	 � �6b 	 �	� ��� �

� w � �
� � � � 
� � � � �

� � � � 
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having used � �   O ,�. � , ����c� � � � � and (4.3.23) which gives �!}U� � �N}
�A� � � 
 ���. b . We conclude this subsection defining

� �f� �
� �`b ��
  O , �

	
(4.3.32)

and observing that with our choice of
�

� and
�

� � it results
�

� �
�

� � 

�

� � �  O ,vO ���� �
� 	
� n O  O ,vO ���

� �
n O  O ,vO � with bm� �A� � � 
 ���< (4.3.33)

4.3.7 Determination of �

Let � � be the constant defined in (4.3.19) and �� the index of non-degeneracy of �
(see (4.1.2)), we set

� �� � � � �� O � � �� � ��
 �� O 	 � � � � ��
 (4.3.34)

(confront with � � in (2.4.3) taking into consideration remark 4.3.4 and the absence
of the term � � � �� O ��� because of its dependence on � that will be considered next).
Now refer to (2.4.4), replace � � and � respectively by equation (4.3.11) and (4.3.7)
and observe

�A� � � 
 � 
w � � � � � � 
 � � �� � � � � 
 ���A� � � 
 � 
w � � 
 � � � � 
E< (4.3.35)

Thus, considering

� � ���� O 	
 �� � ��� �
� � � � � � � � � � , (4.3.36)

(as in (4.3.16), (4.3.7) and (4.3.14)) and referring to the definition of � in (2.4.5)
with � � in (2.4.4), we take

�� �h� � � �  O ,vO � � ��� � 
 � � �w � � � � 
  O , � � � �A� � � 
 � 
w � � 
 � � � � 
 ! � �� � � �� w
� � � �

�w
�� O � 
 � �� O ��� � � �

�� w ��
�� � 
w � (4.3.37)

set
�� ��� �!k���� ( �� �(� � 0 (4.3.38)

and finally define
�+� � �

�
�� O ��� w O

� ��w �� � < (4.3.39)

For clearness we remark that the exponent of � in this last expression, is given by
the three contributions

� �� � � 
 � �� � ��

� � � �� � ��
 ��

� � � ��
�

given respectively by the presence of � , � and � � as in (4.3.36).
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4.3.8 Definition of ���
Accordingly to the definition of � � in (2.4.2), our choice of � , � � and � � (respec-
tively in (4.3.7), (4.3.17) and (4.3.19)) we define

� �� � �	� � �� O 	 �� � ��� � � � 	 �
� � ��
 (4.3.40)

and consequently
� � � � �� � � �� < (4.3.41)

4.3.9 Determination of � �

Let � be as in (4.3.39) (with ���� and �� � in (4.3.38) and (4.3.37)) and let
�

� be
the chosen approximation function in (4.3.22) with b in (4.3.23). Recalling the
expression found for

�

� �
�

� � 

�

� � �  O ,vO ���� in (4.3.33) (where
�

� � and � � are defined in
(4.3.31) and (4.3.32)) and accordingly to the definition of � � in (2.4.6) we may put

� �f� � � � 
 �� � with � � � � � �� � ��
 	 � � ��� � � �Ab � � � � 
 � � (4.3.42)

and

�� �f� � �� � � � � � n O  O ,vO ���
� � ��� � � � 	 �
� � ��
 (4.3.43)

having used also (4.3.19) and (4.3.7).

4.3.10 The quantities ��� , ��� , �
	
In the preceding subsection we have analyzed the behavior of all quantities in-
volved in the estimate for the size of the perturbation in Rüßmann’s theorem (see
section 2.4) when we consider �

�

� as Hamiltonian function (see (3.5.10)) and
�

� as
approximation function (see (4.3.22)). Let now see how what happens to � � , �
	
and �
� in (2.4.9). A suitable choice for the first of this three quantities may be

� � � � �� � � � � � n O  O ,vO ���
� � � O  O , � � 
 (with � � in (4.3.42)) (4.3.44)

in view of the definition of � in (4.3.39) (together with (4.3.38) and (4.3.37)), the
choice of � in (4.3.7), equation (4.3.33) and k���� ( � � �

�
� � � ��� 0 � � � � ��� .

For what concerns � 	 as it appears in (2.4.9), we have to substitute � � � and
� � as taken in section 2.4 with � in (4.3.39),

�

� in (4.3.22),
�

� � in (4.3.31) and
consequently define

�
	f� � �� � � � � n O  O ,vO ����
� 	 	

�
� � �

� �� �
�
� � �

�
� � w �� � � � w with � 	f� ��� � � �

(4.3.45)
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in a totally analogous way to what done before for � � .
Finally, accordingly to the definition given in (2.4.9), the choice of � and � �

in (4.3.17), the definitions of � � in (4.3.42),
�

� � in (4.3.31) and � � in (4.3.41), we
define

�
�f� � �� �� �� �
� �	� � � � � � �� � �A� � � � �� 
 � � �

with � �f� ��� � �� � � � �� � � 
 (4.3.46)

where �� � is in (4.3.43), � � in (4.3.32), � �� in (4.3.40) and � �A� � � � �� 
 can be found
in (2.4.7).

4.3.11 Determination of � and conditions on �
We recall that in (2.4.8) we defined a possible value for � � as it appears in (2.3.5)
(and analogously in (C.2.8)) by

� � � �
� � k���� ( � � � �
	(� �
� 0 	

where � � � �
	 and �
� may be defined as in (4.3.44), (4.3.45) and (4.3.45). We
remark once again that the values we have given are a simplification of Rüß-
mann’s estimates in [Rüßm01, page 171] concerning the size of the perturbation
in lower dimensional tori theorem (see theorem C.2.1 with estimate for � � in C.2.1
in this thesis). On the other hand in the maximal case the simplifications are made
through his whole work considering the case � � � � 
 (in Rüßmann’s notation)
in parts III (Construction of Invariant Tori) and IV (Existence of Non-resonant
Frequency Vectors), where this last is also discussed in its major aspects in sec-
tion 2.5.

Now accordingly to the preceding subsections, the choice of � in (4.3.7) and
� � in (4.3.19), we take

� � � �
� � ��� � � � 	 �
� 
 k���� ( � � � �
	(� �
� 0 	 < (4.3.47)

Moreover, from the definitions of � � � �
	 and �
� in subsection (4.3.10) and �f. �
we infer

� � � � � k���� � � � ���� � �
� ���	 � �

� ���� � 	 }�k���� ( � � � �
	(� �
� 0 	 (4.3.48)

if we put �
� ��� � � ��kml # ( � � � � 	(� � � 0 � � � � , that is

�
� ���
�	� �� � �� � ��
 	 � � �� 	 � � � �`b � �`� � � � �  
 �� � 


(4.3.49)
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and

�
� ���� �

�� � � � � � n O  O ,vO ���
� � � O  O ,

�
� ���	 �

�� � � � � n O  O ,vO ����
� 	 	

�
� � �

� �� �
�
� � �

�
� � w �� �

�
� ���� �

�� �� �� �
� �	� � � � � � �� � ��� � �� 
 (4.3.50)

accordingly to (4.3.44), (4.3.45) and (4.3.46).
Now, in view of (4.3.1) with correspondences (4.3.4), (4.3.47) and (4.3.48),

we may fulfill inequality (2.3.5) by

��� �� w � � � O � 
 � � } � � � � � O �
� � ��� � � � 	 �
� 
 k���� � � � ���� � �

� ���	 � �
� ���� � 	 (4.3.51)

which requires � � �
� ��� � � and � sufficiently small as it will be described later.

Thus, a suitable value for � is

� � � �� � �� � ��
 	 � � �� 	 � � � �`b � �`� � � � �  
 �� � � � (4.3.52)

where � � � is half of the dimension of the phase space of the Hamiltonian system
considered ( � � denotes the number of the initial elliptic variables), �� is the index
of non-degeneracy of the frequency application and bm� �A� ��� 
 �� is the exponent
of the chosen approximation function.

Finally, in view of inequality (4.3.51) (which implies (2.3.5)) and equations
(4.3.52) and (4.3.49) which give � � �

� ��� �� , we obtain the following sufficient
condition to impose on � to be able to apply Rüßmann’s theorem:

�^} k���� � � � ���� � �
� ���	 � �

� ���� � 	
� � ��� � � � � O � 
 ��� � � � 	 �
� 
 (4.3.53)

where �
� ���� � �

� ���	 � �
� ���� are defined in (4.3.50) (accordingly to all definitions given

previously in this section), � is defined in (3.2.21) and � � is a positive number
greater than � �� w . We conclude observing that from the definition of � �� w in
(3.5.12) together with (3.4.47), (3.4.39) and (3.3.19), (3.4.40) and (3.4.41), we
have

� �� w � �  	 � w � � � 	� 	 � � 	� � � � w � � � � � � ��� � � ��
 , 
	� � �
w � � � � �

�
� 	 � w � � � � (4.3.54)

104



(see (3.4.39) for � ) so that we may define

� � � � �� 	 � � 	�
T �� s ,

� �
�
� � �

� (4.3.55)

with T � s , and � in (4.1.9).

4.4 Conditions on
�

in theorems 3.1.2 and 3.1.3

In this section we initially gather all the conditions on � contained in chapter 3
and needed to conjugate the initial Hamiltonian � to �

�

� in (3.5.10); then we
will synthesize the conditions imposed in sections 4.1 and 4.2 to prove the non-
degeneracy in the sense Rüßmann of the frequency application and to control its
index and amount of non degeneracy.

The first condition is formulated in (3.2.17) in order to apply averaging theo-
rem and in particular corollary (3.2.1). Observe that if ��� �

� then we have

� ���� ��K� } � � � � ���� � 
E<
Moreover we infer that � � ��� ���� � 
[} � � for every

� } ��} � � � ; indeed the
function � � � 
 � � � � � � ���� � 
 equals zero in � � � and is increasing for

� } � }
� � � so that � � � 
�} � � � � � 
 �  � � 	 } � for every

� } �^} � � � . Then we can fulfill
(3.2.17) by requiring

�^} � 	 �A� � 
 	� 	  	, � 	 (4.4.1)

in view of � � �	� � � from (3.4.42). Now notice that the condition ��} � � � is
superfluous in view of (3.3.29) and ��� � which give �f} ��� � 	 ;

For what concerns condition (3.3.29), it can be immediately seen that it is
implied by

�^} k���� � � � � � 	 
 � � � ��� � �� � � � 	-, �
� 	-, � � � � ��
�� 	 � � � � ��
 (4.4.2)

that is condition (3.4.2) once that � 	 has been replaced by means of (3.4.42). To-
gether with � } � the definition of � � in (3.3.24) and � �	� , this last inequality
implies

�h} ��� � ��
� 	-, � � � � ��
�� 	 � � � � ��
 } �

� � � � ��� ��
�� 	 � 	 �A� � 
 	� � �,&� 	 k����
�
�

 � � � � � � }
} � 	 �A� � 
 	

� � � �,&� 	 k����
�
�

 � � � � � � (4.4.3)
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that �;}#k���� ( � � � � 	 0 with � � in (3.3.8) and � 	 in (3.3.12) as required in lemma
3.3.2.

Now, from (3.2.23) and ��� � we have

 	, � �, � � � � � � � � � 
�} �,�� � � � 	 � � � ��
�} �,�� � � � � � ��
�} �, � � � � � � � ��
�� 	
so that condition (4.4.1) can be fulfilled taking

�^} ��� � ��
� 	-,vO � � � � � ��
�� 	 � 	 (4.4.4)

using the definition of � � in (3.3.24) as in the first inequality in (4.4.3). Thus, we
may finally satisfy conditions (4.4.1) and (4.4.2), that is all conditions in sections
3.2, 3.3 and 3.4, assuming

�^} k���� � � � � � 	 
 � � � ��� � �� � � � 	-, �
� 	-,vO � � � � � ��
�� 	 � 	 (4.4.5)

where � 	 and � � are defined in (3.3.24) (together with (3.2.24), (3.2.23), (3.2.21)
and (3.1.5)), � } � is characterized by inequalities (3.2.15) and (3.2.16) and � is
defined in (4.3.52).

Another upper bound on the parameter � is given by the choice of � � in (3.5.1)
verifying 	 � � 	 �	� � (equation (3.5.8)) which leads to require

�^} �
��� � � � 
 	 < (4.4.6)

By the definition of � � in (3.4.40),
�

in (3.4.41) and substituting � 	 with � � � �
(see (3.4.42)) we can compute

�
��� � � � 
 	 �

� 	�
� � �
� �� � �

� � � �
�

� 	�
� � �
� �
� � ��� � � ��
 , �

� � � � � � � ! 	 � � � �
� �A� � 
 	

� � �
� �
� � ��� � � ��
 , �

� � � � � �
� ! 	 � � � �

� �A� � 
 	 �
� � � ��� � � ��
 , �

� � � � � �� ! 	 � � � � �A� � 
 	
� T � s ,

� �
� ! 	 � � �

where T � s , is defined in (4.1.9). Then we can fulfill (4.4.6) taking

�^} �A� � 
 	
� T � s ,

� �
� ! �

(4.4.7)
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since �\} � , � � � (see (3.4.39)) and from (4.1.9) � � � � �  ��� � � � .
The two last conditions on � are those needed to control the index and amount

of non-degeneracy of the frequency application
�� (see (4.1.3)) in terms of the in-

dex and amount of non-degeneracy of � (see (4.1.2)); namely this are inequalities
(4.1.19) and (4.2.10). Since � � � (see (4.1.8) with (4.1.9)) the two minima ap-
pearing in this two estimates are less than � and this means that we may replace
both of them with

k����
� �
� � � � 	 �

�
� �  O ,

putting a factor � � �  O ,vO ��� in second member of (4.2.10) instead of � � � . Thus, both
inequalities hold if

�^} �
�  O ,vO � k����

� �
� � � � 	 �

�
� �  O , k���� � � �� � ���� � � �

� �
� a � 
  O , � �  ! �  O , � d � (4.4.8)

where recall � � ��IKJ $ � � 	 � 	 , � 	 ��IKJ $ 5 x � s � � � s , IKJ $ � � 	 �
56	 (with Tf� ��g � ��� � 
�
�  ), �� and �� are respectively the index and amount of non-degeneracy of � �
� � �c� 
 with respect to an initially chosen compact set � (see (4.2.5)), � is defined
in (4.1.8) with (4.1.9) and

� � � � � ��� � � � 
 � � 			 � "�� � � 5 � 
 �� � �� � � 
 �&<&<&< � � 5 �
� � � �� � �� � � 
��

			 �� � (4.4.9)

a
�
a ��� � � � 
�� � kml #� x � s � � � s  O ,

		 : � � � 		 � (4.4.10)

accordingly to definitions (4.1.22), (4.1.23) and (4.1.10), � � � � � and propositions
4.1.2 and 4.1.3 .
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Chapter 5

The spatial planetary
��� � ���

-body
problem

In this chapter we expose the results contained in [Féj04, pages 45-62] about the
non-planarity (definition 2.1.1) of the frequency application of the spatial plane-
tary ��� �	��
 -body problem Hamiltonian. The cited work in his entirety, is one of
the highest achievement KAM theory applied to celestial mechanics. In fact, in
[Féj04] a complete proof of Arnold’s theorem on planetary motions (contained in
[Arn63b]) is provided, more than � � years after Arnold’s statement. In that pa-
per Jacques Féjoz has completed, with the help of other mathematicians in Paris,
Michel Herman’s work whose untimely death in 2001 had interrupted.

With the results we are going to show, we will be able to apply theorem 3.1.1
to the spatial planetary ��� ����
 -body problem giving an analogous result, in ana-
lytic class, to Herman and Féjoz’ theorem formulated in class � � (theorem � � in
[Féj04]).

As a remark, we say that the first section is the only one in this chapter where
we do not follow [Féj04]. In fact, for the classical and well-known description of
the Hamiltonian model for the planetary ��� ����
 -body problem, we use notations
from [Chi05a]. There, beyond more recent numerical results from the authors, the
reader may also find a precise historic description of how KAM theory and celes-
tial mechanics have interacted through the years, from Kolmogorov’s theorem in
1954 (see appendix A in this thesis) until Féjoz’ 2004 paper. For more detailed
historical remarks about KAM theory and celestial mechanics see also [Chi06].
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5.1 Hamiltonian models for the planetary
��� � ���

-
body problem

The movements of � � � bodies (point masses) interacting only through gravita-
tional attraction are ruled by Newton’s equations

�

�
� � �
�

�
��� � � q5 �x � �� 5 �

� 5 � � �
� � �

	 � � � � � �
� 5 � 	 � � �

�
� �&<&<&< � � (5.1.1)

where �
� � �
� ���

� � �� ���
� � �	 ���

� � �� 
 �3� � are the cartesian coordinates of the
� � �

-body of
mass �� � , (once that the physical space has been identified with the euclidean space� � through the choice of an inertial frame), 	 �	 is the standard euclidean norm and
the gravitational constant has been renormalized to one by rescaling the time � .
As it can be easily seen, equations (5.1.1) expressing the universal gravitational
attraction law, are invariant under change of inertial frames, that is under change
of variables of the form �

� � � D �
� � � � �Ab �  � 
 for any chosen b �  ��� . Therefore,

taking

bm� � �
� tot

��
� x � �� � �

� � � � � 
 and 8� � �
� tot

��
� x � �� � ��

� � � � � 


with � tot � � � �� x � �� � , we may restrict our attention to the manifold of initial data
given by ��

� x � �� � �
� � � � � 
 � � �

��
� x � �� � ��

� � � � � 
 � � < (5.1.2)

Now observe that the total linear momentum � tot �-� 
 � � � �� x � �� � ��
� � � �-� 
 is con-

stant along the flow of (5.1.1), since it has vanishing derivative), so that we have
� tot �-� 
 � � along trajectories using (5.1.2). This implies that also the position of
the barycenter T��-� 
^� � � �� x � �� � �

� � � �-� 
 is constant and equals
�
, again by (5.1.2).

This means that the manifold of initial data given by (5.1.2) is invariant under the
flow newton’s equation (5.1.1).

As it is well know, the integral curves of equations (5.1.1) are the integral
curves of the Hamiltonian vector field generated by the Hamiltonian function

�

� New � � ��
� x �

		 
 � � � 		 	

� �� � �
�

�K� � �`5c� � �� � �� 5	 � � � � � �
� 5 � 	

where

 � � �

� �� � �
� � � is the momentum conjugated to �

� � � , � 
 � � � ���
� � � 
 are standard

symplectic variables and the phase space considered is the open domain in � � � � O ���
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given by �� � � � 
 � � � ���
� � � ��� � � � � � � �� �

� 5 � � � } � �
� : } � � (5.1.3)

endowed with the standard symplectic form

��
� x � �


 � � � � ��� � � � � � �
����� � q5 x � s 	 s �

� 
 � � �5 � ��� � � �5 < (5.1.4)

Notice that considering
��

as phase space we do not only exclude collisions be-
tween the bodies but also intersection between their orbits. As shown before we
may assume that the motions governed by

�

� New lie on the symplectic submanifold

�� �f� � � � 
 ��� 
�� �
� � ��

� � �� � �
� � �
�
�
�

��
� x � �� � 
 � � � � (5.1.5)

which corresponds to equations (5.1.2).
Now, the flow of

�

� New on
�
� � can be best described in terms of heliocentric

coordinates. Let � hel � � � � � 
 � D � 
 ��� 
 be the linear symplectic transformation
given by

� hel �
�� 	 �

� ���
�
� � ��� � �

� � �
�
� � ��� � � � � � � 9 �

� � �&<&<&< � �

 � ���

� �
� ��� � � �� x � � � � � � 
 � � �

� �
� � � � 9 �

��� �&<&<&< � � >
(5.1.6)

in the new variables � � � � 
 , �� � becomes

�
�
� � � � � � � � ��� � � � � ���

�
� � � � ��� ��� � � �tot

��
� x � �� � � � � � �

� �
�
� � � � �
�
� � 5 � � 9 ��} � �

� :�� �
the restriction on it of the � -form (5.1.4) is � �� x � � � � � � � � � � and the new Hamilto-
nian function � New � � �

� New
� � hel 	��� � is given by

� New �
��
� x �

� 		 �
� � � 		 	

� �G � �G �
�G � O �G � �

�� � �� �
	 � � � � 	 � � �

�y� � �`5c� �
�
�
� � � �

� 5 �
�� � � �� � �� 5	 � � � � � � � 5 � 	 � <

(5.1.7)
Thus, since �

� ���
�
�

and � � ��� does not appear, the dynamics generated by � New

on
�� � are equivalent to the dynamics on the phase space

� �f� � � � � � � 
 � � � � ��� �&<&<&< � � � � � � � � ��� �&<&<&< � � � � � 
�� � � � �
� �
�
� � � � �
�
� � 5 � � 9 ��} � �

� : } � �
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endowed with the standard symplectic form � �� x � � � � � � � � � � ; to recover the whole
dynamic on the manifold

�� � it is sufficient to take �
� ��� �-� 
�� � � for all � and� � ��� �-� 
M� ��� � �tot � �� x � � � � � �-� 
 (see the definition of � hel in (5.1.6) and the equations

of
�
� � in (5.1.5)).
Now, motivated by the planetary case, in which one mass is much bigger than

the others (for instance in our planetary system the biggest
� � �

-planet/Sun ratio is
� � � � in the case of Jupiter), we perform a simple rescaling of masses by a positive
small parameter � : �� 	 � � � �� � � � � � � � �� � � � � ��


� � � � � � � � �
� � � � � � � � � � � � � � < (5.1.8)

If we take � plt � � �K� 
f� � �� � New � � � �K� 
 as new Hamiltonian function, this rescal-
ing clearly leaves unchanged Hamilton’s equations; thus, denoting

� � � � � � � �
� � ��� � � � � � � ��� � ��� � � < (5.1.9)

we may write explicitly

� plt � � �K� 
 � ��
� x �

� 	 � � � � 	 	
�r� � � � � � �

	 � � � � 	 � � � �
�y� � �`5c� �

�
� � � � 5	 � � � � �-� � 5 � 	 �

� � � �  � � 5 �
� � �
(5.1.10)

whose phase space is
� � � � � � �K� 
 � � � � ��� �&<&<&< � � � � �K� � ��� �&<&<&< �K� � � � 
�� � � � �

� �
��� � � � ���� � 5 � � 9 ��} � �

� : } � � (5.1.11)

with respect to the standard symplectic form � �� x � � � � � � � ��� � � � .
When � � � the Hamiltonian function � plt becomes simply the Keplerian

Hamiltonian
�

Kep � � ��
� x �

� 	 � � � � 	 	
�r� � � � � � �

	 � � � � 	 � (5.1.12)

that is the Hamiltonian of � disjoint � -body problems; we shall call the first order
of � plt in � the perturbative function denoted by

�
per � � �

�y� � �`5c� �
�
� � � � 5	 � � � � �\� � 5 � 	 �

� � � �  � � 5 �
� � � (5.1.13)

and decomposed in the sum of a principal Hamiltonian

�
princ � � � �

�y� � �`5c� � � � � 5	 � � � � �\� � 5 � 	 (5.1.14)
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and a complementary Hamiltonian

�
comp � � �

�y� � �`5c� �
� � � �  � � 5 �

� � < (5.1.15)

Now we introduce Poincaré variables denoted by

��� � � ��� ��� � � � 
 
�� � � Z � � �S~ 
 � Z�� � Z;� � Z�� � Z�� � <
If we define the elliptic elements of the : � � � orbit by

� � 5 is the average anomaly,

� � 5 is the argument of the perihelion,

� � 5 is the longitude of the node,

� b�5 is the semi major axis,

� � 5 is the eccentricity,

� � 5 is the inclination,

� �15 is the average longitude,

����
5 is the vector of the kinetic momentum,

� ��5 is the circular momentum,

� and � 5 � � 5 is the longitude of the perihelion,

then the Poincaré variables are related to them by the following formulas:�
����������������
���������������

	

�15 � � � 5 � � 5 � � 5
��5 � ���)5 � ��5vb�5
�f5 � � ��5 � � � � 	5 � 	 ��
5�	
� 5 � � �c5 � � �&5 � � � ��5

�
� �

�
� � � 	5 � � � � � O�� � �

� 5 � � �15 � � 
=5 � � � �f5 � � � � � I � 5 � � � <

(5.1.16)
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In the limit we are interested in, i.e., small eccentricities and inclinations ( � 5 � � 5^D
�
), it results

	 � 5�	 � � ��5 � ��� 5 � � � � � � 	5 
�� and 	 � 5�	 � � ��5 � � � � � � � � 	5 
 � � � � 	5 
��m<
(5.1.17)

In [Poi07, chap. III] the following theorem is stated and proved:

Theorem 5.1.1 (Poincaré). Poincaré coordinates are analytic and symplectic,
with respect to the standard form � �y�`5c� � � �15 � � ��5 � ���c5 � � �&5 �-� �15 � � 
=5 , in a
neighborhood, diffeomorphic to � � Z�� � � , of the union of Keplerian circular direct
and coplanar orbits. Moreover, they are angle-action variables for the Keplerian
Hamiltonian (5.1.12) that assumes the form

�
Kep �

�
�y�`5c� �

� � �5 � 	5
� � 	5 (5.1.18)

(we still denote
�

Kep the new Hamiltonian function).

We define the average movements by

a 5 � � � � Kep

� ��5 �
� �5 � 	5
� � � � ��5

b � w5 (5.1.19)

having used the equation for �
5 in (5.1.16), where this expression implies the
Kepler’s third law: the square of the revolution period of a planet is directly pro-
portional to the cube of its semi major axis.

We are now ready to state Arnold’s theorem contained in [Arn63b], which
initially turned out to be true only in the case of the spatial three body problem
until Herman and Féjoz’ proof in [Féj04].

Theorem 5.1.2 (Arnold’s theorem on planetary motions (real-analytic case)).
For all values of masses � � � � � �&<&<&< � � � and semi major axes b ����b 	{�N�� �b � � � , there exists a real number � �{� � such that, for all

� . � . � � , the flow
of the Hamiltonian function � plt in (5.1.10) possesses a strictly positive measure
set of phase space points, in a neighborhood of circular and coplanar Keplerian
tori with semi major axes �Ab � �cb 	(�&<&<&< �cb � 
 , leading to quasi-periodic motions with
��� ��� frequencies. Furthermore, such quasi-periodic motions lay on � ��������
 -
dimensional real-analytic Lagrangian tori.
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5.2 The secular Hamiltonian and its elliptic singu-
larity

To prove Arnold’s theorem our aim is to apply theorem 3.1.1 with � � � � plt,

� � � � � per � � � �
� ��� 
 �

�
� q � per � � � �&<&<&<=� � � (5.2.1)

and � � � �
per � � � per � (with refer to the first part of section 3.1). The aver-

aged Hamiltonian � � per � is well defined on the “collisionless” manifold
�

(see
(5.1.11)) and, unless to rearrange the planets, we may assume that the semi major
axes belong to the open subset of ���

� � � ( �Ab%� �cb 	(�&<&<&< �cb � 
���� � �
� . b � .7b � � � . ��P.7b%� 0 < (5.2.2)

Since � and � are standard symplectic conjugate variables, the Hamiltonian func-
tion � � per � possesses the � first integrals � � � � 	(�&<&<&< � � � (that is Laplace’s first the-
orem of stability). Thus, we may consider � � per � parametrized by � � � � � 	(�&<&<&< � � � 

and defined on the space (diffeomorphic to � � � ) of Keplerian tori with fixed semi
major axes and coordinates ��� ��� � � � 
 
 . We still denote this Hamiltonian function
by � � per � and call it the secular Hamiltonian of the first order of the planetary
system and

�
is called the secular space. This system describes (at the first order

in � ) the slow variations along the centuries of Keplerian ellipses which change
their shapes under perturbations due to the other planets.

Lemma 5.2.1. Each term of
�

comp in (5.1.15) has vanishing average along Kep-
lerian tori, i.e., �

� q �
� 5 �  � � � � � � � <&<&<=� � � � � (5.2.3)

for every �{} : .��;}�� . This implies in particular, that
�

comp does not give any
contribution to the secular Hamiltonian: � � per � � � � princ � .

Proof By (5.1.18) and Hamilton’s equations we obtain

��15 � � � Kep � � 

� ��5 �

� �5 � 	5
� �5

and
�
� � � �

�� � �� � �� � �
 , while from (5.1.12) it results

�� � 5 � � � � Kep � � �K� 

� � � 5 � �

� � 5 �
�)5 <
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Thus, considering
� � 5 � ���15 � ��5 ���c5(���&5 � �15 � 
=5 
 and � � 5 � ���15 � ��5 ���c5 ���&5 � �15 � 
=5 
 , from

the chain rule we get

� � 5 �
���)5 �� � 5 � �!�)5 � �

� 5 �
� �15

��15 � �
�5 � 	5
� �5

� � � 5 �
� �15 (5.2.4)

and since � � � � does not depend on �/5 (: �� � ), we obtain the statement with the
help of Fubini’s theorem �

The Hamiltonian � � per � � � � princ � is an even function of secular coordinates
� � � � 
 � � � � �&<&<&< � � � � � � � �� � � 
 . As a consequence the origin of the secular system is
a critic point for the secular Hamiltonian � � per � corresponding to direct, circular
and coplanar movements. The following lemma explains this fact from the point
of view of the dynamics generated by the secular Hamiltonian:

Lemma 5.2.2. The Keplerian torus having vanishing eccentricity and inclination,
i.e., � � � �� � � � � � � � <&<&< � � � � (see formulas (5.1.17)), is a fixed point for
the flow of the secular Hamiltonian function � � per � .

In view of this result we are going to study Birkhoff’s normal form of � � per �
in � � � � 
 � � at the first order (the first Birkhoff invariants), i.e., the quadratic part
of � � per � in Poincaré coordinates � 5 and � 5 for : � � �&<&<&< � � . For this reason we
introduce a key aspect of the planetary many-body problem that is the coefficients
of Laplace:

Definition 5.2.1. The coefficients of Laplace i � � �� � � 
 are Fourier’s coefficients of
the function

�
� � � � 	 � � � � � I � 
 � �

��
� x � i

� � �� � � 
 � �
� �

(5.2.5)

for �\� � � � ��
 , �+��� and &,� � .
Lagrange and Laplace proved that the quadratic part of the secular Hamilto-

nian can be written in a remarkable form through the coefficients i � � �� � � 
 where �
is a function of the semi major axes. The calculations are quite long and difficult
and we refer to [Rob95] for a complete and detailed proof of the results provided
next.

Lemma 5.2.3. Let � � � ��� � �&<&<&< � � � 
 , b � � �Ab%� �&<&<&< �cb � 
 , � � ��� � �&<&<&< ��� � 
 ,� � ���+� �&<&<&< ��� � 
 , � � � � � �&<&<&< � � � 
 and 
 � � 
 � �&<&<&< � 
 � 
 . There exist two bilinear
and symmetric forms � � � � � ��� �cb 
 and � 
 � g 
 ��� �cb 
 defined on the tan-
gent space in the origin of the secular space, called respectively horizontal and
vertical, depending analytically on the masses and the semi major axes, such that

� � per � ��� ��� � � � 
 
 �	� ����� �cb 
 � � �  ��� 	 ��� 	 
 � � 
  � � 	 � 
 	 
 � � ��� 
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where

� �  � 	 �

�
�y�`5�� � � � � 5 � �

�
� � �Ab�5 �cb � 


� � 	5
��5 � � 	�

� � � � ���!	��Ab�5 �cb � 
 �c5�� �
� ��5 � � �

� 
  � 	 �

�
�y�`5�� � � � � � 5 � � � � �Ab�5 �cb � 


� �15
� ��5 �

� �� � � � 	
(5.2.6)

with

� ����� �cb 
�� � �
�

�y�`5�� � � � � 5 �
�

b�5 i � ���
w �Ab � � b�5 

� � �Ab�5 �cb � 
�� � � b ��`b 	5 i

� ���
� w �Ab � � b�5 


�!	��Ab�5 �cb � 
�� � b �
�`b 	5 i

� 	��
� w �Ab � � b�5 
8< (5.2.7)

From now on we will identify the two bilinear forms � � and � 
 with the
matrices representing them with respect to the canonic bases �A��� � �&<&<&< � � � � 
 and
�A� � � �&<&<&< � � � � 
 . Let the masses and the semi major axes be fixed, then there exist
two matrices � � and � 
 in

� � ��� 
 that put respectively g � and g 
 into diagonal
form, that is

� � � � � � � �

�
�y�`5c� �

�15�� 	5 and � �
 � 
 � � �

�
�y�`5c� �

� 5 � 	5 (5.2.8)

for � � �&<&<&< �=� � and � � �&<&<&< � � � in � . The application

�m� ��� ��� � � � 
 
 e �ED � � �  � ��� �  � ��� 
  � ��� 
  
 

is symplectic and it results

� � per � � � �	� ����� �cb 
 � �
�y�`5c� �

�15���� 	5 ��� 	5 
 � �
�y�`5c� �

� 5�� � 	5 � 
 	5 
 � � ��� 

Definition 5.2.2. Let

�
be the open set defined in (5.2.2), a 5 the average move-

ments in (5.1.19), �/5 and � 5 the eigenvalues of the matrices � � and � 
 respec-
tively, we will denote with � the multivalued application

�\�1bm� � e �ED ( � � �&<&<&< �=� � � � � �&<&<&< � � � � a � �&<&<&< � a � 0 
7� �
and call it the “frequency application”.
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In the following pages we will prove the following facts

1. for all values of masses and in a simply connected neighborhood of almost
every value of the semi major axes, there exists an analytic determination of
the frequency application that we will denote by

� �6bm� � e � D �?� � �&<&<&< �=� � � � � �&<&<&< � � � � a � �&<&<&< � a � 
 
7� � � (5.2.9)

2. this newly defined application does not meet the non-degeneracy hypothesis
in theorem 3.1.1

3. it is not even possible to obtain the non-degeneracy condition considering
an auxiliary Hamiltonian function.

We observe that the development of the secular Hamiltonian with respect to
the ratio of the semi major axes of the different orbits, will be a key passage. Then,
the analycity will permit the generalization of results obtained only for small ratios
of semi major axes.

We first recall some well known facts about the ellipse: let �P5 and �p5 be respec-
tively the eccentric and the true anomaly of the ellipse described by the motion of
the : -planet, � 5 be the eccentricity of this ellipse, br5 its semi major axis and denote
with � 5 � �N	 �/5�	 the distance between the : -th planet and the “Sun” (one of the foci
of the ellipse). Then the following equalities hold�

���������
��������

	

� 5 � b�5�� � � � 5 � � I �p5 
 � � � � � � 	5 
 � definition of �&5 
� 5 � b�5�� � � � 5 � � I �/5 
 � definition of �Q5 

� �15 � � � � � 5 � � I �p5 
 � � � � � � 	5 
 � w � �p5 � Kepler’s second law 
� �15 � � � � � 5 � � I �/5 
 � Kepler’s equation 
� 5 � � I �p5 �!b�5�� � � I �/5 � � 5 
� 5 I ��� � � � b�5 � � � � 	5 I ��� �/5

(5.2.10)

where

�15�� �p5 
 � �
b 	5 � � � � 	5 meas 	 � � �p5 
 (5.2.11)

with
� � �p5 
 representing the following region of the ellipse

� � �p5 
 � � � � � � � � �5 � � �5 
[� � } � �5 } � � �p5 
 � � }�� �5 }
�p5 � <
We now state a lemma concerning the development of the secular Hamiltonian

for small ratios of the semi major axes:
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Lemma 5.2.4. When the ratio b � � b�5 tends to
�

we obtain following formulas

� ����� �cb 
 � �
�

�y�`5�� � � � � 5 �
�

b�5
�
� � ��

� b �b�5 �
	
� �
� b �b�5 �

� �
� � �Ab�5 �cb � 
 � � �b�5

�
��
� b �b�5 �

	
� �
� b �b�5 �

� �
�!	��Ab�5 �cb � 
 � �b�5 �

� b �b�5 �
� <

(compare with definitions in (5.2.7))

A complete proof of this result can be found in [Las91].

5.3 Verification of Arnold-Pyartli condition

We start this section proving some technical results that we will later apply to the
matrices of the bilinear symmetric forms g � and g 
 (defined in (5.2.6)) and their
eigenvalues.

Lemma 5.3.1. Let
� � �&<&<&< � � �-� , g � diag � � � �&<&<&< � � 
 and ' an �-Z� matrix;

then, if � is an eigenvalue of the matrix g���' it results

k�����y�`5c� � 	 � �
� 56	/} � ' �

where
� ' � � ��kml # t $�t w x � 	 'f�
	 .

Proof If � � � 5 for some : ��� �&<&<&< � � then the statement is trivially verified.
Assume � �� � 5 for every : � � �&<&<&< � � , then g ��' �7� � � is not invertible and
this implies

��}��� �Ag �\� � � 
 � � '��� }��� �Ag � � � � 
 � � �� � ' � ��kml #�y�`5c� �
�	 � � � 56	

� ' �

which proves the lemma �
The following lemma shows that the preceding estimate can be improved if

the eigenvalues of g are distinct and the terms on the diagonal of ' are zero.

Lemma 5.3.2. Let
� � . � 	 . �� . � � �W� , g � diag � � � �&<&<&< � � 
 , � � �k������y�`5 �x � � � 	 � 5 � � � 	 and '�� mat

�
��� 
 with diag '�� � ��' � � �&<&<&< � ' �p� 
 � � .

Then, if � is sufficiently small, the eigenvalues
� �� . � �	 ��8. � �� of the matrixg���� ' satisfy

	 � �5 � � 56	1} ��
� ' � 	

�
�
� g �� � � 	 (5.3.1)
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Proof Consider the matrix � �
� � ��� �Ag � � ' 
 � ��� �Xg � � � � 	 
 for some

�-Z � matrix



. Developing � in power series of � , one finds that there exists a
unique matrix


 � mat

�
��� 
 with null diagonal such that

� � ��� �Ag���� ' 
 � ��� �!g�� � � � 	 
 � g�� � � � 	 
 > (5.3.2)



is the solution of ' �


 g �!g 

(i.e., � � 5�� n � �� � � � � for

� �
� : ) and verifies� 
 � } � ' � � � . Developing ��� ��� up to the second order it results

� � � 
 �Ag ��� ' 
 � ��� � g���� 	 ' � � � � � � 

where

' � � � �� � 
 	 g�� g 
 	 
 ��' 
 � 
 ' � 
 g 
 <
Therefore we may apply the preceding lemma with g as diagonal matrix and
� 	 ' � � � � � � 
 instead of ' obtaining

	 � �5 � � 56	�} � � 	 ' � � � � � � 
 � } � 	 � � � � � � 
 
 � ' � � } � � � 
 � 	 � g � �
� � � ' � � 
 � 
 � 	 � � � � � � 
 
�} ��

� ' � 	
�
� �

� g �� � � 	 � � � � � � 
 

which proves the statement for sufficiently small � �
Proposition 5.3.1. Let

� � � � 	(�&<&<&< � � � � � ��� ,
� � � � and � � ��k������y�`5 �x � � � 	 � 5� � � 	 �� � ; let

�g be a ��� � ��
�Z ��� � ��
 symmetric matrix with eigenvalues
� � �&<&<&< � � � � , consider the symmetric matrix g given by

gX� � ��
�g � �1_ �

� � _r� �
��

where
� � _rG represent a null matrix � Z	� . Moreover let '�� be an �8Z � symmetric

matrix whose last coefficients is in the form

��' � 
 �p� � (� �  	 ���
with (� �  	 �-� and

� } �7. � . Then, when � tends to zero, the matrix g � � '��
possesses an eigenvalue in the form

� � � � 
 � � � (� �  	 ��� 
 � � � � 	 
E< (5.3.3)

Furthermore, if
�g is diagonal, then g � � ' � is conjugated to a diagonal matrix

through a matrix �m� � � � �L� 
 verifying � � � � � � � � 
 .
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Proof Let
��m� SO � � � �L� 
 such that

�� � �g �� � diag � � � �&<&<&< � � � � � 

we define �m� SO � �L� 
 by

�m� � ��
�� � �1_ �

� � _r� �
��U<

Now observe that � � �Ag � � ' � 
 � possesses the same eigenvalues of g � � '��
(they have the same characteristic polynomial) and � � �Ag � � diag ' � 
 � possesses
� ��' � 
 �p� � � � (� �  	 � � 
 has last eigenvalues. Thus, for sufficiently small � , we
may apply lemma 5.3.2 together with the identity

� � �Ag���� ' � 
 � � � � �Ag ��� diag ' � 
 � ��� � � ��' � � diag ' � 
 �
obtaining, by inequality (5.3.1), that g � � '�� possesses an eigenvalue � � � � 
 veri-
fying 	 � � � � 
 � � � (� �  	 � � 
�	1} � � 	 � (5.3.4)

5.3.1 Arnold-Pyartli condition in the plane

We now provide some preliminary results we will use to prove that the bilinear
form � � in (5.2.6) is definite negative

Lemma 5.3.3. Let i � 5 �� � � 
 be Laplace’s coefficients defined in (5.2.5); then, for
any �\� � � � ��
 , &,����O � � and : ��� we have

i � 5 �� � � 
�� i � 5KO ���� � � 
 (5.3.5)

Proof We proceed by recurrence on & . Let &�� � � � ��
 , denote

&c5 � � & ��& � ��
E<&<&< ��& � : � ��
 � ��& � : � ��
����& � ��
�� >
in [Poi07] the following development of Laplace’s coefficients is given

i � 5 �� � � 
 � &c5: � � 5 � � � &
��� & � :: � � � 	 � & ��& � ��


� � ��& � : 
 ��& � : � ��

� : � ��
 � : � � 
 �

� ��<&<&< � >
from this formula we get

i � 5 �� � � 
 � i � 5KO ���� � � 
 � &c5: � � 5 � � � � & � :: � � � � �
� &
�
& � :: � � � 	

�
� � & � : � �: � � � � ��<&<&< � � � < (5.3.6)
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Furthermore the two following relation (to be found always in [Poi07]) hold

i � 5 �� O � �
��& � : 
 � � � � 	 


& � � � � 	 
 i � 5 �� � � : � & � �
&

�

� � � � 	 
 	 i
� 5KO ����

i � 5KO 	��� �
: � �: � & � �

�
� � �

�
� i � 5KO ���� � : � &: ��& � � i

� 5 ��
so that we may infer

i � 5 �� O � � i � 5KO ���� O � �
: i � 5 �� �	� : � ��
 i � 5KO ����

& � � � � 
 	 � i
� 5 �� � i � 5KO ����
� � � � 
 	

>
this last equality shows that (5.3.6) holds for every &,�3� O � � as stated �

Lemma 5.3.4 (Hadamard). Let � be the matrix of a bilinear symmetric form
in � 	 , whose coefficients � 
c5 � 
 satisfy the following proprieties: 
c5u5;. � for all
��} : } � , 
=5 � � � for all ��} : ����C} � and the quantity

� 
=5 � ��� 
=5u5 � �
� �x 5 
=5 � � �

(that is � is a matrix with strictly dominant diagonal). Then the bilinear form
associated to the matrix � is negative.

Proof Let � � � � � �&<&<&< � � � 
 a vector in �
� , by the hypotheses made it results

� ��� � � � � ��
5 s � x � 
=5

� �p5 � � � � ��
5 x �
� 
=5 � 	5 � �

5�� � 
=5 � � �p5 � � � 
 	 } � �

We are now ready to state

Proposition 5.3.2. The bilinear form � � in (5.2.6) is definite negative

Proof Define � � � diag � � �
� �&<&<&< � � � � 
 and consider the matrix
�
� � � �

� � � � � . Let 
=5 � for : � � � � �&}�� the coefficients of
�
� � , from the first equation

in (5.2.6) and the definitions in (5.2.7) we get


=5u5 � �
�
�y� � �`5 � 5 � � b�5�`b 	� i � ���� w �Ab�5 � b � 
 � �

5�� � � � � � � � b
�

b 	5 i
� ���

� w �Ab � � b�5 


=5 � � � � � � b ��`b 	5 i

� 	��
� w �Ab � � b�5 
 � if : . �


=5 � � � 5 � � b�5�`b 	� i
� 	��

� w �Ab�5 � b � 
 � if : � �8<
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Thus, 
=5u5 . � for every : ��� �&<&<&< � � , while 
c5 � � � for every �,} : ����C} � ; now
denoting

� 
c5 � � 
=5u5 � � �y� ��x 5c� � 
=5 � , by the preceding formulas and inequality

(5.3.5) with & � �	 , : � � and � �
n �n � �
n �n � it results

� 
=5m� � . Therefore
�
� � is a

matrix with strictly dominant diagonal from which we infer (using lemma 5.3.4)
that

�
� � negative. To conclude we need to prove that

�
� � is definite. Let �m� �8� any

vector such that
�
� �  � � � and let : � ( � �&<&<&< � � 0 such that 	 �&5�	 ��kml # � x � s � � � s � 	 � � 	 .

Observe that we may suppose �&58� � , eventually considering � � instead of � ; then
the : -th component of the vector

�
� �  � is given by

�
� 
=5u5 �p5 � �

��x 5 
=5 � � � }
�

=5u5 � �

��x 5 
=5 � � �p5 � � � 
=5 �p5 (5.3.7)

which yields a contradiction to �&5+� � in view of
� 
=5+� � . Therefore �&5�� �

which proves � � � . As a consequence
�
� � is definite negative and so is � � �

Now let � � � � � �&<&<&< � � � be fixed and consider the open set
�

in (5.2.2); we
need to prove that the subset of

�
where the horizontal form � � does not possess

double eigenvalues is connected, and for this purpose we are going to complexify
the application bm� � e �ED � � ��� �cb 
 .
Lemma 5.3.5. Laplace’s coefficient i � � �� � � 
 can be extended to meromorphic func-
tion on Riemann’s sphere possessing the only four poles

� ��� � and ~ .

Proof This lemma runs as a consequence of the differential equation satisfied
by Laplace’s coefficients that can be found in [Poi07, page 252]:

�
	 � � � � 	 
 � 	 i

� � ��
� � 	 � � �������+& � ��
 � � � �1i

� � ��
� � � � �+& 	 � 	 � � 	 � � � � 	 
 � i � � �� �

� �
From this lemma we obtain that Laplace’s coefficients i � � �� can be holomor-

phically extended for on the complex set ( �7� ����	 �^	). � � Re �7� � 0 . Then,
from formulas (5.2.6) and (5.2.7) we get that the quadratic form � � can be holo-
morphically extended on the following connected subset of

�
:

� � � ( �Ab%� �&<&<&< �cb � 
 � �A� � (
� 0 
 � �4	 b � � b�5�	/.	� � Re �Ab � � b�5 
�� � � 9;: . � 0 <

(5.3.8)

Proposition 5.3.3 (Arnold-Pyartli condition in the plane). For all � � � there
exists an open set of


 
 �
(defined in (5.2.2)) with full Lebesgue measure

on which the matrix � � verifies the following property: for any open and sim-
ply connected set � 
 


, the eigenvalues of � � define � holomorphic function� � �&<&<&< �=� � � � �EDF� such that the frequency application of the planetary system

bm� � e � D �?� � �&<&<&< �=� � � a � �&<&<&< � a � 
 � (5.3.9)

where the average movements a 5 are defined in (5.1.19), is non-planar on � .
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Proof We proceed by induction on the number of planets. For � � � the first
formula in (5.2.6) gives

� � ��� �cb 
 ��� � � 	 ��� � � �Ab%� �cb 	 
 � � �� �!	��Ab%� �cb 	 
 � �
� � 	 
 � 
w
�!	��Ab%� �cb 	 
 � �
� � 	 
 � 
w � � �Ab%� �cb 	 
 � � �	

���� >

thus, for b%� � � � ��
 and b 	 � D � , equations (5.2.12), together with � 	 � � � � b 	 

from (5.1.16), yield

� � ��� �cb 
 ��� � � � 	 � 
 b ��� 		b � �
��
��

� b 	 � � �� �

� � b 	 � � �	 �� � �� b 	 b ��� �	
b ��� �	 � b 	 ������<

If we write this last expression as follows

� � � � 	 �
 b ��� 		b � �
��
��

� b 	 � � �� � � �Ab 	 
 �

� � b 	 � � �	 � � � � b 	 
 �� � ��
� b ��� �	
b ��� �	 �

������<
we are in a position to apply lemma 5.3.2 where the role of ' is played by the
second matrix in the sum, (symmetric with all zeros on its diagonal), while the
first matrix obviously possesses distinct eigenvalues. Thus, if b%	 is sufficiently
small, we obtain that also � � possesses distinct eigenvalues in the form

� � � � � � � 	 �
 b 		b � � �
� � � � � �
� b 	 
 


� 	 � � � � � 	 �
 b 		b � � � 	 � � � � �
� b 	 
 
E< (5.3.10)

In particular the discriminant of the characteristic polynomial of � � is not a con-
stant function as holomorphic function on

�
(defined in (5.3.8)). This implies that

the subset of
�

where � � possesses a double eigenvalue has strictly positive codi-
mension (in the complex plane). Denote with

� �
its complementary in

�
. Then,

� �
is connected and contains, in view of what we have proved before with b%	 �ED �

and b%� � � � ��
 , a subset having the form ( �Ab � �cb 	 
 � �L��O 

	 � � . b 	 � b%� . � 0

for some
� . � . � . The eigenvalues of � � define two holomorphic functions� � �=� 	 � � �
� �EDh� where

� �
� denotes the universal recovering of

� �
.

Now we consider the frequency application

�\�1bm� � �
�
e �ED � a � � a 	(�=� � �=� 	 
 ��� �
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where a 5 is defined in (5.1.19). Suppose that there exists an open subset � of
� �
�

where the frequencies satisfy a linear relation

(� a � �  	 a 	 �  �c� � �  � � 	 � �
for some  5�� � . Since

� �
� is connected, the principle of analytic continuation

states that this linear relation is satisfied on the whole
� �
� . Now, from the definition

of a 5 in (5.1.19) and the form of �/5 in (5.3.10), if b+	 tends to zero, we see that
(� �  	 �  � �  � � � . This means that the frequency application � does not
satisfy any linear relation on any open set � 
 � �

� ; therefore, from lemma 2.1.1
(negation of the second part) we obtain that the holomorphic function

� "�� � � � � ��1b 	 � � 	 ��1b 		 � � � ��1b �	 �
is not constantly vanishing on any open set contained

� �
� . This implies the ex-

istence of a dense and full Lebesgue measure set

 
 �

, where the frequency
application defined almost every and mapping continuously b�� 


in �!� � � is
non-planar in the sense of definition 2.1.1.

Now consider � � � and suppose that the statement is verified up to order
� ��� . Consider the case b � �&<&<&< �cb � � � � � � ��
 and b � �ED �

; using the formulas
in (5.2.12) and denoting

�
� � the matrix of the horizontal form at the order � ��� ,

we have

� � � ��
�
� � � � �Ab � � 	� 
 � �Ab � � 	� 

� �Ab � � 	� 
 i �p�

��
for some i �p� � � . Applying proposition 5.3.1 we obtain that � � possesses an
eigenvalue � � �� � that tends to zero with b � while the other eigenvalues are in the
form �15 � ��15 ��� �Ab � � 	� 
 where

��15 denote the eigenvalue of
�
� � for : � � �&<&<&< � � � � .

Proceeding analogously to what done before in the case ��� � , we will obtain that
the eigenvalues � � �&<&<&< �=� � are distinct on an open and dense subset



of

�
with

full Lebesgue measure; moreover � � �&<&<&< � & � together with the average movementsa � �&<&<&< � a � define a frequency application that is non-planar on every open set �
contained in


 �

5.3.2 Arnold-Pyartli condition in the space

We now show that the frequency application in (5.2.9) satisfies only two linear
relations. Before stating this result we need a bit of preparation.

Lemma 5.3.6. The bilinear form � 
 is positive.

124



Proof It is a direct consequence of formula (5.2.6) together with (5.2.7) �
Lemma 5.3.7. The bilinear form � 
 possesses a null eigenvalue we will denote

� � � �
Proof As it can be easily seen by the formula in (5.2.6), the vector � �

� � �
� �&<&<&< � � � � 
 belongs to the Kernel of � 
 , indeed

� �  � � �
5�� � � � 5 � � � � �Ab�5 �cb � 
 �� � � �5 � ��5 � � 
 � � � 	

� ��5 � � 
 � � � 	 � � �5
��- ��

�
��5

�
� �

�� � � �

Lemma 5.3.8 (Herman). The trace of the matrix � � � � 
 is null.

Proof This property can be immediately verified through the formulas for
� � and � 
 in (5.2.6). Curiously this fact has not been remarked in its generality
before Herman �
Proposition 5.3.4. For all � � � there exists an open and dense set with full
Lebesgue measure


 
 �
where the eigenvalues of � � and � 
 are distinct two

by two and satisfy the following property: for any open and simply connected
set � 
 


, the eigenvalues of � � and � 
 define � � holomorphic functions� � �&<&<&< �=� � � � � �&<&<&< � � � � � �ED � which together with the average movementsa � �&<&<&< � a � satisfy this linear relations only:

��
5 x � �?�15 �

� 5 
 � � and � � � � < (5.3.11)

Proof We start with the case ���	� observing that the sum of the eigenvalues
of a �[Z � matrix ' � �Ab � 5 
 is given by its trace b � � �!b 	 	 . This fact, together
with lemmata 5.3.8 and 5.3.7 shows that both relations in (5.3.11) are satisfied.
Besides, from proposition 5.3.3 we may infer that this are the only linear relations
satisfied by � � �=� 	 � � � � � 	(� a � � a 	 (an any open set � contained in an open and dense
subset


 
 �
with full measure), since � � �=� 	 � a � � a 	 do not verify any linear

relation, � 	 � � and � � equals the trace of � 
 . Now let ��� � and suppose that
the statement is verified up to order � � � ; as done in the induction in proposition
5.3.3 we consider the semi major axis b � tending to

�
and denote

�
� 
 the matrix of

the form � 
 at the order � � � ; thus, with the application of proposition 5.3.1 we
obtain what stated �

If we consider the submanifold of the phase space obtained by choosing the
total angular momentum to be vertical, we lose the frequency � � related to the
invariance under rotation. Arnold in [Arn63b] infers that the frequency application
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�?� � �&<&<&< �=� � � � � �&<&<&< � � � � � 
 , considered as local function on the phase space with
values in � � � � � is a submersion; the preceding proposition shows that this is not
true, since this frequency application verifies a linear relation and is therefore
contained in a linear subspace of � � � � � with codimension � .

As proposition 5.3.4 shows we are not in a position to apply theorem directly
3.1.1 since the frequency application is degenerate in the sense of definition 2.1.2.
Denote now � � � � $ � � � � � � 
 ��� � the total angular momentum of the planetary
system; in [Poi07] it is shown how the components of � can be expressed in
Poincaré variables (see (5.2.10)) as follows

� $ � � � � �
�
�y�`5c� �

� 5
�
� ��5 � 	 � 56	 	 � �� 	 � 56	 	

� � �
�
�y�`5c� �

� ��5 � �� � 	 � 5�	 	 ��	 � 56	 	 � � < (5.3.12)

To avoid the degeneracy of the frequency application shown before, Arnold, in the
case of the three-body problem, choses to consider the symplectic submanifold
with vertical total angular momentum. On the other hand, Herman seems to add a
linear combination of � 	$ , � 	� and � 	� to avoid the null trace relation (first equation
in (5.3.11)). Féjoz, in the paper we are reviewing, choses an intermediate strategy
which consists in considering first a spinning reference and then fixing vertically
the total angular momentum ( � $ �	� � � � ).

Consider the Hamiltonian function

� �M� � � plt � � � � (5.3.13)

where
�

is a real parameter and � plt is defined in (5.1.10). ��� is the Hamiltonian
function of the planetary problem in a reference spinning with speed

�
with respect

to the initial Galilean reference. The origin of the secular space is an elliptic critic
point for � � (as it is for � plt) whose quadratic part in this point is

����� � ��
�
�y�`5c� �

� 	 � 5�	 	 ��	 � 56	 	 � (5.3.14)

as it can be easily seen by (5.3.12). Denoting by � the quadratic part of � � per � , we
have that the quadratic part of ��� is given by

� � � � � � ���{< (5.3.15)

Similarly to the quadratic part of � � per � , � � possesses � � eigenvalues with double
multiplicity, corresponding to � � frequencies that form an “extended frequency
application” � � �cb 
 e �ED � � � �cb 
 extending � in (5.2.9) for every

���
�
�
.
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Lemma 5.3.9. The image of the extended frequency application � � � �cb 
 satisfies
the only linear relation

� � � � (5.3.16)

Proof The expression of � � in (5.3.14) is equivalent to � � � 
 � 5 � � �	
� � 5

(where
� � 5 are the classical Kronecker symbols); this implies that the trace of � �

equals � � � , which together with proposition 5.3.4 proves the lemma �
Now denote by

�
vert the symplectic submanifold of the secular space de-

scribed by the equations � $ � � and � � � � , locally diffeomorphic to � � � � 	 .

Let
�

��� � � be the restriction to
�

vert of the averaged Hamiltonian ����� � and
�
� �f� �

�	 g 	 �

��� � � � � � � 
 its quadratic part in � � � � 
 � � � � � 
 . The bilinear form
�
� � define� � � � eigenvalues which corresponds to � � � � frequencies described by the

following lemma:

Lemma 5.3.10. For all � � � the eigenvalues of
�
� � define � �� � frequencies

given by � � �&<&<&< �=� � � � � �&<&<&< � � � � � , with the same notation of proposition 5.3.4. In
particular they do not locally satisfy any linear relation.

Proof In view of proposition 5.3.4 and lemma 5.3.7, the eigenspace associ-
ated to the eigenvalue � � � � is generated by the values of the Hamiltonian vector
fields �� $ and �� � in the origin � � � � 
 � � � � � 
 of the secular space, i.e.,

�� $ � � � � 
 � �
�y�`5c� �

�
� � �� 
=5 and �� � � � � � 
 ���

�
�y�`5c� �

�
� � �
� �15 <

Moreover, the tangent space in the origin of symplectic submanifold
�

vert is de-
scribed by the equation

g � � $ � � � � 
 � � � � 
 �
�
�y�`5c� �

�
� � � � 5 (5.3.17)

and is therefore orthogonal to the eigenspace associated to the null eigenvalue of
the form � . Thus, the eigenvalues of

�
� � coincide with the eigenvalues of � except

zero �
From this last result, the facts that � plt is real-analytic and the space of param-

eters is connected we can infer

Proposition 5.3.5. For all � � � there exists an open and dense set

 
 � Z3�

with full Lebesgue measure such that the � � � � frequencies associated to the
eigenvalues of

�
� � , regarded as function of b � �

and
� � � , are all distinct

and satisfy the following property: for every open and simply connected � 
 

this frequencies define � � � � holomorphic functions � � �&<&<&< �=� � � � � �&<&<&< � � � � � �
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� �ED � which, together with the average movements a � �&<&<&< � a � , do not satisfy
any linear relation. In particular the frequency application

�
�\� � � � � 
�� �L��O 
 � Z�� �ED �?� � �&<&<&< �=� � � a � �&<&<&< � a � � � � �&<&<&< � � � � � 
���� � � � �

(5.3.18)
is non-degenerate in the sense of Rüßmann on an open and dense subset of

� Z��
having full Lebesgue measure.

5.4 Proof of Arnold’s theorem

Now we fix the masses � � ��� � �&<&<&< � � � 
 , the semi major axes b � �Ab � �&<&<&< �cb � 

and the parameter

�
so that the frequency application of the planetary ��� ����
 -body

problem defined in (5.3.18), regarded as function of � � �L�MO 
 � and depending
on parameters b � � ��� � and

� ��� , is non-degenerate (it is sufficient to avoid a
closed set in

� Z�� having null Lebesgue measure). We aim to apply theorem 3.1.1
to � � , in particular with ��� �

Kep, � � �
per, � � ��� � per � and � � � �

per � � � per � ,
under the notations of section 3.1. We first need two preliminary results. This
first lemma is an extension of theorem 3.1.1 in the case � depends on additional
parameters.

Lemma 5.4.1. Suppose that the Hamiltonian function � described at the begin-
ning of section 3.1 depends on an additional parameter

� �7� and assume that
the frequency application

����� � 
�� � Z�� �ED � � ��� > � 
 �c� � ��� > � 
 �&<&<&< �c��, ��� > � 
 
����  Z;� ,
is non-degenerate in the sense of Rüßmann. Then, if � is sufficiently small, there
exists a subset � 
7� with strictly positive Lebesgue measure such that for every
fixed

� � � the set of phase space points leading to quasi-periodic motions, laying
on analytic Lagrangian KAM tori, has strictly positive Lebesgue measure.

Proof Under the hypothesis of non-degeneracy formulated here, theorem
3.1.1 assures the existence of a strictly positive Lebesgue measure set TWZ ) 
�  O , Z,� giving rise to quasi-periodic motions laying on analytic Lagrangian tori.
Therefore, by Fubini’s theorem, there exists a subset � 
 ) , with strictly positive
Lebesgue measure, such that for any

� � � the measure of the points in T leading
to quasi-periodic motions is strictly positive. �

Lemma 5.4.2. Since the two Hamiltonian function � plt and � � commute (because
� � is an integral for the system described by � plt), a Lagrangian ergodic invariant
torus for the flow of ��� is automatically invariant for the flow of � plt
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Proof Let � be an ��� -invariant ergodic torus and denote � � and � � the flows
of � plt and � � respectively. Let � � � be a sufficiently small fixed time and con-
sider

�

� � � � � ��� 
 . Since � is a Lagrangian (maximal) torus and � � is symplectic,
then

�

� is Lagrangian too. Moreover, since the flows � � and � � commute,
�

� is � � -
invariant. A classical argument of Lagrangian intersections shows that

�

� B � �� � .
Finally, since � �c	 � is ergodic it results

�

� � � which implies that � is invariant for
the flow of � plt �

Let
�

vert the symplectic submanifold of the phase space of � plt corresponding
to vertical total angular momentum. From proposition 5.3.5 and lemma 5.4.1 the
Hamiltonian function ��� (see (5.3.13)) possesses a strictly positive set of points
in

�
vert leading to quasi-periodic motions with ��� � � frequencies. By lemma

5.4.2 we obtain that � plt (see (5.1.10)) possesses the same positive measure subset
of points in

�
vert belonging to quasi-periodic motions laying on real-analytic

maximal invariant tori with ����� � frequencies.
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Appendix A

Proof of Kolmogorov’s 1954 theorem
on persistence of quasi-periodic
motions

A.1 Introduction

In 1954 A.N. Kolmogorov showed evidence of the following theorem:

Theorem A.1.1 (Kolmogorov). Let � be an Hamiltonian in the form � � * �K� 
 �� � �  * � � � * �K� 
 � � � � * �K� 
 where � and � are real-analytic functions overT  Z �  (here T  is an euclidean ball in �  ) with � �� � � � �K� 
 � � for 	 �^	 } � ,� ���  , � ��� .
Assume that � "�� ��� � � � � �& 
 � � � "�� � � � � � � � � �K� 
 ���

� ��� 
 
�
�
�

then for almost all
� ���  there exists � � such that for all 	 �r	�} � � there exists

� � symplectic diffeomorphism which maps � into the Hamiltonian � � � �
� ��  *
� � � � � *

� �K� � 
 , with � �� � � � � � �K� � 
 � � for 	 �^	P} � and where we have denoted
�L� � * 
 � � � � *

� �K� � 
 .
Besides we have that 	 � � ���[	 , � � � ��� � � 
 and

� � � � id
�
� 
 are all � � � 
 .

Our aim is to give a proof of this theorem following the original ideas gave by
Kolmogorov itself and focusing our attention on the estimate, in terms of some
constants depending on different parameters, of the size of � � . We are interested
in particular in the dependence of � � from the diophantine constant � because
it is strictly related to the dimension of invariant tori in the phase space for the
perturbed Hamiltonian � (we will discuss this matter in appendix B). For an
elegant and extremely authoritative proof performed adopting a slightly different

130



scheme refer to [Arn63a]; our proof is instead inspired by the original scheme
suggested by Kolmogorov and is based on [Chi05b].

In order to explain how we are going to proceed, we want now to give an
equivalent, but in some way more “quantitative” version of Kolmogorov’s theo-
rem. Let �!�+�  we define the following sets:

���h� � "$ � %&')( �3�+�  �E	 � �-� ��	/. �10 �
� 2 � � ( �3�+�  � 	 Im �/56	1.7� � Re �/58� � 9�: ����<&<&<K� 0 �
� ��s � � � (

� ���  � 	 �  ��	/� �	 ��	 � � 9 ���3� 0�>
we shall refer to an element

� ������s � as a Diophantine � ��� vector. Let �3�1�7D��
be a real-analytic function on an open set �!�7�! with analytic complex extension
on ��� � "$ � %&')( �3�+�  � 	 � �\� �`	/. �10
we put 	 ��	 � �!IKJ $' � 	 ��	 >
if �+� � 8D�� is real-analytic with complex extension on � 2 we define

	 ��	 2 ��IKJ $�
�
�
	 ��	 >

if �+�1�CZ
�  DU� is real-analytic with complex extension on the cartesian product��� Z � 2 we naturally put 	 ��	 � s 2 � IKJ $' � _ �
�
�
	 ��	 <

The same definitions can be obviously given if � is a function whose analytic
extension assumes values in �
� or mat � ���\Z� 
 , where in this case 	� 	 is some
appropriate norm in the space considered. The theorem we are going to prove is
the following:

Theorem A.1.2. Let � � * �K� 
 � � � �  * � � � * �K� 
 � � � � * �K� 
 be a real-analytic
Hamiltonian over T  Z �  with analytic extension for � and � on the complex
domain T � Z � 2 , for some � � � and

� . � } � and
� � ����s � . Suppose

� � � �K� 
 � � � � � � �K� 
 � � and

� "�� ��� � � � � �& 
 � �� � <
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Let � � .7� � � � . � take

� � 	 �C	 � s 2
� � kml #

� �� 	 �C	 � s 2 �`	 � � 	 � s 2 � � 	 � � � 	 � s 2 �
� � kml #

� �� � � �� �\� � �
a
� kml #

� ��
�

�
�� � � � �

�
�

�� 	 ��� � � � � �& 
 � � � 	
�
� 	 � 	 >

and define

� � � kml # � � � � � � � �
� 	 � kml # ( �

� � � 0
� � � kml # (

� � � � 0
� � � kml # � � � � � � �

there exist a positive constant �� � �c� 
 � � such that if

� ��gm��.	�
where

� �  a � � � � ] � � � � � � � � 	 � � � �
and g � � � 	 � � O  � O � � , then there exists a symplectic diffeomorphism

�!� � *
� �K� � 
 �+T � � Z � 2 � D � * �K� 
���T � Z � 2

which puts the Hamiltonian � into Kolmogorov’s normal form

� � � *
� �K� � > � 
 � � � � � 
 � �  *

� � � � � *
� �K� � > � 
 � � � � >

we also have that 	 � � � �[	 ,
� � � ��� � � 
 } � ��gm� � � and

� � � id
�
� 
 }

� ��gm� � .
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A.1.1 Some useful estimates

We now define � �A� � 
 ��� ��� 2 
 ��� �A���QZ � 2 
 as the spaces of real-analytic functions
having holomorphic extension on the prescribed domain and finite norm (respec-
tively 	 ��	 � �`	 ��	 2 or 	 ��	 � s 2 . ~ ). We now state the following lemma:

Lemma A.1.1 (Cauchy’s estimate). Let ��� � �A�M� 
 , 9 �!� �  and 9 � .
�m. � we have:

	 � ,� � � * 
�	 � }
� �

� � � � 
 t , t 
 	 ��	 �
Proof The proof of this lemma can be easily obtained by Cauchy’s integral

formula for analytic functions �
Observe that Lemma A.1.1 can be immediately generalized to �-� � ��� 2 
 or� �A��� Z � 2 
 .
We now define , for

� ������s � , the operator

� 
 �
�
� x �
� � � $ � <

Suppose to have a function �3��� ��� 2 
 , we are interested in solving the equation

� 
 � � � < (A.1.1)

First recall that � � * �K� 
�� � �AT , � �* 
`Z��  �K� G 
 , ��� -periodic in the second variables,
is analytic if and only if there exist positive numbers � � � and � such that its
Fourier’s coefficients � � s � satisfy

� � � s � � � } � � � t � t 
 � � t � t 
�� < (A.1.2)

Now observe that if � �L� 
 � � � %��
�
�
� � � � � � $ is the Fourier series for � , then

� 
 � �
�
� %��

� � �C � �� � � � � � $
so it is easily verified that � � 
 � � � � (the Fourier coefficient corresponding to
��� � is zero). So to solve equation (A.1.1) we must necessarily require � � � � � .
We can now expand � in its Fourier series obtaining � �L� 
 � � � %��

�
� 	 ��
 �� � � � � � $ so

that equation (A.1.1) becomes�
� %��

�
� 	 ��
 � �[ � �� � � � � � $ � �

� %��
�
� 	 ��
 �� � � � � � $
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and hence
�
� � �

�
� �� �[ � <

We observe now that

� �L� 
 � �
� %��

�
� 	 ��


�
� �� �[ � � � � � $

converges absolutely by equation (A.1.2) (here � � � so that � does not appear)
and by the diophantine estimate satisfied by

�
. We can now state

Lemma A.1.2. Let �+��� ����2 
 and
� ��� ��s � ; if � is the only solution to � 
 � � �

with � � � � � , then there exists  � �� � �c� 
 such that

	 �
	 2 � �M} 
�
	 ��	 2
�  O �

Proof We have the following inequalities:

	 �
	 2 � � }
					
�
� �x �

�
� �� �[ � � � � � $

					 2 � �
} �
� �x � 	 ��	 2	 �C � 	 � � t � t 2 	 �

� � � $ 	 2 � �

} �
� �x � 	 ��	 �� 	 ��	 2 � � t � t 2 � t � t � 2 � � � � 	 ��	 2

�
�
� �x � � � t � t � 	 ��	 �

where we have used equation (A.1.2) for � with � � � and � � �
, while it

effectively results by calculus that we can chose � � 	 ��	 2 . We want now to
estimate � � �x � � � t � t � 	 ��	 � . Approximating the sum with an integral we have�

� �x � � � t � t � 	 ��	 � �  �
� ��� � � t $�t � 	 �
	 � ��� �  �

� �
� ��� � � t � $�t 	 � �
	 � ��� �

�
 �
� � O 

����� � � t �pt 	 * 	 � � * � �� � �c� 
� � O 
and the lemma is proved �

Combining this two preceding lemmata and simultaneously generalizing the
result in Lemma A.1.2 to further inversions of the operator � 
 , we obtain

Lemma A.1.3. Let ��� � ����2 
 with � � � � � ; for every choice of � � �  , �3� �
we have :

	 � �
� 
 � , ��	 2 � � } �� � �c� � � � � 
 	 ��	 2

� , � , � O  O t �6t 
 <

134



A.1.2 Diffeomorphisms on ���
Consider bm��� ��� 2 
 and the following analytic function on �  :

� ���3� �  D � �L� 
 ��� � b �L� 
M� �  >
we want to give sufficient conditions on b in order to obtain that

�
is an analytic

diffeomorphism on �� . Our aim is to provide an inverse analytic function for
�

,
that is to say, �

� �L� � 
 � � � � �b �L� � 
 such that
� �

�
�
� id � �

� � �
. Let’s see what

does this mean in terms of b and �b :
� �

�
� �L� � 
 ��� � �� �

� �L� � 
 � b � �� �L� � 
 
 � � � ��
�� � � � �b �L� � 
 � b � �� �L� � 
 
 ��� � �� �b �L� � 
 � � b �L� � � �b �L� � 
 
E<

We now state the following lemma:

Lemma A.1.4. Let b�� � ����� 
 and take � � . � such that 	 b 	 � }���� � � and	 b $ 	 � . � ; then � � �bm��� ��� � � 
 with 	 �b 	 � � } � � � � such that:

� b �L� � � �b 
 � �b)<
Proof We initially define the following space

�
� ( i ��� ��� � � 
 �E	 i�	 � ��} � � � � 0 >

�
is a closed non-empty subset of the Banach space � ��� � � 
 and therefore is a

Banach space itself. Let �!�/i �L� � 
 � � D � b �L� � � i �L� � 
 
 � � ��� � � 
 we state that
� is a contraction in

�
; in fact for every choice of i and 8� � we have:

1. 	 Im � � � i �L� � 
�	1} 	 Im � � 	 � 	 i �L� � 
�	1. � � � 	 i �L� � 
�	1} � and this implies, by
the hypotheses done on b , that 	 � �Ai 
�	 � � �N	 b �L� � � i �L� � 
 
�	 � � . � � � � .

2. 	 � �Ai 
 � � �  
�	 � � �N	 b �L� � �;i �L� � 
 
 �Cb �L� � � ��L� � 
 
�	 � � } 	 b $ 	 � 	 i � 6	 � � . 	 i � 6	 � �
by the fundamental calculus Theorem applied on b .

Thesis follows from Banach fixed point Theorem �
Observe that for any bm��� ����

�
� 
 , with �� � � , by Lemma A.1.1 we can estimate	 b $ 	 � as follows:

	 b $ 	 � � IKJ $�
�
�
	 b $ 	 ��IKJ $�

�
�
IKJ $� �

5 x �
				
� b �
� �/5

				 }�IKJ $� �
5 x �

	 b 	
�
�

�� � � �!�
	 b 	

�
�

�� � � <
Now combining this last estimate and Lemma A.1.4 taking � � �� , we have

Proposition A.1.1. Let b � � ����� 
 and let � � .�� such that 	 b 	 � . � � � � O � then
� � �b[� � ��� � � 
 with 	 �bE	 � � } 	 b 	 � and � b �L� � � �b 
 � �b ; therefore

� �L� 
 � � �7b �L� 

is an analytic diffeomorphism on �  .
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A.2 Kolmogorov’s idea and first step of the proof

A.2.1 Reduction of the perturbation to order � �

Let �
� ���
� �

� ��� � � � � ���
� �� �  * � �

� ��� � * �K� 
 � � �
� ��� the analytic Hamiltonian

in Kolmogorov’s theorem on the phase space �F� ��T  Z��  , with refer to the
standard symplectic form

� *
� ����� � �

� x � � * �
� ��� �

(that is to say that Hamilton’s equations are
�� � � � � �* � � � $ ). Recall that� ��� ��s � and � � � � � �AT � Z � 2 
 with � quadratic in * . The first step (and main

idea) to prove the theorem, is to find a symplectic transformation � which maps
�

� ��� into �
� ��� that is still the sum of an Hamiltonian in Kolmogorov’s normal

form and a perturbation, but whose perturbative part is of order � 	 .

Proposition A.2.1. Consider �
� ��� as previously defined and suppose to have

� "�� ��� � � � � �& 
 � �� � (A.2.1)

There exists a symplectic transformation � � � *
� �K� � 
 D � * �K� 
 generated by the

second species function
� � *

� �K� 
 � *
� &� ��� � � *

� �K� 
 where

� � *
� �K� 
 �!i�&� � & �L� 
 � b �L� 
  *

�

for some i ���  , &�� �  D�� and bm� �  DU�  both analytic functions, such that

�
� ��� � � � �

� ���
� �

� ��� � �  *
� � �

� ��� � *
� �K� � 
 ��� 	 �

� ��� � *
� �K� � 


with �
� ��� quadratic in *

�
and �

� ��� � �
� ��� real-analytic functions.

Proof By the definition of
� � *

� �K� 
 we have the implicit definition of � given
by: �� 	 � � � 	 �	 � � ��� ���=b �L� 


* � 	 �	 $ � *
� ��� �Ai � & $ �L� 
 �	�Ab $ �L� 
 
 �  * � 


Assume that � �L� 
 � � � � ��� �=b �L� 
 is a diffeomorphism on �� with inverse
�� �L� � 
 � � � � � � � �b �L� � 
 . Following the Hamilton-Jacobi proceeding we aim to
express �

� ��� � * �K� 
 in the new variables � *
� �K� � 
 ; notice that we will often leave �
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instead of �� �L� � 
 for simplicity, and we will not sometime use the apex
�

since
there’s no ambiguity for the moment. By Taylor’s formula we have:

� � * �K� 
 � � � *
� ��� � $ �K� 
 � � � *

� �K� 
 ��� � � � *
� �K� 
  � $ ��� 	 �� � � *

� �K� 
 �
� � � *

� �K� 
 ��� � � � � *
� �K� 
 ��� � � � *

� �K� 
��  � $ ��� 	 �� � � *
� �K� 
 �

� � � *
� �K� 
 ��� � � � *

� �K� 
  � $ ��� 	 �� 	�� *
� �K� 
 �

� � � *
� �K� 
 ��� � � � *

� �K� 
 ��� � � *
� �K� 
  � $ � ��� 	 �� 	�� *

� �K� 
 (A.2.2)

where we have put �� � � *
� �K� 
 � � �

� � � � � 
 � � � � *
� � � � � $ �K� 
�� � $ � � $ �)� � and obviously

�� 	 � *
� �K� 
 � � � � *

� �K� 
� � $ � �� � � *
� �K� 
 . We now focus our attention on � � *

� �K� 
 �
� � � � *

� �K� 

 � $ in order to put it into the desired Kolmogorov’s normal form with
at least a perturbative part of order � 	 . Recalling that for an analytic function � we
have � 
 � � �  � $ we obtain:

� � � *
� �K� 
  � $ � � � � � � 
� �Ai � & $ �	�Ab $ 
 �  * � 
 �

�
� �i � �  & $ � �  �Ab $ 
 �  * � � � �  �Ai � & $ 
 � � �  �Ab $ 
 �  * � �

�
� �i � � 
 & � � 
 b� *

� � � �  �Ai � & $ 
 � �� � � *
� �K� 
E<

with
�� � � *

� �K� 
 � � �  �Ab $ 
 �  * � <
Now by Taylor’s formula applied on � � � *

� �K� 
 , and recalling that � � � � �K� 
 � � ,
we have

� � � * �K� 
z � $ �
� �i � � 
 & � � 
 b� *

� � � � � � � �K� 
  *
�  �Ai � & $ 
 � �� 	 � *

� �K� 

where we have naturally put

�� 	 � *
� �K� 
 � �� � � *

� �K� 
 �
� � �

� � � � � 
 � � � � �-� *
� �K� 
P� � � � * � � * � �ci � & $ � <
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Combining the expression found for � � � * �K� 
Q � $ and equation (A.2.2), reorganiz-
ing the terms and applying Taylor’s formula on � � *

� �K� 
 , we obtain:

� � * �K� 
 � � � *
� �K� 
 ��� � � � *

� �K� 
 � � �i � � 
 & � � 
 b  *
� �

��� � � � � �K� 
  *
�  �Ai � & $ 
 � �� 	�� *

� �K� 
�� ��� 	 �� 	�� *
� �K� 
 �

� � ��� � � �i 
 � �  *
� � � � *

� �K� 
 ��� � � � � �K� 
 � � � � � �K� 
  *
� �

� �� � � *
� �K� 
 � � 
 & � � 
 b� *

� � � � � � � �K� 
  *
�  �Ai � & $ 
��

� � 	 �� 	�� *
� �K� 
 (A.2.3)

having defined

�� � � *
� �K� 
 � �� 	�� *

� �K� 
 �
� � �

� � � � � 
 � � � �-� *
� �K� 
P� � � � * � � * � � <

Starting from the equation (A.2.3) we want now to determine i , & and b . Observe
that since �� � � � �K� 
 � � we have:

� <&<&< ��� � x � � � � � �K� 
 � � 
 & � � � � � �K� 
 � ��� � � �K� 
 � � � 
 &�
 ����� � � �K� 
 �
so taking

& �L� 
 � � 
 � � � � � � �K� 
 � ��� � � �K� 
 � 
 (A.2.4)

it results � <&<&< � � � x � � ��� � � �K� 
 � .
For what concerns the linear part in *

�
we want to maintain the same frequency�

of �
� ��� . Since the term

�  *
�
is already given by � � *

� �K� 
 we have to require

� � � � �K� 
 � � 
 b  ��� � � � � �K� 
  �Ai � & $ 
 � � < (A.2.5)

By averaging we have

��� � � � �& 
 � ����� � � � � �& 
z�i � ����� � � � � �& 
z & $ �  
 � � �
and by hypotheses ��� � � � � �& 
 � is invertible so that we can take

i � � ��� � � � � �& 
 � � � ��� � � � �& 
 � � � � � � �& 
z & $ �  
 � (A.2.6)

in order to have the average of the left member in (A.2.5) to be
�
. We are now

able to solve equation (A.2.5) taking

b � � � 
 � � � � � � � �K� 
 � � � � � � �K� 
  �Ai � & $ 
 
 (A.2.7)
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In conclusion by (A.2.3) , (A.2.4) , (A.2.6) and (A.2.7) we have:

� � * �K� 
 � � � � � *
� �K� � 
 � �

� ��� � *
� � �� �L� � 
 
 � �

� ��� � *
� � �� �L� � 
 


� � 	 �
� ��� � *

� � �� �L� � 
 
 � �
� ��� � �  *

� � �
� ��� � *

� � �� �L� � 
 
 ��� 	 �
� ��� � *

� � �� �L� � 
 
E<
where:

�
� ���
� � ��� � � �i ����� � � �& 
 � 
 > (A.2.8)

�
� ��� � *

� � �� �L� � 
 
 � � � *
� � �� �L� � 
 
 ��� �� � � *

� � �� �L� � 
 
 > (A.2.9)

�
� ��� � *

� � �� �L� � 
 
 � �� 	�� *
� � �� �L� � 
 
 � � � � *

� � �� �L� � 
 
  � $ � �� �L� � 
 
 �
�

� �

� � � � � 
 � � � � *
� ��� � � $ � �� �L� � 
 
�� � $ � �� �L� � 
 
 � � $ � �� �L� � 
 
 �)� �E< (A.2.10)

More expressly we recall that �� � � � � � � 	 � � � with

� � � *
� � �� �L� � 
 
 � �� � � *

� � �� �L� � 
 
 � � � � *
� � �� �L� � 
 
  �Ab $ 
 � � �� �L� � 
 
  * �

� 	 � *
� � �� �L� � 
 
 �

� � �

� � � � � 
 � � � � �-� *
� � �� �L� � 
 
P� � � � * � � * � �ci � & $ � �� �L� � 
 
 �

� � � *
� � �� �L� � 
 
 �

� � �

� � � � � 
 � � � �-� *
� � �� �L� � 
 
P� � � � * � � * � �v< (A.2.11)

To end the proof we observe that �
� ��� � *

� � �� �L� � 
 
 is quadratic in *
�
so that �

� ��� is
effectively in the desired Kolmogorov’s normal form �
Lemma A.2.1. The non-degeneracy condition holds for �

� ��� � *
� � �� �L� � 
 
 as found

in proposition A.2.1, that is:
� "�� ��� � ���� � � � �& 
 � �� �

Proof �
� ��� � *

� � �� �L� � 
 
 � � � *
� � �� �L� � 
 
 � � �� � � *

� � �� �L� � 
 
 so by derivation and
averaging we have

���
� ���� � � *

� �& 
 � � ��� � � � *
� �& 
 � ��� � � 	� �� � � *

� �& 
 � � ��� � � � *
� �& 
 � � � � � 


Thesis follows for small enough � , since
� "�� ��� � � � *

� �& 
 � �� � by hypotheses. We
postpone for the moment the discussion with full details on the estimate of how
small must � be in order to have ��� � ��� � *

� � �� �L� � 
 
 � invertible �
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A.2.2 Control on the domain of �
Recall that �

� ���
� �

� ��� ��� �
� ���
� � � �  * � �

� ��� � * �K� 
 ��� �
� ��� with

� ��� ��s �
for some fixed �+��� , and � � � ��� �AT � Z � 2 
 . Let � � .7� .	� and � � . � we
define

� � � kml #
� �� 	 �C	 � s 2 ��	 � � 	 � s 2 � � 	 � � � 	 � s 2 �

� � � �� 		 ��� � � � � �& 
 � � � 		
�R� � kml #

� �� � � �� � � � �
a � � kml #

� ��
�

�
�� � � � �

� � � 	 � 	
� � � 	 �C	 � s 2

We want now to give estimates on 	 � 	 in order to apply proposition A.1.1 to� � *
� �K� 
 �!i�&� � & �L� 
 � b �L� 
  *

�
obtaining that the application

� �L� 
 e � D � �
� *
� � � ���=b �L� 
 � � �

is effectively a diffeomorphism on �  and by consequence so is �� �L� � 
 e �ED � � �
� �b �L� � 
 ��� , the first component of � . Recall that we have i ���! and by definition
of & and b in equations (A.2.4) , (A.2.6) , (A.2.7) and lemma A.1.2 there exists
� . � .#� such that & � � ��� 2 � � 
 and b�� � ��� 2 � 	 � 
 ; here

�
is the loss of

analycity due to the inversion of the operator � 
 .

Remark A.2.1. Let � . � and
� .U� respectively the losses of analycity in

the action and angles variables; combining lemmata A.1.1 and A.1.2, for any
�+��� ��� 2 
 or � �AT � Z � 2 
 this two estimate hold:

		 �
�$ � 
 � � � �L� 
 		 2 � � } 

�
	 ��	 2
� ] (A.2.12)

		 � ,� �
�$ � � * �K� 


		 � � � s 2 � � }  	 ��	 � s 2
� t , t 
 � ] (A.2.13)

where we take the same constant  � � for both inequalities and for any � scalar
or vectorial function, matrix or tensor and where 
�� � ��� �	� (since we will
have at the most 	 � 	 � � � ).
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Lemma A.2.2. There exists a constant  � � � depending on 
 � � ��� , andT � � � depending on � and � , such that for all
� . � .7� � � �

kml # � 	 &Q	 2 ��� w �`	 & $ 	 2 ��� w �`	 i�	 �`	 b 	 2 � � � �`	 b $ 	 2 � � � �`	 � $ 	 � s 2 � � � } (�KT � � � 	 ] � <
Proof Using inequalities (A.2.12) and (A.2.13) we estimate separately all

terms, reminding the definitions of & , i and b in (A.2.4), (A.2.6) and (A.2.7).
First of all we have

	 &Q	 2 ��� w ��	 & $ 	 2 ��� w } 
� � ] � �/] 	 � � � �K� 
 ����� � � �K� 
 ��	 2 }

} 
� � ] O � � �/] 	 � � � �K� 
�	 2{} �

�
� �/] 	 � � * �K� 
�	 � s 2{} � � �/] � � � �

with � �  �r] O � .
Furthermore we may estimate

	 i�	 �N	 ��� � � � � �& 
 � � � ��� � � � �& 
 � � � � � � �& 
  & $ �  
 ��	1}
} � � IKJ $�

�
�=	 � � � � �K� 
�	 ��	 � � � � � �K� 
  & $ �L� 
�	 
 }

} � � � IKJ $�
�
_ �
�
�
	 � � � * �K� 
�	 � IKJ $�

�
_ �
�
�
	 � � � � * �K� 
�	 	 & $ �L� 
�	 2 ��� w � }

} � � �  � � �  � � � � �/] � � � � � } �� � � � � � � � � � � � � � �/] � � � � }
} �� � � � �/] � � � � � � � � }  � � � � �/] ' �

where we define the first auxiliary constant

' � � ��kml # � � � � � � � �
and  � � � � �� �  	 �r] O 	 .

Using (A.2.12) and (A.2.13) once again, from the definition of b in (A.2.7) we
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get

	 b 	 2 � � �`	 b $ 	 2 � � } 
�
� ]
� ] 	 � � � � �K� 
 � � � � � � �K� 
  �Ai � & $ 
�	 2 ��� w }

} �
�
� �/]

�
IKJ $�
�
_ �
�
�
	 � � � * �K� 
�	 �YIKJ $�

�
_ �
�
�
	 � � � � * �K� 
�	

� 	 i�	 ��	 & $ �L� 
�	 2 ��� w !
� }

} �
�
� �/] �  � � �  � � � 	 i�	 ��	 & $ 	 2 ��� w ! � }

} �
�
� �/] � S� � � � �  � � � � �  � � � � �/] ' � � � � �/] � � � � � � }

} ��� � � � 	 ] � � � � � � � � � � � � � ' � � � � � � � �4}
} ��� � � � 	 ] � � � � � � � � � ��' � ��� � � ��
 � }
} � � � 	 ] � � � � � � � ' � ' 	

where
' 	f� �!kml # ( �

� � � 0
and we take

�8� �	� ��� � �  � � 	 ] O � . By using the preceding estimates we have

	 � $ � *
� �K� 
�	 � s 2 � � �N	 i � & $ �L� 
 � b $ �L� 
 �  * � 	 � s 2 � � }

} 	 i�	 ��	 & $ 	 2 � � ��	 b $ 	 2 � � 	 *
� 	1}

}  � � � � �/] ' � � � � �/] � � � � � � � � 	 ] � � � � � � � ' ��' 	 � }
} � � � 	 ] � � � ' � � � � � � � � � � � ' ��' 	 �4}
}�� � � � 	 ] � ' ��' 	 � � � � � � � � � � � � � � � } � � � 	 ] � ' ��' 	 ' �

where
' � ��� � � � kml # � � � � � � � >

observe that ' � is linear in � and so is the final estimate that proves the lemma
with (� � � � �  � � 	 ] O � and T � � ' � ' 	 ' � �

We can now state the following
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Proposition A.2.2. There exists  	 � (� such that if

�  	ST � � � � � � 	 ] � . � (A.2.14)

then

1. � �L� 
 � ��� �=b �L� 
 , with b as in (A.2.7), is an analytic diffeomorphism on
�  .

2. If �� �L� � 
 ��� � ��� �b �L� � > � 
 is its inverse, we have

	 �b 	 2 � � w � } 	 b 	 2 � �M} (� � � 	 ] T �E<
3. �� � � 2 � � w � e �ED � 2 � � , �7� � 2 � 	 � e �ED � 2 � � w � and �� � � � id � � � �� on

� 2 � 	 � .
4. Let ��. � then 9 *

� � Tf� � � �P� � � 2 � 	 � we have *
� � � � � $ � *

� �K� 
 �T � � � w � 9 � � � � � ��� ; in particular * � *
� ��� � $ � *

� �K� 
��+T � � � w
Proof The first three statements follow directly from proposition A.1.1 with� � ��� � and � � � � � �	

�
and by taking  	 � � (� �A� �	��
 so that the condition	 b 	 2 � � . � � � � O � � �	 �  O ��� holds by the estimate in the preceding lemma. Again by

lemma A.2.2 and by hypotheses we obtain �r	 � $ � *
� �K� 
�	 � � � s 2 � 	 �M} � 	 so that the last

statement is also proved �
By this proposition we are now able to control domain and codomain of � ;

therefore we may use the following estimates:

	 � � ��� � ��	 � � � s 2 � 	 � } 	 �C	 � � � w s 2 � �
	 � � � ��	 � � � s 2 � 	 � } 	 � � 	 � � � w s 2 � � for

�
� � � � � �

A.2.3 Estimates on �
� ����� � � � � , � � ����� � � � � and � � ���

To complete the first step of the proof of Kolmogorov’s theorem we want now to
estimate the difference between the energies and the quadratic parts of �

� ��� and
�

� ��� , and the size of the new perturbation �
� ��� .

Lemma A.2.3. There exists  ���  	 , constant depending on 
 � � ��� , andT 	 ��T � such that:

kml # � 		 � � ��� ���
� ��� 		 � �

		 �
� ��� � *

� � �� �L� � 
 
 		 � � � s 2 � 	 � �

� � � � 
 t �6t 
 		 � ��
�
�
� ��� � *

� � �� �L� � 
 
 ���
� ��� � *

� � �� �L� � 
 � 		 � � �w � s 2 � 	 � � }
} �  � � � � � � � ] � � T 	=�
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for any 	 �^	 � }	� .

Proof Identity (A.2.8) and lemma A.2.2 yield:
		 �

� ��� ���
� ��� 		 � �r	 � �i ����� � � �& 
 ��	6} � �c	 � 	�	 i�	 ��	 �C	 � � 2 
 }

} � � �  � � � �/] � ' � � � 
�} �  � � �/] � ' � � � � � ��
�} �  � � �/] � ' ��' �
with

' � � ��kml # (
� � � � 0

Moreover, by identity (A.2.9) we have �
� ��� � �

� ���
� � ��

� ���
� � � � � ��� 	 ��� � 
 ;

thus, we may estimate separately the three terms using definition in (A.2.11) and
the inequality proved in lemma A.2.2; it result

	 � � � *
� � �� �L� � 
 
�	 � � � w � s 2 � 	 � } 	 � � � *

� �K� 
 
�	 � � � w � s 2 � � }
} 	 � � � *

� �K� 
�	 � � � s 2 � ��	 b $ �L� 
�	 2 � �r	 *
� 	1} �(� � � � � � 	 ] � � � � � ' � ' 	 �

and

	 � 	�� *
� � �� �L� � 
 
�	 � � � w � s 2 � 	 � } 	 � 	�� *

� �K� 
�	 � � � w � s 2 � � }
}  
� � � � � � � � �c	 i�	 ��	 & $ 	 2 � � 
 }
}  � � � � � � � (� � � � �/] ' � � (� � �/] � � � � � }
} �(� � � � � � 	 ] � � � � � � ' � � � � � � � } �(� � � � � � 	 ] � ' � ' � � � >

analogously, for what concerns � � we have:

	 � ��� *
� � �� �L� � 
 
�	 � � �w � s 2 � 	 � } 	 � � � *

� �K� 
�	 � � � w � s 2 � � }
} 	 � � � *

� �K� 
�	 � � � s 2 	 *
� 	 	 } S� � � 	 � 	 <

Now recall that ' � �!� � � � kml # (
� � � � � 0 and then

� ' � �!� � � � kml # � � � � � � � � � } � � � � kml # ( ' 	 � ' � 0 } � � � � ' ��' 	 >
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besides observe that obviously � � � � .	� and therefore we have:

� � � � 
 t �6t 
 		 � ��
�
�
� ��� � *

� � �� �L� � 
 
 ���
� ��� � *

� � �� �L� � 
 
 � 		 � � 	�� s 2 � 	 � }
} � � 	 � ��	 � � � w � s 2 � 	 � ��	 � 	�	 � � � w � s 2 � 	 � ��	 � �`	 � � � w � s 2 � 	 � ! }
} �
� �(� � � � � � 	 ] � � � � � ' � ' 	 � � �(� � � � � � 	 ] � ' � ' � � � � S� � � 	 � 	 � }

} � �(� � � � � � 	 ] � � � � � � � � ' � ' 	 � � ' � ' � � � � ��}
} � �(� � � � � � 	 ] � � � � ' � 	 ' 	 � � ' � 	 ' 	 � � � }
} � �(� � � � � � 	 ] � � ' � 	 ' 	 	 �

It remains now to be proved the estimate for � ; by identity (A.2.10) we have

	 � � ��� � *
� � �� �L� � 
 
�	 � � � s 2 � 	 � } 	 �

� ��� � *
� �K� 
�	 � � � s 2 � � }

} 		 �
� ���� � *

� �K� � 
 		 � � � s 2 � � 	 � $ �L� 
�	 2 � � �
		 �

� ���� � � *
� �K� 
 		 � ��� w s 2 � � 	 � $ �L� 
�	 	2 � � }

}  � � � � (� � � 	 ] T � � � � 		 � � ���� � � *
� �K� 
 		 � � � w s 2 � �

� �
		 �

� ���� � � *
� �K� 
 		 � � � w s 2 � � ! 	 � $ �L� 
�	 	2 � � }

} �(� � � � � � 	 ] ��T � � � � �  � � 	 � � �����  � � 	 � � � (� � � 	 ] T � � � 	 }
} �(� � � � � � 	 ] ��T � � ��� � 	 � � � 	 � � � ] T � 	 � � � � � � � �� � ! }
} � � 	 � � � 	 � � � ] � 	 T � � � � � � T � � � ��� �� � ! � }
} � � 	 � � � 	 � � � ] � 	 T � � � � ��' � 	 ' 	 	 � � ��� �� � ! � }
} ��� � 	 � � � 	 � � � ] � 	 ' � 	 ' 	 	 T � �

if we impose on � the condition

� �� � } ��<
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The lemma is so proved taking

 � ����� � 	 � �	�  � � � ] O � � (A.2.15)

and T 	 � ' � � ' 	 � ' � ' � � (A.2.16)

A.3 Iteration and conclusion

A.3.1 Inductive step and convergence of the scheme

In lemma A.2.1 we have proved that Kolmogorov’s non-degeneracy condition
holds for �

� ���
� �

� ��� � � and hence we can iterate proposition A.2.1 obtaining by
consecutive symplectic transformations the following scheme:

� � �
� ���
� �

� ��� ��� �
� ��� � � � �e � D �

� ���
� �

� ��� ��� 	 �
� ��� � � 
 �e �ED �

� 	��
�

� �
� 	�� ���

�
�
� 	�� �� � � �  
 �e �ED �

� 5 �
� �

� 5 � ��� 	 � � � 5 � <&<&< (A.3.1)

(notice that here �
� ���
� � in proposition A.2.1); to prove theorem A.1.2 we must

therefore provide in some way the convergence of the scheme.
With proposition A.2.1 we have reduced the analycity domain from T � Z � 2

to T � � 	�� Z � 2 � 	 � , where this loss is due to the inversion of the operator � 

and to the necessity of estimating the derivatives of some analytic functions (see
lemmata A.1.1 and A.1.2) . Let � 5 and

� 5 be the losses of analycity at each step
and T � � Z � 2 � the analycity domain after : iterations; to iterate infinitely times the
proceeding shown, obtaining a non-empty analycity domain, we must then require
that the sequences � � � � � � � � � � � � � �(� � 	 � � � � � � �E<&<&<=�15KO � � �15 � � � 5 �� � � � � 5 � x � � � and � � � � � � � � � � � � � �(� � 	 � � � � � �%�E<&<&< � 5KO � � � 5 � � ��5 �� � � � � 5 � x � � � admit a strictly positive limit. For any � � .�� � and � � . � � we
put

� 5 � �
� 5 � � �\� �� ��5 � �

� 5
� � � � �� (A.3.2)

in order to have a final analycity domain T � � Z � 2 � .
Recall that in lemmata A.2.2 and A.2.3 we defined

' � � kml # � � � � � � � �
' 	 � kml # ( �

� � � 0
' � � �,kml # � � � � � � � � ��� �' �
' � � kml # (

� � � � 0
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and took T*� � ' � ' 	 ' � and T 	 � ' � � ' 	 � ' � ' � . We now define iteratively the
following quantities

��58� � �� 5 	 �
� 5 � 	 � � s 2 � � � 5 � � �� 5

			 ���
� 5 �� � � � �& 
 � � � 			 � �)5 � � 	 � � 5 � 	 � � s 2 �

and the following real numbers

�15 � �!kml # � �2 � � �2 � � 2 � � a 5 � �!kml # � �� � � �� � � � � �
'
� 5 �� � �!kml # ( ��5 � � � � � 0 '

� 5 �	 � �!kml # ( ��5
� 5 � � 0

'
� 5 �� � �!�)5 �' � 5 �� �!�)5 � � �5 kml # (

� 5 � � � � 0 '
� 5 �� � �!kml # (

� � 5 � � 0
T � 5 �� � � '

� 5 �� '
� 5 �	 '

� 5 �� T � 5 �	 � � '
� 5 �� �

'
� 5 �	 �

'
� 5 �� '

� 5 ��
with the notation � � � � ,

� � � �
, � � � � , a � � a , � � � � . We are now

ready to state

Lemma A.3.1. There exist positive constants  � �  � and 
 � , depending on 
 �
� � � , such that if

� ��gm��.	� (A.3.3)

with � �  � a � � � � ] � � � ' � � ' � 	 ' � kml # ( � � � � � 0 , g � � ] �
, then it is possible to

define iteratively (by the scheme described) Hamiltonians �
� 5 �
� �

� 5 � � � 	 � � � 5 �
analytic on T � � Z�� 2 � and �

� 5 � symplectic transformations such that �
� 5KO ���

�

�
� 5 � � �

� 5 � .
Besides, referring to the previously defined quantities, for every : � � we

have

� � } ��5 � 5 }�� � � (A.3.4)
� 5 � 58}�� � � (A.3.5)

� 	 � �)5 } � � ��gm� 
 	 ���g 5KO � (A.3.6)

and by mere consequence

'
� 5 �� } � ' � a

'
� 5 �	 } � ' 	 a 	�

' �
� 5 � } �

�
' � a 	

� 	 � ' � 5 �� } ' � a 	
'
� 5 �� } � ' � a

� 	 � �)5 � 5��5 } �
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and

� 	 � T � 5 �� } T �
� 	 � T � 5 �	 } T 	z<

Furthermore, it results that the symplectic transformation �
� 5 � �6T � � � 
 Z � 2 � � 
 DT � � Z � 2 � generated by

� 5�� *
� �K� 
 � *

� �� � � 	 � � 5 � *
� �K� 
 (we denote

� � � �
),

where � 5 � *
� �K� 
 �!i 5 =� � &c5��L� 
 � b�5 �L� 
E *

�
, is a symplectic diffeomorphism since

� 	 �  	ST � 5 �� ��5 � � � 5 � 	 ] � 5 . � (A.3.7)

for all : ��� .

Proof We want now to prove by induction inequalities (A.3.4) to (A.3.7) . For: � � condition (A.3.6) is trivial and (A.3.4) and (A.3.5) are obviously satisfied.
For what concerns (A.3.7) observe that

� � �1G �

� � � � � �� � �1G }	� G � G
� � �1G �

� � � � � �� � �1G }	� G � a � ! G
and therefore we have

�  	ST � � � �� � � 	 ]� � } �  	 ' � ' 	 ' � � a/� � � � 	 ] � 	 ] � �
� �K�  	 � 	 ] O � � � � ' 	 � ' 		 a � 	 ] � � � } � ��gm� .	�

by hypotheses, taking  � �  	 , � �  � � � � ' 	 � ' 		 a � 	 ] � � � and 
 � ��� 
 � � so that
(A.3.7) holds for : � � . Notice that during the proof we will come across several
lower bounds on  � � 
 � and � and in the end we will take the worst in order to
have all conditions required satisfied simultaneously.

Assume now by induction that conditions from (A.3.4) to (A.3.7) hold for�
�
� <&<&< : � � . Recall that by consequence of lemma A.2.3 we have 9 	 ��	1} �

		 �
� 5KO ��� 		 � � s 2 � }  ��� � 	5

� � � ]5 � 	5 ' � 5 �� �
'
� 5 �	 � �

' �
� 5 �

'
� 5 �� � 	5 � �!�)5KO �

		 �
� 5KO ��� ���

� 5 � 		 } � 	 � �)5KO �
� � � � 5 
 t , t 
 		 � ,� � � � 5KO ��� ���

� 5 � � 		 � � s 2 � } � 	 � �)5KO �
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where we have denoted � � �!� and hence

� � �  ��� � 	 � � � ] � 	 ' � � ' �	
�
' � ' � � 	 <

We now verify (A.3.6): 9 �,} � } : we have

� � �  ��� � 	� � � � �
� ]� � � � 	� � � '

� � � ����
�
'
� � � ���	

� �
' �

� � � ��� ' � � � ���� � 	� � � }
}  �
� ��� � � �� � � � 	 � � � �\� �� � � � � ] � 	 � � � a � 	 ' � � ' �	

�
' � ' � � 	� � � }

}  � � � ] O � � � � � ] O 	�� � � � ��� a � � � � ] ' � � ' � 	 ' � � � � � � � � 	� � � } � �cg
� � �� � 	� � �

taking � � �  � a � � � � ] ' � � ' � 	 ' � � � � � � � with  � �  � � � ] O � � and g � � � � ] O 	 (that
is 
 � � � 
 � � ). Now let

�� � ��� �Sg � O �� � � we have
�� � } � � �Sg � O �� � � � �cg � � �� � 	� � � � �	� 	� g 	 �� � 	� � � � �� 	� � �

therefore by iteration we obtain 9 � } :
�� � } �� 	 ��

that is 9 � � � �(�cg ��g � it results (taking
�
� : )

��g 5KO � �)5 }�� ��gm� 
 	 �  � 	 � �)5 } � � ��gm� 
 	 ���g 5KO �
and hence condition (A.3.6) holds 9;: ��� .

Using (A.3.6) and hypothesis (A.3.3) we can obtain

	 � � 5 � 	 � � s 2 � �

					 �
� ��� �

5�
� x � �

� � � ���
� � � ���

					 � � s 2 �
}

} 	 � � ��� 	 � 
 s 2 
 �
5�
� x � 	 �

� � � ���
� � � ��� 	 � � s 2 � }

} � � �
5�
� x � �

	 �  
 � � � � } � � �
5�
� x �

� � ��gm� 
 	 �  

��g � }

} � � �
5�
� x �

�
��g � } � � � �

�
O ��
� x � g �

�
�
� � � �

� �Ag � ��
 }
} � � � � � }�� � � <

149



since � � � } � � �� } � � , so that (A.3.4) is verified.
We now verify (A.3.5). Let T � � �����

� 5 �� � � � �& 
 � for
�
�
� <&<&< : � � , we want to

prove 	 T � �5 	1}�� � . Recall that if '�� mat �A��Z � 
 then ��� � ' 
 � � � � �� x � � � ��
 � ' �
and 	 ��� ��' 
 � � 	1} �� � t H t . So

T 5 � T � �
5�
� x � T � � T � � � � T � �

�T � T � � � � T � �� �T !
where obviously we took

�T � � 5 � x � �AT � � T � � � 
 . By hypothesis T � is invertible,
so to invert T 5 we have to invert � ��T � �� �T , that is we want to prove 	 T � �� �T;	1. � :

	 T � �� �T;	�} 	 T � �� 	
5�
� x � 	 T � � T � � ��	1}

} � � 5�
� x �

		 � � 	� � � � � � � �� 
 ���
� � � ��� � � �� 
 � 		 � � s 2 � }

} � � 5�
� x �


� � � � � 
 	

		 �
� � � ���

� � � ��� 		 � � s 2 � }

}  � �
� � � � � 
 	

5�
� x � �

	 � � � � � } �  a �
5�
� x �

� � ��g �=� 
 	 �
��g � O �� }

}  � a� �
��
� x �

�
g � O �� �

 � a� ��g ���Ag � � ��
 }  � a� � } �� <
if we assume � ���  � a/� � � ; the new condition on � � is

� � �  � a � � � � ] ' � � ' � 	 ' � � � � kml # ( � � � � � 0 <
We just proved that TM5 is invertible and

	 T � �5 	 � � 5 � 5 � 	 T � �� 	
				
� � � T � �� �T ! � �

				 } 	 T � �� 	 �
� � 	 T � �� �T;	 }��

� � <
so that

� 5 � 5 }�� � � for every : ��� .
To end the proof of this lemma we have to verify (A.3.7) for

�
� : . Using
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(A.3.4) to (A.3.6) and hypothesis (A.3.3) we have

� 	 �  	ST � 5 �� ��5 � � � 5 � 	 ] � 5 �  	 � 	 � �)5 ' � 5 �� '
� 5 �	 �

' �
� 5 � � 5KO ���� � � �

� � 5KO �� � � � � �
	 ] � 5 }

}  	 � 	 � �)5 � � ' � ' 	
�
' � �

� 	 ] O ��� � 5KO ��� a � � 	 ] }
}  	 � � ��gm� 
 	 ���g 5KO � �

�
' � ' 	

�
' � �

� 	 ] O ��� � 5KO ��� a � � 	 ] }
}  	
��g 5KO � �

�
� � � � � � ' 	 � ' 		 �

� 	 ] O ��� � 5KO ��� a � � 	 ] . �
if we take � �  � � � � � � � ' 	 � ' 		 a � � 	 ] with  � �  	 � � and g ��� 	 ] O � .

Hence the lemma is proved by taking

 � �  � � � ] O � � (A.3.8)


 � � � 
 � � �
We are now ready to prove the convergence of the scheme described in (A.3.1)

with the following

Proposition A.3.1. Let � � �
� ��� � �

� ��� <&<&< � � 5 � the sequence of symplectic diffeo-
morphisms obtained iterating lemma A.2.1; if we define

� � 5 �
� �

� ��� � �
� ��� � �� � �

� 5 � �1T � � � 
 Z � 2 � � 
 DFT � Z � 2
then the sequence � � 5 � converges (uniformly) to a symplectic diffeomorphism
��� �  � k45 � � � � 5 � such that

��< � � id � � � � 

�/< �

� ��� � � � �
� � � � �

� � � � �  *
� � �

� � � � *
� �K� � 


with �
� � � (that is � � in theorem A.1.2) analytic on T � � Z � 2 � .

Proof We prove the uniform convergence of � � 5 � which also guarantees the
analycity of �

� � � . Let’s write � � 5 � through a telescopic series:

� � 5 �
� � � ��� �

5�
� x � �

� � � �
� � � � ��� � � �
5�
� x � �

� � � �
� � � � ��� <
By lemma A.2.2 we have obtained that

	 � � id 	 � 
 s 2 
 } �  	ST � � � 	 ]� �
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since
��� � id 
 � *

� �K� � 
 � �
� i � & $ �L� 
 � b � $ �L� 
� * � � �b �L� � 
�� $vx �� � $ � �

and each term was estimated with  � T � � � 	 ] � and  	 � � (� . By induction we can
therefore assume 	 � � � � � id 	 � � s 2 � } � 	

�  	ST � 5 ��
� � 	 ]5 � 5

which implies, together with lemma A.3.1 ,
		 � � � � �
� � � � ��� 		 � � � 
 s 2 � � 
 � 		 �

� � � � � � � � ��� �
� � � � ��� 		 � � � 
 s 2 � � 
 }
} � 	

�  	cT � 5 ��
� � 	 ]5 � 5 �  	 � 	 � �)5 ' � 5 �� '

� 5 �	 �
' �

� 5 � � � 	 ]5 � 5 }
}  	 � 	 � �)5 � � a � ' � ' 	

�
' � � 	 ] � 	 ] � 5KO ��� � }

}  	 � � � �cg �c� 
 	
�

� �cg � O �� � � a � ' 	 � ' 		 � � � � � � � 	 ] � 	 ] � � O ��� � }�� � � �Sg �=� 
 	 � �
since in lemma A.3.1 we took � � �  � a � � � � ] ' � � ' � 	 ' � � � � � � � and g � � � � ] O 	
(notice that a � � ) . Therefore we can estimate 	 � � id 	 as follows :

	 � � id 	 � � s 2 � } 	 � � id 	 � � s 2 � � ��
� x �

		 � � � � � � � � � ��� 		 � � s 2 � }
} 	 � � id 	 � 
 s 2 
 � ��

� x �
		 � � � � � � � � � ��� 		 � � � 
 s 2 � � 
 }

} �  	ST � � � 	 ]� � � ��
� x � � � � �Sg �=� 


	 � � }
} �K�  	 ' ��' 	

�
' � � � 	 ]� � � ��

� x � � � � �cg �c� 

	 � � }

} �K�  	 � � � � � � ' 	 � ' 		 � 	 ] � � O ��� � 	 ] � � ��
� x 	 � � � �cg �c� 


� � }
} � � �Sg �=� � � ��

� x 	 � � � �Sg �=� 

� �

since always by lemma A.3.1 it results � � �  	 � � � � � � � 	 ] and g � ��� 	 ] . Then,
taking g � �`g � , that is to say the new hypothesis is � � �Sgm� . � and hence
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� � �Sg �=� . �	 , we obtain

	 � � id 	 � � s 2 � } � � �cg �c� � � ��
� x 	 � � � �cg �c� 


� � }
} � � �Sg �=� � � � � � �Sg �=� 
 	

� � � � �Sg �=� � } � � �Sg �=� � � � � � � �cg �c� 
 	 � } � � �Sgm� � <
Thus � � 5 � converges uniformly to � and �

� � � � �
� ��� � � is analytic. To conclude

we trivially observe that

� 	 � 		 � � 5 � 		 2 � s 2 � } � 	 � �)5f} � � ��gm� 
 	 � 5 � ��ED �

so that �
� � � is effectively in Kolmogorov’s normal form �

A.3.2 Final estimates

To completely prove theorem A.1.2 we estimate 	 � � � � � �
� ��� 	 and

		 �
� � � ���

� ��� 		 .
Recall first that in order to have all the inductive conditions satisfied we must take
� ��gm� .	� for any

� ��� � �  � a � � � � ] � � � kml # ( � � � � � 0 ' � � ' � 	 ' � (A.3.9)

g ��g � � � � ] O 	 (A.3.10)

with  � �  � � � ] O � � . Now using the estimates done in the proof of lemma A.2.3
we have: 		 �

� ��� ���
� ��� 		 } (� � � �/]� � ' ��' 	

therefore by inductive hypotheses and lemma A.3.1 we obtain

		 �
� 5KO ��� ���

� 5 � 		 } (� � 	 � � � 	 ]5 �)5 ' � 5 �� '
� 5 �	 }

} (� � 	 � �)5 � 	 ] � 	 ] � 5KO ��� � � a � ' � ' 	f}
} � � ��g �c� 
 	 ���g 5KO ��

� 	 ] � 5KO ��� (� � � a � � 	 ] ' ��' 	 }�� � ��g �=� 
 	 � � �
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for any � ��� � . Now writing �
� � � as a telescopic series and taking g ���`g � ,

in order to have � ��g �c��. �	 , it results

		 �
� � � ���

� ��� 		 } 		 �
� ��� ���

� ��� 		 �
��
5 x �

		 �
� 5KO ��� ���

� 5 � 		 }

} (� � � �/]� � ' ��' 	 � � � ��
5 x � � � ��g �c� 


	 � }

} (� � � ] � ] � ' ��' 	 � � � ��
5 x 	 � � ��g �c� 


5 }

} � ��g �c� � � � � � � � ��g �c� 
 	
� � � ��g �c� } � ��gm� � � <

In a completely analogous way we can estimate
		 � ,� � � � � � ���

� ��� 
 		 � � s 2 � ; in
lemma A.2.3 we obtained

� t , t 
� 		 � ,� � � � ��� ���
� ��� 
 		 � 
 s 2 
 }  � � � � �� � � 	 ]� � � ' 	 � ' 		 �

thus, by induction,

� � � � 5KO � 
 t , t 
 		 � ,� � � � 5KO ��� ���
� 5 � 
 		 � � � 
 s 2 � � 
 }

}  � � 	 � � � �5 � � 	 ]5 � �5 ' � 5 �� 	
'
� 5 �	 	 �)5 }  � � 	 � �)5 � � � O 	 ] � � 5KO ��� a � � 	 ] � � a � ' 	 � ' 		 }

} � � ��g �c� 
 	 ���g 5KO ��
�
� � O 	 ] � � 5KO ��� a � � 	 ]  � � � ' 	 � ' 		 }�� � ��g �=� 
 	 � � � >
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writing as usual �
� � � as a telescopic series we obtain for 	 ��	 � }��

� � � � � 
 t , t 
 		 � ,� � � � � � ���
� ��� 
 		 � � s 2 � }�� � � � � 
 t , t 
 		 � ,� � � � ��� ���

� ��� 
 		 � 
 s 2 
 �
�
��
5 x � �

� � � 5KO � 
 t , t 
 		 � ,� � � � 5KO ��� ���
� 5 � 
 		 � � � 
 s 2 � � 
 }

}  � � � � �� � � 	 ]� � � ' 	 � ' 		 � � � � ��
5 x � � � ��g �c� 


	 � }

} �  � � � O 	 ] a � � 	 ] ' 	 � ' 		 � � � � ��
5 x 	 � � ��g �=� 


5 }
} � ��g �=� � � � � � � � ��g �=� 
 	

� � � ��g �=� } � ��gm� � �
having imposed the same previous condition g �	�`g � .

We now conclude remarking that by the estimates done we can take � ��gm��.	�
with (see (A.3.9), (A.3.10), (A.2.15), (A.3.8))

 � � �  � � � ] O 	 �
� �  � a � � � � ] ' � � ' � 	 ' � � � � kml # ( � � � � � 0
g � � � ] O �

(where  � �� � �c� 
 in lemma A.1.2) that is

�^. � � � � �
�`�  � � � � � � 	 � � O  � O � ��� a � � � � � � � O  � ��' � ' 	 
 � � ' � �� k���� ( � � � � � 0 <

(A.3.11)

A.4 Dependence on additional parameters

In this last section we are going to analyze what happens when the perturbed
Hamiltonian depends, in addiction to the action-angles variables, on some param-
eters belonging to a compact set of ��G . The result is that Kolmogorov’s theorem
applies easily to such Hamiltonians if we assume some uniform estimates on the
norms of � and � . We can formulate our statement as follows:
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Theorem A.4.1. Let � � * �K� > � 
 � � � � 
 � �  * ��� � * �K� > � 
 ��� � * �K� > � 
 be a
real-analytic Hamiltonian over T 8Z �  with

� ��� ��s � . Assume that � has a �
�

or �
�

� for
� } ��} ~ , Lipschitz or analytic dependence on the parameters � in

a compact subset
�

of ��G . Suppose that � and � have analytic extension on the
complex domain T � Z � 2 , for some

� .��7} � . Suppose to have � � � �K� > � 
 �
� � � � � �K� > � 
 � � and � "�� ��� � � � � �& > � 
 � �� �
for all �-� � .

Let � � . � and � � . � , take

� � IKJ $
� % � 	 � � * �K�

> � 
�	 � s 2
� � IKJ $

� % � kml #
� �� 	 � � * �K� > � 
�	 � s 2 �`	 � � � * �K� > � 
�	 � s 2 � � 	 � � � � * �K� > � 
�	 � s 2 �

� � kml #
� �� � � �� �\� � �

a
� kml #

� ��
�

�
�� � � � �

� � �� IKJ $
� % �

		 ��� � � � � �& > � 
 � � � 		 >
and define

� � � kml # � � � � � � � �
� 	 � kml # ( �

� � � 0
� � � kml # (

� � � � 0
� � � kml # � � � � � � �^>

there exist a positive constant �� � �c� 
 � � such that if

��gm��.	�
where

� �  a � � � � ] � � � � � � � � 	 � � � � (A.4.1)

and g �	� � 	 � � O  � O � � � (A.4.2)

then there exists a symplectic diffeomorphism

��� � *
� �K� � > � 
���T � � Z � 2 � Z � D � * �K� > � 
��+T � Z � 2 Z �
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with the same dependence of � on the parameters � , which puts the Hamiltonian
� into the form

� � � *
� �K� � > � 
 � � � � � 
 � �  *

� � � � � *
� �K� � > � 
 � � � �

and we also have that 	 � � ���[	 , � � � ��� � � 
 } ��gm� � � and
� � � id

�
� 
 }

��gm� � .
Remark A.4.1. Notice that this is theorem A.1.2 if we take � � � ,

�
� ( 	 �
	1. � � 0

(with � � as found in (A.3.11)) and we make the substitution ��D � � .

Proof The proof of this theorem is totally equivalent to the proof given in the
previous sections. The only difference is that we assumed uniform estimates on
the additional parameters � so that we are allowed to find, as done before, a sym-
plectic map, obviously depending on the parameters (i.e., a family of symplectic
maps parametrized by �N� � ) that puts the Hamiltonian � into Kolmogorov’s
normal form.

The only aspect we need to discuss briefly is the kind of dependence � has
on the parameters. Recall first that in the first step of the proof of Kolmogorov’s
theorem we took

& �L� > � 
 � � 
 � � � � � � �K� > � 
 ����� � � �K� > � 
 � 

i � � 
 � � ��� � � � � �& > � 
 � � � ��� � � � �& > � 
 � � � � � � �& > � 
  & $ �  > � 
 �

b �L� > � 
 � � � 
 � � � � � � � �K� > � 
 � � � � � � �K� > � 
z �Ai � & $ 
 
 >
it can be immediately seen that & , i and b have the same dependence of � and �
on � . Observe that equivalent formulations of lemma A.1.4 and proposition A.1.1
can be given in the case b ��� ����2 
 has an arbitrarily dependence on the parame-
ters � . Therefore � �L� > � 
 � � � b �L� > � 
 is a diffeomorphism in the angles (since
the estimates of lemma A.2.2 naturally hold also in this case by the assumption of
uniformity made on the norms) and so is its inverse �� , while they have the same
dependence of � on � . Hence the first symplectic transformation �

� ��� generated
by � � *

� �K� > � 
 � i � � 
 &� � & �L� > � 
 � b �L� > � 
  *
�

also depends in the same way on the parameters; this proves that �
� ���
� �

� ��� �
�
� ��� has the dependence of �

� ��� on � and so has �
� � � since proposition A.3.1

still holds if we add the dependence on some parameters �
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Appendix B

Measure of Kolmogorov’s invariant
tori

B.1 Introduction

Let � � � *
� �K� � 
 � � � � �  *

� �*� � *
� �K� � 
 a real-analytic Hamiltonian in Kolmogorov’s

normal form over T )Z!�  , with
� ��� ��s � fixed diophantine vector, and � � � �K� � 
 �

� � � � � �K� � 
 � � . Then, we have that the torus
�
� ( �

� �K� � > � 
 > � � � �  0
is invariant for the flow � � �

� of � � and the flow on
�

is given by � � �
� � � �K� 
 �

� � �K� � � � 
 . If we consider now an Hamiltonian � � * �K� 
 � � � �  * � � � * �K� 
 �� � � * �K� 
 conjugated to � by the symplectic transformation

� ��� � *
� �K� � > � 
��+T  Z �  D � * �K� >

� 
��+T  Z �  �

as in Kolmogorov’s theorem, we naturally have that the torus
� 
 � � � � � 
 � ( � � � � �K� � > � 
 > � � � �  0 (B.1.1)

is invariant for the flow � � � of � and the flow on
�

is given by � � � � � �K� 
 �
� � � � � �K� � � � 
 
 .

We now consider an Hamiltonian in the form

� � ����� � 
 ��� ��� 
 ��� � ����� � 

real-analytic on a certain domain g Z �  , g being an open bounded set in �  ;
we make the assumption that the “frequency map”

� � � � � ��� ���+g �ED � � ��� 
 � � � ��� 
� � (B.1.2)
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is a diffeomorphism of class ��� on g (up to restricting the domain this can be
made without loss of generality). Hamiltonians in this form are called “nearly-
integrable” and are of great interest since they often appear in problems dealing
with celestial mechanics. Consider now for a fixed

� � � the open subset of g
T � T�� � 
 � ( �m�+gU	 dist ����� � g�
 � � 0 (B.1.3)

Let � � � ���AT 
 (B.1.4)

the mapping of T through the frequency map and let

� � �!� �-� ��� 
 � (
� �+�N	 � ��� ��s � 0 (B.1.5)

for fixed � and �;� � � � , we define

T � �
� � � � �A� � 
S<

With an appropriate change of variables we will reduce the Hamiltonian � � into
a perturbed Hamiltonian � as in theorem A.4.1 in order to obtain for each

� �T � , as previously observed, an invariant torus for � and hence, coming back
to the original variables, an invariant torus

� 
 for � � . In this chapter our aim
is to give a result concerning the measure of this KAM tori, i.e., maximal tori
possessing quasi-periodic motions with diophantine frequencies, as consequence
of the results obtained in the previous chapter. More precisely we are going to
estimate

meas 	  "
1% � �
� 


( here “ meas � ” stands for the Lebesgue measure in ��� ) showing that the measure
of this union of invariant tori for � � is at least

��� �
1%&'
				
�
� �
� � � � � � 


				
� � � � � � 
� 
 ! � ��� 
 	  � meas  � 
4<

We remark that a better result, more precisely � � � � �

w 
 instead of � � � � �



� 
 ,

can be obtained using V. I. Arnold proof of Kolmogorov’s theorem that is slightly
different from the one we gave in the previous chapter which is based on Kol-
mogorov’s original idea. Arnold’s formulation and proof of Kolmogorov’s theo-
rem can be found in [Arn63a]. We also remark that a famous generalization of
the first results on the measure of invariant tori obtained by V. I. Arnold and A. I.
Neistadt, was given by J. Pöeschel who established, in [Pös82], similar estimates
in the case of finitely many times differentiable perturbations.
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B.2 Kolmogorov’s normal form for
�
�
������� �

Let � � ����� � 
 � � ��� 
 � � � ����� � 
 the analytic Hamiltonian we are considering,
� �

the frequency map and T � as defined in the introduction with the same assumption
already made. We now operate the following elementary change of variables:

�
� � ) � *� ���\<

So, by Taylor’s development we have

� � ����� � 
 � � � � ) � * �K� 
 ��� � ) � * 
 ��� � � ) � * �K� 
 �
� � � ) 
 � � ��� ) 
  * � � � * �K� > ) 
 ��� � � ) � * �K� 


having defined � � � � � � and

� � * �K� > ) 
 �
�
�
� �

� �
� � � ) ��� * 
P� � � * � * �v<

Let
�
�
� ��� ) 
 , that is ) � � ��� � � � 
 , it results

� � ����� � 
 �
�
� � � * �K� >

� 
 � � � � 
 � �  * �
�
� � * �K� >

� 
 ���
�
� � * �K� >

� 
 (B.2.1)

with

� � � 
 � �
� � � � � � � 
 �

�
� � * �K� >

� 
 � �
�
* �K� >

� � � � � � 
�� � ��
� �

� �
� � � � � � � � � 
 ��� * � � � � * � * �

�
� � * �K� >

� 
 � �
� � � � � � � 
 � * �K� � <

We now want to apply Kolmogorov’s theorem on the persistence of quasi-periodic
motions to

�
� � � * �K� >

� 
 .
�
� � depends on parameter � � � � 
 �7� � Z ( 	 �r	 . � � 0 ( � �

as in (A.3.11)). Let us verify that the hypotheses made in theorem A.1.2 hold for�
� � � * �K� >

� 
 uniformly upon the parameters. By definition of
�
� � * �K� >

� 
 we have
that �

� � � �K� > � 
 � � � � � �� � � �K� > � 
 >
moreover, it results

� "�� � �� � � � � �K� > � 
 � �
�
�
� "�� � � � � � � � � � � � 
 
 � � � � � "�� � � � � ) 
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where the average over �� vanishes since
�
� does not depend on the angles � � � ;

observe now that ) � � ��� � � � 
 , where
� � � � � � �AT 
 , hence ) � T and

therefore , being � � a diffeomorphism on T by hypotheses, we have
� "�� � � � � ) 
 �� �

so that we can effectively apply theorem A.4.1 to
�
� � � * �K� >

� 
 . Then for every
�^. � � � � 
 � � ��gm� 
 � � and for every

� ��� � there exist a symplectic map

� ��� � *
� �K� � > � 
�D � * ��� *

� �K� � > � 
 �K� ��� *
� �K� � > � 
 
 (B.2.2)

having domain on T � � Z � 2 � and codomain in T � Z � 2 ( where T  
�T is an
open ball in �� ), such that

�
� � � � � � *

� �K� � > � 
 � � � � *
� �K� � > � � � 
 � � � � � > � 
 � �  *

� � � � � *
� �K� � > � � � 


Then it results that
�� 
 � ( � * ���

� �K� � > � 
 �K� � � � �K� � > � 
 
�	y� � � �  � � ��� � 0
is an invariant analytic torus for

�
� � and therefore

� 
 � ( � �
� � �� � � 
 � * ���

� �K� � > � 
 � � ��� � � � �K� � > � 
z	y� � � �  � � ��� � 0
is an invariant torus for � � .

B.3 Extension of � �

By Kolmogorov’s theorem we obtained the symplectic transformation �
� , as in
(B.2.2), which is real-analytic for � *

� �K� � 
�� T � Z�� 2 as long as 	 �r	^. � � (see
(A.3.11) for the estimate on � � ). To estimate the measure of invariant tori for ���
we need that �!� possesses sufficient regularity as a map on (

� 0 Z � {Z�� . More
precisely we want to extend �!�v	 �=x � , defined on ���Z � � to a � � function on the
whole space ��mZ � (see (B.1.4) , (B.1.5) and (B.1.2) for the definitions of the
mentioned sets).

Let ' � �7� , a closed set and � a Fréchet space.

Definition B.3.1. A function �W� ' � D � is said to be �,G in the sense of
Whitney (for � � � ) if there exist � � � applications � �(� � � �&<&<&< � G , with � � �
' �8D �

�

� �L� , � � 
 (that is to say
�
-linear and symmetric applications on ' � ) such

that if � � � ' � Z ' � D �
�

� �L� , � � 
 is defined by

� � � * 
 �
�
� � G�� �

�� � � � O � �L� 
 � * �-� 
 � ��� � �L� � * 
 (B.3.1)
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then for all
�
�
� <&<&< � and for all � � * belonging to a compact subset of �*' � , it

results

IKJ $
�

� � �L� � * 
� � � *
� G�� � >

� � � *
� } � � � � ��ED �

(that is to say � � �L� � * 
 is uniformly �
� � � � *

� G�� � � on compact subsets of ' � ).
We will indicate with �,G� the space of such functions and with � � the derivatives
in the sense of Whitney of � . Besides � is said to be � � in the sense of Whitney
if it is �4G in the sense of Whitney for all � ��� .

The fundamental theorem we are going to use to obtain our result is

Theorem B.3.1 (Whitney’s extension theorem). If � is of class ��G ��' � � � 
 in
the sense of Whitney, then there exists a function ��3��� , D � such that:

1. �� is �4G (in the classical sense) ;

2. �� �L� 
 � � �L� 
 9 �3� ' � ;

3. ��
� � � �L� 
 � � � �L� 
 9 �3� ' � � 9 � �3� , with 	 � 	 � } � .

We refer to [Whi34] for a complete proof of this theorem.

Remark B.3.1. If � is a function of �,G� ��' � 
 (we are merely interested in the case
� � � ) then by Whitney’s theorem it can be extended in particular to a � G ��' 

function where ' is an arbitrarily chosen open set in � , containing ' � . Since
the derivatives of the extension �� coincide on ' � with the Whitney’s derivatives
of � we will always indicate with the classical notation �

� � � , for 	 � 	 � } � , the
derivatives of a �,G� ��' � 
 function even if ' � is a closed set, referring to them as
the restriction of ��

� G � to ' � .
Remark B.3.2. In the proof of Whitney’s extension theorem it can be observed
that the norm of the extended function can be controlled as follows as far as a
bounded set T containing ' � is considered:

IKJ $$&% � 	 ��
� � � �L� 
�	/}  G�

� x � IKJ $$&% H � 	 � � �L� 
�	
for some 8��� .

Definition B.3.2. We define
� Gn ���  ZC� > � 
 , with � open set of �  and � � � in� as the set of functions having values in � , for some ����� , such that

1. �+� �4G ��� �Z+� 

2. �

� � � �  � � 
���� ��� 2 
 9 � �+� � 9 	 � 	 � � � <&<&< � >
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� Gn ��� � Z � > � 
 will indicate the linear subspace of
� Gn of function having vanish-

ing average ( � � �  > � 
 � � � ) for all
� �+� .

Our aim is to prove that the canonical transformation � � �L� � � *
� > � 
 in theorem

A.4.1, considered for *
�
�
�
, can be extended to a function belonging to

� �n ��� �Z� > � � 
 .
We start stating the following lemmata:

Lemma B.3.1. Let � �L� � � 
���� ����2 
 9 � �+� and suppose that

IKJ $�

�
� _ ' 	 � �L� �

� 
�	6} � < (B.3.2)

If � �L� � � 
 � � � %��
�
� � � � 
 � � � � $ is its Fourier’s expansion, that is

� � � � 
 � �
���

� 	��

� � �L� � � 
 � � � � � $ �

then it results

IKJ $' 	 � � � � 
�	�} � � � t � t 2
Proof The statement can easily be obtained by Cauchy’s integral formula for

holomorphic function �
Lemma B.3.2. Let

� �7� � � (
� �7� 	 � � � ��s � 0 and �7� � 2 � � , consider the

function
� � � � 
 � �

�C � >
for �+�+�! � (

� 0 ; fix � � � in � and define

� �� � � > � 
 � � � �
���[ � 
 � O � >

then

	 � � � � � � � 
 
 � ��� � � � � 
 
 � � � �� � � > � 
z � 	/} 	 � 	 	 �� � �c� � 
� 	 � O � 	 ��	 � O �uO � � 	 � O ��� >
(B.3.3)

that is � � � � � 
 
 � � � �
� �A� � 
 and � �� � � > � 
 is its derivative in the sense of Whitney.
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Proof We first verify (B.3.3) in the case � ��� :

	 � � � � � � 
 � � � � � 
 � � �� � � > ��
  � 	 �
�

				
�

�C � � � � 
 � �
�C � � � �[ �

���C � 
 	
				 �

�

		 ���C � 
 	 � �C � � � � 
 ���C � 
 � �C � � � � 
 ���[ � 
 		
	 �[ � � � � 
�	&	 �C � 	 	 }

} 		 ���C � 
 	 � �C � � � � 
 ���[ � 
 � �C � � � � 
 ���[ � 
 		 	 ��	 � �� �

where we used the diophantine estimate satisfied by
�

and
� � � in � � 
 � ��s � .

Then, simplifying the terms in the last expression we obtain

	 � � � � � � 
 � � � � � 
 � � �� � � > � 
z � 	1} 	 �C � 	 	 	 ��	 � � � � � } 	 � 	 	 	 ��	 � � O 	 � � � <
Now let � �	� we have

	 � � � � � � � 
 
 � � � � � � � 
 
 � � � �� � � > � 
z � 	 �
�

				
�

� �C � � � � 
�� � � �
� �C � � � � � �[ �

���C � 
 � O �
				 }

�

		 ���[ � 
 � O � � � �[ � � � � 
�� � ���C � 
 � O � � � ���C � 
�� �C � � � � 
�� � 		
	 �[ � � � � 
�	 � 	 �C � 	 � O �

} 		 ���C � 
 � O � � � �[ � � � � 
�� � ���C � 
 � O � � � ���C � 
�� �C � � � � 
�� � 		  �
where we define  � � �N	 ��	 � 	 � O ��� � � � � 	 � O ��� . We now set b ���  � and i ���  � so
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that it results :

���C � 
 � O � � � �C � � � � 
�� � ���C � 
 � O � � � ���C � 
�� �[ � � � � 
�� �
�

� b � O � � b �Ab � i 
 � � �{i �Ab � i 
 �
�

� b � O � � b
��
� x �
�
�
� � b � i � �

�

� �{i
��
� x �
�
�
� � b � i � �

�

�

� b � O � � b
� � � 	�
� x �
�
�
� � b � i � �

�

� ��b � � � i � b �
�
�

� �{i
� � � ��
� x �
�
�
� � b � i � �

�

� b �
�
�

� � b
� � 	�
� x �
�
�
� � b � i � �

�

� �{i
� � ��
� x �
�
�
� � b � i � �

� < (B.3.4)

Therefore, considering the absolute value and taking : � � � � , the last expression
becomes

					

��
5 x 	
�
�: � � � b 5 � � i � � 5KO 	 �

� O ��
5 x 	 �

�
�: � � � b 5 � 	 i � � 5KO �

					 }
} 	 i�	 	

� O ��
5 x 	 � � � ��
��?	 b 	 5 � 	 	 i�	 � � 5 �c	 b 	 ��	 i�	 
+<

We now take & � � such that � � 
 T � w � � 
 in order to obtain 	 � 	 �`	 � 	 . & . Thus,
coming back to (B.3.4) considering the first and last member of the chain of equal-
ities, we have:

		 ���C � 
 � O � � � �C � � � � 
�� � ���C � 
 � O � � � ���C � 
�� �[ � � � � 
�� � 		 }

} 	 �C � 	 	
� O ��
5 x 	 � � � ��
��?	 �C � 	 5 � 	 	 �C � 	 � � 5 �c	 �C � 	 ��	 �C � 	 
 }

} 	 � 	 	 	 ��	 	
� O ��
5 x 	 � � � ��
��?	 ��	 � � 	 	 � 	 5 � 	 	 � 	 � � 5 	 ��	 �=	 � 	 ��	 � 	 
 }

} 	 � 	 	 	 ��	 � O � � � � � 
�� & � � � � �� � �c� � 
�	 � 	 	 	 ��	 � O �
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so that we can finally obtain

	 � � � � � � � 
 
 � ��� � � � � 
 
 � � � �� � � > � 
  � 	/}
} 		 ���C � 
 � O � � � �C � � � � 
�� � ���[ � 
 � O � � � ���C � 
�� �[ � � � � 
�� � 		  � }
} 	 � 	 	 �� � �c� � 
�	 ��	 � O �uO �

� 	 � O ��� � � � 	 � O ��� �
Corollary B.3.1. Let � � � � 
 as in lemma B.3.2 for

� � ����s � , then � � � � 
 can
be extended to �

� � ��� � �L�  
 ; besides for every T open set in �  the following
estimate hold IKJ $� 	 �� � , �� � � 
�	6}  � �

� t , t 
 O ��� 	 ��	 � � t , t 
 O ��� O t , t 
 (B.3.5)

Proof The proof follows immediately by the formula

� � , �� � � 
 � � � ��
 t , t 
 � ,
���C � 
 t , t 
 O � � � � ��


t , t 
 � , � � � � � 
 
 t , t 
 O �

for � � �  and where � , � ��� , 
� �&<&<&< � � ,
�
 
 , by lemma B.3.2 and theorem B.3.1.

The estimate (B.3.5) on the norm follows from remark B.3.2 and the diophantine
estimate satisfied by

� �
We now come back considering the Hamiltonian

�
� � � * �K� >

� 
 � � � � 
 � �  * �
�
� � * �K� >

� 
 ���
�
� � * �K� >

� 
 (B.3.6)

consistently with all the notations of the preceding section; in particular we recall
that

�
� � � * �K� >

� 
 � � � � � � �� � � 
 � * �K� 
 where � � ����� � 
 � � ��� 
 � � � ����� � 
 �� �AgXZ � �
 and

� � � 
 � �
� � � � � � � 
 �

�
� � * �K� >

� 
 � �
�
* �K� >

� � � � � � 
�� � ��
� �

� �
� � � � � � � � � 
 ��� * � � � � * � * �

�
� � * �K� >

� 
 � �
� � � � � � � 
 � * �K� �

where
� � ��� � � �m��T �!g �EDF� is, by assumption, a diffeomorphism between

the open sets T and � of �  . It can be immediately observed, by the assumptions
made, that

�
� � � � �K� > � 
�� � �n . We remark that we are interested to analyze the case

* �
�

since we want to apply our following results to � �L� > � 
 � � � � � �K� > � 
 .
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Proposition B.3.1. For any �3� � �n ��� � Z;� > � � 
 (see definition B.3.2) there exists
��+� � �n ��� �Z3� > � � 
 such that

��
			 �
�
_ ' � � � 
 �

� �

for any � �M. � � .

Proof Let � � � �n then by definition, � and �
� � � are analytic over �� for any� � �  with 	 � 	 � � � ; this implies, as seen in lemma B.3.1, that they can be

expanded in Fourier’s series

� �L� � � 
 � �
� %��

� ��	 ��
 � � � � 
 � � � � $
�
� � � �L� � � 
 � �

� %��
� ��	 ��
 � � s � � � 
 � � � � $

where

� � � � 
 � �
���

� 	��

� � �L� � � 
 � � � � � $ ���
� � s � � � 
 � �

���
� 	��

� �
� � � �L� � � 
 � � � � � $ ��� � �

� � �� � � 

and the following estimates hold

IKJ $' 	 � � � �� � � 
�	6} � t � t 
 � � t � t 2 � (B.3.7)

with � �

�!kml # t � t 
 x � IKJ $ �
�
� _ ' 	 �

� � � �L� � � 
�	 .
Consider now for

� �+� �
� 
 � � � �L� > � 
 � �

� %��
� ��	 ��
 � � � � 
� �C � �

� � � $ � �
� %��

� ��	 ��
 � � � � � � 
 � � � � 
 � � � � $ >

By lemma B.3.2 � � can be extended to a � � �A� 
 function �
� � whose derivatives

coincide on � � with the derivatives in the sense of Whitney of � � and verifies the
estimate in (B.3.5). Now define � � � � 
 � � � � � � � 
 �� � � � 
�� � � �A� 
 obtaining

g �L� � � 
 � �
� %��

� ��	 ��
 � � � � 
 � � � � $
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that extends � 
 � � � �L� > � 
 . We now prove that g belongs to
� �n ��� {Z+� > � � 
 . We

start observing that by lemma B.3.1 we obtain for �3� � 2 
�
� %��

� ��	 ��
 IKJ $' 	 � � � � 
�	 	 � � � � $ 	/}
�

� %��
� ��	 ��
 IKJ $' 	 � � � � 
�	 IKJ $' 	 �� � � � 
�	 � t � t 2 
 }

} �
� %��

� ��	 ��
 � � � � t � t 2 �  � � � 	 ��	 � � t � t 2 
 �  � � � � � �
� %��

� ��	 ��
 � � t � t � 2 � � 2 
 � 	 ��	 �
and this series converges for every � �+. � � ; we so proved that gj� � ����2 
 
 .
Equivalently it can be shown that 	 � � �	 
 � g �L� � � 
 belongs to � ����2 
 
 for every

� � �
with 	 � 	 � ��� since for such

�
we have

IKJ $' 	 � � � �� � � 
�	�} IKJ $' 	 � � s � � � 
 �� � � � 
�	 � IKJ $' 	 � � � � 
 ��
� � �� � � 
�	6}

}  ��� � � t � t 2 � � � � 	 ��	 � �  � � � � t � t 2 � � � 	 	 ��	 	 � O � }
} Ekml # � ����� � � � � � � � 	 � 	 ��	 	 � O � � � t � t 2 �

and hence for every �3� ��2 
 we get�
� %��

� ��	 ��
 IKJ $' 	 � � � �� � � 
�	 	 �
� � � $ 	1}

} Ekml # � ����� � � � � � � � 	 � � � � �
� %��

� ��	 ��
 � � t � t � 2 � � 2 
 � 	 ��	 	 � O � .�~j<
Using the same estimates we can obtain that the series�

� %��
� ��	 ��
 � � � 
 �� � � 
 �

� w � � � � $

converges uniformly on ��2 
 Z+� for every
�
� � � � � � 	 
 with 	 � 	 � � � and thereforeg �L� � � 
�� � � ��� �Z3� 
 . This completes the proof �

Remark B.3.3. The class of function � � � �n ��� CZ � > � 
 is closed under the
operation of averaging on �� , inverting never vanishing functions and making
products.

Theorem B.3.2. Let

��� � *
� �K� � > � 
��+T Z �  Z+� � � D � � *

� �K� � > � 
 � �L� � * >
� 
��+TNZ �  Z+� �
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be the symplectic transformation that puts
�
� � into Kolmogorov’s normal form (see

(B.2.1)), consistently with all the notations adopted in this section and in section
B.2. Consider � �L� � � � 
 � � � � �K� � > � 
 defined on �  Zm� � ; then, � can be extended
to �� belonging to

� �n ��� �Z+� > � � 
 .
Proof First of all, referring to the iterative scheme represented in (A.3.1),

proposition A.2.1, lemma A.3.1 and proposition A.3.1 we write the general ex-
plicit formula for the symplectic transformation at the : -th step, once the Hamil-
tonian �

� 5 �
� �

� 5 � � �  *
� 5 � � �

� 5 � � � 	 � � � 5 � is given. In the case of the dependence
on additional parameters (in agreement with theorem A.4.1) we have that

�
� 5 � � � *

� 5KO ��� �K� � 5KO ��� > � 
��+T � � � 
 Z � 2 � � 
 Z4� � �ED � *
� 5 � �K� � 5 � > � 
��+T � � Z � 2 � Z4� �

so that

�
� 5 � � �

� 5 �
� �

� 5KO ���
� �

� 5KO ��� � �  *
� 5KO ��� � �

� 5KO ��� ��� 	 � � 
 � � 5KO ���
is generated by

� 5 � *
� 5KO ��� �K� � 5 � > � � � *

� 5KO ��� &� � 5 � ��� 	 � � 5 � *
� 5KO ��� �K� � 5 � > � 
 (B.3.8)

with
� 5 � *

� 5KO ��� �K� � 5 � > � 
 � � i 5�� � 
z&� � 5 � � &c5 �L� � 5 � > � 
 � b�5��L� � 5 � > � 
z *
� 5KO ��� � <

In analogy with formulas (A.2.4), (A.2.6) and (A.2.7) the components of � 5 are

&c5 �L� > � 
 � � 
 � � � � � 5 � � � �K� > � 
 ����� � 5 � � � �K� > � 
 � 
 (B.3.9)

i 5�� � 
 � � ���
� 5 �� � � � �& > � 
 � � � ��� � 5 �� � � �& > � 
 �

� �
� 5 �� � � � �& > � 
z � $ &c5 �  > � 
 � (B.3.10)

b�5 �L� > � 
 � � � 
 � � � � � 5 �� � � �K� > � 
 �
� �

� 5 �� � � � �K� > � 
z �Ai 5�� � 
 � � $ &c5 �L� > � 
 
	� < (B.3.11)

Denoting with �� 5 the analytic diffeomorphism of �� that inverts �E5��L� > � 
 �� � � 	 � b�5��L� > � 
 (having then the same dependence of b`5 on
�

) and taking the
derivatives in (B.3.8) we obtain

�
� 5 � � *

� 5KO ��� �K� � 5KO ��� > � 
 �
�
�����
����

	 *
� 5 �

� *
� 5KO ��� ��� 	 � � i 5�� � 
 � 		 $ &c5��L� > � 

� � 		 $ b

� �L� > � 
 �  * � 5KO ��� � 		 $vx �� � � $ � � � 
 ��� 
 �
� � 5 � � ��E5 �L� � 5KO ��� > � 
 <

(B.3.12)
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Notice that �
� 5 � is a linear application in *

� 5KO ��� and therefore analytic for *
� 5KO ���

in Tf� � � 
 .
The components of the new Hamiltonian �

� 5KO ��� � *
� 5KO ��� �K� � 5KO ��� > � 
 are given

(in analogy with equations (A.2.8), (A.2.10) and (A.2.9)) by

�
� 5KO ��� � � 
 � �

� 5 � � � 
 ��� 	 � � � �i 5�� � 
 �����
� 5 � � � �& > � 
 � 
 > (B.3.13)

�
� 5KO ��� � * �K� >

� 
 � �
� 5 �� � * � ��E5��L� > � 
 > � 
z � $ � 5 � * � ��E5��L� 
 > � 
 � (B.3.14)� �

� � � � � 
 �
� 5 �� � � * ��� � 	 � � $ � 5 � ��E5 �L� > � 
 > � 
P� ��� � $ � 5 � � $ � 5��

�
� 5KO ��� � * �K� >

� 
 � �
� 5 � � * � ��E5��L� > � 
 > � 
 ��� 	 � ��

� 5 � � * � ��E5 �L� > � 
 > � 
 (B.3.15)

where ��
� 5 �
� �

� 5 �� � �
� 5 �	 � �

� 5 �� with

�
� 5 �� � * �K� >

� 
 � �
� 5 �� � * �K� >

� 
z � � $ b�5��L� > � 
 
 �  *
�
� 5 �	 � * �K� >

� 
 �
� � �

� � � � � 
 �
� 5 �� � � �-� * �K� >

� 
P� � � � * � * �ci 5 � � 
 � � $ &c5 �L� > � 
 �
�
� 5 �� � * �K� >

� 
 �
� � �

� � � � � 
 �
� 5 �� � �-� * �K� >

� 
P� � � � * � * �f<
Now we prove by induction that at each step the symplectic transformation

�
� 5 � 		 �=x � is an element of

� �n ��� EZM� > � � 
 as a consequence of the fact that �
� 5 � 		 �=x �

belongs to
� �n ��� �Z+� > �15KO � 
 for every : ��� . By hypothesis we have �

� ��� � � �
� �

analytic for �3� ��2 � and * ��Tf� and having a � � dependence on
�

in � � � ���AT 

(actually the dependence on

�
is � � having assumed that the frequency map� � � � � is such a regular diffeomorphism) and this means that �

� ��� 		 �=x � belongs

to
� �n ���  Z\� > � � 
 . Then by lemma B.3.1 and remark B.3.3 applied in formulas

(B.3.9), (B.3.10), (B.3.11) and (B.3.12) for : � � we see that b �(�ci � � & � can be
extended to

� �n ���  Z � > � � 
 functions as well as, by consequence, �
� ��� ; identi-

fying for simplicity every extension with the original symplectic transformation
referring to it with the same name we obtain

�
� ��� 		 �=x � � � �n ���  Z+� > � � 
 � � �n ���  Z+� > � � 


where �15 is chosen as in (A.3.2) for all : ��� .
Assume now that �

� 5 � is analytic for � * �K� 
��+T � � Z � 2 � and

�
� 5 � ��� 		 �=x � � � �n ���  Z+� > �15 
 >
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then, always by formulae (B.3.9), (B.3.10), (B.3.11) and (B.3.12) we obtain that

�
� 5 � 		 �=x � � � �n ���  Z+� > �15KO � 
 � � �n ���  Z+� > � � 
8<

Moreover, observe that from equations (B.3.13), (B.3.14) and (B.3.15), the new
Hamiltonian �

� 5KO ��� is analytic for � *
� 5KO ��� �K� � 5KO ��� 
M��Tf� � � 
 Z � 2 � � 
 and restricted

to *
� 5KO ���

�
�

is a
� �n ���  Z3� > �15KO � 
 function.

We so proved that

� �L� � � 
 � � � � �K� > � 
 �  � k5 � � � �
� ��� � �

� ��� � �� � �
� 5 � � � �K� > � 


can be extended to �� in
� �n ��� �Z3� > � � 
 �

B.4 Measure of invariant tori

By Kolmogorov’s theorem we obtained invariant tori for � � ����� � 
 � � ��� 
 �
� � ����� � 
 in the form

� 
 � ( � �
� � �� � � 
 � * ���

� �K� � > � 
 � � � � � � � �K� � > � 
z	y� � � �  0 (B.4.1)

for any
� � � � 
 � ��s � ; we recall once again that � � is analytic on g Z �� and� � � � � is a diffeomorphism of class ��� on g . We remind also that we defined

for
� � � the following sets

T �!T�� � 
 � ( �m�+gU	 dist ����� � g�
 � � 0 �
� �

� ���AT 
 �
� � � �\B � ��s � �T � �

� � �� �A� � 
 > (B.4.2)

T � is then the sets of vectors � such that the image through the "map of fre-
quencies" is diophantine. In the previous section we proved that (for 	 �r	 . � � )
the components of the symplectic transformation � � restricted to * �

�
, namely

* ���
� �K� � > � 
 and � ��� � �K� � > � 
 , can be extended to �* � and �� � both � � functions on

� �Z+� .
We now define � 
 � "
1%&' �

� 
 (B.4.3)

the union of Kolmogorov’s invariant tori for ��� in the parameter space. Adopting
the same notation of theorem A.4.1 and writing explicitly the dependence on the
parameter � we have

� � � *
� �K� � > � 
 � � * ��� *

� �K� � > � 
 �K� � � *
� �K� � > � 
 
 � � *

� �K� � 
 � � � � 
 (B.4.4)
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therefore it results

� � � � �K� � > � 
 � � * ���
� �K� � > � 
 �K� � � � �K� � > � 
 
 � � � �K� � 
 � � � � 
 > (B.4.5)

more precisely we obtained

	 * ���
� �K� � > � 
�	1} � ��gm� �

and 	 � � � � �K� � > � 
 �\� � 	1} � ��gm� � <
So, if

�
is chosen to be greater than � ��gm� � ( � and g as defined in (A.4.1) and

(A.4.2)), but sufficiently small to have T�� � 
 �� � (that is another condition on the
size of � ) we obtain

� � �� � � 
 � * � �
� �K� � > � 
�� "

� % � � � � (�* �4	 * � ��	1} � ��gm� �10 � "
� % � � � � ( 	 * � ��	1} � 0 �!g

which implies
� 
 
!g and as simple consequence� 
 
�gXZ �  <

Remark B.4.1. We can synthesize the condition to impose on
�

and by conse-
quence on � , with the inequalities

� ��gm� � } � . IKJ $�S%�� IKJ $ ( � ��T�� * � � 
���g 0 > (B.4.6)

we will be from now on consistent with this choice.

At this point, before calculating the measure of
� 
 , we need some lemmata.

Lemma B.4.1. Let T�� � � � 
 � ( �\�\� !� 	 �
	 . � 0 be the open ball in �  with
center in the origin and radius � � � ; if T � �

� � � 
 � T�� � � � 
zB�� ��s � for fixed �
and �;�7� � � then

meas �AT�� � � � 
 � T � �
� � � 
 
�}  � s  �  � � � (B.4.7)

with
 � s  �	� 

�
� %��

� ��	 ��
 	 ��	 � � � O ��� (B.4.8)

Proof By the definition of � ��s �
T � �
� � � 
 �

�
	 � 	1. � �,	 �  ��	 � �	 ��	 � 9 �+�+�  � (

� 0 �
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and then putting
�
� T�� � � � 
 � T � �

� � � 
 we can write

�
�

�
	 � 	1. � � � ���3�  � (

� 0 �E	 �  ��	/. �	 ��	 � �
�

�
	 � 	1. � � � ���3�  � (

� 0 �E	 �  �	 ��	 	1. �
	 ��	 � O � �

� "
� %��

� ��	 ��
 � 	 � 	6. � � 	 �  �	 ��	 	/. �
	 ��	 � O � � <

Observe now that � � �t � t is a unit vector in �  and therefore there exists a rotation

that maps � into � � � � � � � �&<&<&< � � 
����  ; name



such rigid movement of �  with
the property 
 � � 
 �	 ��	 � � �4<
Since Lebesgue measure as well as the inner product in �  are invariant under
rotations, we can write

meas
�
� meas


 � � 
 �

� meas "
� %��

� ��	 ��
 � � ���  �`	 
 � � � 	1. ��� 	 
 � � �  ��	1. �
	 ��	 � O � � �

� meas "
� %��

� ��	 ��
 � � ���  �`	 
 � � � 	1. ���4	 �  
 ��	/. �
	 ��	 � O � � �

� meas "
� %��

� ��	 ��
 � � ���  �`	 � 	6. ���4	 �  � ��	1. �
	 ��	 � O � � >

(we obviously used that the set (
� ���  �4	 �
	/. � 0 is invariant under rotations);

carrying on this equalities we obtain

meas
�
� meas "

� %��
� ��	 ��
 � � ���  �`	 � 	6. � �4	 �  � ��	1. �

	 ��	 � O � � }
} �

� %��
� ��	 ��
 � � ���  �`	 � 	6. � �,	 � ��	1. �

	 ��	 � O � � }
} �

� %��
� ��	 ��
 �  �  � � �

	 ��	 � O � �  � s  �  � � � <
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The last thing to be observed to complete the proof is that the sum that defines  � s 
converges:�
� %��

� ��	 ��
 �
	 ��	 � O � } 

�
t $�t � �

���
	 �
	 � O � } 

� � � � � �
� � O � �  � � � � � 

� � � � � � �
� � �  O 	 . �,~

since � � � � ��� �A� � ��
 � � � � ��� �
Corollary B.4.1. Let ' �N�  bounded, define ' � � '!B � ��s � , for fixed � and
���7� � � , and

SH �  � s  � meas ' 
 � � IKJ $$&% H 	 �
	  � � (B.4.9)

where  � s  is defined in (B.4.8); then

meas ��' � ' � 
�} SH � meas ' 
 � < (B.4.10)

Proof Define
� ��IKJ $$&% H 	 �
	

by the hypothesis of boundness on ' , � is finite and we have '��!T�� � � � 
 . Then
simply observe

' � ' � � "
� %��

� ��	 ��
 � � � '��E	 �  ��	/. �
	 ��	 � O � � �

� "
� %��

� ��	 ��
 � � �+T�� � � � 
�� 	 �  ��	/. �
	 ��	 � O � � � T�� � � � 
 � T � �

� � � 
E<
Therefore by lemma B.4.1, taking pH as in (B.4.9), it results

meas �-' � ' � 
�} meas �AT�� � � � 
 � T � �
� � � 
 
�}

}  � s  �  � � � � SH � meas ' 
 � �
We are now ready to state and prove the main theorem of this chapter con-

cerning the measure of the union
� 
 of maximal invariant tori for � � carrying

quasi-periodic motions:

Theorem B.4.1. Let � � ����� � 
 � � ��� 
 � � � ����� � 
 be a real-analytic Hamiltonian
on g Z �  (where g is some open set in �  ). Let the usual condition � ��gm��.	�
be satisfied for � and g as in (A.4.1) and (A.4.2) respectively. Then,

meas 	 
� 
 ��� � � 	 � � � 
�	 
 � � �  ' � 
 ��� �
1%&' 				 � "�� �� � � � �� � � 


				 � ��� 
  � meas  � 

(B.4.11)
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where
� � is defined in (B.1.2),  ' in (B.4.9), � �-� ��� 
 is defined by (B.1.4) and

(B.1.3) and
� 
 by (B.4.3) and (B.4.1).

Proof Recall first that � 
 � "
1%&' �
� 


where
� 
 is an invariant torus for � � , for any

� � � � � � ���AT 
 B � ��s � . We can
parametrize

� 
 by equation (B.4.1) as follows:
� 
 � � ����� � 
��+gXZ �  � � � � �L� � � 
 � � � � �L� � � 
 �Q�3� �  �

where

� �L� � � 
 � � � �� � � 
 � �* ���
� �K� > � 
 (B.4.12)

� �L� � � 
 � �� � � � �K� > � 
 < (B.4.13)

Remind that we defined �� � and �* � as � � extensions of the components of the
symplectic transformation �!�v	 �=x � ; moreover, by hypothesis on ��� , it results that� � (the frequency map) is a � � diffeomorphism and therefore we have that � and� are both � � functions defined on the whole space � �Z+� .

To estimate the measure of
� 
 in the phase space gXZ �� , we use the change

of variables theorem for integrals in ��� obtaining

meas
� 
 � meas "
1%&' �

� 
 �
�
������� ��� �

� �/� � � � �
�

�
_ ' �

				
� "�� � ��� ��� 
� �L� � � 


				 ��� � � <
(B.4.14)

Our task is now to estimate

IKJ $�

�
_ ' � 	 � �L� �

� 
�	 with � �L� � � 
�� � � "�� � ��� ��� 
� �L� � � 
 <
More explicitly, from equations (B.4.12) and (B.4.13), we can write

� �L� � � 
 � � "�� �� 		 $ �* ���
� �K� > � 
 		 
 � � �� � � 
 � 		 
 �* ���

� �K� > � 

		 $ �� � � � �K� > � 
 		 
 �� � � � �K� > � 
 �� <

Thus, from equation (B.4.5) we get

�
� � �* ���

� �K� > � 
 � �
� � �� � � � �K� > � 
 � �

� � �* ���
� �K� > � 
 � � p_  � � 


�
� � �� ��� � �K� > � 
 � �  � � p_  � � 
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where �  is the unit matrix �,Z � and � p_  � � 
 denotes some �,Z � matrix such that
each element is � � � 
 . Since 		 
 � � �� � � 
 � � � � ��� 
 � �

		 � x 
  
� � 
 � , we obtain

� �L� � � 
 � � "�� �� � p_  � � 
 � � � ��� 
 � � 		 � x 
  
� � 
 � � � p_  � � 

�  � � p_  � � 
 � p_  � � 


�� < (B.4.15)

By indicating with
�
&_  the null matrix � Z+� we define

' � ��
�
p_  � � � ��� 
 � � 		 � x 
  
� � 
 �

� p_  �
&_ 

�� (B.4.16)

so that, from equation (B.4.15), it results

� �L� � � 
 � � "�� ��' � � 	 p_ 	  � � 
 
 � � � "���' 
 � "�� � � 	 p_ 	  ��' � � � 	 p_ 	  � � 
 � �
� � � "���' 
 � "�� � � 	 p_ 	  � � 	 p_ 	  � � 
 
 � � � "���' 
 � � � � � � 
 


(observe that ' � � obviously exists). Finally, by definition of ' in (B.4.16), we
have

� �L� � � 
 � � � "���' 
 � � � � � � 
 
 � � � "�� � � � � � � �� � � 
 
 � � � � � � � � � 
 
 �

�

� � "�� �� � � � �� � � 
 � � � � � � � 
 
�<
We now come back to equation (B.4.14) to obtain the wanted estimate in

(B.4.11) using (B.4.10) and definition (B.4.9):

meas
� 
 �

� �
�

�
_ ' � 	 � �L� �

� 
�	���� � � �
� � � � � � � 
 


� �
�

�
_ ' �

				
� "�� �� �

� � �� � � 

				 ��� � � �

� � � � 	 � � � 
�	 
 ��� �
1%&'
				
� "�� �� �

� � �� � � 

				 meas

�
�  Z+� � � �

� � � � 	 � � � 
�	 
 ��� �
1%&'
				
� "�� �� �

� � �� � � 

				 � ��� 
  � meas � 
 � � �  ' � 
 �

176



Appendix C

Rüßmann’s theory for lower
dimensional elliptic tori

In this Appendix we review Rüßmann’s theorem on the existence of lower dimen-
sional elliptic tori for nearly-integrable and analytic Hamiltonian systems. All
results discussed can be found in [Rüßm01] to which we always refer for fully
detailed proofs.

C.1 Preliminaries to Rüßmann’s theorem

We first introduce some notations

� Consider vectorial spaces �/5 ����� � for : � ��<&<&< � ; then we denote for
&�����GO
����&�
 � ( � � � � � �&<&<&< � � G 
 � �p5 � �15+�4	 �p56	1. &c5 9;: ����<&<&< � 0 < (C.1.1)

� Let
� � �R� mat � ��� Z � 
 with

�
�
� � , then we denote with � � � � � the

matrix of the linear mapping

� e �ED � � � � � �
�!T (C.1.2)

(this implies obviously T � T � ) provided that only the elements
� 5 � with: } � are considered.

More precisely if we associate to any matrix ' � ��'^5 � 
,� mat � ��� Z � 

the vector

�' � ��' � � � ' � 	(�&<&<&< � ' � G � ' 	 	(�&<&<&< � ' 	 G �&<&<&< � ' G�� � G�� � � ' G�� � G � ' GzG 
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belonging to � � � � � 
 �w , then we can represent equation (C.1.2) in the form

� � � � � �� � �T
where � � � � � � � � � � � � 5 � s � � ! � mat �

� G � G O ���	 Z G � G O ���	 ! is defined by the

expression

� � � � � � 5 � s � � ! �
�
� � � ��

� 5 � 
 ��� � 5 � � � � � � � � � 5 � � � � � � 5 � � � � � � 5 
 �
where

� � 5 are the classical Kronecker symbols.

Now we recall the definition of approximation function already given in 2.2.1
for easier further references:

Definition C.1.1 (Approximation function). A continuous function ����� � �S~ 

D� is called an approximation function if:

1. � � � � � 
 � � ��&�
 � � �-� 
M� � for
� } &,. � . ~ ;

2. � � ��
 ��� so that � ��&�
 � � for any
� } &�} � ;

3. &
�
� ��&�
 ��� ��ED �

for any �7� � so that IKJ $ �	� � & � � ��&�
 
� . ~ for all �!� �
and � � � ;

4. � ������� �� � � �  �� w .�~ .

C.1.1 Consequences of weakly non-degeneration

In this paragraph we consider a real-analytic function

� � � � � ' 
��6T �ED��  Z;� 	�, _ 	-, (C.1.3)

defined on a domain T , where ' is a � � Z � � symmetric matrix satisfying the
following conditions:

1. there exist � real-analytic functions on T , � � � * 
 �&<&<&< �c��, � * 
 , such that

� � � � * 
 �&<&<&< �
� ��, � * 
 � �

� � � � * 
 �&<&<&< � �
� ��, � * 


are the � � eigenvalues of the matrix '*) 	-, .

2. the vector
� � �c� � �&<&<&< �c��, 
��1T �ED��  Z;� ,

is weakly non-degenerate.
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Lemma C.1.1. Let � � �c� 
 a real-analytic and weakly non-degenerate function;
then, in the notation of definition 2.1.2, we have

� , 
`' � 
  � with

 B � � �

where


� (

� �3� , 
`' 	 � � � � � �c�	� 
 is non-degenerate 0
� � (

� �3� , 
`' 	 � � � ���  � �  � � � � � � � � � � �c�	� 0 �
with the numbers � � uniquely determined. Besides almost all points i,� T satisfy
�� � � �Ai 
 � �� � for all �C�3�! and �� � � �Ai 
 � � � � �c� �Ai 
 � �� � for all � � � � 
��3�!/Z � , 
`' .

In view of this lemma we can define the first of the important numbers needed
to "quantize" the non-degeneracy of � :

Definition C.1.2 (Amount of degeneracy of � ). The amount of degeneracy of a
weakly non-degenerate function is defined by

� � � � � 
 �
�� 	 k���� � %�� � s � %�� 	 � � � � 	 	`	 � � � ��
�	 	 � � � ����

� � ���
(C.1.4)

Lemma C.1.2. Let �p5 �1T � DU��G � be real-analytic and non-degenerate functions
defined on a domain TN�7�  , for each : � ��<&<&< � . Consider

�
� � G 
 Z-��)Z;� G
	

and let  � � (� �&<&<&< � �� 
^� � be some parameters. If we define � � � Z�T �EDh�
as the real-analytic function (with respect to the * variables)

� �  � * 
 �
�
5 x � �  5 � �v5 � * 
 � (C.1.5)

and � as the following subset of
�

� � (  � � (� �&<&<&< � �� 
��
� 	�	  5�	 	 � � 9;: � ��<&<&< � 0 �

then for any non-void compact set � 
�T there exist numbers � � ��� ��� ����� 
 ���
and � ��� � ����� 
�� � such that

kml #�K� � � � � 	 g � � �  � * 
�	 ��� 9 8��� � 9 * ��� (C.1.6)

(here and in the sequel, D refers to the * variables whereas  is considered a
parameter).
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Observe that if we consider a function � as in (C.1.5), then the function

�  � * 
��
� Z+T �ED kml #�K�/dv� � 	 g

d � �  � * 
�	
is continuous in

� Z3T for every ����� . Therefore the number

� � ���=����� 
�� � k�����S%��Es t � t w x � kml #�K�/dv� � 	 g
d � �  � * 
�	

is well defined for any compact set � 
�T and verifies � � ���=��� ��� 
�}�� � ���=� 	 ��� 

for every

� }�� �,}�� 	 . Then, by Lemma C.1.2 we can well define the numbers� ��� ����� 
 and � � ���=� �(��� 
 as follows

Definition C.1.3. We call index of non-degeneracy of � with respect to � the first
integer � � such that � � ���=� � ��� 
M� � (while � � ���=����� 
 � � for every � .7� � ); we
call the number � � ���=� � � ����� 
 ��� 
 amount of non-degeneracy of � with respect
to � .

What we want to do now is to define the index of non-degeneracy and the
amount of non-degeneracy of the real-analytic function � � � � � ' 
 . We define
the following three functions:

� ���
� ���� � * 
 � � 	 �� � � ��	 	 	 � 	 	 � 	 (C.1.7)

� ���
� 	��� � * 
 � � �

� 	��� 	 � "���� � �� � � � �(	-, ��'*) 	-, 
�	 	 (C.1.8)

� ���
� ���� � * 
 � � �

� ���� 	 � 	 	 � 	-, � 	 � 	 � "�� � � �� � � � � 	-, w O , � � � '*) 	-, � � 
z	 	 (C.1.9)

where �
�

�

(
� �3� , 	�	 � 	 � �	�!� � � �c�	� � � 0 (C.1.10)

and

�
� 	���
�N	 � � � ��
�	 	 � 	�� � 
 

� %�� 
 	 � � �
� 	 	 � � 	�� � � � � 	 	 � � (C.1.11)

�
� ����
�N	 � � � ��
�	 	 � 	�� � w 

� %��Sw 	 � � �
� 	 	 � � 	�� � � � � 	 	 � � (C.1.12)

with


 5 � (
� �3� , 	�	 � 	 � � : � � � � � � �c�	� 
 is non-degenerate 0 � 
 B;� , 5 (C.1.13)

�15 � (
� �+� , 	�	 � 	 � � : � � � � �3�  � �  � � � � � � � � � � �c�	� 0 ����B[� , 5 (C.1.14)

180



for : ��� � � .
Proposition C.1.1. Let � ���

� 5 �� � * 
 be as defined in (C.1.7), (C.1.8), and (C.1.9);
then, under the hypotheses made on � � � � � ' 
 , they can be represented (for
every �	� 	 : � � 	 ) in the form (C.1.5) with the properties described in lemma
C.1.2.

Before proving this proposition we need two preliminary lemmata; we refer to
[Rüßm01, page 141-142] for the proof of the first lemma while the second can be
obtained as a corollary with the help of some easy calculations.

Lemma C.1.3. Let � � mat � ��� Z � 
 with eigenvalues � � �&<&<&< � � G . Then the
eigenvalues of the matrix � � � � � � mat �

� �	 ����� � ��
�Z �	 ����� � ��
�� (see section
C.1 for the definition of � � � � � ) are the �	 ����� ����
 functions � � � �15 for ��} � }: } � .

Lemma C.1.4. Let �;��� then the following two equalities hold:

	 � "�� � � � � 	-, ��'*) 	-, 
�	 	 �


� % � 
�� � 
 ��� ��� � �c�	� 
 � � � ��� � �c�	� 


	 � "�� � � 	-, w O , � � � '*) 	-, � � 	 	 � � 	-,vO 	 � 
� % � w � �Sw ��� ��� � �c�	� 
 � � � ��� � �c�	� 


for

 5 � �15 defined in (C.1.13) and (C.1.14) and � � �

(
� ��� , 	�	 � 	 � � �!� � � �c�	� �

� 0 .
Proof [proposition C.1.1] As it can be easily seen � ���

� ����
is already put in the

form (C.1.5), in fact:

� ���
� ����
�

�
5 x � �  5 � �v5 � * 
 � with � � � � �v5 � * 
 �

� � * 
 �  5 � � 	 � 	 �
�

for : ��� � �/<
For what concerns � ���

� 	���
, recall the definitions given in (C.1.8) and (C.1.11)

and apply lemma C.1.4 with � � � � � � � using the definition of � � (and conse-

181



quently of � � ) in (C.1.14); thus, we may write the following equalities:

� ���
� 	���
� �

� 	��� 	 � "�� � � �� � � � �(	-, ��'*) 	-, 
�	 	 �
� �

� 	��� 
� % � 
 � �� �

� � * 
 � ��� � �c� � * 
 � 
 � � � � �
� � * 
 � ��� � �c� � * 
 � 


� 
� %�� 
 � �� �

� � * 
 � ��� � �c� � * 
 � 
 � � � � �
� � * 
 � ��� � �c� � * 
 � 
 �

� �
� 	��� 
� % � 
 � �� �

� � * 
 � ��� � �c� � * 
 � 
 � � � � �
� � * 
 � ��� � �c� � * 
 � 


� 
� %�� 
 �� � �

� � � � * 
 � � � � � �
� � � � * 
 � �

�


� % � 


�� � � � * 
 � ��� � �c� � * 
 �	 � � � ��
�	 	

� % � 


� � � � � � * 
 � ��� � �c� � * 
 �	 � � � ��
�	 	
� 

� %�� 

�� � � � � � � * 
 �	 � � � � 	 	


� %�� 


� � � � � � � � � * 
 �	�� � � � � 	 	 >

observing the non-degeneracy of � � � � � �c�	� 
 for
� � 
 � and the non-degeneracy

of
�

we conclude that effectively � ���
� 	���

is in the form (C.1.5) and satisfies all the
hypotheses in lemma C.1.2.

A completely analogous proceeding can be adopted for � ���
� ���� ; in fact the fol-

lowing equalities are verified in view of definition (C.1.9) (together with (C.1.12)),
lemma C.1.4 with � � � � � � � , the definition of � 	 (and consequently of � � ) in
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(C.1.14) and the definition of � in (C.1.10):

� ���
� ����
� �

� ���� 	 � "�� � � �� � � � � 	-, w O , � � � '*) 	-, � � 
z	 	 �

� �
� ����

	-,vO 	 �
5 x � �� �

� �

� % � w � �� �

� � ��� � �c�	� 
 � � � � � � � ��� � �c�	� 

� 

� %��Sw � �� �
� � ��� � �c�	� 
 � � � � � � � ��� � �c�	� 
 �

� �
� ����

	-,vO 	 �
5 x � �� �

� �

� % � w � �� �

� � ��� � �c�	� 
 � � � � � � � ��� � �c�	� 

� 

� %��Sw �� � �
� � � � � � � � � � � � � �

�

	-,vO 	 �
5 x �

�� � � �	 � 	 	

� % � w

�� � � � ��� � �c�	�	 � � � ��
�	 	 � � � � � � ��� � �c�	�	 � � � ��
�	 	
� 

� %��Sw
�� � � � � � �	 � � � � 	 	 � � � � � � � � �	�� � � � � 	 	 >

recalling the non-degeneracy of
�

and the non-degeneracy of � � � � � �c�	� 
 for
� � 
 	

we conclude the proof �
We can finally state

Proposition C.1.2 (Index and amount of non-degeneracy). Let � ���
� 5 ��

as defined
in (C.1.7), (C.1.8) and (C.1.9), then, for every � �!�  such that 	 � 	 	 � 	 : ��� 	
for : � � � � � � , there exist integers � � 5 �� ��� ��� � ��� � 5 �� ��� 
4� � and numbers � � 5 � �
� � � ��� � 5 �� ��� 
�� � characterized by

k�����S%�� kml #�K�/dv� � � �	��
			 g d � ��� � 5 �� � * 


			 � � � 5 � � 9 �C�3�  �
k�����S%��

			 g � � ��� � 5 �� � * 

			 � � � 9 ��.7� � 5 �� <

We call index of non-degeneracy of � � * 
 � �
� � * 
 � ' � * 
 
 with respect to � the

number � � ��kml # ( �
� ���� �=� � 	��� �=� � ���� 0

and we call amount of non-degeneracy of � � * 
 � �
� � * 
 � ' � * 
 
 with respect to

� the greatest number characterized by

k�����S%�� kml #�K�/dv� � �
			 g d � ��� � 5 �� � * 


			 � �-� � � 9 �C�3�  � : ��� � � � �M<
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C.1.2 Estimate for ���������
	�� � ��
In this subsection we display an estimate for the exponential " #%$ ��&(' � * 
 )%	-,�
 where
&���� and ' is a � �;Z � � symmetric matrix which is real-analytic on a domain T
in �  . Let � be any compact subset of T and choose �+� � such that

� �����+��Tm<
We start stating two preliminary lemmata:

Lemma C.1.5. Let �j��� � ��� ��� 
 an ��Z	� matrix function having eigenvalues
� � � * 
 �&<&<&< � � G � * 
 . Suppose to have satisfied for a number b ��� the inequality
Re �15 � * 
 . b for every * � � and for all : � � �&<&<&< � � ; then there exist numbersb � .7b and � � � � � ��� 
 such that for : � � �&<&<&< � �

Re �15�� * 
�}�b � (C.1.15)

for all * � � ��� � .

Proof The proof of this lemma can be found in [Rüßm01, page 166] �

Lemma C.1.6. Consider � ��� � � � ��� 
 as in lemma C.1.5 and let b � �� � (it is
obviously always possible to suppose that) and � � � � � ��� 
 such that Re �/5�� * 
 }b � for all * ������� � and : ��� �&<&<&< � � ; then we have the following estimate

	�" #%$ ��& � 
�	 � O���} � �An � O � � t n � t � � � G�� ��
5 x �
� � 	 �N	 � O��

�M	 b � 	 �
5
� ��� : 
 � 
w � (C.1.16)

for every & � � , �-� � and � � � � � � � � .
Proof The proof of this lemma can be found in [Rüßm01, pages 166-167] �
Consider now the specific case of a � �3Z� � matrix function ' � � � ��� ��� 


(in the case we are going to analyze, ' will be the matrix of the coefficients of the
elliptic variables in the integrable part of the Hamiltonian considered) such that
'*) 	-, has all purely imaginary eigenvalues

� � � * 
 �
� � � � * 
 �&<&<&< � � , � * 
 �

� ��, � * 
 �� ,vO � � * 
 ���
� � � � * 
 �&<&<&< � � 	-, � * 
 ���

� ��, � * 

where �
5 are real-analytic functions for : ��� �&<&<&< � � .
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Proposition C.1.3. Under the hypotheses just done on the matrix function ' ,
there exist constants b � � b � ��' ��� 
 � � � � ��
 and � � � � � ��' ��� 
 � � � < � 
 so that
for all &,��� we have

	�" #%$ ��&('*) 	-, 
�	 � O�� } � � n � t � t � � � 	-, � ��
5 x �
� 	 ' 	 � O��	 b � 	 �

5
� ��� : 
 � 
w � (C.1.17)

for every � � � � � � � � .
Proof By the hypotheses made on ' we can choose any positive number as

an upper bound on � for the real parts of the � � eigenvalues. For instance we can
take b ��� such that

IKJ $�S%�� Re �15 � * 
�. b ��� � 9�: ��� �&<&<&< � ��<
Applying lemma C.1.5 we obtain the existence of � � � � � ��� 
 and b � such that

IKJ $�S%�� O�� � Re �15�� * 
�}!b � .	� � 9;: � � �&<&<&< � ��< (C.1.18)

It is sufficient now to apply lemma C.1.16 with � � ��'*) 	-, , � � � � , � � �
and to observe that b � � � and 	 '*) 	-,P	 � O�� } 	 ' 	 � O�� �N	 ' 	 � O�� for any � } � � �

C.2 The main theorem

Theorem C.2.1. Let

� �L� � * � � 
 � � � * 
 �
�
� �
� � � ' � * 
 � � � �L� � * � � 


� � � � � �L� � * � � 
 (C.2.1)

be a real-analytic Hamiltonian defined for

�L� � * � � 
 � �  Z3T Z � � �  Z;�  Z;� 	�,
where T is an open connected set of �! , � is in an open neighborhood of the
origin in � 	�, and ' is a � � Z � � symmetric matrix. Let g a complex domain
on which � can be holomorphically extended; let � be any non-empty compact
subset of T with positive � -dimensional Lebesgue measure meas  �W� � and let� ��g be an open set such that

�  Z�� Z (
� 0 � � < (C.2.2)

Choose �+� � � � ��
 such that

�  ��� 
MZ � ������� 
 Z � (
� 0 ��� 
 � � (C.2.3)
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and
� � � @ ��� 
��!TX< (C.2.4)

Define
� � * 
 � 		 � � � * 
 and take

� � � 	 � 	 � O ��� (C.2.5)

�!	 � 	 ' 	 � O ��� (C.2.6)

�!� � 	 ��	 7< (C.2.7)

Make the following two hypotheses:

1. the symmetric matrix ' � * 
 is such that
� "�� ' �

�
�

and the eigenvalues of
' � * 
 ) 	-, are

� � � � * 
E<&<&<
� ��, � * 
 � �

� � � � * 
E�� �
� ��, � * 
 with � � � * 
E<&<&<K��, � * 
real-analytic functions on T (this implies in particular that � � � is an

elliptic equilibrium point for � � � ).

2. the function
� � �c� �E<&<&<=��, 
��1T 
7�  �ED��  Z�� ,

is weakly non-degenerate and extreme ( � � �c� 
 is usually called the fre-
quency vector and his components are called respectively the tangential
and normal frequencies).

Then for any ��� with
� . � �,. meas  � there exist positive numbers � � and � (see

subsection C.2.1 for details) depending on
� � ' ����� � � � � � � , such that assuming

	 �C	 -} �� � � (C.2.8)

and taking real numbers � � � � �(��� � verifying

� � � � (C.2.9)

� � �
� � ���
� � � � �!	 � �!� 
 �


w
(C.2.10)

� � � k���� � � � ���
� � � �!	 � �!� �



�

�
� � �
� � � � � �!	 � �!� 
 �



� � (C.2.11)

there exists a compact subset �R� � with meas  � � meas  � � � � and a
continuous mapping � � �Ai ��� ����� � � 
 
���� Z �  Z�� �EDhg
where � is an open neighborhood of the origin in �  Z�� 	-, such that

� the mapping
��� ��� � � 
 e � D �L� � * � � 
 �

� �Ai ��� ��� � � 
 (C.2.12)
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defines (for every i�� � ) an holomorphic canonical transformation on
� 
� 2 �� � Z���� and

� � � Z �  �)� � "! Z���� ! ��� 2 � Z3Tf� � Z � � �
for sufficiently small �m� � ;

� the transformed Hamiltonian is in the form:

� � � �Ai ��� ��� � � 
 
 � � � �Ai 
 � � � � �Ai 
 ��� � � �� � � � � ' � �Ai 
 � � � �c	 � 	 	 �[	 � 	 	 � 	 �[	 � 	 � 

(C.2.13)

for every i ��� and ��� ��� � � 
�� ��
� 2 �� � Z���� ;

� the new frequency vector
� � and the new symmetric matrix '
� satisfy for

all i in � the diophantine inequalities

	 �� � � � �Ai 
�	 � � � � �c	 � 	 
 � 9 � �3�  � (
� 0

	 � "�� � � �� � � � �Ai 
 � � 	-, ��' � �Ai 
 ) 	-, 
z	 � � � �c	 � 	 
 � 9 � �3� 
	 � � "�� � � �� � � � �Ai 
 � � 	-, w O , � � � ' � �Ai 
 ) 	-, � � 
z	 � � � �c	 � 	 
 � 9 � �3�  � (

� 0 <
We conclude remarking that the transformed Hamiltonian system possesses the
solutions

� � � � �Ai 
 � �  (C.2.14)� � � � �

so that the system described by � in (C.2.1) possesses the invariant torus

�L� � * � � 
 �
� �Ai ��� � � � � 


for � in �  , with quasi-periodic flow (C.2.14) for all i in � .

The statement of this theorem is greatly inspired by Rüßmann’s theorem in
[Rüßm01, page 126] but puts together different results (especially for what con-
cerns the quantitative claims) contained in his work; we cite here, for references
and clearness, the major results contained in Rüßmann’s work on which theorem
C.2.1 is based: theorem ��< �

on page ����� , lemma � �Q< � on page 158, theorem �  <  
on page � �  

and theorem � �Q< �
on page � � � .

The differences between Rüßmann’s theorem and theorem C.2.1 (that consist
mainly in the addition of a cubic term in the elliptic variables) will be discussed
further on in this section. The strategy to prove theorem C.2.1 using Rüßmann’s
scheme is explained in subsection C.2.2.
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C.2.1 Explicit estimate for � � in Rüßmann’s theorem

Now referring to the estimate Rüßmann gives in [Rüßm01, page 171], we are go-
ing to formulate an explicit estimate on the value of � � (that is an estimate on the
admissible size of the perturbation � in Hamiltonian (C.2.1)) under the hypothe-
ses in theorem C.2.1. We first resume briefly, to be as much clearer as possible, all
the quantities intervening in this estimate not mentioned in the statement theorem:

� b � �	� � � ��
 and � � �	� � ��� 
 are two real numbers, whose existence is guar-
anteed by proposition C.1.3, such that for all &,��� we have

	�" #%$ ��&('*) 	-, 
�	 � O�� } � � n � t � t � � � 	-, � ��
5 x �
� 	 ' 	 � O��	 b � 	 �

5
� ��� : 
 � 
w � (C.2.15)

for every ��� � � � � � � ;
� Let � � * 
 � � � � * 
 � ' � * 
 
 (where

�
� � � , � and ' are the real-analytic

functions appearing in Hamiltonian (C.2.1)) then � � � ��� 
 is the amount of
degeneracy of � with respect to � as in definition C.1.2);

� � ��� � ��� 
 and � � � ��� 
 are respectively the index of non-degeneracy and the
amount of non-degeneracy of � with respect to � defined in proposition
C.1.2 (and whose determination can be found along the procedure in section
C.1.1);

� We recall that ��� is an arbitrarily chosen number such that
� . � � .

meas  � , ��. � is a positive number small enough to verify inclusion
(C.2.3) while � � �U	 � 	 � O ���+� �!	 ��	 � 	 � O ��� and �!� ��	 ��	  . In addiction
to that we define � � the diameter of � :

� � �hIKJ $$&s �S%�� 	 � � * 	6�
� <

We now define some numerical constants obtained by simplifying the values
indicated by Rüßmann in the cited estimate (values that we consider as given
upper bounds) and some other quantities needed for the wanted estimate:

� Let � be the chosen approximation function in agreement with definition
C.1.1, take � � � � such that

� �-� � 
 } � � � for � � �!kml # ( � � � � � � 	 � � 0 (C.2.16)

and the following inequality is verified� �� � ���� �
� �-� 


� �
� 	 } � ���� �

���r� �=� ���� � � 	 � � 
 > (C.2.17)
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� Let � be the chosen approximation function we put

� y� � �!IKJ $�	� � &  � ��&�


� � . ~ >

� Define

� � � � � � 	 � � 
 � � O � � � 	-, w O , � � � � O � � � � ��� � �1� � � � � � �!	 � ��
	� � ,
w O 	-, � �

and

� � � � � � 	 � � 
 � � O � � � 	-, w O , � � � � O � � �?� � � ��
y� � O 	�?� � � ��
�� ��� y� � 
 	
� � �?� � � ��
��� � � O � � � � � �!	 � ��
 � � ,

w O 	-,

� We can now define the value of � appearing in theorem C.2.1, which obvi-
ously gives contribution to the estimate for � � : let

� � ��� �  O � � ��� � 
 � w �  � �� � � � 
w � �`� � ��� � � � � ! � � � � � �w � 	-, w � � � O ��� � � � � 
w � �
� �w

then
� ��k���� ( �`b � � � � 0� Define � �f� � by

� � �!k���� � � � � ��� � �� � �-� � 
 �
 � � � 	 � � 
 � � � � � � �!	 � ��
 
 	-,
w O , ��> (C.2.18)

� Let �� ���  �ED�� such that

�� �L� 
 � � � � 

��� ��� w 	 �
	1. �
� 	 �
	 � �

and consider the function

� ��&�
 � �� ��&�

� �����

�� �-� 
P� � � � � �
then define

� �A� � � 
 �	� � � � IKJ $nc%
���
sut nvt w x �

����� ��
5 x �

�: � 	 g 5 � ��&�
 �Ab 5 
�	 � &
taking � �A� � � 
 � � ;
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� Define at last

b%� � � �
	-, � ��
5 x �

� b � �� �!	 � 5 � ��� : 
 � 
w (C.2.19)

b 	 � �  � � ��� ��
 	 � � � � � � �!	 � ��
 
 	-,
w O , � � > (C.2.20)

then the estimate on � � is given by

� � � �
� � � �!	 � �!� �?k���� ( � � � �
	 � �
� 0 
 	 (C.2.21)

where

� � �
� � �-� � 
 � � ��
� 	 � � �Ab%� � b 	 
 k����

� � � �
� ��� �

�
	 �
� � �-� � 
 � � ��

� 	 	 � � � 	 � � 
 � � � � � � �!	 � ��
 
 	-,
w O , � �

�
� � �

� � � �
�
� � �

�
� � w� � �

�
� �
�

� �	� � � k���� � b ��6b%� � �
� , w � � �=� �

� � � � �A� �=� � 
 �
C.2.2 Brief explanation of the strategy adopted by Rüßmann

We are going to dedicate the remaining part of this chapter to the proof of theorem
C.2.1. Actually, we will entirely use Rüßmann’s proof contained in [Rüßm01]
and perform just a few preliminary steps to prove the slighlty different version his
theorem given in C.2.1. The first step consists in listing the conditions indicated
by Rüßmann in [Rüßm01, page 157], under which the � -th step of the iteration
process, adopted to prove his main theorem of, can be carried out.

We observe at first that the scheme adopted by Rüßmann conjugates a real-
analytic Hamiltonian

� �L� � * � � 
 ��� � * 
 �
�
� �
� � � ' � * 
 � � � �L� � * � � 
 (C.2.22)

to an Hamiltonian in the form (C.2.13), that is

� �Ai ��� ��� � � 
 � � � �Ai 
 ��� � � �Ai 
 ��� � � �� � � � � ' � �Ai 
 � � � �c	 � 	 	 ��	 � 	 	 � 	 ��	 � 	 � 

(refer to the statement in [Rüßm01, page 126] without considering the initial and
final hyperbolic variables respectively � and

�
). It can be easily observed that the
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Hamiltonian that entries Rüßmann’s scheme is slightly different from the Hamil-
tonian function (C.2.1) considered in the main theorem of this section. In fact,
this last possesses in addition, as already remarked, a cubic part in the elliptic
variables

� �L� � * � � 

� � � <

The second step of our proof is therefore dedicated to manipulate Hamiltonian
(C.2.1) in order to put it in the form

� ���Ai �K� � * � � 
 � � � �Ai � * � � 
 � � ���Ai �K� � * � � 
 (C.2.23)

with

� � �Ai � * � � 
 ��� � �Ai 
 ��� � � �Ai 
 � * � �
�
� �
� � � ' ��� * 
 �

which is the form required by Rüßmann to get into the initial step of the iteration
process. In fact, in a general � -th step ( �� � ) we should have an Hamiltonian

� � �Ai �K� � * � � 
 � � � �Ai � * � � 
 � � � �Ai �K� � * � � 
 �
where the normal part is given by

� � �Ai � * � � 
 ��� � �Ai 
 ��� � � �Ai 
 � * � �
�
� �
� � � ' � � * 
 � �

depending analytically on � � * and � and, additionally, on some parameters i vary-
ing in an open and bounded set

� � 
 �  (as it will be later described, thay are
substantially the action variables whose frequencies are non-resonant and can be
controlled by means of the chosen approximation function up to a certain order).

The last step consists in applying Rüßmann’s scheme to the Hamiltonian func-
tion (C.2.23) verifying that all the conditions listed during our first step hold for
� � � . The proof of theorem C.2.1 will follow by consequence of Rüßmann’s
theorem.

C.2.3 Conditions to carry out the � -th step of the iteration pro-
cess

We want now to list, referring to [Rüßm01, page 157], the conditions under which
the � -th step of the iteration process can work out. We first need to set some
definitions:

� Choose and fix
� .
�;}�� � � �� � �

�
	 �	 � � � � � �

	 �


� � � � � 		 � � 	 � �

�� � 	� � ��� �� � � � �� (C.2.24)
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� Let � be the chosen approximation function and � � the real number verify-
ing conditions (C.2.16) and (C.2.17), we put

� �-� 
�� � � � � � �-� 
 with �
�!kml # ( � � � � � � 	 � � 0

and
� � � ��� � � ��� �-� � 
 � �=� 
 (C.2.25)

for � and
�

as previously defined.

� � � is defined recursively as follows:

� �f� ���
is an arbitrarily chosen non-empty compact subset of T (the domain of the
action variables) as it appears in the statement of theorem C.2.1 and

� � O � � ��� � ���� O � B �
� 	��� O � B �

� ���� O �
with

� � ���� O � � � ( i ��� � �,	 �� �
� � �Ai 
 ��	 ��� � � � �-� � 
 � �C�3�  � � . 	 � 	 	f} � � 0 �

� � 	��� O � � � ( i ��� � �,	
� "�� � � �� � � � �Ai 
 � � 	-, ��' � �Ai 
 ) 	-, 
�	 ��� � � � �-� � 
 �

�C�3�  ��	 � 	 	f} � � 0 �
� � ���� O � � � ( i ��� � �,	

� "�� � � �� � � � �Ai 
 � � 	-, w O , � � � ' � �Ai 
 ) 	-, � � 
�	 ��� � � � �-� � 
 �
�C�3�  � � . 	 � 	 	f} � � 0 <

� We put
� � � � � � � �=� (C.2.26)

for � � verifying (C.2.8) (and being estimated by (C.2.21)) and

� � � � � � � �=� (C.2.27)

for � � defined by equation (C.2.18).
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� Let
� �F�  be an open set and let � � � . We define � � � � � 
 as the

set of all trigonometric-algebraic polynomials
�

, depending on �L� � * � � 
4��  Z3�  Z+� 	-, and on parameters i � � , having the form
� �Ai �K� � * � � 
 �

�
� � s 5 s � � % �

��� 5 � �Ai 
 � ��� � s $�� *
5 � � (C.2.28)

with

� � � � � � : � � 
 �3�  Z��  Z�� 	-, �4	 � 	 	f} �
� � 	 : 	 � ��	 � 	 � }�� � >
and where the coefficients

� 5 � � � � D�� , for � � �  or � 	-, _ 	-, are holo-
morphic (so that � � � � � 
 
 � � � Z3� �Z+� {Z+� 	-, 
 ).

The conditions to carry out the � -step of the iteration process are:

1. [Condition on � � ] The compact set � � 
��  is such that � � ���� (recall
that � � ��� by definition).

2. [Conditions on � � ] The normal part � � of the Hamiltonian at the � -th step
belongs to � � � � � � 
 with

� � � � � ��� � � �  (see definitions given above
for � � � � � 
 and � � ) and has the form

� � �Ai � * � � 
 � � � �Ai 
 ��� � � �Ai 
 � * � �
�
� �
� � � ' � � * 
 � (C.2.29)

with ' � � ' �� ; we remark that by definition of � � � � � 
 given above we
have � � � � � � ' � ��� � � 
 .

3. [Condition on ' � ] There exist constants  � � � � ��
 and  � � � such that
the � ��Z � � symmetric matrix function ' �f��� � � � 
 satisfies

		 � � H ��� w � 		 � � } (� � � � t � t (C.2.30)

for all �;�3� .

4. [Conditions on 	 � � � � �`	 and 	 ' � � ' ��	 ] We require the following two
inequalities to be satisfied:

	 � � � � �`	 � q } � � �
� � � � � �2 � �

� � � � 2 � �
� � � � � 2 (C.2.31)

	 ' � � ' ��	 � q } � � � � �� � � � �2 � �
� � � � 2 � �

� � � � � 2 (C.2.32)

where � � and � � appear in theorem C.2.1 and are respectively defined by
(C.2.8) and (C.2.10),

� � � �=� and �� are fixed according to (C.2.24) and � �
verifies conditions (C.2.16) and (C.2.17).

193



5. [Condition on the derivatives of
� � and ' � ] Let � � and �!	 be the con-

stants in (C.2.5) and (C.2.6), let ��� � � � ��
 be small enough to verify inclu-
sion (C.2.3) and let � � be defined by (C.2.18), then the following inequality
must be verified:

� ��	 g � � 	 � q ��	 g ' � 	 � q } � �
� � � � �!	� � � � �� � � � � � �2 � � � � � � 2 ��� � �

� � � � � 
 � � � � � � 2 ��� 
 �
6. [Condition on � � ] The perturbative part � � of the Hamiltonian result-

ing after � steps of the iteration process is an holomorphic function for
�Ai �K� � * � � 
M�

� � Z�� � , where � � � ���?� � � � � ��� � 
 (see (C.1.1) for the defi-
nition of ����&�
 ) with

� � � � � � � �`� ���� �6�� � �
��

� x �
�
� �

� � � � � � � 2 �
� � � � � � � � �

( � � � � � and � � are defined in (C.2.9), (C.2.10) and (C.2.11),
� �=� and � in

(C.2.24) and � � in (C.2.25)). Besides � � has to be ��� -periodic with respect
to the angle-variables that is

� � �Ai �K� � * � � 
 � � � �Ai �K� � ���1� � * � � 
 � 9 �Ai �K� � * � � 
��
� � Z�� � � 9 �C�3� 

and has to verify 	 � � 	 � q _ � q } � � (C.2.33)

for � � defined in (C.2.26).

7. [Conditions on � � ] The Hamiltonian function at the � -th step of the iter-
ation has the form

� � �Ai �K� � * � � 
 � � � �Ai � * � � 
 � � � �Ai �K� � * � � 
S< (C.2.34)

with � � and � � verifying all conditions previously listed.

C.2.4 Survey of the conditions to carry out the � -th step of the
iteration process for ���

�

In this subsection we show that all conditions from C.2.3.1 to C.2.3.7 can be ver-
ified for ��� � under the hypotheses of theorem C.2.1. Recall that the considered
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Hamiltonian

� �L� � * � � 
 � � � * 
 �
�
� �
� � � ' � * 
 � � � �L� � * � � 


� � � � � �L� � * � � 
 (C.2.35)

is real-analytic for �L� � * � � 
 � ��{Z�T Z 

(where T is a domain in �  and



is

ball around the origin in � 	�, ), � is a non-empty compact subset of T , arbitrarily
chosen, with positive � -dimensional Lebesgue measure and

�
is an open subset

of g such that
�  ��� 
MZ � ������� 
 Z � (

� 0 ��� 
 � �
for sufficiently small �+� � � � ��
 .

Since it is more comfortable to work with complex neighborhoods of �  in-
stead that with complex domains containing the torus �  , we shall consider from
now on � as a function defined on �!�Z T Z 


and being ��� -periodic in the � vari-
ables. More precisely this means that � and � shall be considered as real-analytic
functions on �  Z+TNZ 


satisfying

� �L� � * � � 
 � � �L� � ���1� � * � � 
 �
� �L� � * � � 
 � � �L� � ���1� � * � � 
 9 �C�3�  <
Furthermore, g has to be considered as a complex domain in � 	  O 	-, containing� �Z+TNZ 


and
�

as an open set such that

�L�  ��� 
 Z � � ����� 
MZ � (
� 0 ��� 
 � � �!g (C.2.36)

and
�L� � * � � 
 �

��� �L� � ���1� � * � � 
��
� 9 �C�3� 

After this simple agreement we are ready to verify the above mentioned con-
ditions. We start observing that condition C.2.3.1 is verified for � � � by mere
definition of

� � ��� �� �
and condition C.2.3.4 trivially holds for ��� � .

Now, let i-� � � � � , then for every �L� � * � � 
�� ����� ��� ��� 
 (see definition
(C.1.1)) we may write

� ���Ai �K� � * � � 
 � � �L� �ci � * � � 
 �
� � �Ai � * 
 �

�
� �
� � � ' �Ai � * 
 � � � �L� �ci � * � � 


� � � � � �L� �ci � * � � 
 �
� � �Ai 
 ��� � � �Ai 
� *

� * � �
�
� �
� � � ' �Ai 
 � � � �Ai � * 
 � � �Ai 
 � �

� � �Ai 

� *

� * �
� �

� �
� � � ��' �Ai � * 
 � ' �Ai 
 
 � � � �L� �ci � * � � 


� � � � � �L� �ci � * � � 
 �
� � � �Ai � * � � 
 � � ���Ai �K� � * � � 
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according to (C.2.34) and (C.2.29) with � � � , having established the correspon-
dences

� ��� � � � �� *
�
� � � ' � ' �

and putting

� ���Ai �K� � * � � 
 � � �Ai � * 
 � � �Ai 
 ���
� � �Ai 

� *

� * � �
�
� �
� � � ��' �Ai � * 
 ��' �Ai 
 
 �

� � �L� �ci � * � � 

� � � � � �L� �ci � * � � 
S< (C.2.37)

As it can be immediately seen � �f� � � � �(� � 
 since � and ' belong to � � � � ��� 

(as inclusion (C.2.36) shows) and

� � ��� � ��� � ��� ��� �f��� ��� � ��� ���
by definition of � � in (C.2.18) and � � in proposition (C.1.3). This proves condition
C.2.3.2 for ��� � .

Now ' � � ' � ' � � verifies the hypothesis in theorem C.2.1 concerning its
eigenvalues; therefore we may apply proposition C.1.3, and in particular inequal-
ity (C.1.17), in order to have condition C.2.3.3 satisfied with

 � b �
(� � � �

	-, � ��
5 x �
� 	 ' 	 � �	 b � 	 �

5
� ��� : 
 � 
w

(where we used once again � �f} � � ).
To prove the effectiveness of condition C.2.3.5 in the case � � � we claim that

� ��	 g � �r	 � � ��	 g ' �`	 � � } � � �=	 g � �`	 � � O�� � ��	 g ' �`	 � � O�� � 
 }
} � � �c	 g � �`	 � O 	�� ��	 g ' �`	 � O 	�� 
 } � �� �c	 � �`	 � O ��� ��	 ' �`	 � O ��� 
 }
} � �

� � � � �!	� �
having used � � � � , � �4} � � } � , Cauchy’s estimate (with a loss of analycity � ),
and definitions of � � and �!	 in (C.2.5) and (C.2.6).

To conclude, we need to prove condition C.2.3.6 (since C.2.3.7 runs auto-
matically by consequence of all other conditions). Before estimating 	 � �`	 � � _ � �
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(accordingly with notations in C.2.3.6 in the case � � � ) we shall prove the fol-
lowing

Lemma C.2.1. Given � � as determined by (C.2.21), � � , �!	 and �!� as defined in
(C.2.5), (C.2.6) and (C.2.7) and ��� � � � ��
 , the following relation holds:

� �f}�� � � � �!	 � �!� 
 � � < (C.2.38)

Proof From the estimate on � � in (C.2.21) we have

� �f} �
� � � �!	 � �!� �

	� (C.2.39)

where we recall that ��� is given by (see (C.2.40) and the whole section C.2.1 for
notations)

� � � � � �-� � 
 � � ��
� 	 � � �Ab%� � b 	 
 k����

� � � �
� ��� � < (C.2.40)

Now, theorem 2.5.1 assures the existence of some i ��� � 
 � � that verifies

	 �� � � ���Ai 
 ��	 � �
� � �-� � 


for every � � �! such that 	 � 	 	{} � � (that is equivalent to infer � � ���� ); so we
have �

� � �-� � 
 } 	 �� � � � �Ai 
 ��	/} � �`	 � 	 � � } � ��� � � � �!	 � �!� 
S<
Substituting this last inequality in (C.2.40) we obtain

� �M} � � � O ��
� 	 � �Ab%� � b 	 
 � � � � �!	 � �!� 
 � >

since b%� �cb 	 � � (see definitions (C.2.19) and (C.2.20)), � � � � and � �!kml # ( � �� � � � 	 � � 0 � � , we have

� � }�� � � � �!	 � �!� 
 �z<
With inequality (C.2.39) we get the statement in (C.2.38) �

With the result in (C.2.38) and the definitions of � � � � � and � � in (C.2.9),
(C.2.10) and (C.2.11), we obtain

� � � � �(��� �^} �
and hence the following inclusion

� �f� � ���?� �(� � �(��� � 
 � ����� ��� ��� 
S< (C.2.41)
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Now, coming back to the definition of � � in (C.2.37) we use Taylor’s formula for
the integral remaining of an analytic series to obtain (denoting as usual

�
� 	 �

	 � )
� � �Ai �K� � * � � 
 �

� �

� � � � � 
��ug � �Ai ��� * 
 � * 
 � * � �
�
� �
� � � ' �Ai ��� * 
 � * 
 � � � �

� � �L� �ci � * � � 

� � � � � �L� �ci � * � � 
S<

In view of this equality, inclusions (C.2.41) and (C.2.36) and recalling that
� � �

����� �f� ����� , we have the following estimate:

	 � �`	 � � _ � � } IKJ $� �
� �
� 	 g � 	 � O 	�� 	 * 	

	 � �� 	 ' 	 � O 	�� 	 � 	 	 	 * 	 ��	 ��	  	 � 	
� � ��	 �C	  }

} �
� 	 � 	 � O ��� � 	� � � � � �� 	 ' 	 � O ��� � 	� � ��� � � ��	 ��	  � �� ��	 �C	  <

Then, in view of the definitions of � � � � � and � � given in theorem C.2.1 (namely
(C.2.9), (C.2.10) and (C.2.11)), inequality (C.2.8) and definitions (C.2.5), (C.2.6)
and (C.2.7), we get

	 � �`	 � � _ � � } �
� � � � 	� � � � � �� �!	�� 	� � ��� � � � �!� � �� ��	 �C	  } � �

� ��	 �C	  } � �

that is condition C.2.3.6 for ��� � .
With this last result we have proved that all conditions listed in subsection

C.2.3, which are needed for the iteration process to work, hold for � � � , under
hypotheses in theorem C.2.1. This allows to enter Rüßmann’s iterative scheme
(described in particular in [Rüßm01, pages 156-164]) with the Hamiltonian func-
tion � ���Ai �K� � * � � 
 � � � �Ai �K� � * � � 
 � � ���Ai �K� � * � � 
 � � �L� �ci � * � � 
 , obtaining the
proof of theorem C.2.1 as a consequence.
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