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Reductio ad absurdum is one of a mathematician's finest weapons. It is a far finer gambit than
any chess gambit: a chess player may offer the sacrifice of a pawn or even a piece, but a

mathematician offers the game.
G. H. Hardy

HL.1 Definition and examples

We defined normed linear spaces in Section I.2. Since normed linear
spaces are metric spaces, they may have the property of being complete.

Definition A complete normed linear space is called a Banach space.

Banach spaces have many of the properties of R": they are vector spaces,
they have a notion of distance provided by the norm, and every Cauchy
sequence has a limit. In general the norm does not arise from an inner product
(see Problem 4 of Chapter II), so Banach spaces are not necessarily Hilbert
spaces and will not have all of the same nice geometrical properties. In order
to acquaint the reader with the types of Banach spaces he is likely to en-
counter, we discuss several examples in detail.

Example 1 (L°(R) and its subspaces) Let L*(R) be the set of (equivalence
classes of) complex-valued measurable functions on R such that | f(x)| < M
a.e. with respect to Lebesgue measure for some M < o (f~ g means f(x) =
g(x)a.e.). Let || |, be the smallest such M. It is an easy exercise (Problem 1) to

t A supplement to this section begins on p. 348.
67
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show that L*([R) i1s a Banach space with norm |||, . The bounded continuous
functions C(R) is a subspace of L*(R) and restricted to C(R) the ||| ,-norm is
just the usual supremum norm under which C(R) is complete (since the uniform
limit of continuous functions is continuous). Thus, C(R) is a closed subspace
of L*(R).

Consider the set k{(R) of continuous functions with compact support,
that is, the continuous functions that vanish outside of some closed interval.
k(R) is a normed linear space under |}, but is not complete. The completion
of k(R) is not all of C(R); for example, if fis the function which is identically
equal to one, then f cannot be approximated by a function in x(R) since
If—gil, =1 for all ge«(R). The completion of x(R) is just C_(R), the
continuous functions which approach zero at + o (Problem 5). Some of the
most powerful theorems in functional analysis (Riesz-Markov, Stone-
Weierstrass) are generalizations of properties of C(R) (see Sections IV.3 and
IV.4).

Example 2 (L? spaces) Let (X, u) be a measure space and p > . We
denote by IP(X, du) the set of equivalence classes of measurable functions
which satisfy:

11, = ([ 1717 du) < oo

Two functions are equivalent if they differ only on a set of measure zero.
The following theorem collects many of the standard facts about L? spaces.

Theorem 111 Let | < p < o0, then
(a) (the Minkowski inequality) If f, g e LP(X, du), then

Wf+gl, <10, + llgl,

(b) (Riesz-Fisher) I[P(X, du) is complete.

(c) (the Holder inequality) Let p, g, and r be positive numbers satisfying
p.g, r>1and p~t +g' =r'. Suppose fe [P(X, du), g € L(X, du). Then
fg e L(X, dy) and

gl < 11, gl

Proofs of many of the basic facts about L? spaces, including these in-
equalities, can be found in the second supplemental section. The Minkowski
inequality shows that LP(X, dyu) is a vector space and that ||-||, satisfies the
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triangle inequality. Combined with (b) this shows that L?(X, du) is a Banach
space. We have given the proof of (b) for the case where p = 1, X = R and
u = Lebesgue measure; the proof for the general case is similar.

Example 3 (sequence spaces) There is a nice class of spaces which 1s
easy to describe and which we will often use to illustrate various concepts.
In the following definitions,

a= {an}::o:l

always denotes a sequence of complex numbers.

o = {a flall, = supla,| < oo}

n

Co = {a lim a, =0J

@ t/p
t’,,::{a ialps(Zlanl") <oo}
n=1

s = {a lim nfa, =0 for all positive integers p}

n— o

f= {a a, =0 for all but a finite number of n}

It is clear that as sets fosc/,cco =/l .

The spaces £, and ¢, are Banach spaces with the ||'||, norm; /,is a Banach
space with the |-, norm (note that this follows from Example 2 since
£, = IP(R, du) where u is the measure with mass one at each positive integer
and zero everywhere else). It will turn out that s is a Fréchet space (Section
V.2). One of the reasons that these spaces are easy to handle is that f'is dense
in/, (in [-|l,; p < o) and is dense in ¢, (in the |||, norm). Actually, the set
of elements of f with only rational entries is also dense in £, and ¢, . Since this
set is countable, £, and c, are separable. Z, is not separable (Problem 2).

Example 4 (thebounded operators) In Section 1.3 we defined the concept
of a bounded linear transformation or bounded operator from one normed
linear space, X, to another Y; we will denote the set of all bounded linear
operators from X to Y by £(X, Y). We can introduce a norm on £ (X, Y) by
defining

I Ax|ly
4l =
xeX,x# 0 ”x”X
This norm is often calied the operator norm.
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Theorem 1.2 If Y is complete, £(X, Y) is a Banach space.

Proof Since any finite linear combination of bounded operators is again a
bounded operator, (X, Y) is a vector space. It is easy to see that ||| is a
norm; for example, the triangle inequality is proven by the computation

14+ Byxll _ | 4xl + IBx]

1A + B| = sup <
x£0 x|l x#0 x|
| Ax]] | Bx |l
< sup su
<20 [Ixll  xz0 x|
= [|All + || Bil

To show that (X, Y) is complete, we must prove that if {4,};>, is a
Cauchy sequence in the operator norm, then there is a bounded linear
operator 4 so that |4, — A}| = 0. Let {4,}7, be Cauchy in the operator
norm; we construct A as follows. For each xe X, {A4,x}:>, is a Cauchy
sequence In Y. Since Y is complete, 4, x converges to an element y€ Y.
Define Ax = y. It is easy to check that A is a linear operator. From the
triangle inequality it follows that

HAl = 140 < 14, — 4,

so {||4,}.=, 1s a Cauchy sequence of real numbers converging to some real
number C. Thus,
lAxlly = im |4, xlly < lim || 4,]| I xilx

n—o n—=o

= Clixllx

so A is a bounded linear operator. We must still show that 4, — 4 in the
operator norm. Since {|(4 — A)x|| = lim,,, (4, — A4,)x|, we have

A —
flxii oo
which implies
A—
14— Al =sup VAT AN g, — 4
x£0 "X“ m-= o

which is arbitrarily small for n large enough. The triangle inequality shows
that the norm of A4 is actually equal to C. }

It is important to have criteria to determine whether normed linear spaces
are complete. Such a criterion is given by the following theorem (whose
proof is left to Problem 3). A sequence of elements {x,}:, in a normed linear
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space X is called absolutely summable if > =, |x,}| < co. It is called summable
if ., x, converges as N — oo to an x € X.

Theorem 1.3 A normed linear space i1s complete if and only if every
absolutely summable sequence is summable.

For a typical application of this theorem, see the construction of quotient
spaces in Section I11.4. We conclude this introductory section with some
definitions.

Definition A bounded linear operator from a normed linear space X to
a normed linear space Y is called an isomerphism if it is a bijection which is
continuous and which has a continuous inverse. If it is norm preserving, it is
called an isometric isomorphism (any norm preserving map is called an
isometry).

For example, we proved in Section 1.3 that all separable, infinite-di-
mensional Hilbert spaces are isometric to £,. Two Banach spaces which are
isometric can be regarded as the same as far as their Banach space properties
are concerned.

We will often encounter a situation in which we have two different norms
on a normed linear space.

Definition Two norms, ||}, and }|-||,, on a normed linear space X are
called equivalent if there are positive constants C and C’ such that, for all
xe X,

Clixll, < lixll; < C'llxl,

For example, the following three norms on R? are all equivalent:

1<x, 02 =/ 1 x1? + | y]?
1<x, o = [x| + | ]
1<x, ¥l = max{|x|, ||}

In fact, all norms on R? are equivalent; see Problem 4. The usual situation we
will encounter is an incomplete normed linear space with two norms. The
completions of the space in the two norms will be isomorphic if and only if the
norms are equivalent. An example is provided by the sequence spaces of
Example 3. The completion of fin the |||, norm is ¢, while the completion in
the |-, norm is ,. Two norms, |-}l; and ['|,, on a normed linear space X
are equivalent if and only if the identity map is an isomorphism from

<X 1D to KX Hll2D-
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1.2 Duais and double duals

In the last section we proved that the set of bounded linear transformations
from one Banach space X to another Y was itself a Banach space. In the
case where Y is the complex numbers, this space £ (X, C) is denoted by X*
and called the dual space of X. The elements of X* are called bounded linear
functionals on X. In this chapter when we talk about convergence in X* we
always mean convergence in the norm given in Theorem II1.2. If 1 € X*, then

iAl = sup JA(0)!
xeX, lIxll s
In Section 1V.5, we discuss another notion of convergence for X*.

Dual spaces play an important role in mathematical physics. In many
models of physical systems, whether in quantum mechanics, statistical mech-
anics, or quantum field theory, the possible states of the system in question
can be associated with linear functionals on appropriate Banach spaces.
Furthermore, linear functionals are important in the modern theory of partial
differential equations. For these reasons, and because they are interesting in
their own right, dual spaces have been studied extensively. There are two
directions in which such study can proceed: either determining the dual spaces
of particular Banach spaces or proving general theorems relating properties
of Banach spaces to properties of their duals. In this section we study several
examples of special interest and prove one general theorem. For an example of
another general theorem see Theorem 111.7.

Example 1 (I spaces) Suppose that l <p< o and p™' +4¢ ' = 1. If
fe P(R) and g e L*(R) then. according to the Holder inequality (Theorem
I11.1), fg is in L}{(R). Thus,

[” a0/ ax

makes sense. Let g € L'(R) be fixed and define

6= arax

for each fe I’(R). The Holder inequality shows that G(*) is a bounded linear
functional on LP(R) with norm less than or equal to jigll,; actually the norm
is equal to |gfl,. The converse of this statement is also true. That is, every
bounded linear functional on L? is of the form G(') for some g € L. Further-
more, different functions in L* give rise to different functionals on I?. Thus,
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the mapping that assigns to each g € L7 the corresponding linear functional,
G('), on I’(R) is a (conjugate linear) isometric isomorphism of L' onto
(LP)*. In this sense, L7 is the dual of I”. Since the roles of p and ¢ in the
expression p~! + ¢~ = | are symmetric, it is clear that I? = (L9)* = ((I*)*)*.
That is, the dual of the dual of I? is again I?.

The case where p = 1 is different. The dual of I'(R) is L°(R) with the
elements of L*(R) acting on functions in L'(R) in the natural way given by
the above integral. However, the dual of L*(R) is not I’(R) but a much larger
space (see Problems 7 and 8). As a matter of fact, we will prove later (Chapter
XVI) that I}(R) is not the dual of any Banach space. The duality statements
in this example hold for IP(X, du) where (X, p) is a general measure space
except that I!(X) may be the dual of L2(X) if (X, u) is trivially small.

Example 2 (Hilbert spaces) If we let p=2 in Example I, then g =2
and we obtain the result that I*(R) = I3(R)*, that is, I*}(R) is its own dual
space. In fact, we have already shown (the Riesz lemma) in Section I1.2
that this is true for all Hilbert spaces. The reader is cautioned again that the
map which identifies 3 with its dual 5#* is conjugate linear. If g € J#, then
the linear functional G corresponding to g is G(f) = (g, /).

Example 3 (¢, =/¢7./, =c3)  Suppose that {4}, €/,. Then for each
{adi=1€co
Afads ) = kZIlk a

converges and A(") is a continuous linear functional on ¢, with norm equal
to Y 2%, | A. To see that all continuous linear functionals on ¢, arise in this
way, we proceed as follows. Suppose A € ¢§ and let e be the sequence in ¢,
which has all its terms equal to zero except for a one in the kth place. Define
A = A(e¥) and let f4 = Y4_ (| Al /A)e . If some 4, is zero, we simply omit that
term from the sum. Then for each /, f“ € ¢, and || f*| ., = 1. Since,

'
Af%) =k21 | Ak and LAY S 1 el Al oo
we have
¢
Y1 Ad < Al
K=1

Since this is true for all £, Y} %, [4] < c and

Mg = 3 ha,
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is a well-defined linear functional on ¢,. However, A(*) and A(") agree on
finite linear combinations of the e, . Because such finite linear combinations
are dense in ¢y, we conclude that A = A. Thus every functional in ¢§ arises
from a sequence in £, and the reader can check for himself that the norms in
¢, and c§ coincide. Thus £, = c§. A similar proof shows that £, =/7.

Since the dual X* of a Banach space is itself a Banach space (Theorem
11.2), it also has a dual space, denoted by X**. X** is called the second dual,
the bidual, or the double dual of the space X. In Example 3, ¢, is the first dual
of ¢, and 7, is the second dual. It is not a priori evident that X* is always
nonzero and if X* = {0} then X** = {0} too. However, this situation does not
occur; dual spaces always have plenty of linear functionals in them. We prove
this fact in the next section. Using a corollary also proven there we will
prove that X can be regarded in a natural way as a subset of X**,

Theorem 1.4 Let X be a Banach space. For each x € X, let %(*) be the
linear functional on X* which assigns to each 4 € X* the number A(x). Then
the map J: x ~ X is an isometric isomorphism of X onto a (possibly proper)
subspace of X**.

Proof Since
[ XA = [Ax)] < HAllxelixllx

X is a bounded linear functional on X* with norm {| %] y.. < l|x]|x. It follows
from Theorems [11.5 and I11.6 that, given x, we can find a 4 € X* so that

Allxe =1 and Alx) = llxllx
This shows that

iXlxe = sup XD = fixllx
Aexe, Jay st

which implies that
Xl xer = Nl xllx

Thus, J is an isometry of X into X**. }J

Definition If the map J, defined in Theorem 111.4, is surjective, then X
is said to be reflexive.

The LP(R) spaces are reflexive for I < p < oo since (I?)** = (LY)* = I, but
L}(R) is not reflexive. All Hilbert spaces are reflexive. ¢, is not reflexive, since
its double dual is 7 . The theory of reflexive spaces is developed further in
Problems 22 and 26 of this chapter and Problem 15 of Chapter V.
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1.3 The Hahn—-Banach theorem

In dealing with Banach spaces, one often needs to construct linear func-
tionals with certain properties. This is usually done in two steps: first one
defines the linear functional on a subspace of the Banach space where it is
easy to verify the desired properties; second, one appeals to (or proves) a
general theorem which says that any such functional can be extended to the
whole space while retaining the desired properties. One of the basic tools of
the second step is the following theorem, whose variants will reappear in
Section V.1 and Chapter XIV.

Theorem 1.5 (Hahn-Banach theorem) Let X be areal vectorspace,pa
real-valued function defined on X satisfying p(ax + (1 — a)y) < ap(x) +
(1 — a)p(y) for all x and y in X and all « € [0, 1]. Suppose that A is a linear
functional defined on a subspace Y of X which satisfies A(x) < p(x) for all
x € Y. Then, there is a linear functional A, defined on X, satisfying A(x) <
p(x) for all x € X, such that A(x) = A(x) forall xe Y.

Proof The idea of the proof is the following. First we will show that if
ze X but z¢ Y, then we can extend A to a functional having the right proper-
ties on the space spanned by z and Y. We then use a Zorn's lemma argument
to show that this process can be continued to extend 4 to the whole space X.

Let Y denote the subspace spanned by Y and z. The extension of 4 to Y,
call it 1, is specified as soon as we define (2) since

Haz + y) = al(z) + A(p)
Suppose that y,, y, € Y, a, § > 0. Then

B0 + 2d003) = MBy + o) = @+ DAL v+ 2 )

(v2 + ﬂz))

o
a+f

<@+ ﬂ)p(a—f—ﬁ (1 = az) +

< Bp(yy — az) + ap(y, + Bz)
Thus, foralla, >0 and y,,y, €Y,

1 1
" [=p(y; —az) + Ayl < B [p(y; + B2z) — A(y,)]
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We can therefore find a real number @ such that

sup [1(—p(y —az) + l(y))] <a<inf [—1- (p(y + az) — l(y))]
yey L& yeY (A

e > a>0

We now define 4(z) = a. It may be easily verified that the resulting extension
satisfies A(x) < p(x) for all x e ¥. This shows that A can be extended one
dimension at a time.

We now proceed with the Zorn’s lemma argument. Let & be the collection
of extensions e of A which satisfy e(x) < p(x) on the subspace where they are
defined. We partially order & by setting e, <e, if e, is defined on a larger set
than e, and e,(x) = e,(x) where they are both defined. Let {e }, . , be a linearly
ordered subset of &; let X, be the subspace on which e, is defined. Define e
on (J,. 4 X, by setting e(x) = e,(x) if x € X,. Clearly e, < e so each linearly
ordered subset of & has an upper bound. By Zorn’s lemma, & has a maximal
element A, defined on some set X', satisfying A(x) < p(x) for x e X'. But, X’
must be all of X. since otherwise we could extend A to a A on a larger space
by adding one dimension as above. Since this contradicts the maximality
of A, we must have X = X'. Thus, the extension A is everywhere defined. }

In the theorem we have just proven, X is a real vector space. We now extend
the theorem to the case where X is complex.

Theorem HI.6 (complex Hahn-Banach theorem) Let X be a complex
vector space, p a real-valued function defined on X satisfying p(ax + By) <
lalp(x) + |B|p(y) for all x, ye X, and «, B C with |a| + |f]| = 1. Let A
be a complex linear functional defined on a subspace Y of X satisfying
| A(x)| < p(x) for all x € Y. Then, there exists a complex linear functional A,
defined on X, satisfying |A(x)} < p(x) for all x € X and A(x) = A(x) for all
xeY.

Proof Let /(x) = Re{A(x)}. ¢ is a real linear functional on Y and since
£(ix) = Re{A(ix)} = Re{il(x)} = —Im{A(x)}

we see that A(x) = £(x) — i/(ix). Since ¢ is real linear and p(ax + (1 — @)y) <
ap(x) + (1 — a)p(y) for ¢ € [0, 1],£ has a real linear extension L to all of X
obeying L(x) < p(x) (by Theorem II1.5). Define A(x) = L(x) — iL(ix). A
clearly extends A and is real linear. Moreover, A(ix) = L(ix) — iL(—x) =
iA(x), so A is also complex linear. To complete the proof, we need only show
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that |A(x)| < p(x). First, note that plax) =p(x) if |af =1. If we let
0 = Arg{A(x)} and use the fact that Re A = L, we see that
|A(x)] = e"A(x) = Ale™®x) = L(e”"*x)
< ple™"x) = p(x) |

Corollary 1 Let X be a normed linear space, Y a subspace of X, and 4
an element of Y*. Then there exists a A € X* extending A and satisfying
Al xe = llAltys.

Proof Choose p(x) = ||Ally.l|x]} and apply the above theorems. |

Corollary 2 Let y be an element of a normed linear space X. Then there
is a nonzero A € X* such that A(y) = Al xlIyl.

Proof Let Y be the subspace consisting of all scalar multiples of y and define
May) = a||yll.- By using Coroliary 1, we can construct A with A}l ={l4| ex-
tending A to all of X. But, since A(y) = [y}, A} = 1 and therefore

AQy) = |Alix-liyll §

Corollary 3 Let Z be a subspace of a normed linear space X and
suppose that y is an element of X whose distance from Z is d. Then there
existsa A € X* so that Al < 1,A(y) =d, and A(z) =0 for all zin Z.

The proof of the third corollary is left to the reader (Problem 10). To show
how useful these corollaries are we prove the following general theorem.

Theorem Il1.7 Let X be a Banach space. If X* is separable, then X is
separable.

Proof Let {4} be a dense set in X*. Choose x, € X, ||x,I| =1, so that
[ (x| = 14,01/2

Let 2 be the set of all finite linear combinations of the {x,} with rational
coefficients. Since 2 is countable, it is sufficient to show that 2 is dense in X.
If 2 is not dense in X, then there is a y € X\2 and a linear functional 2 € X*
so that A(y) # 0, but A(x) = 0 for all x € 2 (Corollary 3). Let {4, } be a sub-
sequence of {4,} which converges to A. Then

A = Apllxe = (4 — A, )(x0,)|
= | An(xn )| Z 14,,01/2
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which implies |4, || =0 as k - co. Thus A =0 which is a contradiction.
Therefore 2 is dense and X is separable. |

The example of £, and ¢, shows that the converse of this theorem does not
hold. Incidently, Theorem I11.7 provides a proof that ¢, is not the dual of
¢ ., since £, 1s separable and /Z is not.

I11.4 Operations on Banach spaces

We have already seen several ways in which new Banach spaces can arise
from old ones. The successive duals of a Banach space are Banach spaces and
the bounded operators from one Banach space to another form a Banach
space. Also, any closed linear subspace of a Banach space 1s a Banach space.
There are two other ways of constructing new Banach spaces which we will
need: direct sums and quotient spaces.

Let 4 be an index set (not necessarily countable), and suppose that for
each o € 4, X, is a Banach space. Let

X = {{xa}aeAlxa € Xarv Z “xa”Xa < CD}

ae A

{xHl = }:A Ixqllx,

Then X with the norm

is a Banach space. 1t is called the direct sum of the spaces X, and is often
written X =@, X,. We remark that the Hilbert space direct sum and
the Banach space direct sum are not necessarily the same. For example, if we
take a countable number of copies of C, the Banach space direct sum is 7,
while the Hilbert space direct sum is £,. However, if one has a finite number
of Hilbert spaces, their Hilbert space direct sum and their Banach space
direct sum are isomorphic in the sense of Section III.1.

Let M be a closed linear subspace of a Banach space X. If X were a Hilbert
space, we could write X = M @ M*. The Banach space that we now define
can sometimes take the place of M* in the Banach space case where there
is no orthogonality. If x and y are elements of X, we will write x ~ y if
x — ye M. The relation ~ is an equivalence relation; we denote the set of
equivalence classes by X/M. As usual we denote the equivalence class contain-
ing x by [x]. We define addition and scalar multiplication of equivalence
classes by

afx] + Bly] = [ox + By]
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which makes sense since the equivalence class on the right only depends on
the equivalence classes from which x and y are chosen, not on the elements
themselves. With these operations X/M, becomes a complex vector space
(the class M is the zero element). Now define

IxJlly = inf lx — mlx
meM
It is not hard to show that |||, is a norm on X/M. ||[x]] = O implies [x] =0
because M is closed. We will show that X/M with this norm is complete by
using Theorem II1.3. Let {[x,]};%,, be an absolutely summable sequence in
X/M. That is,

=}
Y, inf f|lx, — m| <

n=1meM

For each n, choose m, € M so that

“xn - mn" <2 inf "xn - m”
meM

Then {x, — m,} is absolutely summable in X. Since X is complete, {x, — m,} is
summable. Let

N
Y= lim Z(xn" mn)

N~ n=1

Then

-+ 0 asN—-

ngl [xn] - [y]

N N
l <y x,—y=Ym,
1 n=1 n=1

This proves that {[x,]} is summable. Using Theorem III.3 again we conclude
that X/M is complete. X/M is called the quotient space of X by M. The reader
should work out the easy details of the following example.

Example Let X = C[0, 1] and let M = {f] f(0) = 0}. Then X/M = C.

lIL.L5 The Baire category theorem and
its consequences

Many questions in Banach space theory involve proving that sets have
nonempty interiors. For example:
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Proposition Let X and Y be normed linear spaces. Then a linear map
T: X - Y is bounded if and only if

T {yllylly < 1}]
has a nonempty interior.

Proof Suppose that T is given and the set in question contains the ball

{x|lx — xollx <&}
Then x|l < ¢ implies

ITxl < IT(x + xo)ll + I Txoll <1+ [ T(xo)
since x + X, is in the ball of radius ¢ about x,. Thus for all x € X,
ITxh <& '(I Txoll + Dllxll

so T i1s bounded. The converse is easy. |}

It is thus of great interest to know when sets must have nonempty interiors.
There is an extraordinary theorem about complete metric spaces. Before
stating it, we make the following definition.

Definition A set S in a metric space M is called nowhere dense if S has an
empty interior.

Theorem 11L.8 (Baire category theorem) A complete metric space is
never the union of a countable number of nowhere dense sets.

Proof The idea of the proof is simple. Suppose that M is the complete metric
space and M ={ )%, 4, with each 4, nowhere dense. We will construct a
Cauchy sequence {x,,} which stays away from each A4, so that its limit point x
(which is in M by completeness) is in no A4, , thereby contradicting the state-
ment M = { )i 4,.

Since A, is nowhere dense, we can find x, ¢ A4,. Pick an open ball B, about
x, so that B, n A, = J and so that the radius of B, is smaller than one.
Since A, is nowhere dense, we can find x, € B,\4,. Let B, be an open ball
about x, so that B, « B,, B, n A, = ¢, and with radius smaller than 3.
Proceeding inductively, we pick x, e B,_,\A4, and choose an open ball B,
about x, satisfying B, < B,_,, B, 0 A, = &, and having a radius smaller
than 2! 7" Now {x,}2 , is a Cauchy sequence since n, m > N implies that x,,
X € By s0

p(xn’ xm) < ZI—N + 21_N = 22-N _’0
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as N — co. Let x =1lim,., Xx,. Since x, € By for n > N, we have
XEB.NCBN_I

Thus x ¢ Ay, for any N which contradicts M = ()%, 4,. |

The Baire category theorem tells us that if M = { J°., 4, , then some of the
sets A, must have nonempty interior. In practice, one rarely uses the Baire
category theorem directly but rather one of the following consequences. The
first is known as the Banach-Steinhaus theorem or the principle of uniform
boundedness.

Theorem 1.9 (principle of uniform boundedness) Let X be a Banach
space. Let & be a family of bounded linear transformations from X to some
normed linear space Y. Suppose that for each xe X, {|ITxll, | T € #} is
bounded. Then {|T| | T € #} is bounded.

Proof Let B, ={x|{Tx|| <n for all T e #}. By the hypothesis each x is
in some B, , thatis, X = | )X, B,. Moreover each B, is closed (since each T'is
continuous). By the Baire category theorem, some B, has a nonempty
interior. By mimicking the argument in the proposition at the beginning of
this section, we conclude that the || T||’s are uniformly bounded. |

As a typical application of this theorem we have (see also Problem 13):

Corollary Let X and Y be Banach spaces and let B(-, *) be a separately
continuous bilinear mapping from X x Y to C, that is, for each fixed x, B(x, *)
is 2 bounded linear transformation, and for each fixed y, B(:, ) is a bounded
linear transformation. Then B(, ) is jointly continuous, that is, if x, = 0 and
¥, — 0 then B(x,, y,) = 0.

Proof Let T, (y) = B(x,, y). Since B(x,, ‘) is continuous, each T, is bounded.
Since x, — 0 and B(-, y) is bounded, {||T,(y)|} is bounded for each fixed y.
Therefore, there exists C so that

1.0 < Cliyll
for all n. Thus

IB(x,, Yy = IT,(y)l < Clly,ll =0

asn—co. J
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We remark that even on R?, for nonlinear functions separate continuity
does not imply joint continuity. The standard example is

fx,y) =

f(©0,0)=0

The second application of the Baire category theorem is to the following
series of results.

X .
+y2 it (x, p> # <0, 0)

x2

Theorem 11,10 (open mapping theorem) Let 7: X - Y be a bounded
linear transformation of one Banach space onro another Banach space Y.
Then if M is an open set in X, T[M] is open in Y.

Proof We make a series of remarks which will simplify the proof. We need
only show that, for every neighborhood N of x, T[N] is a neighborhood of
T(x). Since T{x + N]= T(x) + T[N] we need only show this for x =0.
Since neighborhoods contain balls it is sufficient to show that T[B¥]} > B for
some r’ where

BY¥ ={xe X|lxll <r}

However, since T[B}] = rT[BY], we need only show that T[B}] is a neighbor-
hood of zero for some r. Finally, by the “translation argument” of the
proposition, it is sufficient to show that T[BY] has a nonempty interior for
some 7.

Since T is onto,
Y= ) TI[B,)
n=1

so some T(B,) has a nonempty interior. Now the hard work begins, since we
want T(B,) to have a nonempty interior. By scaling and translating we can

suppose that B, is contained in T[B;]; we will show that T[B,] c T[B,]
which will complete the proof.

Letye T[B,). Pickx, € Bysoy — Tx, € B,;, = T[B,,,]. Now pick x, € B, 5
so that

y—Tx, —Tx,€B,,

By induction, we choose x, € B, -. so that

y - Z TXJEBczx-n
j=1



1.5 The Baire category theorem and its consequences 83

Then x =) 2, x, exists and is in B, and

tMis

y= Tx;=Tx

J

1

Thus ye T[B,]. |}

Theorem HIL11 (inverse mapping theorem) A continuous bijection of
one Banach space onto another has a continuous inverse.

Proof T is open so T™! is continuous. J

For an application of this result see Problem 19.

Definition Let T be a mapping of a normed linear space X into a normed
linear space Y. The graph of T, denoted by I'(T), is defined as

I(T)={{x, p)I{x,y>e X x Y, y=Tx}

Theorem 1M1.12 (closed graph theorem) Let X and Y be Banach spaces
and T a linear map of X into Y. Then T is bounded if and only if the graph of
T is closed.

Proof Suppose that I'(T) is closed. Then, since T is linear, I'(T) is a subspace
of the Banach space X @ Y. By assumption I'(T) is closed and thus is a
Banach space in the norm

I<x, Tx)ll = lixfj + [ Tx||
Consider the continuous maps I1,, I1,,
I,: <{x, Tx) = x, I,: {x, Tx) = Tx

I, is a bijection so by the inverse mapping theorem TI[! is continuous. But
T = I1, ¢ II7!, so T is continuous. The converse is trivial. |

To avoid future confusion, we emphasize that the T in this theorem is
implicitly assumed to be defined on all of X. We will later deal with trans-
formations defined on algebraic subspaces of X (not all of X) with closed
graphs which are not continuous. To appreciate what the closed graph
theorem really does, consider the three statements:

(a) x, converges to some element x.
(b) Tx, converges to some element y.
() Tx=y.
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A priori. to prove that T is continuous one must show that (a) implies (b)
and (c). What the closed graph theorem says is that it is sufficient to prove
that (a) and (b) imply (c).

The following corollary of the closed graph theorem has important conse-
quences in mathematical physics.

Corollary (the Hellinger-Toeplitz theorem) Let A be an everywhere-
defined linear operator on a Hilbert space # with (x, Ay) = (4x, y) for all
x and y in 5. Then 4 1s bounded.

Proof We will prove that T(A) is closed. Suppose that {(x,, 4x,> = {x, ¥>.
We need only prove that {(x, y> € I'(4), that is, that y = Ax. But, for any
ze A,

(z,y) = lim(z, Ax,) = lim (Az, x,)

n—x n= a0

= (Az, x) = (z, Ax)
Thus y = Ax and'T(4) is closed. |

As we shall see, this theorem is the cause of much technical pain because
in quantum mechanics there are operators (like the energy) which are un-
bounded but which we want to obey

(x, 4y) = (Ax, )

in some sense. The Hellinger-Toeplitz theorem tells us that such operators
cannot be everywhere defined. Thus such operators are defined on subspaces
D(A) of # and defining what one means by 4 + B or 4B may be difficult.
For example, 4 + B is a priori only defined on D(4) n D(B) which may
equal {0} even in the case where both D(A4) and D(B) are dense. We return
to these questions in Chapters VIII and X.

NOTES

Section 111.1 The name Banach space honors the important work of S. Banach on
normed linear spaces during the 1920’s culminating in his book, Théorie des Opérations
Linéaires, Monografie Math., I, Warsaw, 1932. A good elementary reference for the material
in this chapter is the book Foundations of Modern Analysis by A. Friedman, Holt, New York,
1970. In the second supplement we prove Hoélder's inequality only in the case r = 1. To prove
the general case where p™! + g~} I observe that

ol = If1"Igl"

=r-
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and use the Holder inequality for the special case where

IR R
(olr) (gl

fim1r < ( Jir )’( f !gl"")m
()" = () (o)

Suppose X is a Banach space. One of the ways of studying the Banach space of operators
from X to itself, L(X, X), is to use the fact that it is also an algebra. Thus, one can use alge-,
braic notions like ideals and commutators to investigate the structure of £(X, X).In Section
V1.6 certain important ideals of £ (5, ), where ) is a separable Hilbert space, are studied.
The general theory of operator algebras is studied in later volumes.

obtaining

or

Section I11.2 The proof that (L*)* = L* may be found in Royden’s book (see the
Notes for Chapter I) or may be proven using the notion of uniformly convex space (see
Problems 25 and 26 of Chapter III and Problem 15 of Chapter V). In Section V1.6 we
discuss the duals of several subalgebras of Z£(#, ¥#).

Section II1.3 The Hahn-Banach theorem dates back to the work of Helly in “* Uber
Lineare Funktional Operationen,” Sitzgsber, Akad. Wiss. Wien Math-Nat. KI. 121 1la,
(1912), 265-297, and * Uber Systeme linearer Gleichungen mit Unendlich Vielen Unbekann-
ten,” Monatsh. Math. Phys. 31. (1921), 60-91. The modern version is due to H. Hahn, * Uber
lineare Gleichungssystem in linearen Rdumen,” J. Reine Angew. Math. 157. (1926), 214-229,
and S. Banach, *Sur les fonctionelles linéaires, I, I1,” Studia Math. 1 (1929), 211-216,
223-239. A nice example of the concrete applications of the Hahn~Banach theorem may be
found in the book by Friedman mentioned above. There it is shown how to use the Hahn-
Banach theorem to prove the existence of a Green's function for the Dirichlet problem in
two dimensions.

Section 111.5  The Baire theorem was proven in R. Baire, “Sur les fonctions de variables
réelles,” Annalidi Mat. Ser. 3 3(1899), 1-123. The general case is in C. Kuratowski, " La propriété
de Baire dans les espaces métriques,” Fund. Math. 16 (1930), 390-394. and S.Banach." Théoréemes
sur les ensembles de premiéres catégorie,” Fund. Math. 16, (1930), 395-398. The Banach-Stein-
haus theorem was proven by S. Banach and H. Steinhaus in ** Sur le principe de la condensation
de singularités.” Fund. Math. 9, (1927), 50-61. There is a discussion of the Baire theorem and its
consequences in Lorch's book (see the Notes for Section 11.5). The term category comes from the
following: A countable union of nowhere dense sets is called a first category set. All other sets
are called second category. The Baire theorem says that any complete metric space is second
category.

Complements of first category sets are often called residuals. A residual set is thus a set
containing a countable intersection of dense open sets. The Baire theorem implies that any
residual in a complete metric space is dense (Problem 21).
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In metric spaces, one sometimes says something is *‘ true almost everywhere ™ if it is true
on a residual; thereby, first category sets play the role of *‘sets of measure zero’”. There are
some amusing results on this notion of a.e. in G. Choquet’s book, Lectures in Analysis,

Vol.

I, pp. 120-126, Benjamin, New York, 1969. Warning: There exist sets X < [0, 1] which

are first category with measure 1! Thus the two notions of a.e., Lebesgue and Baire, are
quite different.

Other topological spaces besides complete metric spaces have the property that residuals
are dense; such spaces are called Baire spaces. For example, every locally compact space is
Baire. For additional discussion, see Choquet’s book, pp. 105-120.
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PROBLEMS

Prove that L®(R) is a Banach space.

{a) Prove that £, and ¢, are separable but 7, is not.
(b) Prove that s <7, for all p.

Prove that a normed linear space is complete if and only if every absolutely summable
sequence is summable. (Hint for the **if ” part: To show that a Cauchy sequence con-
verges it is only necessary to show that a subsequence converges.)

Prove that all norms on R" are equivalent. (Hint: Use the fact that the unit sphere is
compact in the Euclidean topology.)

Prove that C, (R) is the completion of «(R).

Prove that if {A,}2-, € ¢, then the linear functional on ¢, given by

Al{adc=1) :Z Aw Gy
has norm > % [Adl.

Prove that ¢, =¢? but that £* # ¢, by using the Hahn-Banach theorem.

. (a) Prove that there is a nonzero bounded linear functional on L®(R) which vanishes

on C(R).
(b) Prove that there is a bounded linear functional A on L®(R) such that A(f) = f(0)
for each fe C(R).

Suppose that J is a Hilbert space and that A is a bounded linear functional on 4, a
not necessarily closed subspace. Describe the continuous extensions of A.

Prove the third corollary to the Hahn-Banach theorem.

Prove that there is a linear functional A on Z,(R) so that

lima, < Afaite ) < ﬁ a,

n-+w n-+

le(R)={alaels,, a,€R foralln}
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t12. Prove the statement in the example at the end of Section 4.

13. Use the uniform boundedness principle to provide an alternative proof of the Hellinger-
Toeplitz theorem.

*14. Let X be a Banach space. Give an example of an everywhere-defined but discontinuous
linear functional A. Show directly that A is not closed.

15. Let 5 be a separable Hilbert space with an orthonormal basis {x,}5.,. Let {y,} be a
sequence of elements of # and prove that the following two statements are equivalent.
(@) (x,y2) — 0,Vxe ¥

n—+ @

®) (xm,yn) — O0,foreachm=1,2,...,and {lly./}Z, is bounded.

LA X

16. A subset S of a Banach space is called weakly bounded if and only if for alt Ae X*,
SUP:es |IMX)] < 0. S is called strongly bounded if and only if supy.s lixll < 0.
Prove that a set is strongly bounded if and only if it is weakly bounded (see Section V.7).

17. Prove that a separately continuous multilinear functional on a Banach space is jointly
continuous.

18. Extend the Hellinger-Toeplitz theorem to include pairs of operators A, B satisfying:
(Ax, y) = (x, By).

19. Let X be a Banach space in either of the norms ||:||; or [i-il2. Suppose that !-}l; < Cl-ll2
for some C. Prove that there is a D with (|||, < DIIll;.

20. Why doesn’t a one-point space violate the Baire theorem?

*21. Prove that any countable intersection of dense open sets in a complete metric space is
dense.

22. (a) Prove that a Banach space X is reflexive if and only if X* is reflexive. (Hint: If
X # X** find a bounded linear functional on X** which vanishes on X).
(b) Prove that whenever X is a nonreflexive Banach space, (- -(X*)*--)* is not re-
flexive.

23. Let X be a Hilbert space and let .# be a closed subspace. Show that the restriction of
the natural map 7 : X — X/.# is an isomorphism of .#* and X/.4.

24. Let ¢be alinear functional on a real Banach space X. Prove that X/ker 7 is isomorphic
to R with the usual norm and that the natural projection 7: X— X/ker =R is
related to £ by £ = 1 |i£]|m.

25. A Banach space is called uniformly convex if for each £ > 0, there is a & > 0, so that
ixlt=liyll=1 and I4(x+ y)I>1—8 imply llx — yil<¢&; thus the unit ball is
uniformly round. We will see in Problem 15 of Chapter V, that every uniformly
convex space is reflexive.
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(a) Prove directly that L}R) and L=(R) are not uniformly convex.
(b) Prove that any Hilbert space is uniformly convex.
*(c) Prove that L”(X, dw) is uniformly convex for p > 2. Hint: Prove that for «, 8 € C,
one has |a + B|? + {a — Bi? <27~ '(|«|® + | B|?) by first proving

o+ BI” + la = BI <V (| + | 8]

Nores: 1. L7 is actually uniformly convex for all 1 < p < oc, but the proof for 1 <
p < 2 isharder;c.f. G. Kothe: Topological Vector Spaces, I, Springer (1969}, 358-359.
2. Uniformly convex spaces were introduced by J. Clarkson,*"* Uniformly convex
spaces,” Trans. A.M.S. 40 (1936), 396-414.
3. M. Day has given examples of reflexive Banach spaces which are not uniformly
convex in ‘‘Reflexive Banach spaces not isomorphic to uniformly convex spaces,”
Bull. A.M.S. 47 (1941), 313-317; see also Kothe, pp. 360-363.

(a) A pair of Banach spaces, X and Y, are said to be in strict duality if there is a map
f: X — Y* which is isometric, so that the induced map f*: Y — X* is also iso-
metric. Prove that if X and Y are in strict duality and X is reflexive, then Y = X*
and X = Y*. (Hint: Use the Hahn-Banach theorem.)

(b) Prove that L°(X, du) and L( X, du) are in strict duality if p~! 4+ g~ ! = 1.

(c) Prove that L(X, du)* = L% X,duw) if l <p< © and p~!' + 47! = 1. (Hint: Use
Problem 25 and Problem 15 of Chapter V).

Prove the Banach-Schauder theorem: Let 7 be a continuous linear map, T: £ — F,
where E and Fare Banach spaces. Then either T[A4] is open in T[E] for each open A < E,
or T[E] is of first category in T[E] (see the notes to Section 5 for the definition of first
category).

(a) Prove that every quotient of 7, by a closed subspace is isometrically isomorphic to
either Z, or C" for some N.
(b) Prove that /, is not topologically isomorphic to any quotient space of ¢, .

Let X be a separable Banach space. Let {x,, ..., x., ...} be a dense subset of the unit
ballin X. Map /; = X by

x
A:<’a..‘..,a,,....\—>z &, X
n=1

(a) Prove that A4 is well defined and continuous.

(b) Provethat Ker Aisclosed and that 4 *lifts "’ to a continuous map A: /,/Ker A — X,

(c) Prove Ran 4= Ran A is all of X. Hint: Given x with jlx{l =1, choose Xa
recursively by requiring

k
“X— z 2"*‘x,,(,,” Sz-k
=1

(d) Conclude that any separable Banach space is topologically isomorphic to some
quotient space of /.
(e) By using (c) with 2 replaced by 3, 4, ..., show that 4 is actually an isometry.
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30. Let X bea Banach space and let Y be a closed subspace of X, Let Y°in X'* be defined by
Yo={le X*|¢] Y =0)

Given a bounded linear functional fon X/ Y, define #*(f) € X* by [7*(/)(x) = f({x]).
Prove that 7* is an isometric isomorphism of (X/Y)* onto Y°.

31. (a) Let E be a Banach space with separable dual and (M, &> a measure space with
LP(M, du) separable for all | < p < «. Develop the theory of LM, du; E) anal-
ogous to the theory of L*(M, du; ) discussed in Sections I1.1 and I1.4.

(b) Prove L°(M x N, du @ dv) and L?(M, du; L*(N, dv)) are naturally isomorphic.

*(c) Let E** be a separable Banach spaceand let 1 < p < . Prove that L?(M, du, E)*
is naturally isometrically isomorphic to LM, du, E*) (Hint: First show that it is
enough to prove that every bounded linear transformation 7 of E into L%(M, du)
is of the form [T(x)}(m) = [ f{m)}(x) for some fe L¥(M, di.; E*). Prove this in the
special case where £ = ¢,. Finally use Problems 29 and 30 to treat the general
separable Banach space, E.)

*32. Let S be a closed linear subspace of L'{0, 1]. Suppose that f € S implies that fe L?[0, 1}
for some p > 1. Prove that S < L?{0, 1] for some p>1.



