IV: Topological Spaces

Everyone knows what a curve is, until he has studied enough mathematics to become confused
through the countless number of possible exceptions. F. Klein

IV.1 General notions

The abstract notions of limit and convergence are the bread and butter of
functional analysis. The purely metric space formulations that we have used
thus far are sadly lacking in some cases, so it is necessary to introduce more
general concepts. It is possible to describe what is known as a topological
space purely in terms of convergence, but it is very awkward. Instead, one
usually defines a topological space by abstracting the notion of open sets in
metric spaces. Convergence then becomes a derived concept. We discuss
convergence in Section IV.2.

This section consists primarily of definitions as we introduce an extensive
language needed to describe topological notions. We urge the reader to learn
the language by returning to this section when necessary rather than by
brute memorization.

Definition A topological space is a set S with a distinguished family of
subsets 7 called open sets with the properties:

(1) Z is closed under finite intersections, that is, if 4, Be J, then
AnBed.
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IV.t General notions o1

(i) 7 is closed under arbitrary unions, that is, if 4,€ 7 for all a in some
index set I, then | J,; 4, € 7.
(i) JeJ and Se 7.

J is called a topology for S. We will occasionally write (S, .9 ) for a topologi-
cal space.

In contradistinction to Borel structure, topological structures are not
symmetric between intersection and union and involve not merely countable
operations but arbitrary operations.

The prime example of a topological space is a metric space. The open
sets, 7, are those sets, M < S, with the property (Vxe M)3r> 0)
{y|p(x, y) < r} = M. After discussing continuous functions, we will describe
another family of examples. We first mention, however, two trivial examples:
Given a set S, the family of all subsets of S is a topology; it is called the dis-
crete topology. I = {, S} is also a topology; it is called the indiscrete
topology.

The family of all topologies on a set S is ordered in a natural way 7, < .7,
if 7, « 7, in the sense of set-theoretic inclusion. If 7, < 7 ,, we say I,
is a weaker topology than 4 ,. (The term weaker comes from the fact that
more sequences converge in 7, than in J,; so J, convergence is a weaker
notion than J , convergence.)

Definition A family # = 7 is called a base if and only if any Te  is
of the form T = | J, B, for some family {B,} = &.

For example, the balls in a metric space are always a base. We now take a
whole family of definitions directly from metric spaces:

Definition A set N is called a neighborhood of a point x € S, a topological
space, if there exists an open set U with xe U< N,

A family A of subsets of S, a topological space, is called a neighborhood
base at x if each N € 4 is a neighborhood of x and if given any neighborhood
M of x, there is an N € A with N « M, Equivalently, A" is a neighborhood
base at x if and only if {M|N < M for some Ne A} is the family of all
neighborhoods of x. For example, if & is a base for 7, {Ne #|xe N} is a
neighborhood base at x. We emphasize that neighborhoods need not be
open. In a metric space, the closed balls of radius greater than zero are a
neighborhood base.
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Definition A set C < S, a topological space, is called closed if and only
if it 1s the complement of an open set.

The properties of the family of all closed sets can be read off from the
properties of 7.

Definition Let 4 ¢ S, a topological space. The closure of 4, A4, is the
smallest closed set containing A. The interior of 4, A°, is the largest open set

contained in A. The boundary of A is the set A\4° =A4 n [S\A4].

That a smallest closed set containing A exists follows from the fact that 9
is closed under arbitrary unions.

As examples, we consider several topologies on R?:
Example 1 The ordinary metric topology.

Example 2 Consider the family of sets of the form {{x, y>|x € O} where
yis fixed and O is an open set of R in the usual topology. This family of sets is
the base for a topology whose open sets are the sets C such that for each
yeR, {x]|{x,y> e C}isopenin R in the usual topology. In an intuitive sense,
which we shall shortly make precise, this topology is the * product™ of the
usual topology in one factor and the discrete topology in the other factor.

Example 3 Let J consist of the empty set and all sets containing
(0, 0>. A neighborhood base for {x, y) in this topology is the single (!} set
{0, 0, {x, y>}-

Our experience with metric spaces suggests that continuous functions will
play a major role.

Definition Let (S, 7 ) and (T, %) be two topological spaces. A function

f: 8= T is called continuous if f~'[4]e I for every A€ %; that is, if the
inverse image of any open set is open. fis called open if f[B]is open for each
B e 7. If f is open and continuous, it is called bicontinuous. A bicontinuous
bijection is called a homeomorphism.

Homeomorphisms are the *‘isomorphisms”™ of topological spaces. A
topological notion is some notion (or object) invariant under homeomor-
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phism. As an example, the intervals (— 0, ©) and (-1, 1) are homeomor-
phic under the homeomorphism x+ x/(1 + x?). They are not isometric in the
usual metric; in fact, only one of them is complete. This demonstrates that
completeness is not a topological notion. However, most metric space
notions that are useful in analysis are topological notions.

Continuity is often used to define topologies:

Definition Let X be a family of functions from a set S to a topological
space {T,%). The A -weak (or simply weak) topology on S is the weakest
topology for which all the functions /e X are continuous.

To construct the X -weak topology, take the family of all finite intersections
of sets of the form f ™' [U] where fe & and U € %. These sets form a base for
the X -weak topology. If ) is a family of functions on a set S but with values

in different topological spaces, we define the ¥ -weak topology in the obvious
way.

Example 4 Consider Cla, b], the continuous functions on [a, b]. The
topology of pointwise convergence on C[a, b] is the weak topology given by
the family of functions f+— f(x). That is, for each x € [a, b], let E (/) = f(x)
so the E,( - ) are maps of C|a, b] to R. As we will see, the topology of point-
wise convergence is the topology on Cla, b] for which f, — f if and only if
f.(x) = f(x) for each x.

Example 5 Let »# be a Hilbert space. The ** weak topology” is the

weakest topology making ¢+ (¥, @), continuous for each Y in 3. A neigh-
borhood base for 0 is given explicitly by the sets

N('/’l""’ d/n;alt"'aen)={<p“(¢i:(p)i <8i’ lz ]"‘*’n}

whereg; > 0, ¥, , ..., y, are arbitrary, and n = 1, 2, ... . Thus, the neighbor-
hoods in the weak topology are cylinders in all but finitely many dimensions.
That is, there is a subspace M (the orthogonal complement of ¥, ..., ¥,)
whose complement, M %, is finite dimensional and so that ¢ € N,ne M implies
@ +neN.

Example 6 On R? consider the maps n,, 7, given by n,(x, y) = x;
n,(x, y) = y. The weak topology defined by n, and n, and the usual topology
on R has rectangles (a, b) x (c, d) as a base for its open sets and thus the weak
topology is the ““ usual” topology on R2.
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Exampie 7 The weak topology can be used to topologize Cartesian
products. Recall if {S,},; is a family of sets, S = X,c; S, is the family
of all {x,},.; with x, € S,. For each a, we have a map n,: S — S, given by
nd{xglse ) = X,. If each S, has a topology 7,, we define the product
topology, X,.; 7 . as the weak topology generated by the projections n, .

We now return to our listing of definitions by classifying spaces by how
well open sets separate points and closed sets:

Definition

(a) A topological space is called a T, space if and only if for all x and y,
x # y, there is an open set O with y € O, x ¢ O. Equivalently, a space is
T, if and only if {x} is closed for each x.

(b) A topological space is called Hausdorff (or 7,) if and only if for all x
and y, x # y, there are open sets 0,, O, such that xe O, ye O,, and
0,n0,=4.

(c) A topological space is called regular (or 775) if and only if it is 7; and
for all x and C, closed, with x ¢ C, there are open sets O,, O, such that
x, €0, C< 0,, and 0, n 0, = J. Equivalently, a space is T, if the
closed neighborhoods of any point are a neighborhood base.

(d) A topological space is called normal (or 7,) if and only if it is 7, and
for all C,, C,, closed, with C; n C, = J, there are open sets O, O,
withC, < 0,,C,<c0,,and 0, n 0, = .

Obviously:

Proposition T,=T,=T,=T,

We remark that the two most important notions are Hausdorff and normal.
At this time, we avoid discussing another way of separating sets, namely
with continuous functions. Urysohn’s lemma (Theorem IV.7) deals with this
question.

We next consider various countability criteria:

Definition
(1) A topological space S is called separable if and only if it has a countable
dense set.

(i) A topological space S is called first countable if and only if each point
x € S has a countable neighborhood base.

(in) A topological space S is called second countable if and only if S has a
countable base.
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The relation between these topological notions and metric spaces is set
forward in the elementary:

Proposition (a) Every metric space is first countable,
(b) A metric space is second countable if and only if it is separable.
(c) Any second countable topological space is separable.

Warning There are separable spaces that are not second countable (see
Problem 7). To add to the confusion, some authors use “ separable” to mean
second countable. By separable we always mean that there exists a countable
dense set.

The geometric idea of being connected has a topological formulation:

Definition A topological space S is called disconnected if and only if it
contains a nonempty proper subset, C, which is both open and closed; equiv-
alently, Sis disconnected if and only if it can be written as the union of two
disjoint nonempty closed sets. If S is not disconnected, it is called connected.

We examine connectivity in Problems 3 and 6. As a final topological
notion, we consider restricting topologies to subsets.

Definition Let (5,7 ) be a topological space and let 4 = S. The
relative topology on A is the family of sets 7, ={0 n 4|0 € I}. A subset
B < A is called relatively open if B e 7 , and relatively closed if A\Be J ,.

IV.2 Nets and convergence

In this section we introduce new objects, called nets, in order to handle
limit operations in general topological spaces. Although nets seem on first
acquaintance to be bizarre, the propositions in this section show how
natural they are.

Definition A directed system is an index set [ together with an ordering
< which satisfies:

(1) If a, B el then there exists y € I so that y > a and y > f.
(i) < is a partial ordering.
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Definition A net in a topological space S is a mapping from a directed
system / to S; we denote it by {x,},.-

If we choose the positive integers with the usual order as a directed system,
the nets on that directed system are just sequences in S, so nets are a generaliza-
tion of the notion of sequence. If P(x) is a proposition depending on an
index « in a directed set 7 we say P(«) 1s eventually true if there is a § in / with
P(a) true if a > . We say P(«) is frequently true if it is not eventually false,
that is, if for any f there is an a > § with P(«) true.

Definition A net {x,} . ;1n a topological space S is said to converge to a
point x € S (written x, — x) if for any neighborhood N of x, there is a
felsothat x,e Nif o > f.

Thus x, = x if and only if x, is eventually in any neighborhood of x. If x,
is frequently in any neighborhood of x, we say that x is a cluster point of
{x,.}. Notice that the notions of limit and cluster point generalize the same
notions for sequences in @ metric space.

Theorem IV.1 Let 4 be a set in a topological space S. Then, a point x is
in the closure of 4 if and only if there is a net {x,},.; with x, € 4, so that
X, = X.

Proof We first observe that A is just the set of points x such that any
neighborhood of x contains a point of 4. This set certainly contains 4 and
its complement is the largest open set not containing any points of A.
Now suppose x, — x where each x, € A. Thenany neighborhood of x contains
some x, and hence some points of A, that is, x is a limit point of 4, so x € A4.

Conversely, suppose x € 4. Let I be the collection of neighborhoods of x
with the ordering N, < N, if N, = N,. For each Ne I, let xy be a point in
A N N. Then {xy}ne;is anetand xy— x. |

In spaces that are first countable, we can construct the closures of sets by
using only sequences. Such is the case in metric spaces. The following example
is a case where sequences are not enough:

Example Let S = [0, 1]; the nonempty open sets will be the subsets of
[0, 1] whose complements contain at most a countable infinity of points. Let
A =[0,1). Then 4 = Ssince {l} is not open. But, let {x,}2, be any sequence
of points of [0, 1). {x,},~, cannot converge to 1 since the complement of the
points {x,} -, is an open set containing 1.
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Although the above example seems artificial, spaces that are not first
countable play a large role in functional analysis. Usually, they arise when
dual spaces of Banach spaces are considered with topologies weaker than the
norm topology (Section 1V.5).

We state two facts about nets whose proofs are not difficult and are left
as problems:

Theorem 1V.2 (a) A function ffroma topological space S to a topolo-
gical space T is continuous if and only if for every convergent net {x,},.; in
S, with x, — x, the net { /(x,)},.; converges in T to f(x).

(b) Let S be a Hausdorff space. Then a net {x,},.; in S can have at most
one limit; that is, if x, = x and x, = y, then x = y.

Analogous to the concept of a subsequence we have the following definition:

Definition A net {x,},. s a subnet of a net {y,}, ., if and only if there is
a function F: I - J such that

(i) Xy = Yp for each a € 1.
(i) Forall B’ eJ, there is an «’ € I such that a > «' implies F(«) > f’ (that is,
F(a) is eventually larger than any fixed € J).

We then have the following proposition which shows that the above
definition is the right one.

Proposition A point x in a topological space S is a cluster point of a net
{x.} if and only if some subnet of {x,} converges to x.

Of course, subsequences are subnets of sequences. But it is also possible for
a sequence in a topological space to have no convergent subsequences but to
have convergent subnets (see Problem 12).

IV.3 Compactness

The reader no doubt remembers the special role that closed bounded subsets
of R" played in elementary analysis. In this section we will study the topologi-
cal abstraction of this concept:

t A supplement to this section begins on p. 351.



98 IV: TOPOLOGICAL SPACES

Definition We say a topological space (S, J ) is compact if any open
cover of S has a finite subcover, that is, if for any family <« J with
S = Juea U, there is a finite subset {U,, ..., U} = with S=J]., U,.
A subset of a topological space is called a compact set if it is a compact space
in the relative topology.

Henceforth in our discussion we will always suppose that all compact
spaces are Hausdorff, although occasionally we will repeat this condition for
emphasis.

Since we have a considerable amount of material to discuss, it is perhaps
useful to describe briefly the contents of the next two sections. After studying
some equivalent formulations of compactness and some elementary proper-
ties of compact spaces, we turn to some of the pillars of functional analysis.
We first state and discuss Tychonoff’s theorem. We then turn to the study
of continuous functions on compact sets. After showing that a compact
Hausdorff space X has lots of continuous functions (Urysohn’s lemma), we
discuss the Banach space C(X) of continuous functions. We state the
Stone-Weierstrass theorem but defer its instructive proof to an appendix. In
the next section, we determine the dual of C(X). Using the Riesz-Markov
theorem, we will prove that C(X)* is identical with #(X), the family of
signed measures on X,

We first reformulate the notion of compactness by taking complements of
open sets:

Definition A topological space S is said to have the finite intersection
property (f.i.p.) if and only if any family of closed sets & with (7., F; # &
for any finite subfamily {F\}/., < & satisfies (\;. 5 F # .

Proposition (f.1.p. criterion) S is compact if and only if S has the f.i.p.

Proof Let & be given and let % = {S\F|Fe #}. Then & has the property
that ()=, F; # & if and only if % has no finite subcover and the property
that (\res F# & if and only if % is not a cover. The reader is invited to
wend his way through the double negatives to complete the proof. |

A somewhat deeper reformulation is:

Theorem IV.3 (The Bolzano-Weierstrass theorem) A space S is com-
pact if and only if every net in S has a convergent subnet.

Proof Suppose that every net has a convergent subnet and let % be an open
cover. Let us suppose that % has no finite subcover and derive a contradiction.
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Order the finite subfamilies © of % by inclusion; & is thereby a directed set.
For each & ={F,, ..., F,} € G, pick x4 ¢ { Jl, F,. By assumption, the net
xg has a cluster point x. Since % is a cover, we can find Ue % with xe U.
Since x4 is frequently in U we can find a finite subfamily ¥ € © so that
{U}< ¥ and xge U. Since {U}< ¥, Uc|Jges G, and 50 xg€{Jges G,
which is a contradiction.

Suppose that S is compact and let {y,},.; be 2 net. If {y,} has no cluster
points, then for any x € S, there is an open set U, containing x and an a, €
with y, ¢ U, if a > a, . The family {U,| x € S} is an open cover of S, so we can
find x,, ..., x, so that { J{., U,, = S. Since I is directed, we can find &, > «,,
fori=1, ..., n. But y, ¢U,, i=1, ..., n, which is impossible since
J?=1 U,, = S. This contradiction establishes that {y,},; has a cluster point
and thus a convergent subnet. |

Second countable spaces are compact if and only if every sequence has a
convergent subsequence (this can be shown by mimicking the above proof).

Example 1 The unit ball in £, is not compact in the metric topology. No
subset of a sequence of orthonormal elements can converge.

Example 2  Let S={{a,}e’,|a,} <1/n}. It is easy to see that a
sequence of elements of S converges if and only if each component converges.
Using the diagonalization trick, we conclude that every sequence has a con-
vergent subsequence. Therefore, by the Bolzano-Weierstrass theorem, S is
compact.

Warning Compact is not the same as closed and bounded in a general
Banach space. In fact the unit ball in a Banach space is compact (in the norm
topology) if and only if the space is finite dimensional (see Problem 4 of
Chapter V).

We now mention two simple “ hereditary” properties of compact spaces
(see Problem 38):

Proposition (a) A closed subset of a compact space is compact in the
relative topology.
(b) A continuous image of a compact space is compact.

Corollary Any continuous function on a compact space takes on its
maximum and minimum values, That is, there are x, so that

f(x.)=sup f(x) and f(X-)=in£f(X)

xeC
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The following theorem is often useful:

Theorem IV.4 Let S and T be compact Hausdorff spaces; let /: S— T
be a continuous bijection. Then f1s a homeomorphism.

We need the following lemma:

Lemma If T is Hausdorff and S < T is compact, then S is closed.

Proof. Let xe §. We can find a net {x,},., in S with x, — x. Since limits are
unique in Hausdorff spaces, x is the only cluster point of the net. But since §
is compact, the net has a cluster point in S, thatis, x€ S. Thus S=S. |

Proof of Theorem 1V .4 We need only prove fis open or equivalently, since
fis a bijection, that f[C ] is closed if Cis closed. But if C < Sis closed, then C
is compact. By the last proposition, f{C] is compact. The result now follows
from the lemma. }

Proposition If {4,}/., is a family of compact sets, then Xi., 4; with
the product topology is compact.

Proof Let{x),.;beanetind= X, 4, x,=<x}, x, ..., x%. Since 4,
is compact, we can find a subnet {x,;};.p, so that {x);} converges to an
x, € A;. By a finite induction, we can find a subnet {x,;};cp, so that xJ,
converges to an x; € 4; for each j. Then {x,,} converges in 4 to x =
{Xyy ..y Xnp, SO A is compact by the Bolzano-Weterstrass criterion. |

This last proposition is not deep; what is deep is that it remains true for an
arbitrary product of compact spaces:

Theorem IV.5 (Tychonoff’s theorem) Let {A4,},.; be a collection of
compact spaces. Then X,.; 4, is compact in the product (that is weak)
topology.

Since this theorem has a mildly complicated proof well-treated in the text-
book literature, we refer the reader to the references given inthe Notes. Let us,
however, make several comments. We first remark that it is this theorem that
supports the feeling that the weak topology is the ‘“‘ natural” topology for
X, A, . Another a priori candidate, the “ box topology,” which is generated
by sets of the form X, U,, where each U, is open in 4, is not a topology for
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which Tychonoff’s theorem holds. Secondly, we note that this theorem depends
crucially on the axiom of choice (Zorn's lemma). In fact it is known that, set
theoretically speaking, Tychonoff’s theorem implies Zorn’s lemma. Finally,
we note that in the special case of countably many metric spaces, Theorem IV.5
can be proven by the method of the proposition and the diagonal trick of
Section L.5.

Next, we would like to discuss functions on compact Hausdorff spaces. We
first show that compact Hausdorff spaces have strong separation properties in
the sense of separating closed sets with open sets. We then use these separation
properties to construct continuous functions:

Theorem V.6 Any compact Hausdorff space X is normal (7).

Proof We first prove X is regular (75). Let pe X and let C < X be closed
with p ¢ C. Since X is Hausdorff, we can find, for any y € C, open and disjoint
sets, U, and V,, so that ye U,, and pe ¥,. The {U,},. ¢ cover C, which is
compact. Thus U, ,..., U, cover C. Let U=Ji., U,; V=), V,.
Then U and V are open and disjoint with C = U and p € V. Thisshows that X is
regular. Now let C, D be closed and disjoint. By repeating the above argument
with D replacing p and ““ since X is regular” replacing *“ since X is Hausdorff,”
we prove that X is normal. |

Normal spaces always have lots of continuous functions for:

Theorem IV.7 (Urysohn’s lemma) Let C and D be closed disjoint sets
in a normal space, X. Then, there is a continuous function from X to R with
0 <f(x) <1 forall xsuchthat f(x) =0if xe Cand f(x) =1 if xe D.

Sketch of proof Using the normality of X, one constructs by induction for
each dyadic rational (that is, r = k/2", k, n integers, 0 < k < 2") open sets,
U,,withCc U,cU,cU,cU,c X\Dif r <s. One uses the U, to define a
function with f(x) < r if and only if x € U, . f can be shown to be continuous.
For details, see the references discussed in the notes. |

We will see below that one can prove even stronger function theoretic
results (Theorem IV.11).

As a final result about the general properties of functions on X we will
prove that certain families are dense in Cg(X), the family of all real-valued
continuous functions on X. We first note that our proof in Section 1.5 for
C[a, b] holds on any compact set:
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Theorem 1V.8 Let C(X) be the family of all continuous complex-valued
functions on a compact Hausdorff space, X, endowed with the norm
e = sUPxex | f(¥)]. Let Cr(X)={fe C(X)|f is real-valued}. Then
C(X) is a complex Banach space and Cr(X) is a real Banach space.

The density theorem we state generalizes a classical theorem of Weierstrass
which says that any real-valued continuous function on [0, 1] is a uniform
limit (on [0, 1]) of polynomials (see Problems 19 and 20). Note that Cg(X)
has a natural multiplication given by (fg{x) =f(x)g(x). A subalgebra of
Cg(X) 1s a subspace closed under multiplication:

Theorem 1V.9 (Stone-Weierstrass theorem) Let B be a subalgebra of
Cr(X) which is closed in || - ||, . We say that B separates points if, given any
x, y € X, we can find fe B with f(x) # f(y). If B separates points, then either
B = Cg(X) or for some xp€ X, B={fe Cx(X)|f(x,) =0}. If 1 € B, and
B separates points, B = Cx(X).

We defer the instructive lattice-theoretic proof to an appendix.

The fact that we deal with Cg(X) and not C(X) is crucial (see Problem 15),
but, by adding an extra hypothesis we can easily extend Theorem IV.9 to the
complex case.

Theorem IV.10 (complex Stone-Weierstrass theorem) Let B be a sub-
algebra of C(X) with the property that if fis in B, then the complex conjugate,
f, is in B also. If B is closed and separates points, then B = C(X) or B =
{/|f(x) =0} for some fixed x.

The complex conjugate condition is crucial. For example, let D be the
unit disc in the complex plane. The functions analytic in the interior of D,
continuous on all of D, are a closed subalgebra of D containing 1 and separa-
ting points which is not C(D). It is, however, not closed under complex
conjugation.

As an example of how to use the Stone-Weierstrass theorem as well as an
example of how several functional analytic theorems can combine in a very
powerful way, we prove an extension theorem for functions in C(Y) for
Y < X when Xis compact and Yis closed. Actually, this theorem is true if X is
merely normal (Problem 18):

Theorem V.11 (Tietze extension theorem) Let X be a compact space
and let Y < X be closed. Let f be any continuous real-valued function on Y.
Then there is an f'e Cg(X) so that f(y) = f(y) forall ye Y.
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Proof Consider the map p: Cg(X)— Cg(Y) given by p(f)=fT7Y. The
theorem is equivalent to the statement that p is onto. Clearly, Ran p is a sub-
algebra of Cg(Y) and 1 € Ran p. Moreover, by Urysohn’s lemma, Ran p
separates points. If we can show that Ran p is closed in || - [y, We can com-
plete the proof by using the Stone-Weierstrass theorem.

Let I = Ker p. Then I is clearly closed in Cr(X), so we can form the
quotient Banach space Cr(X)/I. By elementary algebra, p “lifts” to a bijec-
tion, §:Cr(X)/I- Ranp. If we can prove [5(L/Dlicpry = I/ llepexyrs
Ran p will be a Banach space and thus closed.

Clearly, llp(f)llcgcry < 1.f llegexys 5O 18/ Dlleqery < ILf Niegexyr- Thus, it is
enough to show that given g € Ran p, we can find f € Cg(X) with g = p(f) and
g llcgcyy = IIf llcgexy (remember the definition of quotient norm!). Since

g € Ran p, we know that g = p(h,) for some h; € Cx(X). Let

hy = min{llgllcmn, h}

so that p(h,) = g and h,(x) < |1glicpy, for all x. Let Ay = max{— ligllcgx)» A2}-
Then, I1A3llcpoxry = 19ilcg(yy @nd p(h3) = g. This completes the proof. §

Appendix to IV.3 The Stone-Weierstrass theorem

In this appendix we prove Theorem IV.9 in the case 1 € B. The general proof
is left as an exercise. Interestingly enough, the first step in the proof is the
proof of the classical Weierstrass theorem (which is a special case of the
general theorem!)

Lemmalt The polynomials are dense in Cgla, b] for any finite real num-
bers a, b.

Proof See Problems 19 and 20.

This can now be used to prove that B is a lattice, where:

Definition A subset S« Cr(X) is called a lattice if for all f,ge S,
f A g=min{f,g}and fv g = max{/f, g} are in §.

Lemma2 Any closed subalgebra B of Cg(X) with 1 € B is a lattice.
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Proof We show that if f€ B, then | | € B. The result then follows from the
formulas: fvg=134|f~g| +3f+9), fAag=-[(-/)v (-9 Without
loss suppose that ||, < 1. By the classical Weierstrass theorem, we can find
a sequence of polynomials P,(x) converging uniformly to | x| on [—1, 1], for
example | P,(x) — |x|| < 1/n for all x in [0, 1]. Since [If], <1, it follows
that I[P (f) = |f| . < l/m, 1e. |f| =lim,., P,(f). Since B is an algebra
with 1 € B, P,(f) € B. Since B is closed, | /| € B. |

Finally, the full Stone—Weierstrass theorem is a consequence of Lemma 2
and the following theorem which is of some interest in itself:

Theorem 1V.12 (Kakutani-Krein theorem) Let X be a compact
Hausdorff space. Any lattice & < Cr(X) which is a closed subspace contain-
ing 1 and which separates points is all of Cg(X).

Proof Let he Cg(X) and let ¢ be given. We seek fe & with ||h —f|| < &.
Suppose we can show for any x € X, there is f, € & with f.(x) = h(x) and
h<f,+ ¢ Then for each x, find U,, an open neighborhood of x with
h(y) = f(y) — e for all y e U, (by the continuity of A — f,). The U, cover X so
let U,,, ..., U,, be a subcover. Then f=/, A -~ Af, obeys f(3) +e=
min,{f, () + €} = A(y). Moreover, since any ye U, for some i, f(y) —¢
</f. () —e<h(y). Thus |If = hi, <e.

It remains to find some f, with the desired properties. Since ¥ separates
points and 1 € &, for any x and y in X, we can find f,, € & with f (x) =
h(x) and £, (y) = A(y). For each y, we can find V,, an open set about y with
fo(2) +exhiz)forze V,. V, ..., ¥V, willcover X forsuitable y,, ..., y,. If
we take f, =1, v - v £,,., then fi(x) = A(x), and for any ze X

fz) + e = max {f,, (2) + &} = h(z)
i=1 n

i=1,...,

This completes the proof. |

IV.4 Measure theory on compact spaces T

In this section, we wish to discuss several aspects of measure theory which
are special for compact spaces. In particular, we will see that the dual of
C(X) can be interpreted as a space of measures (the Riesz-Markov theorem).
Since many of the measure-theoretic proofs are not enlightening, we will not
prove all of the theorems.

t A supplement to this section begins on p. 353.
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The first question that arises is what to pick as the o-field of measurable
sets. Let us begin with a minimal family. We clearly want to integrate con-
tinuous functions /€ C(X). This might lead one to suspect that we want to
allow all closed (and open) sets to be measurable but this is not necessary:

Definition A Gy set is a set which is a countable intersection of open
sets.

Proposition Let X be a compact Hausdorff space and let fe Cg(X).
Then £ ~([a, «©)) is a compact G set.

Proof f~!([a, ®)) is closed and thus compact. Since
£, o) = (1 /7@~ Un, )
itisa Gy. |

Thus, to integrate continuous functions, we need only have compact
G,’s in our o-field.

Definition The o-field generated by the compact G;’s in a compact space
X is called the family of Baire sets. The functions f: X =R (or C) measur-
able relative to this o-field are called Baire functions. A measure on the Baire
sets is called a Baire measure if in addition it is finite, that is u(X) < co.

As in the case of the finite intervals of the real line and Lebesgue measure:

Theorem IV. 13 If uis a Baire measure, then C(X) < L?(X, du) for ali p
and C(X) is dense in L'(X, du) or any L? space for p < oo (but not L® except
in pathological cases where C(X) is already all of L®!).

Despite the fact that Baire sets are all that are needed, the reader no doubt
wants to repress G,’s and consider all Borel sets, i.e. the o-field generated by
all open sets. The question of extending Baire measures to Borel measures,
that is, measures on all Borel sets, is answered by the following remarks:

(1) Every Baire measure is automaticalily regular, that is,

u(Y) = inf{p(0) | Y < 0, O open and Baire}
= sup{u(C) | C c Y, C compact and Baire}
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(2) In general, a Baire measure has many extensions to all Borel sets but
there is exactly one regular extension to a Borel measure. A Borel measure is
called regular if

u(Y) = inf{u(0) | Y = O, O open}
= sup{u(C) | C = O, C compact and Borel}

Thus there is a one-one correspondence between Baire measures and regular
Borel measures.

(3) If uis a Borel measure, then C(X) is dense in L'(X, du) if and only if
is regular. If u is regular, every Borel set is almost everywhere a Baire set in
the sense that given a Borel set Y, there is a a Baire set ¥ with

flay = x7 | du=p(N\D) + w(Y\Y) =0

In addition, every Borel function is equal, after a change on a Borel set of
measure zero, to a Baire function.

(4) In certain cases, every compact set is a G, so the Baire and Borel sets
are identical. This is the case if X is a compact metric space (see Problem 30).

Hencetorth, we will use the word measure in the context of a compact set,
X, to mean Baire (or equivalently reguiar Borel) measure unless we specifi-
cally indicate otherwise.

Now, let X be compact and let 4 be a measure on X. Consider the map
C(X) - C given by f+—£,(f) =[ fdu. £, is clearly linear and

12401 < [ 1] du < 1f o (X)

so /, is a continuous linear functional on C(X). In fact, I, llcx) = u(X), for
take f = 1. Moreover, Z, is positive in the sense:

Definition A positive linear functional on C(X) is a (not necessarily a
priori continuous) linear functional £ with £(f) > O for all f with > 0 point-
wise.

In the more general context of C*-algebras, positive linear functionals will
again arise; see Chapter XVII. They have the following nice property (for
other properties of positivity, see Problem 37):

Proposition Let / be a positive linear functional. Then £ is continuous
and {l£licxys = £(1).
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Proof Suppose first that f is real. Since —{fll, <f<|ffle, We have

—{Mflle S () <£(D)ilfllw; thatis, [£(f)] < lifll,£(1). If f is arbitrary,
£(f) = er with r real and positive, so

12(f)| = ¢(Re[e™"f]) < IRe(e Nl (D) < (D If Il 1

We have seen that any Baire measure provides an example of a positive linear
functional on C(X); that these are the only examples is the content of:

Theorem IV.14 (the Riesz-Markov theorem) Let X be a compact
Hausdorff space. For any positive linear functional £ on C(X) there is a
unique Baire measure z on X with

7 = | fdu

While we will not give a detailed proof, let us show how y may be recovered
from /,. A similar process allows one to construct a measure from any
positive linear functional, even if one does not know a priori that it is of the
form £, . Since p is inner regular (that is, u(Y) = sup{i(C)| C <= Y, C com-
pact}), we need only find u(C) for C compact to “recover” u. We claim
w(C) =inf{£ (/)| fe C(X),f= xc}. Since p is positive, it is clear that
w(Cy<L,(f) if f= xc; thus, we need only show that, given ¢, we can find
Se C(X) with xc < fand /,(f) < (C) + &. Since u is outer regular, given ¢
we can find O open with u(O\C) < ¢ and C < O. By Urysohn’s lemma, we can
find fe C(X)with0<f<1,f(x)=1if xe Cand f(x) =0 if x e X\O. Thus
£(f) < u(0) < u(C) + . This shows u can be recovered from 7, , and so it is
not too surprising that a measure can be constructed from an arbitrary /.

The Riesz-Markov theorem is the usual way that measures arise in func-
tional analysis. For example, we have already intimated that measures on R
are associated with quantum mechanical Hamiltonians and they, in turn, arise
from certain positive linear functions and the use of the Riesz-Markov
theorem (or rather its extension to locally compact spaces which we will
discuss shortly).

In general, a pointwise limit of a net of Baire functions is not a Baire
or even a Borel function (Problem 13). However, if {f.},. is a net of func-
tions with each f, continuous and {f,} is increasing in the sense that f, > f;
if « > B, then f=lim, f, = sup, f, is a Borel function because

7@, )] =) f7(a, )]

is open. The monotone convergence theorem has the following net generaliza-
tion:
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Theorem IV. 15 (monotone convergence theorem for nets) Let u be a
regular Borel measure on a compact Hausdorfl space X. Let {f},; be an
increasing net of continuous functions. Then f = lim, f, € L'(X, du) if and only
if sup, |1f,ll; < o and in that case lim, ||/ — f,li; = 0.

Before leaving measure theory on compact spaces, we should identify the
dual space of C(X). Of course, not every continuous linear functional on
C(X) 1s a positive linear functional, but the major result we are heading
toward is that any £ € Cr(X)* is the difference of two positive linear func-
tionals. This depends on a simple “* lattice-theoretic ™ result about Cg(X):

Lemma Letf,geCr(X)withf,g > 0. Suppose he Cxg(X)and0O<h<f+g.
Then, we can write h = h; + h, with 0 < h; <f, 0< h, <g, hy, h; € Cg(X).

Proof Let hy = min{/f, h}. Then 0 < A, <f and if h, = h — h,, then h, > 0.
Moreover, if h;(x) = h(x), then A,(x) =0 < g(x) and if A, (x) = f(x), then
hy(x) = h(x) — f(x) < f(x) + g(x) = f(x) = g(x),s0 h, < g. |

Theorem 1V.16 Let £ € C(X)*. Then ¢ can be written £ =¢, — /.
with /., and /. positive linear functionals. Moreover, £,(1) +/_(1}) =
£ | and this uniquely determines £/, and £ _.

Proof Forfe C(X), ={fe C(X)|f=0},define . (f) =sup{(h)|he C(X);
0<h<f} Since [£(h)] < €] lhlle < €] ifllo, this supremum is finite.
Clearly ¢.(tf) =t/ .(f) for any scalar 1 >0 and Z,.(f) > £(0) =0 for all
feC(X), . Letf, ge C(X), . Then, by the lemma:

(o(f+g)=sup{((h) |O<h<f+g}

= sup{/(h;) + £(h) |0 <hy <f, O0<h,<g}

=) +7.(9)
For any f € C(X), define f, = max{f,0}and f_ = —min{f, 0}, sof=f, — f_.
Define £, (f)=¢.(f+)—=£¢,.(f-). 1t is then easy to show /, is linear on
C(X). By definition ¢, (f)=/4(f) if f20s0 £_(f)=£,.(f)—¢(f) is a
positive linear functional. We have thus written £ =¢, — /. as the difference
of positive linear functionals.

To prove £ (1) + £_(1) = |||, we note first ||l < W 0+ -1l =¢,(1)

+ £_(1). For the inequality in the other direction, we first rewrite /_ in a way
symmetric to £, . For f>0

£_(f)=sup{t{(h) - (N 0<h<f}
= sup{¢(k) | -f < k <0}
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where k = h — f. Thus:
(1) +¢_(1) =sup{t(h) | O < h < 1} + sup{t(k)| — 1 <k <0}
=sup{/(g9)| ~1 <g <1}
< IZiisup{ilgll, | ~1 <g <1}
= |IZ||

The proof of uniqueness is left to the reader (Problem 31). |}

Definition A complex Baire measure is a finite linear complex combin-
ation of Baire measures.

An easy consequence of Theorem IV.14 and Theorem IV.16 is:

Theorem IV.17 Let X be a compact space. Then the dual C(X)* of
C(X) 1s the space of all complex Baire measures.

Definition We write H#(X)=C(X)*; #A, (X)={{eHM(X)| ¢ is a
positive linear functional} and A4, (X)={/e# .| I/l =1}

In some cases, it is important to think of measures not merely as individual
objects but instead as elements of .#(X), so that we can employ geometric
ideas. To give the reader a feel for this sort of reasoning we conclude our
discussion of #(X) by a simple convexity theorem.

Definition A set 4 in a vector space Y is called convex if x and ye 4
and 0 <t < 1 implies tx + (1 — ¢)y € A. Thus A is convex if the line segment
between x and y is in A whenever x and y are in 4 (Figure IV.1). 4 is called a
cone if x € A implies tx € A for all £ > 0. If 4 is convex and a cone, it is called
a convex cone.

FiGuURE IV.1] A convex set.
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Proposition Let X be a compact Hausdorff space. Then 4, (X)
is convex and . ,(X) is a convex cone.

Proof A convex combination of positive linear functionals is clearly a posi-
tive linear functional. Moreover, |[£{ = (1) if £ is a positive linear functional
so il +(1 =), =1,if¢,,l,e M, (.}

At first sight, this geometric fact may appear a little strange since the
reader is used to thinking of the unit sphere, {x | x|}l = 1} as “round’” and
here we are saying a piece of it is absolutely flat! The moral is that every norm
1s not the Euclidean norm (the parallelogram law implies that in a Hilbert
space, if [|xi|= |ly{l =1, and x # y, then |tx + (1 — t)yl < 1). In fact, R"
with the norm [i{x,, ..., x,> |l = 3.7~ |x;| has a unit sphere with flat faces,
see Figure IV.2. This is not a coincidence; {l, ..., n} is a compact set when
given the discrete topology, and R" with the norm considered is precisely
M1, ..., n}).

FIGURE 1V.2 The unit sphere in R?
when (IKx, y>ll = | x| + |»].

-

Now, we want to extend * topological measure theory” to a larger class of
spaces:

Definition A topological space, X is called locally compact if and only
if every point p € X, has a compact neighborhood.

By thinking of Lebesgue measure on R, we realize that we want to relax the
condition u(X) < oo which we required when X was compact. We first define
the Baire sets in X, a locally compact space, to be the o-ring # generated by
compact G; sets. Note that, in general, X may not be a set of #. However, if
X is g-compact, that is, a countable union of compact sets, X is in &.

Definition A Baire measure on X, a locally compact space, is a measure
on the Baire sets for which u(C) < oo for any compact Baire set C.
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Given any Baire measure g on X, and given a compact G, set C < X, there
is induced by restriction a Baire measure uc on C. Conversely, it is easy to see
that a family of measures {u}, one for each compact G, set, with the property
that uc(Y) = up(Y) if Y = C n D, defines a Baire measure. This association
allows us to prove theorems in the locally compact case from their compact
case analogues.

Definition Let X be a locally compact space. x(X), the algebra of con-
tinuous functions of compact support, is the set of functions that vanish
outside some compact set. C(X), the algebra of continuous functions vanish-
ing at oo, is the set of f € C(X) with the property that for any ¢ > 0, thereis a
compact set D, < X such that | f(x)| <eif x ¢ D,. Thus

k(X) « C(X) = C(X)
With this definition, Theorem IV.14 implies

Theorem V. 18 (Riesz—Markov) Let X be a locally compact space.
A positive linear functional on k(X)) is of the form £(f) = { f du for some Baire
measure, u. A positive linear functional on C_(X) comes from a measure
u with total finite mass, that is, sup, . g #(4) < c0.

In the next chapter, we will find a topology on x(X) for which the dual is
just the complex Baire measures. Notice that this topology is not given by
Il lle . kK(X) is not complete in the norm || - || ; its completion is C(X) and
its dual in || ||, is the finite measures.

IV.5 Weak topologies on Banach spaces 1

Definition Let X be a Banach space with dual space X*. The weak
topology on X is the weakest topology on X in which each functional £ in X* is
continuous.

Thus a neighborhood base at zero for the weak topology is given by the sets
of the form

N, ....¢e)={x]||¢x)| <e; i=1,...,n}

t A supplement to this section begins on p. 354.
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that is, neighborhoods of zero contain cylinders with finite-dimensional open

bases. A net {x,} converges weakly to x, written x, — x, if and only if £(x,) -
{(x) for all £ € X*.

For infinite dimensional Banach spaces, the weak topology does not arise
from a metric. This is one of the main reasons we have introduced topological
spaces. Before considering examples, let us note three elementary properties of
the weak topology:

Proposition (a) The weak topologyis weaker than the norm topology,
that is, every weakly open set is norm open.

(b) Every weakly convergent sequence is norm bounded.

(c) The weak topology is a Hausdorff topology.

Proof (a)follows from {Z(x)| < Ii£1l ilx}!; (b)is a consequence of the uniform
boundedness principle; and (¢) follows from the Hahn-Banach theorem. We
leave the details to the reader. J}

We emphasize that (b) is only true for sequences. In Problem 39, the reader
is asked to construct a counterexample to the analogous net statement.

Let us consider two examples; in both of them, we will describe what it
means for sequences to converge. This does not completely describe the
topology, but it will give the reader an impressionistic view of the underlying

topology.

Example 1 Let # be a Hilbert space. Let {¢,},.; be an orthonormal
basis for #. Given a sequence 1, € I, let Y\ = (o, , ¥,> be the coordinates
of Y. We claim , — ¥ in the weak topology if and only if (a) Y — @ for

each « and (b) |¥,] is bounded. For suppose ¥, — ; then (a) follows by
definition and (b) comes from (ii) of the proposition. On the other hand,
let (a) and (b) hold and let F < 5 be the subspace of finite linear combinations
of the ¢,. By (a), <o, ¥,> = (o, ¥ if ¢ € F. Using the fact that X is dense,
(b), and an ¢/3 argument, the weak convergence follows.

Example 2 Let X be a compact Hausdorff space and consider the weak
topology on C(X). Let { /,} be a sequence in C(X). We claim f, — fin the weak
topology if and only if (a) f,{x) = f(x) for each x € X, and (b) |, is bounded.
For if f, = f, then (a) holds since f+ f(x) is an element of C(X)* and (b)
comes from (it) of the proposition. On the other hand, if (a) and (b) hold,
then | f,(x)| < sup, !lf,ll, Which is L' with respect to any Baire measure p.
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Thus, by the dominated convergence theorem, for any u € # .(X), [ f, du—
{fdu. Since any ¢ € #(X) is a finite linear combination of measures in
A , , we conclude that f, — f weakly.

We have seen that the weak topology is weaker than the norm topology;
actually, it is very weak indeed! To see this, we note that having few open sets
is the same as having few closed sets and this is the same as big closures. In
Problem 40, the reader will prove that the weak closure of the unit sphere,
{xeX | x|l = 1}, in Xis the unit ball, {x l llx|l < 1}, in any infinite dimensional
Banach space.

We will shortly study general ‘““dual” topologies. As a special case of
Theorem 1V.20, we state;

Theorem V.19 A linear functional £ on a Banach space is weakly con-
tinuous if and only if it is norm continuous.

While this theorem follows from Theorem 1V.20, it has a simple direct
proof (Problem 42).

Finally, we should like to discuss the weak-* topology and prove a com-
pactness theorem which will often be of use to us. Suppose Y = X* is the
dual of some Banach space X. Y*=X**, of course, induces the weak topology
on Y, but we may instead consider the topology induced by X acting on X*;
explicitly:

Definition Let X* be the dual of a Banach space. The weak-* topology
is the weakest topology on X* in which all the functions £+ £(x), x € X, are
continuous.

Notice that the weak-* topology is even weaker than the weak topology. As
one might expect, X is reflexive if and only if the weak and weak-* topologies
coincide, and many characterizations of reflexivity depend on relations
involving the weak and weak-* topologies.

To avoid confusion and to be able to state our next theorem in its natural
setting, let us introduce a new notion:

Definition Let X be a vector space and let Y be a family of linear func-
tionals on X which separates points of X. Then the Y-weak topology on X,
written o( X, Y), is the weakest topology on X for which all the functionals in
Y are continuous.
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Because Y is assumed to separate points, o(X, Y) is a Hausdorff topology
on X. For example, the weak topology on X is the a(X, X *) topology while
the o(X*, X) topology is the weak-* topology en X *. The o(X, Y) topology
depends only on the vector space generated by Y, so we henceforth suppose
that Y is a vector space.

Example The weak-* topology on #(X), X a compact Hausdorff
space, is often called the vague topology. To get an idea of how weak it is,
let us show the linear combinations of point masses are weak-* dense in
A(X). In Problem 41, the reader is asked to show they are actually norm
closed. Suppose that u is a given measure. We must show that every weak
neighborhood of u contains a sum of point measures, or equivalently, given
fi, .-+, /, and ¢, that we can find «,, ..., «, and x;, ..., Xx,, 50 that

(/) — Y o;filx)l <e  for i=1,...,n

=1
For then Zajéxj will be in the vague neighborhood N(/f,...,f,,&) + u
Without loss, suppose that f;, ..., f, are linearly independent. For each x,
consider the vector f, = {fi(x), ..., f,(x)> e R". If the {f,} do not span R"
there is an a=<a,...,a,) #0eR" with a-f, =0 for all x, that is,
Y7.,a;f; =0 contradicting linear independence. Thus, the f, span R"
So, we can find x,, ..., x, and «a,, ..., «, with

W WD = Yl

So, u(f) = Y-, a,f{x,), which proves our claim.

The a(X*, X) topology is of course weaker than the norm topology on X*
so all the o(X*, X)-continuous linear functionals are in X**. In general,
however, not all of X** 1s weak-* continuous on X*: in fact:

Theorem I1V.20 The o(X, Y) continuous linear functionals on X are
precisely Y; in particular the only weak-* continuous functionals on X* are
the elements of X.

Proof Suppose that £ is a o(X, Y) continuous functional on X. Then
{x||£(x)] <} {x{|ydx)} <e;i=1,...,n}for some ¢ and some y,, ...,
y, € Y. Now suppose that y(x) =0fori=1, ..., n. Then |£(¢"'x)] < 1 for
all ¢ > 0, which implies that /(x) = 0. As a result, Z lifts to a functional /7
on X/K where K={x|y(x)=0,i=1,...,n}. Elementary abstract algebra
shows Jy, ..., 7, span the dual space of X/K. Thus 2 =Y., «,5;, so that

=3l 0y€Y. |
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Finally, we conclude this section with its most important result, a result
which is perhaps the most important consequence of Tychonoff’s theorem:

Theorem IV. 21 (the Banach-Alaoglu theorem) Let X* be the dual
of some Banach space, X. Then the unit ball in X* is compact in the weak-*
topology.

Proof Foreachxe X,let B, ={AeC||4| < ix|}. Each B, is compact, so,
by Tychonoff’s theorem, B = X, . x B, is compact in the product topology.
Now what is B? An element of B is just an assignment of a number b(x) € B,
for each x in X, that is, b is a function from X to € with |b(x)| < [Ix/i. In
particular, the unit ball (X*), is a subset of B, namely those b € B which are
linear. What is the relative topology induced on (X*), by the product topology
on B? It is precisely the weakest topology making /+— #(x) continuous for
each x, that is, the weak-* topology.

Thus, we must only show that (X*), is closed in the product topology.
Suppose that Z, is a net in (X*), with £, — Z. Since |/(x)| < lix|, we need only
show £ is linear. But this is easy; if x,y € X and A,u € C, then

£(Ax + py) = lim £, (Ax + uy) = lim A0 (x) + ul(y)

= A(x) + ut(y) K

Appendix to IV.5 Weak and strong measurability

In Section I1.1, we briefly discussed vector-valued measurable functions
with values in an infinite dimensional Hilbert space #. f was called measur-
able (in Problem 12 of Chapter II) if (y, f(*)) was a complex-valued measur-
able function for each y € . This notion might be called weak measurability.
Another natural candidate for measurability is the a priori stronger notion of
measurability which requires that f~!'[C] be measurable for each open set
C < . Throughout this book, by a vector-valued measurable function, we will
mean a function measurable in the weak sense. However, to satisfy the reader’s
natural curiosity, a brief comparison of the various notions of measurability
of vector-valued functions seems in order.

Definition Let f be a function on a measure space {M, u, Z) taking
values in a Banach space E.
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(1) f is called strongly measurable if and only if there is a sequence of
functions f, so that f,(x) = f(x) in norm for a.e. xe M and each f,
takes only finitely many values, each value being taken on a set in £.

(i) [is called Borel measurable if f~'[C] e £ for each open set C in E (in
the metric space topology on E).

(111) fis called weakly measurable if and only if Z(f(x)) is a complex-valued
measurable function for each / € E*.

Proposition (a) A pointwise limit of a sequence of Borel measurable
functions i1s a Borel measurable function.

(b) Let f bea function from M to E. If fis strongly measurable, then [ is
Borel measurable.

(c) Let fbe a function from M to E. If fis Borel measurable, it is weakly
measurable.

Proof (a) Let f, > f pointwise in norm. Let C be an open set in E. Let
C, = {x|Bi., = C} where B is the ball of radius ¢ about x. Then,

=0 U N roed

k=1 n=1m>n
so f1s Borel measurable.

(b) This is a direct consequence of (a) and the definitions.
(¢) The composition of Borel functions is Borel. |

Theorem 1V.22 Let 5# be a separable Hilbert space. Let f be a function
from a measure space (M, u, Z> to 5. Then the following three statements are
equivalent:

(a) fis strongly measurable.
(b) fis Borel measurable.
(c) fis weakly measurable.

Proof By the last proposition, we need only show that (¢) implies (a). Let
{122, be an orthonormal basis for 3#. Let a, = (¥,, f(x)). Each a, is a
complex-valued measurable function. It is easy to construct a, ,(x) finite
valued, |a, .(x)| < |a(x)| for all x and lim,,_. ,, @, .(x) = a,(x) for all x € X.
Define fy =Y N_ | a, v(xW,. fy is finite valued and fy -/ in norm so f is
strongly measurable. |

Example Let C, be a copy of the complex numbers C and let
H = @,.x C,, thatis, S consists of functions ¢ on R, nonzero at only count-
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ably many ¢ with Y ,. g |@(f)|? < c©. Let ¢, be given by

1) = 1 ift=s
s\ =10 otherwise

Then {@,},.g is an orthonormal basis for 5. Let f: R — 5 be defined by
f(s) = @,. For any y € o, (¥, f(s)) = 0 except for a countable set so (Y, f(s))
is measurable. Thus f(s) is weakly measurable. But fis not strongly measur-

able; for if f = lim f, pointwise in norm, then Ran fe | Ran f,. If each f,
were finite valued, Ran f would be separable, which it is not.

NOTES

Section 1V.1 For the reader who wishes to delve further into the realm of general
point set topology, we recommend J. Kelley’s General Topology, Van Nostrand-Reinhold,
Princeton, New Jersey, 1955, most enthusiastically. The best way to read the book is to do
all the problems; it is time consuming but well worth the effort if the reader can afford the
time. Other good references on elementary (and sophisticated) topological notions include:
K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966, W. Pervin, Foundations
of General Topology, Academic Press, New York, 1964, and W. Thron, Topological Struc-
tures, Holt, New York, 1966.

The notion of topological spaces grew out of work of Fréchet and Hausdorff. The T,-T,
classification is due to P. Alexandroff and H. Hopf, in Topologie I, Berlin, 1935.

The concept of ** Cauchy sequence’ does not extend to an arbitrary topological space.
However, one can add a “ uniform structure’ to the topological structure and thereby have
spaces in which Cauchy sequence and completeness make sense. One thinks of neighbor-
hoods of x as describing closeness to x. To have a notion of ‘‘ closeness to x** uniform in x,
we need a family ¥ of subsets of X X X each containing the set A = {{x, x>|x € X}. We
need enough conditions on # so that %, ={U,|Ue ¥} with U,={y|<{x,y>€e U} is a
neighborhood system for a topology. The canonical example is to let # be the family of all
sets in X' x X containing a set of the form {<x, y>|p(x, y) < €} with p a metric. If Gis a
topological group (in particular, if G is a topological vector space), there is also a natural
uniform structure given by # = {Uy| N € 5} where 7 the family of neighborhoods of the
identity and Uy = {{x, y>|xy~! € N}. Given a uniform structure %, a net{x, |« € D} is called
a Cauchy net if and only if for each U € %, there is an «g € D so that a, 8> «o implies
(Xy, xp> € U.

The notion of uniform space was first formalized in A. Weil, ** Sur les espaces a structure
uniforme et sur la topologie générale,”’ Actualités Sci. Ind. 851, Paris (1937). For a modern
treatment of uniform spaces, see Kelley, Chapter 6, or G. Choquet, Lectures on Analysis,
Benjamin, New York, §S.

Section 1V.2 Nets were first introduced in E. H. Moore and H.L.Smith, ‘A General
Theory of Limits,” Amer.J. Math.44 (1922), 102, and the theory is sometimes called Moore-
Smith convergence in the older literature. See Kelley, Chapter 2, for additional discussion.
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There is an alternate approach to convergence in topological spaces popularized by
Bourbaki. For a discussion of this theory of filters see Choquet, §4, or Bourbaki, Topologie
génerale, Chapter 1. We find the filter theory of convergence very unintuitive and prefer the
use of nets in all cases.

Section 1V.3 It was Tychonoff who realized the utility of the product topology (and
proved the Tychonoff theorem) in two fundamental papers: *Uber die topologische
Erweiterung von Raumen,” Marh. Ann. 102 (1929), 544-556, and ** Uber einen Funktionen-
raum,”” Math. Ann. 111 (1935), 762-766. The usual proof of Tychonoff’s theorem (c.f.
Kelley), depends on the f.i.p. criterion and is a little complicated. The machinery of filters,
especially ultrafilters is ideal for a simpler looking proof of the theorem (cf. Choquet). This
filter theoretic proof has a net theory translation which we should like to sketch. (1) A net
{x.}in aspace Xis called universal if for any A < X, x, € A eventually or x, € X\A4 eventually.
Note: A is arbitrary and the definition of universal net makes no mention of topology. (2) If
x is a cluster point of a universal net, one has x, — x, for it cannot happen that x, € A
frequently without x, € 4 eventually. (3) Any net has a universal subnet. This is the technical
heart of the proof and requires the axiom of choice. (4) X is compact if and only if every
universal net converges. Given (3), this is just the Bolzano-Weierstrass theorem. (5) To prove
Tychonoff’s theorem, let {x,}, « » be @ universal net in X, (; 4, with each 4, compact. Write
xa = {x¥}; «; with x‘) € A,. Since {x,} is universal, {x©’} is universal for each i. Since A, is
compact, x‘¥ > x> for some x'“’€ 4,. Let x be the element {x’}, ., in X,¢; A;. Then
X, —> X, SO every universal net converges. We first learned this proof from O. E. Lanford, III,
Les Houches lectures, 1970.

When does a topological space have a topology given by a metric? In general, there is not
a stimple answer, but for compact Hausdorff spaces, X is metrizable (has a topology given by
a metric) if and only if it is second countable. In Section V.2, we see that a similar result
holds for topological vector spaces. Both the compact and the vector space results are best
understood in the context of uniform spaces; see Kelley, Chapter 6.

K. Weierstrass’ original proof of the polynomial approximation theorem can be found
on page 5 of Vol. 3 of his Mathematische Werke, Mayer and Miiller, Berlin, 1903. Stone’s
generalization first appeared in M. H. Stone, ‘““Applications of the Theory of Boolean Rings
to General Topology,” Trans. Amer. Math. Soc. 41 (1937), 325-481, and a simplified proof
was given in his classic article ** The Generalized Weierstrass Approximation Theorem,”
Math. Mag. 21 (1947/48), 167184, 237-254.

Section IV 4 For a brief readable discussion of measure theory on compact spaces
we especially recommend the first chapter of L. Nachbin, The Haar Integral, Van Nostrand-
Reinhold, Princeton, New Jersey, 1965. For a more comprehensive discussion see N. Bour-
baki, Integration, Chapters 1-4.

Much of our discussion on positive linear functionals goes through for vector spaces with
an order allowing finite inf’s and sup’s, that is for vector lattices. For the deep relations be-
tween order notions and topology, see L. Nachbin, Topology and Order, Van Nostrand-
Reinhold, Princeton, New Jersey, 1965.

For additional discussion of measure theory on locally compact spaces, see the quoted
references of Nachbin and Bourbaki, or, for a discussion more similar to our approach,
Choquet’s book (see notes to Section IV.1).

Section IV.5 We will eventually prove a stronger result than our claim that the linear
combinations of Dirac measures are vaguely dense in #(X). We will actually show that the
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linear combinations in .4, ;(X) are vaguely dense in .# . ;(X). Thus any positive measure
p with u(X) =1 can be vaguely approximated by measures Y %, 1,8, With 0 <1, <1,
> t,=1. This will follow from the Krein-Milman theorem which we discuss in Section
XI1V.1. The Banach-Alaoglu theorem was proven in L. Alaoglu: ** Weak Topologies of
Normed Linear Spaces,” Ann. Math. 41 (1940), 252-267.

Theorem IV.22 can be extended to an arbitrary separable Banach space. More generally,
one has Pettis’ theorem: A vector-valued function is strongly measurable if and only if it is
weakly measurable and almost separably valued (in the sense that after changing fon a set
of measure zero, Ran f is separable). This theorem was first proven in B. J. Pettis, ‘' On
Integration in Vector Spaces,”” Trans. Amer. Math. Soc. 44 (1938), 277-304.

One can define the integral of a strongly measurable function by methods analogous to
the methods used for real-valued functions. This Bochner integral is discussed in K. Yosida,
Functional Analysis, Springer, New York, 1965 and in many other texts. It was invented by
S. Bochner in *‘ Integration von Funktionen, deren Werte die Elemente eines Vektoraumes
sind,” Fund. Math. 20 (1933), 262-276. The Bochner integral obeys a norm dominated
convergence theorem. Throughout this book, we use the weak integral defined by £( j' f(x)dw)
= [ £(f(x)) du. The Bochner integral has nicer properties than this weak integral but we
will not need these extra properties so we settle for the simpler weak integral.

PROBLEMS

1. Prove that the family of all topologies on a space is a complete lattice, that is, that any
family of topologies has a least upper bound and a greatest lower bound.

2. (Kuratowski closure axioms) Show that the operation 4+ A4 in a topological space has
the properties:

@) A)=4
(i) AUB=AUVB
(iii) A< A
(ivy g=0
Conversely, suppose that™: 2¥ - 2X is given (2¥ = all subsets of X) obeying (i)-(iv).
Show the family of sets B with X\B = X\B forms a topology for which the closure
operation is~.
Reference: Kelley, pp. 42-43.

3. (a) Let 2 be the topological space {0, 1} with the discrete topology. Prove that a topo-
logical space X is connected if and only if any continuous function f; X — 2 is
constant.

(b) Prove that any product of connected spaces is connected.

(c) Let S be a topological space. Suppose that 4, B < § are connected in the relative
topology and A n B # &, A B=S. Show that S is connected.

(d) Let S be a topological space. Suppose that S = D and D is connected. Prove that
S is connected.

(e) Prove that a continuous image of a connected space is connected.
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{f) Prove the intermediate value theorem of freshman calculus, that is, if fis a con-
tinuous function on [a, 4], then for any f(a) < x < f(b), there is a ¢ € {a, b} with
fle) = x.

Hinr: Use (a) to prove {b)-(e).

(a) A topological space X is called Lindelof if every open cover has a countable sub-
cover. Prove that any second countable space is Lindelof.

(b} Prove that a second countable, regular (that is T;) space is normal (that is T).
Reference: Kelley, pp. 49, 113.

(a) Prove that R and R” are not homeomorphic for any n> 1.
(b) Prove that R # X x X for any topological space X.
Hint: What happens to R if a single point is removed ?

A topological space X is called arcwise connected if given x, y € X, there is a continu-

ous function (an arc!) f: [0, 1] - X with f(0) = x, f(I) = y.

(a) Show that if X is arcwise connected, it is connected.

{b) Let X, be the graph of the function y = sin 1/x on R — {0}, given the relative topo-
logy as a subset of the plane. Let X = X, U {{x, y>!x = 0}. Show that Y is con-
nected but not arcwise connected.

Let X =R with the topology 4 generated by all sets of the form {[a, b)|a, b € R}
which is actually a base for 7. Prove that

(a) (X, is separable.

(b) <X, > is first countable.

(¢) <X, I > is not second countable.

Prove that a subspace of a separable metric space is separable.

Let Y be R? with the product topology given by taking the topology J of Problem 7
on each factor. Prove that:

(a) Y is separable.

(b) The line x + » = 1 is not separable in the relative topology.

Let X be any uncountable set and let & be the topology consisting of ¢J and comple-
ments of finite sets. Prove that

(a) X is separable.

(b} X is compact.

{(c) Xis T, but not T>.

(d) X 1s neither first nor second countable.

Prove Theorem 1V.2.

Let X be the Banach space /.. and consider the sequence &,, 8, ... in X* given by
Sallea}i=1) = ca

Prove that {6,}, . . . has no weak-* convergent subsequence but that it has a weak-* con-
vergent subnet.
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Give an example to show that a pointwise limit of a net of Borel functions on R may
not be Borel. .

Show that the space of the example in Section IV.2 is not compact but is Lindelof
(see Problem 4).

Let o be the family of continuous functions on [0, 27] with the propertyjé"e""f(x) =0
if k£ is a negative integer. Prove & is an algebra which is closed and separates points
with 1 € & but for which & # C[0, 27].

Prove the conclusion of the Stone-Weierstrass theorem in the case where we do not
suppose | € 4.

Let @ be an ideal of Cg(X) which is closed. Let Y = {x € X|f(x) =0 for all fe &}.
Prove that Y is closed and that # = {fe Cr(X)|{f=0o0n Y}.

Prove the Tietze theorem in the case when X is merely assumed normal. (See the hints
given in Kelley, Chapter 7, Problem O.)

Let f be a continuous function on [—4$, ] with f(3) =f(—4)=0. Let s5,(x) be a
sequence of functions with |1 si(x) dx = 1, each s, = 0 so that for any § > 0,

lim 51 2ixize SK(x) =0
Y]

Prove that
lim §U3,285x — P)f(p) dy = f(x)

for any x € [—$, 3] and that the convergence is uniform.

Let su(x) = (£)~'(1 — x*)* where I, = |}, (1 — x?)* dx. Using Problem 19, prove that
any continuous function on [—1, }] is a limit of polynomials uniformly on {—1}, i].

Use the Stone-Weierstrass theorem to prove that:
(a) {e"*}2 . .. are a complete orthogonal set for L?{0, 27].
(b) The Legendre polynomials are a complete orthogonal set for L3*[—1, 1].
*(c) The spherical harmonics are a complete orthonormal set for L? of the sphere.
(Hint: Use your knowledge of Clebsch—-Gordon coefficients!)

Prove Dini’s theorem: Let X be a compact HausdorfT space. Suppose £, is a monotone
decreasing family of functions; let f,(x) — f(x) pointwise. Then f, converges uniformly
if and only if fis continuous.

Let X be a locally compact Hausdorff space. Consider X =X U {0} where ¢ is a
“point’* not in X. Call O < X open if either c ¢ O and O is open in X or « € O and
X\O is compact. Prove that X is a compact Hausdorff space; it is called the one-point
compactification of X.

Prove the Stone-Weierstrass theorem for a locally compact space X: If & is a closed
subalgebra of C,(X), the continuous real-valued functions vanishing at ¢, and if &
separates points and for each x € X, there is f€ & with f(x) # 0, then & = C,(X).
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Let X be a locally compact Hausdorff space. Prove that for C, D < X, D closed, C
compact, there is a continuous function f, 0 < /<1, on X with f[C]=0, f[D]=1.
Remark. Use the space X of Problem 23 to solve 24 and 25.

(a) Prove that any locally compact Hausdorff space is T .

(b) Prove that any second countable, locally compact Hausdorff space is normal.

(c) Prove that any o-compact, locally compact Hausdorff space is normal.

Remark. There exist locally compact spaces which are Hausdorff but not normal, see
Kelley, Chapter 4, Problem E.

A group G with a topology is called a topological group if the map (x, y>+—xy~! of
G x G — G is jointly continuous. A function f on a topological group G is called uni-
formly continuous if, for any €, we can find a neighborhood N, of e € G (the identity)
with | f(x) — f(»)| < eif xy~!' € N,. Prove that any continuous function on a compact
topological group is uniformly continuous.

(a) Let & be an algebra of real-valued bounded continuous functions on R which
separates points and is closed in {|'llx. Form Xg = X s {x € R||x| <l fllw}
with the product topology. Map R - X by letting x go into the point whose co-
ordinates are { f(x)}re. Prove that the image of R in X 4 is homeomorphic to R
if and only if o contains the functions of compact support.

(b) A topological space X with a map f: R — X is called a compactification of R if fis
a homeomorphism of R and its image, if the image is dense in X and if X is a
compact Hausdorff space. Two compactifications /: R - X andg: R —» Yare con-
sidered identical if there is a homeomorphism 4: X' — Y with Ao f= g. Prove that
there is a one-one correspondence between compactifications of R and algebras
& < Cr obeying the conditions of (a).

(c) If we take & = C(R), the compactiﬁcatiog we obtain vig the construction in (a) is
called the Stone-Cech compactification, R. Prove that R is a universal compacti-
fication of R in the following sense: Given any compactification /: R — X and
given the Stone-Cech compactificationg: R — R we can find #: R - X continuous
and surjective with ho g = f.

Let <X, d> be a metric space with no isolated points. Suppose that every continuous
function on X is uniformly continuous. Show that X is compact.

(a) Prove that every metric space is normal.
(b) Prove that every closed set in a metric space is a G;.

Prove the uniqueness statement of Theorem 1V.16.

Let {a,} be a sequence of numbers with the following property: If Zf.‘;o o, x" >0 for
all x € [0, 1] then Z,’Lo asa, = 0. Prove that there is a unique, (positive) measure u on
[0, 1] with a, = {§ x" du.

Let X be a vector space with Y a family of functionals separating points. Prove that if
the o( X, Y)topology comes from a metric, then Y has a countable algebraic dimension.
An algebraic basis for Y is a subset whose finite linecar combinations span Y. The
algebraic dimension is the number of elements in 2 minimal algebraic basis.
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Let X be a real Banach space and let C be the unit ball of X* with the weak-* topology.
Prove that a continuous function on C can be uniformly approximated by polynomials
in the elements of X acting as linear functionals on X*.

Let X be a Banach space, X*itsdual. LetL,, # > | beelementsof X* withL, - L € X*
in the weak-» sense. Let x, = x in norm. Is it necessarily true that L,(x,) - L(x)?

Prove that X is dense in X** in the o(X**, X*) topology.

Let T: C(X)—> C(Y)be linear. We say 7 is positivity preserving (or positive) if 7f > 0

whenever f > 0. If T is positive, we write T=>0. If S— T >0 we write 7 < S.

(a) Prove that any T > 0 is automatically continuous and that [T ={Tl,.

(b) Let S, be an increasing family of maps. Prove that S, converges in operator norm
if and only if S,1 converges in function norm.

Prove the first proposition in Section 1V.2.
Find a Banach space and a weakly convergent net which is not norm bounded.

Let X be an infinite-dimensional Banach space with the weak topology. Prove that the
closure of the unit sphere is the unit ball.

Let X be a compact Hausdorff space. Prove that the set of convergent infinite linear
combinations of point measures is norm closed in #(X).

Prove Theorem 1V.19 directly.

(a) Let X be a compact set with a countable basis. Let u be a Baire measure on X.
Prove that LP( X, du) is separable for all p < co. (Hint: Let A, be a countable basis
of sets. For all n, m with 4, " A, = &, find fo, m€ C(X) with f=00n A,, f=1
on A, . Use the f, . to construct a countable dense set in C(X). Then use the fact
that C(X)is dense in L?(X, dw)).

(b) Extend the result of (a) to the case where X is only locally compact (Hint: Prove
that X is o-compact).

Do any fifty problems in Kelley's book.



