VI: Bounded Operators

I was at the mathematical school, where the master taught his pupils after a method scarce
imaginable to us in Europe. The proposition and demonstration were fairly written on a thin
wafer, with ink composed of a cephalic tincture. This the student was to swallow upon a
fasting stomach, and for three days following eat nothing but bread and water. As the wafer
digested the tincture mounted to the brain, bearing the proposition along with it,

Jonathan Swift in Gulliver's Travels

V1.1 Topologies on bounded operators

We have already introduced £(X, Y), the Banach space of operators from
one Banach space to another. In this chapter we will study £(X, Y) more
closely. We emphasize the case which will arise most frequently later, namely,
L(H, #) = L(HK) where S is a separable Hilbert space. Theorem I11.2
shows that Z(X, Y) is a Banach space with the norm

ITxlly
L T
The induced topology on Z(X, Y) is called the uniform operator topology (or
norm topology). In this topology the map (4, B)—» BA of Z(X,Y)
x L(Y,Z)— L(X,2Z) is jointly continuous.

We now introduce two new topologies on Z(X, Y), the weak and strong
operator topologies. There are other interesting and useful topologies on
Z(X, Y), but we delay their introduction until we need them in a later volume
(see however the discussion at the end of Section 6 and the Notes).

The strong operator topology is the weakest topology on £(X, Y) such
that the maps

E . %X, Y)Y
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given by E (T) = Tx are continuous for all x € X. A neighborhood basis at the
origin is given by sets of the form

(S|SeL(X,Y), ISxly<e i=1,...,n}

where {x}7_, is a finite collection of elements of X and ¢ is positive. In this

topology a net {T,} of operators converges to an operator T (written T, - T)
if and only if ||T,x — Tx||— 0 for all x e X. The map {4, B) = AB is sepa-
rately but not jointly continuous if X, Y, and Z are infinite dimensional (see
Problem 6a, b). We sometimes denote strong limits by the symbol s-lim.

The weak operator topology on £(X, Y) is the weakest topology such that
the maps

E, , %(X,Y)->C

given by E, (T) = /(Tx) are all continuous for all x € X, Z € Y*. A basis at the
origin is given by sets of the form

{S|SeZ(X,Y), |{Tx)|<e, i=1,...,n, j=1,...,m}

where {x;}{., and {/;}7., are finite families of elements of X and Y* respec-
tively. A net of operators {7} converges to an operator Tin the weak operator
topology (written T, T) if and only if |£(T,x)—¢(Tx)] -0 for each
¢ € Y* and x € X. Notice that in the case L(#), T, = T weakly just means
that the * matrix elements” (y, T, x) converge to (y, Tx). In the weak topology
the map {4, B) —» AB is separately, but not jointly continuous if X, ¥, and
Z are infinite dimensional (see Problem 6c¢).

Remark The reader should not confuse the weak operator topology on
ZL(X, Y) with the weak (Banach space) topology on Z(X, Y). The former is
the weakest topology such that the bounded linear functionals on Z(X, Y) of
the form Z(-x) are continuous for all xe X and /e Y*. The latter is the
weakest topology such that a// bounded linear functionals on #£(X, Y) are
continuous (see Section VI.6).

Notice that the weak operator topology is weaker than the strong operator
topology which is weaker than the uniform operator topology. In general,
the weak and strong operator topologies ori Z(X, Y)will not be first countable
so that questions of compactness, net convergence, and sequential conver-
gence are complicated. The following simple example illustrates the different
topologies on Z(Z,).
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Example Consider the bounded operators on /,.
(i) Let T, be defined by

1 i
T, Epy ) = (;ci,;léz,...)

Then T, — 0 uniformly.
(i) Let S, be defined by

Sn(él’ ‘fz, '--)=(0’0’ -"905 én+1’ §n+2’ )

N,
n places

Then S, — 0 strongly but not uniformly.
(iii) Let W, be defined by

Wn(él’52’“'):(030:'“90,613 623"')

\_v-—u—/
n places

Then W,— 0 in the weak operator topology but not in the strong
or uniform topologies.

The following result in the Hilbert space case is sometimes usefuland provides
a nice application of the uniform boundedness theorem.

Theorem VLI.1 Let Z(o#) denote the bounded operators on a Hilbert
space . Let T, be a sequence of bounded operators and suppose that
(T, x, y) converges as n — co for each x, y € #. Then there exists Te £ (¥#)
such that 7,5 T.

Proof We begin by showing that for each x, sup, ||T, x|l < . Since for any
x € ). (x, T,y) converges we have

sup |(T,x, »)| < o

For each n, T,x e Z(s#, C), and since sup, [(T,x)(y)|¢c < o, the uniform
boundedness theorem implies that the operator norms of the T, x in £(o#, C)
are uniformly bounded. But the norm of T, x as an operator in Z (5, C) is the
same as its norm in J¢; thus |T, x||,, is uniformly bounded.
Now, we use the uniform boundedness theorem again. Since
sup [T, x|l < o0,

n

we conclude

sup || T, |l < ©
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Define B(x, y) = lim, (T, x, y). Then it is easily verified that B(x, y) is sesqui-
linear and
| B(x, y)| <Tim [(T, x, )| < lIxllliyli(sup T, 1)

Thus B(x, y) is a bounded sesquilinear form on » and so, by the corollary to
the Riesz lemma, there is a bounded operator Te £ () such that B(x, y) =

(Tx, y). Clearly T, 5 T. }

If a sequence of operators T, on a Hilbert space has the property that T, x
converges for each x € o, then there exists Te £ (o) such that T, > T. The
reader is asked to prove this theorem and various generalizations in Problem 3,

Let Te £(X, Y). The set of vectors x € X so that Tx = 0 is called the kernel
of T, written Ker T. The set of vectors y € Y so that y = Tx for some x € X is
called the range of 7, written Ran T. Notice that both Ker T and Ran T are
subspaces. Ker T is necessarily closed, but Ran T may not be closed (Prob-
lem 7).

Vi.2 Adjoints

In this section we define adjoints of bounded operators on Banach and
Hilbert spaces. The reader should be cautioned at the outset that the Hilbert
space adjoint of an operator T € £(3¢) is not equal to the Banach space
adjoint although it is closely related to it.

Definition Let X and Y be Banach spaces, T a bounded linear operator
from X to Y. The Banach space adjoint of T, denoted by T’, is the bounded
linear operator from Y* to X* defined by

(T'?)(x) = £(Tx)
forall /e Y*, xe X.

Example Let X =¢, = Y and let T be the right shift operator

T(ch 629 "')=(Oa &h 52"”)
Then T': £, — £, is the operator

T’(Clyéz"“)“_'(62’63"--)

In this example, |IT|| = 1 = |IT’|.. In fact the norms of Tand T'are always
equal:
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Theorem V1.2  Let X and Y be Banach spaces. The map T— T' is an
isometric isomorphism of Z(X, Y) into L(Y*, X*).

Proof The map T— T'is linear. The fact that T"is bounded and that the map
is an isometry follows from the computation

IThex,vy= sup {Txly
Ixll<1

= sup ( sup |f(Tx)|) leY*

Ixll st \}{iZ]l 1

= sup ( sup |(T'[)(x)l)

lcll<i\lxlis1
= sup [|T/|

izl s1
= " T " LY, X*)

The second equality uses a corollary of the Hahn-Banach theorem. [

We are mostly interested in the case where T'is a bounded linear transforma-
tion of a Hilbert space 5 to itself. The Banach space adjoint of Tis then a
mapping of s* to H°*. Let C: ¥ — #* be the map which assigns to each
y € ), the bounded linear functional (y, -) in J#*. C is a conjugate linear

isometry which is surjective by the Riesz lemma. Now define a map T*:
K — H# by

T*=C™'T'C
Then T#* satisfies
(x, Ty) = (Cx)(Ty) = (T'Cx)(y) = (C 'T'Cx, y) = (T*x, y)

T* is called the Hilbert space adjoint of T, but usually we will just call it the
adjoint and let the * distinguish it from T’. Notice that the map T— T* is
conjugate linear, that is, aT— @T*. This is because C is conjugate linear. We
summarize the properties of the map T— T*:

Theorem V1.3  (a) T- T*is a conjugate linear isometric isomorphism
of L() onto L(#).

(b) (TS)* = S*T*.

() (TH*=T.

(d) If T has a bounded inverse, T"!, then T* has a bounded inverse and
(T9™ = (T~
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(¢) The map T— T* is always continuous in the weak and uniform opera-
tor topologies but is only continuous in the strong operator topology if J# is

finite dimensional,
) IT*T =TI

Proof (a) follows from Theorem V1.2 and the fact that C is an isometry.
(b) and (c) are easily checked. Since T™!'T= I = TT"~! we have from (b)

THT ') =I*=1I=I*= (T ')*T*

which proves (d).

Continuity of T— T* in the weak and uniform operator topologies is trivial.
In the case ¥ = £, , here is a counter example which shows that T— T* is not
continuous 1n the strong operator topology. The general infinite dimensional
case is similar. Let W, be right shift on £, by n places. Then W, converges
weakly but not strongly to zero. However, W} =V, converges strongly to

zero. Thus ¥,— 0, but VI = W, does not converge strongly to zero.
(f) Note that |[T*T|| < |T|| [T*} = |T||* and

IT*T) 2 sup (x, T*Tx) = sup |Tx|* = [T|* |

[Fxlf=1 Hxil=1

Definition A bounded operator T on a Hilbert space is called self-
adjoint if T= T*,

Self-adjoint operators play a major role in functional analysis and mathe-
matical physics and much of our time is devoted to studying them. Chapter
VII is devoted to proving a structure theorem for bounded self-adjoint
operators. In Chapter VIII we introduce unbounded self-adjoint operators
and continue their study in Chapter X. We remind the reader that on C", a
linear transformation is self-adjoint if and only if its matrix in any ortho-
normal basis is invariant under the operation of reflection across the diagonal
followed by complex conjugation.

An important class of operators on Hilbert spaces is that of the projections.

Definition If Pe #(o#) and P? = P, then P is called a projection. If in
addition P = P*, then P is called an orthogonal projection.

Notice that the range of a projection is always a closed subspace on which P
acts like the identity. If in addition P is orthogonal, then P acts like the zero
operator on (Ran P)*. If x = y + z, with y € Ran P and z € (Ran P)*, is the
decomposition guaranteed by the projection theorem, then Px = y. P is called
the orthogonal projection onto Ran P. Thus, the projection theorem sets up a
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one to one correspondence between orthogonal projections and closed
subspaces. Since orthogonal projections arise more frequently than non-
orthogonal ones, we normally use the word projection to mean orthogonal
projection.

V1.3 The spectrum

If Tis a linear transformation on C", then the eigenvalues of T are the
complex numbers 2 such that the determinant of A/ — Tis equal to zero. The
set of such / is called the spectrum of T. It can consist of at most »n points
since det(Af — T)is a polynomial of degree n. If 2 is not an eigenvalue, then
+I — T has an inverse since det(A/ — T) # 0.

The spectral theory of operators on infinite-dimensional spaces is more
complicated, more interesting, and very important for an understanding of the
operators themselves.

Definition Let Te £(X). A complex number A is said to be in the
resolvent set p(T) of T if Al — T is a bijection with a bounded inverse.
R(T)= (Al — T) ! is called the resolvent of T at A. If 2 ¢ p(T), then A is said
to be in the spectrum o(T) of T.

We note that by the inverse mapping theorem, A/ — T automatically has
a bounded inverse if it is bijective. We distinguish two subsets of the spectrum.

Definition Let Te Z(X).

() An x# 0 which satisfies Tx = Ax for some 4 € C is called an eigenvector
of T; 7 is called the corresponding eigenvalue. If A is an eigenvalue, then
Al — Tis not injective so 4 is in the spectrum of T. The set of all eigen-
values is called the point spectrum of T.

(b) If Zis notan eigenvalue and if Ran(A7 — T)is not dense, then A is said to
be in the residual spectrum.

At the end of this section we present an example which illustrates these
kinds of spectra. The reason that we single out the residual spectrum is that
it does not occur for a large class of operators, for example, for self-adjoint
operators (see Theorem VI.8).
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The spectral analysis of operators is very important for mathematical
physics. For example, in quantum mechanics the Hamiltonian is an unbounded
self-adjoint operator on a Hilbert space. The point spectrum of the Hamil-
tonian corresponds to the energy levels of bound states of the system. The
rest of the spectrum plays an important role in the scattering theory of the
system (see Chapter XII).

We will shortly prove that the resolvent set p(T)is open and that R,(T)is an
analytic operator-valued function on p(T). This fact allows one to use complex
analysis to study R,(T) and thus to obtain information about T. We begin
with a brief aside about vector-valued analytic functions.

Let X be a Banach space and let D be a region in the complex plane, i.e., a
connected open subset of C. A function, x(-), defined on D with values in X,
is said to be strongly analytic at z, € D if the limit of (x(zy + h) — x(z,))/h
exists in X as & goes to zero in C. Starting from this point one can develop a
theory of vector-valued analytic functions which is almost exactly parallel to
the usual theory; in particular, a strongly analytic function has a norm-
convergent Taylor series. We do not repeat this development here; see the
notes for references. We do want to discuss one important point. There is
another natural way to define Banach-valued analytic functions. Namely: a
function x(+) on D with values in X is said to be weakly analytic if  (x(*))is a
complex valued analytic function on D for each / € X*. Although this second
definition of analytic is a priori weaker than the first, the two definitions are
equivalent, a fact we will prove in a moment. This is very important, since
weak analyticity is often much easier to check.

Lemma Let X be a Banach space. Then a sequence {x,} is Cauchy if and
only if {¢/(x,)} is Cauchy, uniformly for / € X*, ||| < 1.

Proof If {x,} is Cauchy, then |¢(x,) —¢(x,)| < |Ix, — x,|| for all ¢/ with
IiZll < 1, so {¢(x,)} is Cauchy uniformly. Conversely,

“xn - xm” = Sup |{(xn - xm)[
el <1

Thus, if {£(x,)} is Cauchy, uniformly for ||Z]| < 1, then {x,} is norm-Cauchy. §

Theorem V1.4 Every weakly analytic function is strongly analytic.

Proof Let x(-) be a weakly analytic function on D with values in X. Let
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2o € D and suppose that I is a circle in D containing z, whose interior is
contained in D. If £ € X* then /(x(z)) is analytic and

X(zg + h) ~ x(z,) d
z( o A °)—3;f(x(zo»

~5a, i (e 7)) e

Since /(x(z)) is continuous on I' and T is compact, |£(x(z))| < C, for all
z e I'. Regarding x(z) as a family of mappings x(z): X* — C we see that x(z)
is pointwise bounded at each ¢ so by the uniform boundedness theorem
sup, . r IIx(2)|| € C < co0. Thus

x(zg + h) — x(z) d
(Bt - L o)

1 1
(z— (o + M)z —20) (2~ 20)°
This estimate shows that [x(z, + h) — x(zo))/2 is uniformly Cauchy for

IZ]l < 1. By the lemma, [x(z, + h) — x(z,)]/h converges in X, proving that
x(+) is strongly analytic. |}

< @ny1ei (sup 1x@)1) § dz

We now prove the theorem we promised about the resolvent.

Theorem V1.5 Let X be a Banach space and suppose Te Z(X). Then
p(T)is an open subset of C and R,(T)is an analytic £ (X)-valued function on
each component (maximal connected subset) of D. For any two points 4,
p € p(T), R)(T)and R,(T) commute and

R(T) = R(T) = (u = HR(TIRLT) (VL1)

Proof We begin with the following formal computation, temporarily ignor-
ing questions of convergence. Let 44 € p(T).

[w—y

1 1 _( 1 ) 1
A=T d=do+(Go=T) \Ao—T 2,0—-—}{)

This suggests that we define
Ry(T) = Rh,(:r){f + 3 (o — )"[RA.,(T)J"}

n=1
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Since
IR(DHT'H < IR, (DI

the series on the right converges in the uniform operator topology if
|4 = Ao} < IR, (DI
For such A, R,(T)is well defined, and it is easily checked that
(M = T)R(T) = I = R(TYA - T)

This proves that A e p(T)if |1 — do| < IR, (T)II”! and that R,(T) = Ry(T).
Thus p(T) is open. Since R;(T) has a power series expansion, it is analytic.
The expression

R(T) = R(T) = R(T)uI = T)R(T) — R{(TYAI — T)R(T)
proves (VI.1). Interchanging x and 4 shows that R,(T)and R (T) commute. ||

Equation (VI.1) is called the first resolvent formula. A nice example of the
use of complex analytic methods is given by the proof of the following
corollary.

Corollary Let X be a Banach space, Te Z(X). Then the spectrum of T
is not empty.

‘Proof Formally,

ﬁ - G) i —lT/}. - }1 (1 * ,.21 G) )

which suggests that for large values of |1],
1 T

o 5.0
If {A] > ||T||, then the series on the right converges in norm and it is easily
checked that for such A, its limit is indeed the inverse of (17 — T). Thus, as
A} = o0, [IR(T)!| - 0. If o(T) were empty, R,(T)would be an entire bounded
analytic function. By Liouville’s theorem, R,(T) would be zero which is a
contradiction. Thus, o(T) is not empty. |

R(T) =

The series (V1.2) is called the Neumann series for R,(T). The proof of the
corollary shows that o(T) is contained in the closed disc of radius (|77
Actually, we can say more about ¢(T).
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Definition  Let r(T) = sup |4

Aea(T)

r(T) is called the spectral radius of T.

Theorem VI.6  Let X be aBanachspace, Te £(X).Then lim,., [[T"||!/
exists and is equal to r(T). If X is a Hilbert space and A is self-adjoint, then
r(d) = |4,

Proof The reader can check that lim,. ||T"||'/" exists by following the
clever subadditivity argument outlined in Problem 11. The crux of the proof
of the theorem is to establish that the radius of convergence of the Laurent
series of R,(T) about oo is just »(T)™!. First notice that the radius of con-
vergence cannot be smaller than r(T)™! since we have proven that R,(T) is
analytic on p(T)and {2 | | 2] > r(T)} = p(T). On the other hand, (VI1.2) is just
the Laurent series about co and we have seen that where it converges abso-
lutely, R,(T) exists. Since a Laurent series converges absolutely inside the
circle of convergence, we conclude that the radius of convergence cannot be
larger than r(T)"!. That /(T) = lim,_, , || T"|i"’" follows from the vector-valued
version of Hadamard's theorem which says that the radius of convergence of
(VI.2) is just the inverse of

lim T/ = lim | T"|"/"
Finally, if X is a Hilbert space and 4 is self-adjoint, then ||4]? = [|4?] by
part (f) of Theorem VI.3. This implies that ||42"]| = ||4|[*" so

r(4) = lim |4 = im 14”127 = |41 §

k—oc n—ro0

The following theorem is sometimes useful in determining spectra.

Theorem V1.7 (Phillips) Let X be a Banach space, Te Z(X). Then
6(T) = o(T’) and R,(T")= R, (T). If # is a Hilbert space, then o(T*) =
{12 ea(T)}and RY(T*) = R(T)*.

We note that the Hilbert space case follows from (d) of Theorem VI.3.

We now work out in some detail an example which illustrates the various
kinds of spectra.

Example Let T be the operator on ¢, which acts by
T, &2, .- ) =2, 85,-.1)
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The adjoint of T, T’, acts on 7, by

TI(CI, 62, . ..) = (0, tl’ 62, . .)

We first observe that ||T)| = ||T’|l = 1, so that all A with |4] > 1 arein p(T)and
p(T"). Suppose | 1] < 1. Then the vector x; = (1, 4, A%, ...)isin ¢, and satisfies
(AI - T)x, =0. Thus all such A are in the point spectrum of T. Since the
spectrum is closed, o(T) = {1| | 4| < 1}. By Theorem V1.7 this set is also the
spectrum of T".

We want to show that T’ has no point spectrum. Suppose that {£,}°., €/,
and (A — T"){¢&,} = 0. Then

Ao =0
lél—éofo

These equations together imply that {{,};2, = 0 so A7 — T"is one to one and
T’ has no point spectrum. Next, suppose |A| < 1. Then forall Le/

[(AT = T)LI(x;) = LA — T)x,) = 0.

where x; €/, is the eigenvector with -eigenvalue A. By the Hahn-Banach
theorem we know that there is a linear functional in Z, which does not vanish
on x; so the range of AI — T’ is not dense. Thus {4; | 4] < 1} is in the residual
spectrum of T".

It remains to consider the boundary |A| = 1. Suppose that |A] =1 and
(Al — T){¢&,} = 0 for some {£,} in Z,. Then

51 = '2-50
52 = Mx

s0 {£,)%., = &(1, A, A%, ...) which is not in ;. Thus 4 is not point spectrum.
If the range of A/ — T were not dense there would be a nonzero L € 7, such
that L[(Al — T)x] = O for all x € £,. But then [(A/ — T")L]}(x) = 0 which would
imply that 4 is in the point spectrum of T’ which we have proven cannot
occur. Thus, {A| |A| = 1} is neither in the point spectrum of T nor in the
residual spectrum of T.

Finally, we prove that {1| {A| =1} is in the residual spectrum of T’ by
explicitly finding an open ball disjoint from Ran(A — 7). If a = {a,} and
b ={b,} are in Z, and obey a = (Al — T')b, then

ao=).bo
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50 b, = (A)"*! Y _o A"a,,. Let ¢ = {c,} with ¢, = 1" and suppose that de 7,
and ||d — c¢ll, < 3. Then

Re{'lndn} = RC{ARC,‘} - ”d - c“oo = '}
Thus, if (A — T")e = d for some e € £, , then since

eu — (Z)'H-l Amdm
m=0

|e,] = n/2 which is impossible. Therefore, Ran(1 — T") does not intersect the
ball of radius 4 about ¢ so A is in the residual spectrum.

Operator Spectrum Point spectrum Residual spectrum

T Al <1 Al <1 %)
I Al <1 10} Al <1

As in the above example, one can prove in general

Proposition Let X be a Banach space and T € . (X). Then,

(a) If Ais in the residual spectrum of 7, then A is in the point spectrum of
T

(b) If A isin the point spectrum of 7, then 4 is in either the point or the
residual spectrum of 7"

Finally, we note:

Theorem V1.8 Let T be a self-adjoint operator on a Hilbert space 5.
Then,

(@) T has no residual spectrum.
(b) o(T)is a subset of R.
(c) Eigenvectors corresponding to distinct eigenvalues of T are orthogonal.

Proof 1If A and u are real, we compute
ILT — (A + iw)x))? = (T — Dx|I* + p?lx|?

Thus |{T - (A + ig))x]|> = p?)x))%, soif p # 0, then T — (A + iu)is one to
one and has a bounded inverse on its range, which is closed. If Ran (T —
(A + iu)) # o, then, by the above proposition, A — iu would be in the point
spectrum of 7T, which is impossible by the inequality. Thusif u # 0,4 + iuis
in p(T). This proves (b). If a real A were in the residual spectrum of T, then
A = A would be in the point spectrum of T* = T, which is impossible since
the point and residual spectrum are disjoint by definition. This proves (a).
The easy proof of (c) is left as an exercise (Problem 8). |}
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VI.4 Positive operators and the polar
decomposition

We want to prove the existence of a special decomposition for operators on
a Hilbert space which is analogous to the decomposition z = |z]e'*$* for
complex numbers. First we must describe a suitable analogue of the positive
numbers.

Definition Let 2 be a Hilbert space. An operator Be £L(s) is called
positive if (Bx, x) >0 for all xe s#. We write B> 0 if B is positive and
B<AifA-—B>0.

Every (bounded) positive operator on a complex Hilbert space is self-
adjoint. To see this, notice that (x, 4x) = (x, Ax) = (Ax, x) if (Ax, x) takes
only real values. By the polarization identity (Chapter II, Problem 4),
(Ax, y) = (x, Ay) if (Ax, x) = (x, Ax) for all x. Thus, if A4 is positive, it is self-
adjoint. This is false on real Hilbert spaces because it is not possible to recover
(x, Ay) by knowing (x, Ax) for all x.

For any A € (), notice that A*4 > 0 since (4*A4x, x) = ||Ax||? = 0. Just
as |z| = /zz we would like to define | 4| =./4*A4. To do this we must
show that we can take square roots of positive operators. We begin with a
lemma.

Lemma  The power series for ./ 1 — zabout zero converges absolutely for
all complex numbers z satisfying |z| < 1.

Proof Let \/1 —z=1+4c¢,z+c¢,22 + -+ be the power series of /1 —z
about the origin. Since \/ 1 — z is analytic for |z] < 1, the series converges

absolutely there. The derivatives of \/ 1 — z at the origin are all negative, so
the ¢, are negative if i > 1. Thus

N N
Z |Cn' =2- ch
n=0 a=0

N

=2~ lim ) ¢, x"
x=*1— n=0

<2~ lim /1-x

x=1-

=2
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where lim, _,_ means the limit as x approaches one from below. Since this is
true for all N, Y 2., le,| <2, which implies that the series converges abso-
lutely for |z| = 1. §

Theorem V1.9 (square root lemma) Let Ae £(H) and A > 0. Then
there is a unique B e £(#) with B>0 and B? = 4. Furthermore, B
commutes with every bounded operator which commutes with 4.

Proof It is sufficient to consider the case where ||4]| < 1. Since
il = All= sup |(({ - Ao, )| <1
Heli=1

the above lemma implies that the series 1 + ¢,(/ — A) + ¢,(I — A)* + - con-
verges in norm to an operator B. Since the convergence is absolute we can
square the series and rearrange terms which proves that B? = A. Further-
more, since 0 <7/ — 4 < I we have 0 < (¢, (I — 4)’p) < 1 for all ¢ € # with
i@l = 1. Thus

€. B0) =1+ 3 co. U~ A'9)

18

>1+ ¢, =0

n=1

where we have used the fact that ¢, < 0 and the estimate in the lemma. Thus,
B > 0. Since the series for B converges absolutely, it commutes with any
operator that commutes with 4.

Suppose there is a B’, with B’ > 0 and (B')? = 4. Then since

B'A=(B) = AB’
B’ commutes with 4 and thus with B. Therefore
(B—B)B(B-—B)+(B—B)B(B—B)=(B*-B?*B~B)=0 (VL3)

Since both terms in (VI.3) are positive, they must both be zero, so their differ-
ence (B — B')® = 0. Since B — B'is self-adjoint, |B — B'||* = (B — B')*|| =0,
soB—B'=0. |}

We are now ready to define | 4|.

Definition  Let 4 € #(#). Then [4| = /4*A.

The reader should be wary of the emotional connotations of the symbol
| -|. While it is true that |14| =|4i] |4]| for A € C, it is in general false that
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|AB| = |A4| |B| or that |4| = | A*|. Furthermore it is not true in general
that |4 + B| < | 4| + | B| (Problem 16). In fact, while it is known that | - | is
norm continuous (see Problem 15), it is not known whether it is Lipschitz,
that is, whether || | 4| — | B] || < ¢ |4 — B|| for some constant ¢ (however, see
Problem 17).

The analogue of the complex numbers of modulus one is a little more
complicated. At first one might expect that the unitary operators would be
sufficient, but the following example shows that this is not the case.

Example Let A be the right shift operator on £, . Then | 4| = \/A*A =]
so if we write 4 = U|A| we must have U = 4. However, 4 is not unitary
since (1,0, 0, ...) is not in its range,

Definition An operator U € Z(J) is called an isometry if ||Ux|| = |ix]|
for all x € . U s called a partial isometry if U is an isometry when restricted
to the closed subspace (Ker U)*.

Thus, if Uis a partial isometry, 5 can be written as # = Ker U@ (Ker U)*
and # = Ran U@ (Ran U)! and U is a unitary operator between (Ker U)*,
the initial subspace of U, and Ran U, the final subspace of U. It is not hard to
see that U* is a partial isometry from Ran U to (Ker U)* which acts as
the inverse of the map U: (Ker U)* - Ran U.

Proposition Let U be a partial isometry. Then P, = U*Uand P, = UU*
are respectively the projections onto the initial and final subspaces of U.
Conversely, if U e £(#) with U*U and UU* projections, then U is a partial
isometry.

The proof of the proposition is left to Problem 18. We are now ready to
prove the analogue of the decomposition z = |z| e'#'82,

Theorem V01.10 (Polar decomposition) Let A be a bounded linear
operator on a Hilbert space #. Then there is a partial isometry U such that
A = U|A]|. Uis uniquely determined by the condition that Ker U = Ker A.

Moreover, Ran U = Ran A4.

Proof Define U: Ran |A| » Ran 4 by U(|A4| ¥) = Ay. Since
IAJ 12 = @, [4]%¥) = (), 4*4Y) = Ay P
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U is well-defined, that is, if | A|Y = | 4| $ then AY = A¢p. U is isometric and

so extends to an isometry of Ran | 4| to Ran A. Extend U to all of # by
defining it to be zero on (Ran | A|)*. Since | 4] is self-adjoint, (Ran | 4|)* =
Ker | A|. Furthermore, | 4|y = 0 if and only if 4y =0 so that Ker |4]| =
Ker 4. Thus Ker U = Ker 4. Uniqueness is left to the reader. §

In Problem 20 of Chapter VII, the reader will prove that U is a strong limit

of polynomials in 4 and A* so that U is in the **von Neumann algebra”
generated by 4.

V1.5 Compact operators *

Many problems in classical mathematical physics can be handled by refor-
mulating them in terms of integral equations. A famous example is the
Dirichlet problem discussed at the end of this section. Consider the simple
operator K, defined in C[0, 1] by

(ko)) = [ K(x, 2)o(0) dy (VL4)

where the function K(x, y) is continuous on the square 0 < x, y < 1. K(x, y) is
called the kernel of the integral operator X. Since

(Kexol < sup 1KGx 1) sup ey

0<x,y<1 O0<ys1i
we see that

IIKq)IIG,S( sup IK(x,y)I)Ilfpliw

O<x,y<1

so K is a bounded operator on C [0, 1]. K has another property which is very
important. Let B,, denote the functions ¢ in C[0, 1] such that |lg|l, <
Since K(x. y) is continuous on the square 0 < x, y <1 and since the square is
compact, K(x, y) is uniformly continuous. Thus, given an ¢ > 0, we can find
& > O such that | x — x'| < é implies | K(x, y) — K(x', y)| < eforallye [0, 1].
Thus, if ¢ € By,

(Ko)) - (Ko s( sup |1<<x,y)—1<(x',y)1)n<pnw

y €0, 1]
<sM

t A supplement to this section begins on p. 368.
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Therefore the functions K[B,] are equicontinuous. Since they are also
uniformly bounded by ||K||M, we can use the Ascoli theorem (Theorem 1.28)
to conclude that for every sequence ¢, € B,,, the sequence K¢, has a con-
vergent subsequence (the limit may not be in K[B,]). Another way of saying
this is that the set K[B,] is precompact; that is, its closure is compact in
C|[0, 1]. It is clear that the choice of M was not important so what we have
shown is that K takes bounded sets into precompact sets. It is this property
which makes the so called * Fredholm alternative’ hold for nice integral
equations like (VI.4). This section is devoted to studying such operators.

Definition Let X and Y be Banach spaces. An operator Te Z(X, Y)is
called compact (or completely continuous) if T takes bounded sets in X into
precompact sets in Y. Equivalently, T is compact if and only if for every
bounded sequence {x,} < X, {Tx,} has a subsequence convergent in Y.

The integral operator (V1.4) is one example of a compact operator. Another
class of examples is:

Example (finite rank operators) Suppose that the range of T is finite
dimensional. That is, every vector in the range of T can be written Tx =
YN 1 o;);, for some fixed family {y }I~ , in Y. If x, is any bounded sequence in
X, the corresponding o} are bounded since T is bounded. The usual sub-
sequence trick allows one to extract a convergent subsequence from {TXx,}
which proves that T is compact.

An important property of compact operators is given by (compare Prob-
lem 34):

Theorem VI.11 A compact operator maps weakly convergent sequences
into norm convergent sequences.

Proof Suppose x,— x. By the uniform boundedness theorem, the || x,| are
bounded. Let y, = Tx,. Then Z(y,) — £(y) =(T'¢)(x, — x) for any £ e Y*,
Thus, y, converges weakly to y = Tx in Y. Suppose that y, does not converge
to y in norm. Then, there is an ¢ > 0 and a subsequence {y, } of {y,} so that
l¥m, — ¥Il = &. Since the sequence {x,,} is bounded and T is compact {,, } has a
subsequence which converges to a j # y. This subsequence must then also
converge weakly to j, but this is impossible since y, converges weakly to y.
Thus y, converges to y in norm. §
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We note that if X is reflexive then the converse of Theorem VI.11 holds
(Problem 20). The following theorem is important since one can use it to
prove that an operator is compact by exhibiting it as a norm limit of compact
operators or as an adjoint of a compact operator.

Theorem V1.12 Let X and Y be Banach spaces, Te Z(X, Y).

(a) If {T,} are compact and 7T,— T in the norm topology, then T is
compact.

(b) Tis compact if and only if T’ is compact.

(c) If Se L(Y,Z) with Z a Banach space and if Tor S is compact, then
ST is compact.

Proof (a) Let {x,,} be a sequence in the unit ball of X. Since T, is compact
for each n, we can use the diagonalization trick of 1.5 to find a subsequence of
{x}, call it {x,, }, so that T, x,, — y,for each nas k — . Since ||x,, Il <1 and
T, — T} —0, an ¢/3-argument shows that the sequence {y,} is Cauchy, so
Y. — y. It is not difficult to show using an ¢/3 argument that Tx,, — y. Thus T
is compact.

(b) See the Notes and Problem 36.

(¢) The proof is elementary (Problem 37). |

We are mostly interested in the case where Tis a compact operator from a
separable Hilbert space to itself, so we will not pursue the general case any
further (however, see the discussion in the Notes). We denote the Banach
space of compact operators on a separable Hilbert space by Com(s¢). By the
first example and Theorem VI1.12 the norm limit of a sequence of finite rank
operators is compact. The converse is also true in the Hilbert space case.

Theorem VI1.13 Let 57 be a separable Hilbert space. Thenevery compact
operator on J is the norm limit of a sequence of operators of finite rank.

Proof Let{¢p;};2, be an orthonormal set in 5. Define

o= sup [Tyl
Veloi, ..., on)t
fell=1

Clearly, {4,} is monotone decreasing so it converges to a limit A > 0. We first
show that 4 =0. Choose a sequence ¥, € [@,,..., 0, )" IW.ll=1, with
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ITY, Il = /2. Since ¥, 0, Ty, = 0 by Theorem VIL.1l. Thus, A =0. As a
result

'Zl((pj’ .)T<pj —-> T
j=

in norm since A, is just the norm of the difference. |

We have discussed a wide variety of properties of compact operators but
we have not yet described any property which explains our special interest in
them. The basic principle which makes compact operators important is the
Fredholm alternative: If 4 is compact, then either Ay = ¢ has a solution
or (I — A)~! exists. This is not a property shared by all bounded linear
transformations. For example, if 4 is the operator (4¢)(x) = x¢(x) on L*[0, 2],
then A = ¢ has no solutions but (/ — 4)~! does not exist (as a bounded
operator). In terms of ‘“solving equations” the Fredholm alternative is
especially nice: It tells us that if for any ¢ there is at most one  with ¥ =
¢ + Ay, then there is always exactly one. That is, compactness and uniqueness
together imply existence; for an example, see the discussion of the Dirichlet
problem at the end of the section.

As one might expect, since the Fredholm alternative holds for finite-
dimensional matrices, it is possible to prove the Fredholm alternative for
compact operators (in the Hilbert space case) by using the fact that any
compact operator A can be written as 4 = F + R where F has finite rank and
R has small norm. Compactness combines very nicely with analyticity so we
first prove an elegant result which is of great use in itself (see Sections X1.6,
X1.7, XII1.4, and XIILS).

Theorem V1.14 (analytic Fredholm theorem) Let D be an open con-
nected subset of C. Let /2 D — £(5#) be an analytic operator-valued function
such that f(z) is compact for each z € D. Then, either

(@) (I —f(2))"" exists for no z e D.

or
(b) (I —f(2))"! exists for all ze D\S where S is a discrete subset of D

(i.e. a set which has no limit points in D). In this case, (I — f(z))"" is mero-
morphic in D, analytic in D\S, the residues at the poles are finite rank opera-
tors, and if z € S then f(2){ = Y has a nonzero solution in J.

Proof We will prove that near any z, either (a) or (b) holds. A4 simple con-
nectedness argument allows one to convert this into a statement about all of D
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(Problem 21). Given z,e D, choose an r so that |z —z,| <r implies
Lf(z) — f(zo)ll < 3 and pick F, an operator with finite rank so that

1f(zo) — Fll <%

Then, for z € D, , the disc of radius r about z,4, ||f(z) — F|| < 1. By expanding
in a geometric series we see that (I — f(z) + F)™! exists and is analytic.

Since F has finite rank, there are independent vectors ¥, ..., ¥y so that
F(o) =Y N | a(oW;. The a,(*) are bounded linear functionals on # so by
the Riesz lemma there are vectors ¢, ..., ¢y so that F(@) =Y N_ | (¢;, oW,
for all ¢ € #. Let ¢,(2) = ((I — f(2) + F) " ')*¢, and

N
g(Z) = F([—f(Z) + F)“l = ;l(¢n(z)’ °)‘l/n
By writing
I-f@)=U-9gNI-f()+ F)

we see that I — f(z) is invertible for z € D, if and only if 7 — g(z) is invertible
and that § = f(z)y has a nonzero solution if and only if ¢ = g(z)¢ has a
solution,

If g(z)¢p = ¢, then ¢ = > N_; B, ¥, and the B, satisfy
N
Bn = Zl(¢n(2), VB (VI1.5a)

Conversely, if (VI.52) has a solution {B;,..., By, then o =Y _ By, is a

solution of g(z)¢ = ¢. Thus g(z)¢ = ¢ has a solution if and only if the
determinant

d(Z) = det{énm - (¢n(z)9 ![/m)} = 0

Since (¢,(2), ¥,,) is analytic in D, so is d(z) which means that either S, =
{z|z e D,, d(z) = 0} is a discrete set in D, or S, = D,. Now, suppose d(z) # 0.
Then, given , we can solve (I — g(z))p = ¢ by setting ¢ =y + Y 1, B, ¥, if
we can find B, satisfying |

Bu= @D )+ 3. (B2 Vi (VL.5b)

But, since d(2) # 0, this equation has a solution. Thus (I — g(z)) ! exists if and
onlyif z¢S,.

The meromorphic nature of (I — f(z)) ™! and the finite rank residues follow
from the fact that there is an explicit formula for the g, in (VI.5b) in terms of
cofactor matrices. }

This theorem has four important consequences:
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Corollary (the Fredholm alternative) If 4 is a compact operator on J#,
then either (I — 4)~! exists or Ay =y has a solution.

Proof Take f(z) = zA and apply the last theorem at z=1. §

Theorem V1.15 (Riesz-Schauder theorem)  Let A be acompact operator
on ), then o(A4) is a discrete set having no limit points except perhaps
A = 0. Further, any nonzero 4 € 6(A4) is an eigenvalue of finite multiplicity
(i.e. the corresponding space of eigenvectors is finite dimensional).

Proof Let f(z) =zA. Then f(z) is an analytic compact operator-valued
function on the entire plane. Thus {z]|z4y = has a solution ¢ # 0} is a
discrete set (it is not the entire plane since it does not contain z =0) and if
1/ is not in this discrete set then

aarr=dr-La)
! A

exists. The fact that the nonzero eigenvalues have finite multiplicity follows
immediately from the compactness of 4. }}

Theorem V1.16 (the Hilbert-Schmidt theorem) Let A be a self-adjoint
compact operator on . Then, there is a complete orthonormal basis,
{¢,}, for H# so that 4¢,=41,¢,and 4, -0 as n— co.

Proof For each eigenvalue of A choose an orthonormal basis for the set of
eigenvectors corresponding to the eigenvalue. The collection of all these
vectors, {¢,}, is an orthonormal set since eigenvectors corresponding to
distinct eigenvalues are orthogonal. Let . be the closure of the span of {¢,}.
Since A is self-adjointand A: & — A, A: M+ — #*. Let A be the restriction
of A to #*. Then A is self-adjoint and compact since A4 is. By the Riesz-
Schauder theorem, if any 4 # 0 is in o(A), it is an eigenvalue of 4 and thus of
A. Therefore the spectral radius of 4 is zero since the eigenvectors of 4 are in
. Because A is self-adjoint, it is the zero operator on .#* by Theorem VI.6.
Thus, #* = {0} since if ¢ € #*, then Ap =0 which implies that ¢ ¢ 4.
Therefore, # = H#.

The fact that 4, - 0 is a consequence of the first part of the Riesz-Schauder
theorem which says that each nonzero eigenvalue has finite multiplicity and
the only possible limit point of the 4, is zero. |

Theorem VI.17 (canonical form for compact operators) Let A be
a compact operator on . Then there exist (not necessarily complete)
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orthonormal sets {,})., and {¢,}., and positive real numbers {1,}., with
A, — 0 so that

N
A=Y hbn. )9, (VL)

The sum in (V1.6), which may be finite or infinite, converges in norm. The
numbers, {2}, are called the singular values of A4.

Proof Since A is compact, so is A*A4 (Theorem VI.12). Thus A*4 is compact
and seif-adjoint. By the Hilbert-Schmidt theorem, there is an orthonormal set
(Y, 1N, so that A*Ay, = p, ¥, with i, # 0 and so that A* 4 is the zero operator
on the subspace orthogonal to {i,}\. ,. Since 4*A is positive, each u, > 0. Let
4, be the positive square root of y, and set ¢, = AY,/A,. A short calculation
shows that the ¢, are orthonormal and that

N
AW =n=zl 'J‘n(!l/n ’ ‘//)(bn l

The proof shows that the singular values of 4 are precisely the eigenvalues
of |A].
We conclude with a classical example.

Example (Dirichlet problem) The main impetus for the study of
compact operators arose from the use of integral equations in attempting to
solve the classical boundary value problems of mathematical physics. We
briefly describe this method. Let D be an open bounded region in R* with a
smooth boundary surface 0 D. The Dirichlet problem for Laplace’s equation
is: given a continuous function fon @D, find a function u, twice differentiable
in D and continuous on D, which satisfies

Au(x) =0 xeD
u(x) = f(x) xedD

Let K(x, y) = (x — y, n,)/2n|x — yp|> where n, is the outer normal to 4D at
the point y € 6D. Then, as a function of x, K(x, y) satisfies A, K(x, y) =0 in
the interior which suggests that we try to write u as a superposition

ux)= | Kz po(y) dso) (VL6a)

where ¢(y) is some continuous function on dD and dS is the usual surface
measure. Indeed, for x € D, the integral makes perfectly good sense and
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Au(x) = 0 in D. Furthermore, if x, is any point in dD and x — x, from
inside D, it can be proven that

u(x) > — o(xo) + faDK(xo , Vo) dS() (VL6b)

If x - x, from outside D, the minus is replaced by a plus. Also,

[ Kxo, )o(») dS0)
oD

exists and is a continuous function on 9D if ¢ is a continuous function on
0D. The proof depends on the fact that the boundary of D is smooth which
implies that for x, ye 0D, (x — y,n) = c|x —p|* as x> y.

Since we wish u(x) = f(x) on d D, the whole question reduces to whether we
can find ¢ so that

SO =~ + [ K )e0)dSp),  xedD

Let T: C(0 D) — C(0D) be defined by

Tp=[ Kx,7)e0)dS0)

Not only is T bounded but (as we will shortly see) T'is also compact. Thus, by
the Fredholm alternative, either 4 = 1 is in the point spectrum of Tin which
case there is a Yy € C(0D) such that I — T =0, or —f=({J — T)p has a
unique solution for each f € C(0D). If u is defined by (VI.6a) with y replacing
¢, then ¥ = 0 in D by the maximum principle. Further, du/dn is continuous
across 0D and therefore equals zero on éD. By an integration by parts this
implies that ¥ =0 outside dD. Therefore, by (VI.6b), 2y(x) =0 on éD, so
the first alternative does not hold.
The idea of the compactness proof is the following. Let

(x—2,n,)
lx —z]>+6

Ka(x, Z) =

If 4 > 0, the kernel Kj is continuous, so, by the discussion at the beginning of
this section, the corresponding integral operators Ty, are compact. To prove
that T is compact, we need only show that ||T— T;|| -0 as 6 —» 0. By the
estimate

(TN = (THE)] < 1 Nl f |K(x, 2) = Kylx, 2)] dS(2)
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we must only show that the integral converges to zero uniformly in x as
d — 0. To prove this, divide the integration region into the set where |x—z| >¢
and its complement. For fixed ¢, the kernels converge uniformly on the first
region. By using the fact that X is integrable, the contribution from the
second region can be made arbitrarily small for ¢ sufficiently small.

Vi.6 The trace class and Hilbert-Schmidt ideals

In the last section we saw that compact operators have many nice properties
and are useful for applications. It is therefore important to have effective
criteria for determining when a given operator is compact or, better yet,
general statements about whole classes of operators. In this section we will
prove that the integral operator

(TN = | K S0 duty)

on L*(M,dy) is compact if K(-,-)eL*(M x M, du® du). First we will
develop the trace, a tool which is of great interest in itself. Theorem VI.12
shows that Com(sf’), the compact operators on a separable Hilbert space 5#,
form a Banach space. At the conclusion of the section, we will compute the
dual and double dual of Com(s#). These calculations illustrate the difference
between the weak Banach space topology on #(#) and the weak operator
topology and give a foretaste of the structure of abstract von Neumann
algebras which we will study later.

The trace is a generalization of the usual notion of the sum of the diagonal
elements of a matrix, but because infinite sums are involved, not all operators
will have a trace. The construction of the trace is analogous to the construction
of the Lebesgue integral where one first defines { fdu for £ > 0; it has values
in [0, o}, including co. Then #! is defined as those fso that | | f| du < .
&' is a vector space and f | f du a linear functional. Similarly we first define
the trace, tr(-), on the positive operators; A — tr A has values in [0, c0]. We
then define the trace class, S, to be all 4 € ¥(5#) such that tr |4| < 0. We
will then show that tr(-) is a linear functional on #, with the right properties.

Theorem VI1.18 Let S be a separable Hilbert space, {¢,}>, an ortho-
normal basis. Then for any positive operator 4 € Z(s#) we define tr 4 =

%1 (@n, Ap,). The number tr A4 is called the trace of 4 and is independent
of the orthonormal basis chosen. The trace has the following properties:
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(@) tr(A+B)=trA+1tr B.

(b) tr(A4)=Atr Aforall 1 >0.

() tr(UAU ") = tr 4 for any unitary operator U.
(d If0O<A<B,thentr 4 <tr B.

Proof Given an orthonormal basis {@,}% ;, define tr (4) = ) =, (¢,, A9,).
If {{ .}, is another orthonormal basis then

[c o) a0

tr(A) = 3 (00, dp)) = . 14",

s
—

iMs

(£ 10, 470017

i
3[\{]8

(B 1 001?)

]

> 1412

= 3. Wmr ¥
= try(A)

Since all the terms are positive, interchanging the sums is allowed.
Properties (a), (b), and (d) are obvious. To prove (c) we note that if {¢,}
is an orthonormal basis, then so is {Ug,}. Thus,

tr(UAU 1) = try,(UAU 71) = tr (4) = tr(4) . |

Definition An operator 4 € L(H) is called trace class if and only if
tr |A| < co. The family of all trace class operators is denoted by .#,.

The basic properties of #, are given in the following:

Theorem VI.19 F, is a »-ideal in Z(s#F), that is,

(a) 4, is a vector space.
(b) If Ae#, and Be (), then ABe £, and BAe 4,.
(c) If Ae #,, then A*e J,.

Proof (a) Since |14| = |A| |A] for AeC, S, is closed under scalar
multiplication. Now, suppose that 4 and B are in #,, we wish to prove that
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A+ Be . Let U, V, and W be the partial isometries arising from the polar
decompositions

A+ B=U|A + B|
A=V|A|

B =W |B|
Then

N N
Y (¢n, |A+ Blo,) = ZI(%, U*(A + B)o,)

n=1 n=

N N
< 2 e, UVidlo)l + 3 |(0n, U*W1Blo,)

However,

N N
le(%, UVIAledl < X I TAI2V* U, || 1AL 2,

n=1

N 1/2 N 1/2
< (,.;” 4] *”V*U«»,.n’) (,.;” |A|”2<p,,u2)

Thus, if we can show
N
Y AV V*Ue, I <tr | 4] (VL7)
n=1

we can conclude that

N
Y (@, |4 + Blo,) <tr|A| +tr |B] < o0

n=1

and thus A + Be #,. To show (V1.7), we need only prove that
tr(U*V|A|V* U) <tr|A|

Picking an orthonormal basis, {¢,} with each ¢, in Ker U or (Ker U)* we see
that tr(U*(V|A|V*)U) <tr(V|A|V*). Similarly, picking an orthonormal
basis, {{/,,}, with each y,, in Ker V* or (Ker V*)* we find tr(V|4|V*) <
tr |A].

(b) By the lemma proven below, each B € £ () can be written as a linear
combination of four unitary operators so by (a) we need only show that
Ae £, implies UA € £, and AUe€ 4, if U is unitary. But |UA4| = |4]| and
|4U| = U~'|A|U, so by part (c) of Theorem VI.18, AU and UA are in .#,.

(c) Let A = U|A| and A* = V| A*| be the polar decompositions of 4 and
A*. Then |A*| = V*|A|U*. If A€ S, then |A]| € #,, s0 by part (b) | A*] €
SF,and A*=V|A4A*| e #,. |}
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To complete the proof of part (b) above we need the following lemma
which we will use in other contexts later.

Lemma Every B e £ (s) can be written as a linear combination of four
unitary operators.

Proof Since B = ¥(B + B*) — ;[i(B— B*)], B can be written as a linear
combination of two self-adjoint operators. So, suppose A4 is self-adjoint and

without loss of generality assume |4} £ 1. Then 4 + i\/ I — A? are unitary

and A = 3(4 + i/T— A%) + ¥4 — i/T— 4%).

The proof of the following theorem is left to the reader (Problem 23).

Theorem V120 Let || |, be defined in #, by ||All, =tr | 4]. Then
J, is a Banach space with norm |||}, and || A}l < || 4]};-

We note that #, is not closed under the operator norm || - |. The connection
between the trace class operators and the compact operators is simple:

Theorem VI.21 Every 4 € #, 1s compact. A compact operator 4 is in
F, if and only if ) 2., A, < oo where {4,}2., are the singular values of 4.

Proof Since Ae S, |A|*e S, so u(|4|) =12, ll4¢,|* < o for any
orthonormal basis {¢,}® ;. Suppose ¥ € [@,, ..., y]* and [[¥ || = 1, then we
have

N
| AW <tr(|4]%) - glufw,n’

since {¢;, @1, ..., Q5 ¥} can always be completed to an orthonormal basis.
Thus

sup{llAVl|Y €@y, ..., on]5 W =1} >0 as N-o0

Therefore Y ~_, (¢,, ')A, is norm convergent to 4. Thus A4 is compact.
The second part of the theorem follows easily from the canonical form
derived in Theorem VI1.17 (Problem 24). |

Corollary The finite rank operators are || - ||;-dense in #,.

The second class of operators which we will discuss are the Hilbert-
Schmidt operators, the analogue of 2.
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Definition An operator Te L(5F) is called Hilbert-Schmidt if and only
if tr T*T < o0. The family of all Hilbert-Schmidt operators is denoted by
F,.

By arguments analogous to those we used for #,, one can prove.

Theorem V1.22 (a) £, is a =-ideal.
(b) If 4, Be J,, then for any orthonormal basis {¢,},

il(%, A*Bo,)

is absolutely summable, and its limit, denoted by (A4, B),, is independent of
the orthonormal basis chosen.
(c) #, with inner product (-, -), is a Hilbert space.

d) If Al = /(4, A); = (tr(4*4))!/2, then
Al < 14l < 14ll;, and |[4]; = [|4*]];

(e) Every A e S, is compact and a compact operator, A4, is in £, if and
only if Y 2., 27 < oo where 1, are the singular values of A.

(f) The finite rank operators are || - ||,-dense in ., .

(8) Ae S, if and only if {i| g, ||} € £, for some orthonormal basis {¢,}.

(h) Ae S, if and only if 4 = BC with B, Cin #,.

We note that £, is not | - |l-closed. The important fact about .#, is that
when # = L*(M, du), £, has a concrete realization.

Theorem V.23  Let (M, u) be a measure space and ¥ = L*(M, du).
Then A € Z(5#) is Hilbert-Schmidt if and only if there is a function

KeL*(M x M, du ® dp)
with
(AN)x) = [ K(x, )70 du(y)

Moreover,

1413 = [ 1KCx, 2)12 du(x) duy)

Proof Let Ke L*(M x M, du ® du) and let A, be the associated integral
operator. It is easy to see (Problem 25) that A, is a well-defined operator on
J and that

Akl < 1Kl (VL8)
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Let {¢,}=., be an orthonormal basis for L*(M, du). Then {@,(X)@u(YN}C m=1
is an orthonormal base for L*(M x M, du ® du) so

K=} Oom Ou(X)Pm(¥)
Let '
N _—
KN = Z_ . an. m (pn(x)¢m(y)

Then each K is the integral kernel of a finite rank operator. In fact, A¢, =
N wm@ms> )Pn. Since |[Ky— K|l —>0 we have ||[Ax — A, ll—0 as

n,m=1 &

N - oo by (V1.8). Thus A, is compact and in fact

(i A= ¥ 14k @ull® = ¥ 3 1%l = IKllLs
Thus Ay € #, and || Akll, = [[K|L:.
We have shown that the map K — Ay is an isometry of L2(M x M, du ® dy)
into £, , so its range is closed. But the finite rank operators clearly come from
kernels and since they are dense in &, the range of K Ay is all of #,. |}

This theorem provides a simple sufficient condition for an operator to be
compact and is therefore very useful. Notice that the condition is not neces-
sary. Also, we have a sufficient condition for an operator on # = L*(M, dy) to
be an integral operator. This condition is also not necessary. Now, we return
to defining the trace on 4,.

Theorem VI1.24 If Ae S, and {¢,}, is any orthonormal basis, then
o1 (@a, A@,) converges absolutely and the limit is independent of the
choice of basis.

Proof We write 4 = U|A4|'?| 4|2 Then
[(@n> A@)| < 4|2 U*@, 11 11| 4]' 20,1
Thus

w© ey 1/2/ o 1/2
5 ew ot < (E 114170%002) (£ 0141 0,07)

so since | 4]'/2U* and | 4|'/? are in #,, the sum converges. The proof of the
independence of basis is identical to that for tr A when 4 > 0. |}

Definition  The map tr: #, - C given by tr 4 = ) 2., (¢,,, A9,) where
{@,} is any orthonormal basis is called the trace.
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We remark that it is not true that ) 2, |(¢,, A¢,)| < o for some ortho-
normal basis implies 4 € #,. For 4 to be in #, the sum must be finite for all
orthonormal bases. The spectral theorem which we will prove in the next
chapter will tell us that any seif-adjoint 4 can be written 4 = A, — A_ where
both A, and A_ are positive and A, A_ = 0. Not surprisingly, 4 € 5, if
andonly if tr(4,) < oo, tr(d_) < o and in thiscase trA =tr A, —tr 4.
We collect the properties of the trace.

Theorem VI1.25 (@) tr(-) 1s linear.
(b) trA*=1r A.
(¢c) trAB=1tr BAif Ae f, and Be Z(¥).

Proof (a) and (b) are obvious. To prove (c) it is sufficient to consider the
case where Bis unitary since any bounded operator is the sum of four unitaries.
In that case

[¢ a]
tr AB= Z (¢, ABp,)

n

= Z (B*‘Jln ’ A'I/n)

oC

Z (Y, BAY,)
= tr BA

where Y, = Be, for all n. |

If A € #,, the map B tr ABis a linear functional on £(5). These are
not all the continuous linear functionals on Z(5#) but such functionals do
yield the entire dual of Com(s#), the compact operators. We can also hold
B e #(#) fixed and obtain a linear functional on #, given by the map
A tr BA. The set of these functionals is just the dual of #, (withthe operator
norm topology). We state this as a theorem; the interested reader can follow
the outline of the proof given in Problem 30.

Theorem V1.26 (a) S, ={Com(s#)]*. That is, the map Artr(4-)is
an 1sometric isomorphism of #, onto [Com (#)]*.

(D)L (H#) =FF. That is, the map B tr(B-) is an isometric isomorphism
of ¥(#) onto £1.
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We now return to the distinction between the weak operator topology on
ZL(H) (see Section VI.I) and the weak Banach space topology, i.e. the
o(L (), L(H)*) topology. If Fis the family of finite rank operators, then
F < J, and each F € & can be realized as linear functional on £ () via the
dual action of J, on Z(s#). The topology on F(H#) generated by these
functionals, that is, 6(ZL (), &) is just the weak operator topology. The set
F is not closed in the £ (s#)*-norm. As a matter of fact, the £(s#)* norm on
F is just ||+ |l; so the closure of & in this norm is just #,. The weak topology
on Z(sF) generated by the functionals in #,, that is, a(L(H#), F,), is called
the ultraweak topology on # (o). Notice that it is stronger than the weak
operator topology, since more functionals are required to be continuous, but
weaker than the weak Banach space topology on £(5¢), since #, is not the
entire dual of £(#). In fact, since L(H#) = £7, the ultraweak topology on
Z(#) is just the weak-* topology. This realization of () as the dual of
the Banach space of linear functionals continuous in the a(Z£ (o), &) topology
is valid for a larger class of algebras than just (). Problem 31 gives another
example: the multiplication algebra L, on L, . We will study such algebras in
detail in Chapter XVIII. We study the .#, spaces for p # 1, 2, co in Sections
IX.4 and XIII.17.

NOTES

Section VI.1 The reader may be bewildered by the many topologies we have introduced
on Z(5¢): the weak, strong, and uniform operator topologies, the weak Banach space
topology, the ultraweak topology (Section V1.6). Later on we will even encounter the ulitra-
strong topology. Why is it necessary to introduce all these topologies ? The answer is that
many of the operators we are interested in are given as some sort of limit of simpler oper-
ators. It is important to know exactly what one means by ‘‘some sort’ and to know what
properties of the limiting operator follow from properties in the sequence, for example, the
uniform limit of compact operators is compact. Furthermore, when one begins a problem
one doesn’t always know in what sense limits will exist, so it is useful to have a wide range of
topologies at hand. In general it is the weak, strong, and uniform operator topologies which
are important in Volumes I and 11. The ultraweak and ultrastrong topologies will play a role
when we deal with von Neumann algebras. The weak, strong, and uitrastrong operator
topologies were introduced in J. von Neumann, * Zur Algebra der Functionaloperationen
und Theorie der Normalen Operatoren,” Math. Ann. 102 (1929-1930), 370-427.

Section V1.2 The spectral theorem for self-adjoint operators on finite dimensional
vector spaces is nicely described in P. R. Halmos, Finite Dimensional Vector Spaces, Van
Nostrand-Reinhold, Princeton, New Jersey, 1958,

Section VI.3  Thedefinitions of various kinds of spectra will also be used for unbounded
operators. Theorem VI.5 holds as long as we require that T be closed. If T is bounded it is,
of course, automatically closed.
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The theory of Banach space-valued analytic functions is described in great detail in
Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, Rhode Island, 1957, by
E. Hille and R. S. Phillips. They also discuss the more difficuit notion of analytic functions
from one Banach space to another. A proof of Theorem V1.7 can be found in Functional
Analysis, Academic Press, New York, 1965, by K, Yosida.

Some authors (for example: Yosida or Hille, Phillips) use the term *‘ continuous spect-
rum” to denote any A € ¢(T) which is neither in the point spectrum, nor in the residual
spectrum. Other authors (such as Kato or Riesz, Nagy) use the definition that we give in
Section VII.2. One important distinction is that with our definition the continuous spectrum
and the point spectrum need not be disjoint.

Section V14 The polar decomposition has a simple geometric meaning for linear
transformations on R", Any linear transformation 4 on R” can be written as 4 = OS where
O is orthogonal and S is self-adjoint. By the spectral theorem, S can be thought of as a
dilation, contraction, or annihilation in certain preferred orthogonal directions.

The notion of positivity has a patural generalization to operator algebras and will play
an important role in our investigations in Volume III.

The statement that the triangle inequality fails for |-|, that is, |4 + B| may not be less
than or equal to | 4] + | B] (see Problem 16) is a statement that f(x) = | x| is not a convex
operator-valued function, that is, for 0 <t <1, ftA+ (1 — OHB) < tf (A + (I — ) f(B) can
be false for general operators A and B despite the fact that f(tx — (1 — ¢)y) < tf(x) +
(1 — 1) f(») is true for x and y real and 0 < ¢ < 1. Exactly which matrix and operator valued
functions are convex has been studied in: F. Krauss, “Uber konvexe Matrixfunktionen,”
Math. Z. 41 (1936) 1842, and J. Bendat and S. Sherman, ** Monotone and Convex Operator
Functions,” Trans. Amer. Math. Soc. 79 (1955), 58-71.

Section VI.5 The proof of the second part of Theorem VI.12 can be found in Yosida’s
book; it is a nice application of the Ascoli-Arzela and Alaoglu theorems (see also Problem
36).

In a very real sense, the theory of compact operators goes back to Fredholm’s great paper
on integral operators, " Sur une class d'équations fonctionnelles,” Acta Math. 27 (1903), 365-390.
Fredholm considered solving equations of the form

f(x)=g(x)+ A J K(x, Wf(y)dy

where g and K are given continuous functions and — 0 < @ < b < «. Fredholm showed
that there exists an explicit entire function d(}), not identically zero, and an explicit func-
tion D,(x, y), entire in A and continuous in x and y, so that if d(A) # O, then S(x)=g(x) +
d(A)=* [& Dy(x, y)g(y) dy solves the equation. Moreover, he showed that when d()) = 0, then

b
f()=2A f K(x, ) f(3) dy

has a solution f # 0. Fredholm thus had Theorem VI.15 and the preceding corollary in this

special case. Readable expositions of the Fredholm theory may be found in W. Lovitt:
Linear Integral Equations, Dover, New York (reprinted 1950; original edition, McGraw-Hill,
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New York, 1926), and F. Smithies, Integral Equations, Cambridge Univ. Press, London and
New York, 1958,

Fredholm’s work produced considerable interest among Hilbert and his school and led to
the abstraction of many notions we now associate with Hilbert space theory. Hilbert first
defined completely continuous operators in a manner whose modern form would be the
criterion of Theorem V1.11: D. Hilbert, * Grundziige einer allgemeinen Theori¢ der linearen
Integralgleichungen, 1-VI,”” Nachr. Akad. Wiss. Géttingen Math.-Phys. Kl. 49-91 (1904),
213-259, 307-388 (1905); 157-222, 439480 (1906); 355-417 (1910); esp. IV. The exten-
sion of the notion of compact operator to arbitrary Banach spaces by the precompactness
criteria is due to F. Riesz ** Uber lineare Functionalgleichungen,” Acta. Math. 41 (1918),
71-98.

Theorem VI.12bis due to J. Schauder: * Uber lineare, volistetige Functionaloperationen,”
Studia Math. 2 (1930), 183-196.

The idea of using Theorem 1V.13 to develop the general theory is due to E. Schmidt,
“Auflosung der allgemeinen linearen Integraigleichung,” Math. Ann. 64 (1907), 161-174.
While it is true that compact operators in most explicit Banach spaces are norm limits of finite
rank operators, there are Banach spaces where this is false. The earliest examples were constructed
by P. Enflo. For extensive discussion, see M. M. Day, Normed Linear Spaces. Springer. Berlin,
1973, and J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Springer Lecture Notes in
Math 388, Springer-Verlag, 1973.

Theorem VI.14, its corollary, and Theorem VI.15 hold in an arbitrary Banach space. For
their proof in that case, see N. Dunford and J. Schwartz, Linear Operators, Vol. 1. Wiley
(Interscience), 1958. Our technique of proof for Theorem VI1.14 is taken from a technical
appendix in W. Hunziker, **On the Spectra of Schrodinger Multiparticie Hamiltonians,”
Helv. Phys. Acta. 39 (1966), 451-462. A similar approach can be found in an appendix of
G. Tiktopolous, “*Analytic’ Continuation in Complex Angular Momentum and Integral
Equations,” Phys. Rev. 133B (1964), 1231-1238, One part of Theorem VI1.14 is not proven
in the general case in Dunford-Schwartz; a discussion of this extra point can be found in
S. Steinberg, *“ Meromorphic Families of Compact Operators,” Arch. Rat. Mech. Anal. 31
(1968), 372-379. For extensions to locally convex spaces, see J. Leray, ** Valeurs propres et
vecteurs propres d’un endomorphisme conplétement continu d'un espace vectoriel a voisi-
nages convexes,” Acta Sci. Math. Szcg. 12, Part B, (1950), 177-186. Theorem VI.15 was
first proven by Riesz and Schauder in the above cited works (Schauder filled in some details
for the general case) and Theorem VI.16 is due to Hilbert and Schmidt in the aforementioned
papers.

For a discussion of the use of integral equations in the solution of Dirichlet problem, see
Boundary Value Problems of Mathematical Physics, Vol. 2, (especially sections 6.4 and 6.5),
Macmillan, New York, 1968, by Ivor Stakgold and Volume I of R. Courant and D. Hilbert,
Methods of Mathematical Physics, Wiley (Interscience).

Section V1.6 For a discussion on f;, f,, and the £, analogues, see R. Schatten,
Norm Ideals of Completely Continuous Operators, Springer-Verlag, Berlin and New York,
1960. #, is defined as those 4 with Tr(]| 4]*?) < oo and is equivalently those compact oper-
ators with ) |4,1” < co. For further discussion. see Sections 1X.4 and XII1.17.

These norm ideals have been extended to other situations with traces (von Neumann
algebras) and more general settings in a manner emphasizing the analogy with L by 1. Segal:
*A Non-Commutative Extension of Abstract Integration,” Ann. Math. 57 (1953), 401457,
58 (1953), 595-596, and R. A. Kunze, ** L, Fourier Transforms on Locally Compact Uni-
modular Groups,’’ Trans. Amer. Math. Soc. 89 (1958), 519.
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t1.

2.
3.

4.

18.

Vi: BOUNDED OPERATORS

PROBLEMS

Prove that the weak operator topology is weaker than the strong operator topology
which is weaker than the uniform operator topology.

Prove the statements in the example in Section VI.1,

(a) Let X and Y be Banach spaces. Prove that if T, € Z(X, Y) and {T, x} is a Cauchy
sequence for each x € X, then there exists a T € £(JX, Y) so that T,,— T strongly.

*(b) Is the theorem in (a) true if T, is replaced by a net 7, ?

(a) Let X and Y be Banach spaces. Prove that a theorem for £(X, Y) analogous to
Theorem VI.1 holds if Y is weakly sequentially complete (which means that every
weakly Cauchy sequence has a weak limit.)

(b) Prove that if a Banach space is reflexive, then it is weakly sequentially complete.

(@) Let T, be the operator T,: ¢(x)— ¢(x + t) on L} R). What is the norm of 7;? To
what operator does 7, converge as 71— « and in what topology ?
(b) Answer the same question for 7; if the Hilbert space is LR, e~ ** dx).

(a) Let ¥ be an infinite dimensional Hilbert space. Suppose i, ..., i, orthonormal
are given and that £, i are given. Show there are 4 and B with |||l < &, Byl = &;
i=1,...,n but that 4B > 1.

(b) Prove that multiplication from Z£(#) x Z(#)— L(#) is not jointly continuous
when Z(5¥) is given the strong topology.

(¢) Suppose {4,)1¢1and {B,}. <, are ners. Let Ax —> A*, B, B. Prove that 4,B.~> AB.

(d) Let A,, B, be sequences so that A,— A, B,~> B. Prove that A,B.— AB.

(e) Let A,, B, be sequences so that A,~> A, B,~> B. Give an example where 4,8, AB
is false.

Give an example to show that the range of a bounded operator need not be closed.

Prove that if T is bounded, everywhere defined, and an isometry, then Ran T is closed.

(a) Let A be a self-adjoint bounded operator on a Hilbert space. Prove that the eigen-
values of A are real and that the eigenvectors corresponding to distinct eigenvalues
are orthogonal.

(b) From the proof of Theorem V1.8 derive a universal (but A-dependent) bound for
the norm of the resolvent of a self-adjoint operator at a nonreal A € C.

9. (a) Let A be a self-adjoint operator on a Hilbert space, . Prove that

HAl = "shxpl [(Ax, x)|
xll=
Hint: First note that

Re(ip, Ad) = (P + &, AW + ¢) — (b — ¢, AP — )}

Then using
(g, AP < Iy II’HS:;‘!D1 I(n, Ap)|
" =

and the parallelogram law, prove that
|, Ad)] S,.sﬁlp: |(n, An)}
ail =
if llpli = Il =1.
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(b) Find an example which shows that the conclusion of (a) need not be true if A is
not self-adjoint.

10. Show that the spectral radius of the Volterra integral operator

@ = [ 1)

as a map on C[0, 1] is equal to zero. What is the norm of T?

t11. Let T € £(X). Prove that lim,.« |IT"|*/" exists and is equal to inf,[|T"||*/" as follows:
(a) Set a, = log i7"} and prove that gm+a < an + a,.
(b) For a fixed positive integer m set n = mq -+ r where g and r are positive integers
and 0 < r < m — 1. Using (a) conclude that’

o aq a,
lim—<—
n N m

(c) Prove that lim,.. o, a./n = inf, a,/n and thus the desired equality.

+12. Prove the proposition at the end of Section Vi.3.

13. (a) Give an example which shows that a linear transformation on C" can be positive
without all the entries in a given matrix representation being positive.
*(b) Derive a necessary and sufficient condition for a n X n matrix to be positive.

14. (a) Prove that if 4, >0, A,— A in norm, then vV A, — vV 4 norm.
(b) Suppose 4,— A strongly for a sequence {4,}. Prove that 4 A, »v4 strongly.

15. (a) Let A,— A in norm. Prove that {A4,| — | 4] in norm.
(b) Suppose 4,— A and A¥ — A* strongly where A4, is a sequence. Prove that | 4,| —
| A| strongly.
(c) Find an example which shows that || is not weakly continuous on Z(¢),

16. Let 03 = (g -9), o1 = (0 }). Prove that it is false that
(o3 + 1) + (0, — D < {(o5 + D] + (o, — D)
Remark: This example is due to E. Nelson.
17. Show that it is not necessarily true that
41— 1Bl 1< 14~ B
(Hint: See Problem 16.)

t18. (a) Prove the proposition preceding Theorem VI.10.
(b) Prove the uniqueness in Theorem VI.10.

19. Write the matrix (-1 ~2) as the product of a rotation and a positive symmetric matrix.

*20. Suppose that X is a refiexive Banach space and that T: X— X a bounded linear oper-
ator. Prove that if T takes weakly convergent sequences into norm convergent se-
quences, then T is compact.

t21. Complete the proof of Theorem VL.14 by extending the result to all of D.
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22,

t23.

t24.

t25.

26.
27.

28

*29.
*30.

Vi: BOUNDED OPERATORS

Using the Stone-Weierstrass theorem prove that every Fredholm integral operator on
Cla, b}

b
@ x) = j K(x, NfO) dy

where K is continuous, is a norm limit of operators of finite rank.

(a) Prove that ||4]| < li41l;.
(b) Suppose {4,} is an |}-[|;-Cauchy sequence. Show that {4,} hasa }}-||-limit 4 and that

tr| 4] < o. Then conclude the proof of Theorem VI.20 by showing that A4 is the
I+1ls-limit of {4,}.

(a) Use the canonical form given by Theorem VI1.17 to prove the second statement in
Theorem VI.21.

(b) Prove the corollary to Theorem VIL.21.
Let K€ L3 (M x M, dp ® du) and let Ax be the integral operator

(e = | K(x, 2)p00) )

Prove that Ax is well defined and {|4x) < IKli.>.

(a) Prove that if > =, |(A@a, @.)| < o for all orthonormal bases, then A € 4,
(b) Find an 4 ¢ £, so that ) +%, |(A@., @a)| < o for some fixed orthonormal basis.

Prove that tr(AB) = tr(BA) if A, B #,.

Prove that (a) l4Bll, < |41l 1Bl
(b) 4Bz < A} 1Bz
© 4Bl < 41; 1Bl

Prove that A € #, if and only if A = BC with Band Cin J,.

The goal of this problem is to prove Theorem VI.26.
(a) Let f be a bounded linear functional on Com(.¥). Let (i, )¢ be the operator on
S which takes 7 into (, 7)¢. Show that there is a unique bounded linear operator,

B, with
&, B) = f1(, )]
(b) Using the fact that

3., [BI$ =f[§'.l U, -m]

prove that Be S, and ||Bll; < ifficomcaye -

(¢) Prove that A+ tr(BA) is a bounded linear functional on Com(¥) which is in fact
equal to f(-).

(d) Prove that [iBil; = liflicomca) -

(e) Let g be a bounded linear functional on #,. Show that there is a unique bounded

linear operator, B, with
(), B) = gl(, )¢}

(f) Prove that A+ tr(BA) is a bounded linear functional on #; which agrees with g
and that ligllgs., = IIBIl.
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32.

33.

*34.

35.

36.

+37.

38.

*39.

*40.

41.
42
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Let (M, p.)> be a measure space and let L*(M, dp) act on o = L*(M, du) by

(TrpXx) = f(x)p(x)

Prove that the topology on L® induced by the weak operator topology on Z(5) is
identical to the weak-+ topology induced on L® by L!.

Let C10, 1} act on L%*(0, 1) as in Problem 31. Find a sequence in C{0, 1] convergent in
the weak operator topology on C[0, 1] to fe C[0, 1] which is not convergent in the
weak Banach space topology on C{0, 1].

Consider #, as a Hilbert space with inner product (4, B); = tr(4*B). Let A+ L, and
A— R, be the maps of Z(5F) into £(.f;) given by

L(B)= AB, R(B) = BA*

(a) Prove that A+ L, is a homomorphism of Z(5F) into £(S,).

(b) Prove that 4 R, is a conjugate linear homomorphism of £() into £ (S ,).

(c) Suppose that Ce £(S,) and obeys CL,= L, C for all 4 € £(¢). Prove that
C = Rjp for some Be Z(X¥).

Show that in a Hilbert space, a map T: # — 5 is continuous if the domain is given
the weak topology and the range the norm topology (that is, x, * x implies T’x, "} Tx
for arbitrary nets) if and only if T has finite rank! (Compare with Theorem VI.11.)

(a) Suppose T is an operator in Z(H#) so that x, "' x implies Tx, * Tx. Prove T is
bounded (so Tx, "I Tx). .

(b) Identify the continuous linear maps of Z(¥) into itself if both the domain and
range are given the weak topology.

Use (c) of Theorem VI1.12 and the polar decomposition to prove (b) of Theorem VI.12
when X' = Y is a Hilbert space.

Prove part (c) of Theorem VL.12,

Let P and Q be orthogonal projections onto subspaces 4 and .4 in a Hilbert space

. Suppose that PQ = QP.

(a) Prove 1 - P,1 - Q,PQ,P+ Q—PQ and P+ Q — 2PQ are orthogonal pro-
jections.

{b) How are the ranges of the projections in (a) related to .# and 4",

Let P and Q be orthogonal projections onto subspaces .4 and ./ in a Hilbert space /.
Prove that s-lim .. » (PQ)" exists and is the orthogonal projection onto 4 N A",

Let # be a norm closed ideal in (), S # 0. Prove Com(5f) < S by proving that
any finite rank operator is in .

Remark : We will see (Chaptes VII, Problem 31) that the only norm closed ideals when
M is separable are {0}, Com(¥), L().

Find a projection on R? which is not an orthogonal projection.

Let A € 2(X). Prove that the set of A such that A is in o(4) but not an eigenvalue
and Ran(AI — A4) is closed but not all of X is a open subset of C.
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43.

44.
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Let M and N be subspaces of a Banach space Xsuchthat M+ N= Xand M N N=

{0}. Let P be the projection of X onto M. Prove that P is bounded if and only if both
M and N are closed.

(a) Define the numerical range, N(T'), of a bounded operator, 7, on a Hilbert space,
#, by N(T)={(J, Td)|Y € #, Pl = 1}. Prove that o(T) < N(T). (Hint: First
show that if A is an eigenvalue of T or T*, then A € N(T); then show that if A € o(T)
and A is not an eigenvalue of T or T*, we can find i, € & so that ||(T — A}l —0.)

(b) Find an example where N(T)is not closed and o(T) ¢ N(T).

(¢) Find an example where o(T) # N(T) = N(T).

Remark: There is a deep result of Hausdorff that N(T) is convex.

45.

46.

47.

48.

(a) Let {¢,}2%; be an orthonormal basis for a Hilbert space /. Let A be an operator
with
sup lAYll—~0 as n—> co.
e

Prove that 4 is compact.

(b) Let {¢h.} 1 be any orthonormal basis for a Hilbert space 5 and let A be compact.
Prove that

sup lAYl>0 as n—oo,
veléy,... énlt
(a) Let 4 >0 with A4 compact. Prove that 4'/? is compact. (Hint: Use Problem 45.)

(b) Let 0 < 4 < B. Prove that 4 is compact if B is compact. (Hint: Prove that A!/?
is compact using Problem 45 and part (a).)

Let & and 5’ be two Hilbert spaces. If T is a bounded linear map from o to #’
we define T* : ' — # by (T*, ¢l = (J, Td). T is called Hilbert-Schmidt if and
only if T*T: X — 5 is trace class. Let T be Hilbert-Schmidt. Prove that there are
real numbers, A, > 0, and orthonormal sets {@,}7., < I, {a}i=1 € # so that

T =5 A(der D)

A=)

Let & and #’ be the two Hilbert spaces and let #,(, ) denote the Hilbert-
Schmidt operators from 5 to 5,

(a) Prove that J,(5¥, ') with the inner product
(S, T)=Tre(S*T)

is a Hilbert space.

(b) Given Y€ &, ¢ € #’ define I, p) € F(H*, #7) by 1), $)¢ = £())¢ for any
¢ € #*. Prove that the map J, taking ¢ ® ¢ into I(}, $), is well defined and extends
to an isometry of # ® #’ and S, (HF*, H#).

(c) Given ne H# ® #’ show that there exist reals, A, > 0, and orthonormal sets
{pa}¥o s © HF, {u}h= 1 < # with N finite or infinite, so that

N N
Y= and Y Ad. @ Pa=1.
n=1
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