
VI: Bounded Operators 

I was at the mathematical school, where the master taught his pupils after a method scarce 
imaginable to us in Europe. The proposition and demonstration were fairly written on a thin 
wafer, wit11 ink composed of a cephalic tincture. This the student was to swallow upon a 
fasting stomach, and for three days following eat nothing but bread and water. As the wafer 
digested the tincture mounted to the brain, bearing the proposition along with it. 
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VI.1 Topologies on bounded operators 

We have already introduced 9(X, Y), the Banach space of operators from 
one Banach space to another. In this chapter we will study 9 ( X ,  Y) more 
closely. We emphasize the case which will arise most frequently later, namely, 
Y ( X ,  X )  = Y ( 2 )  where 2 is a separable Hilbert space. Theorem 111.2 
shows that Y(X, Y) is a Banach space with the norm 

The induced topology on Y ( X ,  Y) is called the uniform operator topology (or 
norm topology). In this topology the map (A, B) + BA of YcX, Y) 
x Ip( Y ,  Z) 4 Ip(X, 2) is jointly continuous. 

We now introduce two new topologies on Y ( X ,  Y), the weak and strong 
operator topologies. There are other interesting and useful topologies on 
Ip(X, Y), but we delay their introduction until we need them in a later volume 
(see however the discussion at the end of Section 6 and the Notes). 

The strong operator topology is the weakest topology on 9 ( X ,  Y) such 
that the maps 

E x :  Y(X, Y)+ Y 














































































