
CHAPTER 

NINE 
FOURIER TRANSFORMS 

Formal Properties 

9.1 Definitions In this chapter we shall depart from the previous notation 
and use the letter m not for Lebesgue measure on R I but for Lebesgue 
measure divided by $. This convention simplifies the appearance of 
results such as the inversion theorem and the Plancherel theorem. Accord-
ingly, we shall use the notation 

fOO 1 foo f(x) dm(x) = M: f(x) dx, 
-00 V 2n - 00 

(1) 

where dx refers to ordinary Lebesgue measure, and we define 

II f II p = {L: I f(x) IP dm(X)} lip (15,p < 00), (2) 

(f * gXx) = L: f(x - y)g(y) dm(y) (3) 

and 

!(t) = L:f(x)e- ixt dm(x) (4) 

Throughout this chapter, we shall write I! in place of I!(RI), and Co will 
denote the space of all continuous functions on R I which vanish at infinity. 

IffE Ll, the integral (4) is well defined for every real t. The function/is called 
the Fourier transform off Note that the term" Fourier transform" is also applied 
to the mapping which takesfto! 

178 
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The formal properties which are listed in Theorem 9.2 depend intimately on 
the translation-invariance of m and on the fact that for each real IX the mapping 
x-+ eirzx is a character of the additive group RI. By definition, a function cp is a 
character of RI if I cp(t) I = 1 and if 

cp(s + t) = cp(s)cp(t) (5) 

for all real sand t. In other words, cp is to be a homomorphism of the additive 
group RI into the multiplicative group of the complex numbers of absolute value 
1. We shall see later (in the proof of Theorem 9.23) that every continuous charac-
ter of RI is given by an exponential. 

9.2 Theorem Suppose fELl, and IX and A. are real numbers. 

(a) If g(x) = f(x)eia.x, then g(t) = !(t - ex). 
(b) If g(x) = f(x - IX), then g(t) = !(t)e-ia.t. 
(c) If 9 E LI and h = f * g, then h(t) = !(t)g(t). 

Thus the Fourier transform converts multiplication by a character into 
translation, and vice versa, and it converts convolutions to pointwise products. 

(d) If g(x) = f( -x), then g(t) = ./(t). 
(e) If g(x) = f(x/A.) and A. > 0, then g(t) = A./(A.t). 
(f) If g(x) = - ixf(x) and 9 E I!, then lis differentiable and l'(t) = g(t). 

PROOF (a), (b), (d), and (e) are proved by direct substitution into formula 
9.1(4). The proof of (c) is an application of Fubini's theorem (see Theorem 
8.14 for the required measurability proof): 

h(t) = f-: e - itx dm(x) f-: f(x - y)g(y) dm(y) 

= f-:g(y)e- itY dm(y) f-:f(X - y)e-it(X-Y) dm(x) 

= f-:g(y)e- itY dm(y) f-:f(x)e- itx dm(x) 

= g(t)!(t). 

Note how the translation-invariance of m was used. 
To prove (f), note that 

!(s) -!(t) = foo f(x)e-ixtcp(x, s - t) dm(x) 
s-t -00 

(s "# t), (1) 
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where qJ(x, u) = (e- iXU - l)/u. Since I qJ(x, u) I :::; I x I for all real u "1= 0 and since 
qJ(x, u)-4 -ix as U-4 0, the dominated convergence theorem applies to (1), if 
s tends to t, and we conclude that 

l'(t) = -i Loooo x!(x)e- ixt dm(x). (2) 

IIII 

9.3 Remarks 

(a) In the preceding proof, the appeal to the dominated convergence 
theorem may seem to be illegitimate since the dominated convergence 
theorem deals only with countable sequences of functions. However, it 
does enable us to conclude that 

lim J(s.) - J(t) = _ i foo x!(x)e- ixt dm(t) 
.-+00 s.-t -00 

for every sequence {s.} which converges to t, and this says exactly that 

lim J(s) - J(t) = -i foo x!(x)e- ixt dm(t). 
o-+t s-t -00 

We shall encounter similar situations again, and shall apply con-
vergence theorems to them without further comment. 

(b) Theorem 9.2(b) shows that the Fourier transform of, 

[f(x + IX) - !(x)]/1X 

is 

eilJtt - 1 
J(t)--. 

IX 

This suggests that an analogue of Theorem 9.2(f) should 'be true under 
certain conditions, namely, that the Fourier transform of I' is it!(t). If 
! E I!, I' E I!, and if! is the indefinite integral of 1', the result is easily 
established by an integration by parts. We leave this, and some related 
results, as exercises. The fact that the Fourier transform converts differ-
entiation to multiplication by ti makes the Fourier transform a useful 
tool in the study of differential equations. 

The Inversion Theorem 
9.4 We have just seen that certain operations on functions correspond nicely to 
operations on their Fourier transforms. The usefulness and interest of this corre-
spondence will of course be enhanced if there is a way of returning from the 
transforms to the functions, that is to say, if there is an inversion formula. 
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Let us see what such a formula might look like, by analogy with Fourier 
series. If 

Cn = - f(x)e- 1nx dx 1 I" 
2n -" 

(n e Z), (1) 

then the inversion formula is 
co 

f(x) = L cn einx. (2) 
-co 

We know that (2) holds, in the sense of L2-convergence, iff e L2(T). We also know 
that (2) does not necessarily hold in the sense of pointwise convergence, even iff 
is continuous. Suppose now thatfe E(T), that {cn} is given by (1), and that 

Put 
co 

g(x) = L Cn einx. 
-co 

(3) 

(4) 

By (3), the series in (4) converges uniformly (hence 9 is continuous), and the 
Fourier coefficients of 9 are easily computed: 

1 I" . 1 I" {CO .}. - g(x)e-,k;r; dx = - L cne,nx e-,k;r; dx 
2n -" 2n -" n=-co 

co 1 I" . L Cn - e,(n-k)x dx 
n= -co 2n -" 

(5) 

Thusfand 9 have the same Fourier coefficients. This impliesf= 9 a.e., so the 
Fourier series off converges to f(x) a.e. 

The analogous assumptions in the context of Fourier transforms are that 
feE and! e Ll, and we might then expect that a formula like 

f(x) = L: !(t)eitx dm(t) (6) 

is valid. Certainly, if!e E, the right side of(6) is well defined; call it g(x); but if 
we want to argue as in (5), we run into the integral 

Ico ei(t-s)x dx,_ 
-co 

(7) 

which is meaningless as it stands. Thus even under the strong assumption that 
! e E, a proof of (6) (which is true) has to proceed over a more devious route. 
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[It should be mentioned that (6) may hold even if J; I.!, if the integral over 
( - 00, (0) is interpreted as the limit, as A --+ 00, of integrals over (- A, A). 
(Analogue: a series may converge without converging absolutely.) We shall not 
go into this.] 

9.5 Theorem For anyfunctionfon Rl and every y E Rl, letfy be the translate 
off defined by 

fy(x) = f(x - y) (1) 

If 1 ::5; p < 00 and iff E I!, the mapping 

y--+ fy (2) 

is a uniformly continuous mapping of Rl into I!(R l ). 

PROOF Fix E > O. Since f E I!, there exists a continuous [unction g whose 
support lies in a bounded interval [ - A, A], such that 

Ilf - gllp < E 

(Theorem 3.14). The uniform continuity of g shows that there exists a 
b E (0, A) such that Is - t I < b implies 

I g(s) - g(t) I < (3A) -l/PE. 

If I s - t I < b, it follows that 

L: I g(x - s) - g(x - t)IP dx < (3A) -lEP(2A + b) < EP, 

so that Ilg. - g,llp < E. 
Note that If-norms (relative to Lebesgue measure) are translation-

invariant: II flip = 111.11p. Thus 

III. - frllp::5; 111.·- g.llp + Ilg. - g,llp + Ilg, - frllp 

= 11(f - g).llp + Ilg. - g,llp + II(g - f),llp < 3E 
whenever I s - t I < b. This completes the proof. IIII 
9.6 Theorem Iff E Ll, then J E Co and 

II J II co ::5; II fill· (1) 

PROOF The inequality (1) is obvious from 9.1(4). If tn --+ t, then 

(2) 
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The integrand is bounded by 21 I(x) 1 and tends to 0 for every x, as n -+ 00. 

Hence !(tJ -+ !(t), by the dominated convergence theorem. Thus! is contin-
uous. 

Since e1ti = -1,9.1(4) gives 

!(t) = - L:/(x)e- it(x+1tlt> dm(x) = - L:/(X - nlt)e- itx dm(x). (3) 

Hence 

2!(t) = L: {/(X) - I( x - }e - itx dm(x), 

so that 

21!(t)l::;; III - 11tlt Ill> 
which tends to 0 as t-+ ± 00, by Theorem 9.5. 

(4) 

(5) 

IIII 

9.7 A Pair of Auxiliary Functions In the proof of the inversion theorem it will be 
convenient to know a positive function H which has a positive Fourier transform 
whose integral is easily calculated. Among the many possibilities we choose one 
which is of interest in connection with harmonic functions in a half plane. (See 
Exercise 25, Chap. 11.) 

Put 

H(t) = e- 1tl (1) 

and define 

hA(x) = L: H(A.t)eitx dm(t) (A. > 0). (2) 

A simple computation gives 

(3) 

and hence 

L: h..{x) dm(x) = 1. (4) 

Note also that 0 < H(t) ::;; 1 and that H(A.t}-+ 1 as A.-+ O. 

9.8 Proposition Ille Ll, then 

(I * hA)(X) = L: H(A.t)!(t)eixt dm(t). 
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PROOF This is a simple application of Fubini's theorem. 

(f * h;.Xx) = L:f(X - y) dm(y) L: H(At)e ifY dm(t) 

= L: H(At) dm(t) L:f(X - y)e ifY dm(y) 

= L: H(At) dm(t) L:f(Y)eirIX - Y) dm(y) 

= L: H(At)!(t)e ifX dm(t). 

9.9 Theorem If g E LOO and g is continuous at a point x, then 

lim (g * h;.)(x) = g(x). 
;'-0 

PROOF On account of 9.7(4), we have 

(g * h;.Xx) - g(x) = L: [g(x - y) - g(x)]hb) dm(y) 

= L: [g(x - y) - g(X)]A dm(y) 

= L: [g(x - AS) - g(X)]hl(S) dm(s). 

IIII 

(1) 

The last integrand is dominated by 211g11 00 hl(S) and converges to 0 pointwise 
for every s, as A--+ O. Hence (1) follows from the dominated convergence 
theorem. I I I I 

9.10 Theorem If 1 :::; p < 00 and f E I!, then 

lim Ilf* h;. - flip = o. (1) 
;'-0 

The cases p = 1 and p = 2 will be the ones of interest to us, but the general 
case is no harder to prove. 

PROOF Since h;. E IJ, where q is the exponent conjugate to p, (f * h;.}(x) is 
defined for every x. (In fact.! * h;. is continuous; see Exercise 8.) Because of 
9.7(4) we have 

(f * h;.Xx) - f(x) = t: [f(x - y) - f(x)]h;.(Y) dm(y) (2) 
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and Theorem 3.3 gives 

I (f * hA)(x) - f(x) IP L:I f(x - y) - f(x) IPhb) dm(y). (3) 

Integrate (3) with respect to x and apply Fubini's theorem: 

Ilf* hA - n: L:llf, - n:hA(Y) dm(y). (4) 

If g(y) = Ilf, - n:, then g is bounded and continuous, by Theorem 9.5, and 
g(O) = O. Hence the right side of (4) tends to 0 as A- 0, by Theorem 9.9. IIII 

9.11 The Inversion Theorem Iff E I! and J E I!, and if 

g(x) = L:J(t)eixt dm(t) 

then g E Co andf(x) = g(x) a.e. 

PROOF By Proposition 9.8, 

(f * hA)(x) = L: H(At)J(t)eixt dm(t). 

(1) 

(2) 

The integrands on the right side of (2) are bounded by I J(t) I, and since 
H(At)- 1 as A- 0, the right side of (2) converges to g(x), for every x E Rl, by 
the dominated convergence theorem. 

If we combine Theorems 9.10 and 3.12, we see that there is a sequence 
{An} such that' An - 0 and 

lim (f * hA.)(x) = f(x) a.e. (3) 
n-+ 00 

Hencef(x) = g(x) a.e. That g E Co follows from Theorem 9.6. IIII 
9.12 The Uniqueness Theorem If f E I! and J(t) = 0 for all t E Rl, then 
f(x) = 0 a.e. 

PROOF Since J = 0 we have J E I!, and the result follows from the inversion 
theorem. I I II 

The Plancherel Theorem 
Since the Lebesgue measure of Rl is infinite, 13 is not a subset of Ll, and the 
definition of the Fourier transform by formula 9.1(4) is therefore not directly 
applicable to every f E 13. The definition does apply, however, iff E I! n 13, and 
it turns out that then J E 13. In fact, II J 112 = II f 112! This isometry of Ll n 13 into 
13 extends to an isometry of 13 onto 13, and this extension defines the Fourier 
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transform (sometimes called the Plancherel transform) of every f E 13. The 
resulting 13-theory has in fact a great deal more symmetry than is the case in [}. 
In 13,Jand/play exactly the same role. 

9.13 Theorem One can associate to each f E 13 a function / E 13 so that the 
following properties hold: 

(a) Iff E [} (\ 13, then/is the previously defined Fourier transform of! 
(b) ForeveryfE 13,11/112 = Ilf112. 
(c) The mappingf-+ lis a Hilbert space isomorphism of L2 onto 13. 
(d) Thefollowing symmetric relation exists betweenf and/: If 

({J A(t) = fAA f(x)e - ixt dm(x) and I/! A(X) = fAA /(t)eixt dm(t), 

then II({JA - /112-+ 0 and III/! A - fl12 -+ 0 as A-+ 00. 

Note: Since Ll (\ L2 is dense in 13, properties (a) and (b) determine the mapping 
f-+ /uniquely. Property (d) may be called the L2 inversion theorem. 

PROOF Our first objective is the relation 

(f E [} (\ 13). (1) 

We fixf ELl (\ 13, putj(x) = f( -x), and define 9 = f * J Then 

g(x) = f: f(x - y)f( - y) dm(y) = f"oo f(x + y)f(y) dm(y), (2) 

or 

g(x) = (f-x,J), (3) 

where the inner product is taken in the Hilbert space L2 andf_x denotes a 
translate of J, as in Theorem 9.5. By that theorem, x-+ f-x is a continuous 
mapping of Rl into 13, and the continuity of the inner product (Theorem 4.6) 
therefore implies that 9 is a continuous function. The Schwarz inequality 
shows that 

I g(x) I Ilf-x 11211fl12 = 

so that 9 is bounded. Also, 9 E Ll since fELl and j E [}. 
Since 9 E [}, we may apply Proposition 9.8: 

(g * h;.)(O) = foooo H(A.t)g(t) dm(t). 

Since 9 is continuous and bounded, Theorem 9.9 shows that 

lim (g * h;.)(O) = g(O) = II !II 
;'-0 

(4) 

(5) 

(6) 



FOURIER lRANSFORMS 187 

Theorem 9.2(d) shows that g = I I 12 0, and since H().t) increases to 1 as 
). - 0, the monotone convergence theorem gives 

(7) 

Now (5), (6), and (7) shows that I E 13 and that (1) holds. 
This was the crux of the proof. 
Let Y be the space of all Fourier transforms I of functions fELl (') 13. By 

(1), Y c 13. We claim that Y is dense in 13, i.e., that y.L = {OJ. 
The functions x- ei"XH()'x) are in Ll (') 13, for all real IX and all ). > O. 

Their Fourier transforms 

h).(1X - t) = fOoo eiIZXH().x)e-ixt dm(x) 

are therefore in Y. If WE L2, W E Y\ it follows that 

(h). * W)(IX) = f-oooo h).(1X - t)w(t) dm(t) = 0 

for all IX. Hence W = 0, by Theorem 9.10, and therefore Y is dense in 13. 

(8) 

(9) 

Let us introduce the temporary notation CI>f for J From what has been 
proved so far, we see that <I> is an 13-isometry from one dense subspace of L2, 
namely Ll (') 13, onto another, namely Y. Elementary Cauchy sequence argu-
ments (compare with Lemma 4.16) imply therefore that <I> extends to an 
isometry <l> of 13 onto 13. If we write Ifor <l>f, we obtain properties (a) and (b). 

Property (c) follows from (b), as in the proof of Theorem 4.18. The Par-
seval formula 

(10) 

holds therefore for allf E 13 and 9 E L2. 
To prove (d), let kA be the characteristic function of [-A, A]. Then 

kAfE IJ (') 13 iffE 13, and 

({JA = (kAf(. 

Since Ilf - kAf112- 0 as A- 00, it follows from (b) that 

III - ({JAil 2 = 11(/ - kA fnl2- 0 
as A- 00. 

The other half of (d) is proved the same way. 

9.14 Theo.rem Iff E L2 and I E IJ, then 

f(x) = Ioooo I(t)eixt dm(t) a.e. 

(11) 

(12) 

IIII 
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PROOF This is corollary of Theorem 9.l3(d). IIII 

9.15 Remark Iff E L\ formula 9.1(4) definesj(t) unambiguously for every t. If 
fE 13, the Plancherel theorem definesjuniquely as an element of the Hilbert 
space 13, but as a point functionj(t) is only determined almost everywhere. 
This is an important difference between the theory of Fourier transforms in 
I! and in 13. The indeterminacy of j(t) as a point function will cause some 
difficulties in the problem to which we now turn. 

9.16 Translation-Invariant Subspaces of 13 A subspace M of 13 is said to be 
translation-invariant if f E M implies that /,. E M for every real ex, where frz(x) = 
f(x - ex). Translations have already played an important part in our study of 
Fourier transforms. We now pose a problem whose solution will afford an illus-
tration of how the Plancherel theorem can be used. (Other applications will occur 
in Chap. 19.) The problem is: 

Describe the closed translation-invariant subspaces of 13. 

Let M be a closed translation-invariant subspace of L2, and let M be the 
image of M under the Fourier transform. Then M is closed (since the Fourier 
transform is an 13-isometry). If frz is a translate off, the Fourier transform of/,. is 
jerz , where eit) = e - irzr; we proved this for f E I! in Theorem 9.2; the result 
extends to L2, as can be seen from Theorem 9.13(d). ltfollows that M is invariant 
under multiplication by erz ,for all ex E R I • 

Let E be any measurable set in RI. If M is the set of all <p E 13 which vanish 
a.e. on E, then M certainly is a subspace of L2, which is invariant under multipli-
cation by all erz (note that I erzl = 1, so <perz E 13 if <p E L2), and M is also closed. 
Proof: <p E M if and only if <p is orthogonal to every'" E 13 which vanishes a.e. on 
the complement of E. 

If M is the inverse image of this M, under the Fourier transform, then M is a 
space with the desired properties. 

One may now conjecture that everyone of our spaces M is obtained in this 
manner, from a set E c RI. To prove this, we have to show that to every closed 
translation-invariant Me 13 there corresponds a set E c RI such that f E M if 
and only if j(t) = 0 a.e. on E. The obvious way of constructing E from M is to 
associate with eachf E M the set E J consisting of all points at whichj(t) = 0, and 
to define E as the intersection of these sets E J. But this obvious attack runs into 
a serious difficulty: Each E J is defined only up to sets of measure O. If {A;} is a 
countable collection of sets, each determined up to sets of measure 0, then n Ai 
is also determined up to sets of measure O. But there are uncountably many 
f E M, so we lose all control over n E J. 

This difficulty disappears entirely if we think of our functions as elements of 
the Hilbert space 13, and not primarily as point functions. . 

We shall now prove the conjecture. Let M be the image of a closed 
translation-invariant subspace M c 13, under the Fourier transform. Let P be the 
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orthogonal projection of E onto !VI (Theorem 4.11): To eachfe E there corre-
sponds a unique Pf e !VI such thatf - Pfis orthogonal to !VI. Hence 

f - Pf..i Pg (fand geE) (1) 

and since !VI is invariant under multiplication bye", we also have 

f - Pf ..i (Pg)e" (2) 

If we recall how the inner product is defined in E, we see that (2) is equivalent to 

L: (f - Pf) . Pg . La dm = 0 (3) 

and this says that the Fourier transform of 

(f - Pf)· Pg (4) 

is O. The function (4) is the product of two L2-functions, hence is in Lt , and the 
uniqueness theorem for Fourier transforms shows now that the function (4) is 0 
a.e. This remains true if Pg is replaced by Pg. Hence 

f· Pg = (Pf) . (Pg) (5) 

Interchanging the roles off and g leads from (5) to 

f· Pg = g. Pf (6) 

Now let g be a fixed positive function in E; for instance, put g(t) = e- 1tl• 
Define 

( ) _ (Pg)(t) 
((J t - g(t) . (7) 

(Pg)(t) may only be defined a.e.; choose anyone determination in (7). Now (6) 
becomes 

Pf=((J ·f (8) 

If f e !VI, then Pf = f This says that p 2 = P, and it follows that ((J2 = ((J, 
because 

((J2 . g = ((J . Pg = p 2g = Pg = ((J . g. (9) 

Since ((J2 = ((J, we have ((J = 0 or 1 a.e., and if we let E be the set of all t where 
((J(t) = 0, then !VI consists precisely of those feE which are 0 a.e. on E, since 
fe!VI if and only iff = Pf= ((J . f 

We therefore obtain the following solution to our problem. 
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9.17 Theorem Associate to each measurable set E c Rt the space ME of all 
f E 13 such that! = 0 a.e. on E. Then ME is a closed translation-invariant sub-
space of 13. Every closed translation-invariant subspace of 13 is MEfor some E, 
and MA = MB if and only if 

m((A - B) u (B - A» = o. 
The uniqueness statement is easily proved; we leave the details to the reader. 
The above problem can of course be posed in other function spaces. It has 

been studied in great detail in Ll. The known results show that the situation is 
infinitely more complicated there than in 13. 

The Banach Algebra I! 

9.18 Definition A Banach space A is said to be a Banach algebra if there is a 
mUltiplication defined in A which satisfies the inequality 

IIxYIl :s; Ilxll lIyll (x and YEA), (1) 

the associative law x(yz) = (xy)z, the distributive laws 

x(y + z) = xy + xz, (y + z)x = yx + zx (x, y, and z E A), (2) 

and the relation 

(exx)y = x(exy) = ex(xy) (3) 

where ex is any scalar. 

9.19 Examples 

(a) Let A = C(X), where X is a compact Hausdorff space, with the 
supr.emum norm and the usual pointwise mUltiplication of functions: 
(fg)(x) = f(x)g(x). This is a commutative Banach algebra (fg = gi) with 
unit (the constant function 1). 

(b) CO(Rl) is a commutative Banach algebra without unit, i.e., without an 
element u such that uf = f for all f E Co(R 1). 

(c) The set of all linear operators on Rk (or on any Banach space), with the 
operator norm as in Definition 5.3, and with addition and multiplication 
defined by 

(A + B)(x) = Ax + Bx, (AB)x = A(Bx), 

is a Banach algebra with unit which is not commutative when k > 1. 
(d) I! is a Banach algebra if we define multiplication by convolution; since 

II f * gill :s; II f 11111 glib 

the norm inequality is satisfied. The associative law could be verified 
directly (an application of Fubini's theorem), but we can proceed as 
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follows: We know that the Fourier transform of f * g is!' g, and we 
know that the mappingf-lis one-to-one. For every t E RI, 

!(t)[g(t)h(t)] = [!(t)g(t)]h(t), 

by the associative law for complex numbers. It follows that 

f * (g * h) = (f * g) * h. 

In the same way we see immediately that f * g = g * f The remaining 
requirements of Definition 9.18 are also easily seen to hold in LI. 

Thus E is a commutative Banach algebra. The Fourier transform is 
an algebra isomorphism of LI into Co. Hence there is no fELl with 
! == 1, and therefore LI has no unit. 

9.20 Complex Homomorphisms The most important complex functions on a 
Banach algebra A are the homomorphisms of A into the complex field. These are 
precisely the linear functionals which also preserve multiplication, i.e., the .func-
tions qJ such that 

qJ(ax + Py) = IXqJ(X) + pqJ(Y), 

for all x and YEA and all scalars IX and p. Note that no boundedness assumption 
is made in this definition. It is a very interesting fact that this would be 
redundant: 

9.21 Theorem If qJ is a complex homomorphism on a Banach algebra A, then 
the norm of qJ, as a linear functional, is at most 1. 

PROOF Assume, to get a contradiction, that I qJ(Xo) I > IIxoll for some Xo E A. 
Put A. = qJ(xo), and put x = xolA.. Then Ilxll < 1 and qJ(x) = 1. 

Since IIxnll :::;; IlxlI" and IIxll < 1, the elements 

sn = -x - x 2 - .,. - xn (1) 

form a Cauchy sequence in A. Since A is complete, being a Banach space, 
there exists ayE A such that Ily - snll- 0, and it is easily seen that x + Sn = 
xsn- I , so that 

x + y = xy. (2) 

Hence qJ(x) + qJ(Y) = qJ(x)qJ(Y), which is impossible since qJ(x) = 1. IIII 

9.22 The Complex Homomorphisms of E Suppose qJ is a complex homo-
morphism of E, i.e., a linear functional (of norm at most 1, by Theorem 9.21) 
which also satisfies the relation 

(1) 
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By Theorem 6.16, there exists apE Loo such that 

qJ(f) = t: f(x)P(x) dm(x) (2) 

We now exploit the relation (1) to see what else we can say about p. On the one 
hand, 

qJ(f * g) = t: (f * g)(x)P(x) dm(x) 

On the other hand, 

= t:P(X) dm(x) t:f(X - y)g(y) dm(y) 

= t:g(y) dm(y) t:fy(X)P(X) dm(x) 

= t: g(y)qJ(f,) dm(y). 

qJ(f)qJ(g) = qJ(f) t: g(y)p(y) dm(y). 

(3) 

(4) 

Let us now assume that qJ is not identically O. Fix f E L1 so that qJ(f) :F O. 
Since the last integral in (3) is equal to the right side of (4) for every gEE, the 
uniqueness assertion of Theorem 6.16 shows that 

(5) 

for almost all y. But y-+ f, is a continuous mapping of R1 into L1 (Theorem 9.5) 
and qJ is continuous on E. Hence the right side of (5) is a continuous function of 
y, and we may assume [by changing P(y) on a set of measure 0 if necessary, which 
does not affect (2)] that P is continuous. If we replace y by x + y and then f by fx 
in (5), we obtain 

so that 

P(x + y) = P(x)P(y) (6) 

Since P is not identically 0, (6) implies that P(O) = 1, and the continuity of P 
shows that there is a b > 0 such that 

fp(y) dy = c :F O. (7) 
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Then 

f'! (d (XH 
C{J(X) = Jo {J(y){J(X) dy = Jo {J(y + x) dy = Jx {J(y) dy. (8) 

Since {J is continuous, the last integral is a differentiable function of x; hence (8) 
shows that {J is differentiable. Differentiate (6) with respect to y, then put y = 0; 
the result is 

{J'(x) = A{J(x), A = {J'(O). (9) 

Hence the derivative of {J(x)e- AX is 0, and since {J(O) = 1, we obtain 

(10) 

But {J is bounded on Rl. Therefore A must be pure imaginary, and we conclude: 
There exists atE R 1 such that 

{J(x) = e- itx• (11) 

We have thus arrived at the Fourier transform. 

9.23 Theorem To every complex homomorphism qJ on I! (except to qJ = 0) 
there corresponds a unique t E Rl such that qJ(f) = !(t). 

The existence of t was proved above. The uniqueness follows from the obser-
vation that if t "# s then there exists anf ELl such that!(t) "# !(s); take for f(x) a 
suitable translate of e -Ixl. 

Exercises 
1 Suppose f E IJ,f > O. Prove that I I(y) I < 1(0) for every y '" O. 
2 Compute the Fourier transform of the characteristic function of an interval. For n = 1, 2, 3, ... , let 
gn be the characteristic function of [ -n, n], let h be the characteristic function of [-1, 1], and 
compute gn * h explicitly. (The graph is piecewise linear.) Show that gn * h is the Fourier transform of 
a functionf., E IJ; except for a mUltiplicative constant, 

sin x sin nx 
f.,(x) = 2 

x 

Show that II fn II. --+ 00 and conclude that the mappingf --+ 1 maps IJ into a proper subset of Co. 
Show, however, that the range of this mapping is dense in Co. 

3 Find 

fA sin At . 
lim -- e'''' dt 

A, ..... oo -A t 
(-oo<x<oo) 

where A is a positive constant. 
4 Give examples off E I3 such that f ¢ IJ but 1 E IJ. Under what circumstances can this happen? 
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S If f E I1 and J I t/(t) I dm(t) < 00, prove that f coincides a.e. with a differentiable function whose 
derivative is 

i L: t/(t)ei'" dm(t). 

6 Suppose f E I1, f is differentiable almost c<verywhere, and f' E I1. Does it follow that the Fourier 
transform off' is tlf(t)? 
7 Let S be the class of all functionsf on RI which have the following property:fis infinitely differen-
tiable, and there are numbers Amn(f) < 00, for m and n = 0, 1, 2, ... , such that 

Here D is the ordinary differentiation operator. 
Prove that the Fourier transform maps S onto S. Find examples of members of S. 

8 If p and q are conjugate exponents, f E I!, g E IJ, and h = f * g, prove that h is uniformly contin-
uous. If also 1 < p < 00, then h E Co; show that this fails for some f E I1, gEL"". . 
9 Suppose 1 S; p < oo,fE I!, and 

rx + 1 
g(x) = Jx f(t) dt. 

Prove that g E Co. What can you say about g iff E LOO? 
10 Let Coo be the class of all infinitely differentiable complex functions on RI, and let C;O consist of 
all g E COO whose supports are compact. Show that C;O does not consist of 0 alone. 

Let be the class of all f which belong to I1 locally; that is,f E provided that f is measur-
able and J 1 I f I < 00 for every bounded interval I. 

IffE and g E C;o,prove thatf* g E Coo. 
Prove that there are sequences {gn} in C;O such that 

as 00, for every f E I1. (Compare Theorem 9.10.) Prove that {gn} can also be so chosen that 
(f* a.e., for everyfE Llloc; in fact, for suitable {gn} the convergence occurs at every point 
x at whichfis the derivative of its indefinite integral. 

Prove that (f* a.e. iffE I1, as and thatf* E Coo, although does not 
have compact support. is defined in Sec. 9.7.) 
II Find conditions onfand/or/which ensure the correctness of the following formal argument: If 

cp(t) = - f(x)e-uX dx 1 fOO . 
211: _oo 

and 
oo 

F(x) = L f(x + 2kn) 
11:= - co 

then F is periodic, with period 211:, the nth Fourier coefficient of F is cp(n), hence F(x) = L cp(n)einx. In 
particular, 

oo oo L f(2k1l:) = L cp(n). 
k= - 00 

More generally, 
oo oo 
L f(kP) = ex L cp(nex) if ex > 0, P > 0, exp = 211:. (oO) 

11:=·-00 ,.""-co 



FOURIER TRANSFORMS 195 

What does (*) say about the limit, as IX--+O, of the right-hand side (for "nice" functions, of course)? Is 
this in agreement with the inversion theorem? 

[(*) is known as the Poisson summation formula.] 
12 Takef(x) = e- 1xl in Exercise 11 and derive the identity 

13 If 0 < c < 00, definef.(x) = exp (-cx2 ). 

(a) Compute!.. Hint: If cp =!., an integration by parts gives 2ccp'(t) + tcp(t) = o. 
(b) Show that there is one (and only one) c for which!. = f.. 
(c) Show that!. .. J" = yf.; find y and c explicitly in terms of a and b. 
(d) Takef = f. in Exercise 11. What is the resulting identity? 

14 The Fourier transform can be defined forfe V(Rk) by 

!(y) = r f(x)e- ix ., dmk(x) JRl 
where x . y = L if x = ... , Y = (111,··., 11k)' and mk is Lebesgue measure on Rt, divided by 
(2n)k/2 for convenience. Prove the inversion theorem and the Plancherel theorem in this context, as 
well as the analogue of Theorem 9.23. 
15 Iffe V(Rk), A is a linear operator on Rk, and g(x) =f(Ax), how is g related to!? Iffis invariant 
under rotations, i.e., iff(x) depends only on the euclidean distance of x from the origin, prove that the 
same is true of J 
16 The Laplacian of a functionf on Rk is 

k a2f 
41= L -2' 

j= 1 aXj 

provided the partial derivatives exist. What is the relation between! and g if g = 41 and all necessary 
integrability conditions are satisfied? It is clear that the Laplacian commutes with translations. Prove 
that it also commutes with rotations, i.e., that 

i!(f 0 A) = W) 0 A 

whenever fhas continuous second derivatives and A is a rotation of Rk. (Show that it is enough to do 
this under the additional assumption thatfhas compact support.) 
17 Show that every Lebesgue measurable character of RI is continuous. Do the same for Rk. (Adapt 
part of the proof of Theorem 9.23.) Compare with Exercise 18. 
18 Show (with the aid of the Hausdorff maximality theorem) that there exist real discontinuous func-
tionsfon RI such that 

f(x + y) = f(x) + f(y) 

for all x and y e RI. 
Show that if (1) holds andfis Lebesgue measurable, thenfis continuous. 
Show that if (1) holds and the graph offis not dense in the plane, thenfis continuous. 
Find all continuous functions which satisfy (1). 

(1) 

19 Suppose A and B are measurable subsets of R I, having finite positive measure. Show that the 
convolution XA * XB is continuous and not identically o. Use this to prove that A + B contains a 
segment. 

(A different proof was suggested in Exercise 5, Chap. 7.) 


