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Therefore y — y’ is orthogonal to all the x, in S. Since S is a complete ortho-
normal system we must have y — y" = 0. Thus
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and (I1.1) holds. Furthermore,
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so that (IL.2) holds also. We omit the easy proof of the converse statement. [

We note that (I1.2) is called Parseval’s relation. The coefficients (x,, y)
are often called the Fourier coefficients of y with respect to the basis {x,}.
The reason for this terminology will become apparent shortly.

‘We now describe a useful procedure, called Gram-Schmidt orthogonaliza-
tion, for constructing an orthonormal set from an arbitrary sequence of
independent vectors. Suppose the independent vectors uy, #,, ... are given
and define

Wy = Yy, vy = wy/[|wy |l

wy =u, — (1, Uﬁw, vy = wy/[lw, ||
n—1

Wy = Uy, — kzl(vk’ un)vk 5 v, = Wn/” wn”

The family {v;} is an orthonormal set and has the property that for each m,
{u;}7-, and {v;}}— span the same vector space. In particular, the set of finite
linear combinations of all the v’s is the same as the finite linear combinations
of the ’s (see Figure I1.2).

FiGure I1.2 Gram-Schmidt orthogonalization.
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We remark that the Legendre polynomials (up to constant multiples) are
obtained by applying the Gram-Schmidt process to the functions 1, x, xZ,
x3, ..., on the interval [—1, 1] with the usual I? inner product.

Definition A metric space which has a countable dense subset is said to be
separable.

Most Hilbert spaces that arise in practice are separable. The following
theorem characterizes them up to isomorphism.

Theorem I1.7 A Hilbert space # is separable if and only if it has a
countable orthonormal basis S. If there are N < oo elements in S, then 5 is
isomorphic to C¥. If there are countably many elements in S, then H is
isomorphic to £, (Example 3, Section IL.1).

Proof Suppose J# is separable and let {x,} be a countable dense set. By
(hrowing out some of the x,’s we can get a subcollection of independent
vectors whose span (finite linear combinations) is the same as the {x,} and is
thus dense. Applying the Gram-Schmidt procedure to this subcollection we
obtain a countable complete orthonormal system. Conversely, if {y,} is a
complete orthonormal system for a Hilbert space & then it follows from
Theorem I1.6 that the set of finite linear combinations of the y, with rational
coefficients is dense in #. Since this set is countable, # is separable.

Suppose # is separable and {y,}7, is a complete orthonormal system.
We define a map %: # — ¢, by

U: x> {0, DN

Theorem I1.6 shows that this map is well defined and onto. It is easy to show
it is unitary. The proof that # is isomorphic to C¥ if S has N elements is
similar. |

Notice that in the separable case, the Gram-Schmidt process allows us to
construct an orthonormal basis without using Zorn’s lemma.

We conclude this section with an example that shows how Hilbert spaces
arose naturally from problems in classical analysis. If f(x) is an integrable
function on [0, 27] we can define the numbers

T
C"::(Z—n)”_zfo e~ ™"f(x) dx

I'he formal series Y2 _, ¢, (2m) "'/? €™ is called the Fourier series of f. The

n= — oo

classical problem is: for which f and in what sense does the Fourier series of



