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4.1 Definition A complex vector space H is called an inner product space (or 
unitary space) if to each ordered pair of vectors x and y E H there is associ-
ated a complex number (x, y), the so-called "inner product" (or "scalar 
product") of x and y, such that the following rules hold: 

(a) (y, x) = (x, y). (The bar denotes complex conjugation.) 
(b) (x + y, z) = (x, z) + (y, z) if x, y, and z E H. 
(c) (lXX, y) = IX(X, y) if x and y E H and IX is a scalar. 
(d) (x, x) :2: 0 for all x E H. 
(e) (x, x) = 0 only if x = O. 

(f) 

Let us list some immediate consequences of these axioms: 

(c) implies that (0, y) = 0 for all y E H. 
(b) and (c) may be combined into the statement: For every y E H, the 

mapping x ---. (x, y) is a linear functional on H. 
(a) and (c) show that (x, IXY) = a(x, y). 
(a) and (b) imply the second distributive law: 

(z, x + y) = (z, x) + (z, y). 

By (d), we may define Ilxll, the norm of the vector x E H, to be the non-
negative square root of (x, x). Thus 

IIxl12 = (x, x). 
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4.2 The Schwarz Inequality The properties 4.1 (a) to (d) imply that 

I (x, y) I ::; IIxll lIyll 

for all x and y E H. 

PROOF Put A = IIx1l 2, B = I (x, y)l, and C = lIyll2. There is a complex 
number ex such that I ex I = 1 and ex(y, x) = B. For any real r, we then have 

(x - rexy, x - rexy) = (x, x) - rex(y, x) - riX(x, y) + r2(y, y). (1) 

The expression on the left is real and not negative. Hence 

A - 2Br + Cr2 0 (2) 

for every real r. If C = 0, we must have B = 0; otherwise (2) is false for large 
positive r. If C > 0, take r = BIC in (2), and obtain B2 ::; AC. IIII 

4.3 The Triangle Inequality For x and y E H, we have 

IIx + yll ::; IIxll + lIyll· 

PROOF By the Schwarz inequality, 

IIx + yll2 = (x + y, x + y) = (x, x) + (x, y) + (y, x) + (y, y) 

::; IIxll2 + 211xllilyll + lIyll2 = (lIxll + lIyll)2. IIII 

4.4 Definition It follows from the triangle inequality that 

IIx - zll ::; IIx - yll + lIy - zll (x, y, Z E H). (1) 

If we define the distance between x and y to be IIx - yll, all the axioms for a 
.metric space are satisfied; here, for the first time, we use part (e) of Definition 
4.1. 

Thus H is now a metric space. If this metric space is complete, i.e., if every 
Cauchy sequence converges in H, then H is called a Hilbert space. 

Throughout the rest of this chapter, the letter H will denote a Hilbert space. 

4.5 Examples 

(a) For any fixed n, the set cn of all n-tuples 

x = (e1' ... , en), 
where eh ... , en are complex numbers, is a Hilbert space if addition and 
scalar multiplication are defined componentwise, as usual, and if 

n 

(x, y) = L ejqj (y = (rt 1, .•. , rtn))· 
j=1 
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(b) If J1. is any positive measure, L2(J1.) is a Hilbert space, with inner product 

(f, g) = Lfg dJ1.. 

The integrand on the right is in LI (J1.), by Theorem 3.8, so that (f, g) is 
well defined. Note that 

Ilfll = (f,f) 1/2 = {Llfl 2 dJ1.f/2 = IIf1l2' 

The completeness of I3(J1.) (Theorem 3.11) shows that I3(J1.) is indeed a 
Hilbert space. [We recall that I3(J1.) should be regarded as a space of 
equivalence classes of functions; compare the discussion in Sec. 3.10.] 

For H = I3(J1.), the inequalities 4.2 and 4.3 turn out to be special 
cases of the inequalities of HOlder and Minkowski. 

Note that Example (a) is a special case of (b). What is the measure in 
(a)? 

(c) The vector space of all continuous complex functions on [0, 1] is an 
inner product space if 

(f, g) = r f(t)g(t) dt 

but is not a Hilbert space. 

4.6 Theorem For any fixed y E H, the mappings 

x--+ (x, y), x--+ (y, x), x--+ IIxll 
are continuous functions on H. 

PROOF The Schwarz inequality implies that 

I (Xl' y) - (X2' y) I = I (Xl - X 2 , y) I ::s;; IIXI - x211 Ilyll, 
which proves that x--+ (x, y) is, in fact, uniformly continuous, and the same is 
true for x--+ (y, x). The triangle inequality IIxIl1 ::s;; Ilxl - x211 + IIx21! yields 

IlxI11 - IIx211 ::S;;-lIxl - x211, 
and if we interchange Xl and X2 we see that 

Illxlll - IIx2111 ::s;; Ilxl - x211 

for all Xl and X2 E H. thus x--+ Ilxll is also uniformly continuous. IIII 

4.7 Subspaces A subset M of a vector space V is called a subspace of V if M is 
itself a vector space, relative to the addition and scalar multiplication which are 
defined in V. A necessary and sufficient condition for a set MeV to be a sub-
space is that X + Y E M and IXX E M whenever X and y E M and IX is a scalar. 
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In the vector space context, the word "subspace" will always have this 
meaning. Sometimes, for emphasis, we may use the term "linear subspace" in 
place of subspace. 

For example, if V is the vector space of all complex functions on a set S, the 
set of all bounded complex functions on S is a subspace of V, but the set of all 
f E V with I f(x) ls;I for all XES is not. The real vector space R3 has the follow-
ing subspaces, and no others: (a) R3, (b) all planes through the origin 0, (c) all 
straight lines through 0, and (d) {OJ. 

A closed subspace of H is a subspace that is a closed set relative to the topol-
ogy induced by the metric of H. 

Note that if M is a subspace of H, so is its closure M. To see this, pick x and y 
in M and let ex be a scalar. There are sequences {xn} and {Yn} in M that converge 
to x and y, respectively. It is then easy to verify that Xn + Yn and (XXn converge to 
x + y and lXX, respectively. Thus x + Y E M and IXX E M. 

4.8 Convex Sets A set E in a vector space V is said to be convex if it has the 
following geometric property: Whenever x E E, Y E E, and 0 < t < 1, the point 

z, = (1 - t)x + ty 

also lies in E. As t runs from 0 to 1, one may visualize z, as describing a straight 
line segment in V, from x to y. Convexity requires that E contain the segments 
between any two of its points. 

It is clear that every subspace of V is convex. 
Also, if E is convex, so is each of its translates 

E + x = {y + x: y E E}. 

4.9 Orthogonality If (x, y) = 0 for some x and y E H, we say that x is orthogonal 
to y, and sometimes write x .1 y. Since (x, y) = 0 implies (y, x) = 0, the relation .1 
is symmetric. 

Let xl. denote the set of all y E H which are orthogonal to x; and if M is a 
subspace of H, let Ml. be the set of all y E H which are orthogonal to every 
xEM. 

Note that xl. is a subspace of H, since x .1 y and x .1 y' implies x .1 (y + y') 
and x .1 exy. Also, xl. is precisely the set of points where the continuous function 
y ...... (x, y) is O. Hence xl. is a closed subspace of H. Since 

Ml. is an intersection of closed subspaces, and it follows that Ml. is a closed 
subspace of H. 

4.10 Theorem Every nonempty, closed, convex set E in a Hilbert space H con-
tains a unique element of norm. 
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In other words, there is one and only one Xo E E such that IIxoll :S IIxll for 
every x E E. 

PROOF An easy computation, using only the properties listed in Definition 
4.1, establishes the identity 

(x and Y E H). (1) 

This is known as the parallelogram law: If we interpret Ilxll to be the length 
of the vector x, (1) says that the sum of the squares of the diagonals of a 
parallelogram is equal to the sum of the squares of its sides, a familiar propo-
sition in plane geometry. 

Let 0 = inf {llxll: x E E}. For any x and Y E E, we apply (1) to tx and ty 
and obtain 

(2) 

Since E is convex, (x + Y)/2 E E. Hence 

Ilx - yI1 2 :s 211xll 2 + 211yI1 2 - 402 (x and Y E E). (3) 

If also IIxll = lIylI = 0, then (3) implies x = y, and we have proved the unique-
ness assertion of the theorem. 

The definition of 0 shows that there is a sequence {Yn} in E so' that 
IIYnll-4O as n-4 00. Replace x and Y in (3) by Yn and Ym. Then, as n-4 00 and 
m-4 00, the right side of (3) will tend to 0. This shows that {Yn} is a Cauchy 
sequence. Since H is complete, there exists an Xo E H so that Yn-4 Xo, i.e., 
llYn - xoll-4 0, as n-4oo. Since Yn E E and E is closed, Xo E E. Since the 
norm is a continuous function on H (Theorem 4.6), it follows that 

IIxoll = lim llYn II = 0. 
n-+ co 

4.11 Theorem Let M be a closed subspace of a Hilbert space H. 
(a) Every x E H has then a unique decomposition 

x = Px + Qx 

into a sum of Px E M and Qx E Ml.. 
(b) Px and Qx are the nearest points to x in M and in Ml., respectively. 
(c) The mappings P: H -4 M and Q: H -4 Ml. are linear. 
(d) IIxl12 = IIPxl1 2 + IIQxI12. 

Corollary If M ¥- H, then there exists Y E H, Y ¥- 0, such that Y .1 M. 

P and Q are called the orthogonal projections of H onto M and Ml.. 

IIII 
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PROOF As regards the uniqueness in (a), suppose that x' + y' = x" + y" for 
some vectors x', x" in M and y', y" in Ml.. Then 

x' - x" = y" - y'. 

Since x' - x" E M, y" - y' E Ml., and M n Ml. = {O} [an immediate conse-
"quence of the fact that (x, x) = 0 implies x = 0], we have x" = x', y" = y'. 

To prove the existence of the decomposition, note that the set 

x + M = {x + y: y E M} 

is closed and convex. Define Qx to be the element of smallest norm in 
x + M; this exists, by Theorem 4.10. Define Px = x - Qx. 

Since Qx E x + AI, it is clear that Px E M. Thus P maps H into M. 
To prove that Q maps H into Ml. we show that (Qx, y) = 0 for all y E M. 

Assume Ilyll = 1, without loss of generality, and put z = Qx. The minimizing 
property of Qx shows that 

(z, z) = IIzll2 liz - lXyll2 = (z - IXY, z - IXY) 

for every scalar IX. This simplifies to 

o -1X(y, z) - ,x(z, y) + 1X,x. 

With IX = (z, y), this gives 0 - I (z, y) 12, so that (z, y) = O. Thus Qx E Ml.. 
We have already seen that Px E M. If y E M, it follows that 

Ilx - yl12 = IIQx + (Px - y)11 2 = IIQxl12 + IIPx _ yl12 
which is obviously minimized when y = Px. 

We have now proved (a) and (b). If we apply (a) to x, to y, and to 
IXX + [Jy, we obtain 

P(IXX + [Jy) - IXPX - [JPy = IXQX + [JQy - Q(IXX + [Jy). 

The left side is in M, the right side in Ml.. Hence both are 0, so P and Q are 
linear. 

Since Px .l Qx, (d) follows from (a). 
To prove the corollary, take x E H, x ¢ M, and put y = Qx. Since 

Px E M, x #: Px, hence y = x - Px #: O. IIII 

We have already observed that x-+ (x, y) is, for each y E H, a continuous 
linear functional on H. It is a very important fact that all continuous linear 
functionals on H are of this type. 

4.12 Theorem If L is a continuous linear functional on H, then there is a 
unique y E H such that 

Lx = (x, y) (x E H). (1) 
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PROOF If Lx = 0 for all x, take y = O. Otherwise, define 

M = {x: Lx = O}. (2) 

The linearity of L shows that M is a subspace. The continuity of L shows 
that M is closed. Since Lx =1= 0 for some x E H, Theorem 4.11 shows that Ml. 
does not consist of 0 alone. 

Hence there exists z E Ml., with Ilzll = 1. Put 

u = (Lx)z - (Lz)x. (3) 

Since Lu = (Lx)(Lz) - (Lz)(Lx) = 0, we have u E M. Thus (u, z) = O. This 
gives 

Lx = (Lx)(z, z) = (Lz)(x, z). (4) 

Thus (1) holds with y = rxz, where Ii = Lz. 
The uniqueness of y is easily proved, for if (x, y) = (x, y') for all x E H, set 

z = y - y'; then (x, z) = 0 for all x E H; in particular, (z, z) = 0, hence z = O. 
IIII 

Orthonormal Sets 

4.13 Definitions If V is a vector space, if XI> ••• , X k E V, and if CI> ••• , Ck are 
scalars, then C I x I + . .. + ck X k is called a linear combination of x I> ••• , Xk. 

The set {Xl' ••. , Xk} is called independent if CIX I + ... + CkXk = 0 implies that 
C I = ... = Ck = O. A set S c V is independent if every finite subset of S is 
independent. The set [S] of all linear combinations of all finite subsets of S 
(also called the set of all finite linear combinations of members of S) is clearly 
a vector space; [S] is the smallest subspace of V which contains S; [S] is 
called the span of S, or the space spanned by S. 

A set of vectors u .. in a Hilbert space H, where ex runs through some 
index set A, is called orthonormal if it satisfies the orthogonality relations 
(u .. , up) = 0 for all rx =1= p, rx E A, and PEA, and if it is normalized so that 
Ilu .. 1I = 1 for each rx E A. In other words, {u .. } is orthonormal provided that 

{ 1 if rx = p, 
(u .. , up) = 0 if ex =1= p. (1) 

If {u .. : rx E A} is orthonormal, we associate with each x E H a complex 
function x on the index set A, defined by 

x(rx) = (x, uJ (rx E A). (4) 
One sometimes calls the numbers x(rx) the Fourier coefficients of x, relative to 
the set {u .. }. 

We begin with some simple facts about finite orthonormal sets. 
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4.14 Theorem Suppose that {u",: IX E A} is an orthonormal set in H and that F 
is afinite subset of A. Let MF be the span of {u",: IX E F}. 

(a) If qJ is a complex function on A that is 0 outside F, then there is a 
vector y EMF' namely 

y = L qJ(IX)U", (1) 
",eF 

that has Y(IX) = qJ(lX)for every IX E A. Also, 

lIyl12 = L I qJ(lX) 12. (2) 
",eF 

(b) Ifx E Hand 

= L X(IX)U", (3) 
",eF 

then 
IIx - < IIx - sll (4) 

for every s EMF' except for s = SF(X), and 

L 1 X(IX) 12 IIx1l2. (5) 
",eF 

PROOF Part (a) is an immediate consequence of the orthogonality relations 
4.13(1). 

In the proof of (b), let us write SF in place of and note that = 
X(IX) for all IX E F. This says that (x - SF) .1 u'" if IX E F, hence (x - SF) .1 
(SF - s) for every s EMF, and therefore 

IIx - Sll2 = lI(x - SF) + (SF - s)1I 2 = IIx - SF II 2 + IISF - S1l2. (6) 

This gives (4). With s = 0, (6) gives II SF II 2 IIx1l 2, which is the same as (5), 
beca use of (2). / / / / 

The inequality (4) states that the" partial sum" SF(X) of the" Fourier series" 
L X(IX)U", of x is the unique best approximation to x in M F, relative to the metric 
defined by the Hilbert space norm. 

4.15 We want to drop the finiteness condition that appears in Theorem 4.14 
(thus obtaining Theorems 4.17 and 4.18) without even restricting ourselves to sets 
that are necessarily countable. For this reason it seems advisable to clarify the 
meaning of the symbol. L", e .f qJ(lX) when IX ranges over an arbitrary set A. 

Assume 0 qJ(lX) S; 00 for each IX E A. Then 

L qJ(lX) (1) 
",eA 

denotes the supremum of the set of all finite sums qJ(1X1) + ... + qJ(IX.), where 
1Xl> ... , IX. are distinct members of A. 
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A moment's consideration will show that the sum (1) is thus precisely the 
Lebesgue integral of qJ relative to the counting measure J1. on A. 

In this context one usually writes (P(A) for ll(J1.). A complex function qJ with 
domain A is thus in (2(A) if and only if 

(2) 

Example 4.5(b) shows that (2(A) is a Hilbert space, with inner product 

(qJ, "') = L (3) 
ilEA 

Here, again, the sum over A stands for the integral of qJif, with respect to the 
counting measure; note that qJif, E (1(A) because qJ and", are in (2(A). 

Theorem 3.13 shows that the functions qJ that are zero except on some finite 
subset of A are dense in (2(A). 

Moreover, if qJ E (2(A), then {IX E A: qJ(lX) '# O} is at most countable. For if A. 
is the set of all IX where I qJ(lX) I > lin, then the number of elements of A,s at most 

Each A. (n = 1, 2, 3, ... ) is thus a finite set. 
The following lemma about complete metric spaces will make it easy to pass 

from finite orthonormal sets to infinite ones. 

4.16 Lell1ma Suppose that 

(a) X and Yare metric spaces, X is complete, 
(b) f: X - Y is continuous, 
(c) X has a dense subset Xo on whichfis an isometry, and 
(d) f(X 0) is dense in Y. 

Thenfis an isometry of X onto Y. 

The most important part of the conclusion is thatfmaps X onto all of Y. 
Recall that an isometry is simply a mapping that preserves distances. Thus, 

by assumption, the distance betweenf(x l ) andf(x2) in Y is equal to that between 
Xl and X 2 in X, for all points Xl' x 2 in X o. 

PROOF The fact that f is an isometry on X is an immediate consequence of 
the continuity off, since Xo is dense in X. 

Pick y E Y. Sincef(Xo) is dense in Y, there is a sequence {x.} in Xo such 
thatf(x.)- y as n- 00. Thus {j(x.)} is a Cauchy sequence in Y. Sincefis an 

on X 0, it follows that {x.} is also a Cauchy sequence. The com-
pleteness of X implies now that {x.} converges to some X E X, and the con-
tinuity 9ffshows thatf(x) = limf(x.) = y. IIII 
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4.17 Theorem Let {ull : IX E A} be an orthonormal set in H, and let P be the 
space of all finite linear combinations of the vectors ull • 

The inequality 

L 1 x(oc) 12 IIxl1 2 (1) 
ilEA 

holds thenfor every x E H, and x- x is a continuous linear mapping of H onto 
(2(A) whose restriction to the closure P of P is an isometry of Ponto (2(A). 

PROOF Since the inequality 4.14(5) holds for every finite set Fe A, we have 
(1), the so-called Bessel inequality. 

Define f on H by f(x) = x. Then (1) shows explicitly that f maps H into 
(2(A). The linearity offis obvious. If we apply (1) to x - y we see that 

IIf(y) - f(x) II 2 = Ily - xl12 lIy - xII· 
Thusfis continuous. Theorem 4.14(a) shows thatfis an isometry of Ponto 
the dense subspace of (2(A) consisting of those functions whose support is a 
finite set Fe A. The theorem follows therefore from Lemma 4.16, applied 
with X = P, XO = P, Y = (2(A); note that P, being a closed subset of the 
complete metric spate H, is itself complete. IIII 

The fact that the mapping x- x carries H onto (2(A) is known as the Riesz-
Fischer theorem. 

4.18 Theorem Let {ull : IX E A} be an orthonormal set in H. Each of the follow-
ing four conditions on {ull} implies the other three: 

(i) {ull } is a maximal orthonormal set in H. 
(ii) The set P of all finite linear combinations of members of {ull} is dense in H. 

(iii) The equality 

holds for every x E H. 
(iv) The equality 

L 1 X(IX) 12 = IIxll2 
ilEA 

L x(IX)Y(IX) = (x, y) 
ilEA 

holdsfor all x E Hand y E H. 

The last fQ.rmula is known as Parseval's identity. Observe that x and yare in 
(2(A), hence xy is in (l(A), so that the sum in (iv) is well defined. Of course, (iii) is 
the special case x = y of (iv). 

Maximal orthonormal sets are often called complete orthOl'iormal sets or 
orthonormal bases. 
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PROOF To say that {u .. } is maximal means simply that no vector of H can be 
adjoined to {u .. } in such a way that the resulting set is still orthonormal. This 
happens precisely when there is no x #= 0 in H that is orthogonal to every u ... 

We shall prove that (i)--+ (ii)--+ (iii)--+ (iv)--+ (i). 
If P is not dense in H, then its closure P is not all of H, and the corollary 

to Theorem 4.11 implies that pl. contains a nonzero vector. Thus {u .. } is not 
maximal when P is not dense, and (i) implies (ii). 

If (ii) holds, so does (iii), by Theorem 4.17. 
The implication (iii)--+ (iv) follows from the easily proved Hilbert space 

identity (sometimes called the" polarization identity") 

4(x, y) = Ilx + yl12 - IIx - yll2 + illx + iyl12 - illx _ iy112 

which expresses the inner product (x, y) in terms of norms and which is 
equally valid with X, y in place of x, y, simply because (2(A) is also a Hilbert 
space. (See Exercise 19 for other identities of this type.) Note that the sums in 
(iii) and (iv) are II x II and (x, y), respectively. 

Finally, if (i) is false, there exists u #= 0 in H so that (u, uJ = 0 for all 
IX E A. If x = y = u, then (x, y) = IIul1 2 > 0 but X(IX) = 0 for all IX E A, hence 
(iv) fails. Thus (iv) implies (i), and the proof is complete. IIII 

4.19 Isomorphisms Speaking informally, two algebraic systems of the same 
nature are said to be isomorphic if there is a one-to-one mapping of one onto the 
other which preserves all relevant properties. For instance, we may ask whether 
two groups are isomorphic or whether two fields are isomorphic. Two vector 
spaces are isomorphic if there is a one-to-one linear mapping of one onto the 
other. The linear mappings are the ones which preserve the relevant concepts in a 
vector space, namely, addition and scalar multiplication. 

In the same way, two Hilbert spaces H 1 and H 2 are isomorphic if there is a 
one-to-one linear mapping A of H 1 onto H 2 which also preserves inner products: 
(Ax, Ay) = (x, y) for all x and y E H 1• Such a A is an isomorphism (or, more 
specifically, a Hilbert space isomorphism) of B 1 onto H 2. Using this terminology, 
Theorems 4.17 and 4.18 yield the following statement: 

If {u .. : IX E A} is a maximal orthonormal set in a Hilbert space H, and ifx(lX) = 
(x, uJ, then the mapping x--+ X is a Hilbert space isomorphism of H onto (2(A). 

One can prove (we shall omit this) that (2(A) and (2(B) are isomorphic if and 
only if the sets A and B have the same cardinal number. But we shall 'Prove that 
every nontrivial Hilbert space (this means that the space does not consist of 0 
alone) is isomorphic to some (2(A), by proving that every such space contains a 
maximal orthonormal set (Theorem 4.22). The proof will depend on a property of 
partially ordered sets which is equivalent to the axiom of choice. 

4.20 Partially Ordered Sets A set is said to be partially ordered by a binary 
relation if 

(a) a band b c implies a c. 
(b) a a for every IX E 9. 
(c) a band b a implies a = b. 
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A subset il of a partially ordered set 9 is said to be totally ordered (or lin-
early ordered) if every pair a, b E il satisfies either IX b or b a. 

For example, every collection of subsets of a given set is partially ordered by 
the inclusion relation c: . 

To give a more specific example, let 9 be the collection of all open subsets of 
the plane, partially ordered by set inclusion, and let il be the collection of all 
open circular discs with center at the origin. Then il c: 9, il is totally ordered by 
c: , and il is a maximal totally ordered subset of 9. This means that if any 

member of 9 not in il is adjoined to il, the resulting collection of sets is no 
longer totally ordered by c: . 

4.21 The Hausdorff Maxima6ty Theorem Every nonempty partially ordered 
set contains a maximal totally ordered subset. 

This is a consequence of the axiom of choice and is, in fact, equivalent to it; 
another (very similar) form of it is known as Zorn's lemma. We give the proof in 
the Appendix. 

If now H is a nontrivial Hilbert space, then there exists a u E H with Ilull = 1, 
so that there is a nonempty orthonormal set in H. The existence of a maximal 
orthonormal set is therefore a consequence of the following theorem: 

4.22 Theorem Every orthonormal set B in a Hilbert space H is contained in a 
maximal orthonormal set in H. 

PROOF Let 9 be the class of all orthonormal sets in H which contain the 
given set B. Partially order 9 by set inclusion. Since B E 9, 9 #= 0. Hence 
9 contains a maximal totally ordered class n. Let S be the union of all 
members of n. It is clear that B c: S. We claim that S is a maximal orthonor-
mal set: 

If U1 and U2 E S, then U1 E A1 and U2 E A2 for some A1 and A2 En. 
Since n is total ordered, A1 c: A2 (or A2 c: A 1), so that U1 E A2 and U2 E A 2 • 

Since A2 is orthonormal, (u1, u2) = 0 if U1 #= U2' (u 1, U2) = 1 if U1 = U2' Thus 
S is an orthonormal set. 

Suppose S is not maximal. Then S is a proper subset of an orthonormal 
set S*. Clearly, S* rt n, and S* contains every member of n. Hence we may 
adjoin S* to n and still have a total order. This contradicts the maximality 

W 
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Trigonometric Series 

4.23 Definitions Let T be the unit circle in the complex plane, i.e., the set of 
all complex numbers of absolute value 1. If F is any function on T and iffis 
defined on R 1 by 

f(t) = (1) 

thenfis a periodic function of period 2n. This means thatf(t + 2n) =f(t) for 
all real t. Conversely, iff is a function on R 1, with period 2n, then there is a 
function F on T such that (1) holds. Thus we may identify functions on T 
with 2n-periodic functions' on Rl; and, for simplicity of notation, we shall 
sometimes write f(t) rather than even if we think off as being defined 
on T. 

With these conventions in mind, we define I!'(n, for 1 S; p < 00, to be 
the class of all complex, Lebesgue measurable, 2n-periodic functions on Rl 
for which the norm 

(2) 

is finite. 
In other words, we are looking at I!'(p.), where p. is Lebesgue measure on 

[0, 2n] (or on n, divided by 2n. r"(T) will be the class of all 2n-periodic 
members of D"'(R 1), with the essential supremum norm, and qT) consists of 
all continuous complex functions on T (or, equivalently, of all continuous, 
complex, 2n-periodic functions on Rl), with norm 

Ilflloo = sup I f(t) I, (3) 

The factor Ij(2n) in (2) simplifies the formalism we are about to develop. 
For instance, the I!'-norm of the constant function 1 is 1. 

A trigonometric polynomial is a finite sum of the form 

N 

f(t) = ao + L (an cos nt + bn sin nt) (4) 
n=1 

where ao, a .. ... , aN and b., ... , bN are complex numbers. On accoqnt of the 
Euler identities, (4) can also be written in the form 

N 

f(t) = L Cn eint (5) 
n= -N 

which is more convenient for most purposes. It is clear that every trigono-
metric polynomial has period 2n. 
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We shall denote the set of all integers (positive, zero, and negative) by Z, 
and put 

(n E Z). (6) 

If we define the inner product in I3(T) by 

1 f" (f, g) = 2n _/(t)g(t) dt (7) 

[note that this is in agreement with (2)], an easy computation shows that 

(un' Urn) = f" ei(n-rn)t dt = {1 n = m, 
2n _" 0 If n =I- m. 

(8) 

Thus {Un: n E Z} is an orthonormal set in I3(T), usually called the trigono-
metric system. We shall now prove that this system is maximal, and shall then 
derive concrete versions of the abstract theorems previously obtained in the 
Hilbert space context. 

4.24 The Completeness of the Trigonometric System Theorem 4.18 shows that the 
maximality (or completeness) of the trigonometric system will be proved as soon 
as we can show that the set of all trigonometric polynomials is dense in I3(T). 
Since C(T) is dense in I3(T), by Theorem 3.14 (note that T is compact), it suffices 
to show that to every f E C(T) and to every E > 0 there is a trigonometric poly-
nomial P such that Ilf - PI12 < E. Since IIgl12 ::s; Ilglloo for every g E C(T), the esti-
mate II f - P 112 < E will follow from II f - P II 00 < E, and it is this estimate which 
we shall prove. 

Suppose we had trigonometric polynomials Ql' Q2, Q3' ... , with the follow-
ing properties: 

(a) 

(b) 

(c) Iftlk(o) = sup {Qk(t): o::s; It I ::s; n}, then 

lim tlk(O) = 0 
k--> 00 

for every 0 > O. 

Another way of stating (c) is to say: for every 0 > 0, Qk(t)-+ 0 uniformly on 
[-n, -0] U [0, n]. 

To eachf E C(T) we associate the functions Pk defined by 

(k = 1, 2, 3, ... ). (1) 
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If we replace s by - s (using Theorem 2.20( e» and then by s - t, the periodicity of 
J and Qk shows that the value of the integral is not affected. Hence 

1 f" Pk(t) = 2n: _/(S)Qk(t - s) ds (k = 1, 2, 3, ... ). (2) 

Since each Qk is a trigonometric polynomial, Qk is of the form 
Nt 

Q (t) = a eillt k L. ft, k , (3) 
,,= -Nt 

and if we replace t by t - s in (3) and substitute the result in (2), we see that each 
Pk is a trigonometric polynomial. 

Let E > 0 be given. Since J is uniformly continuous on T, there exists a fJ > 0 
such that I J(t) - J(s) I < E whenever It - s I < fJ. By (b), we have 

1 f" Pk(t) - J(t) = 2n: -" {J(t - s) - J(t)} Qk(S) ds, 

and (a) implies, for all t, that 

1 f" I Pk(t) - J(t) I 2n: _"I J(t - s) - J(t) I Qk(S) ds = A1 + A2, 

where A1 is the integral over [ -fJ, fJ] and A2 is the integral over [-n:, -fJ] u 
[fJ, n:]. In Ab the integrand is less than EQk(S), so A1 < E, by (b). In A2, we have 
Qk(S) '1k(fJ), hence 

(4) 

for sufficiently large k, by (c). Since these estimates are independent of t, we have 
proved that 

lim IIJ - Pkll co = o. (5) 
k"'co 

It remains to construct the Qk. This can be done in many ways. Here is a 
simple one. Put 

{ I + cos t}k 
Qk(t) = Ck 2 ' (6) 

where Ck is chosen so that (b) holds. Since (a) is clear, we only need to show (c). 
Since Qk is even, (b) shows that 

1 Ck I" {I + cos t}kd Ck I" {I + cos t}k. d 2ck =- t>- smt t= . 
n: 0 2 n: 0 2 n:(k + 1) 

Since Qk is decreasing on [0, n:], it follows that 

Qk(t) Qk(fJ) n:(k; 1) C + fJy (7) 
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This implies (c), since 1 + cos b < 2 if ° < b ::;; n. 
We have proved the following important result: 

4.25 Theorem Iff e qT) and E > 0, there is a trigonometric polynomial P 
such that 

If(t) - P(t) I < E 

for every real t. 

A more precise result was proved by Fejer (1904): The arithmetic means of the 
partial sums of the Fourier series of any f e qT) converge uniformly to f For a 
proof (quite similar to the above) see Theorem 3.1 of [45], or p. 89 of [36], vol. I. 

4.26 Fourier Series For any f e Ll(T), we define the Fourier coefficients offby the 
formula 

/(n) = - f(t)e- ont dt 1 f" . 
2n _" 

(n e Z), (1) 

where, we recall, Z is the set of all integers. We thus associate with eachfe E(T) 
a function/on Z. The Fourier series offis 

(2) 
-co 

and its partial sums are 
N 

sJt) = L /(n)eint (N = 0, 1, 2, ... ). (3) 
-N 

Since J3(T) c E(T), (1) can be applied to every f e J3(T). Comparing the defi-
nitions made in Sees. 4.23 and 4.13, we can now restate Theorems 4.17 and 4.18 
in concrete terms: 

The Riesz-Fischer theorem asserts that if {cn} is a sequence of complex 
numbers such that 

co 
L ICn 12 < 00, (4) 

n=-C() 

then there exists anf e J3(T) such that 

1 f" . cn = - f(t)e-· nt dt 
2n _" 

(n e Z). (5) 

The Parseval theorem asserts that 

(6) 
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whenever IE I3(T) and 9 E I3(T); the series on the left of (6) converges absolu-
tely; and if S N is as in (3), then 

lim II/-sNII2 =0, (7) 
N-oo 

since a special case of (6) yields 

111- SN = L Il(n) 12. (8) 
Inl>N 

Note that (7) says that every IE I3(T) is the I3-limit of the partial sums of its 
Fourier series; i.e., the Fourier series of I converges to f, in the I3-sense. Pointwise 
convergence presents a more delicate problem, as we shall see in Chap. 5. 

The Riesz-Fischer theorem and the Parse val theorem may be summarized by 
saying that the mapping I +-+ lis a Hilbert space isomorphism of I3(T) onto t 2(Z). 

The theory of Fourier series in other function spaces, for instance in L1(T), is 
much more difficult than in L2(T), and we shall touch only a few aspects of it. 

Observe that the crucial ingredient in the proof of the Riesz-Fischer theorem 
is the fact that I3 is complete. This is so well recognized that the name" Riesz-
Fischer theorem" is sometimes given to the theorem which asserts the complete-
ness of L2, or even of any IJ'. 

Exercises 
In this set of exercises, H always denotes a Hilbert space. 
1 If M is a closed subspace of H, prove that M = (Mol)ol. Is there a similar true statement for sub-
spaces M which are not necessarily closed? 
2 Let {x.: n = 1, 2, 3, ... } be a linearly independent set of vectors in H. Show that the following 
construction yields an orthonormal set {u.} such that {XI' ... , XN} and {u l , .•• , UN} have the same 
span for all N. 

Put U I = xtfllxtll. Having U I , ••• , u._ 1 define 

.-1 

v,,=xn- L 
i=l 

U. = v./llv.lI. 

Note that this leads to a proof of the existence of a maximal orthonormal set in separable 
Hilbert spaces which makes no appeal to the Hausdorff maximality principle. (A space is separable if 
it contains a countable dense subset.) 
3 Show that l!(T) is separable if 1 ::;; p < 00, but that L"'(T) is not separable. 
4 Show that H is separable if and only if H contains a maximal orthonormal system which is at most 
countable. 
5 If M = {x: Lx = O}, where L is a continuous linear functional on H, prove that Mol is a vector 
space of dimension 1 (unless M = H). 
6 Let {u.} (n = 1, 2, 3, ... ) be an orthonormal set in H. Show that this gives an example of a closed 
and bounded set which is not compact. Let Q be the set of all x E H of the form 

'" 
x = L c"un 

I 
(where le. I ::;;;). 

Prove that Q is compact. (Q is called the Hilbert cube.) 
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More generally. let {.5.} be a sequence of positive numbers. and let S be the set of all x E H of 
the form 

(where I c.1 :s; .5..). 

Prove that S is compact if and only if Li" .5; < 00. 

Prove that H is not locally compact. 
7 Suppose {a.} is a sequence of positive numbers such that L a.b. < 00 whenever b. 0 and 
L b; < 00. Prove that L a; < 00. 

Suggestion: IfL a; = 00 then there are disjoint sets Et (k = I. 2. 3 •... ) so that 

L a;> 1. 
neE, 

Define b. so that b. = cta. for n E Et . For suitably chosen Ct. L a.b. = 00 although L b; < 00. 

8 If HI and H 2 are two Hilbert spaces. prove that one of them is isomorphic to a subspace of the 
other. (Note that every closed subspace of a Hilbert space is a Hilbert space.) 
9 If A c [0. 21t] and A is measurable. prove that 

lim fcosnxdx= lim fsinnxdx=O. 
a-co J... n ..... CCI JA. 

10 Let nl < n2 < n3 < ... be positive integers. and let E be the set of all x E [0. 21t] at which 
{sin ntx} converges. Prove that m(E) = O. Hint: 2 sin2 IX = I - cos 21%, so sin ntx-+ ± 1/J2 a.e. on E. 
by Exercise 9. 
II Find a nonempty closed set E in I3(T) that contains no element of smallest norm. 
12 The constants Ct in Sec. 4.24 were shown to be such that k-Ict is bounded. Estimate the relevant 
integral more precisely and show that 

o < lim k- I/2Ct < 00. 
t-oo 

13 Suppose f is a continuous function on R I. with period I. Prove that 

lim - L f(nIX) = f(t) dt I N il 
N-+«J N .. =1 0 

for every irrational real number IX. Hint: Do it first for 

f(t) = exp (21tikt). k=O. ±I. ±2 ..... 
14 Compute 

min fl I x 3 - a - bx - cx212 dx 
a, b,c -1 

and find 

where g is subject to the restrictions 

fl g(x) dx = fl xg(x) dx = fl x 2g(x) dx = 0; 
-I -I -I 
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15 Compute 

State and solve the corresponding maximum problem, as in Exercise 14. 
16 If Xo E Hand M is a closed linear subspace of H, prove that 

min {llx - xoll: x E M} = max {I(xo, y)l: y E MJ., Ilyll = I}. 

17 Show that there is a continuous one-to-one mapping y of [0, 1] into H such that y(b) - y(a) is 
orthogonal to y(d) - y(c) whenever 0 a b c s; d s; 1. (y may be called a "curve with orthogonal 
increments.") Hint: Take H = 13, and consider characteristic functions of certain subsets of [0,1]. 
18 Define u.(t) = ei .. for all S E Rt, t E RI. Let X be the complex vector space consisting of all finite 
linear combinations of these functions u •. Iff E X and g E X, show that 

1 fA -
(f, g) = 2A _/(t)g(t) dt 

exists. Show that this inner product makes X into a unitary space whose completion is a non-
separable Hilbert space H. Show also that {u.: S E RI} is a maximal orthonormal set in H. 
19 Fix a positive integer N, put w = e2Ki1N, prove the orthogonality relations 

.!. i w.k = {I if k = 0 
N.=I 0 if 

and use them to derive the identities 

1 N 
(x, y) = - L Ilx + w·yI12w" 

N .=1 

that hold in every inner product space if N 3. Show also that 

(x, y) = 2. fK Ilx + e"YI12e" dO. 
211: -x 

CHAPTER 

FIVE 
EXAMPLES OF BANACH SPACE TECHNIQUES 

Banach Spaces 
5.1 In the preceding chapter we saw how certain analytic facts about trigonomet-
ric series can be made to emerge from essentially goemetric considerations about 
general Hilbert spaces, involving the notions of convexity, subspaces, orthog-
onality, and completeness. There are many problems in analysis that can be 
attacked with greater ease when they are placed within a suitably chosen abstract 
framework. The theory of Hilbert spaces is not always suitable since orthogonality 
is something rather special. The class of all Banach spaces affords greater variety. 
In this chapter we shall develop some of the basic properties of Banach spaces 
and illustrate them by applications to concrete problems. 

5.2 Definition A complex vector space X is said to be a normed linear space if 
to each x E X there is associated a nonnegative real number Ilxll, called the 
norm of x, such that 

(a) Ilx + yll ::::;; IIxll + Ilyll for all x and y E X, 
(b) Ilaxll = IIX I Ilxll if x E X and IX is a scalar, 
(c) IIxll = 0 implies x = O. 

By (a), the triangle inequality 

Ilx - yll ::::;; Ilx - zll + liz - yll (x, y, Z E X) 

holds. Combined with (b) (take IX = 0, IX = -1) and (c) this shows that every 
normed linear space may be regarded as a metric space, the distance between 
x and y being Ilx - yll. 

A Banach space is a normed linear space which is complete in the metric 
defined by its norm. 
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For instance, every Hilbert space is a Banach space, so is every I!'(p.) 
normed by Ilfllp (provided we identify functions which are equal a.e.) if 
1 :s; p :s; 00, and so is Co(X) with the supremum norm. The simplest Banach 
space is of course the complex field itself, nonned by II x II = I x I. 

One can equally well discuss real Banach spaces; the definition is exactly 
the same, except that all scalars are assumed to be real. 

5.3 Definition Consider a linear transformation A from a normed linear 
space X into a normed linear space Y, and define its norm by 

IIAII = sup·{IIAxll: x E X, Ilxll:s; 1}. (1) 

If IIAII < 00, then A is called a bounded linear transformation. 
In (1), Ilxll is the norm of x in X, IIAxl1 is the norm of Ax in Y; it will 

frequently happen that several norms occur together, and the context will 
make it clear which is which. 

Observe that we could restrict ourselves to unit vectors x in (1), i.e., to x 
with Ilxll = 1, without changing the supremum, since 

II A(lXx) II = II IXAx II = IIX IIIAxll. (2) 

Observe also that IIAII is the smallest number such that the inequality 

IIAxl1 :s; IIAllllxll (3) 

holds for every x E X. 
The following geometric picture is helpful: A maps the closed unit ball in 

X, i.e., the set 

{x E X: IIxll :s; 1}, (4) 
into the closed ball in Y with center at 0 and radius IIAII. 

An important special case is obtained by taking the complex field for Y; 
in that case we talk about bounded linear functionals. 

5.4 Theorem For a linear transformation A of a normed linear space X into a 
normed linear space Y, each of the following three conditions implies the other 
two: 

(a) A is bounded. 
(b) A is continuous. 
(c) A is continuous at one point of X. 

PROOF Since IIA(Xl - x2)11 :s; IIAllllxl - x211, it is clear that (a) implies (b), 
and (b) implies (c) trivially. Suppose A is continuous at Xo. To each E > 0 one 
can then find a > 0 so that Ilx - xoll < implies IIAx - AXol1 < E. In other 
words, IIxll < implies 

IIA(xo + x) - AXoll < E. 
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But then the linearity of A shows that IIAxl1 < E. Hence IIAII :s; E/o, and (c) 
implies (a). IIII 

Consequences of Baire's Theorem 

5.5 The manner in which the completeness of Banach spaces is frequently 
exploited depends on the following theorem about complete metric spaces, which 
also has many applications in other parts of mathematics. It implies two of the 
three most important theorems which make Banach spaces useful tools in 
analysis, the Banach-Steinhaus theorem and the open mapping theorem. The third 
is the Hahn-Banach extension theorem, in which completeness plays no role. 

5.6 Baire's Theorem If X is a complete metric space, the intersection of every 
countable collection of dense open subsets of X is dense in X. 

In particular (except in the trivial case X = 0), the intersection is not empty. 
This is often the principal significance of the theorem. 

PROOF Suppose V1, V2 , V3 , ••• are dense and open in X. Let W be any open 
set in X. We have to show that n v.. has a point in W if W "# 0. 

Let P be the metric of X; let us write 

S(x, r) = {y EX: p(x, y) < r} (1) 

and let S(x, r) be the closure of S(x, r). [Note: There exist situations in which 
S(x, r) does not contain all y with p(x, y) :s; r!] 

Since V1 is dense, W (1 V1 is a nonempty open set, and we can therefore 
find x 1 and r 1 such that 

(2) 

If n 2 and x. _ 1 and r. -1 are chosen, the denseness of v.. shows that v.. (1 

S(x._ h r.- 1) is not empty, and we can therefore find x. and r. such that 

- 1 
S(x., r.) c v.. (1 S(X.-1' r.- 1) and 0 < r. <-. n (3) 

By induction, this process produces a sequence {x.} in X. If i > nand 
j > n, the construction shows that Xi and Xj both lie in S(x., r.), so that 
P(Xi' x j ) < 2r. < 21n, and hence {x.} is a Cauchy sequence. Since X is com-
plete, there is a point x E X such that x = lim x •. 

Since Xi lies in the closed set S(x., r.) if i > n, it follows that x lies in each 
S(x., r.), and (3) shows that x lies in each v... By (2), x E W. This completes 

W 
Corollary In a complete metric space, the intersection of any countable collec-
tion of dense Gd's is again a dense Gd. 
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This follows from the theorem, since every Gd is the intersection of a count-
able collection of open sets, and since the union of countably many countable 
sets is countable. 

5.7 Baire's theorem is sometimes called the category theorem, for the following 
reason. 

Call a set E c X nowhere dense if its closure E contains no nonempty open 
subset of X. Any countable union of nowhere dense sets is called a set of the first 
category; all other subsets of X are of the second category (Baire's terminology). 
Theorem 5.6 is equivalent to the statement that no complete metric space is of the 
first category. To see this, just take complements in the statement of Theorem 5.6. 

5.8 The Banach-Steinhaus Theorem Suppose X is a Banach space, Y is a 
normed linear space, and {All} is a collection of bounded linear transformations 
of X into Y, where IX ranges over some index set A. Then either there exists an 
M < 00 such that 

(1) 

for every IX E A, or 

sup II All xII = 00 (2) 
ileA 

for all x belonging to some dense Gd in X. 

In geometric terminology, the alternatives are as follows: Either there is a 
ball B in Y (with radius M and center at 0) such that every All maps the unit ball 
of X into B, or there exist x E X (in fact, a whole dense Gd of them) such that no 
ball in Y contains All x for all IX. 

The theorem is sometimes referred to as the uniform boundedness principle. 

PROOF Put 

<p(x) = sup II All xII (x E X) (3) 
ileA 

and let 

v" = {x: <p(x) > n} (n = 1, 2, 3, ... ). (4) 

Since each All is continuous and since the norm of Y is a continuous function 
on Y (an immediate consequence of the triangle inequality, as in the proof of 
Theorem 4.6), each function x-+ IIAllxll is continuous on X. Hence <p is lower 
semicontinuous, and each v" is open. 
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If one of these sets, say VN , fails to be dense in X, then there exist an 
Xo E X and an r > 0 such that Ilxll s; r implies Xo + x ¢ VN ; this means that 
q>(xo + x) s; N, or 

IIA",(xo + x)11 s; N (5) 

for alIa E A and all x with Ilxll s; r. Since x = (xo + x) - xo, we then have 

IIA",xll s; IIA",(xo + x)11 + IIA",xoll s; 2N, (6) 

and it follows that (1) holds with M = 2N/r. 
The other possibility is that every V. is dense in X. In that case, n v. is a 

dense G6 in X, by Baire's theorem; and since q>(x) = 00 for every x E n v., 
the proof is complete. / / / / 

5.9 The Open Mapping Theorem Let U and V be the open unit balls of the 
Banach spaces X and Y. To every bounded linear transformation A of X onto 
Y there corresponds a () > 0 so that 

A(U) => {)V. (1) 

Note the word" onto" in the hypothesis. The symbol () V stands for the set 
y: y E V}, i.e., the set of all y E Y with Ilyll < (). 

It follows from (1) and the linearity of A that the image of every open ball in 
. with center at xo, say, contains an open ball in Y with center at Axo. Hence 
e image of every open set is open. This explains the name of the theorem. 

Here is another way of stating (1): To every y with Ilyll < () there corresponds 
x with Ilxll < 1 so that Ax = y. 

PROOF Given y E Y, there exists an x E X such that Ax = y; if Ilxll < k, it 
follows that y E A(kU). Hence Y is the union of the sets A(kU), for 
k = 1, 2, 3, " " Since Y is complete, the Baire theorem implies that there is a 
nonempty open set W in the closure of some A(kU). This means that every 
point of W is the limit of a sequence {AXi}, where Xi E kU; from now on, k 
and Ware fixed. 

Choose Yo E W, and choose '1 > 0 so that Yo + YEW if Ilyll < '1. For 
any such y there are sequences {x;}, {xn in kU such that 

Axi- Yo + y (i- 00). (2) 

Setting Xi = xi - x;, we have Ilxili < 2k and AXi- y. Since this holds for 
every y with Ilyll < '1, the linearity of A shows that the following is true, if 
() = '1/2k: 

To each y E Y and to each E > 0 there corresponds an x E X such that 

Ilxll s;{)-lilyll and Ily-Axil <E. (3) 

This is almost the desired conclusion, as stated just before the start of the 
proof, except that there we had E = O. 
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Fix y E <5 V, and fix E > O. By (3) there exists an Xl with Ilxlll < 1 and 

Ily - AXlll < t<5E. 
Suppose Xl' .•• , Xn are chosen so that 

(4) 

(5) 

Use (3), with y replaced by the vector on the left side of (5), to obtain an Xn + 1 

so that (5) holds with n + 1 in place of n, and 

(n = 1, 2, 3, ... ). (6) 

If we set Sn = Xl + ... + X n , (6) shows that {sn} is a Cauchy sequence in 
X. Since X is complete, there exists an X E X so that sn- x. The inequality 
Ilxlll < 1, together with (6), shows that Ilxll < 1 + E. Since A is continuous, 
Asn - Ax. By (5), Asn - y. Hence Ax = y. 

We have now proved that 

A((l + E)U) :::;) <5V, (7) 

or 

(8) 

for every E > O. The union of the sets on the right of (8), taken over all E > 0, 
is <5V. This proves (1). IIII 

5.10 Theorem If X and Yare Banach spaces and if A is a bounded linear 
transformation of X onto Y which is also one-to-one, then there is a <5 > 0 such 
that 

IIAxl1 <5llxll (X EX). (1) 

In other words, A -1 is a bounded linear transformation of Y onto x. 
PROOF If <5 is chosen as in the statement of Theorem 5.9, the conclusion of 
that theorem, combined with the fact that A is now one-to-one, shows that 
IIAxl1 < <5 implies Ilxll < 1. Hence Ilxll 1 implies IIAxl1 <5, and (1) is 
proved. 

The transformation A - 1 is defined on Y by the requirement that 
A -1 Y = X if y = Ax. A trivial verification shows that A -1 is linear, and (1) 
implies that IIA -111 :s; 1/<5. IIII 

Fourier Series of Continuous Functions 

5.11 A Convergence Problem Is it true for every f E qT) that the Fourier series of 
f converges to f(x) at every point x? 
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Let us recall that the nth partial sum of the Fourier series off at the point x 
is given by 

(n = 0, 1, 2, ... ), (1) 

n 

where Dn(t) = L eikt• (2) 
k=-n 

This follows directly from formulas 4.26(1) and 4.26(3). 
The problem is to determine whether 

lim sn(f; x) = f(x) (3) 
n-+ 00 

for every f E C(T) and for every real x. We observed in Sec. 4.26 that the partial 
sums do converge to f in the L2-norm, and Theorem 3.12 implies therefore that 
each f E E(T) [hence also each f E C(T)] is the pointwise limit a.e. of some sub-
sequence of the full sequence of the partial sums. But this does not answer the 
present question. 

We shall see that the Banach-Steinhaus theorem answers the question nega-
tively. Put 

s*(f; x) = sup I sn(f; x) I· (4) 
n 

To begin with, take x = 0, and define 

(f E C(T); n = 1, 2, 3, ... ). (5) 

We know that C(T) is a Banach space, relative to the supremum norm Ilflloo. It 
follows from (1) that each An is a bounded linear functional on C(T), of norm 

(6) 

We claim that 

as n--+ 00. (7) 

This will be proved by showing that equality holds in (6) and that 

as n--+ 00. (8) 

Multiply (2) by eit/2 and by e- It /2 and subtract one of the resulting two equa-
tions from the other, to obtain 

D ( ) = sin (n + t)t 
n t sin (tI2) . (9) 
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Since I sin x I I x I for all real x, (9) shows that 

IID"lll > (" I sin (n + !)tl dt = ("+1/ 2)" Isin tl dt 
n Jo 2 t n Jo t 

2 n 1 it.. 4 n 1 > - L - I sin tl dt = 2" L --+ 00, 
n k=1 kn (k-l)" n k=1 k 

which proves (8). 
Next, fix n, and put g(t) = 1 if Dn(t) 0, g(t) = -1 if D"(t) < O. There exist 

jj E C(T) such that -1 1 and/it)-+ g(t) for every t, asj-+ 00. By the domi-
nated convergence theorem, 

Thus equality holds in (6), and we have proved (7). 
Since (7) holds, the Banach-Steinhaus theorem asserts now that s*(f; 0) = 00 

for every fin some dense G6-set in C(T). 
We chose x = 0 just for convenience. It is clear that the same result holds for 

every other x: 

To each real number x there corresponds a set Ex c C(T) which is a dense G6 
in C(T), such that s*(f; x) = 00 for every f E Ex. 

In particular, the Fourier series of each f E Ex diverges at x, and we have a 
negative answer to our question. (Exercise 22 shows the answer is positive if mere 
continuity is replaced by a somewhat stronger smoothness assumption.) 

It is interesting to observe that the above result can be strengthened by 
another application of Baire's theorem. Let us take countably many points Xi' 

and let E be the intersection of the corresponding sets 

Ex, c C(T). 

By Baire's theorem, E is a dense G6 in C(T). Every fEE has 

s*(f; xJ = 00 

at every point Xi. 

For each/, s*(f; x) is a lower semicontinuous function of x, since (4) exhibits 
it as the supremum of a collection of continuous functions. Hence 
{x: s*(f; x) = oo} is a G 6 in R 1, for each f If the above points Xi are taken so that 
their union is dense in (-n, n), we obtain the following result: 

5.12 Theorem There is a set E c C(T) which is a dense Gd in C(T) and which 
has thefollowing property: For eachfE E, the set 

Q, = {x: s*(f; x) = oo} 
is a dense G6 in Rl. 
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This gains in interest if we realize that E, as well as each Qf' is an uncount-
able set: 

5.13 Theorem In a complete metric space X which has no isolated points, no 
countable dense set is a G.,. 

PROOF Let xk be the points of a countable dense set E in X. Assume that E is 
a G.,. Then E = n v.. , where each v.. is dense and open. Let 

" w" = v.. - U {xk }· 
k=l 

Then each w" is still a dense open set, but n w" = 0, in contradiction to 
Baire's theorem. IIII 

Note: A slight change in the proof of Baire's theorem shows actually that 
every dense G., contains a perfect set if X is as above. 

Fourier Coefficients of I1-functions 

5.14 As in Sec. 4.26, we associate to every IE LI(T) a function! on Z defined by 

1 I" !(n) = -2 I(t)e-i"t dt 
n -" 

(n E Z). (1) 

It is easy to prove that!(n)--+ 0 as I nl--+ 00, for every IE E. For we know that 
C(T) is dense in LI(T) (Theorem 3.14) and that the trigonometric polynomials are 
dense in C(T) (Theorem 4.25). If E > 0 and IE LI(T), this says that there is a 
g E C(T) and a trigonometric polynomial P such that III - gill < E and 
Ilg - PII co < E. Since 

if follows that III - Pill < 2E; and if I n I is large enough (depending on P), then 

I !(n) I = I ;n f" {f(t) - P(t)}e-i"t dt I III - Pill < 2E. (2) 

Thus!(n)--+ 0 as n--+ ± 00. This is known as the Riemann-Lebesgue lemma. 
The question we wish to raise is whether the converse is true. That is to say, 

if {a,,} is a sequence of complex numbers such that a,,--+ 0 as n--+ ± 00, does it 
follow that there is ani E LI(T) such that!(n) = a" for all n E Z? In other words, 
is something like the Riesz-Fischer theorem true in this situation? 

This can easily be answered (negatively) with the aid of the open mapping 
theorem. 



104 REAL AND COMPLEX ANALYSIS 

Let Co be the space of all complex functions (() on Z such that (()(n)-4 0 as 
n-4 ± 00, with the supremum norm 

11(()1100 = sup {I (()(n) I: n E Z}. (3) 

Then Co is easily seen to be a Banach space. In fact, if we declare every subset of 
Z to be open, then Z is a locally compact Hausdorff space, and Co is nothing but 
Co(Z)· 

The following theorem contains the answer to our question: 

5.15 Theorem The mapping f -41 is a one-to-one bounded linear transformation 
of E(T) into (but not onto) co. 

PROOF Define A by Af =! It is clear that A is linear. We have just proved 
that A maps E(T) into Co, and formula 5.14(1) shows that I!(n) I Ilflll' so 
that IIAII 1. (Actually, IIAII = 1; to see this, take f = 1.) Let us now prove 
that A is one-to-one. Supposef E E(T) and!(n) = 0 for every n E Z. Then 

f/(t)g(t) dt = 0 (1) 

if g is any trigonometric polynomial. By Theorem 4.25 and the dominated 
convergence theorem, (1) holds for every g E C(T). Apply the dominated con-
vergence theorem once more, in conjunction with the Corollary to Lusin's 
theorem, to conclude that (1) holds if g is the characteristic function of any 
measurable set in T. Now Theorem 1.39(b) shows thatf = 0 a.e. 

lf the range of A were all of co, Theorem 5.10 would imply the existence 
of a 0 > 0 such that 

1111100 ollflll (2) 

for every f E E(T). But if D.(t) is defined as in Sec. 5.11, then D. E E(T), 
1115.1100 = 1 for n = 1,2,3, ... , and IID.lll-4 00 as n-4 00. Hence there is no 
o > 0 such that the inequalities 

(3) 

hold for every n. 
This completes the proof. IIII 

The Hahn-Banach Theorem 

5.16 Theorem If M is a subspace of a normed linear space X and iff is a 
bounded linear functional on M, then f can be extended to a bounded linear 
functional F on X so that II F II = II f II. 

Note that M need not be closed. 
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Before we turn to the proof, some comments seem called for. First, to say (in 
the most general situation) that a function F is an extension off means that the 
domain of F includes that off and that F(x) = f(x) for all x in the domain off 
Second, the norms II F II and II f II are computed relative to the domains of F and 
f; explicitly, 

Ilfll = sup {If(x)l: x E M, IIxll I}, IIFII = sup {I F(x) I: x E X, Ilxll I}, 
The third comment concerns the field of scalars. So far everything has been 

stated for complex scalars, but the complex field could have been replaced by the 
real field without any changes in statements or proofs. The Hahn-Banach 
theorem is also true in both cases; nevertheless, it appears to be essentially a 
"real" theorem. The fact that the complex case was not yet proved when Banach 
wrote his classical book" Operations lineaires" may be the main reason that real 
scalars are the only ones considered in his work. 

It will be helpful to introduce some temporary terminology. Recall that V is 
a complex (real) vector space if x + y E V for x and y E V, and if ax E V for all 
complex (real) numbers IX. It follows trivially that every complex vector space is 
also a real vector space. A complex function ({J on a complex vector space V is a 
complex-linear functional if 

({J(x + y) = ({J(x) + ({J(y) and ((J(IXX) = IX({J(X) (1) 

for all x and y E V and all complex IX. A real-valued function ({J on a complex 
(real) vector space V is a real-linear functional if (1) holds for all real IX. 

If u is the real part of a complex-linear functional/, i.e., if u(x) is the real part 
of the complex number f(x) for all x E V, it is easily seen that u is a real-linear 
functional. The following relations hold betweenfand u: 

5.17 Proposition Let V be a complex vector space. 

(a) If u is the real part of a complex-linear functional f on V, then 

f(x) = u(x) - iu(ix) (x E V). (1) 

(b) If u is a real-linear functional on V and iff is defined by (1), then f is a 
complex-linear functional on V. 

(c) If V is a normed linear space and f and u are related as in (1), then 
IlfII = Ilull· 

PROOF If IX and p are real numbers and z = IX + iP, the real part of iz is - p. 
This gives the identity 

z = Re z - i Re (iz) 

for all complex numbers z. Since 

Re (if(x)) = Re f(ix) = u(ix), 

(1) follows from (2) with z = f(x). 

(2) 

(3) 



106 REAL AND COMPLEX ANALYSIS 

Under the hypotheses (b), it is clear that f(x + y) = f(x) + f(y) and that 
f(lXx) = IXf(x) for all real IX. But we also have 

f(ix) = u(ix) - iu( - x) = u(ix) + iu(x) = if(x), (4) 

which proves thatfis complex-linear. 
Since I u(x) I :::; I f(x) I, we have lIull :::; 11111. On the other hand, to every 

x E V there corresponds a complex number IX, IIX I = 1, so that IXf(x) = I f(x) I. 
Then 

I f(x) I = f(lXx) = U(IXX) :::; Ilull . IllXxll = lIuli . Ilxll, 

which proves that Ilfll :::; lIull. 

(5) 

IIII 

5.18 Proof of Theorem 5.16 We first assume that X is a real nonned linear 
space and, consequently, that f is a real-linear bounded functional on M. If 
II f II = 0, the desired extension is F = O. Omitting this case, there is no loss of 
generality in assuming that 11111 = 1. 

Choose Xo E X, Xo ¢ M, and let M 1 be the vector space spanned by M 
and Xo. Then M 1 consists of all vectors of the form x + .ho, where x E M 
and A is a real scalar. If we define fl(X + AXo) = f(x) + AIX, where IX is any 
fixed real number, it is trivial to verify that an extension of f to a linear 
functional on M 1 is obtained. The problem is to choose IX so that the 
extended functional still has nonn 1. This will be the case provided that 

If(x) + AIXI:::; Ilx + Axoll (x E M, A real). (1) 

Replace x by - AX and divide both sides of (1) by I AI. The requirement is 
then that 

If(x) - IXI:::; IIx - xoll (x EM), (2) 

i.e., that Ax :::; IX :::; Bx for all x E M, where 

Ax = f(x) - Ilx - xoll and Bx = f(x) + Ilx - xoll· (3) 

There exists such an IX if and only if all the intervals [Ax, Bx] have a common 
point, i.e., if and only if 

(4) 

for all x and y E M. But 

f(x) - f(y) = f(x - y):::; IIx - yll :::; IIx - xoll + Ily - xoll, (5) 

and so (4) follows from (3). 
We have now proved that there exists a nonn-preserving extensionfl off 

onM l · 

Let be the collection of all ordered pairs (M', f'), where M' is a sub-
space of X which contains M and where f' is a real-linear extension of f to 
M', with 11f'11 = 1. Partially order by declaring (M',f') :::; (M",f") to mean 
that M' c: M" and f"(x) = f'(x) for all x EM'. The axioms of a partial order 
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are clearly satisfied, &J is not empty since it contains (M,J), and so the Haus-
dorff maximality theorem asserts the existence of a maximal totally ordered 
subcollection n of &J. 

Let <I> be the collection of all M' such that (M',I') E n. Then <I> is totally 
ordered, by set inclusion, and therefore the union M of all members of <I> is a 
subspace of X. (Note that in general the union of two subspaces is not a 
subspace. An example is two planes through the origin in R3.) If x E M, then 
x E M' for some M' E <1>; define F(x) = I'(x), where I' is the function which 
occurs in the pair (M',I') E n. Our definition of the partial order in n shows 
that it is immaterial which M' E <I> we choose to define F(x), as long as M' 
contains x. 

It is now easy to check that F is a linear functional on M, with IIFII = 1. 
If M were a proper subspace X, the first part of the proof would give us a 
further extension of F, and this would contradict the maximality of n. Thus 
M = X, and the proof is complete for the case of real scalars. 

If now f is a complex-linear functional on the subspace M of the complex 
normed linear space X, let u be the real part off, use the real Hahn-Banach 
theorem to extend u to a real-linear functional U on X, with IIUII = Ilull, and 
define 

F(x) = U(x) - iU(ix) (x EX). (6) 

By Proposition 5.17, F is a complex-linear extension off, and 

IIFII = IIUII = Ilull = Ilfli. 
This completes the proof. IIII 

Let us mention two important consequences of the Hahn-Banach theorem: 

5.19 Theorem Let M be a linear subspace of a normed linear space X, and let 
Xo E X. Then Xo is in the closure M of M if and only if there is no bounded 
linear functional f on X such that f(x) = 0 for all x E M but f(xo) # o. 
PROOF If Xo E M, f is a bounded linear functional on X, and f(x) = 0 for all 
x E M, the continuity offshows that we also havef(xo) = O. 

Conversely, suppose Xo f/ M. Then there exists a {j > 0 such that 
IIx - xoll > {j for all x E M. Let M' be the subspace generated by M and xo, 
and definef(x + AXo) = A if x E M and A is a scalar. Since 

{j I AI I A I II Xo + r 1 x II = II AXo + x II , 

we see that f is a linear functional on M' whose norm is at most {j -1. Also 
f(x) = 0 on M,J(xo) = 1. The Hahn-Banach theorem allows us to extend this 
ffrom M' to X. IIII 

5.20 Theorem If X is a normed linear space and if Xo E X, Xo # 0, there is a 
bounded linear functionalfon X, of norm 1, so thatf(xo) = Ilxoll· 
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PROOF Let M = {AXo}, and definef(Axo) = Allxoll. Thenfis a linear function-
al of norm 1 on M, and the Hahn-Banach theorem can again be applied. IIII 

5.21 Remarks If X is a normed linear space, let X* be the collection of all 
bounded linear functionals on X. If addition and scalar multiplication of 
linear functionals are defined in the obvious manner, it is easy to see that X* 
is again a normed linear space. In fact, X* is a Banach space; this follows 
from the fact that the field of scalars is a complete metric space. We leave the 
verification of these properties of X* as an exercise. 

One of the consequences of Theorem 5.20 is that X* is not the trivial 
,"ector space (i.e., X* consists of more than 0) if X is not trivial. In fact, X* 
separates points on X. This means that if x I "" X 2 in X there exists an f e X* 
such thatf(x l ) "" f(x 2 ). To prove this, merely take Xo = X2 - Xl in Theorem 
5.20. 

Another consequence is that, for X e X, 

Ilxll = sup {If(x)l:fe X*, Ilfll = I}. 

Hence, for fixed x e X, the mapping f -4 f(x) is a bounded linear functional 
on X*, of norm Ilxll. 

This interplay between X and X* (the so-called "dual space" of X) 
forms the basis of a large portion of that part of mathematics which is known 
asfunctional analysis. 

An Abstract Approach to the Poisson Integral 
5.22 Successful applications of the Hahn-Banach theorem to concrete problems 
depend of course on a knowledge of the bounded linear functionals on the 
normed linear space under consideration. So far we have only determined the 
bounded linear functionals on a Hilbert spaCe (where a much simpler proof of 
the Hahn-Banach theorem exists; see Exercise 6), and we know the positive 
linear functionals on Cc(X). 

We shall now describe a general situation in which the last-mentioned func-
tionals occur naturally. 

Let K be a compact Hausdorff space, let H be a compact subset of K, and let 
A be a subspace of C(K) such that 1 e A (1 denotes the function which assigns 
the number 1 to each x e K) and such that 

(fe A). (1) 

Here we used the notation 

IlfilE = sup {If(x)l: x e E}. (2) 

Because of the example discussed in Sec. 5.23, H is sometimes called a bound-
ary of K, corresponding to the space A. 
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Iff e A and x e K, (1) says that 

I f(x) I ::; IlflIH· (3) 

In particular, if f(y) = 0 for every y e H, then f(x) = 0 for all x e K. Hence if f1 
and f2 e A and f1(Y) = f2(Y) for every Y e H, then f1 = f2; to see this, put f = 
f1-f2· 

Let M be the set of all functions on H that are restrictions to H of members 
of A. It is clear that M is a subspace of C(H). The preceding remark shows that 
each member of M has a unique extension to a member of A. Thus we have a 
natural one-to-one correspondence between M and A, which is also norm-
preserving, by (1). Hence it will cause no confusion if we use the same letter to 
designate a member of A and its restriction to H. 

Fix a point x e K. The inequality (3) shows that the mapping f--+ f(x) is a 
bounded linear functional on M, of norm 1 [since equality holds in (3) iff = 1]. 
By the Hahn-Banach theorem there is a linear functional A on C(H), of norm 1, 
such that 

Af=f(x) (fe M). (4) 

We claim that the properties 

Al = 1, IIAII = 1 (5) 

imply that A is a positive linear functional on C(H). 
To prove this, suppose f e C(H), O::;f::; 1, put 9 = 2f - 1, and put 

Ag = ex + i{J, where ex and {J are real. Note that -1::; 9 ::; 1, so that 
I 9 + ir 12 ::; 1 + r2 for every real constant r. Hence (5) implies that 

({J + r)2 ::; I ex + i({J + r) 12 = I A(g + ir) 12 ::; 1 + r2. (6) 

Thus {J2 + 2r{J ::; 1 for every real r, which forces {J = O. Since IlgliH ::; 1, we have 
I ex I ::; 1; hence 

Af= tA(1 + g) = t(1 + ex) O. (7) 

Now Theorem 2.14 can be applied. It shows that there is a regular positive 
Borel measure J.'x on H such that 

Af= ifdJ.'x (fe C(H)). (8) 

In particular, we get the representation formula 

(fe A). (9) 

What we have proved is that to each x e K there corresponds a positive 
measure J.'x on the "boundary" H which "represents" x in the sense that (9) holds 
for every f e A. 
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Note that A determines Jl." uniquely; but there is no reason to expect the 
Hahn-Banach extension to be unique. Hence, in general, we cannot say much 
about the uniqueness of the representing measures. Under special circumstances 
we do get uniqueness, as we shall see presently. 

5.23 To see an example of the preceding situation, let U = {z: I z I < 1} be the 
open unit disc in the complex plane, put K = U (the closed unit disc), and take 
for H the boundary T of U. We claim that every polynomial/, i.e., every function 
of the form 

N 

I(z) = L all Zll, (1) 
11=0 

where ao, ... , aN are complex numbers, satisfies the relation 

1I/IIu = IIfIIT' (2) 

(Note that the continuity of I shows that the supremum of I I lover U is the same 
as that over U.) 

Since U is compact, there exists a Zo E U such that I I(zo) I I I(z) I for all 
z E U. Assume Zo E U. Then 

N 

I(z) = L bll(z - zo)", (3) 
11=0 

and if 0 < r < 1 - I Zo I , we obtain 

so that bi = b2 = ... = bN = 0; i.e.,/is constant. Thus Zo E T for every noncon-
stant polynomial/, and this proves (2). 

(We have just proved a special case of the maximum modulus theorem; we 
shall see later that this is an important property of all holomorphic functions.) 

5.24 The Poisson Integral Let A be any subspace of qU) (where U is the closed 
unit disc, as above) such that A contains all polynomials and such that 

IIfllu = II/IIT (1) 

holds for every lEA. We do not exclude the possibility that A consists of 
precisely the polynomials, but A might be larger. 

The general result obtained in Sec. 5.22 applies to A and shows that to each 
z E U there corresponds a positive Borel measure Jl.z on T such that 

I(z) = f/dJl.z (IE A). (2) 

(This also holds for z E T, but is then trivial: Jl.z is simply the unit mass concen-
trated at the point z.) 
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We now fix z e U and write z = rei9, ° r < 1, lJ real. 
If un(w) = wn, then un e A for n = 0, 1, 2, ... ; hence (2) shows that 

(n = 0, 1, 2, ... ). (3) 

Since U-n = Un on T, (3) leads to 

(n = 0, ± 1, ±2, ... ). (4) 

This suggests that we look at the real function 

<Xl 

P,(lJ - t) = L rlnlein(9-t) (t real), (5) 
n= - 00 

since 

(n = 0, ± 1, ± 2, ... ). (6) 

Note that the series (5) is dominated by the convergent geometric series L rlnl, so 
that it is legitimate to insert the series into the integral (6) and to integrate term 
by term, which gives (6). Comparison of (4) and (6) gives 

r I dJl.z = 21 In - t) dt JT 7t -n 
(7) 

for I = Un' hence for every trigonometric polynomial f, and Theorem 4.25 now 
implies that (7) holds for every I e C(T). [This shows that Jl.z was uniquely deter-
mined by (2). Why?] 

In particular, (7) holds if I e A, and then (2) gives the representation 

1 en 
I(z) = 27t - t) dt (Ie A). (8) 

The series (5) can be summed explicitly, since it is the real part of 

2 ( -it'\n _ elt + z _ 1 - r2 + 2ir sin (lJ - t) 
1 + L.. ze J - it - 11 It 12 1 e-z -ze 

Thus 

1 - r2 
P,(lJ - t) = 1 _ 2r cos (lJ - t) + r2· (9) 

This is the so-called" Poisson kernel." Note that P,(lJ - t) ° if ° r < 1. 
We now summarize what we have proved: 
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5.25 Theorem Suppose A is a vector space of continuous complex functions on 
the closed unit disc O.lf A contains all polynomials, and if 

sup I f(z)1 = sup I f(z) I (1) 
zeU ze T 

for every f E A (where T is the unit circle, the boundary of U), then the Poisson 
integral representation 

1 I" 1 - r2 . f(z) = -2 1 2 (() ) 2 dt 
1t _" - r COS - t + r 

(2) 

is valid for every f E A and every z E U. 

Exercises 
I Let X consist of two points a and b, put JI( { a}) = JI( {b}) =!, and let lJ'(JI) be the resulting real 
lJ'-space. Identify each real functionf on X with the point (f(a),f(b» in the plane, and sketch the unit 
balls of lJ'(JI), for ° < p 00. Note that they are convex if and only if 1 p 00. For which p is this 
unit ball a square? A circle? If JI({a}) # JI(b), how does the situation differ from the preceding one? 
2 Prove that the unit ball (open or closed) is convex in every normed linear space. 
3 If 1 < p < 00, prove that the unit ball of lJ'(Jl) is strictly convex; this means that if 

f#o, h =!(f + 0), 

then IIhll, < 1. (Geometrically, the surface of the ball contains no straight lines.) Show that this fails in 
every IJ(Jl), in every L""(JI), and in every C(X). (Ignore trivialities, such as spaces consisting of only one 
point.) 
4 Let C be the space of all continuous functions on [0, 1], with the supremum norm. Let M consist of 
allf E C for which 

rl/2 f(t) dt _ rl f(t) dt = 1. Jo JI/2 

Prove that M is a closed convex subset of C which contains no element of minimal norm. 
S Let M be the set of all f E IJ([O, 1]), relative to Lebesgue measure, such that 

ff(t) dt = 1. 

Show that M is a closed convex subset of IJ([O, 1]) which contains infinitely many elements of 
minimal norm. (Compare this and Exercise 4 with Theorem 4.10.) 
6 Let f be a bounded linear functional on a subspace M of a Hilbert space H. Prove that f has a 
unique norm-preserving extension to a bounded linear functional on H, and that this extension van-
ishes on M.l. 
7 Construct a bounded linear functional on some subspace of some IJ(JI) which has two (hence 
infinitely many) distinct norm-preserving linear extensions to IJ(Jl). 
8 Let X be a normed linear space, and let X" be its dual space, as defined in Sec. 5.21, with the norm 

II!II = sup {If(x) I: IIxll 1}. 

(a) Prove that X* is a Banach space. 
(b) Prove that the mappingf-+f(x) is, for each x E X, a bounded linear functional on X*, of 

norm IIxli. (This gives a natural imbedding of X in its "second dual" X**, the dual space of X*.) 
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(c) Prove that {lIxnll} is bounded if {xn} is a sequence in X such that {I(xn)} is bounded for 
everyfE X*. 
9 Let co' tl, and ta) be the Banach spaces consisting of all complex sequences x = gil, 
i = 1, 2, 3, ... , defined as follows: 

X E tl if and only if Ilxlll = L < 00. 

x E ta) if and only if Ilxll a) = sup < 00. 

Co is the' subspace of ta) consisting of all x E ta) for which Oas i--+ 00. 

Prove the following four statements. 
(a) If y = {IIi} E tl and Ax = L IIi for every x E co, then A is a bounded linear functional on 

co, and IIAII = Ilylll' Moreover,every A E (cci)*isobtained in this way. In brief, (co). = tl. 
(More precisely, these two spaces are not equal; the preceding statement exhibits an isometric 

vector space isomorphism between them.) 
(b) In the same sense, (tl)* = ta). 
(c) Every YEti induces a bounded linear functional on ta), as in (a). However, this does not 

give all of (ta»*, since (ta»· contains nontrivial functionals that vanish on all of co. 
(d) Co amI t l are separable but ta) is not. 

10 If L lXi converges for every sequence such that 0 as i--+ 00, prove that L IlXd < 00. 

II For 0 < IX:S; 1, let Lip IX denote the space ofall complex functionsfon [a, b] for which 

If(s) - f(t) I 
M r = sup • < 00 . 

• ", Is - tl 

Prove that Lip IX is a Banach space, if Ilfll = I f(a) I + Mr; also, if 

Ilfll = Mr+ sup If(x)l· 

(The members of Lip IX are said to satisfy a Lipschitz condition of order IX.) 

12 Let K be a triangle (two-dimensional figure) in the plane, let H be the set consisting of the vertices 
of K, and let A be the set of all real functionsfon K, of the form 

f(x, y) = IXX + py + y (IX, p, and y real). 

Show that to each (xo, Yo) E K there corresponds a unique measure /l on H such that 

f(xo, Yo) = If d/l. 

(Compare Sec. 5.22.) 
Replace K by a square, let H again be the set of its vertices, and let A be as above. Show that to 

each point of K there still corresponds a measure on H, with the above property, but that uniqueness 
is now lost. 

Can you extrapolate to a more general theorem? (Think of other figures, higher dimensional 
spaces.) 
13 Let {In} be a sequence of continuous complex functions on a (nonempty) complete metric space X, 
such thatf(x) = Iimf.(x) exists (as a complex number) for every x E X. 

(a) Prove that there is an open set V '" 0 and a number M < 00 such that I fn(x) I < M for all 
x E V and for n = 1, 2, 3, .... 

(b) If £ > 0, prove that there is an open set V '" 0 and an integ.lr N such that I f(x) - f.(x) I :s; £ 

if x E V and n N. 
Hint for (b): For N = 1, 2, 3, ... , put 

AN = {x: Ifm(x) - fn(x) I :s; £ if m Nand n N}. 

Since X = U AN' some AN has a nonempty interior. 
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14 Let C be the space of all real continuous functions on 1 = [0, 1] with the supremum norm. Let X. 
be the subset of C consisting of those ffor which there exists a t £ 1 such that' f(s) - f(t)' :s; n' s - t' 
for all s E 1. Fix n and prove that each open set in C contains an open set which does not intersect 
X •. (Each fEe can be uniformly approximated by a zigzag function 9 with very large slopes, and if 
IIg - hll is small, h '" X •. ) Show that this implies the existence of a dense G, in C which consists 
entirely of nowhere differentiable functions. 

15 Let A = (a jj) be an infinite matrix with complex entries, where i, j = 0, 1, 2, .... A associates with 
each sequence {Sj} a sequence {O";}, defined by 

"" 
O"j = L aUsj (i = 1, 2, 3, ... ), 

j=O 

provided that these series converge. 
Prove that A transforms every convergent sequence {sJ to a sequence {O"j} which converges to 

the same limit if and only if the following conditions are satisfied: 

and 

(a) 

(b) 

(c) 

"" 
sup; L 'a jj ' < 00. 

j=O 

"" 
lim La jj = 1. 
i-+oo j=O 

for each j. 

The process of passing from {sJ to {O";} is called a summability method. Two examples are: 

I: I 
ifOS;j S; i, 

ifi <j, 

aji = (1 - rj)r{, 0< rj < 1, r j ..... 1. 

Prove that each of these also transforms some divergent sequences {Sj} (even some unbounded ones) 
to convergent sequences {O";}. 
16 Suppose X and Y are Banach spaces, and suppose A is a linear mapping of X into Y, with the 
following property: For every sequence {x.} in X for which x = lim x. and y = lim Ax. exist, it is 
true that y = Ax. Prove that A is continuous. 

This is the so-called "closed graph theorem." Hint: Let X Et> Y be the set of all ordered pairs 
(x, y), x E X and y E Y, with addition and scalar multiplication defined componentwise. Prove that 
X Et> Y is a Banach space, if lI(x, y)1I = IIxll + lIyll. The graph G of A is the subset of X Et> Y formed by 
the pairs (x, Ax), x E X. Note that our hypothesis says that G is closed; hence G is a Banach space. 
Note that (x, Ax) ..... x is continuous, one-to-one, and linear and maps G onto X. 

Observe that there exist nonlinear mappings (of RI onto RI, for instance) whose graph is closed 
although they are not continuous:f(x) = 1/x if x # 0,/(0) = O. 

17 If JI. is a positive measure, eachfE L""(Ji.) defines a multiplication operator MI on I!(Ji.) into I!(Ji.), 
such that M h) = fg. Prove that 11M III S; II!II"". For which measures JI. is it true that 11M III = II!II"" 
for allf E L""(Ji.)? For whichf E L""(JI.) does M I map I!(JI.) onto I!(JI.)? 

18 Suppose {A.} is a sequence of bounded linear transformations from a normed linear space X to a 
Banach space Y, suppose IIA.II :s; M < 00 for all n, and suppose there is a dense set E c: X such that 
{A.x} converges for each x E E. Prove that {A.x} converges for each x E X. 
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19 If 5. is the nth partial sum of the Fourier series of a function f E C(T), prove that s.JIog n --+ 0 
uniformly, as n --+ 00, for eachf E C(T). That is, prove that 

lim 115.11., = O . 
• log n 

On the other hand, if Jl.JIog n --+ 0, prove that there exists an f E C(T) such that the sequence 
{s.(f; O)/Jl.} is unbounded. Hint: Apply the reasoning of Exercise 18 and that of Sec. 5.11, with a 
better estimate of liD. II I than was used there. 
20 (a) Does there exist a sequence of continuous positive functions f. on Rl such that {f.(x)} is 
unbounded if and only if x is rational ? 

(b) Replace" rational" by .. irrational" in (a) and answer the resulting question. 
(c) Replace" {f.(x)} is unbounded" by ''f.(x)--+ 00 as n--+ 00" and answer the resulting ana-

logues of (a) and (b). 
21 Suppose E c:: Rl is measurable, and .m(E) = O. Must there be a translate E + x of E that does not 
intersect E? Must there be a homeomorphism h of Rl onto Rl so that h(E) does not intersect E? 
22 SupposefE C(T) andf E Lip IX for some IX > O. (See Exercise 11.) Prove that the Fourier series off 
converges to f(x), by completing the following outline: It is enough to consider the case x = 0, 
f(O) = O. The difference between the partial sums s.(f; 0) and the integrals 

1 fft sin nt - f(t) --dt 
11: -ft t 

tends to 0 as n--+ 00. The functionf(t)/t is in L1(T). Apply the Riemann-Lebesgue lemma. More careful 
reasoning shows that the convergence is actually uniform on T. 


