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Introduction

It was a surprise to me that I would have to present a paper at the fi-

nal session of the Congress in this large hall, which had been known to

me rather as a place for the performance of great musical compositions of

the world conducted by Mengelberg. The paper which I have prepared,

without taking into account that it would occupy such an honourable posi-

tion in the programm of the Congress, is devoted to a rather special range

of problems. My aim is to elucidate ways of applying basic concepts and

results in the modern general metrical and spectral theory of dynamical

systems to the study of conservative dynamical systems in classical me-

chanics. However, it seems to me that the subject I have chosen may also

be of broader interest, as one of examples of the appearance of new, unex-

pected and profound relationships between different branches of classical

and modern mathematics.

In his famous address at the Congress in 1900, D. Hilbert said that the

unity of mathematics and the impossibility of its division into independent

branches stem from the very nature of the science of mathematics.
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From the 1957 published version of Andrei N. Kolmogorov’s clos-

ing speech at the 1954 ICM Amsterdam (English translation by V. M.

Volosov in [Tikhomirov 1991], vol. I, p. 355)1

With the above quoted words Andrei Nikolaevich Kolmogorov (1908-1984)
started off his invited plenary lecture opening the last session of the Inter-
national Congress of Mathematicians at Amsterdam on the afternoon of
September 9th 1954, at the city Concert Hall (the Concertgebouw). It was
the second meeting after the interruption of the series of congresses by the
war, the first one in which a delegation from the USSR was present.

As the speaker who has opened the Congress on September 2th – the
Hungarian born American mathematician John von Neumann (1902-1957)
– Kolmogorov chose thus to start from and give further support to the
claim about the unity of mathematics put forward by David Hilbert (1862-
1943) in his famous conference of the Paris ICM in 1900. Hilbert’s admo-
nition to 20th century mathematicians was blend by Kolmogorov with a
reference to the special kind of continuity between the past and the future
in the science of mathematics, between, as he put it, classical mathematics
and modern mathematics.

The title of his lecture, The general theory of dynamical systems and classical
mechanics, made reference in fact both to the centenary tradition of math-
ematical study of motion, elasticity and an increasing number of physical
phenomena using differential equations2– having a golden age in the 18th-
19th centuries – and to the 20th century theory of dynamical systems3,

1The Russian text was published in the Congress Proceedings, [Kolmogorov 1957].
2Phenomena "caused by the forces of nature", as Newton put it in the preface to the

Principia. On the history of mechanics see [Duhem 1905], [Borel 1943], [Dugas 1957],
[Truesdell 1976a,b], [Fraser 1994]. In the a recent essay on Modern classical mechanics
[Halliwell, Sahakian 2020] remind that "motions within the Solar system were the most
important tasting ground for classical mechanics in the first place" (p. xiv).

3The origins and development of the theory of dynamical systems – starting from the
seminal contributions by Henri Poincaré and George David Birkhoff – has been the object
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rooted in classical mechanics but at the same time a paradigmatic example
of the new mathematical approaches (qualitative approaches) developed
after 1900.

The adjective classical underscored the breakup between the tradition
of “rational mechanics”4 – from its Newtonian source to its reformula-
tions by Joseph Louis Lagrange (1736-1813) and William Rowan Hamilton
(1805-1865) – and the new theoretical physics (quantum mechanics and
relativity) in the early 20th century5. Craig Fraser writes on this regard6:

With the establishment of special relativity, it became necessary to intro-

duce the adjective "classical" to delineate the vast range of mechanical doc-

trines from Newton to Einstein. Classical theories retain their validity and

continue to be cultivated extensively today in mathematical engineering.

Nevertheless, since Einstein, the classical viewpoint has lost its epistemo-

logical primacy as final description of material motion in space and time.

[Fraser 1994, p. 984]

In a recent paper on Edmund Whittaker’s A treatise on the analytical dynam-
ics of particles and rigid bodies (1st edition 1904, and edition 1917) published
in «Archive for the History of Exact Sciences», Severino Collier Countinho
reminds the situation of classical mechanics in that period:

Once a flourishing subject, where a remarkable cross-breeding of math-

ematics and physics took place, classical mechanics was considered by many

to have reached a dead end by the first decades of the twentieth century, ex-

of some historical research since the 1990s, mainly thanks to a new attention to the issue
of chaos as opposed to determinism: [Dahan-Dalmedico, Chabert, Chemla (eds.) 1992],
[Aubin, Dahan Dalmedico 2002], [Holmes 2007]. On the contribution by Henri Poincaré
see [Holmes 1990], [Barrow Green 1997]. On Birkhoff, see [Aubin 2005], [Dell’Aglio 2003].

4This expression is uncommon in English; see [Fraser 1994] for a comment on this.
5As a matter of fact, the advent of quantum mechanics in the early 20th century – to-

gether with that of relativity – had marked the emergence of a scientific community of
theoretical physicists, culturally and institutionally strongly autonomous from the math-
ematicians world [Faddeev 1995].

6In his contribution on Classical mechanics to Grattan Guinness Companion Encyclo-
pedia of the History and Philosophy of Mathematical Sciences.
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cept for eventual applications to other.

[...] So dramatic have been the changes that mechanics has undergone

in the twentieth century that the style and even the contents of most books

on dynamics written before the 1930s look hopelessly dated to present-day

readers. But there are exceptions [Coutinho 2014, p. 356].

Let’s also quote the provoking Clifford Truesdell in the final part On the
decline of classical mechanics his 1976 essay History of classical mechanics.

The word "classical" has two senses in scientific writing; (1) acknowl-

edged as being of the first rank or authority, and (2) known, elementary,

and exhausted ("trivial" in the root meaning of that word). In the twentieth

century mechanics based upon the principles and concepts used up to 1900

acquired the adjective "classical" in its second and pejorative sense, largely

because of the rise of quantum mechanics and relativity. "Fundamental"

in physics came to mean "concerning extremely high velocities, extremely

small sizes, or both”. Physicists gave less and less attention to classical me-

chanics because they thought nothing more could be learned from it and

nothing new discovered about it, although of course they continued to use

it in the design of the experimental apparatus with which they claimed to

controvert it. At about the same time “applied” in mathematics came to

refer not to the object studied but to the originality and logical standards of

the student, again in a pejorative sense.

Engineers still had to be taught classical mechanics, because in terms of

it they could understand the machines with which they worked and could

devise new machines for new purposes. Research in mechanics came to

be slanted toward the needs of engineers and to be carried out largely by

university teachers who regarded mathematics as a scullery-maid, not a

goddess or even a mistress. [Truesdell 1976, pp.127-128].

Physics’ exciting new research contrasted with a deep theoretical impasse
in classical mechanics, which emerged in Henri Poincaré’s brilliant contri-
butions in the final years of the 19th century to the three body problem of
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celestial mechanics: the belief that the mathematical structures designed
to describe natural phenomena involved non-regularity or chaos, dramat-
ically jeopardizing the possibility of forecasting time evolution7.

This theoretical and epistemological crisis of classical mechanics chal-
lenged its central role in the mathematical world, also because of the vi-
tality of modern algebra and branches of mathematics working in ab-
stract universes investigated independently of possible links to physical
phenomena, technological development and other applications. The new
qualitative theory of differential equations (the theory of dynamical sys-
tems) displayed possible of applications to phenomena regarding life or
social and economical human systems, as well as new engineering applica-
tions described by non linear differential equations. Recent studies on the
origin of the theory of dynamical systems had shown light on the various
research line which were displayed in the years of witnessing the “down-
fall of classical mechanics”, involving the developing of the modellistic
approach as well as efforts to apply the classical approach to mechanics to
problems in biology, demography, and economics:

From Poincaré to the have all contributed a stone to the final edifice. In

fact, this history unfolds along various geographic, social, professional, and

epistemological axes. It is punctuated by abrupt temporal ruptures and by

transfers of methods and conceptual tools. It involves scores of interactions

among mathematics, engineering science, and physics along networks of

actors with their specific research agendas and contexts. Finally, it is char-

acterized by countless instances of looping back to the past, to Poincaré’s

work in particular, which are so many occasions for new starts, crucial re-

configurations, and reappreciation of history. [Aubin, Dahan-Dalmedico

2002 pp. 278-279].

“The problem of integration of systems of differential equations of classi-

7[Dahan Dalmedico et al 1992]; On mechanism as an underlying metaphysics of sci-
ence showing the crucial role of classical mechanics in scientific thought see [Israel 2015].
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cal mechanics”, Kolmogorov reminded to the audience, had been a “focal
point for the mathematics of the 19th century,” as if we asking to renew
ties with the past .

This area had been paid continuous attention in the Soviet Union, where
Birkhoff’s work was developed in connection with engineering applica-
tions (nonlinear mechanics)as Simon Diner has underscored8:

le grand public en Occident ignore largement que ce sont essentielle-

ment des savants russes qui ont pendant cinquante ans exploité la partie de

l’héritage d’Henri Poincaré, concernant la "théorie qualitative des systèmes

dynamiques" et la "mécanique non linéaire" dont le chaos déterministe n’est

qu’un des aspects les plus spectaculaires.

Situation créée par la conjonction de l’isolement relatif de l’Union sovié-

tique et les mobiles internes du développement des mathématiques dans

un univers de la physique où la mécanique quantique a ravi la vedette à la

mécanique classique. Le langage de Poincaré semblait opaque et ses idées

en ont souffert, d’autant plus que les applications qu’il envisageait ne con-

cernaient que l’astronomie. [Diner 1992, pp. 331-332]

The goal of his conference was to show how metrical and spectral meth-
ods – 20th century measure theory and Hilbert spaces – could be applied
to throw new light on the understanding of key open problems of clas-
sical mechanics, regarding Hamiltonian conservative dynamical systems
central in celestial mechanics9. This area appeared neglected in the math-
ematical world since the late 1930s, when attention to celestial mechanics
classical approaches flagged10.

8In his contribution to the volume [Dahan Dalmedico et al eds 1992], Simon Diner
stressed that the apparent gap between Poincaré’s work and Steven Smale’s contributions
had been not so, but was the consequence of “ignorance of the Russian contributions”
during the Cold War period, and the separation between the West (NATO area) and the
area of Soviet Unione and the countries tied by the Warsaw Pact [Diner 1992].
See also: [Nemytskii 1957].

9On the meaning of Hamiltonian system see Appendix
10This historical transformation and change of status and reciprocal position of the

mathematical disciplines in the early 20th century possibly deserves further attention
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A crucial theorem had been published by Kolmogorov a few days be-
fore, on August 31st before his lecture in the proceedings of the Soviet
Academy of Sciences («Doklady Akademii Nauk SSSR») in a paper enti-
tled On the preservation of conditionally periodic motions under small variations
of the Hamilton function [Kolmogorov 1954]. His theorem applied these
methods and showed the path for further attainments. Moreover, the the-
orem suggested that the above mentioned impasse suggested by Poincaré
– referred to the three body problem in celestial mechanics – could be over-
come.

Table of contents: Séminaire Janet. Mécanique analytique et mécanique céleste, tome
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1 (1957-1958)

1. The research issue
The theoretical meaning of this Kolmogorov theorem, in the context of the
changing status of classical mechanics and celestial mechanics in the inter-
play between mathematics and physics, and its cultural origins – why and
how Kolmogorov arrived to its formulation and demonstration – is the
subject of the dissertation. Following the suggestion of Vladimir Arnold
(1937-2010), I refer to it as the Kolmogorov theorem on the persistence of
invariant tori under small perturbations in Hamiltonian dynamical sys-
tems11. In my investigation I have found crucial clue in a testimony by
Arnold – a former student of Kolmogorov’s – regarding a short conversa-
tion in 1984.

Let’s start from the appreciation by Scott Dumas of the contents of this
Kolmogorov’s theorem and its key role from an epistemological point of
view in the evolution of modern science:

Right from the start, after enunciating his laws of mechanics and grav-

itation, Isaac Newton ran into difficulties using those laws to describe the

motion of three bodies moving under mutual gravitational attraction (the

so-called ‘three body problem’). For the next two centuries, these difficul-

ties resisted solution, as the best minds in mathematics and physics con-

centrated on solving other, increasingly complex model systems in classical

mechanics (in the abstract mathematical setting, to ‘solve’ a system means

showing that its trajectories move linearly on so-called ‘invariant tori’). But

toward the end of the 19th century, using his own new methods, Henri

Poincaré confronted Newton’s difficulties head-on and discovered an as-

tonishing form of ‘unsolvability,’ or chaos, at the heart of the three body

11The origin of the name chosen for the theorem has been taken up by Arnold in
[Arnold 1997]: Kolmogorov’s theorem of 1954 on the persistence of invariant tori under a small
analytic perturbation of a completely integrable Hamiltonian system [Arnold 1997, p. 742];
[...] he [Kolmogorov] arrived at his 1954 theorem on the persistence of invariant tori. in [Arnold
1997, p. 743].
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problem. This in turn led to a paradox. According to Poincaré and his

followers, most classical systems should be chaotic; yet observers and ex-

perimentalists did not see this in nature, and mathematicians working with

model systems could not (quite) prove it to be true either. The paradox per-

sisted for more than a half century, until Andrey Kolmogorov unraveled it

by announcing that, against all expectation, many of the invariant tori from

solvable systems remain intact in chaotic systems. These tori make most

systems into hybrids – they are a strange, fractal mixture of regularity and

chaos. [Dumas 2014, preface].

Kolmogorov’s theorem would became the cornerstone of a new mathe-
matical theory, the socalled KAM theory, from the initials of Kolmogorov
as well as of Vladimir Arnold and Jürgen Moser (1928-1999) ([Celletti,
Froeschlé, Lega 2003], [Chierchia 2008], [Chierchia 2012]; [Dumas 2014,
chapter 4]; [Hubard 2014], [Diacu, Holmes 1996]);

At the origin of my research work was a call by the above quoted
scholar Scott Dumas to develop a “story of KAM” in order to overcome
a lack of awareness – among mathematicians and in the scientific world
– of an area of research whose aim is the “true picture of classical me-
chanics – often thought to have been sketched in the 17th century — was
not complete until the latter part of the 20th century. And although the
mathematical theory is indeed mostly complete, certain applications to
problems in physics (especially in celestial and statistical mechanics) have
been developed only with great difficulty, and some remain controversial
and uncertain even today.” [Dumas 2014, preface, p 7].

Historiographical appears crucial in the attempt to develop a “story-
telling” to be shared and become part of common awareness of break-
throughs in mathematics12. In fact, mathematical treatises tend to hide

12The initial impetus of my research came from Dumas’s call to tell a story, deeply
felt in the Rome scholarly group of mathematical analysts and physicists, where I have
been welcomed for the three years a PhD student; however, it also stemmed from the
conviction that the story of KAM could have a wider diffusion, thus contributing to the
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the original context of discovering and “make up” mathematical achieve-
ments by presenting them in an normalized, logically perfected exposi-
tion. My contribution focuses on the understanding of the conditions and
foundations of Kolmogorov’s research resulting in his 1954 theorem on the
preservation of invariant tori in Hamiltonian systems, as a crucial episode
in the status of classical mechanics in the 20th century and also throwing
light on the cultural conditions and often awkward paths of mathematical
research.

2. Published sources and beyond
My research focuses on three papers, originally written and published in
Russian, available in English through the reliable translation by Vladimir
M. Volosov13 (published in the 1991 English edition of vol. I of Kolmogorov’s
Selected works)14. Two of them appeared in the periodical "Doklady Akademii
Nauk SSSR"15 in November 1953 [Kolmogorov 1953] and August 1954 [the
already mentioned Kolmogorov 1954, where he states the theorem on the
persistence of invariant tori and discusses its demonstration]. The third,
[Kolmogorov 1957], is the contribution published three years after the In-
ternational Congress of Mathematicians in Amsterdam, in the Proceedings

culture of mathematics, only on the basis of a monographic historical hermeneutic recon-
struction, carefully based on sources that included published documents and testimoni-
als from the seminal years – the Dumas’ essay essentially consists of a collection of these
references

13Vladimir Markovich Volosov’s (born 1928) scientific career, in the area of nonlin-
ear mechanics ordinary and partial differential equations, was developed at the “M. V.
Lomonosov” Moscow State University; he graduated in 1950 (Physical Faculty; Depart-
ment of mathematics); Ph. D. 1956 and D. Sci. in 1961, then becoming a professor and
member of the “P. P. Shirshov” Institute of Oceanology of the Academy of Sciences. He
had previously translated a 1980 textbook by Viacheslav M. Starzhinskii published in
English by MIR (Moscow) with the title Advanced course of theoretical mechanics for
engineering studies (1982) (www.mathnet.ru/eng/person 12469)

14The three papers were included in the first volume of selected works by Kolmogorov
published in Russian in 1985 by Nauka (Moscow), edited by Valdimir M. Tikhomirov.
See introductory note to the Bibliography.

15Proceedings of the Soviet Union Academy of Sciences, founded in 1933.
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of the Congress, edited by Gerretsen Johan C.H and Groot Johannes [Ger-
retsen, De Groot 1957], in Russian, whose translation in English there is
selected works [Tikhomirov 1991].

The first two contributions are quite succinct and include a couple of
references each. The written text of the Amsterdam conference, instead,
presents a wide panorama opening to future research and includes a 23
bibliographical references spanning in the years 1917-195416. On March 22,
1958 Kolmogorov gave a talk in Paris at the Analytical Mechanics and Ce-
lestial Mechanics Seminar leaded by Maurice Janet (1888-1983); a French
translation (by Jean-Paul Benzécri) of the Proceedings contribution was
published in the series of the Seminar [Kolmogorov 1958]17.

I argue – in Chapter 3 – that this third contribution put forward a re-
search program for Hamiltonian conservative systems in classical mechan-
ics – presenting it to the international audience that had recently mostly
disregarded this area. In a nutshell, it was described by Kolmogorov with
the following words:

For conservative systems, the metrical approach is of basic importance

making it possible to study properties of a major part of motions. For this

purpose, contemporary general ergodic theory has elaborated a systems

of notions whose conception is highly convincing from the viewpoint of

physics. However, up to now the progress made towards the application

of these modern approaches to the analysis of specific problems of classical

16The list includes also [Kolmogorov 1953] and [Kolmogorov 1954]. The oldest refer-
ence is to Émile Borel’s Leçons sur les fonctions monogènes uniformes d’une variable complexe
(1917) and the most recent to the 1954 paper by the Soviet mathematician Mstislav Igore-
vich Grabar (1925-2006) On strongly ergodic synamical systems.

17The contribution by Kolmogorov was published in the first volume, corresponding
to the academic year 1957-58. Some scholars had of course the opportunity to attend
the Amsterdam lecture, but, lacking any audio or video registration, this third paper is
usually referred to as “the Amsterdam lecture.” Further archival material regarding the
writing of the contribution for the Amsterdam Proceedings, could make it possible to
improve the analysis presented in this dissertation on the cultural origins of the theorem
on the persistence of invariant tori.
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mechanics has been more than limited. [...] I believe that the time has now

come when considerable more rapid progress can be made. [Kolmogorov

1957, pp. 356-357].

This research program was the focus of a Moscow seminar leaded by Kol-
mogorov in years 1957- 1958, from which originated further research (no-
tably by Vladimir Arnold, who worked on the three body problem, and
Yakov Sinai). This research program lies at the foundations of KAM the-
ory, from a historical and epistemological point of view18.

Kolmogorov research program could arrive as a surprise or somehow
démodé as it regarded an area of problems in classical mechanics which
had had little attention for more than fifteen years in the Soviet Union and
abroad: issues regarding the dynamical systems in celestial mechanics,
such as the crucial three body problem.

The issue of the reasons that led Kolmogorov to this intellectual and
cultural gesture had been raised by Arnold, underlining it as an appealing
enigma. Arnold has reported – in two different papers – about a conversa-
tion with Kolmogorov regarding this issue, dating back to 1984 (in [Arnold
1997] and then in [Arnold 2000]). One year after the reported conversa-
tion, in the first volume (1985) of selected works published in Moscow, the
editor Vladimir Tikhomirov was able to include a short comment by Kol-
mogorov himself on the same issue. In my research, I have analyzed the
scholars mentioned both in the two reports of Arnold of his 1984 conversa-
tion with Kolmogorov and in the 1985 comment by Kolmogorov himself.

Among the authors mentioned in the conversation with Arnold – also

18On KAM theory Dumas writes: “It is not a stretch to rank KAM theory alongside the
revolutions in modern physics. But KAM theory [...] also had the misfortune of playing
out over roughly the same interval during which the revolutions of modern physics took
place. Not surprisingly, in that period, physicist abandoned classical mechanics to the
few hardy mathematicians who reanimed interested in. The physicists returned with
wondrous stories of their exploits in quantum mechanics, relativity, and nuclear physics.
The time has come for mathematicians to tell their tales from this period in a broad setting, too.
[Dumas 2014, preface, my emphasis]
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comparing them with the references included in the three above men-
tioned contributions [Kolmogorov 1953, 1954 and 1957] – two groups can
be identified.

On the one hand, scholars active in the area celestial mechanics after
the publication of Henri Poincaré Les méthodes nouvelles de la mécanique ce-
leste (1892-1899) [Barrow-Green 1997], notably Carl Vilhelm Ludvig Char-
lier (1862-1934), an outstanding member of Scandinavian research, author
of Die Mechanik des Himmels (1902-1907) and Edmund Whittaker (1873-
1956), who was the author of a report on the three-body problem on 1899
from which outgrew his classical A treatise on the analytical dynamic which
was intended as an essay inspired by past achievements in classical me-
chanics presenting challenges for future research. Moreover, other more
recent authors who lived in the age of emergence of quantum mechan-
ics and relativity theory, while facing the challenges to classical mechanics
involved in Poincaré research on the three body problem: Jean-François
Chazy (1882-1955) in France, and a Soviet eclectical scholar close to Kol-
mogorov19, the editor of the Soviet Encyclopedia Otto Yulyevich Schmidt
(1891-1956).

On the other hand, in the note published in the first volume of his
Selected works, Kolmogorov mentioned some contributions published in
years 1931-37 exploring the approach to Hamiltonian systems in classical
mechanics by means of Hilbert spaces and measure theory, in connection
with development of the socalled modern ergodic theory. Hilbert spaces
had been introduced in the 1920s by John von Neuman (1903-1957) (in the
context of what he called the “theory of operators”), who has showed their
suitability in the mathematical formalism of quantum mechanics.

A seminal paper was published in 1931 by Bernard O. Koopman (1900-
1981), a collaborator of George Birkhoff (1894-1944), entitled Hamiltonian

19Two papers by Chazy of 1929 and 1932 are included in the references of [Kolmogorov
1957], together with a referene to a 1947 paper by Schmidt.
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systems and transformations in Hilbert Space [Koopman 1931]. Let’s use
Kolmogorov’s own words regarding this development in [Kolmogorov
1957]:

After the work of H. Poincaré, the fundamental role of topology for

this range of problems became clear. On the other hand, the Poincaré-

Carathéodory recurrence theorem initiated the "metrical" theory of dynam-

ical systems in the sense of the study of properties of motions holding for

"almost all’ initial states of the system. This gave rise to the "ergodic theory",

which was generalized in different ways and became an independent centre

of attraction and a point of interlacing for methods and problems of various

most recent branches of mathematics (abstract measure theory, the theory of

groups of linear operators in Hilbert and other infinite-dimensional spaces,

the theory of random processes, etc.). [Kolmogorov 1957, pp. 355-356].

Furthermore, in the note included in the first volume of his Selected pa-
pers, Kolmogorov wrote:

My papers on classical mechanics appeared under the influence of von

Neumann’s papers on the spectral theory of dynamical systems and, par-

ticularly under the influence of the Bogolyubov-Krylov paper of 1937. I be-

came extremely interested in the question of what ergodic sets (in the sense

of Bogolyubov-Krylov) can exist in the dynamical systems of classical me-

chanics and which of the types of these sets can be of positive measure at

present this question still remains open). To accumulate specific infor- ma-

tion we organized a seminar on the study of individual examples. My ideas

concerning this topic and closely related problems aroused wide re- sponse

among young mathematicians in Moscow. [Kolmogorov 1991/1985, p. 521]

3. A journey in the mathematical biography of Andrej N. Kolmogorov20

20In the aftermath of Kolmogorov’s death, Vladimir Mikhailovich Tikhomirov (born
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These two groups of references suggest that in the early decades of the 20th
century the young Kolmogorov followed contemporary developments in
classical mechanics – especially regarding the central question of the three
body problem in celestial mechanics – as well as the new approach devel-
oped by George Birkhoff, again in the wake of Poincaré, towards a general
theory of dynamical systems based on qualitative analysis of systems of
differential equations. Both trends had scholars involved in them in the
Soviet Union. Soviet researchers in celestial mechanics included the above
mentioned Schmidt, but also Boris Vasilyevich Numerov (1891-1941?), a
leader of the flourishing Soviet astronomy supported by a network of ob-
servatories. Birkhoff approach was followed in the Soviet Union by sev-
eral leading Soviet scholars, in particular working in nonlinear mechan-
ics, such as Nikolay M. Krylov (1879-1955) in Kiev; Vyacheslav Vasil’evich
Stepanov (1889-1950) in Moscow, who in 1930 started a seminar on the
qualitative theory of differential equations, attended among many others
by Kolmogorov [Nemytskii 1957]21.

In his early paper [Kolmogorov 1953] the book on qualitative theory
of differential equations (in Russian) by Viktor Vladimirovich Nemytskii
(1900-1967) and Stepanov is the only bibliographical reference22.

1934) presented a short but very detailed essay "The life and work of Andrei Nikolaevich
Kolmogorov" [Tikhomirov 1988], which includes a biography of the mathematician, a
description of his works, as well as a list of all his pupils. In addition, we can see [Shyraev
1989], who draws from authobiographical memories included in Kolmogorov’s book on
mathematics [Kolmogorov 1988] (in Russian, no English translation available).

21Kolmogorov was a doctoral student of Nicolai Luzin, in that period the dominant
figure in Moscow mathematics; but this is what the British David G. Kendall (1918-2007)
wrote in a remembrance of Kolmogorov published in 1991:“A number of mathemati-
cians stimulated Kolmogorov’s earliest mathematical research, but perhaps his principal
teacher was Stepanov. In 1922 Kolmogorov produced a synthesis of the French and Rus-
sian work on the descriptive theory of sets of points, and at about the same time he was
introduced to Fourier series in Stepanov’s seminar. This was when he made his first
mathematical discovery -that there is no such thing as a slowest possible rate of conver-
gence to zero for the Fourier cosine coefficients of an integrable function. ”[Kendall 1991,
p. 303] In [Sinai 1989] the author underlines how von Neumann’s studies were followed
in the Soviet Union of the 1930s.

22“Stepanov was among the first in our country to understand the significance of the
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Two papers by Kolmogorov can be mentioned dating back to the 1930s
that show his interest in the general theory of dynamic systems and in
ergodic theory, fresh approaches to the classical problems of 19th cen-
tury mechanics [Kolmogorov 1936] and [Kolmogorov 1937]. Years 1936-37
marked the sharpening of the Stalin’s purges in the Soviet Union, includ-
ing a massive attack to astronomers. A dark age initiated, which included
the years of the Second world war 1941-1945, and was closed with Stalin’s
death in early 1953. The network of international connections of scientists
from the Russian Empire was radically damaged. During these years Kol-
mogorov apparently carried on a silent work on Hamiltonian systems, as
he confided to Arnold that “he had been thinking about this problem for
decades, starting from his childhood” [Arnold 1997, p. 1] and Sinai wrote
in 1989 that “apparently the interests of Kolmogorov in ergodic theory had
already started in the 1930s.” [Sinai 1989, p. 833].

Understanding the cultural origins of Kolmogorov theorem on the per-
sistence of invariant tori in the framework of his research program for clas-
sical mechanics – the issue first raised by Arnold, that lies at the basis of
Dumas’ call for a better understanding of the relevance of KAM theory for
modern science – has thus lead me to consider some aspects of intellectual
and cultural evolution of a single, outstanding scholar of the 20th century,
Kolmogorov, facing the radical transformation of the relationship between
physics and mathematics and the changing status of classical mechanics –
the heart of modern science.

My research has explored both the general context of Kolmogorov work
regarding classical mechanics old open problems and new methods, and
the biographical and intellectual reasons behind Kolmogorov involvement

metric theory of general dynamical systems begun in the works of Poincare and Birkhoff,
and he made an essential contribution to it” [Myshkis, Oleinik, 1990, p. 180] Stepanov
was the author of a textbook on differential equations published in 1936, and a second
textbook on the qualitative theory of differential equations with Viktor Vladimirovich
Nemytskii (1900-1967) first published in 1947, 2nd edition 1949 that would be translated
in 1960 in English by Princeton University Press.
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in this area of research in the 1950s, a choice that, as I will argue, had deep
cultural and almost “political” value, in a time of reconstruction and –
perhaps — of hope. Deeping our understanding the seminal work by Kol-
mogorov published in years 1953-54 thus can contribute to a better under-
standing of the evolution of mathematical thought in its relation to science
as investigation of Nature in the 20th century.

4. Structure of the dissertation
In Chapter 1, The mathematical landscape: general theory of dynamical systems
and classical mechanics in the late 19th century and early 20th century, some
elements will be discussed regarding the general problem of dynamics
as formulated by Poincaré in 1892 and researcher in celestial mechanics
around 1900 that Kolmogorov – as I have just mentioned – considered as
the background of his research program for dealing with open problems
in classical mechanics. Moreover, the seminal research – by Koopman and
von Neumann in the United States and by Krylov with Bogoliubov – on
the metrical and spectral approach to dynamical systems and ergodic the-
ory will be described. My analysis of this seminal research is intended
to support my analysis and interpretation of Kolmogorov’s research pro-
gram, and it is open to further deepening in subsequent studies. My aim in
this first chapter is to draw the main lines of the cultural landscape behind
Kolmogorov’s contribution, that was in place in the eve of the dramatic
explosion of totalitarianism and war of the 1930s and 1940s.

Chapter 2, Fascination and risk. Aspects of Andrej N. Kolmogorov’s (1903-
1987) life and times, is dedicated to the biographical and cultural aspects
relating to Kolmogorov’s training which may have influenced his inter-
est in celestial mechanics and the formulation of his research program for
classical mechanics in the early 1950s. The above mentioned report’s by
Arnold of his 1984 short conversation with Kolmogorov is analyzed and
investigated, also thanks to available literature on the evolution of science
and scientific education in the Russian Empire from the zarist regime to
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the Soviet Union. Kolmogorov’s participation in the scientific discussion
around Lysenko’s views– apart from its relevance from a political point of
view – throws light on his views on the role of mathematics in the scien-
tific study of natural phenomena, thus adding to our understanding of his
attention to classical mechanics. Kolmogorov’s silent research for a nice
span of years can found also an explanation considering the purge of as-
tronomers by Stalin, as well as the orientation of research on dynamical
systems mainly towards the dissipative systems of technological applica-
tions.

On the basis of the framework established in Chapters 1 and 2, in
Chapter 3, Kolmogorov’s theorem on the persistence of invariant tori: a look into
the origins of KAM theory, I analyze the seminal contribution contained in
the above mentioned three papers, originally published in Russian, [Kol-
mogorov 1953, 1954, 1957]. For the purpose of the exposition, I first con-
sider the research program for classical mechanics most explicitly put for-
ward in [Kolmogorov 1957] (the written version of his 1954 lecture at Ams-
terdam ICM). Then, I will analyze Kolmogorov’s discussion of the proof of
his theorem in Kolmogorov 1954. Finally, I present an analysis of the Dio-
phantine condition that has a key role in the proof, comparing its uses in a
1942 paper by the German scholar Carl Ludwig Siegel (1896-1981) [Ghys
2004]. My historical study, I argue, shows that speaking about a “KAM
theorem” [Hubard 2004] hides the meaning of 1954 Kolmogorov theorem
on the persistence of the invariant tori in the context of a research program
for classical mechanics. Subsequently, Arnold applied Kolmogorov’s re-
search program to the study of the three-body problem [Arnold 1963b],
[Arnold 2009]).
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Chronology

1903, April 25 Andrei Nikolaevič Kolmgorov’s birth

1906-10 Kolmogorov attends the experimental school run by his aunts,
located in their home.

1917 October Revolution. Kolmogorov is a high school student at the Ev-
genja (Evgeniya) Albertovnava Repman private Institute in Moscow

1920 He begins his university studies in mathematics (Moscow Univer-
sity) and in metallurgy (I. D. Mendeleev Institute)

1922-25 He teaches mathematics and physics at the Potylokhin Experi-
mental School in Moscow

1925 Graduation from Moscow University and beginning of postgraduate
work

1927 Dynamical systems, George David Birkhoff (1884 - 1944)

1929 He finishes his university studies and becomes a researcher at the
Institute of Mathematics and Mechanics of the Moscow University

1929-1930 Vyacheslav Vassilievich Stepanov’s Seminar on Qualitative the-
ory of differential equations at Moscow University.

1930, June - 1931, May journey trip to Germany and France with Pavel S.
Aleksandrov (1896 - 1982)

1931 Abandonment of progressive tendencies in education in the Soviet
Union

1931 Hamiltonian systems and transformations in Hilbert space, by Bernard
Osgood Koopman (1900 - 1981).
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1932 Zur Operatorenmethode in der klassischen Mechanik, by John von Neu-
mann (1903 - 1957)

1932 Proof of the quasi-ergodic hypothesis, by von Neumann.

1932 Dynamical systems of continuous spectra, by Koopman.

1936 Luzin affair

1936, October 20 Arrest of Boris V. Numerov (1891-1941(?))

1937 La théorie générale de da mesure dans son application à l’étude des systémes
dynamiques de la mécanique non linéaire, by Nikolay Mitrofanovitch
Krylov (1879-1955) and Nikolay Nikolayevitcch Bogoliubov (1909-
1992)

1937 Publication of A simplified proof of the Birkhoff-Khinchin ergodic theorem
by Kolmogorov

1942 Iteration of analytic functions, by Carl Ludwig Siegel (1896–1981)

1942 Kolmogorov married Anna Dmitrievna Egorova.

1953, March 5 Stalin’s death

1953, November 13 On Dynamical systems with an integral invariant on the
torus, in Douklady Akademii Nauk SSSR [Kolmogorov 1953]

1954, August 31 On the preservation of conditionally periodic motions under
small variations of the Hamilton function, in Douklady Akademii Nauk
SSSR [Kolmogorov 1954]

1954, September 9 Plenary lecture at the International Congress of Math-
ematicians in Amsterdam: The general theory of dynamical systems and
classical mechanics (the title was announced in Russian).
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1957 Publication of Proceedings of the International Congress of Mathemati-
cians 1954, Amsterdam September 2—September 9. In vol.1 the text of
Kolmogorov’s lecture was printed in Russian.

1957, Autumn Ph.D. course on the theory of dynamical systems in Moscow
(among those present the students Vladimir Igorevich Arnold and
Yakov Grigorevich Sinai)

1959 Vladimir Igorevich Arnold discusses his dissertation under the su-
pervision of Kolmogorov.

1962 On invariant curves of area-preserving mappings of an annulus, by Jürgen
KurtMoser (1928-1999)

1963 Proof of a theorem of AN. Kolmogorov on preservation of conditionally pe-
riodic motions under small change in the Hamilton function (In Russian)
by Vladimir Igorevich Arnold (1937-2010).
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1 The mathematical landscape: general theory of

dynamical systems and classical mechanics in

the late 19th century and early 20th century

Dans les théories physiques, il faut distinguer le fond et la forme. Le fond,

c’est l’existence de certains rapports entre des objets inaccessibles. Ces rap-

ports sont la seule réalité que nous puissions atteindre et tout ce que nous

pouvons demander, c’est qu’il y ait les mêmes rapports entre ces objets réels

inconnus et les images que nous mettons à leur place.

La forme n’est qu’une sorte de vêtement dont nous habillons ce squelette;

ce vêtement, nous le changeons fréquemment, à l’étonnement des gens du

monde, que cette instabilité fait sourire et qui proclament la faillite de la

Science. Mais si la forme change souvent, le fond reste.

Les hypothèses relatives à ce que je viens d’appeler la forme ne peu-

vent pas être vraies ou fausses, elles ne peuvent être que commodes ou

incommodes. Par exemple, l’existence de l’éther, celle même des objets ex-

térieurs ne sont que des hypothèses commodes. C’est pour cela que l’on

voit renaître de leurs cendres en se transformant certaines théories que l’on

croyait définitivement abandonnées. C’est pour cela aussi qu’il y a certaines

catégories de faits qui s’expliquent également bien dans deux ou plusieurs

théories différentes, sans qu’aucune expérience puisse jamais décider.

Cela est vrai en particulier pour les théories mécanistes. On peut en ef-

fet démontrer que, si un phénomène comporte une explication mécanique,

il en comportera une infinité.23 [Poincaré 1921, p. 130]

23Eng. Tr.: In physical theories, it is necessary to distinguish between substance and
form. The substance is the existence of certain relationships between inaccessible objects.
These relations are the only reality that we can reach and all we can ask is that there be
the same relations between these unknown real objects and the images that we put in
their place.

The form is only a kind of garment with which we dress this skeleton; this garment, we
change it frequently, to the astonishment of the people of the world, whom this instability
makes smile and who proclaim the bankruptcy of Science. But if the shape changes often,
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The branch of physics known as “classical mechanics” originated in the

seventeenth century, but wasn’t called that until the discovery of quantum

mechanics in the 1920s. It was quantum mechanics that most profoundly

changed our understanding of how and why particles move as they do, and

even what a particle is. Quantum mechanics was so completely different

that the word “classical” had to be added to the older theory to make it clear

which mechanics was meant. At the same time, quantum mechanics was

heavily inspired by the formulations of classical mechanics by Lagrange

and Hamilton dating back to the eighteenth and nineteenth centuries.

In many situations, using quantum mechanics and/or relativity to study

a physical system would be tantamount to shooting a fly with a catapult.

Roughly speaking, classical mechanics works very well (i.e., agrees with

experiments) for macroscopic objects that are moving at speeds much less

than the speed of light, and where gravity is not too strong – and also where

our experimental measurements are not too precise.

Take the motions of the planets around the sun and moons round their

planets, for example. Motions with the solar system were the most impor-

tant testing ground for classical mechanics in the first place, and for nearly

all purposes classical mechanics in this domain works as well now as it ever

did. [Helliwell, Sahakian 2020, Preface, pp xiii-xiv].

At the end of the 19th century, the research of the French scholar Henri
Poincaré (1854-1912) showed to the international scientific community that
new mathematical tools or conceptual frameworks, new-style clothes of-
feri new theoretical perspectives to the study of mechanical phenomena

the background remains.
Assumptions about what I just called form cannot be right or wrong, they can only be

convenient or inconvenient. For example, the existence of the ether, that even of external
objects are only convenient hypotheses. This is why we see reborn from their ashes by
transforming certain theories that we thought had been definitively abandoned. This is
also why there are certain categories of facts which can be explained equally well in two
or more different theories, without any experience ever being able to decide.

This is especially true for mechanistic theories. We can indeed demonstrate that, if a
phenomenon has a mechanical explanation, it will have an infinity of them.
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of celestial motion, the most important testing ground for classical mechanics
ad Thomas M. Helliwell and Vatche V. Sahakian put in their recent Modern
Classical mechanics (2020). In the evolution of mechanics from the studies of
Galileo, and above all of dynamics starting from Isaac Newton, we witness
a continuous evolution and improvement of mathematical approachs, in
a tension between the physical objects and relationships that are the pri-
mary reason for research and one’s own life who acquire mathematical
objects and relationships, regardless of the roots they have in trying to un-
derstand and predict the natural phenomena of motion and stability.

During the 18th century, mathematical analysis developed in symbio-
sis with theoretical and applied mechanics, mainly adopting a variational
approach. The formulation given by Joseph Louis Lagrange at the turn
of the 1800s derived from discussions of principles such as the minimum
action of Maupertuis. Was further refresh by William Hamilton and Carl
Gustav Jacobi increasingly following internal mathematical logic, which
are therefore intertwined with the nature of mechanics as knowledge about
the physical world.

At the turn of the 1900s, abstract algebra, topology, functional analysis
and probability developed as new fields of mathematics. Their current au-
tonomy as purely mathematical research sectors can make us forget how
deep connections exist in their origins with the open problems of mechan-
ics, and in particular of celestial mechanics, starting from the problem of
the three bodies.

The early decades of the twentieth century were years full of fruits in
research in physics and mathematics, but also in disciplinary restructur-
ing. The first steps of quantum mechanics and the theory of relativity
were accompanied by significant efforts - that deserve further historio-
graphical analysis - to open new perspectives to 19th century mechanical
studies, i.e. to what was then beginning to be considered as classical me-
chanics. Celestial mechanics had long maintained among scholars of the
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late 19th century the fascination deriving from Isaac Newton’s research
on the physical world, the beating heart of modern mathematized science,
and even earlier from the immemorial human aspiration to understand
the positions of the stars and their variations on the celestial vault ([Diacu,
Holmes 1996], [Wilson 1994]). With his work Les méthodes nouvelles de la
mécanique celeste (1892-99), three volumes, however, Poincaré had opened
the way, with his qualitative analysis of differential equations, not only
to new mathematical methods for dynamics in the classical sense, but to
the birth of a research sector, the general theory of dynamical systems, a
mathematical theory distant from physics but susceptible to applications
in several fields of study of evolution phenomena over time24

It is in this double framework – classical mechanics and the general
theory of dynamical systems – that Kolmogorov will present his theorem
oh the persistence on invariant tori in his closing lecture at the 1954 Inter-
national congress of mathematicians.

In this chapter we present a synthetic overview of the research on the
three-body problem – which had been one of the starting points of Hamil-
ton’s own contribution – at the end of the 19th century, including the con-
tribution of Poincaré, then we will now analyze the works that have con-
tributed most to the development in the field of classical and celestial me-
chanics between the end of the 19th century and the beginning of the 20th
century. Theories that will be the starting point of Kolmogorov’s studies:
a sort of cultural landscape in which we find the scientists and works that
inspired Kolmogorov for his research in classical mechanics:

"I25 had thought for a long time about problems in celestial mechanics,

from childhood, from Flammarion, and then — reading Charlier, Birkhoff,

the mechanics of Whittaker, the work of Krylov and Bogolyubov, Chazy,

Schmidt. I had tried several times, without results. But here was a begin-

24In the research of mechanics in the wake of Poincaré there is the echo of both statisti-
cal mechanics and quantum mechanics.

25Arnold is quoting Kolmogorov’s words.
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ning." [Arnold 2000, p. 90].

This scenario allows us to reconstruct – this is the main purpose of the
chapter – a kind of research group conducted around 1930 by applying
new mathematical tools, starting from a work by Bernard Koopman (1900-
1981) on the application of Hilbert spaces to classical mechanics, a former
student of George David Birkhoff and professor at Columbia University,
published in 1931 in the Proceedings of the NAS, in which both John von
Neumann (1903-1957), who was then starting his visits to Princeton, and
Nikolaj Mitrofanovitch Krylov (1879-1955), professor in Kiev, participated
his student Nikolaj Nikolayevich Bogolyubov (1909-1992). Birkhoff’s re-
search was at the center of the seminar founded in Moscow by Vyacheslaw
Vassilievich Stepanov (1889-1950), in which the young Kolmogorov took
part.

1.1 Between past and future: celestial mechanics at the turn

of the two centuries

ASTRONOMY is not only one of the most ancient of the physical sciences,

but also one of those which present the most alluring invitations to the con-

templative mind. The starry heavens, spangling with countless luminaries

of every shade of brilliancy, and revolving in eternal harmony round the

earth, constitute one of the most imposing spectacles which nature offers to

our observation. The waning of the placid moon, the variety and splendour

of the constellations, and the dazzling lustre of the morning and evening

star, must in all ages have excited emotions of admiration and delight.

[Grant (1852), History of physical astronomy: from the earliest ages to the

middle of the 19th century, comprehending a detailed account of the establishment

of the theory of gravitation by Newton, and its development by his successors, with

an exposition of the progress of research on all the other subjects of celestial physics.

p. i]
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The stars, the planets, these small dots, barely visible to the human eye,
apparently wander undisturbed in our sky, always fascinating different
peoples and cultures, who wondered about their nature and their move-
ments.

The illusory regularity in the movement of celestial bodies, often at-
tributed to ultraterrestrial and divine intervention, has been the object of
study, understood as a search for arithmetical methods for forecasting lu-
nar and planetary phenomena, since the most ancient civilizations - just
think of astronomy Babylonian, who from the eighth century B.C. com-
piled astronomical diaries with daily collections of planetary positions and
other occasional and important events, or to the Egyptians, who devel-
oped stellar clocks, i.e. tables that indicated the apparent displacement of
36 stars, the so-called "decans", found inside numerous sarcophagi. The
interest in astronomical phenomena is due to various reasons: first of all,
from the knowledge of the periodicity of the skies derived that of the cy-
cles of the seasons, fundamental for agriculture; in addition, the desire for
knowledge and understanding of visible reality was certainly not lacking.

Studies on astronomy and the collection of astronomical data has ac-
companied the evolution of science and mathematical theories. I could
say that we are dealing with one of the many examples in the history
of science in which two sciences feed on each other: the need to under-
stand the behavior of celestial bodies has led scientists and mathemati-
cians to develop new theories and, at the same time, the he advent of new
mathematical studies has allowed the intuition and formulation of new as-
tronomical theories, which followed one another from culture to culture,
thus preparing the field for Newtonian dynamics and the advent of what
we will today call modern astronomy, or physical astronomy, or even, by
Pierre Simon Laplace, celestial mechanics.

When in 1687 Isaac Newton (1643-1727) published Philosophiæ Naturalis
Principia, in which the law of universal gravitation is found, he was the son
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of a particularly lively cultural context. Just to name a few, Newton’s work
came after the works of Nicolaus Copernicus (1473 - 1543), Tycho Brahe
(1546 - 1601), the author of Astronomia Nova (1609) Johannes Kepler (1571
- 1630), Christiaan Huygens (1629 - 1695), and again Giovanni Domenico
Cassini (1625 - 1712), the French abbot and astronomer Jean - Felix Picard
(1620 - 1682).

With the systematisation of mechanics into a single corpus and New-
ton’s formulation of mutual gravitational attraction, the mechanical study
of celestial bodies could be deepened.

Indeed, the planets of the Solar System are approximately spherical in
shape and very small in size relative to their mutual distances. For this
reason, they can be considered material points and Newton’s laws can be
applied to the system.

If only the interaction between the Sun and each planet were taken
into account, then the motion of each would describe an elliptical orbit
around the Sun, with the Sun occupying one of the foci (Kepler’s Laws).
The interaction between only two celestial bodies, and the relative time
evolution of their orbits, goes by the name of the Two-Body Problem. This
was only solved geometrically by Newton himself, but rigorous resolu-
tion came thanks to later contributions from Swiss mathematicians Johann
Bernoulli (1667-1748) and Leonhard Euler.

Solved, in the sense of classical mechanics, means that the system of
differential equations describing the two-body problem has been proven
to be integrable, i.e. that the physically interesting parameters (the semi-
major axis of the elliptical orbit and the eccentricity of the orbit) remain
constant over time or, in mathematical terms, are constants of motion.

The two-body problem: The two-body problem can be schematised
as two material points moving in a three-dimensional Euclidean space;
each point is therefore identified by three coordinates and, for this rea-
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son, the problem has 6 degrees of freedom. If we call x1 = (x11, x12, x13)

and x2 = (x21, x22, x23) the spatial coordinates of the two bodies 1 and
2, m1 and m2 the two masses, and F1 and F2 the forces acting on bodies
1 and 2, respectively, then the equations of motion are{

m1
d2x1

dt2
= F1(|x1 − x2|)

m2
d2x2

dt2
= F2(|x1 − x2|)

For its resolution, it is shown that the problem reduces to two decou-
pled problems, one of which is a trivial uniform rectilinear motion and
the other becomes a 2-degree-of-freedom problem. This means that it
becomes a system of two ordinary differential equations in two un-
knowns, one of which depends on a single variable, and the solution
can be found.

In the Solar System, however, not only the Planet-Sun interactions count
but, even if of lesser intensity, there are also the Planet-Planet interactions
or, again, the interactions between a Planet and its Satellite. These forces
"perturb" the elliptical orbits described by the individual planets and, al-
though the effect is slow, catastrophic cases over very long periods of time
cannot be excluded a priori, such as the collision between two planets or
the escape of a planet from its orbit.

An integrable problem, such as the two-body problem, in which the
equations of motion are solved exactly, is thus perturbed by the small per-
turbations deriving from the other gravitational interactions and the re-
sulting problem is generally no longer integrable.

In fact, the two-body problem is one of the few cases of integrable
systems whose equations of motion are solved exactly. One-dimensional
Hamiltonian systems, such as the harmonic oscillator and the simple pen-
dulum; the so-called Lagrange top, Kovalenskaja’s top, geodetic motion
on an ellipsoidal surface etc...26, are integrable, but the motion of a planet

26[Arnold 1992], [Gentile 2021], [Gentile 2022].

36



in the Solar System, taking into account the gravitational interactions with
the other planets or other celestial bodies, is a problem becomes practically
intractable from the mathematical point of view.

The planets are in constant motion, their positions with each other
change over time and the force each exerts on all the others changes in
direction and intensity during their orbits. If these forces compensated
for each other, the planets would continue in the same elliptical orbits ob-
served by Newton for infinite times. Otherwise, if the small perturbations
do not compensate, the end result would be a collision between planets or
a departure into space of one of the planets.

Mathematically solving a differential equation problem with so many
variables becomes extremely complex.

However, it should be noted that the planet-planet and planet-satellite
interactions remain very small compared to the interactions of the planets
with the Sun - because the forces of gravitational attraction depend on the
masses of the bodies interacting with each other, and those of the planets
are much smaller compared to that of the Sun27. We are therefore dealing
with systems - usually written in the Hamiltonian formalism - differ little
from an integrable systems, such as the two body problem. This is the so-
called perturbation theory, already addressed by Newton from a geometric
point of view and which became toe focus of celestial mechanics, starting
from the second half of the 18th century, with the contribution by Laplace
, Lagrange, Charles Eugène Delaunay (1816-1872)28 and Urbain Le Verrier
(1811-1877).29.

Perturbation theory deals with problems in which a small parameter
appears which represents the measure of the difference between the sys-

27The mass of the planets is about a thousandth part of the mass of the Sun
28Charles-Eugène Delaunay (April 9, 1816 – August 5, 1872) was a French astronomer

and mathematician. I will provide more details in §1.4.2
29for example, Delaunay developed a very precise theory of the motion of the Moon,

based on the theory of perturbations [Delaunay 1860-67].
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tem to be studied and a similar, "near" system which can be integrated.
This was the starting point in Poincaré’s work at the end of the cen-

tury.30

The aim of Johan August Hugo Gyldén (1841– 1896), Finnish astronomer
at the Pulkovo and Stockholm observatories, was to find, through pertur-
bation theory, mathematical series that described the orbits of the planets,
even for arbitrarily long periods of time. In this way it would have been
possible to answer the question whether the Solar System is stable.31.

Let’s go into more detail, to better understand how the perturbation
theory acts on the problem of the motion of planets in the Solar System.

As already noted, in a first approximation, the interactions other than
planet-sun could be neglected, due to their smallness. Therefore, we can
start by considering the system of differential equations which takes into
account only the interactions of the single planets with the Sun. This prob-
lem can be integrated: as for the two-body problem, the planets describe
elliptical orbits around the Sun. Now, assuming that we no longer want to
neglect the smallest interactions, the orbits will undergo variations which,
although it could be irrelevant for short times (for example of the order
of thousands of years), could have catastrophic effects in very long times,
such as the collision of planets, the fall of one of them into the Sun or the
departure of one of them from the solar system.

The so-called n-body problem, with n ≥ 3, is therefore considerably
more complex than its reduction to just two bodies - it is enough to con-
sider that for n = 3 there is not yet a general solution32. In his A treatise on
the analytical dynamics of particles and rigid bodies; with ad introduction on the
problem of three bodies [Whittaker 1917], first published in 1904, the English

30Mais le savant qui a rendu à cette branche de l’Astronomie les services les plus éminents
est sans contredit M. Gyldén, said Poincaré, in the introduction to the first volume of Les
méthodes nouvelles de la mécanique céleste [Poincaré 1892-99].

31[Markannen 2007], [Bohlin 1897]
32See [Barrow-Green 1997], [Marcolongo 1915] and [Whittaker 1899].
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mathematician Edmund Taylor Whittaker (1873 - 1956) introduces chapter
XIII, The reduction of the problem of three bodies, defining the problem
as the most celebrated of all dynamical problems:

The most celebrated of all dynamical problems is known as the Problem

of Three Bodies, and may be enunciated as follows: Three particles attract

each other according to the Newtonian law, so that between each pair of

particles there is an attractive force which is proportional to the product of

the masses of the particles and the inverse square of their distance apart:

they are free to move in space, and are initially supposed to be moving in

any given manner; to determine their subsequent motion. The practical im-

portance of this problem arises from its applications to Celestial Mechanics:

the bodies which constitute the solar system attract each other according to

the Newtonian law, and (as they have approximately the form of spheres,

whose dimensions are very small compared with the distances which sep-

arate them) it is usual to consider the problem of determining their motion

in an ideal form, in which the bodies are replaced by particles of masses

equal to the masses of the respective bodies and occupying the positions of

their centres of gravity. The problem of three bodies cannot be solved in

finite terms by means of any of the functions at present known to analysis.

This difficulty has stimulated research to such an extent, that since the year

1750 over 800 memoirs, many of them bearing the names of the greatest

mathematicians, have been published on the subject. [Whittaker 1917, p

339]

To describe the problem in terms of differential equations, we can use the
symbology adopted by Whittaker himself in [Whittaker 1917].

The three-body problem: Let m1,m2 and m3 be the masses of three
bodies and r23, r13 and r12 the reciprocal distances between them.
Given an orthogonal system of Cartesian axes Oxyz, we can denote
with (q11, q12, q13), (q21, q22, q23) and (q31, q32, q33) the coordinates of the
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positions of the three masses with respect to it.
The force of attraction between two masses mi and mj is F = kmimjr

−2
ij ,

with k is a constant and, with a suitable choice of units, we can assume
k = 1.
The kinetic energy and potential energy of the system of three mutu-
ally attracting masses are, respectively:

T =
1

2

3∑
i=1

mi(q̇
2
i1 + q̇2i2 + q̇2i3)

and

V = −m2m3

r23
− m1m3

r13
− m1m2

r12
.

Thus the equations of motion of the system formed by the three
bodies is:

miq̈ij = − ∂V

∂qij
i, j = 1, 2, 3

These are 9 second-order differential equations, and therefore the
system has order 18.
Lagrange will prove that this system can be reduced to a system of 6th
ordera.
If we want to write the equations in Hamiltonian formb, we can denote

H =
3∑

i,j=1

p2ij
2mi

+ V

where pij = miq̇ij denotes the j-th component of the momentum of
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the mass body mi. So, the equations of the three body system are:

dqij
dt

=
∂H

∂pij
,

dpij
dt

= − ∂H

∂qij
,

with i, j = 1, 2, 3.
aSee [Whittaker 1917, pp. 338-355]
bSee the appendix

It is possible to explicitly find its general solution for all times?
One way to prove the integrability - and therefore its complete resolu-

tion - of the problem is the search for the so-called uniform integrals. A
uniform (or prime) integral for a problem defined by a system of differen-
tial equations can be defined as a function that remains constant along the
solutions of a system. For example, total energy is a uniform integral of
the 3-body problem, because it holds constant.

The existence of a number of independent prime integrals equal to the
order of the system of differential equation (i.e. the number of degrees of
freedom of the problem) implies the integrability of the problem.

Therefore, if we wanted to prove the solvability of the three-body prob-
lem through the existence of uniform integrals, we should find eighteen of
them, independent of each other:

[...] the problem of three bodies possesses 10 known integrals: namely

the six integrals of motion of the centre of gravity, the three integrals of

angular momentum, and the integral of energy; these are generally called

the classical integrals of the problem. [Whittaker 1917, p 358]

The German mathematician and astronomer Ernst Heinrich Bruns (1848
- 1919), in a 1887’s paper [Bruns 1887], demonstrated that for the general
problem of the three bodies there are no other uniform integrals other than
the classical ones33.

Given the difficulties of the three-body problem, the study of the sys-

33See [Whittaker 1899, pp 157-159]
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tem has been reduced to a simpler case: the so-called restricted problem of
three bodies, in which a particle of negligible mass moves subject to the at-
traction of two other bodies of positive mass rotating in circles about their
center of gravity.

Nevertheless, shortly after Bruns’ paper, Poincaré formulated in his
memoire [Poincaré 1890] - and subsequently in the first volume of [Poincaré
1892-99] - an extension of Bruns’ theorem, proving the non-existence of
uniform integrals also for the restricted three-body problem. Therefore,
the integrability problem cannot be addressed by going this route.

Another way is to use perturbation theory.
The solutions of the equations of motion to be described by means of

formal power series depend on the perturbation which deviates the prob-
lem from the closest integrable one. In addition to Gyldén’s contribution,
there was another Swedish scientists, Anders Lindstedt (1854-1939), who
developed one of the series of perturbations that describe the solutions,
still most used in celestial mechanics today.

While Gyldén was an astronomer with a strong theoretical bias, Lind-
stedt combine with practice his theoretical interest in the problem of the
three bodies. The Lindstedt series was the method most used by Poincaré
and by his successors, including Kolmogorov.

The main issue was then to study the convergence of these series which,
in most cases, seemed to be divergent. The reason for the lack of conver-
gence was due to disturb caused by the socalled small denominators (or
small divisors. In fact, the construction of the series implies that within the
coefficients of the terms there are denominators that can be zero or danger-
ously close to 0, causing the coefficients to tend to infinity and, therefore,
making diverge the series itself.

These denominators take the form of linear combinations of frequen-
cies of non-perturbed motions with integers, of the type:
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m1ω1 +m2ω2 + . . .mnωn, (1)

where ωi, i = 1 . . . n are real numbers representing the frequencies of the
planets and m1, . . . ,mn are integers numbers.

If the ratio of frequencies are a rational number, these denominators
can cancel and the corresponding term of the perturbation theory series
becomes infinite. This situation is described nowadays as exact resonance
between the planets each other, after a certain number of periods, the ini-
tial configuration of their mutual positions repeats itself. In the vicinity of
a resonance, i.e. when the frequencies are close to being commensurable,
the small divisors continue to be very close to zero and, in general, it is not
possible to predict the dynamic effects that follow. The repetition of close
configurations amplifies the perturbation effect and, in many cases, causes
the instability of the resonant orbit.

An example: the frequencies of the motions of Saturn and Jupiter.
In their motion of revolution around the sun, every day Saturn and
Jupiter move with frequencies equal respectively to approximately

ωS = 120′′ and ωJ = 299′′ (2)

The two frequencies are almost commensurable since

5ωS − 2ωJ ≈ 0

Now, the series that describes the motion of the two planets, deriving
from the perturbation theory, is of the type

∑
m,n ̸=0

anm
nωS +mωJ

ei(nωS+mωJ )t (3)

and, therefore, we find in the denominator a quantity that, for infinite
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n and m integers, is close to 0.

Difficulties due to small denominators accompanied the theories of celes-
tial mechanics during the first half of the 20th century. We will see in
chapter 3 that Kolmogorov obviated this problem by adopting a necessary
condition on the ratio between the frequencies of the motions.

1.1.1 “Properties holding for almost all the initial states of the system”:
Henri Poincaré recurrence theorem (1890) towards a metrical ap-
proach to dynamical systems

One hundred years before the International Congress of Mathematicians
in Amsterdam in 1954, Jules Henri Poincaré was born in Nancy.

A pioneer in the use of algebraic geometry and topology in the study
of celestial mechanics, His work provided developments in the study of
the three-body problem, with the introduction of a new approach, known
as the qualitative study of differential equations.

The term qualitative refers to the study of the behaviour of the solu-
tions of a system of differential equations, obtained through a geometric
approach, without knowing an explicit expression for these solutions. This
turned out to be necessary above all in celestial mechanics after, as we have
seen, it was not possible to determine the solutions of the system explic-
itly.

Although this novelty finds its greatest application in the three vol-
umes Les méthodes nouvelles de la mécanique céleste [Poincaré 1892-99], the
starting point of his research in this field can be traced back to more than
ten years earlier, to the article Mémoire sur les courbes définies par une équa-
tion différentielle (I) [Poincaré 1881], in which the author himself introduces
the adjective qualitative in reference to the geometric study of the curve
defined by the function under consideration:

Une théorie complète des fonctions définies par les équations différentielles

serait d’une grande utilité dans un grand nombre de questions de Math-
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ématiques pures ou de Mécanique. Malheureusement, il est évident que

dans la grande généralité des cas qui se présentent on ne peut intégrer

ces équations à l’aide des fonctions déjà connues, par exemple à l’aide des

fonctions définies par les quadratures. If, therefore, we wanted to restrict

ourselves to the cases which we can study with definite or indefinite inte-

grals, the field of our researches would be singularly diminished, and the

immense majority of the questions which arise in applications would re-

main insoluble. Il est donc nécessaire d’étudier les fonctions définies par

des équations différentielles en elles-mêmes et sans chercher à les ramener

à des fonctions plus simples [...].

Rechercher quelles sont les propriétés des équations différentielles est

donc une question du plus haut intérèt. On a déjà fait un premier pas dans

cette voie en étudiant la fonction proposée dans le voisinage d’un des points

du plan. Il s’agit aujourd’hui d’aller plus loin et d’étudier celte fonction

dans toute l’étendue du plan. Dans cette recherche, notre point de départ

sera évidemment ce que l’on sait déjà de la fonction étudiée dans une cer-

taine région du plan. L’étude complète d’une fonction comprend deux par-

ties:

1° Partie qualitative (pour ainsi dire), ou étude géométrique de la courbe

définie par la fonction;

2° Partie quantitative, ou calcul numérique des valeurs de la fonction.

[Poincaré 1881, pp. 375-376]34

34Eng.tr.: A complete theory of the functions defined by the differential equations
would be of great use in a large number of questions of pure Mathematics or Mechanics.
Unfortunately, it is obvious that in the great generality of the cases which arises, it is not
possible to integrate these equations using the functions already known, for example us-
ing the functions defined by the quadratures. If we therefore wanted to restrict ourselves
to the cases which we can study with inte. Whether defined or indefinite, the field of our
researches would be singularly diminished, and the immense majority of the questions
which presently apply would remain insoluble. It is therefore necessary to study the
functions defined by differential equations in themselves and without seeking to reduce
them to simpler functions [...].

Researching what are the properties of differential equations is therefore a question of
the highest interest. We have already taken a first step in this direction by studying the
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His interest in the theory of differential equations accompanied much of
his scientific production, from the first article that appeared in 1878 to the
last in 1912. However, from 1885, it is clear that his interest shifted towards
celestial mechanics. In fact, the output of articles from that year onwards
on differential equations mostly concerned questions of celestial mechan-
ics. In that year, he published the article entitled Sur l’équilibre d’une masse
fluide animée d’un mouvement de rotation in volume 7 of the journal "Acta
Mathematica". In the same volume, on the first six pages, we find the
announcement written by the publisher Gösta Mittag-Leffler, Mittheilung,
einen von König Oscar II gestifteten mathematischen Preis betreffend35 [Mittag-
Leffler 1885], concerning the prize announced by King Oscar II in which
Poincaré will participate, winning the prize for the first of the proposed
topics:

Etant donné un système d’un nombre quelconque de points matériels qui

s’attirent mutuellement suivant la loi de NEWTON, on propose, sous la

supposition qu’un choc de deux points n’ait jamais lieu, de représenter

les coordonnées de chaque point sous forme de séries procédant suivant

quelques fonctions connues du temps et qui convergent uniformément pour

toute valeur réelle de la variable. Ce probléme dont la solution étendra

considérablement nos connaissances par rapport au système du monde,

paraît pouvoir être résolu à l’aide des moyens analytiques que nous avons

actuellement à notre disposition; on peut le supposer du memoires, car

LEJEUNE-DIRICHLET a communiqué peu de temps avant sa mort à un

géomètre de ses amis qu’il avait découvert une méthode pour l’intégration

proposed function in the neighborhood of one of the points of the plane. It is now a ques-
tion of going further and of studying this function in the whole extent of the plan. In this
research, our starting point will obviously be what we already know about the function
studied in a certain region of the plane. The complete study of a function understood due
party:

1° Qualitative part (so to speak), or geometric study of the curve defined by the func-
tion;
2° Quantitative part, or numerical calculation of the values of the function.

35Eng.tr.: Communication concerning a mathematical prize donated by King Oscar II.
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des équations différentielles de la mécanique, et qu’en appliquant cette

méthode il était parvenu à démontrer d’une manière absolument rigoureuse

la stabilité de notre système planétaire. Malheureusement nous ne connais-

sons rien sur cette méthode, si ce n’est que la théorie des oscillations in-

finiment petites parait avoir servi de point de départ pour sa découverte.

On peut pourtant supposer presque avec certitude que cette méthode était

basée non point sur des calculs longs et compliqués, mais sur le développe-

ment d’une idée fondamentale et simple, qu’on peut avec raison espérer de

retrouver par un travail persévérant et approfondi. Dans le cas pourtant

où le problème proposé ne parviendrait pas à être résolu pour l’époque du

concours, on pourrait décerner le prix pour un travail, dans lequel quelque

autre problème de la mécanique serait traité de la manière indiquée et ré-

solu complètement.36

This represents only the first of the four problems proposed in the com-
petition, proposed by Karl Weierstrass (1815 - 1897), a member of the prize
commission together with Charles Hermite (1822 - 1901). Indeed, the ques-

36Eng.tr.: Given a system of any number of material points which mutually attract each
other according to NEWTON’s law, we propose, under the assumption that a collision of
two points never takes place, to represent the coordinates of each point as form of series
proceeding according to some known functions of time and which converge uniformly
for any real value of the variable. This problem, the solution of which will considerably
extend our knowledge in relation to the system of the world, seems capable of being
solved with the aid of the analytical means which we currently have at our disposal;
one can suppose it from the memoires, because LEJEUNE-DIRICHLET communicated
shortly before his death to a geometrician of his friends that he had discovered a method
for the integration of the differential equations of mechanics, and that by applying this
method he had succeeded in demonstrating in an absolutely rigorous manner the stabil-
ity of our planetary system. Unfortunately we know nothing about this method, except
that the theory of infinitely small oscillations seems to have served as a starting point
for its discovery. We can, however, assume almost with certainty that this method was
based not on long and complicated calculations, but on the development of a funda-
mental and simple idea, which we can with reason hope to recover by persevering and
thorough work. In the event, however, that the proposed problem does not succeed in
being solved by the time of the competition, the prize could be awarded for a work in
which some other problem of mechanics would be treated in the manner indicated and
solved completely.
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tion reflected Weierstrass’s strong interest in the n-body problem. This
question is explored further in [Barrow-Green 1997], where we read in a
footnote, on page 70:

In a letter dated 15 August 1878, Weierstrass told Kovalevskaya that he

had constructed a formal series expansion for solutions to the problem but

was unable to prove convergence, and in 1880/81 he gave a seminar on the

problems of perturbation theory in astronomy. Despite Weierstrass’ own

difficulties with the problem, certain remarks made by Dirichlet in 1858

had led him to believe that a complete solution was possible, and hence

his choice of the Problem as one of the competition questions. Weierstrass’

interest in the problem is chronicled in [Mittag-Leffler 1912].

Weierstrass here refers to the Lindstedt series, discussed in the previous
paragraph.

Poincaré won the prize in January 188937, although the result presented
did not meet the question posed in the prize.

In fact, he concentrated only on the problem of three bodies and in-
stead of demonstrating that the Lindstedt series converges, his research
led him to hypothesize, without being able to prove it, that they diverged.

He was asked to produce his memoir for publication as soon as possi-
ble in Acta Mathematica. Thus, in volume 13 of the 1890 Acta Mathemat-
ica "Sur le problème des trois corps et les équations de la dynamique" was
published.

Here are found the main ideas of Poincaré and will be considered as
the foundation of his later monumental work Les méthodes nouvelles de la
mécanique céleste, which appeared in three volumes in the seven years from
1892 to 1899. It is in the memoire [Poincaré 1890] that we find the first orig-
inal formulation of the so-called Poincaré Recurrence Theorem, mentioned
by Kolmogorov in his 1954 speech.38

37see [Barrow-Green 1997], [Diacu, Holmes 1996], [Dumas 2014] for full details
38In [Barrow-Green, p 113] the author underlines that the original formulation of the

theorem is already found in the draft memoire of 1889, never published: Sur le probléme
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The theorem, in its original formulation, is stated as follows:

Theorem 1 (Poincaré Recurrence) Supposons que le point P reste à distance
finie, et que le volume

∫
dx1dx2dx3 soit un invariant intégral39; si l’on consid-

ère une region r0 quelconque, quelque petite que soit cette région, il y aura des
trajectoires qui la traverseront une infinité de fois.40

The theorem, with its characteristic geometric nature, will be the fore-
runner of Birkhoff’s studies and of the birth of the ergodic theory [Sinai
1976], [Barrow-Green 1993], [Chenciner 2012], as Kolmogorov will say in
his Amsterdam speech:

After the work of H. Poincare, the fundamental role of topology for

this range of problems became clear. On the other hand, the Poincaré-

Carathéodory recurrence theorem initiated the "metrical" theory of dynami-

cal systems in the sense of the study of properties of motions holding for "al-

most all" initial states of the system. This gave rise to the "ergodic theory",

which was generalized in different ways and became an independent center

of attraction and a point of interlacing for methods and problems of vari-

ous most recent branches of mathematics (abstract measure theory, the the-

ory of groups of linear operators in Hilbert and other infinite-dimensional

spaces, the theory of random processes, etc.). At the preceding International

Congress in 1950 the extensive paper by Kakutani was devoted to general

problems of ergodic theory. [Kolmogorov 1957, pp. 355-356].

This theorem, together with the theorem of non-existence of uniform inte-
grals for the three-body problem, and with many other results developed
in the memoirs, finds a more conscious accommodation in the three vol-
umes of Les Méthodes nouvelles de la mécanique céleste [Poincaré 1892-99].

des trois corps et les équations de la dynamique avec des notes par l’auteur - mémoire couronné
du prix de S. M. le Roi Oscar 11. Printed in 1889 but not published.

39It means that the volume of the region is conserved
40Eng.tr.: Suppose that the point P remains at a finite distance, and that the volume∫
dx1dx2dx3 is an integral invariant; if we consider any region r0, however small this

region may be, there will be trajectories which will cross it an infinity of times.
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The introduction to the first tome of the work is a remarkable historical
document: Poincaré traces the state of the art of celestial mechanics and
describes the developments to which he contributed in a clear and concise
manner.

I quote here a few passages that are particularly significant for my his-
torical reconstruction of the evolution of dynamics:

Le Problème des trois corps a une telle importance pour l’Astronomie, et

il est en même temps si difficile, que tous les efforts des géomètres ont été

depuis longtemps dirigés de ce côté. Une intégration complète et rigoureuse

étant manifestement impossible, c’est aux procédés d’approximation que

l’on a dû faire appel. [...] Le but final de la Mécanique céleste est de ré-

soudre cette grande question de savoir si la loi de Newton explique à elle

seule tous les phénomènes astronomiques; le seul moyen d’y parvenir est

de faire des observations aussi précises que possible et de les comparer en-

suite aux résultats du calcul. Ce calcul ne peut être qu’approximatif et il

ne servirait à rien, d’ailleurs, de calculer plus de décimales que les observa-

tions n’en peuvent faire connaître. Il est donc inutile de demander au calcul

plus de précision qu’aux observations; mais on ne doit pas non plus lui en

demander moins.

Aussi l’approximation dont nous pouvons nous contenter aujourd’hui

sera-t-elle insuffisante dans quelques siècles.

[...] Cette époque, où l’on sera obligé de renoncer aux méthodes anci-

ennes, est sans doute encore très éloignée; mais le théoricien est obligé de la

devancer, puisque son oeuvre doit précéder, et souvent d’un grand nombre

d’années, celle du calculateur numérique.

[...] Ces méthodes, qui consistent à développer les coordonnées des

astres suivant les puissances des masses„ ont en effet un caractère com-

mun oui s’oppose à leur emploi pour le calcul des éphémérides à longue

échéance. Les séries obtenues contiennent des termes dits séculaires, où le

temps sort des signes sinus et cosinus, et il en résulte que leur convergence
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pourrait devenir douteuse si l’on donnait à ce temps t une grande valeur.

La présence de ces termes séculaires ne tient pas à la nature du prob-

lème, mais seulement à la méthode employée.

[...] Mais le savant qui a rendu à cette branche de l’Astronomie les ser-

vices les plus éminents est sans contredit M. Gyldén41. Son oeuvre touche

à toutes les parties de la Mécanique céleste, et il utilise avec habileté toutes

les ressources de l’Analyse moderne. M. Gyldén est parvenu à faire dis-

paraître entièrement de ses développements tous les termes séculaires qui

avaient tant gêné ses devanciers. D’autre part, M. Lindstedt a proposé une

autre méthode beaucoup plus simple que celle de M. Gyldén, mais d’une

portée moindre, puisqu’elle cesse d’être applicable quand on se trouve en

présence de ces termes, que M. Gyldén appelle critiques.

[...] Il m’a semblé, d’autre part, que mes résultats me permettaient de

réunir dans une sorte de synthèse la plupart des méthodes nouvelles récem-

ment proposées, et c’est ce qui m’a déterminé à entreprendre le présent Ou-

vrage.42

41Johan August Hugo Gyldén (May 29, 1841– November 9, 1896) was a Finnish as-
tronomer primarily known for work in celestial mechanics. I will provide more details in
§1.4.2

42Eng.tr.:The Three-Body Problem has such importance for astronomy, and it is at the
same time so difficult, that all the efforts of geometers have long been directed in this
direction. A complete and rigorous integration being obviously impossible, it is to the
processes of approximation that one had to appeal. [...] The ultimate goal of Celestial
Mechanics is to resolve this great question whether Newton’s law alone explains all as-
tronomical phenomena; the only way to achieve this is to make observations as precise
as possible and then compare them with the results of the calculation. This calculation
can only be approximate and it would serve no purpose, moreover, to calculate more
decimals than the observations can make known. It is therefore useless to demand more
precision from the calculation than from the observations; but neither should one ask less
of it.

Also the approximation with which we can content ourselves today will be insufficient
in a few centuries.

[...] This time, when we will be obliged to renounce the old methods, is doubtless still
very distant; but the theoretician is obliged to precede it, since his work must precede,
and often by a large number of years, that of the digital computer.

[...] These methods, which consist in developing the coordinates of the stars according
to the powers of the masses, have in fact a common character which is opposed to their
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[Poincaré 1892-99, vol I, pp 1-5.]

The first volume dealt with periodic solutions and the non-existence of
uniform integrals, as well as asymptotic solutions to the three-body prob-
lem, while the second volume focused on the multiple perturbation se-
ries methods developed up to then by Newcomb, Gyldén, Lindstedt and
Bohlin and their applications to the three-body problem.

Finally, the last one, which appeared six years after the second, delved
into integral invariants, periodic solutions of the second kind and doubly
asymptotic solutions, the latter introduced by Poincaré himself in the prize
memoir.

The difficulties highlighted by the various methods listed by Poincaré
on the convergence of power series are characteristic not only of problems
of celestial mechanics, but of all problems "close" to integrable problems,
with which perturbation theory deals.

For this reason, Poincaré defined on page 32 of volume 1 what he will
call Problème général de la Dynamique. Let’s see what it is, using the same
nomenclature used by the French mathematician.

The general problem of dynamics: Let us consider the study of the
movement of q material bodies, free to move in space; each of them

use for the calculation of long-term ephemeris. The series obtained contain so-called sec-
ular terms, where the time comes out of the sine and cosine signs, and it follows that their
convergence could become doubtful if one gave this time t a large value.

The presence of these secular terms is not due to the nature of the problem, but only to
the method employed.

[...] But the scholar who has rendered this branch of astronomy the most eminent ser-
vice is without a doubt Mr. Gyldén. His work touches on all parts of Celestial Mechanics,
and he skilfully uses all the resources of modern Analysis. Mr. Gyldén has succeeded
in eliminating entirely from his developments all the secular terms which had so embar-
rassed his predecessors. On the other hand, Mr. Lindstedt has proposed another method
much simpler than that of Mr. Gyldén, but of less import, since it ceases to be applicable
when one finds oneself in the presence of these terms, which Mr. Gyldén calls criticism.

[...] It seemed to me, on the other hand, that my results allowed me to bring together
in a kind of synthesis most of the new methods recently proposed, and this is what de-
termined me to undertake the present work.
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will be characterized by a mass m1, . . . ,mq, by the three spatial coor-
dinates: (x1, x2, x3) for the first body, (x4, x5, x6) for the second body,
. . . , (x3q−2, x3q−1, x3q) for the last body and by the three spatial coordi-
nates of the momentum (y1, y2, y3) for the first body, (y4, y5, y6) for the
second body, . . . , (y3q−2, y3q−1, y3q) for the last body, with respect to a
fixed reference system.

Since Newton’s formulation we have seen that the equations of mo-
tion correspond to a system of n second-order differential equations.

With the Lagrangian and Hamiltonian formalisms the equations
take on a new form, becoming a system of first order differential equa-
tions in a space of 2n variables (double, with respect to the first), in
which the coordinates of the points are identified by their positions
and their momentum.a

A force will act on each body, resulting from the gravitational in-
teractions between the masses, which is also vectorial and formed by
spatial components along the three directions: (F1, F2, F3) for the first
body, (F4, F5, F6) for the second body, . . . , (F3q−2, F3q−1, F3q) for the last
body.

If the system is conservative, there will exist a function V , called
the force functionb such that

Fi =
dV

dxi

Also, we can define the live half forcec, that have the form:

T =
y21 + y22 + y23

2m1

+
y24 + y25 + y26

2m2

+ · · ·+
y23q−2 + y23q−1 + y23q

2mq

Thus, the equation of live forces can be written as
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T − V = const.

and, written

T − V = F (x1, x2, . . . , x3q, y1, y2, . . . , y3q),

the equations of motion are described by

dxi

dt
=

dF

dyi

dyi
dt

= −dF

dxi

(4)

Now, proceeding in an analogous way to formalize the problem of the
three bodies, Poincaré observed that, since two of them have much
smaller masses than the third, their masses can be written as a product
between a very small value µ and a finite value (for example: m1 = µα1

and m2 = µα2, with α1, α2 finite numbers).
Then it may be an advantage to develop F in increasing powers of µ

F = F0 + µF1 + µ2F2 + . . . (5)

with F0 not depending on any variable yi. Whatever µ, F is a periodic
function of period 2π with respect to the variables yi.
Thus Poincaré defines The general problem of dynamics as the study of
the canonical equations (4), assuming that the function F can expand
in powers series as (5) and supposing that the function F0 depends
only on the variables x1, x2, . . . and that the successive Fi are periodic
of period 2π with respect to the variables yi.

aIn modern terms, the space formed by the pairs (x, y) with x position vector and
y momentum vector, forms a differential manifold and is called phase space.

bToday it is called potential energy
cToday it is called kinetic energy

The general problem of dynamics is the form of the new methods pre-
sented by Poincaré in his classic three volumes essay.
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To give an overview of Poincaré’s research in this area, we can avoid
ourselves of the words written by the mathematician himself, in the arti-
cle Analyse des travaux scientifiques de Henri Poincaré faite par lui-même, pub-
lished in 1921 in volume 38 of "Acta Mathematica" [Poincare 1921]. In the
133 pages, all of the French mathematician’s publications are first listed
and then what he defines as "Résumé analitique" is reported, divided into
seven items that represent the areas in which he carried out his work:

J’ai classé les travaux que j’ai à résumer sous les sept rubriques suiv-

antes:

1°. Equations Différentielles.

2°. Théorie générale des Fonctions.

3°. Questions diverses de Mathématiques pures (Algèbre, Arithmétique,

Théorie des Groupes, Analysis Situs).

4°. Mécanique Céleste.

5°. Physique Mathématique.

6°. Philosophie des Sciences.

7°. Enseignement, vulgarisation, divers (Bibliographie, rapports divers).

[Poincaré 1921, p. 36]43.

In particupar, the section on celestial mechanics works begins on page
102, where he makes a very clear summary of his results. Divided into
very short and discursive subsections, the first is entitled Généralités sur les
Équations de la Dynamique et de la Mécanique Céleste:

Les équations de la Dynamique présentent des propriétés remarquables

43Eng.tr.: I have classified the work I have summarised under the following seven
headings:
1°. Differential equations.
2°. General Theory of Functions.
3°. Various questions of pure Mathematics (Algebra, Arithmetic, Group Theory, Analysis
Situs).
4°. Celestial Mechanics.
5°. Mathematical Physics.
6°. Philosophy of Science.
7°. Teaching, popularisation, various (Bibliography, various reports).
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qui ont été mises en évidence par JACOBI dans ses Vorlesungen44.

Quelles sont les conséquences plus ou moins immédiates de ces pro-

priétés? Quel partie peut-on en tirer pour la mise en équation des prob-

lèmes de Dynamique et en particulier des problèmes de Mécanique Céleste?

Telle est la première question dont je veux parler ici.

J’ai été amené à passer en revue les principales propriétés des équations

canoniques (183, 278). Les propriétés sont classiques; et je n’ai eu qu’a per-

fetionner certains détails; en me servant surtout du caractère bien connu

qui permet de reconnaître si un changement de variables conserve la forme

canonique des équations.

Ce genre de transformations facilite la mise en équation du problème

des trois corps; c’est ce que j’ai montré (164, I87). On sait que dans le

procédé classique on rapporte toutes les planètes à des axes mobiles pas-

sant par le Soleil. L’inconvénient est que la fonction perturbatrice n’est pas

la même pour toutes les planètes. Un autre procédé consiste à rapporter

chaque planète au centre de gravité du système formé par le Soleil et toutes

les planètes inférieures à celle que l’on considère. L’inconvénient est évité,

mais la fonction perturbatrice est un peu plus compliquée. J’ai proposé un

troisième procédé, dans lequel les coordonnées de chaque planète sont rap-

portées au Soleil, et sa vitesse à des axes fixes.

Malgré les travaux dont les équations canoniques ont été l’objet depuis

JACOBI, toutes leurs propriétés ne sont pas connues, ou plutôt on n’a pas

insisté sur toutes les formes que peuvent revêtir ces propriétés et qu’il peut

être utile de connaître. Si par exemple on étudie les équations aux variations

des équations de la Dynamique, c’est à dire les équations qui définissent

une solution infiniment peu différente d’une solution donnée, on rencontre

des propositions importantes sur lesquelles j’ai attiré l’attention (183, 278).

D’un autre côté, j’ai été amené à introduire une notion nouvelle, celle

44Vorlesungen uber dynamik (Lectures on Dynamics) by Karl Gustav Jakob Jacobi (1804-
1851), First published in 1866
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des invariants intégraux (I83, 280). Ce sont certaines intégrales définies sim-

ples ou multiples qui demeurent constantes, quand le champ d’intégration

varie conformément à une certaine loi définie par une équation différen-

tielle. Si par exemple on envisage les équations différentielles au mouve-

ment d’un fluide incompressible, le volume est un invariant intégral.

Les équations canoniques de la Dynamique possèdent des invariants

intégraux remarquables et l’existence de ces invariants jette une grande lu-

mière sur leurs propriétés.

Pour en finir avec ces généralités sur les équations de la Dynamique et

le problème des 3 corps, je signalerai un dernier travail (166). On sait que

BRUNS a démontré que le problème des 3 corps ne saurait admettre d’autre

intégrale algébrique que les intégrales classiques. Malheureusement dans

sa démonstration subsistait une lacune grave et particulièrement délicate à

combler. J’ai été assez heureux pour mettre la belle et ingénieuse démon-

stration de M. BRUNS à l’abri de toute objection.45

45Eng. Tr.: The equations of Dynamics have remarkable properties that were high-
lighted by Jacobi in his Vorlesungen.
What are the more or less immediate consequences of these properties? What part can
one draw from it for the setting in equation of the problems of Dynamics and in partic-
ular of the problems of Celestial Mechanics? This is the first question I want to discuss
here.
I have been led to review the main properties of the canonical equations (183, 278). The
properties are classic; and I only had to perfect certain details; by using above all the
well-known character which makes it possible to recognize whether a change of vari-
ables preserves the canonical form of the equations.
This kind of transformation facilitates the equation of the three-body problem; this is
what I have shown (164, I87). It is known that in the classical method all planets are re-
lated to moving axes passing through the Sun. The disadvantage is that the perturbation
function is not the same for all the planets. Another method consists in relating each
planet to the centre of gravity of the system formed by the Sun and all the planets below
the one under consideration. The disadvantage is avoided, but the perturbation function
is a little more complicated. I have proposed a third procedure, in which the coordinates
of each planet are related to the Sun, and its speed to fixed axes.
In spite of the work that has been done on the canonical equations since Jacobi, not all
their properties are known, or rather not all the forms that these properties can take and
that it can be useful to know have been insisted on. If, for example, one studies the
equations of variations of the equations of Dynamics, that is to say, the equations which
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The proof to which he refers in the last sentence is contained in chapter 5
of the first volume of [Poincaré 1892-99], on page 233. Nowaday is called
Non-existence des intégrals uniforms, [Fermi 1923b], [Benettin, et al. 1985],.

To this theorem must be added the discovery of some complex solu-
tions - called by Poincaré asymptotic and doubly asymptotic (that is, in infi-
nite time past and future) - and of some trajectories, called homoclinic, so
complex that they cannot be drawn. Thus he marks the beginning of a
very delicate moment in the history of celestial mechanics: once it became
clear that the method of direct integration could no longer be pursued and
that some particular solutions were anything but simple, the study of the
qualitative and global aspects of motion became the new paradigm. Not
only that: the possibility of being faced with a mathematical description
that is anything but stable has made its way more and more, creating an
ever-widening gap between astronomers and their direct measurements
and mathematicians and their chaotic theories about the solar system.

define a solution infinitely little different from a given solution, one encounters impor-
tant propositions to which I have drawn attention (183, 278).
On the other hand, I was led to introduce a new notion, that of integral invariants (I83,
280). They are certain simple or multiple definite integrals which remain constant, when
the field of integration varies according to a certain law defined by a differential equa-
tion. If, for example, we consider the differential equations of motion of an incompress-
ible fluid, the volume is an integral invariant.
The canonical equations of Dynamics have remarkable integral invariants and the exis-
tence of these invariants sheds much light on their properties.
To finish with these generalities on the equations of Dynamics and the 3-body problem,
I will mention one last work (166). It is well known that Bruns proved that the 3-body
problem cannot admit any other algebraic integral than the classical ones. Unfortunately,
in his proof there was a serious gap that was particularly difficult to fill. I was fortunate
enough to protect Mr. Bruns’ beautiful and ingenious demonstration from any objections.
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1.1.2 Ferrying classical mechanics to the 20th century: Edmund Wit-
taker’s A treatise on the analytical dynamics of particles and rigid
bodies (1904)

At the end of the 19th century celestial mechanics and the problem of
the stability of the solar system were at the center of interest of the in-
ternational mathematical community and the revolutionary new theories
of Henri Poincaré played a leading role in this field. The question posed
by the same French mathematician de savoir si la loi de Newton explique à
elle seule tous les phénomènes astronomiques still remains open. Although
Poincaré’s work was widely recognized during his lifetime, many parts of
him remained enigmatic afterwards [Dumas 2014, p 43]. This mainly de-
pended on two factors: on the one hand, the French mathematician did not
make an effort to condense, polish and check his work [Dumas 2014]; on
the other hand, mathematics itself in the 20th century was affected by the
restructuring of ideas: previous theories were not rejected but assumed in
new visions, becoming unrecognizable from the original ones of the math-
ematicians of the past. The field of classical mechanics itself has not been
spared by the wave of change:

Once a flourishing subject, where a remarkable cross-breeding of math-

ematics and physics took place, classical mechanics was considered by many

to have reached a dead end by the first decades of the twentieth century, ex-

cept for eventual applications to other fields.

[...] So dramatic have been the changes that mechanics has undergone

in the twentieth century that the style and even the contents of most books

on dynamics written before the 1930s look hopelessly dated to present-day

readers. But there are exceptions [Coutinho 2014, p. 356].

Severino Collier Coutinho refers to the works of the British mathemati-
cian, of Scottish origin, born in 1873, when Poincaré was just 18 years old:
Edmund Taylor Whittaker (1873-1956).

In the year of the publication of the last of the three volumes of Les
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méthodes nouvelles, Whittaker was in Cambridge, England, when the
British Association asked him for a report on the state of research on the
three-body problem. The English mathematician and astronomer William
Hunter McCrea (1904 - 1999) reported in [McCrea 1957] the notice:

Whittaker’s interests in dynamics and optics were closely linked with an

interest in their astronomical applications. As early as 1898 the Council

of the British Association resolved "that Mr. E. T. Whittaker be requested to

draw up a report on the planetary theory". Besides, in those days an interest

in astronomy was more general amongst mathematicians than it has since

become, and most professional mathematicians in the country joined the

Royal Astronomical Society. [McCrea 1957, p 236]

The following year, Whittaker wrote Report on the Progress of the Solution
of the Problem of Three Bodies, a report covering the last thirty years of re-
search, up to Poincaré’s very recent studies:

The Report attempts to trace the development of the subject in the last

thirty years, 1868-98; this period opens with the time when the last volume

of Delaunay’s "Lunar Theory" was newly published; it closes with the is-

sue of the last volume of Poincaré’s "New Methods in Celestial Mechanics".

Between the two books lies the development of the new dynamical astron-

omy.

The work will be distributed under the following seven headings:

§I. The differential equations of the problem.

§ II. Certain particular solutions of simple character.

§ III. Memoirs of 1868-89 on general and particular solutions of the dif-

ferential equations, and their expression by means of infinite series (exclud-

ing Gyldén’s theory).

§IV. Memoirs of 1868-89 on the absence of terms of certain classes from

the infinite series which represent the solution.

§ V. Gyldén’s theory of absolute orbits.

§ VI. Progress in 1890-98 of the theories of §§ III and IV

§ VII. The impossibility of certain kinds of integrals. [Whittaker 1899, p.
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122].

Section VI is dedicated to the developments of Poincaré in "Les méthodes
nouvelles de la mécanique céleste". It provides a very accurate description
of some of the aspects addressed by the French mathematician (such as pe-
riodic and asymptotic solutions and invariant integrals); he underlies the
importance of some of his results, such as the recurrence theorem [Whit-
taker 1899, p 145], reporting the original formulation of the fundamental
problem of dynamics [Whittaker 1899, p 147].

Whittaker held the position of secretary of the RAS from 1901 to 1906,
became Astronomer Royal of Ireland, moved to Dunsink Observatory -
the same observatory where Hamilton had worked - and was appointed
Professor of Astronomy at Dublin University in 1906.

Five years after his report on the problem of three bodies, he published
the first edition of his monumental work on analytical mechanics, entitled
A treatise on the analytical dynamics of particles and rigid bodies; with an intro-
duction to the problem of three bodies.

McCrea emphasises the importance of the figure of Whittaker for the
British mathematics , especially with reference to his work in the field of
dynamics:

The name of Sir Edmund Whittaker will always hold a unique place in the

history of British mathematics. It may reasonably be claimed that no sin-

gle individual in this century or the last had so far-reaching an influence

upon its progress. If such a claim comes as a surprise to some present-day

readers, it is probably because we are apt to forget the part that Whittaker

played personally in bringing about so many of the developments that we

now take for granted.

British nineteenth-century mathematics was deplorably insular, apart

from the work of a very few of its most distinguished men in certain par-

ticular fields. Whittaker, more than anyone else, brought about the trans-

formation to something that was more abreast of developments elsewhere
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while, happily, still bearing characteristic features of its own.

[...] He was the first to make available in this country a comprehensive

account of the special functions of analysis. Further, what Forsyth46 and

Whittaker did for analysis, Whittaker alone did for applied mathematics

by his Analytical Dynamics.

[...] Moreover, with an inspired appreciation of what is in the best sense

useful in mathematics, he has included in his books much that was found to

be needed in the development of quantum mechanics and wave-mechanics

more than twenty years afterwards. The part that British workers in par-

ticular were thus enabled to contribute to this development owes a debt to

Whittaker which seems scarcely to have been sufficiently acknowledged.

[McCrea 1957, p 234].

Whittaker’s Analytical Mechanics was the first book to provide a system-
atic account in English of the theory arising from Hamilton’s equations
([McCrea 1957]).

In a recent paper in "Archive for History of Exact Sciences", [Coutinho
2014], The author traces the history and the wide spatial and temporal dif-
fusion of the essay. He has attempted to study the reasons that made this
work so enduring, even in times when many of the contemporary works
were shelved and deemed obsolete. Published in 1904, it had four editions,
translations into German and Russian and is still in print today47:

What were the qualities that allowed Whittaker to write a book [...] that

remains useful to mathematicians working in several different areas, more

than one hundred years after it was written? [...] this was in good measure

due to Whittaker’s great knowledge of the literature and to his ability to

organize this knowledge in a systematic way. Moreover, his reading was

46Andrew Russel Forsyth (Glasgow, 18 June 1858- South Kensington 2 June 1942) was
a British mathematician, of whom Whittaker was the only (at least official) student. He
wrote important works on analysis which were responsible for introducing foreign re-
search to Britain.

47An edition dated 27 December 2022 by Cambridge University Press is currently on
sale
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not limited to contemporaneous works, it also encompassed the classics of

the 18th and 19th centuries. [...] It seems to me that the success of Whit-

taker’s books owes much to the fact that he was one of that rare breed, a

scientist who is also a scholar, of which D’Arcy Thompson is probably the

best known representative. People whose research may not have been ex-

ceptional, but whose great knowledge of the literature, including historical

works, allowed them to "crystallize" in their books a vision of a whole sub-

ject that would greatly influence later generations. [Coutinho 2014, p 403]

1.1.3 The Scandinavian research tradition: Die Mechanik des Himmels
(1902-07) by Carl Ludvig Charlier (1862-1934)

In the last decade of the 19th century, the theory of singularities in the
three-body problem was developed by the French mathematician Paul
Prudent Painlevé (1863–1933).

Singularities are closely related to collisions between bodies, since each
collision corresponded to a singularity in the differential equations of the
problem. Therefore, the goal was to try to eliminate singularities, so as
to be able to study the motion of the system even after a possible col-
lision. Furthermore, the question was raised whether singularities arise
only from collisions or whether there are other phenomena connected to
them.

In 1896, Painlevé published Sur les singularités des équations de la Dy-
namique [Painlevé 1896], an in-depth analysis of the study of being, where
he demonstrated that the only possible singularities were those due to col-
lisions.

The question concerning the singularities of motion in the three-body
problem also found fertile ground in the Scandinavian scientific environ-
ment, which was to play a leading role in the history and evolution of
astronomy and celestial mechanics in those years.

For almost two centuries, until 1809, the Finnish-Swedish union was
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not only geographical and political, but also manifested itself in the links
between the universities and academies of the two countries. Astronomy
and celestial mechanics represented privileged fields of study and from
the second half of the eighteenth century, with the construction of the
Stockholm, Uppsala and Lund Observatories, research intensified.

Given their geographical position, the two countries could count on
collaborations with Germany towards the West and, subsequently, towards
the East with Russia.

Furthermore, after Sweden’s defeat against Russia in 1809 and the ces-
sion of Finland to Russia, becoming the Grand Duchy of Finland, new
opportunities opened up for Finnish astronomers and celestial mechanics
to collaborate with their Russian neighbours.

In fact, if in the eighteenth century most of the studies were of Swedish
dominion, the situation of astronomical research changed together with
the changing of the political balance.

Between 1831 and 1834, on the Ulrikasborg Hill (Observatory Hill Park)
in Helsinki, the architect Carl Ludvig Engel (1778-1840), together with the
collaboration of Professor Friedrich Wilhelm Argelander (1799-1875), com-
pleted the construction of one of the most modern observatories of that
weather. The Helsinki observatory ended up influencing the next major
observatory project in the Russian Empire, that of the main imperial ob-
servatory at nearby Pulkovo, just south of nearby St. Petersburg.

The ambitious Finnish astronomers, with their observatory and the
newly created connections, had great opportunities to get an excellent ed-
ucation at Pulkovo, much more than if they had been under Swedish rule.

Representative of this scientific fervor is Karl Frithiof Sundman (1873
- 1949) Finnish mathematician and astronomer who, after graduating in
1897, went to the Pulkovo Observatory to continue his research on astron-
omy. He demonstrated the existence of a solution in convergent infinite
series to the three-body problem, using analytical methods for the reg-
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ularization of the motion, i.e. the elimination of singularities through a
suitable series of transformations.48.

On the other hand, from neighboring Sweden we cannot ignore the
theories related to the names of Anders Lindstedt, Johan August Hugo
Gyldén - names already encountered in the previous paragraphs - and
Carl Ludwig Charlier.

Charlier (1862-1934) defends his thesis on Untersuchung über die allge-
meinen Jupiter-Störungen des Planeten Thetis49 in 1887, as a student of Gyldén,
at Uppsala University. Thanks to the quality of this work he was immedi-
ately appointed professor at the same university50. In the autumn of 1898
he gave lectures on general celestial mechanics which contained - as he
himself revealed in the preface of the first volume [Charlier 1902-7] - the
main topics of his two volumes of Die mechanik des Himmels, published in
1902 and 1907.

In the preface on page iii he declares the main intent of the texts:
Als Ziel habe ich mir gesteckt, eine möglichst einheitticlie Darstellung

des jetzigen Standpunkts der Untersuch nugen über die Mechanik des Him-

mels, insofern sieb dieselbe mit der Bewegung von Massenpunkteu beschäf-

tigt, zu geben. Es ist dabei mein Hauptstreben gewesen, die astronomisch

wichtigen Resultate hervorzuheben, indem ich gleichzeitig die mathema-

tische Eleganz und Schärfe, welche besonders die neueren Untersuchungen

auf diesem Gebiete ermöglicht haben, zum Ausdruck zu bringen suchte.51

[Charlier 1902-7, vol 1, p III]

Like and contemporary with Whittaker’s works, the volumes represent a

48[Sundman 1907], [Sundman 1910],[Sundman 1913]
49Eng.tr.: Investigation of the general disturbances of Jupiter of the planet Teti
50[Wicksell 1935]
51Eng.tr.: My goal has been to provide as uniform a presentation as possible of the

current point of view of the investigations of the mechanics of the heavens, regarding the
movement of points of mass. My main goal has been to emphasize the astronomically
important results, while trying to express the mathematical elegance and sharpness that
especially the most recent investigations in this field have made possible.
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clear and complete systematization of studies in celestial mechanics at the
beginning of the new century.

And it is Whittaker who cites the results of the Swedish mathematician
several times, already in his report for the British Association of 1899:

Poincaré’s paper gave a fresh stimulus to the investigation of periodic

solutions. In 1890 v. Haerdtl52 calculated numerically two cases of the re-

stricted problem of three bodies. Charlier in 1892 discussed the same cases

by means of expansions proceeding in ascending powers of the time, and

the same author in 1893 found a set of periodic solutions of the problem of

three bodies in a plane, whose expansion involves four arbitrary constants.

[Whittaker 1899, p 151]

Brown53 in 1897 discussed the properties of the general solution in trigono-

metric series of the problem of three bodies, by supposing it to have been

derived by integrating the Hamilton-Jacobi equation.

[...] Researches relating to the convergence of the trigonometric series

of dynamical astronomy were published in 1896 by Charlier and in 1898

by Poincaré. The former, by expanding in descending powers of m the

coefficient of the mth term in such a series, arrived at the conclusion that

the convergence can be augmented by dividing the function expressed into

two parts, one of which depends on the first terms in these expansions of

the coefficients. [Whittaker 1899, pp 156-157].

We will see later that the works of both mathematicians, Whittaker and
Charlier, were among those that Kolmogorov will deepen before dedicat-
ing himself to the works on classical mechanics, the subject of this thesis.

52Eduard Freiherr von Haerdtl (1861- 1897) was an Austrian astronomer, who became
the first professor of astronomy at the University of Innsbruck in 1892.

53Ernest William Brown (1866 - 1938) was an English mathematician and astronomer,
known in the field of celestial mechanics for his studies on lunar movements.
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1.1.4 Classical and modern mechanics: Jean-François Chazy (1882-1955)
and the capture in the three body problem

The 20th century brings with it the advent of the theories of relativity and
quantum mechanics, and celestial mechanics - like the other fields of clas-
sical mechanics - has been heavily affected by the ongoing restructuring
of the sciences. Classical mechanics, an essential pillar of a 19th-century
mathematician and the origin of the development of modern European
mathematics, is marginalized - albeit with some notable exceptions.

On closer examination, one realizes that two fundamental issues con-
tribute to the change that occurred at the beginning of the last century.
On the one hand, using the words of Dumas in [Dumas 2014 p.7], not
surprisingly, in that period, physicists abandoned classical mechanics to the few
hardy mathematicians who remained interested in it. The physicists returned with
wondrous stories of their exploits in quantum mechanics, relativity, and nuclear
physics.

On the other hand, it is precisely with the formulation of the principles
of the theory of relativity that shadows were cast on the validity of New-
ton’s laws and Galilean transformations - transformations which relate the
coordinates describing the same phenomenon from two distinct reference
systems. Classical theories appeared obsolete and celestial mechanics per-
haps had to be revised on the basis of the new relativistic ideas.

Although there is widespread belief in the clear separation between
classical and modern theories - or in the replacement of the new paradigm
at the expense of the previous one - what really occurred among the few
mathematicians who continued to deal with celestial mechanics was a co-
existence of the two. There is no shortage of examples of scholars who
dedicated themselves both to celestial mechanics and to relativity.

Poincaré himself dealt with questions on the simultaneity of times and
Lorentz’s transformations - which replaced the Galilean ones - in [Poincaré
1900] even before the formulation of the principles by Albert Einstein in
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1905. The Italian mathematician Tullio Levi-Civita (1873 -1941) and the
French mathematician and astronomer Jean François Chazy (1882 - 1955)
are just some of scholars who worked in both fields.

After having been mobilized in the French troops in 1914 and sent to
the sound reconnaissance laboratory set up at the École Normale Supérieure
in Paris, Chazy only returned to his research at the University of Lille
in 1919. He published extensively on the three-body problem - such as
[Chazy 1922], [Chazy 1924], [Chazy 1929] - worked also on the subject of
relativity and its application in celestial mechanics, published the essay La
Théorie de la Relativité et la Mécanique céleste [Chazy 1928-30], in two vol-
umes54.

Chazy’s main contribution on the three-body problem regarded the fi-
nal trend of the motion of the three-body problem, that is for times very
close to infinity, even after a possible collision between the bodies them-
selves. He categorized the possible final moves - seven in all: hyperbolic
motions, hyperbolic-elliptic motions, oscillating motions, constrained mo-
tions, parabolic-elliptic motions, hyperbolic-parabolic motions, parabolic
motions - and analyzed each of them in detail.

In particular, Chazy theorized the impossibility of capture in the three-
body problem.

The French mathematician Darmois, in drafting "Notice sur la vie et les
travaux de Jean Chazy (1882-1955)", published in 1957, wrote about it:

54On trouve, dans les deux livres de Jean Chazy, toutes les notions nécessaires de
géométrie différentielle générale, les méthodes générales de calculs et de formation des
équations d’Einstein, l’étude des questions classiques.

Nous insisterons sur le problème du périhélie de Mercure qui avait été l’objet, nous
l’avons vu, d’une discussion approfondie par Jean Chazy.55 [Darmois 1957, pp 42-43] .

Georges Darmois (1888-1960) refers in particular to some applications of relativity to
the motions of Mercury - the only planet in the solar system on which, as a consequence
of its proximity to the Sun, the theory of relativity has obtained more precise results than
the classical theories - which showed a still inexplicable body, despite the vain efforts to
discover perturbing masses.
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Les résultats ainsi obtenus, qui assujettissent le point représentatif à

demeurer dans une région ou sur une surface, ont permis à Jean Chazy

d’affirmer l’impossibilité dans certains cas de l’écartement indéfini corre-

spondant à une dislocation d’un système. C’est ainsi que si l’un des corps

vient de l’infini (dans une direction non parallèle au plan du mouvement

des deux autres), il ne peut que s’en éloigner indéfiniment au bout d’un

temps fini passé en leur voisinage. Les deux corps reviennent alors à un

mouvement relatif elliptique.

Ce résultat généralisait et précisait une étude de Schwarzschild56 faite

dans le cas d’un troisième corps de masse nulle. Signalons que de nouvelles

recherches sont entreprises, surtout en URSS, sur ce sujet.57 [Darmois 1957,

p 40].

We will see, in fact, that the developments in the USSR to which he re-
ferred had already been published in 1947 and 1953 by the scientists Kirill
Aleksandrovich Sitnikov (1926 - ?) and Otto Yulyevich Schmidt(1891-1956)
([Sitnikov 1953] e [Schmidt 1947]), which found counterexamples to the
validity of his capture theory in three-body problem, refuting the French
mathematician.

1.1.5 Otto Yulyevich Schmidt (1891-1956): A Soviet contribution in 1947

Pour une époque comme le premier tiers du XXe siècle, il est en général

difficile d’étudier la science astronomi. que à l’intérieur des frontières d’un

56It refers to Karl Schwarzschild (1873 – 1916), a German mathematician, astronomer
and astrophysicist.

57End.tr.: The results thus obtained, which subject the representative point to remain-
ing in a region or on a surface, enabled Jean Chazy to affirm the impossibility in certain
cases of the indefinite separation corresponding to a dislocation of a system. Thus, if one
of the bodies comes from infinity (in a direction not parallel to the plane of motion of the
two others), it can only move away from it indefinitely after a finite time spent in their
neighborhood. The two bodies then return to an elliptical relative motion.

This result generalized and specified a study by Schwarzschild made in the case of
a third body of zero mass. It should be noted that new research is being undertaken,
especially in the USSR, on this subject.
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pays. En effet, dès cette époque, l’astronomie est une science internationale

du point de vue de la collaboration et de la coordination des recherches.

Cette collaboration et cette coordination ont d’ailleurs été sensiblement ren-

forcées après la constitution de l’Union Astronomique Internationale, en

1919.

L’étude de l’astronomie en U.R.S.S. de 1917 à 1935 a attiré notre atten-

tion, car ce pays constituait une exception à cette règle.58 [Nicolaïdis 1984,

p. 6].

Although we will analyze in detail the Soviet scientific community of the
early 20th century in the next chapter, and how this and the socio-political
conditions influenced the education and choices of the young Kolmogorov,
we want to focus here only on the figure of the Soviet mathematician, as-
tronomer and explorer Otto Yulyevich Schmidt59 (Mogilev, now Belarus
1891 - Zvenigorod, Russia 1956).

We will see in the following chapter that one of the pupil of Kolmogorov,
V.I. Arnold, in an attempt to analyze the origins of Kolmogorov’s works
in classical mechanics, will report in [Arnold 2000] a direct testimony of
his teacher; in this, Kolmogorov will assert that, together with others, one
of the sources of inspiration was Schimdt himself, referring to the con-
tributions he made in the field of celestial mechanics and, among these,
he will cite On possible capture in celestial mechanics, published in Doklady
Akademii Nauk SSSR in 1947 [Schimdt 1947] in the bibliography of the
article published in the proceedings [Kolmogorov 1991/57].

After a short period as a professor of mathematics at the University

58Eng. tr.: For an era such as the first third of the 20th century, it is generally difficult
to study astronomical science within the borders of one country. In fact, from that time
onwards, astronomy was an international science from the point of view of collabora-
tion and coordination of research. This collaboration and coordination was significantly
strengthened after the establishment of the International Astronomical Union in 1919.
The study of astronomy in the U.S.S.R. from 1917 to 1935 attracted our attention, as this
country was an exception to this rule.

59often transliterated as Shmidt
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of Kiev in 1915 (he graduated from the university in 1913), he became a
professor of mathematics at the Moscow University in 1923, becoming in
1929 the head of the algebra department and founding an active school of
group theory.

His professional life has always been divided between academic and
administrative roles, carrying out various institutional positions includ-
ing head of one of the divisions of the People’s Commissariat for Food,
created in 1917 after the dissolution of the Ministry of Food by the Bolshe-
viks.

In April 1924 he was appointed editor-in-chief of the Great Soviet En-
cyclopedia, which, as Laurent Mazliak defines it in the recent article [Ma-
zliak 2018], was a gigantic enterprise to the glory of "Marxist science" and of the
Soviet regime. There were three editions: the first one was launched in 1926, the
second one in 1949, the third one in 1977." [Mazliak 2018, p 25]

Schmidt was chief editor until 1941, and Kolmogorov was one of the
lead author for the Large Soviet Encyclopedia, publishing more than one
hundred entries from 1937 to 1975. He was given the job of writing the
entries "Mathematics", for all three editions , published in 1938, 1950 and
1974, respectively60.
The collaboration for the Encyclopedia, as well as being colleagues at the
same university, undoubtedly allowed the two mathematicians to relate
and share their ideas. Several comments testify to this, including one writ-
ten by Kolmogorov himself in [Tikhomirov 1991, p 902] regarding his in-
terest in the theory of turbulence:

In 1946 O. Yu. Shmidt suggested that I should head the Turbulence Labora-

tory in the Institute of Theoretical Geophysics, USSR Academy of Sciences.

In 1949 this post was passed to Obukhov. I was not engaged in experimen-

tation myself, but I worked extensively with other researchers on computa-

tion and graphical processing of the data.

60References in [Graham 1993] and [Mazliak 2018]).
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Schimdt’s name is now associated with a Russian mathematician, explorer
and astronomer, but his research in the latter area is due only in the last
decade of his life. In 1949 he will publish the book A Theory Of Earth’s Ori-
gin in Russian, translated into English in 1958 by the Russian George H.
Hanna, translator for the Foreign Languages Publishing House and also
Radio Moscow.

The book contains the elaboration of four conferences held by the au-
thor at the Geophysical Institute of the USSR Academy of Sciences in 1948
on the author’s hypothesis on the genesis of the Earth and other planets.

In the author’s preface to the second edition, quoted on pag 7 of [Schimdt
1958] he writes:

The problem of the origin of the Earth is one of such great importance to

science that it possesses interest not only for the specialists — astronomers,

geophysicists, geologists, geographers and others — but also for the general

public. The Soviet people have made very considerable cultural progress

so that it is only natural that they should show an interest in this problem

and demand an answer from their scientists: the problem of the Earth’s ori-

gin, say our people, must be solved as quickly as possible on account of its

specific importance to the study of nature and from the standpoint of our

philosophy of dialectical materialism.

The author’s hypothesis of the genesis of the Earth and other planets pro-

posed in 1944 met with a wide response, gave rise to extensive criticism and

discussion. In the course of time the hypothesis has developed and grown

into a detailed theory.

Apart from separate publications in scientific journals it became necessary

to publish, at least, an interim report on basic results and methode: The

First Edition of this little booklet was published in 1949: it consisted of four

lectures which I deliveged at the Academy of Sciences Geophysical Institute

in 1948.

One of the articles referred to by Schmitd is precisely [Schmdit 1947] - the
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latter cited from Kolmogorov.
The reason for the appearance of interest in celestial mechanics and

astronomy only in the 1940s should probably be attributed to Schimdt’s
prudence in dealing with such a delicate subject in the 1930s and which,
we will see in the next chapter, led to the dramatic vicissitudes of the purge
of astronomers, which occurred between the years 1936-37.

His caution was also highlighted by Mazliak, who notes how Schimdt,
unlike other members of the Large Soviet Encyclopedia, was spared from
the political persecutions of the time, hypothesizing a reason for this:

We shall briefly describe the first editorial board of the encyclopedia in

the next subsection. We shall in particular see that a large majority of its

members were victims of the political storms experienced by Soviet Union

in the 1930s. It is therefore slightly surprising that Otto Schmidt could re-

main at the head of the enterprise almost until the end (he resigned in fact

in 1941), despite his proximity with Bukharin and even, to a certain extent,

with Trotsky. Maybe Stalin thought it was useless for the regime to touch

an internationally too well-known scientist. But above all, Schmidt him-

self had the wisdom, as soon as the end of the 1920s, not only to make a

brilliant come back to mathematics (he was appointed to the newly created

Chair of higher algebra at Moscow university in 1929 and remained there

until 1949), but also to participate to long-distance scientific exploratory ex-

peditions such as the German-Soviet expedition to the Pamir (1928) and

afterwards the long expedition in the Arctic (1930-1934), which maintained

him far from the internal struggles tearing the party apart at the turn of the

1930s. [Mazliak 2018, p 35]

And, although far from the years of the purges, the attention with which
he deals with topics of celestial mechanics is evident - suffice it to observe
that in the introduction of the [Schmdit 1958] he underlines its specific im-
portance to the study of nature and from the standpoint of our philosophy of di-
alectical materialism.
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Despite the small number of works in this area, the contributions of the
Russian scientist allowed a notable progress of celestial mechanics in the
Soviet Union so much that, in a 1972 article by the Japanese astronomer
Yusuke Hagihara entitled Recent advances of Celestial Mechanics in the So-
viet Union [Hagihara 1972] the first section is dedicated precisely to the
problem of captures, starting from Schimdt’s contributions.

1.2 Metrical and spectral studies: The modern ergodic the-

ory and the theory of dynamical systems in the 1930s

The essays by Whittaker and Charlier helped the international commu-
nity of scholars to understand that the ancient and illustrious discipline of
mechanics needed new horizons of theoretical development. What were
the subsequent developments in the first decades of the 20th century? In
the next section I will consider some future contributions, but inspired by
Poincaré’s approach, which Andrei Kolmogorov considered crucial for the
development of his work on classical mechanics. In particular, he will fo-
cus on the evolution of the theory of dynamical systems at the beginning
of the last century, on the birth of ergodic theory and on the contributions
in the field of nonlinear mechanics in the 1930s in the Soviet Union.

The attention of historians of science has declined mainly in favor of
the nascent physical theories of the twentieth century: the theory of rela-
tivity and the "new" quantum mechanics. The 1957 essay on the history
of mechanics by René Dugas, in fact, closes its chapter on the evolution of
classical mechanics just after Lagrange - with a chapter on the discussion
of the energy theses of the Newtonian principles culminating with the re-
flections of the French scholars Poincaré, Painlevé and Duhem - and then
moved on to the discussion of what he described as "modern physical the-
ories of mechanics". Around this new approach, in fact, a new scientific
community is gathering, the so-called theoretical physicists.
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In a final note concluding his essay, Dugas considers Poincaré’s atti-
tude towards such modern theories, as expressed at a conference on new
mechanics held in Lille on August 3, 1909. It was an attitude of acceptance,
he says, but:

It is true that in his conclusion, Poincaré very clearly fixes the limits

of the new science and considers that it would be premature “in spite of

the great value of arguments and facts raised against classical science, ” to

consider this latter as being definitely condemned. He shows that classi-

cal mechanics will remain that “of our practical life and of our terrestrial

technique,” and he emphasizes the necessity of a through knowledge of

classical mechanics if we wish to understand the new mechanics. [Dugas

1957, p. 650]

The emergence of those modern theories led to the label “classical” for
studies in mechanics following the 19th century mathematical tradition.
While modern mechanics attracted attention even among the general pub-
lic and relegate classical approaches to the background, research in the
wake of Poincaré was carried on mainly in the USA and in the Russian
Empire, two quite young mathematical communities, peripherical in the
structure of international science. It was an age troubled by war and po-
litical totalitarism, yet the connection between the two countries were ini-
tially tight. Poincaré’s “new methods” in celestial mechanics were a main
source of ideas and inspiration: it was a time of change, in which the the-
ory of dynamical systems was conceived, potentially enlarging the scope
of differential equations to the study of phenomena of time evolution be-
yond inanimate body motion. As in the past, research in mechanics was
tightly linked to research in mathematical analysis, which experienced in
those years great advances.

The Hungarian scholar John von Neumann (1903-1957), a rising star
in German mathematics between the two word wars, was active both in
classical mechanics and in quantum mechanics. As a matter of fact, his
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contribution to classical mechanics appears to have been encouraged by
his contact with his senior George Birkhoff (1884-1944), established in the
late 1920s when he started his visits to the USA. As we shall see, a young
American collaborator of Birkhoff’s, Bernard Koopman (1900-1981), acted
as bridge between Birkhoff and von Neumann. As early as 1911 Birkhoff
had started his work in classical mechanics in the wake of Poincaré and
laying the foundations of the theory of dynamical systems. In the years
between the two world wars, he was the leading figure also for scholars
working in the Soviet Union – thus helping the international recognition
of the young United States mathematical community.

Yet, in spite of Poincaré’s auspices, classical mechanics received less
and less attention in the late 1930s and in the 1940s except for the Soviet
Union, where the ideological framework encouraged continued attention
to the mechanics “of practical life and terrestrial technique”. As Simon
Diner has emphasized in an essay published in 1992, it would be com-
pletely biased to consider that no results in classical mechanics were pro-
duced after the work of Birkhoff until the contributions by Stephen Smale
in the 1960s; moreover, such a vision doesn’t offer any explanation of the
cultural origins of Komologorv’s 1954 theorem of invariant tori and thus
any understanding the birth of KAM theory as an expression of 20th cen-
tury developments in classical mechanics.

No doubt theoretical physicist’s mechanics attracted a lot of scientific
talent, to the detriment of the classical approach. Moreover, the second
World war and the breaking of the Cold War had a great impact on the
network of scholars working in classical mechanics. Birkhoff died when
he was sixty years old one year before the end of the war, and Von Neu-
mann and Koopmann turned to other areas of mathematics, specially in
connection to new applications such as computing or operations research.
In the Soviet Union, celestial mechanics became a high risk activity, be-
cause of the suspicion on astronomy research during Stalinism, while re-
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search in the area of nonlinear systems went on, thanks to its connection to
technological systems. Nevertheless, the international diffusion of Soviet
research was hindered by the fragile connections of the Soviet scientific
community with those in countries outside the Warsaw Pact. Thus, Kol-
mogorov’s work on classical mechanics and dynamical systems contin-
ued, but he published on it again only in 1953, in the months after Stalin’s
death. He choose to present that topic to the 1954 international congress
of mathematicians, the one marking the recovery of international mathe-
matical relations.61.

Kolmogorov used late 19th-century mathematics as an illustrative ex-
ample to support his thesis on the union of mathematics and, in particular,
suggested how this need arose after the works of Poincaré in the field of
classical mechanics.

The example is certainly indicative. The legacy that Poincaré left is
enormous and, as we have already said in the last paragraph, his works
have opened the way to the qualitative study of dynamical systems, to
ergodic theory, to chaos theory. In a 2002 essay entitled Writing the His-
tory of Dynamical Systems and Chaos: Longue Durée and Revolution, Disci-
plines and Cultures, mathematical historians David Aubin and Amy Dahan
Dalmedico affirm that there can be no doubt whatsoever that his œuvre is the
point of origin of the domain under consideration here — dynamical systems and
chaos — and the cornerstone on which it was built. [Aubin, Dahan Dalmedico
2002, p 279].

From Poincaré to the 1960s, the mathematical study of dynamical systems

developed in the course of a longue-durée history that cannot be unfolded

in a cumulative, linear fashion. In particular, this history is not reducible

to that of a mathematical theory (which might be called “dynamical sys-

tems theory” or the “qualitative theory of differential equations”) made by

61When Stephen Smale (1930 - ) begin his studies on dynamical systems in the 1960s,
his main reference would be Soviet mathematics

77



academic mathematicians who would have all contributed a stone to the

final edifice. In fact, this history unfolds along various geographic, social,

professional, and epistemological axes. It is punctuated by abrupt tempo-

ral ruptures and by transfers of methods and conceptual tools. It involves

scores of interactions among mathematics, engineering science, and physics

along networks of actors with their specific research agendas and contexts.

Finally, it is characterized by countless instances of looping back to the

past, to Poincaré’s work in particular, which are so many occasions for

new starts, crucial reconfigurations, and reappreciation of history. [Aubin,

Dahan-Dalmedico 2002 pp. 278-279].

Therefore, starting from the works of Poincaré - obviously together with
Whittaker’s dynamics - we will try to outline the following developments
in the field of celestial mechanics and dynamical systems.

In this paragraph, we will briefly analyze the contributions of Birkhoff,
von Neumann and Koopman at the beginning of the twentieth century in
the USA and we will draw a line that unites these mathematicians, with
the works of the Russian mathematicians Nikolay Mitrofanovitch Krylov
and Nikolay Nikolayevitch Bogoliubov, who worked together in the 1930s
in Ukraine, then USSR, at the Ukrainian Academy of Sciences on the prob-
lems of linear and non-linear non-mechanical oscillations.

1.2.1 Towards the general dynamical systems: George David Birkhoff’s
(1884-1944) work on the wake of Poincaré in the years 1912-1927

In a paper recently published in the "Rendiconti del Circolo Matematico

di Palermo" (vol. 33, 1912, pp. 375-407) and entitled Sur un théorème de
Géométrie, Poincaré enunciated a theorem of great importance, in particular

for the restricted problem of three bodies; but, having only succeeded in

treating a variety of special cases after long-continued efforts, he gave out

the theorem for the consideration of other mathematicians.

For some years I have been considering questions of a character similar
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to that presented by the theorem and it now turns out that methods which

I have been using are here applicable. In the present paper I give the brief

proof which I have obtained, but do not take up other results to which I

have been led. [Birkhoff 1913, p 14]

The statement of the theorem to which Birkhoff refers is very simple and
easy to understand.

Theorem 2 Poincaré’s geometric theorem. Let us suppose that a continuous
one-to-one transformation T takes the ring R, formed by concentric circles Ca and
Cb of radii a and b respectively (a > b > 0), into itself in such a way as to advance
the points of Ca in a positive sense, and the points of Cb in the negative sense, and
at the same time to preserve areas.
Then there are at least two invariant points62.

George David Birkhoff (1884 -1944) was then 28 years old and had moved
to Harvard that year for an assistant professorship. In [Diacu, Holmes
1996] the authors report an extract from the letter that Poincaré left to the
editor of the journal Rendiconti of the Circolo Matematico of Palermo, in
which the French mathematician seems to be aware of a possible imminent
death:

At my age, I may not be able to solve it, and the results obtained, which

may put researchers on a new and unexpected path, seem to me too full

of promise, in spite of the deceptions they have caused me, that I should

resign myself to sacrificing them. In [Diacu, Holmes 1996, p 53]

Indeed, Poincaré died on July 17, 1912 and, after just three months, Birkhoff
sent his work to the journal Transactions of the American Mathematical
Society, where it will be published in January 1913.

The American mathematician’s interest in Poincaré’s work appears ev-
ident in his works and, above all, in the book Dynamical Systems, first pub-
lished in 1927 by the American Mathematical Society. There are also some

62With invariant point we mean a point of the ring which remains fixed under the trans-
formation T.
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direct testimonies, including the mathematician Marston Morse63 in the re-
port George David Birkhoff and his mathematical work [Morse 1946], in which
the author reports the mathematicians who most influenced his work:

Birkhoff admired Moore64 of Chicago, but not to the point of imitating

him. He respected Bôcher65 no less, and did him the honor next to Poincaré

of following his mathematical interests. F. R. Moulton’s66 study of the work

of Poincaré had something to do with Birkhoff’s own intense reading of

Poincaré. Poincaré was Birkhoff’s true teacher. There is probably no math-

ematician alive who has explored the works of Poincaré in full67 unless it

be Hadamard, but in the domains of analysis Birkhoff wholeheartedly took

over the techniques and problems of Poincaré and carried on. [Moore 1957,

p 357].

Birkhoff’s interest in topics related to Poincaré’s works appears evident
from some publications dating back to the years 1912-1915, such as Quelques
théorèmes sur le mouvement des systèmes dynamiques [Birkhoff 1912] and The
Restricted Problem of Three Bodies [Birkhoff 1915]. In the latter, in particular
- awarded the Querini Stampalia Prize by the Royal Venice Institute of Sci-
ence - we read the leitmotif that will push Birkhoff in his research, leading
him over the following years to be increasingly independent of celestial
mechanics - although an argument that will remain in its interest - and to
the publication of Dynamical Systems:

Thorough investigation of non-integrable dynamical problems is essen-

63Harold Calvin Marston Morse (1892-1977) was an American mathematician, known
for developing variational theory in general with applications to equilibrium problems
in mathematical physics, a theory which is now called Morse theory.

64He refers to Robert Lee Moore (1882-1974), an American mathematician known for
his work in general topology.

65He refers to Maxime Bôcher (1867-1918), American mathematician who developed
works in the field of differential equations, series and algebra.

66He refers to Forest Ray Moulton (1872-1952) an American astronomer best known for
having formulated the so-called planetesimal hypothesis of the origin and evolution of
the solar system.

67We will see in the next paragraphs that this assertion is not entirely true.
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tial for the further progress of dynamics. Up to the present time only the pe-

riodic movements and certain closely allied movements have been treated

with any degree of success in such problems, but the final goal of dynamics

embraces the characterization of all types of movement, and of their interre-

lation. The so-called restricted problem of three bodies, in which a particle

of zero mass moves subject to the attraction of two other bodies of positive

mass rotating in circles about their center of gravity, affords a typical and

important example of a non-integrable dynamical system. It is this problem

which I consider in the present paper. [Birkhoff 1915, p. 265]

Insisting on considering general problems of dynamics rather than partic-
ular ones and looking globally at sets of motions rather than at particular
orbits, Birkhoff’s Dynamical Systems fully embraces the intentions of a
qualitative analysis that Poincaré had for celestial mechanics, developing
and using notions of general topology, but broadening the field beyond
celestial mechanics68. All this emerges in a particular way in chapter VII
of [Birkhoff 1927], entitled General theory of dynamical systems, in which we
read the intentions of the author:

The final aim of the theory of the motions of a dynamical system must

be directed toward the qualitative determination of all possible types of mo-

tions and of the interrelation of these motions.

The present chapter represents an attempt to formulate a theory of this

kind.

As has been seen in the preceding chapters, for a very general class

of dynamical systems the totality of states of motion may be set into one-

to-one correspondence with the points, P , of a closed n-dimensional mani-

fold, M , in such wise that for suitable coordinates x1, . . . , xn, the differential

equations of motion may be written

dxi/dt = Xi(x1, . . . , xn), (i = 1, . . . , n)

68A detailed account of the book can be found in [Aubin 2005]
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in the vicinity of any point of M , where the Xi are n real analytic func-

tions and where t denotes the time. The motions are then presented as

curves lying in M . One and only one such curve of motion passes through

each point P0 of M , and the position of a point P on this curve varies ana-

lytically with the variation of P0 and the interval of time to pass from P0 to

P . As t changes, each point of M moves along its curve of motion and there

arises a steady fluid motion of M into itself.

By thus eliminating singularities and the infinite region, it is evident

that we are directing attention to a restricted class of dynamical problems,

namely those of ’non-singular’ type.

However, most of the theorems for this class of problem admit of easy

generalization to the singular case. The problem of three bodies, treated in

chapter IX, is of singular type. [Birkhoff 1927, pp.189-190].

Meanwhile, in the first decade of the 20th century, a new mathematical
tool was taking shape, and would prove to be indispensable in the theories
of partial differential equations, quantum mechanics and ergodic theory:
Hilbert spaces69.

A Hilbert space is an infinite dimensional space whose points are nu-
merical sequences (x1, x2, . . . ) for which the infinite series of squares

∑
i x

2
i

converges.
This established a new field in which mathematicians study the prop-

erties of fairly general linear spaces and has also provided a source for rich
ideas in topology. Indeed, as a metric space, the Hilbert space can be con-
sidered a linear topological space of infinite dimension.

Their formulation marked the beginning of what at the time was called
Operator theory - today it is commonly called Functional analysis, i.e. the
study of linear operators (functions) defined in function spaces.

The theory of operators applied to the study of dynamical systems re-

69Designation used for the first time in 1929 by the Hungarian mathematician John
von Neumann, in reference to the mathematician David Hilbert who, for the first time,
described them.
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sulted in a completely new idea of dealing with dynamics. And it is pre-
cisely on the basis of these intuitions that the ergodic theory developed in
the 1930s, which involved many mathematicians, including Ludwig Ed-
uard Boltzmann (1844-1906), Birkhoff himself, one of his pupils, Bernard
Osgood Koopman (1900-1981), von Neumann.

We will see in the next paragraph the close connections linking the last
three mathematicians listed above and the results obtained in this field, al-
most simultaneously. We will also focus on the preponderant use that von
Neumann made of the theory of operators, not only in classical mechanics,
but also to develop a mathematical corpus for quantum mechanics.

1.2.2 Bernard O. Koopman (1900-1981) paper Hamiltonian systems and
transformations in Hilbert space (1931) and the role of John von
Neumann (1903-1957)

The invitation of the Organizing Committee for me to speak about "Un-

solved problems in mathematics" fills me as it should with considerable

trepidation and a prevailing feeling of personal inadequacy. Hilbert gave a

talk on this subject at the similar congress about 50 years ago and this is a

very formidable precedent. He stated about a dozen unsolved problems in

another widely separated areas of mathematics, and they proved to be pro-

totypical for much of the development that followed in the next decades. It

would be absolutely foolish, if I tried to emulate this quite singular feat. In

addition I do not know the future and the future at any rate can only be pre-

dicted ex post with any degree of reliability. I will, therefore, define what I

am trying to do in a much more narrow way, hoping that in this manner I

have a better chance of not failing. I will limit myself to a particular area of

mathematics which I think I know and I will talk about it and about what

its open ends appear to be, particularly in some directions which are not

the ones that the evolution so far has mainly emphasized and which are, I

think, quite important. I will speak about operator theory and about its connec-
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tions with various areas and quite particularly about how it hangs together with

a number of open questions in physics70 and how I think it hangs together or

ought to hang together with a number of questions in logics and probability

theory and questions of the foundations of these and certain reformulations

of these which I think it puts into a quite different light from the one with

which we usually look at these subjects.

John von Neumann in [von Neumann 1954, p.231]

On 2 September 1954, the International Congress of Mathematicians be-
gan in Amsterdam. The first plenary on the same day from 3.00 to 4.00 pm
was given by John von Neumann: On unsolved problems in mathematics. At
the beginning of this paragraph we have quoted an extract from his intro-
duction.

We could draw a parallel between the life of Andrei Nikolaevich Kol-
mogorov and that of the Hungarian mathematician John von Neumann
(1903-1957): in addition to having in common the same year of birth, sci-
entific interests, as well as their being reference figures for the international
mathematical community of their era, both were involved in the dramatic
events of the history of Europe, from the revolutionary upheaval of 1905 in
the Russian Empire, to the two world wars and the rise of totalitarianism,
and, in the middle decades of the century, to the tearing apart of politi-
cal and international cultural heritage during the Cold War between the
NATO area leaded by the USA and the Varsaw Pact area. Von Neumann
in the USA - he became an American citizen in 1937 - and Kolmogorov in
the USSR were somehow standard-bearer of Western science against So-
viet science since the 1930s and in the following decades.

By the time of the plenary session at the ICM in Amsterdam, von Neu-
mann had long since published his papers on operator theory, the first
ones in 1929 [von Neumann 1929a] and [von Neumann 1929b], followed

70The italics are our license.
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by the more complete work which appeared in 1932 [von Neumann 1932b]
- which will be followed by a second work, together with the Hungar-
ian mathematician Paul Richard Halmos (1916-2006), in English, with the
same title as the first. Furthermore, in the same 1932 he had published
his book "Mathematische Grundlagen der Quantenmechanik", in German:
The object of this book is to present the new quantum mechanics in a unified rep-
resentation which, so far as it is possible and useful, is mathematically rigorous,
he will write in the first lines of the preface, and, he will add later, a pre-
sentation of the mathematical tools necessary for the purposes of this theory will
be given, i.e., a theory of Hilbert space, wrote the author in the introduction.

von Neumann understood the importance of the theory of operators: a
new tool capable of providing new contributions in various fields of math-
ematics. In those years, the young mathematician Koopman, a student of
Birkhoof and a research doctor since 1926 at Columbia University, was also
taking an interest in the theory of operators, and in particular in its appli-
cation to Hamiltonian systems in classical mechanics. Philip M. Morse, in
[Morse 1982] tells of a young Koopman who is dynamic and often travels
for work. Among his most frequent trips were those to reach von Neu-
mann and Birkhoff:

Every summer he was off somewhere: California, Rome, the Alps, the

Tetons-and always a week or month at Randolph. Even during term time

he would travel: to Princeton, particularly after John von Neumann arrived

there; and back to Harvard, to talk things over with Birkhoff. [Morse 1982,

p. 419].

In 1931, Koopman published Hamiltonian systems and transformations in
Hilbert Space [Koopman 1931], in which the intent, already evident in the
title, is described by the same author in the body of the article:

In recent years the theory of Hilbert space and its linear transformations

has come into prominence. It has been recognized to an increasing extent

that many of the most important departments of mathematical physics can

85



be subsumed under this theory. In classical physics, for example in those

phenomena which are governed by linear conditions-linear differential or

integral equations and the like, in those relating to harmonic analysis, and

in many phenomena due to the operation of the laws of chance, the essen-

tial role is played by certain linear transformations in Hilbert space. And

the importance of the theory in quantum mechanics is known to all. It is

the object of this note to outline certain investigations of our own in which

the domain of this theory has been extended in such a way as to include

classical Hamiltonian mechanics. [Koopman 1931, p. 315]

Koopman will prove that the functional operator induced by a measure-
preserving transformation is unitary.

In mathematical terms, we are stating that, if T is a measure-preserving
transformation on a measure space and U a transformation on a Hilbert
space, and if for every function f in the Hilbert space the function Uf ,
defined by

Uf(x) = f(Tx)

is still in the Hilbert space, then can state that U is a unitary operator,
i.e., it is an isomorphism between two Hilbert spaces that preserves the
scalar product.

More simply, Koopman found a connection between the measure-preser-
ving transformations and the unitary operators of a Hilbert space. There-
fore, knowledge of the analytic theory of these operators will provide
some information on the geometric behavior of the transformations71.

This work was considered by all the protagonists of history - Koop-
man, Birkhoff and von Neumann - the beginning of what Halmos calls the
modern ergodic theory72.

71[Halmos 1958] von Neumann on measure and wrgodic theory
72the term "modern" separates it from the first formulations in the early twentieth cen-

tury due to Boltzmann
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Morse, through the words of a friend and colleague of Koopman, Edgar
Lorch, reconstructs the chronology of the articles on ergodic theory, the
result of the continuous exchanges between Koopman with Birkhoff and
von Neumann:

[...] he [Koopman] was in close contact with John von Neumann and

with G. D. Birkhoff. In his open way he discussed freely, during his visits,

what was going on elsewhere.

This put him in the middle in the controversy over the ergodic theo-

rem. Questions of ergodicity had been in the foreground for many years

and had attracted the attention of powerful mathematicians. Koopman was

well versed in this domain and had discussed it with both Birkhoff and von

Neumann. In March of 1931, Koopman published a note in the National

Academy Proceedings, transforming the problem into one dealing with one

parameter unitary groups in Hilbert space.

Since these groups may be represented by self-adjoint transformations

and since they were known to have a particularly decent structure, the

door was open to rapid extension. Koopman communicated his ideas to

von Neumann, who, in a short time, gave a proof of the ergodic theo-

rem in a Hilbert space sense, establishing convergence in the mean but not

actual convergence. In a state of considerable excitement Koopman told

von Neumann’s result to Birkhoff, who worked feverishly and succeeded

in proving the theorem, establishing point-wise convergence almost every-

where. Birkhoff’s notes were published in the late 1931 Proceedings of the

Academy. Von Neumann’s results, which had been obtained earlier, were

published in the early 1932 Proceedings, seemingly a year later. Koopman,

who had been the catalytic agent in the process, felt quite embarrassed.

However the problem was clarified by the publication of three notes; one

by Birkhoff and Koopman, another by Koopman and von Neumann and a

third by von Neumann alone, setting the work in its proper order. All gave
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priority of place to Koopman’s original result73 .

We will not go into the details of the ergodic theory, but we will try to
briefly provide some salient points, which will be useful in understanding
Section §3.1.

From a mathematical point of view, ergodic theory can be considered
as generated by the interaction of measure theory and transformation group
theory.

The existence of invariant measures (i.e. probability measure functions
that remain unvaried under an automorphism) is a fundamental hypoth-
esis of ergodic theory and classical conservative systems possess natural
invariant measures74, resulting a good field in which to apply the ergodic
theory.

A motion of a given dynamical system is said to be transitive (or quasi-
ergodic) if it is everywhere dense in the phase space Ω. If such motion ex-
ists, the dynamical system is said to be transitive. Birkhoff and the mathe-
matician Paul Althaus Smith(1900-1980) first defined the concept of metric
transitivity in a 1928 paper titled Structure analysis of surface transformations:

A transformation will be called metrically transitive if there exists no

measurable invariant set E such that 0 < m(E) < m(S). A transformation

of this type is also transitive in the ordinary sense. [Birkhoff, Smith 1928, p

365]

The importance of ergodicity lies in the fact that it allows the study of dy-
namics, practically impossible when the number of degrees of freedom is
high, to be replaced with the calculation of averages carried out with the
invariant measure.

We give as an example of an ergodic ensemble an integrable Hamilto-
nian system:

73He referis to [von Naumann 1932a], [Birkhoff, Koompan 1932]. [Morse 1982, pp. 419-
420].
Also, it can be read [Halmos 1958], [Moore 2015] and [Morse 1946].

74An example will be provided in the next frame.
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An example of an ergodic system: the integrable systems of classical
mechanics
Consider a dynamical system in a 2n-dimensional phase space Ω whose
elements are (x1, . . . , xn, y1 . . . , yn). The equations of motion will be de-
scribed by the Hamiltonian H such that:

dxi

dt
=

dF

dyi

dyi
dt

= −dF

dxi

(6)

where i = 1, . . . , n.

If the system is integrable, then the Ω phase space is shown to de-
compose into n tori with dimension n. On each torus it happens that
a point that starts from it will follow a trajectory on the torus, without
ever leaving ita. Therefore, the system admits a natural guiding mea-
sure, which is given by the volume element.

Now, if the frequencies (ω1, . . . , ωn) of motion are rationally inde-
pendent, i.e.,

m1ω1 + · · ·+mnωn ̸= 0

for any (m1, . . . ,mn) ∈ Z
the orbit of a point on a torus is said to be quasi-periodic and densely

fills the torus, never passing through the initial point, but approaching
it an infinite number of times.

The density of the orbits allows the equality of the temporal aver-
ages with the spatial ones and this means that the motions of an inte-
grable Hamiltonian system are bounded (on the tori) and the system
is ergodic.

aIn mathematical terms, the torus is said to be invariant with respect to the flow

Thus, at the beginning of 1932 Proof of the Quasi-Ergodic Hypothesis [von
Neumann 1932a] was published:

The purpose of this note is to prove and to generalize the quasi-ergodic
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hypothesis of classical Hamiltonian dynamics (or "ergodic hypothesis," as

we shall say for brevity) with the aid of the reduction, recently discovered

by Koopman, of Hamiltonian systems to Hilbert space, and with the use of

certain methods of ours closely connected with recent investigations of our

own of the algebra of linear transformations in this space. [von Neumann

1932a, p 70].

Halmos analyzes von Neumann’s real intentions on ergodic theory and
observes that:

It is therefore curious, but true, that von Neumann always looked at er-

godic theory as a part of measure theory ; he never worked on the abstract

versions. What fascinated him most was the delicate interplay between

measure and spectrum. The ergodic theorem itself (mean or individual)

was almost never needed in his later work; its main role was that of histori-

cal justification for studying measure-preserving transformations. [Halmos

1958, p.92].

In fact, the Hungarian mathematician highlighted this aspect in his article.
On page 71 he stated:

The pith of the idea in Koopman’s method resides in the conception of

the spectrum E(λ) reflecting, in its structure, the properties of the dynam-

ical system- more precisely, those properties of the system which are true

"almost everywhere," in the sense of Lebesgue sets. The possibility of ap-

plying Koopman’s work to the proof of theorems like the ergodic theorem

was suggested to me in a conversation with that author in the spring of

1930.

The topic is broad and this is not meant to be the place for its rigorous
treatment. Let’s just try to explain the salient points briefly, reducing the
symbolic math as much as possible.

Just two months after von Neumann’s publication on the quasi-ergodic
theorem, he and Koopman publish a second article entitled Dynamical Sys-
tems of Continuous Spectra [Koopman, von Neumann 1932], in which one
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can read in the first lines:
In a recent paper by B. O. Koopman, classical Hamiltonian mechanics is

considered in connection with certain self-adjoint and unitary operators in

Hilbert space S (= L 2). The corresponding canonical resolution of the

identity E(λ), or "spectrum of the dynamical system," is introduced, to-

gether with the conception of the spectrum revealing in its structure the

mechanical properties of the system. In general, E(λ) will consist of a dis-

continuous part (the "point spectrum") and of a continuous part.

The theorem proved in this article, which today takes the name of "shuf-
fling theorem" relates particular geometric properties of a measure-preser-
ving transformation T with the spectral properties of the corresponding
unitary operator U in the Hilbert space.

The cases in which the spectrum is continuous or pure punctual are
divided.

In case the spectrum is pure pointwise, then they show that, given two
measure-preserving transformations S and T , both ergodic and with pure
spectrum, then a necessary and sufficient condition for there to be a mea-
sure isomorphism between S and T is the unitary equivalence of the cor-
responding unitary operators on the Hilbert space.

In paragraph §3.1 we will analyze in detail Kolmogorov’s articles from
the years 1953-54 and we will see the topics treated by von Neumann and
Koopman were of great inspiration to him, accompanying the evolution
of the three articles, starting from the first of [Kolmogorov 1953].

1.2.3 Measure theory for the dynamical system of non linear mechanics
(1937): the work of Nikolay M. Krylov (1879-1955) with Nikolay
N. Bogolyubov (1909-1992)

Dans la théorie des systèmes dynamiques un progrès très important a été

réalisé ces derniers temps grâce aux travaux de B. O. Koopman, T. Car-

leman, E. Hopf, J. v. Neumann et G. D. Birkhoff qui ont établi une série
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de théorèmes remarquables dits ergodiques concernant certaines moyennes

temporelles et leur connexion avec les moyennes spatiales pour une classe

très étendue de systèmes dynamiques75. [Krylov, Bogoliubov 1937 p.65]

Mechanical studies in Russia find fertile ground, thanks to the tendency
to bring theory and practice closer together. The phenomenon involves
all the cultural centers of the Soviet Union, including the cities of Kazan,
Kiev, Odessa and Kharkov.

This meant that "between the 1930s and 1970s an area of scientific cul-
ture was established in the Soviet Union, often isolated, where privileged
topics will be developed within powerful scientific schools. The study of
nonlinear dynamical systems and that of stochastic processes are among
the most important topics." [Diner 1993 p. 336].

In the 1930s, the cultural fervor that involved mathematics and physics,
with the aim of developing applicative theories, resulted in unparalleled
evolution and growth, but at the same time a change of direction: while
Europe and America they were intent on developing the nascent theories
of relativity and quantum mechanics, in Russia there was a return to clas-
sical mechanics, faced from the point of view of the study of dynamic sys-
tems. The fields that have had greater prominence have been dissipative
systems, since most of them have manifested applications in the techno-
logical field.

In the current Ukrainian capital, that in the 1930s mathematicians Krylov
and Bololyubov developed new methods of non-linear mechanics with ap-
plications to the theory of dynamical systems.

The training of Nikolay Mitrofanovitch Krylov (St. Petersburg, 1879 -
Moscow 1955) led him to enroll at the St. Petersburg Mining Institute, thus

75Eng.tr.: In the theory of dynamical systems a very important progress has been made
recently thanks to the work of B. O. Koopman, T. Carleman, E. Hopf, J. v. Neumann and
G. D. Birkhoff who have established a series of remarkable so-called ergodic theorems
concerning certain time averages and their connection with spatial averages for a very
wide class of dynamical systems.
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obtaining the title of mining engineer ([Gruzin, Brega 2008])76. However,
his contributions to mathematics were so undeniable that in 1917 the Uni-
versity of Kiev awarded him an honorary degree in mathematics.

In the early 1920s, he noticed potential in a young Russian, just four-
teen: Nikolay Nikolayevich Bogolyubov (Novgorod, 1909-Moscow, 1992).
Spurred on by Krylov himself to continue, in 1925 he was exceptionally
accepted to the postgraduate course in mathematics of the Academy of
Sciences of the Ukrainian SSR; just three years later, at the age of only
nineteen, he defended his thesis entitled The Application of the Direct Meth-
ods of the Calculus of Variations to Investigation of Irregular Cases of a Simplest
Problem and in 1930 obtained his doctorate in mathematics.

The collaboration between student and teacher manifested itself right
away, when they developed the first results on the theory of non-linear os-
cillations - a subject that they themselves will call "non-linear mechanics"
- ([Krylov, Bogolioubov 1933], [Krylov, Bogolioubov 1937], [Krylov, Bogo-
lioubov 1950]77).

In this context, we are interested in deepening some results developed
by the two Ukrainian mathematicians which will be useful to explain the
few lines written by Kolmogorov in 1985 [Kolmogorov 1991/1985] - al-
ready reported in the introduction of this thesis - in which he stated: "My
papers on classical mechanics appeared under the influence of von Neu-
mann’s papers on the spectral theory of dynamical systems and, partic-
ularly under the influence of the Bogolyubov-Krylov paper of 1937. I became
extremely interested in the question of what ergodic sets (in the sense of
Bogolyubov-Krylov) can exist in the dynamical systems of classical me-
chanics and which of the types of these sets can be of positive measure (at

76He was denied access as free student of mathematics and physics at Kiev University
for failing a course of study in classical languages

77It is the first book by Krylov and Bogoliubov, first published in 1934, in Russian,
and translated into English by Russian naturalized American mathematician Solomon
Lefschetz (Moscow, 1884 - Princeton, 1972) in 1942.
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present this question still remains open)".
The work to which Kolmogorov refers is La Theorie Generale De La Mesure

Dans Son Application A L’Etude Des Systemes Dynamiques De la Mecanique
Non Lineaire, published January 1937 in Annals of Mathematics. In the
introduction, as we have seen in the epigraph of this paragraph, the in-
tention of the authors to the connection of this work with the words of
Kolmogorov - also referring to the works of von Naumann - are clear.

Furthermore, it reads below:
La seule condition restrictive vraiment essentielle dans leurs recherches

consiste dans l’existence d’une mesure invariante la notion présentant une

généralisation toute naturelle de celle d’un invariant intégral, utilisée jadis

par H. Poincaré dans la démonstration de son théorème classique sur la

récurrence des mouvements dans les systèmes de Liouville.

Vu le grand intérêt théorique des théorèmes ergodiques et la variété de

leurs applications physiques il était très désirable d’étendre le domaine de

la validité de ces théorèmes sur les systèmes pour lesquels aucune mesure

invariante n’est donnée à priori.

C’est avec les systèmes dynamiques de ce dernier type qu’on a affaire

en mécanique non linéaire dans différentes questions concernant les oscil-

lations non linéaires78. [Krylov, Bogoliubov 1937 p.65]

78Eng. tr.:In the theory of dynamical systems a very important progress has been made
recently thanks to the work of B. O. Koopman, T. Carleman, E. Hopf, J. v. Neumann and
G. D. Birkhoff who have established a series of remarkable so-called ergodic theorems
concerning certain time averages and their connection with spatial averages for a very
wide class of dynamical systems.

The only really essential restrictive condition in their research consists in the existence
of an invariant measure, the notion presenting a very natural generalisation of that of an
integral invariant, used formerly by H. Poincaré in the proof of his classical theorem on
the recurrence of motions in Liouville systems.

Given the great theoretical interest of ergodic theorems and the variety of their physi-
cal applications it was very desirable to extend the domain of validity of these theorems
to systems for which no invariant measure is given a priori.

It is with dynamical systems of the latter type that one has to deal in nonlinear me-
chanics in various questions concerning nonlinear oscillations.
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What they call a condition restrictive is that the hypothesis of the existence
of invariant measures is not verified in dynamical systems describing dis-
sipative phenomena, i.e. those dynamical systems in nonlinear mechanics
that we find in various questions concerning nonlinear oscillations.

Krylov and Bogoliubov, with their work, have made it possible to ex-
tend the ergodic theory to such situations. In fact, they declare that the
fundamental result of their work is the demonstration of the fact that it is
always possible to construct, for such systems, invariant measures in the
phase space and also transitive measures (theorems I, II and III in [Krylov
and Bogoliubov (1937), pp. 92-95) . With their results, they succeeded in
applying the ergodic theorems of G. D. Birkhoff et J. v. Neumann to the
systems examined. Furthermore, they introduced the important concept
of ergodic sets (definition IX in [Krylov and Bogoliubov (1937), p. 103]) -
a concept in which Kolmogorov himself was interested - and proved that
the phase space of a non-ergodic dynamical system can be decomposed
(up to sets of zero measure) into a sum of subsets on which the system is
ergodic.

For such a non-ergodic system, if for almost all of its ergodic compo-
nents the dynamical system has a purely point-like spectrum (i.e. quasi-
periodic motion), then the system is integrable.

This will be one of the fundamental points of Kolmogorov’s theorem
on invariant tori and the work of the Ukrainian mathematicians will serve
him precisely to use the notions of ergodic theory for the qualitative study
of the motions of analytical dynamical systems. I will deal with this aspect
in detail in section §3.1.
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2 Fascination and risk. Aspects of Andrej N. Kol-

mogorov’s (1903-1987) life and times

The development of science in the Russian Empire during the final decades
of the Tzarist monarchy and the Soviet regime has received increasing at-
tention in recent years. In fact, within the lively intellectual environment,
between petty nobility and cultured bourgeoisie (Westernists or Slavophiles),
not only literary culture but also scientific culture flourished, so it is pos-
sible to speak of an intelligentsia science [Gordin, Hall, Kojevnikov 2008].
The scientific movement in cities such as St. Petersburg, Moscow, Kazan
or Kiev had specific characteristics that deserve further study thirty years
after the end of the political experience of the Soviet Union:

The Russian Empire possessed ten universities at the beginning of World

War I, the oldest (Moscow) dating to 1755. Its Imperial Academy of Sci-

ences (1725) continued to sponsor valuable research throughout the nine-

teenth and early twentieth centuries. If nineteenth-century Russia was of-

ten thought of in the West as a country outside the scientific tradition, a

nation where forms of Slavic mysticism and Orthodox Christianity79 not

conducive to science were the principal intellectual trends, it is quite clear,

to the contrary, that by the end of that century Russia possessed a devel-

oping and capable scientific community already rooted in an institutional

base. [Graham 1993, p 80]

This evolution can be seen as part of a more general trend towards mod-
ernization (industrialization, social progress, political evolution) in a cul-

79The case of Russia can be considered in the general framework of the issue of the
cultural conditions of the development of science in the areas of the Christian Ortodoxy
(see [Nicolaïdis 2011]). In the outstanding mathematical development the role of the Or-
thodox religious tradition was studied by Loren Graham Florenskij. On the evolution
between the late 19th century and 20th century, see [Graham 1993], [Rabkin and Rajap-
olapan 2001], [Kojevnikov 2002] and the papers included in the monographic issue of
Science in Context introduced by the late paper, and the papers included in the issue of
Osiris devoted to Intelligentsia science. The Russian century 1860-1960 [Gordin, Hall,
Kojevnikov 2008].
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tural atmosphere of increasing cultural tights with other countries in Eu-
rope of the intelligentsia, since the late 19th century reforms by Alexander
II. The social and political tension against the autocratic regime was also
linked to the diffusion of positivism and scientism:

The cult of science flourished across Europe at the beginning of the

twentieth century. It happened to be particularly prominent in the Rus-

sian empire, which had only recently embarked upon industrialization and

modernization. Almost all parts of the political spectrum bought into it, al-

though for different reasons. For Russian liberals, science was synonymous

with economic and social progress; for the radical intelligentsia, including

the yet utterly insignificant and marginal Bolsheviks on the very left, it was

the closest ally of the revolution. Many among the monarchists, too, placed

high hopes on modern science as a remedy for the country’s relative eco-

nomic backwardness vis- à- vis Germany, France, and Britain (other Euro-

pean countries rarely figured in the comparison). After the Great Reforms

of the 1860s, they helped institutionalize science and promote the research

imperative at Russian universities, hoping that at the very least it could dis-

tract unruly students from pursuing dangerous political temptations. [Ko-

jevnikov 2008, pp. 115-116].

In fact, intelligentsia science was a complex phenomenon where several
trends can be identified, from the philosophical and religious (the cultural
background of Orthodox Christianity), to the patriotic and the utilitar-
ian. Botany and chemistry were paid a great attention, for example, as
both scientific areas had an impact on modernization of agriculture [Elina
2002]; mathematics was developed also in connection with religious wor-
ship [Graham, Kantor 2009]. Among outstanding, original figures, con-
sider Vladimir Ivanovich Vernadskij (1863 - 1945), a Russian geochemist
and mineralogist who developed a holistic vision of the planet and chem-
ical and biological processes; and Lev Semënovich Vygotskij (1896 - 1934),
who founded the research area on the child named pedology. The po-
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litical evolution after the 1917 Revolution has hampered the diffusion of
their ideas, and thus the understanding of the phenomenon of the modern
spread of science in the Russian Empire. There are thus factors of continu-
ity and of discontinuity between the evolution of science before and after
the fall of the tzarist regime:

The fact that the Soviet Communist regime placed extraordinarily high

value and expectations upon science is, of course, rather well known. So

much so, perhaps, that it has usually not been seen as a historical prob-

lem but has been taken for granted as something natural that does not ask

for further discussion or inquiry. Behind the cover of obviousness, how-

ever, one can find a complex combination of historical choices and heteroge-

neous reasons—some ideological, some pragmatic, some accidental— that

together may offer an explanation of why, among all the various political

regimes and movements of the twentieth century, Communism, especially

in its initial Soviet incarnation, happened to be the one most favor- ably

predisposed toward science, believing most utterly, up to the point of irra-

tionality, in science’s power and value.

To begin with, the Soviets mounted their belief in science on top of a

preexisting and rather high foundation. [Kojevnikov 2008, pp. 115].

Lenin’s and Stalin’s policy was that of “preserving the old forms of intel-
lectual and cultural institutions inherited from tzarism” even against the
criticism from the left. The political evolution and ideological framework
of the Soviet regime under Stalinism had a relevant impact on the evolu-
tion of research.

Soviet science should have a double mission: help the construction of
material basis of the socialist regime and support the ideology, includ-
ing the fight against religious beliefs. The large area of classical mechan-
ics, between mathematics and physics, was a favorite area of scholarship
because of its relevance to technological applications – in §1.4 we have
considered the work by Krilov in Kiev. Celestial mechanics, as we have
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mentioned in Chapter 1, was overlooked in the early decades of the 20th
century, but in the Soviet Union this situation could perhaps be felt as
dangerous because of the attack against astronomy starting in 1936. Si-
mon Diner80, writes, in his essay on Les voies du chaos déterminist dans l’école
russe:

En 1985 est inaugurée à Moscou une série de petits ouvrages: "Problèmes

contemporains des mathématiques. Orientations fondamentales." [...] Que

les huit premiers volumes, ouvrant ce tour d’horizon exhaustif des mathé-

matiques, soient consacrés aux "systèmes dynamiques" est une affirmation

hautement significative de la puissance de l’école russe en ce domaine. Ces

volumes sont plus souvent dirigés (et même rédigés) par les deux mathé-

maticiens: V. I. Arnold et Y. G. Sinaï. La réputation de ces deux élèves de A.

N. Kolmogorov (1903-1987), l’un des géants mathématiques du XXe siècle,

n’est plus à faire. Et pourtant, le grand public en Occident ignore largement

que ce sont essentiellement des savants russes qui ont pendant cinquante

ans exploité la partie de l’héritage d’Henri Poincaré, concernant la "théorie

qualitative des systèmes dynamiques" et la "mécanique non linéaire" dont

le chaos déterministe n’est qu’un des aspects les plus spectaculaires.

Situation créée par la conjonction de l’isolement relatif de l’Union sovié-

tique et les mobiles internes du développement des mathématiques dans

un univers de la physique où la mécanique quantique a ravi la vedette à la

mécanique classique. Le langage de Poincaré semblait opaque et ses idées

en ont souffert, d’autant plus que les applications qu’il envisageait ne con-

cernaient que l’astronomie.

[...] Pendant tout ce temps l’URSS a vu éclore de nombreux travaux, dans

des circonstances où ont simultanément joué des facteurs idéologiques et

intellectuels, des traditions scientifiques nationales et la constitution d’écoles

scientifiques pour suivant des programmes, pour ne pas dire des "plans".

80Simon Diner is a theoretical physicist who was research director of the CNRS, whose
parents, both chemists, left Bessarabia in 1930

99



[...] Dans les années 30 toutes ces écoles de physique sont d’une manière ou

d’une autre engagées dans le grand mouvement international de la physique

quantique, manifestant par là le niveau de formation des physiciens russes

et le non-isolement initial de la Russie soviétique. [...] Mais la situation

historique et politique de l’Union soviétique des années 30 va contribuer

à créer comme una bulle fermée [...]. Sous l’ influence de cette idéologie

matérialiste, qui s’oppose d’une manière militante à l’ensemble des dé-

marches idéalistes, positiviste et formalistes, dominantes dans les "sociétés

bourgeoises", de nombreux savants et penseurs soviétiques privilégient las

travaux qui cherchent à garder ou à restaurer une "image réaliste du monde".

[Diner 1992, p 331-332, 335].

Andrej N. Kolmogorov’s scientific biography is tightly intertwined with
the development of mathematics in his country, including aspects such as
mathematical education [Karp 2012], [Karp 2014], the political conditions
[Lorentz 2002]; [Kutatelazde 2012], [Demidov, Levshiin 2016], [Mazliak
2018], the creation of research schools [Demidov 2004].

Kolmogorov’s political views had been considered either that of a au-
thentic Marxist [Graham 1993] loyal to the regime or that of a member of
the intelligentsia science, who lived through the troubled 1930s and 1940s
acting sometimes against his principles [Arnold 2000], [Lorentz 2002].

In the present chapter 2, I have gathered some elements that appear
pertinent to the understanding of the cultural meaning – in the history of
mathematics, in the history of science in Russia — of the aspect of Kol-
mogorov’s contributions that he presented short after the death of Stalin.
As I stated in the introduction, the investigation of these aspects was prompted
by the reports by Vladimir Arnold of a conversation with Kolmogorov
dating back to the 1984, thirty years after the publication of [Kolmogorov
1954] and his closing lecture at the Amsterdam ICM. I start from this testi-
mony.
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2.1 The testimony of a former student: A short conversa-

tion between Vladimir Igorevich Arnold and Kolmogorov

in 1984

He later related that he had been thinking about this problem

for decades starting from his childhood when he had read Flam-

marion’s Astronomy, but the success had come only after Stalin’s

death in 1953 when a new epoch had begun in the Russian life.

The hopes this death raised had a deep impact on Kolmogorov,

and the years 1953-1963 were one of the most productive peri-

ods in his life.

V.I. Arnold in [Arnold 1997, p.1]

"No", he [A.N Kolmogorov] answered ,"I was not at all think-

ing of that at the time. The main thing was that there appeared

to be hope in 1953. From this I felt an extraordinary enthusi-

asm. I had thought for a long time about problems in celes-

tial mechanics from childhood from Flammarion [...]. I had

tried several times, without results But here was a beginning."

V.I. Arnold in [Arnold 2000 p.90]

Vladimir Igorevich Arnold was born in Odessa on June 12, 1937 and
grew up in Moscow81.

The same year that Kolmogorov was to deliver his speech at the ICM
in Amsterdam, he entered Moscow State University, being lucky enough
to be the right age at the right time:

I entered the Faculty for Mechanics and Mathematics of the Moscow
State University in 1954 (before Stalin’s death in 1953 or after the

81Nina Alexandrova Isakovich, her mother, belonged to a Jewish Odessa family (on
Jewish Odessa see [Zipperstein 1985]. In 1937 the town belonged to the Ukrain Soviet
Socialist Republic)
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invasion to Czechoslovakia in 1968, this would probably have been
impossible for me because my mother was a Jew while my grandfa-
ther was shot dead in 1938 on the flagrantly false charge of espionage
for England, Germany, Greece, and Japan). [Sevryuk 2014, p 3].

In 1959 he defended his thesis under the supervision of Kolmogorov and
in 1961 he received the title of "candidate in physical-mathematical sci-
ences", analogous to the PhD. in the West, at the Keldysh Applied Math-
ematics Institute in Moscow, with the dissertation containing his famous
resolution of Hilbert’s 13th problem. When he was 28 year old, he be-
came a Professor in the Faculty of Mechanics and Mathematics at Moscow
State University. In [Arnold 2000] he published some letters sent to him by
Kolmogorov, which show the confidential relationship between the two of
them.

In my effort to trace the cultural origins of Kolmgorov’s theorem on
the persistence of invariant tori under small perturbations in Hamiltoni-
ans systems, I have analyzed a testimony from Arnold, regarding a con-
versation with Kolmogorov on the later’s interest in classical mechanics.
The fact that this episode is mentioned twice by Arnold ([Arnold 1997] and
[Arnold 2000]) with slightly different nuances but a hardcore, gives force
to the testimony, a written source regarding a short, fleeting oral exchange.
They were published three years apart, and in any case after Kolmogorov’s
death in 1987.

In both reports, a key information regards the circumstance that Kol-
mogorov affirmed that he had been interested in open issues in celestial
mechanics – in modern language, Arnold spoke about “quasi-periodic
motions in dynamical systems” – for decades; moreover, he links this in-
terest to his readings in astronomy in childhood – specifically the well-
known popularizer of astronomy Camille Flammarion (1842–1925), au-
thor of many multi-translated bestsellers. The first one [Arnold 1997] is

102



concise:
He later related that he had been thinking about this problem for decades

starting from his childhood when he had read Flammarion’s Astronomy,

but the success had come only after Stalin’s death in 1953 when a new

epoch had begun in the Russian life. The hopes this death raised had a

deep impact on Kolmogorov, and the years 1953-1963 were one of the most

productive periods in his life.

The second report [Arnold 2000] was published in a contribution in the
book Kolmogorov in perspective [Andrews et al 2000], including some
testimonies of his private life written by students and colleagues. Here
Arnold explains that he had tried to find an explanation on his own before
asking Kolmogorov (here he also reports the year in which the conversa-
tion took place). I quote the report dividing it in two parts:

I constructed for myself a theory of the origin of Andrei Nikolaevich’s

work on invariant tori: it began with his studies of turbulence. In the

well-known work of Landau 82 (1943) it was invariant tori—attractors in

the phase space of the Navier-Stokes equation—that were used to "explain"

the onset of turbulence.[...] In a discussion at the Landau seminar Andrei

Nikolaevich remarked that a transition to an infinite dimensional torus and

even to a continuous spectrum can already take place for a finite Reynolds

number. On the other hand, even if the dimension of the invariant torus

remains finite for a fixed Reynolds number, the spectrum of a condition-

ally periodic motion on a torus of sufficiently high dimension contains so

many frequencies that it is practically indistinguishable from a continuous

spectrum. The question as to which of these two cases actually holds was

asked more than once by Andrei Nikolaevich. A program for the seminar

on the theory of dynamical systems and hydrodynamics was posted on a

82He refers to Lev Davidovič Landau (1908 -1968), Soviet physicist winner of the Nobel
Prize in physics in 1962, one of the most important physicists of the 20th century. He
wrote numerous treatises on mechanics, hydrodynamics, quantum physics and physical
statistics.
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bulletin board in the Mechanics and Mathematics Department of Moscow

State University at the end of the 1950’s [...]. Andrei Nikolaevich chuckled

about the tori of Landau: "He (Landau) evidently did not know about other

dynamical systems." [Arnol’d 2000, p 89-90].

He refers to Lev Davidovich Landau (1908 -1968), winner of the Nobel
Prize in physics in 1962, contributing to several areas in mathematical
physics such as mechanics and hydrodynamics, as well as quantum physics
and physical statistics. “The transition from the tori of Landau to dynam-
ical systems on a torus would be a completely natural train of thought”
was in the end Arnold’s idea. But Arnold goes on:

In the final analysis I almost believed in my theory and (in 1984) asked

Andrei Nikolaevich whether it was really so. “No,” he answered, “I was not

at all thinking of that at the time. The main thing was that there appeared to

be hope in 1953. From this I felt an extraordinary enthusiasm. I had thought

for a long time about problems in celestial mechanics, from childhood, from

Flammarion, and then –reading Charlier, Birkhoff, the mechanics of Whit-

taker, the work of Krylov and Bogolyubov, Chazy, Schmidt. I had tried

several times, without results. But here was a beginning.” [Arnol’d 2000, p

90].

Common to both reports is Kolmogorov’s hint regarding “a hope” felt in
1953, a new epoch being opened for life in Russia – the mention of Stalin’s
death was perhaps Arnold’s interpretation. In the period 1936 – March
1953 the population of the Soviet Union was bent by Stalin’s Great Purges
and the terror policy implemented. Internal tensions, the growing threat
of a Second World War, the Iron Curtain, helped create distances and bar-
riers between the USSR and the rest of the world. Serguei Demidov, in
[Demidov 2009], describes the interruptions of travel and relations with
France among mathematicians:

À la fin des années trente, les savants soviétiques ne voyageaient presque

plus à l’étranger, et les séjours de spécialistes occidentaux en URSS étaient
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également devenus très rares. Cette restriction des contacts fut aggravée

par la diminution graduelle du nombre de publications de savants sovié-

tiques dans des revues scientifiques étrangères, jusqu’à l’interdiction to-

tale.83[Demidov 2009, p 133].

2.2 Reading Flamarion and Timirjazev. Kolmogorov as mem-

ber of the Russian “intelligentsia science”

The young Kolmogorov, born two years before the 1905 upheavals that
marked the final years of the Tzarist regime, was raised in his mothers’
family of land owners, first at Tunoshna, close to Yaroslav, and then, when
he was 6 years old, in Moscow. His mother, Marya Yakolevna Kolmogorova,
died in childbirth, and her aunt Vera Yakolevna Kolmogorova (1863-1950)
brought him up. She, as well as Kolmogorov’s father, Nikolai Matveevich
Kataev84 were part of the radical Russian intelligentsia, learned people
following ideals of justice and freedom, interested in the arts and the sci-
ences, and believing in new or progressive education.

Andrej Nikolaevich attended a private gymansium in Moscow, founded
by two woman, Evgenja (Evgeniya) Albertovnava Repman (1870-1937)85

83Eng.tr: By the end of the 1930s, Soviet scientists hardly ever travelled abroad, and
visits to the USSR by Western specialists had also become very rare. This restriction of
contacts was aggravated by the gradual decrease in the number of publications by Soviet
scientists in foreign scientific journals, until they were completely banned.

84A cousin on his father side was the poet Ivan Ivanovich Kataev (1902-1937), who was
a victim of the Stalinist period (dates of birth and death are from the Library of Congress
catalogue where several of his books can be found). Kolmogorov’s father (his parents
were not married) was an agronomist and a writer (Tikhomirov 1988, p. 2). Tikhomirov
reports this testimony: “In the thirties Andrei Nikolaevich stated in questionnaires that
one of his grandfathers was a high ranking nobleman and the other a fatherly Archdea-
con. He spoke of this with a touch of pride. I think htat the reason for Kolmogorov’s
pride here was that the position of his ancestors in the class hierarchy was not obvious
enough and htat the did not demean himself by concealing the truth in these difficult
years” (p. 2)

85Repman, founder and director of the school, was the eldest daughter of Albert Hris-
tianovitch Repman (1834-1917), since 1889 direc- tor of the section on applied physics of

105



and Vera Fedorovna Fedorova, educating boys and girls together and fol-
lowing the principles of “experimental” pedagogy86.

We have salient testimonies of the relevance of his childhood for this
intellectual trajectory. He lost her mother at birth and very soon also his
father – the 1917 fall of the monarchist regime and the war sweeping away
institutions, people, and normal life, his father who he used to visit him
from time to time became head of the educational division of the People’s
Commisssariat Narkomset and in 1919, having been attached to the Kursk
government, he disappeared. Even so, it was a happy and stimulating pe-
riod for the young Andrej Nikolaevich, and his friendship circle in adult
life was linked to his school colleagues, including his future wife Anna
Dmitriyevna Egorova (1903-1988), the daughter of the historian Dmitri
Nikolaevich Egorov87.

His former student and collaborator in the area of mathematics educa-
tion since the 1960s Alexander Abramov (1926 - 2019) wrotes:

[...] certain key events took place at various stages of Kolmogorov’s

life and had a particular influence on him. Both Kolmogorov’s genius and

his personality stem from his childhood, adolescence, and youth. In his

articles, letters, and conversations, he often returned to the events of his

early life. First, there was his early childhood. Left without a mother —

the Polytechnical Museum of Moscow (founded by the zar Alexander II in 1870 as Mu-
seum of Applied Knowledge). After 1917, the school was renamed Section grade school
no. 23.

86See [Tikhomirov 1988]
87In his diary pages dating back to 1943 [Duzhin 2011], together with his compan-

ion of life Pavel Sergeyevich Alexandrov (1896-1982), her three aunts Vera, Nadya and
Varya (he wanted to bring back the first two from Kazan where they had been evacu-
ated are named, as well as his wife (he had married her in 1942) and two other friends
from the school years, his wife’s former husband, the mathematician and painter Sergei
Mikhailovich Ivashyov-Musatov and the geneticist Dmitrii D. Romashov (1899-1963), a
prominent scientist in the Soviet Union evolutionary biology school founded by Sergei
Chetverikov (arrested by the secret police in 1929) The son of Musatov and her wife
Anna, Oleg Sergeyevich Ivashyov-Musatov, is also named (he would who majored in
mathematics with his stepfather.
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Maria Kolmogorova died while giving birth to him — Kolmogorov was

raised in an atmosphere of love and attention in a wealthy noble family

that embraced the best traditions of the Russian intelligentsia, combining a

deep interest in culture with respect for work and adherence to democratic

principles. Kolmogorov’s diligence, inquisitiveness, and talent began to

take shape at a very early age. [Abramov 2010, p 89]

And this is how Tikhomirov descrives Kolmogorov internal connection to
the experiences of his early days:

Kolmogorov retained very clear memories of his early years. He was

surrounded by love, kindness, attention, and care. Those close to him en-

deavoured to develop in the child curiosity and interest in books, science,

and nature. Vera Yakolevna took the boy through fields and woods and

talked to him of trees, flowers, herbs; she went on walks with him in the

late evening and showed him the starry sky, named the constellations and

the individual bright stars, told him of the universe; in the evening she

read a lot – the stories of Hans Andersen, the tales of Selma Lagerlöf...

[Tikhomirov 1988, p. 3]

Among books which left a trace in his mind we know from Camille Flam-
marion – as we have seen in §2.1 – and Kliment Arkadievich Timiryazev(1843-
1920). Tikhomirov’s quotes this word from Kolmogorov:

The first deep impression of the power and significance of scientific re-

search was made on me by K.A. Timiryazev’s book Zhizn’ rastenii (Plant

life) [quoted in Tikhomirov 1988, p. 6]

Thus, the final school years and those as university stu- dent were marked
by the end of Tzarist monarchy in October 1917 – he was 14 years old – and
the rise of bolshevism under Lenin. He had to leave Moscow in 1918-20
with his family, as he himself recounts in [Kolmogorov 1988]. Tikhomirov
writes:

In the hard year of 1919 Kolmogorov was compelled to seek some paid

work. He found work as a railwayman (both as librarian and stoker) on the

107



train running between Kazan and Ekarterinburg (now Sverdlovsk). (The

carriage containing the library stopped for some time at various small sta-

tions). At the same time he continued to study diligently, preparing to take

and external examination for the secondary school. But somewhat to this

disappointment, these efforts were of no use – in the summer of 1920 he

was given a certificate stating that he had graduated from the 23rd school

of the second stage (the Repman grammar school had been renamed thus)

without having an examination. [Tikhomirov 1988, p. 7]

In 1920 he enrolled both at the Physics and Mathematics Department of
Moscow University and at the Institute of Chemical Engineering “D.I.
Mendeleev”. Engineering was then perceived as something more serious and
necessary than pure science, he would say in 1963 during and interview
with the magazine Ogonek riferimento [Kolmogorov 1963]. Furthermore
in 1922, Kolmogorov was hired as a math and physics teacher and board-
ing school educator in a secondary school of the network under the admin-
istration of the People’s Commissariat of Education (known as Narkom-
pros), led by Anatoly Lunacharsky (1875-1933) with Lenin’s wife, Nadezhda
Konstantinovna Krupskaya (1869- 1939):

Now I remember with great pleasure my work at the Potylikha Exper-

imental School of the People’s Commissariat of Education of the RSFSR. I

taught mathematics and physics (at that time they were not afraid to en-

trust the teaching of two subjects to 19-year-old teachers at the same time)

and took an active part in the life of the school (I was the secretary of the

school board and a boarding school educator)88 [Kolmogorov 1963, p 12].

Alexander Karp has described the influence on mathematical education
in the Russian Empire of the “modern school” movement [Karp, Vogeli
2010], [Karp 2012] and [Karp, Schubring 2014]; his description help us

88Although perhaps this early involvement in elementary education began as a job
out of necessity rather than will, [Abramov 2011] shows that in the 1960s and 1970s he
returned to his interest in education, marked by his own experience, participating in
efforts to improve the secondary mathematics education in the USSR.
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understanding the cultural atmosphere in which the young Kolmogorov
work as mathematics and physics teacher:

In place of all existing types of educational institutions, a statute of 1918

established the so-called unified labor schools. These schools were divided

into two stages, and the network of first-stage schools, which were far more

numerous to begin with, continued to be intensively developed.

[...] The goal was to eliminate from schools anything reminiscent of for-

mer discipline and drills, including exams, textbooks, and even separate

subjects (including mathematics). The ideas of American progressive edu-

cators were taken up and developed in Russia (Soviet Union); schools made

use of projects, laboratory work, group work, and, above all, "complexes".

“Complexes” had to link through one overarching theme topics that

had previously been studied in different subject classes. For example, teach-

ers could use a theme such as “The Post Office” to get their students to do

some writing, to perform some computations, to talk about geography, and

even to discuss the difficult position of the working class in other countries.

[Karp 2014, p. 315].

The deep roots that led Kolmolgorov to enroll in a degree in applied sci-
ences were the same ones that probably drove him to take an interest in
astronomy, as we have read from Arnold’s words.

The references in the previous paragraph take us back to the astronomer
Camille Flammarion (1842–1925), a famous French astronomer, publisher
and science popularizer. A prolific and multi-translated author, during his
career he published more than fifty works, among which the most famous
were popular astronomy guides. In an obituary written by the English as-
tronomer William Porthouse89, he is described as an apostle of astronomy:

Camille Flammarion might be described as the apostle of popular as-

tronomy. His numerous literary works had for object primarily the popu-

89William Porthouse (1877-1964), a member of the Manchester Astronomical Society
from 1905 until his death and editor of the Journal of the Manchester Astronomical Soci-
ety from 1913 to 1924
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larisation of astronomical study in all its manifolds branches [...].

Flammarion was not content to spread abroad the gospel of astronomy

by book and pamphlet. He believed in the practical application of his theo-

ries for the spread of a universal knowledge of the sky. [Porthouse 1925, p

951]

Strongly convinced that the study of science was for everyone, Flammar-
ion collaborated with a large number of magazines and newspapers, ac-
tively participating in the great scientific emancipation movement of the
second half of the nineteenth century. His books are rich in figures and
illustrations and are written with direct and persuasive communication,
with a style capable of enthralling and enthusing the reader.

But which Flammarion’s Astronomy could Kolmogorov have read?
Analyzing the time span in which he as a child would have read the works
and translations in Russian, we could restrict the field to two possibilities:
one of which is the famous Astronomie Populaire, [Flammarion 1880] pub-
lished in 1880 in Paris by the publishing house "C. Marpon et E. Flammar-
ion"90, translated for the first time into Russian as early as 1897 and in var-
ious subsequent editions. Divided into six chapters - The earth, The moon,
The sun, The planetary worlds, The comets, The stars - it is intended to be
a book aimed at everyone to teach the elementary knowledge of astron-
omy in an extremely didactic and popular form.

The opening words of chapter one is an introduction to the entire book:
Ce livre est écrit pour tous ceux qui aiment a se rendre compte des

choses qui les entourent, et qui seraient heureux d’acquérir sans fatigue

une notion élémentaire et exacte de l’état de l’univers.

N’est-il pas agréable d’exercer notre esprit dans la contemplation des

grands spectacles de la nature? N’est-il pas utile de savoir au moins sur

quoi nous marchons, quelle place nous occupons dans l’infini, quel est ce

soleil dont les rayons bienfaisants entretiennent la vie terrestre, quel est ce

90Ernest Flammarion (1846 - 1936), French publisher and Camille’s brother.
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ciel qui nous environne, quelles sont ces nombreuses étoiles qui pendant la

nuit obscure répandent dans l’espace leur silencieuse lumière? Cette con-

naissance élémentaire de l’univers, sans laquelle nous végéterions comme

les plantes, dans l’ignorance et l’indifférence des causes dont nous subis-

sons perpétuellement les effets, nous pouvons l’acquérir, non-seulement

sans peine, mais encore avec un plaisir toujours grandissant. Loin d’être

une science isolée et inaccessible, l’Astronomie est la science qui nous touche

de plus près, celle qui est la plus nécessaire à notre instruction générale,

et en même temps celle dont l’étude offre le plus de charmes et garde en

réserve les plus profondes jouissances.91

Another probable reading, although less famous than the first but well
known in the innovative circles of that time, is Initiation Astronomique [Flam-
marion 1908]. It was a work aimed at children, also with numerous illus-
trations, published in 1908 in Paris by Libraire Hachette et CIe and trans-
lated into Russian in the same year, when Kolmogorov was five years old
and was in Tunoshna where he was studying in the innovative school of
aunts.

The booklet was published in the series of "Initiations scientifiques"
directed by the mathematician Charles-Ange Laisant92 and, as he himself

91This work is written for those who wish to hear an account of the things which sur-
round them, and who would like to acquire, without hard work, an elementary and exact
idea of the present condition of the universe.

It is not pleasant to exercise our minds in the contemplation of the great spectacles of
nature? It is not useful to know, at least, upon what we tread, what place we occupy in
the infinite, the nature of the sun whose rays maintain terrestrial life, of the sky which
surrounds us, of the numerous stars which in the darkness of night scatter through space
their silent light? This elementary knowledge of the universe, without which we live, like
plants, in ignorance and indifference to the causes of which we perpetually witness the
effects, we can acquire not only without difficulty, but with an ever-increasing pleasure.
Far from being a difficult and inaccessible science, Astronomy is the science which con-
cerns us most, the one most necessary for our general instruction, and at the same time
the one which offers for our study the greatest charm and keeps in reserve the highest
enjoyments.
Populair Astronomy (1894), English version, translated by J. Ellard Gore, London, Chatto
& Windus, Piccadilly, p.1

92Charles-Ange Laisant (1841-1920). French mathematician and politician, he was a
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writes in the opening introductory pages, Il est destiné, entre le mains de
l’éducateur, à servir de guide pour la formation de esprit des tout jeunes enfants
- de quatre à douze ans - afin de meubler leur intelligence de notions saines et
justes, et de les préparer ainsi à l’étude, qui viendra plus tard93. [Flammarion
1908, p. V].

We also find a brief introduction by the author who, in his words, ex-
presses all his passion in this project and affirms the centrality of astron-
omy in scientific thought:

J’ai toujours pensé aussi qu’il n’est pas nécessaire d’ennuyer le lecteur

puor l’instruire, et que si pendant tant de siècles, l’Astronomie, la plus belle

des sciences, celle qui nous apprend où nous sommes et qui nous dévoile

les splendeurs de l’Univers, est restée à peu orès ignorée de l’immense ma-

jorité des habitants de notre planète, c’est parce qu’elle a toujours été mal

enseignée dan les Ècoles. Aujourd’hui, enfin, on commence à la trouver

intéressante, à lire le grand livre de la Nature, à vivre un peu plus intel-

lectuellement. 94 [Flammarion 1908, p. VII]

Although it is not possible to ascertain with certainty which of the cited
texts Kolmogorov read, it is clear that this author played a fundamental
role in the birth of the interest of the child Kolmogorov in the stars and
celestial mechanics.

deputy from Nantes and professor at the École polytechnique in Paris. He dealt with
mechanics, geometry and algebra and, mainly, with the teaching of mathematics and
related reform.

93Eng. tr.: It is intended, in the hands of the educator, to act as a guide for the formation
of the mind of very young children - from four to twelve years old - in order to provide
their intelligence with sound and correct notions, and thus prepare them for examination,
which will come afterwards.

94Eng. tr.: I have also always thought that it is not necessary to bore the reader to
instruct him, and that if for so many centuries astronomy, the most beautiful of the sci-
ences, the one that teaches us where we are and that reveals the splendors of the Universe,
has remained almost ignored by the vast majority of the inhabitants of our planet, it is
because it has always been badly taught in schools. Today, finally, we begin to find it
interesting, to read the great book of Nature, to live a little more intellectually.
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2.3 A silent work. Kolmogorov’s scientific life under Stal-

inism

The Kolmogorov’s career as a research mathematician was already start-
ing. In 1922 he proved his first famous result, in the field of trigono-
metric series, building an almost everywhere divergent Fourier-Lebesgue
series; it was published the following year under the title Une serie de
Fourier-Lebesgue divergente presque partout in the new Polishjournal Funda-
menta Mathematicæ95.

On the 21st January 1924 Lenin died. Under the first years of Joseph
Stalin’s rule Kolmogorov’s career and prestige took off: he graduated in
1925, and after his postgraduate period, in 1929 began his teaching career
ad the Moscow University Institute of Mathematics of Mechanics.

After ten years, in the dramatic years of the Stalinist terror, Kolmogorov
was elected a full member of the USSR Academy of Sciences. In 1933 he
had published, in German, his revolutionary treatise on the foundations
of probability theory: Grundbegriffe der Wahrscheinlichkeitsrechnung, laying
the axiomatic foundations of the theory of probability.

Kolmogorov’s private life is inevitably intertwined with his profes-
sional one when he becomes a friend of the mathematician Pavel Sergeevič
Aleksandrov96

Our close friendship began in 1929. Now I am posting a description of

my life with Aleksandrov in the first years of this friendship (1929-1931).

[...] for me these 53 years of close and indissoluble friendship were the

reason that my whole life was on the whole filled with happiness, and

the basis of this happiness was Aleksandrov’s unceasing concern. [Kol-

95This journal, founded in 1920 by a group of Polish mathematicians to strenghten the
mathematical homeland culture in the years of restoration of Poland independence after
the end of the First World War, was at the same time intended with a deep international
vocation.

96Pavel Sergeevič Aleksandrov (1896-1982), a well-known Russian mathematician who
made important contributions to general topology.
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mogorov 1986, p.225]

In the thirties they bought a house in the village of Komarovka, near Bol-
shev where they spent their whole life, from 1942 also together with Kol-
mogorov’s wife Anna Dmitrievna Egorova:

In 1935 we acquired from the heirs of Konstantin Sergeevich Stanislavskii97

part of an old manor house in the village of Komarovka near Bolshev (later

we bought the whole house). This "house in Komarovka" satisfied all our

requirements: there was room for a large library and we could put up our

guests in separate rooms for several days and even for longer periods. By

the end of the 30’s we were both well settled in. As a rule, of the seven days

of the week, four were spent in Komarovka.

[...] One of our favourite ways of arranging ski-runs was this: we invited

young mathematicians to, say, Kalistov, and from there we set out in the

direction of Komarovka. Some who did not get as far as Komarovka caught

a bus and set off for home. When we got to Komarovka it was suggested

that we had a shower and then if one felt like it a romp in the snow and

then dinner. In the golden age of the Komarovskii house the number of

guests at the dinner table after skiing could be as many as fifteen. This was

a typical day’s programme at Komarovka. Breakfast at 8-9 o’clock. Study

from 9 to 2. Second breakfast about 2. Ski run or walk from 3 to 5. When the

organization was at its strictest, a pre-dinner nap of 40 minutes. Dinner 5-6

p.m. Then reading, music, discussion of scientific and general topics. And

finally a short evening walk, especially on moonlight nights in winter. Bed

between 10 and 11. There were two cases in which this arrangement could

be altered; a) when scientific research became exciting and demanded an

unlimited length of time; b) on sunny days in March when skiing was the

only occupation. [Kolmogorov 1986, pp. 233-234].

97He refers to Konstantin Sergeevich Stanislavskii (1864- 1938), a Russian actor, theater
director and teacher, known for being the creator of the Stanislavsky method.
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In [Shiryaev 2000 p.38]

Despite the change of regime in the Russian Empire, in the 1920s and early
1930s scientist’s in the USSR maintained and developed the ongoing inter-
national relationships, specially with Germany, France – a center of emi-
grés intellectuals after the 1905 upheaval –, and the United States. Legacy
of the schools of Dmitry Fëdorovič Egorov98 and Luzin, Kolmogorov had
tight connections in France.99

98Dmitry Fëdorovič Egorov (Moscow, 1869- Kazan, 1931) was a Russian mathematician
who mainly dealt with differential geometry and mathematical analysis.

99For more details on relations between France and Russia, see [Demidov 2009].
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During his first academic trip, with Pavel Alexandrovich Aleksandrov,
in Germany and France between 1930 and 1931, he forged links with many
French and German mathematicians:

From June 1930 to March 1931 he went on his first academic journey

abroad—to Gottingen, Munich, and Paris. In the first 30 years of this cen-

tury Gottingen was the Mecca for all mathematicians. Krein, Hubert, and

other outstanding scholars worked there, and everyone who aspired to do

research in the field of mathematics and its applications made it his goal. In

the twenties and early thirties almost all the most powerful young mathe-

maticians spent some time there, starting with von Neumann and Wiener.

Kolmogorov had very many mathematical contacts in Gottingen "with

Courant and his pupils in the field of limiting theorems, where diffusion

processes proved to be limits for discrete random processes, with H. Weyl

in intuitionistic logic, with E. Landau for questions in the theory of func-

tions".

He talked with Hubert, had scientific contacts with E. Noether, H. Lewy,

Orlicz, and many others. [Tihkomirov 1988, p. 10]

Demidov asserts that the intense relations between these two countries
seemed more flourishing than ever, with no clouds on the horizon:

Dans les années 20, les mathématiciens soviétiques se rendirent souvent à

l’étranger. Luzin continuait, beaucoup plus que les autres, à travailler en

France, surtout à Paris: en 1925-1926, il y séjourna neuf mois, en 1926-1927,

cinq mois, puis deux ans entre 1928 et 1930. Lors de ce dernier séjour, il

rédigea son fameux ouvrage, Leçons sur les ensembles analytiques et leurs ap-

plications. En 1926-1928, ses élèves Men’šov, Lavrent’ev et Bari voyagèrent

également à Paris. Bien que de plus en plus attiré, au début des années

20, par l’école mathématique de Göttingen, Aleksandrov se rendit quand

même en France pendant son séjour européen. Durant celui-ci, il fut d’abord

accompagné par Uryson; malheureusement, en 1924, ce jeune mathémati-

cien russe fort prometteur se noya. En 1930-1931, Aleksandrov acheva à
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Paris puis sur la Côte d’Azur son périple entre l’Allemagne et la France, en

compagnie de Kolmogorov.

Ce dernier rendit visite à Borel et Lebesgue, discuta des problèmes de

chaînes de Markov avec Fréchet, et s’entretint avec Paul Lévy. Dans l’intro-

duction à leur ouvrage, Barbut, Locker et Mazliak montrent bien comment

la correspondance entre Lévy et Fréchet nous plonge dans le climat de

coopération entre mathématiciens français et russes sur la théorie des prob-

abilités, dans les années 20 à 50. En 1926-1928, l’élève de Bernštejn, Vasilij

L. Gončarov, travaille à Paris auprès de Montel. Pour compléter ce tableau,

rappelons qu’à la fin de 1928, Vladimir A. Kosticyn, élève d’Egorov et spé-

cialiste des équations intégrales, émigre en France puis entre au CNRS. Il

deviendra célèbre pour ses travaux sur la biologie mathématique100. [Demi-

dov 2009, pp. 129-130]

But in the time of the great purges starting at the mid 1930s the connections
almost collapsed.

100Eng. tr.: In the 1920s, Soviet mathematicians often travelled abroad. Luzin contin-
ued, much more than the others, to work in France, especially in Paris: in 1925-1926, he
stayed there for nine months, in 1926-1927, for five months, then for two years between
1928 and 1930. During this last stay, he wrote his famous work, Lessons on analytic sets
and their applications. In 1926-1928, his students Men’šov, Lavrent’ev and Bari also trav-
elled to Paris. Although in the early 1920s Aleksandrov was increasingly attracted to the
mathematical school in Göttingen, he still went to France during his European stay. Dur-
ing his stay, he was first accompanied by Uryson; unfortunately, in 1924, this promising
young Russian mathematician drowned. In 1930-1931, Aleksandrov completed his trip
between Germany and France in Paris and then on the Côte d’Azur, accompanied by
Kolmogorov.

Kolmogorov visited Borel and Lebesgue, discussed the problems of Markov chains
with Fréchet, and talked with Paul Lévy. In the introduction to their book, Barbut, Locker
and Mazliak show how the correspondence between Lévy and Fréchet immerses us in the
climate of cooperation between French and Russian mathematicians on probability the-
ory in the 1920s to 1950s. In 1926-1928, Bernštejn’s pupil, Vasilij L. Gončarov, worked in
Paris with Montel. To complete this picture, let us recall that at the end of 1928, Vladimir
A. Kosticyn, a student of Egorov and a specialist in integral equations, emigrated to
France and then joined the CNRS. He became famous for his work on mathematical biol-
ogy.
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2.3.1 The great purges of astronomers

Suivant, bien qu’avec une certaine inertie, les événements politiques, l’astro-

nomie soviétique comme en général les autres sciences, a connu en gros

trois étapes dans son développement jusqu’à la mort de Staline: la première

étape, qui s’étend de la stabilisation du régime soviétique jusqu’à la fin des

années 20, ne comporte pas de changements idéologiques dans l’étude de

l’astronomie, mais seulement de changements dans la structure organisa-

tionnel. le des établissements et dans les rapports entre les différentes insti-

tutions. C’est l’époque de l’appel du nouveau régime vers les spécialistes,

les «spets» comme ils furent appelés. La deuxième étape, qui s’étend de

la fin des années 20 au milieu des années 30, voit l’application de concepts

idéologiques dans l’astronomie et de la ligne officielle de la supériorité de

l’astronomie soviétique par rapport à l’astronomie dite bourgeoise. C’est

l’époque du développement par Staline de la théorie de la construction du

socialisme dans un seul pays. La troisième étape, du milieu des années 30 à

la mort de Staline, voit les «grandes purges» des astronomes soviétiques et

constitue un bouleversement sans précédent du personnel scientifique de

l’astronomie en U.R.S.S.101. [Nicolaïdis 1984, p 6].

Pulkovo Observatory was one of the main astronomy centers of the Rus-
sian Academy of Sciences, which was inaugurated in August 1839 and still
employs more than 250 workers today. The scientific activities of the Ob-

101Eng.tr.: Following, albeit with a certain inertia, political events, Soviet astronomy, like
other sciences in general, went through roughly three stages in its development up to the
death of Stalin: the first stage, which extends from the stabilization of the Soviet regime
until the end of the 1920s, does not involve ideological changes in the study of astron-
omy, but only changes in the organizational structure. of the establishments and in the
relations between the different institutions. It was the time when the new regime called
for specialists, the “spets” as they were called. The second stage, which extends from the
late 1920s to the mid-1930s, sees the application of ideological concepts in astronomy and
the official line of the superiority of Soviet astronomy over astronomy called bourgeois.
This is the time of Stalin’s development of the theory of building socialism in one coun-
try. The third stage, from the mid-1930s to Stalin’s death, saw the "great purges" of Soviet
astronomers and constituted an unprecedented upheaval in the scientific personnel of
astronomy in the U.S.S.R.

118



servatory have always covered the priority areas of fundamental research
in astronomy: celestial mechanics and stellar dynamics, geodesy, astrom-
etry, the Sun and solar-terrestrial relations, physics and evolution of the
stars, as well as observational equipment and methods astronomical.

In [Nicolaïdis 1990], the author exposes the vicissitudes of the Obser-
vatory from the Revolution to the beginning of the 1930s, focusing in par-
ticular on the upheavals that occurred in conjunction with Stalin’s rise to
power in 1928.

As the Greek historian of science Efthymios Nicolaïdis points out, be-
fore the Revolution, the Observatory was structured according to the canons
of most Western observatories. In fact there was a single director (in the
period 1916-1919 he was the Russian astronomer Aristarkh Belopolsky)
who had decision-making power both in the administrative and scientific
fields. But the situation changed and, although for the first decade the
regime’s control affected only organizational matters, from 1928 onwards,
the control of all the Soviet Union’s observers, as well as scientific research
and publications was centralized.

For the ideological line established by Stalin and the Bolsheviks, sci-
ence had to be an important social, political and economic ally of the state.
Rational science was supposed to oust the power of religion and supersti-
tion over people’s minds.

Historically, it is well known that astronomy has been a unique disci-
pline of its kind since its origins: its studies have served to change our
view of the world and more generally of the entire Universe over the cen-
turies. Many revelations have shocked society, putting a strain on the so-
lidity of religions based on the centrality of man.

Nicolaïdis dwells precisely on the relationship between Soviet science,
in general, and its relationship with Orthodoxy:

Until 1928, the change of social order in Russia affected astronomy only

with respect to organizational matters: the new state organization was re-
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flected in astronomical institutions by the creation of the Soviets of astrono-

mers. At the ideological level the revolutionary state did not attempt to

interfere in astron-omy. Research and educational programs continued as

before, except insofar as they concerned material problems.

After 1928 however, the Stalinist regime proclaimed a so called "Marxist"

official ideological line concerning science. This ideological line became the

official line of Soviet astronomy in 1931 Its principles were the following:

(1) There are two sorts of astronomies Soviet and bourgeois. This principle comes

from the dogmatic principle that a capitalist regime restrains the scientific

evolution while on the contrary, the construction of the socialist regime im-

plies in addition the construction of a new, superior science. This principle

of "two sciences" was the main Stalinist principle concerning all scientific

fields. We will see that in astronomy, the application of this principle was

to have terrible consequences for the leading Russian astronomers.

(2) Soviet astronomy must serve Soviet society more precisely astronomy

must serve ideology and the economy.

But how could astronomy serve Stalinist ideology? [...] Astronomy was a

scientific tool that would help to disprove what Stalinists called "religious

myths". In a more specifically scientific field, soviet astronomy was ordered

to fight against what was termed idealistic western cosmological theories,

and especially against the theory of general relativity and the concept of a

finite universe - because to put limits and an age to the universe would im-

ply the Creation and so the existence of a God.

The relation between astronomy and the Soviet economy was a more com-

plicated concept.

The general line that all activities in the USSR must serve the "building of

socialism" implied that research in astronomy must also have industrial ap-

plications It was difficult to make applications concrete, and so the ideologi-

cal line spoke about researches concerning Earth Sun relations and geodesy.

[Nicolaïdis 1990, pp. 346-347]
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The relations between the regime and science, between astronomy and or-
thodoxy, which in the 1930s led to inevitable friction between the regime
and the academic world of stellar scholars, ended up leading, in the years
1936-37, to one of the most significant and dramatic episodes concerning
the science at that time - the purge that devastated the powerful group of
astronomers (more than two dozen) operating in the extensive network of
astronomical observatories of the Russian Empire.

The process was slow, but with catastrophic final effects. The most
important astronomers of the time - Aleksandr Aleksandrovich Ivanov102,
Boris Petrovich Gerasimovich 103, Boris Vasilyevich Numerov104, just to
name a few - were not willing to submit to the new ideological line dic-
tated by the regime. While not openly opposing it, their astronomical
work continued in the same directions as in previous decades. The only
supporters of the new line were amateur astronomers or those little known
abroad.

But, in the summer of 1936, the newspaper Pravda, the official press
organ of the Communist Party of the Soviet Union from 1922 to 1991, de-
cided to launch brutal attacks against the Pulkovo Observatory, and later
the Tashkent Observatory and Leningrad Astronomical Institute were also
involved. The Pulkovo’s director at that time, Boris Petrovich Gerasi-
movich, and in general all the astronomers of the observatory, were ac-
cused of subservience to foreign science, justified by the publication in
Russian of only three of the seventy-five articles.

102Aleksandr Aleksandrovich Ivanov (1867 - 1939), soviet astronomer and specialist in
celestial mechanics and practical astronomy, was director of the Pulkovo Observatory
from 1919 to 1930.

103Boris Petrovich Gerasimovich (March 31, 1889 - November 30, 1937), Soviet astro-
physicist, he was active in a wide range of astronomical research areas, and he was direc-
tor of the observatory since 1933.

104Boris Vasilyevich Numerov (January 29, 1891 — 1941 (?)) was a Russian astronomer,
land-surveyor and geophysicist. The lunar crater Numerov and the minor planet 1206
Numerowia, discovered by the German astronomer Karl Reinmuth in Heidelberg in 1931,
were named in his honour.
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Simultaneously with the deterioration of the reputation of the Pulkovo
Observatory, a young student denounced Boris Numerov, director of the
Leningrad Astronomical Institute105. On 20 October 1936 he was arrested
by the NKVD and, as often happened, during the interrogation, the ac-
cused was forced, under torture, to sign a document in which he accused
his own collaborators of the observatory. This gave rise to the so-called
Numerov affair, which between the end of 1936 and the first half of 1937,
led to the arrest of about two dozen astronomers, leaving the Tashkent
Observatory almost deserted.

Most of the astronomers arrested never returned; of Numerov himself,
there was no more news after 1941.

The last rehabilitations of the personalities purged and survived the
massacre date back to the years 1956-57, thus leaving the Soviet astronom-
ical world in a climate of vulnerability for nearly twenty years.

As Eremeeva, historian of astronomy of the Shternberg State Astro-
nomical Institute (GAISh) in Moscow, tells us in [Eremeeva 1995, p 318],
only at the end of the 1960s the tragic events that happened were brought
to light and it was possible to name the fallen astronomers in disgrace:

The process of reclaiming the memory of the repressed astronomers "from

oblivion" was uneven and difficult. At first it was forbidden even to men-

tion them in print. Indeed, it was the aim of the authorities to expunge not

only their scientific work but their very names from human memory.

[...] Personal factors played an important role in the process of ’return-

ing’ the names of the repressed astronomers. Thus long before the rehabili-

tation process had begun, the names of the disgraced astronomers appeared

in the 1948 jubilee compendium 30 years of astronomy in the USSR. In an ar-

ticle about the development of fundamental astrometry, M. S. Zverev even

mentioned the contributions of B. V. Numerov. S. A. Shorygin, who in his

own time had suffered arrest, compiled the bibliography that included the

works of B. P. Gerasimovich; the main text, however, included no mention

105See [McCutcheon 1991] and [Eremeeva 1995].

122



of Gerasimovich.

Only in 1964 did the historian of astronomy Iu. G. Perel’ dare to publish

the first brief notes about Gerasimovich in the Soviet Astronomicheskii kalen-
dar. Khrushchev’s 1956 "secret speech" detailing Stalin’s crimes to the 20th

Congress of the Communist Party had by now become public knowledge,

and the ’thaw’ of the 1960s had arrived. Thanks to the ’thaw’ Perel was able

to publish his article about Gerasimovich.

2.3.2 The Luzin affair and the Moscow mathematical world

The first repercussions of the period of Stalinist repression in the mathe-
matical academic environment manifested themselves more than five years
before the purge of astronomers, above all with the interruption of connec-
tions with foreign countries, until then guaranteed and important sources
of exchanges and cultural growth.

As early as 1932, Luzin was denied participation in the International
Congress of Mathematicians in Zurich and, two years later, Kolmogorov
was unable to go to Paris, despite a scholarship granted by the Rockefeller
Foundation. Since the late 1930s, scientist in the Soviet Union hardly trav-
eled abroad.

Kolmogorov could not leave the Soviet Union until September 1954,
when the Russians were finally able to take part again in the Interna-
tional Congress of Mathematicians in Amsterdam, albeit with a tiny del-
egation of four people (Alexandrov, Kolmogorov, V. Kozetsky e Sergej
Michajlovich Nikolskij).106

Travel and attendance at conferences were prohibited. Demidov re-
ports a series of examples, which show the sudden change of course com-
pared to the situation that emerged in the previous extract, dating back to

106Already suspended in 1936, the congress was only reinstated in 1950, but, on that
occasion, the entire Russian academic community did not participate in the event. For
more details, see in the Proceedings of the ICM 1950, Cambridge, Massachusetts, [Graves,
Hille, Smith, Zariski 1955, p 122]
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a few years earlier:
En 1932, Luzin n’a pas pu participer au congrès international des mathé-

maticiens, à Zurich, car on lui a refusé l’autorisation de quitter le pays; en

1934, il ne put aller en cure en France, pour la même raison. La même année,

quoique la fondation Rockefeller lui eût accordé une bourse, Kolmogorov

ne fut pas autorisé à se rendre à Paris pour travailler près d’Hadamard.

À la fin des années trente, les savants soviétiques ne voyageaient presque

plus à l’étranger, et les séjours de spécialistes occidentaux en URSS étaient

également devenus très rares. Cette restriction des contacts fut aggravée

par la diminution graduelle du nombre de publications de savants sovié-

tiques dans des revues scientifiques étrangères, jusqu’à l’interdiction to-

tale.107[Demidov 2009, p 133].

The difficulties in the mathematical environment did not end with the im-
possibility of travel and contacts: from the beginning of the 1930s, a series
of persecutions of illustrious mathematicians began, fuelled by ideological
militancy and internal and personal rivalries. One of the best-known cases
are the arrest of Egorov in 1930 - which led to his death in 1931 through
a hunger strike - accused for taking a stand against the repression of the
Russian Orthodox Church and imprisoned as a "religious sectarian".

And, in the same year that the great purge of Soviet astronomers be-
gan, there was an event involving mathematicians and the research group
of which Kolmogorov was a part: the Luzin affair.

The Luzin affair 108 started with anonymous accusation by the news-

107Eng.tr: In 1932, Luzin was unable to participate in the International Congress of
Mathematicians in Zurich because he was refused permission to leave the country; in
1934, he was unable to go to a health resort in France for the same reason. In the same
year, although the Rockefeller Foundation had granted him a scholarship, Kolmogorov
was not allowed to go to Paris to work with Hadamard. By the end of the 1930s, So-
viet scientists hardly ever travelled abroad, and visits to the USSR by Western specialists
had also become very rare. This restriction of contacts was aggravated by the gradual
decrease in the number of publications by Soviet scientists in foreign scientific journals,
until they were completely banned.

108[Levin 1990], [Lorentz 2002],[Katuteladze 2012], [Katuteladze 2013], [Demidov,
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paper Pravda in eight long articles from July 2 to 16, 1936, as Enemy un-
der the guise of a Soviet citizen [Kutateladze 2013, p.A86]. A commission
was immediately appointed by the Academy of Sciences and the first ses-
sion of the process began on July 7, 1936, which was followed by others
in a few days. A sentence was reached, which proved to be less drastic
than the tones of the articles and the trial, and the Soviet mathematician
was acquitted of practically all charges. In this affair was involved Enrst
Ko’lman, a Cezch emigrée of Jewish ascendence and Marxist convictions.
Aleksey E. Levin writes in [Levin 1990]:

Kol’man’s formal position inside the party hierarchy was head of the

mathematical section of the Communist Academy during the first half of

the 1930s; he was subsequently promoted early in 1936 to head of the sci-

ence department of the party’s Moscow City Committee (he held this of-

fice until 1938 when he apparently lost some powerful protection and was

sent to a teaching position). During the 1930s, Kol’man regularly published

on the philosophy of mathematics and had many personal connections in

mathematical circles, especially among politically active youth.

Kol’man’s status makes it unlikely that any public attack on Luzin would

have been launched without his approval. [Levin 1990, pp 98-99]

A rift opened between Luzin and most of his students, including Kol-
mogorov and Aleksandrov, who played an active role in the commission
set up for the trial. After the denouement of the matter, the split continued
to manifest itself: ten years after the Luzin affair, he voted against the elec-
tion of Alexandrov to become a full member of the Academy of Sciences:

Lusin died in 1950, but not before a final violent collision with Aleksan-

drov and Kolmogorov. In 1946, the Academy had to elect a new group of

members, this time with preference to the applied sciences. This allowed

Lusin to vote against the topologist Aleksandrov. To everybody’s conster-

nation, as a reaction, Kolmogorov slapped Lusin’s face on the floor of the

Lëvshin 2016]
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Academy. The president of the Academy, S. I. Vavilov, was at a loss of what

to do. Finally the incident was reported to the Kremlin. It was said that

Stalin was not astonished. "This happens even among us," was his reply. In

other words, Stalin recommended to do nothing.109 [Lorentz 2002, p 207]

This episode strongly marked the Moscow Mathematical School. Every-
thing contributed to creating a cautious and subdued climate, in which ev-
eryone was careful not to publish their work in a foreign language, openly
reveal their reservations or make public aspects of their private life.

Kolmogorov’s active participation in the trial against Luzin and his col-
laboration in the various editions of the Large Soviet Encyclopedia - which
was a gigantic enterprise to the glory of "Marxist science" and of the Soviet
regime110 - meant that he was often credited with fully sharing the com-
munist ideals of the Soviet regime. Our purpose is not to fully analyze
this question111. However, there are two opposing interpretations of his
behavior and writings that are worth mentioning. Loren Graham, in his
book Science in Russia and the Soviet Union. A short History [Graham 1993],
describes Kolmogorov as one of the outstanding figures in science of the
USSR:

Most people now assume that all influence of Marxism on Soviet science

was deleterious. On the contrary, in the works of scientists such as L. S.

Vygotsky, A. I. Oparin, V. A. Fock, O. Iu. Schmidt, and A. N. Kolmogorov,

the influence of Marxism was subtle and authentic. [Graham 1993, p 3-4].

In his discussion of USSR mathematics, he writes:
A. N. Kolmogorov, one of Shmidt’s authors in the first edition of the

Large Soviet Encyclopedia, wrote the entry "Mathematics." [...] I will briefly

compare Kolmogorov’s article with those in the Encyclopedia Britannica writ-

109This was the fight to which Kolmogorov referred in the words reported by Arnold
110[Mazliak 2018]
111The question of science in the Soviet Union, its impressive development, in the con-

text of an evolution that began in the last fifty years of the tsarist regime, has received
considerable attention since the dissolution of the USSR and the establishment of the
Russian Federation [Kojelnikov 2002], [Gordin et al 2008].
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ten by Frank Plumpton Ramsey and Alfred North Whitehead at approxi-

mately the same time as the first edition of Kolmogorov’s article.

The points of difference arise on the most essential questions of mathe-

matics: What are the origins of mathematics? and What is the relationship

between mathematics and the real world? According to Kolmogorov, math-

ematics is "the science of quantitative relations and spatial forms of the real

world." It arose out of "the most elementary needs of economic life," such as

counting objects, surveying land, measuring time, and building structures.

In later centuries mathematics became so abstract that its origins in the real

world were sometimes forgotten by mathematicians, but Kolmogorov re-

minded them that "the abstractness of mathematics does not mean its di-

vorce from material reality. In direct connection with the demands of tech-

nology and science the fund of knowledge of quantitative relations and

spatial forms studied by mathematics constantly grows." Kolmogorov then

went on to sketch a history of mathematics in which its growth was in-

timately related to economic and technological demands. His views were

consistent with Lenin’s insistence on the material world as the source of hu-

man knowledge, and Engels’s emphasis on technical needs as a motivating

force in the development of knowledge. [Graham 1993, p 118]

In a paper published in 2002, [Lorentz 2002], based on his own experi-
ences, George Gunther Lorentz (1910-2006) quotes the testimony and re-
flection of one of Kolmogorov’s most famous students, Vladimir Igorevič
Arnold (1937-2010), published in the volume Kolmogorov in perspective in
2000 by the American Mathematical Society and the London Mathemati-
cal Society [AA.VV. 2000]. Precisely in an attempt to reconstruct the rea-
sons which prompted Kolmogorov in the two-year period 1953-54 to deal
with one of the mathematical questions which, after probability, made him
more famous - the one which today goes by the name of KAM theory - he
writes:

Although Andrei Nikolaevich himself regarded the hopes that appeared
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in 1953112 as the main stimulus for his work, he always spoke with grati-

tude about Stalin (following the old principle of saying only nice things

about the dead): "First, he gave each academician a quilt in the hard year of

the war, and second, he pardoned my fight in the Academy of Sciences, say-

ing, ’such things happen also here’." Andrei Nikolaevich also tried to speak

kindly about Lysenko, who had fallen into disfavor, claiming that the latter

had sincerely erred out of ignorance (while Lysenko was in power, the rela-

tion of Andrei Nikolaevich to this "champion in the struggle against chance

in science" was quite different).

[...] "Some day I will explain everything to you," Andrei Nikolaevich

used to tell me after having done something contrary to his principles.

Seemingly, pressure was exerted on him by some evil genius whose influ-

ence was enormous (the role of the group transmitting the pressure was

played by well-known mathematicians). He hardly lived to the times when

it became possible to speak of these things, and, like almost all people of his

generation who lived through the 1930’s and 40’s, he was afraid of "them" to

his last day. One should not forget that for a professor of that time not to tell

the proper authorities about seditious remarks made by an undergraduate

or graduate student not infrequently meant being accused the next day of

having sympathy with the seditious ideas (in a denouncement by the very

same student-provocateur). [Arnold 2000, p. 92].

2.3.3 Kolmogorov’s attitude in the outbreak of the Lysenko affair

Kolmogorov has always had a strong interest in applied sciences. This is
testified by the autobiographical accounts of the mathematician, in which
he refers to his childhood interests both in astronomy - as we have already
seen - and in biology:

[...] For a time, interest in other sciences took over. The first big im-

pression on me of the strength and significance of scientific research was

112Stalin died in March 1953
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made by the book by K. A. Timirjazev113 The Life of Plants114. [Kolmogorov

1988].

His vision of the relationship between mathematics and science, neces-
sary for a greater understanding of the natural world, seems to have en-
couraged him to participate in various discussions in the field of applied
sciences, publishing various articles where probabilistic knowledge is in-
tertwined with problems of biological, physical, geological etc...:

The distinctive breadth of A. N. Kolmogorov’s scientific interests is shown

in his "more applied" work where the probabilistic approach is directed to

problems of biology, genetics, physics, geology,.... Thus in his paper, "On

the solution of a biological problem"115 dealing with a simple model of the

branching random process, Kolmogorov found the asymptotic behavior of

the extinction probability as the number of generations increases.

In discussion on genetics in the autumn of 1939 much attention was

given to the validity of Mendel’s laws (its simplest case means a splitting

in the ratio 3: 1). In this connection Kolmogorov wrote "On a new confir-

mation of Mendel’s law"116, where he analyzed the statistical data of N. I.

Ermolayeva, a pupil of T. D. Lysenko [...]. [Shiryaev 1989, p 896].

In addition to the works cited by Shiryaev, the seminal studies of Vito
Volterra on population dynamics should also be underlined, as the begin-
ning of a theoretical mathematical biology [Kolmogorov 1935, 1936].

Particular attention in this research was paid to the discussion about
Mendelism, quoted in the previous excerpt, in which Kolmogorov took
part. It fits into another thorny issue about science and ideology in the
Soviet Union: the so-called Lysenko Affair. A violent campaign against

113He refers to Kliment Arkad’evič Timirjazev(1843-1920), a Russian plant physiologist
and a major proponent of the Evolution Theory of Charles Darwin in Russia.

114The 23 editions published between 1898 and 1962 in 5 languages - therefore before
and after October 1917 - of the famous book by the botanist Timiryazev show his adher-
ence to the radical scientistic ideals and vision of science in the Soviet Union.

115He refers to the article [Kolmogorov 1938]
116He refers to the article [Kolmogorov 1940]
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genetics, not considered to conform to dialectical materialism was one of
the most devastating political intrusions into Soviet intellectual life under
the Stalin regime.117

Trochym Denysovych Lysenko (September 29, 1898 Karlivka (Ukraine)
- November 20, 1976, Moscow) exerted a growing influence on Russian
biology from the mid-1930s onwards, until it reached the vertex of an as-
cending parabola in the late 1940s, with the approval of Joseph Stalin118

himself, only to hit rock bottom after more than thirty years, in 1965, when
geneticists called him an impostor and attributed to him all the damage
caused to Soviet agriculture - just think that in the thirty years 1935-65
Russia, from Europe’s granary became an importing country, after a series
of failed crops.

Among the tenets of what will be termed Lysenkonism are the critique
of Mendelism, the denial of the applicability of chemistry, physics and
mathematics to the solution of any biological problem [Lysenko 1940], as
well as the promise to quickly solve all agricultural tasks set by the party.

In his book The Lysenko affair (1970), the American historian of science
David Joravsky wrote:

Thus the Lysenko affair has been pictured as a latter-day version of

Galileo versus the Church, or Darwin versus the churches: new science

denounced to save old theology. The historical reality was far less high-

minded, far more serious. Lysenko’s school did not derive from a mori-

bund tradition in science; it rebelled against science altogether. Farming

was the basic problem, not theoretical ideology. Not only genetics but all

the sciences that impinge on agriculture were tyranically abused by quacks

and time-servers for about thirty-five years. The basic motivation was not a

dream of human perfectibility but a selfdeceiving arrogance among politi-

117To name a few, see [Joravsky 1970], [Graham 1993], [Graham 2016], [Ptushenko 2021]
118At the Congress of the Communist Party of the Soviet Union in 1935, Lysenko de-

livered a speech which ended with the applause of the audience and the emblematic
exclamation of Joseph Stalin, present at the congress: "Bravo, comrade Lysenko, bravo!"
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cal bosses, a conviction that they knew better than scientists how to increase

farm yields. The Lysenko affair, in short, was thirty-five years of brutal ir-

rationality in the campaign for improved farming, with severe convulsions

resulting in the academic disciplines that touch on agriculture. [Joravky

1970, p. vii]

Graham devoted chapter 6 of his book Science in Russia and the Soviet Union:
A Short History [Graham 1993] to this topic:

The roots of Lysenkoism lie not in Marxist ideology, but in the social and

political context of Soviet Russia in the 1930s. Lysenko originated his ideas

outside the circles of Marxist philosophers and outside the community of

established geneticists. He was a simple agronomist who developed ideas

about plants not very different from those of many practical selectionists

of the late nineteenth and early twentieth centuries, but who was able to

promote those ideas to an unheralded prominence because of the political

and social situation in which he found himself. An extremely shrewd but

basically uneducated man, he learned how to capitalize on the opportuni-

ties that the centralized bureaucracy and ideologically charged intellectual

atmosphere presented. Seeing that his ideas would fare better if they were

dressed in the garb of dialectical materialism, with the help of a young ide-

ologist he recast his arguments in Marxist terms.

[...] Alarmed that the science of genetics itself might be eclipsed, Vavilov119

abandoned the effort to compromise with Lysenko and pointed out the er-

rors in his biological views.

[...] A few other brave people continued to speak up against Lysenko. At a

conference on genetics in December 1936, A.S. Serebrovskii, an outstanding

geneticist and sincere Marxist, called Lysenko’s campaign "a fierce attack

119It refers to Nikolai Vavilov (November 25, 1887 - January 26, 1943), a Russian
agronomist, botanist and geneticist, famous for his expeditions around the world in
search of varieties of agricultural plants. He was an exemplary researcher with encyclo-
pedic knowledge: he contributed to genetics, botany, plant physiology, plant breeding,
plant systematics and evolution and biochemistry.
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on the greatest achievements of the twentieth century...an attempt to throw

us backward a half-century." [Graham 1993, p. 124, 129-130]

Lysenko’s most famous opponent, Nikolai Vavilov, paid with his life for
a heroic attempt to publicly defend the achievements of biology hitherto
achieved in the Soviet Union, and to oppose Lysenko’s scientifically un-
substantiated ideas. As early as 1935 Lysenko began to attack his col-
league, accusing him of having hindered the development of agricultural
production in Russia. And, although in 1939 Vavilov was elected presi-
dent of the VII International Congress of Genetics, it was not enough to
maintain his prestige. Accused Vavilov of defending classical Mendelian
genetics, considered by party ideologues a "bourgeois pseudoscience", he
was imprisoned in 1940 and a year later sentenced to death. He died of
starvation in 1943 in the Russian prison of Saratov. He was on of the many
biologists arrested, exiled and repressed.

In a recent book, Lysenko’s ghost, [Graham 2016], considering recent ge-
netical research, has developed a synthetic but thorough examination of
genuine scientifc aspects of the discussion on epigenetics together with
the evolution of repression and terror under Stalinism. In the conclusion
he writes :

With the realization that the inheritance of acquired characteristics might

happen after all, was Lysenko right? No, he was not. Some people may

think so because they mistakenly link Lysenko uniquely to the doctrine of

acquired characteristics, a belief that has been around for serveral thousand

years. Lysenko was a very poor scientist, and the inheritance of acquired

characteristics was actually a small part of what he claimed.

The fathers and mothers of epigenetics did not use Lysenko’s results

but developed their views on the basis of molecular biology. [...] Lysenko

disregarded the action of genes [...].

Does this mean that Lysenko was totally worthless as a practical plant

breeder, especially in his early years? No. Lysenko had talents in the field
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[...]. If Lysenko had lived in a normal democratic country, he would be

remembered, if at all, as a talented farmer working away in his fields, em-

ploying idiosincratic methods but never garnering much support. None of

his methods are employed in Russia today. But in the Soviet Union in the

1930s, a country suffering from famine (caused in large part by the disas-

trous collectivization effort), the need for quick agricultural remedies was

acute, and Lysenko offered them. [Graham 2016, pp. 139-140].

On January 29, 1939 Kolmogorov was elected a full member of the Academy
of Sciences of the USSR. In the same year, the scholar N.I. Ermolaeva pub-
lished in Russian an article entitled, translated into English, Once more
on the "laws of peas", which went against the validity of Mendel’s prin-
ciple and where, in particular, it ended that Mendel’s principle that self-
pollination of hybrid plants resulted in 3: 1 segregation ratios was false.

The article was brought to Kolmogorov’s attention by geneticist Alek-
sandr Sergeevich Serebrovskii 120. In a paper published in 1940121 in the
reports of the USSR Academy of Sciences, he discussed Ermolaeva data as
well as T. K. Enin data as discussed by Kol’Man:

In the discussion on genetics that took place in the autumn of 1939

much attention was paid to checking whether or not Mendel’s laws were

really true. In the basic discussion on the validity of the entire concept of

Mendel, it was quite reasonable and natural to concentrate on the simplest

case, which, according to Mendel, results in splitting in the ratio 3 : 1. For

this simplest case of crossing Aa× Aa, with the feature A dominating over

the feature a, it is well known that Mendel’s concept leads to the conclusion

that in a sufficiently numerous progeny (no matter whether it consists of

120[Kolmogorov 1940, p 222]. Serebrovskii (Kusrk, February 18, 1892 - Bolshevo, June
26, 1948) was a prominent Russian geneticist, the founder of the Department of Genetics
of Moscow University. His major contributions are due to the genetic study of chicken
breeds and the development of poultry farming.

121the episode took place at the turn of the world war - after the sanctioning of the
Russo-German pact of August 1939 and a few months before the entry into the war of the
USSR after the German invasion of June 1941
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one family or involves many separate families resulting from various pairs

of heterozygous parents of type Aa) the ratio between the number of indi-

viduals with the feature A (that is, the individuals of the type AA or Aa)

to the number of individuals with the feature a (aa type) should be dose

to the ratio 3 : 1. T.K. Enin, N.I. Ermolaeva and E. Kol’man have concen-

trated on checking this simplest consequence of Mendel’s concept. How-

ever, Mendel’s concept not only results in this simplest conclusion on the

approximate ratio 3 : 1 but also makes it possible to predict the average

deviations from this ratio. Owing to this it is the statistical analysis of devi-

ations from the ratio 3 : 1 that gives a new, more subtle and exhaustive way

of proving Mendel’s ideas on feature splitting. In this paper we will try to

indicate what we think to be the most rational methods of such checking

and to illustrate these methods on the material of the paper by N.I. Ermo-

laeva. In contrast to the opinion of Ermolaeva herself, this material proved

to be a brilliant new confirmation of Mendel’s laws.

And he adds in conclusion a strong attack against Kol’man’s contribu-
tion:

Kol’man’s paper referred to in the beginning of this note does not con-

tain any new facts; it only analyses Enin’s data and is based on a complete

misunderstanding of the circumstances set forth in this paper. [Kolmogorov

1940, p. 227].

Kolmogorov applied a statistic test, now called the Kolmogorov or Kolmogorov-
Smirnov test in order to analyze in this more polished way the validity of
Mendel’s ratio. Kolmogorov’s paper prompted a reaction by Kol’man and
by Lysenko himself.

Mathematicians Alan Stark and Eugene Seneta, in the article A.N. Kol-
mogorov’s defense of Mendelism published in 2011 [Stark, Seneta 2011], ex-
amined Kolmogorov’s paper and reused the test used by the Russian math-
ematician in the data collected by Ermolaeva. They have shown that there
were errors not only in Ermolaeva’s obviously incorrect calculations - and
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in the consequent deduction of the inadequacy of Mendel’s law - but also
in the experiment itself performed by Kolmogorov:

In the above brief χ2 analysis we have attempted to use an essentially

equivalent test to Kolmogorov’s inasmuch as it relies on the approximate

standard normality of the ∆’s, after “cleaning” the data appropriately. So

while the conclusion drawn by Kolmogoroff (1940) confirms what is now

totally accepted, the evidence in support of this conclusion is not as strong

as his paper presents. Of course his statistical technology was well be-

yond the understanding of Lyssenko (1940) and Kolman (1940), who could

hardly argue on the grounds of its incompletely justified application and

possible arithmetic error, to data which may have been poorly prepared.

Seneta (2004) describes Kolman’s leading role in the attacks on mathemati-

cians and traditional pure mathematics in the Soviet Union during the Stal-

inist era.

Futhermore, at the end of the article they write:
In his defense of Mendelism, Kolmogorov [...] relied simply on data.

As we have seen, he ignored the fact that, strictly speaking, his test of him

assumed continuous data while the actual data was discrete and in some

cases based on inappropriately small numbers [Stark, Seneta 2011, p. 185]

Kolmogorov had not only corrected the results obtained by Ermolaeva,
but his defense against Mendelism first involved Kol’man and Lysenko
(even if he was not directly mentioned), as Ermolaeva was a student of
him. In fact, Lysenko responded in a comment published in the reports of
the Academy:, in In Response to the Article by A. N. Kolmogorov, [Lysenko
1940]:

In "Doklady Akademii Nauk SSSR", Volume XXVII, N 1 of 1940, an arti-

cle by academician A.N. Kolmogorov "On a new confirmation of Mendel’s

laws". In this article, the author, wanting to prove the "correctness" and

inviolability of Mendel’s statistical law, gives a number of mathematical

arguments, formulas and even curves. I don’t feel competent enough to
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understand this system of mathematical evidence. Besides, I, as a biologist,

don’t care whether Mendel was a good or a bad mathematician. I have al-

ready published my assessment of Mendel’s statistical work several times,

stating that he had nothing to do with biology. In this note I would just like

to note that even the above-mentioned article by the famous mathematician

A.N. Kolmogorov has nothing to do with biological science.

[...] That is why we biologists do not take the slightest interest in mathemat-

ical calculations that confirm the useless statistical formulas of the Mendelists.

[Lysenko 1940, p 834-835]

Also Kol’man also supported the agronomist’s point of view122.
It could have ended much worse for the Russian mathematician, but

he was spared from the great purge. There is no doubt that at that time
Kolmogorov’s fame in the field of probability theory - a field with a strong
Russian tradition for more than a century - was undisputed, and this may
have favored him over the fates of other academics; moreover the cau-
tious and submissive behavior maintained by Kolmogorov and his friend
Aleksandrov during the period of the Stalinist regime - the same behavior
which has led some to believe that they were "friends of the regime" - has
to be taken into account. Consider also in [Levin 1990], the description of
Kol’man previous attitude to the two mathematical friends:

When the campaign was over123 Kol’man’s monograph, Predmet i metod

sovremennoi matematiki, was published. The scholarly qualities of this very

primitive and inaccurate book are of no relevance here, although it is worth

noting that the author expressed his gratitude to A. N. Kolmogorov and P.

S. Aleksandrov for reading a draft manuscript.

Therefore, only hypotheses, but no certainty about the reasons for his sal-
vation. Nevertheless, quoting Lorentz’s words in [Lorentz 2002, p 183] The
voice of Kolmogorov raised in defense of Mendel’s laws was ignored.

122As stated in the note 84 in [Joravsky 1970], p. 414.
123He refers to the campaign against Luzin

136



What prompted the reaction of Kolmogorov to a paper by a student of
Lysenko, who was in those years reaching a great influence? No doubt
he was encouraged to do so by a fellow Academician, the genetist Sere-
brovskii, who could thought that the mathematical authority of Kolmogorov
regarding numbers in Mendel’s laws of heredity could help their defense
of Mendelism and maintain USSR biolgoy in connection with the interna-
tional accepted ideas. Moreover, the role of mathematical studies in the
discussions on evolution was growing in the late 1930s124.

Kolmogorov was sympathetic with this research trend, and this can be
linked to his vision of Mathematics as present in the Soviet Encyclopedia.

The reaction of Lysenko’s against mathematics in biology can be under-
stood as an underlying aspect of the harsh exchange in the Stalinst Russia
of 1940.

124See [Kingsland 1985]; [Israel 1993]; [Israel, Millán Gasca 2002]
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3 Kolmogorov’s theorem on the persistence of in-

variant tori: a look into the origins of the KAM

theory

The statement of the problem of the motion of systems that are close to the

systems of classical mechanics, including the problems of orbit evolution in

the three-body problem, dates back to Newton [1]125. Laplace [2]126 stated

explicitly the theorem on stability of the semimajor axes of Keplerian el-

lipses, which is a forerunner of Kolmogorov’s theorem on preservation of

tori, but proved it only in terms of approximate perturbation theory. On

analyzing numerous attempts to justify and improve Laplace’s argument,

Poincaré [3]127 stated the problem in its modern form (to study the motion

of a system whose Hamiltonian W (p)+θS(q, p, θ) is periodic in q) and called

it the basic problem of dynamics (see [3], Chapter 1, §13). In the papers un-

der consideration Kolmogorov solves this problem for the majority of initial

conditions in the generic case (det∂2W/∂p2 ̸= 0). [Arnold 1991, p 504]

Four mathematicians from the USSR took part in the International Congress
of Mathematicians in Amsterdam in 1954, the second held after the end of
the Second World War, but the first in which Soviet mathematicians could
participate128.

125He refers to "I. Newton, Philosophicae naturalis principia mathematica, London,
1686."

126He refers to "P.S. de Laplace, Traité de mécanique céleste, Vol. 1, Paris, 1799."
127He refers to "H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Vol. 1,

Paris, 1892."
128Already suspended in 1936, the congress was reinstated only in 1950, but, on that

occasion, the entire Russian academic community did not participate in the event. In
the proceedings of the ICM held in Cambridge, Massachusetts, in the Secretary’s report
section, we read:
Shortly before the opening of the Congress, the following cable was received from the
President of the Soviet Academy of Sciences: The USSR Academy of Sciences appreciates
having received a kind invitation for Soviet scientists to participate in the International Congress
of Mathematicians to be held in Cambridge. Soviet mathematicians are very busy with their
regular work, unable to attend the congress. I hope that the upcoming congress will be a significant
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During the closing plenary conference on September 9, Kolmogorov
was able to present his ideas on the research program in the field of classi-
cal mechanics. He had been thinking about it for a long time, as we saw in
the testimonies reported in the previous chapter, and the contents exposed
embraced those of the two articles On dynamical systems with integral invari-
ant on the torus [Kolmogorov 1953] and On the conservation of conditionally
periodic motions under small variations of the Hamilton function [Kolmogorov
1954], recently published in the Soviet journal Doklady Akademii Nauk, on
November 13, 1953 and just nine days before the conference, respectively.

The main fulcrum of his studies is represented by the Theorem on the
persistence of invariant tori presented in the 1954 article, which we will
analyze in detail in the following paragraph. The fate of this theorem ap-
pears rather singular: very often it is confused or unified with the subse-
quent contributions due to Arnold [Arnold 1963] and Moser [Moser 1962],
denoting the three results under a single theorem with the name "KAM
Theorem". This is due to a still open historiographical question, which
concerns the validity of the proof given by Kolmogorov for his theorem.

The “KAM theorem” [Hubard 2004] hides the meaning of Kolmogorov’s
1954 theorem on the persistence of the tori invariant in the context of a re-
search program for classical mechanics. Therefore, my goal is to deepen
and bring to light the salient points of the research program described by
Kolmogorov in his speech, highlighting the cultural roots and the connec-
tions with the works of the previous decades, already analyzed in chapter
1. Here we will provide an original formulation of Kolmogorov’s theorem,
present in the ’54 article [Kolmogorov 1954] and its second formulation
presented at the International Congress of Mathematicians in Amsterdam.

Finally, I will present an analysis of the Diophantine condition, which
plays a key role in the proof, comparing its uses in a 1942 paper by the

event in mathematical science. Desire for success in congress activities. S. Vavilov, President,
USSR Academy of Sciences. [Graves, Hille, Smith, Zariski 1955, p 122]
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German scholar Carl Ludwig Siegel (1896-1981) and, subsequently, I will
analyze some future directions of the theorem and the research program,
through the works of students of Kolmogorov, Arnold and Sinai and, of
course, of the mathematician Jurgen Moser.

3.1 Kolmogorov’s research program for classical mechan-

ics: the metric and spectral approach

I will consider my objective accomplished if I have managed to convince

the audience that, in spite of the great difficulties and the limited nature

of the results already obtained, the problem I have posed of using general

notions of modern ergodic theory for qualitatively analyzing motion in an-

alytic and, particularly, canonical dynamical systems deserves great atten-

tion of scientists capable of comprehending the many-sided interrelations

with the most varied branches of mathematics revealed here.

[Kolmogorov 1957, pp. 372-373]

Thus Kolmogorov concluded his speech at the ICM in Amsterdam.
The complete speech is reported in Russian in the Proceedings of the in-

ternational congress of mathematician of 1954 [Gerretsen, De Groot 1957],
in French in the Séminaire Janet. Mécanique analytique et mécanique céleste,
tome 1 (1957-1958) [Kolmogorov 1957-58] and in two English translations:
one from 1972 of the Nasa Technical Translation [Kolmogorov 1972], and the
other from 1991 in volume 1 of the Selected works [Tikhomirov 1991], edited
by Tikhomirov in Russian in 1985 and translated by Volosov in 1991 [Kol-
mogorov 1957]. The two English translations are different, not in content,
but in the words used, even in the translation of the paragraph titles129.

The complete index of his speech, taken from [Kolmogorov 1957], was
as follows:

129We mainly used the latter English translation for our research.
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The general theory of dynamical systems and classical mechanics

Introduction

§1. Analytic dynamical systems and their stable properties

§2. Dynamical systems on a two-dimensional torus and some canon-
ical systems with two degrees of freedom

§3. Are dynamical systems on compact manifolds "in general" tran-
sitive, and should we regard the continuous spectrum as the "general"
case and the discrete spectrum ad an "exceptional" case?

§4. Some remarks on the non-compact case

§5. Transitive measures, spectra, and eigenfunctions of analytic
systems

Conclusion

In the scientific literature, which we have already listed in the introduc-
tion of this thesis, the theorem on the persistence of invariant tori is re-
ported, but no space is given to the program that Kolmogorov declares to
the mathematicians present at the conference and which seems to be the
main reason for his push dealing with classical mechanics.

In fact, he had a broader project in mind: his program envisaged a
wide-ranging study of dynamical systems, not dwelling on a particular
case or on a dynamical system that describes a single real event, but his
goal was to establish a method to be applied to dynamical systems to es-
tablish which properties can be considered "general" or "exceptional" (in
the sense of measure theory), both for the function that defines the system
and for the orbits it must describe:

My aim is to elucidate ways of applying basic concepts and results in
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the modern general metrical and spectral theory of dynamical systems to

the study of conservative of conservative dynamical systems in classical

mechanics.

[...] the Poincaré-Carathéodory recurrence theorem initiated the "metrical"

theory of dynamical systems in the sense of the study of properties of mo-

tions holding for "almost all" initial states of the system. This gave rise to the

"ergodic theory", which was generalized in different ways and became an

independent centre of attraction and a point of interlacing for methods and

problems of various most recent branches of mathematics (abstract mea-

sure theory, the theory of groups of linear operators in Hilbert and other

infinite-dimensional spaces, the theory of random processes, etc.).

[...] For conservative systems, the metrical approach is of basic importance

making it possible to study properties of a major part of motions. For

this purpose, contemporary general ergodic theory has elaborated a sys-

tem of notions whose conception is highly convincing from the viewpoint

of physics. [Kolmogorov 1957, p 354-355]

Through a problem, i.e. a motion defined on an s-dimensional manifold
Ω2s through a Hamiltonian system H(q1, . . . , qs, p1, . . . , ps), where (q1, . . . , qs)
are positions and (p1, . . . , ps) are momentum, he shows the modus operandi
he intends to follow in his project.

Assuming that the motion admits k prime integrals130:

I1 = C1, . . . , Ik = Ck,

then, these integrals, being constant functions along the motions, lower
the degree of freedom of the system, bringing it from 2s to 2s − k, and
identify in the phase space an analitic manifold M2s−k.

An invariant density can be defined on this manifold, which Kolmogorv
will denote by M(x), which is the key to apply the methods of measure
theory of dynamical systems to motions on Mk−2s:

130Kolmogorov’s prime integrals are Poincaré’s invariant integrals
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It is reasonable to resort to these more modern means when, apart from

the integrals I1 = C1, . . . , Ik = Ck, there are no single-valued analytic first

integrals independent of the former or when their determination encoun-

ters severe difficulties and other classical methods for completing the inte-

gration of the system also prove inapplicable. In such cases it is necessary

to use a qualitative approach in order to find out whether the motion on

Mk−2s is transitive (that is, whether almost the entire manifold Mk−2s con-

sists of a single ergodic set) and then, in the transitive case, to determine the

nature of the spectrum or, in the absence of transitivity, to study, to within

a set of measure zero (or at least to within a set of small measure), the de-

composition of Mk−2s into ergodic sets and the nature of the spectrum on

these ergodic sets.

There are only two specific problems of classical mechanics known to

me where this programme has been realized to a certain degree.

[...] However, I believe that the time has now come when considerably

more rapid progress can be made. [Kolmogorov 1957, p 357]

The end of his introductory speech gives way to the next sections, in which
he puts his intent into action.

Section §1 mainly consists of introductory notions that will be used in
the following paragraphs. Here he symbolically supplies the mathemati-
cal objects that he will use later:

1. A dynamical system of classical mechanics - which, Kolmogorov un-
derlines is a special case of analytic dynamical system with an integral
invariant - is defined by the differential equation

dxα

dt
= Fα(x1, . . . , xn)

on a manifold Ωn, where α = 1, . . . n.

2. The invariant measure is defined by the integral
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m(A) =

∫
A

M(x)dx1 . . . dxn

where M(x) is the invariant density defined above.

3. A canonical system is defined as a dynamical system represented by
a Hamiltonian function in the variables (q1, . . . , qs) and (p1, . . . , ps) on
a manifold Ω2s such that

dqα
dt

=
∂H

∂pα
,

dpα
dt

= −∂H

∂qα

and with the invariant density equal to one:

M(q, p) = 1.

Having introduced the mathematical objects, he summarizes the modus
operandi:

Particular attention will be paid to finding which of the properties of

dynamical systems are "typical" for "arbitrary" Fα and M (or an "arbitrary"

function H(q, p) in the case of canonical systems) and which of them can

manifest themselves only by way of an "exception". However, this is quite

an intricate problem. The approach from the standpoint of the category of

corresponding sets in the spaces of systems of functions {Fα,M} (or func-

tions H), despite the well-known achievements in this direction obtained

in the general theory of abstract dynamical systems, is of interest rather

as a means for proving existence than as a direct way for solving actual

problems set by researchers in physics and mechanics, however stylized

and idealized their statement may be. By contrast, the approach from the

standpoint of measure theory appears to be quite reasonable and natural

as viewed from physics (for instance, as it was set forth forcibly by von

Neumann [1]), but its application is hampered by the absence of a natural
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measure in function spaces.

We will follow two routes. First, to obtain positive results establishing

that a certain type of dynamical systems should be recognized as being es-

sential, not "exceptional", and from any reasonable point of view, should

not be "neglected" (in the way that sets of measure zero are neglected), we

will use the notion of stability in the sense of preservation of a certain type

of behaviour of a dynamical system under small variation of the functions

Fα and M or of the function H . From this standpoint, any type of behaviour

of a dynamical system for which there exists at least one example of its sta-

ble realization should be recognized as being important and not negligible.

[Kolmogorov 1957, p 358-359].

Section §2 Dynamical systems on a two-dimensional torus and some canoni-
cal systems with two degrees of freedom, contains the study of a dynami-
cal system defined on a two-dimensional manifold, in particular a two-
dimensional torus T 2.

Kolmogorov justifies the choice of such an example, pointing out that
several important real situations are represented by such a system of equa-
tions:

Therefore the real significance for classical mechanics of the above anal-

ysis of dynamical systems on T 2 depends on whether there are sufficiently

important examples of canonical systems with two degrees of freedom, not

integrable by classical methods [Kolmogorov, 1957, p 363]

It is here that we find more references to the two previously published
articles and an application, to the specific case under examination, of the
theorem on the persistence of invariant tori, published nine days earlier in
general form.

We will deepen this last aspect in the following paragraph, dedicated
to the theorem and its formulations.

The following section, entitled with the questions Are dynamical systems
on compact manifolds "in general" transitive, and should we regard the continu-
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ous spectrum as the "general" case and the discrete spectrum in an "exceptional"
case?, represents the fulcrum of his speech; in an attempt to find general
or exceptional properties of a generic dynamical system, these questions
perfectly reflect his research program.

In particular, the connection with the ergodic theory131 emerges (through
the concept of transitivity) and, the negative answer to both questions, sets
a limit to the conjecture according to which the ergodic hypothesis was
valid for any dynamical system:

This contradicted claims which one could often see in the physical liter-

ature according to which any typical Hamiltonian system with interaction

should be ergodic132. [Sinai 1989, p 838].

In [Arnold 1991] the author underlines that some hypotheses proposed
by Kolmogorov in this paragraph regarding particular systems in which
cases of mixing on bulls would occur - initially discussed in [Kolmogorov
1953] - find confirmation in two articles dated 1966 and 1967 by Sinai and
Anosov133:

Systems with stable transitivity and mixing on the energy level surfaces

which Kolmogorov discusses at the end of §3 of the lecture at the Ams-

terdam Congress (paper No. 53) actually exist. Sinai and Anosov proved

that geodesic flows on compact manifolds of negative curvature (along each

two-dimensional direction) possess these properties [46-48]134. Moreover,

these properties are preserved under small perturbations not only in the

class of Hamiltonian systems but also in the class of general dynamical sys-

tems. [Arnold 1991, p 510]

Section §4 is devoted to the discussion of a system defined on a noncom-

131See paragraph §1.2
132One of the paper that aims to demonstrate the opposite is "Dimostrazione che in gen-

erale un sistema meccanico è quasi ergodico" (Proof that in general a mechanical system
is quasi-ergodic) by Enrico Fermi in Nuovo Cimento, [Fermi 1923a]

133Dmitri Victorovich Anosov (1936-2014), Russian mathematician known for his con-
tributions to the theory of dynamical systems. He was a student of Lev Pontryagin.

134He refers to [Sinai 1966] and [Anosov 1967]
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pact manifold. In an attempt to extend the results obtained in the previous
paragraphs, Kolmogorov uses the measure theory of the Ukrainian math-
ematicians Krylov and Bogolyubov, already analyzed in chapter 1.

Here the problem of ultimate motions in the three-body problem is
addressed, which was later thoroughly studied by the students of Kol-
mogorov, Sitnikov and Alekseev.

Finally, in the last section §5 Kolmogorov delves into the aspects that
are closest to the overseas works of Brikhoff, Koopman and von Naumann,
concerning spectra and transitive measures:

The spectral properties of transitive measures in analytic systems have

not been studied enough. [Kolmogorov 1957, p 371]

In particular he hypothesizes a stability for a dynamical system with con-
tinuous spectrum and that a countable discrete spectrum is "typical" in
analytic dynamical systems:

It is not impossible that only these cases (a discrete spectrum with a fi-

nite number of independent frequencies and a countably-multiple Lebesgue

spectrum) are admissible for analytic transitive measures or that, in a sense,

only they alone are general typical cases. [Kolmogorv 1937, p 371]

It is again Sinai and Asonov who prove the first of Kolmogorov’s hypothe-
ses, but regarding the typicality of the countable spectrum, there is still no
confirmation or refutation:

Kolmogorov’s conjecture (§5 of paper No. 53) on the stability of a con-

tinuous (more precisely, countably-multiple Lebesgue) spectrum was proved

by Sinai and Anosov [46, 47]. Thus far the conjecture that a discrete spec-

trum with a finite number of independent frequencies (not exceeding the

phase space dimension) and a countably-multiple Lebesgue spectrum is

typical has not been refuted for analytic systems. [Arnold 1991, p 513.]

In the last two sections emerge all the influences that we have explored in
chapter 1 and that have created the cultural landscape in which this work
resides. We will go into more detail on this aspect in section §3.3. of this
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thesis.

3.2 A historical analysis of Kolmogorov’s Theorem on the

persistence of invariant tori in Hamiltonian Systems:

formulation, proof, and meaning

The original article in Russian, published in Doklady Akademii Nauk, 1954,
vol.98(4), is just four pages long135, is mainly technical and mainly focuses
on the formulation of the Theorem on the persistence of invariant tori and
the his proof. The name chosen for the theorem in this thesis was given by
Arnold136- and so we decided to use the same wording137.

Although the notations used are quite different from those currently
used in more recent texts, we are interested in reporting the original state-
ment below, reported in [Kolmogorov 1954].

The theorem is then reformulated in the article published in the Pro-
ceedins of the International Congress of Mathematicians in Amsterdam,
firstly in the section §2, in application to a Hamiltonian system defined on
a two-dimensional torus, to then be stated in the general case of a manifold
2s-dimensional in the next section.

3.2.1 Kolmogorov flips his cards: the publication of the Theorem on
the persistence of invariant tori in 1954 in the "Doklady Academii
Nauk SSSR"

The short article The preservation of conditionally periodic motions under small
variations of the Hamilton function [Kolmogorov 1954], can be summarized

135The English translation consists of six pages
136"Kolmogorov’s 1954 theorem on the persistence of invariant tori under a small an-

alytical perturbation of a fully integrable Hamiltonian system", and "he [Kolmogorov]
arrived at his theorem of 1954 on the persistence of invariant tori." in [Arnold 1997, pp
742-743].

137In modern literature, it is often referred to as the KAM Theorem.
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in a very dry structure: after a brief introduction in which the mathemat-
ical objects that will be involved are introduced, the statement of the the-
orem is introduced, quite long and detailed. The immediately following
part is a small observation on the very meaning of the theorem, to then
discuss its proof point by point, without dwelling on the individual logi-
cal and mathematical passages.

We could divide the demonstration part into three moments:

1. a brief initial explanation of the method used;

2. a more technical central part, in which some mathematical passages
of the proof are explained;

3. a final part, always discursive, where mathematical rigor leaves room
for an explanation that begins with "It is easy to see that [. . . ]" [Kol-
mogorov 1954, p 352].

To use the same nomenclature used by Kolmogorov, we consider a re-
gion G ⊂ in phase space Ω2s represented as the product of an s−dimensional
torus T by a region S in an s−dimensional Euclidean space.

In this way, the points of the torus will be characterized by periodic 2π,
q1, . . . , qs, and the coordinates of a point p belonging to S will be indicated
by the vector p1, . . . , ps.

So, we consider a Hamiltonian H in G having the canonical form

dqα
dt

=
∂

∂pα
H(q, p),

dpα
dt

= − ∂

∂qα
H(q, p)

and suppose that

• H also depends on a parameter θ (perturbative parameter), where
θ ∈ (−c; c) and is independent of time;

• H is analityc in the variables (q, p, θ).
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From now on, we will consider the Hamiltonian function H defined on G,
with θ = 0 having the form:

H(q, p, 0) = m+
∑
α

λαpα +
1

2

∑
αβ

Φαβ(q)pαpβ +O(|p3|),

where, m is a real constant and represents the constant energy of the
system, α, β ∈ (1, . . . , s) are integers, (λ1, . . . , λs) are the frequencies of
motions, the sum

∑
α λαpα coincides with the scalar product between the

vector of the frequencies (λ1, . . . , λs) and the vector (p1, . . . , ps) of the coor-
dinates of a point belonging to S.

The meaning of Φαβ will be clearer in the statement of the theorem.
Finally, we will denote with

(x, y) =
∑
α

xαyα, |x| = +
√
(x, x)

and with Tc an s-dimensional torus in region G, formed by the set of
points (q, p) with p = c constant.

We will assume that S contains the point p = 0, that is, T0 ⊆ S.

Kolmogorov’s Theorem on the persistence of invariant tori:

Theorem 3 a Let

H(q, p, 0) = m+
∑
α

λαpα +
1

2

∑
αβ

Φαβ(q)pαpβ +O(|p3|), (7)

where m and λα are constants, and let the inequality

|(n, λ)| ≥ c

nη
(8)

be fulfilled for a certain choice of the constants c > 0 and η > 0 and
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all integral vectors n. Morover, let the determinant formed from the average
values

Φαβ(0) =
1

2πs

∫ 2π

0

∫ 2π

0

Φαβ(q)dq1dqα

of the function

Φαβ(q) =
∂2H

∂pα∂pβ
(q, 0, 0)

be non zero:
|Φαβ(0)| ≠ 0. (9)

Then there exists analytic functions Fα(Q,P, θ) and Gα(Q,P, θ) defined
for all sufficiently small θ and all point (Q,P ) belonging to a neighbourhood
V of the set T0 that determine a contact transformation

qα = Qα + θFα(Q,P, θ), pα = Pα + θGα(Q,P, θ)

of V into V ′ ⊆ G reducing H to the form

H = M(θ) +
∑
α

λαPα +O(P 2) (10)

(M(θ) does not depend on Q or P ).
aOriginal version found in [Kolmogorov 1957, p 349-350].

We will deal with some details on the proof of the theorem present in the
original article in section §3.3.1.

Now we will limit ourselves to trying to explain the theorem obtained
and its meaning, which is connected both to the works in classical mechan-
ics - in particular celestial mechanics - and to those in the field of ergodic
theory.

Kolmogorov himself provides an explanation of the theorem obtained,
even before setting about demonstrating it:
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The significance of Theorem 1 in mechanics can easily be understood.

It shows that, under conditions (2) and (3)138, an s−parameter family of

conditionally periodic motions

qα = λαt+ q(0)α , pα = 0,

existing at θ = 0 cannot disappear under a small variation of the Hamil-

ton function H ; namely, the variation results only in a displacement of the

s−dimensional torus T0, along the trajectories of the motions: it is trans-

formed into a torus P = 0, which is filled with trajectories of conditionally

periodic motions with the same frequencies λ1, . . . , λs. [Kolmogorov 1957,

p 350].

Condition (8) is what is now called the diophantine condition and it is a con-
dition that can be required for an irrational real number. It can be shown
that this condition holds for almost all irrational real numbers, up to a set
of Lebesgue measure zero. Thus, Kolmogorov had stated that, for most of
the initial frequencies - i.e. for all those satisfying condition (8) - the mo-
tions of the perturbed Hamiltonian system remain quasi-periodic and the
torus that foliate the phase space when the Hamiltonian is unperturbed,
are not destroyed by the perturbation, but are transformed into other in-
variant toruses, close to the unperturbed ones, on which the motions are
quasi-periodic with same frequencies λ1, . . . , λs.

Like Poincaré, Kolmogorov considered small perturbations of integrable

systems and proved that most invariant tori in the measure-theoretic sense

are preserved under small perturbations. [Sinai 1989, p 838]

Indeed, his theorem provides an important contribution to the "General
problem of dynamics", defined by Poincaré - which we reported in this
work in section §1.2.1 - and subsequent developments, left unsolved for
more than fifty years. In fact, under the conditions imposed by Kolmogorov,
and for a relatively small perturbation θ, nearly integrable perturbed Hamil-

138In our case the conditions are (8) and (9)
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tonian systems are stable for s ≤ 2 and, for s ≥ 3 the majority of initial data
generates solution stable for all times.

3.2.2 The presentation of the Theorem on the persistence of invariant
tori during the ICM Amsterdam (September 9, 1954)

Section §3 of [Kolmogorov 1957], Are dynamical systems on compact mani-
folds "in general" transitive, and should we regard the continuous spectrum as
the "general" case and the discrete spectrum as an "exceptional" case? reflect
Kolmogorov’s research program: try to find general or exceptional prop-
erties of any dynamical system.

So, he immediately clarifies that both questions are connected with is-
sues in the ergodic theory, already detailed in this work in section 1.3.2139.

In application to analytical canonical systems, the answers to both ques-

tions are negative. [Kolmogovor 1957, p 365].

To provide this answer, Kolmogorov had just shown a particular case of
the theorem on the persistence of invariant tori applied to a Hamilto-
nian system perturbed with two degrees of freedom on a two-dimensional
torus.

The proof does not want to be rigorous: he limits himself to listing the
salient points of it and the differences with respect to previous attempts in
the field of perturbation theory:

The method of proof consists in studying the behaviour of the original

tori T 2
c with frequencies λα(c) satisfying condition (2)140 under variation

of θ141 and establishing that for sufficiently small ϵ each of the tori is not

destroyed and is merely displaced in Ω with preservation of trajectories of

139Remember that in 1.3.2. we have seen that if T is a measure-preserving transfor-
mation on a space X , then T is ergodic (or transitive) if and only if it has only trivial
invariant sets, i.e. if and only if m(E) = 0 or m(X − E) = 0 whenever E is a measurable
set invariant under T .

140Diophantine condition
141That is the small perturbations of the system
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conditionally periodic motions with constant frequencies λα on it.

Probably many of you will already have guessed that, in essence, what

we are talking about is a certain modification of the idea of the possibility

of avoiding the appearance of abnormal "small divisors" when calculating

disturbed orbits, which has been extensively discussed in the literature on

celestial mechanics. However, in contrast to ordinary perturbation theory,

we obtain exact results instead of the conclusion that the series of some ap-

proximation of finite order (relative to θ) are convergent. This is achieved

because instead of calculating the disturbed motion for fixed initial condi-

tions, we change the initial conditions themselves so that, with varying θ,

we always deal with motions having normal frequencies λα(in the sense of

condition (2)).

So, Kolmogorov observes that the theorem obtained holds for any number
of degrees of freedom142:

In application to analytic canonical systems, the answers to both ques-

tions are negative, since the theorem on the stability of the decomposition

into tori which we stated for systems with two degrees of freedom remains

valid for any number of degrees of freedom as well.

[...] Thus, under small variations of H the dynamical system remains

non-transitive and the region G continues to be decomposable, to within a

residual set of small measure, into ergodic sets with discrete spectra (of the

indicated specific nature). [Kolmogorov 1957, p 365-366].

Thus, in general, canonical Hamiltonian systems are not transitive and, in
general, do not have a continuous spectrum.

The theorem obtained by Kolmogorov, therefore, inevitably raises ques-
tions about the validity of the ergodic hypothesis, in general.

However, under the condition that the number of degrees of freedom
is finite, the main applications of the ergodic hypothesis do not fall, i.e.
those of statistical mechanics, where the number of degrees of freedom is

142Finite number of degrees of freedom, let us add.
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very high and often tends to infinity.
Furthermore, it is Kolmogorov himself who points out:

No similar results regarding the stability of a certain general type of be-

havior of non-canonical dynamical systems with an integral invariant and

a compact phase space Ωn are known to me. [Kolmogorov 1957, p 367].

3.2.3 The Diophantine condition: from Carl Ludwig Siegel to Kolmogorov

In 1942 Carol Ludwig Siegel (1896-1981) published the article Iteration of
Analytic Functions in the Annals of Mathematics. In an attempt to solve
convergence problems of a Fourier series, he used the same Diophantine
condition used twelve years later by Kolmogorov in his works and which
represents one of the keys to solving the problem left open for so many
years. The question of Kolmogorov’s knowledge of this article still seems
to be not fully clarified.

Siegel’s works on analytic functions
In the spring of 1940 Carl Ludwig Siegel left Germany to go to Amer-

ica, to the Institute for Advanced Studies in Princeton. Here, after having
been a fellow for five years, he became a permanent member in 1946, al-
though in 1951 he returned definitively to Göttingen - where he had al-
ready held a professorship in 1938. His "escape" from World War II Ger-
many is reported by himself in [Siegel 1979], an article which contains
the "Address Given on June 13, 1964, in the Mathematics Seminar of the
University of Frankfurt on the Occasion of the 50th Anniversary of the
Johann-Wolfgang-Goethe-University Frankfurt". The speech focuses on
the fate of some of his colleagues who actively contributed to the seminar,
especially those mathematicians who were victims of racial persecution:
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Paul Epstein143, Ernst David Hellinger144 and Max Dehn145.
The story of his friend Dehn is intertwined with Siegel’s last days be-

fore leaving for the United States of America:
Dehn and his wife went to Copenhagen in January 1939 and later to

Trondheim in Norway, where he took over the post of a vacationing col-

league at the Technical University.

[...] When I visited him there in March, 1940, he seemed to have an air of

renewed hope about him after the sad events of the previous years, and

he was happy to be lecturing again. While walking together one day we

noticed several seemingly deserted merchant ships in the harbor flying the

German flag. Dehn told me that they had been there quite some time al-

ready, reportedly with engine trouble. They were called pirate ships by the

locals on account of the somewhat frightening impression they made. Be-

cause I left a few days later for a self-imposed exile in America, I learned

only later the reason for those mysterious ships’ presence, They were filled

with war material for the German soldiers who suddenly occupied Trond-

heim on the day of the invasion of Norway.

At that time he had already become one of the leaders in the development
of number theory, but it was in the 1940s that his interest in the theory of
analytic functions emerged, probably influenced by his great passion for
celestial mechanics. In fact, Siegel gave several lectures on celestial me-
chanics in Frankfurt, Main, Baltimore, Princeton and Göttingen. In Göt-
tingen, with Moser as a student, he gave a series of lectures during the

143Paul Epstein (Frankfurt, Germany 1871- Frankfurt 1939) was a German mathemati-
cian of Jewish origin, best-known for his contributions to number theory; he committed
suicide in 1939 with a lethal dose of Veronal, after receiving a summons from the Gestapo.

144Ernst David Hellinger (Striegau, Germany (now Strzegom, Poland) 1883 - Chicago
1950) was a German mathematician of Jewish origins, analyst and historian of mathe-
matics, known for having introduced a new type of integral that today bears his name:
Hellinger integral

145Max Dehn (Hamburg, Gemany 1878 - Black Mountain, North Carolina) was a Ger-
man mathematician of Jewish origins most famous for his work in geometry, topology
and geometric group theory.
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winter semester of 1951-52. And it is precisely from the notes taken by
the student, that Siegel published the first edition, in 1956, of Lectures on
celestial mechanics [Siegel, Moser 1995/1971].

His articles [Siegel 1941], [Siegel 1942] focus on a classic linealization
problem, related to the important researches of Delaunay, Hill and Poincaré in
celestial mechanics, [Siegel 1941, p 807]. In fact, in the first of the two arti-
cles he demonstrates that every convergent integral (solution) of a given
canonical system can be written as a power series in a single variable.
However, it is Siegel himself who warns the reader:

This elegant method of solution has also been generalized to the case of

a function H which contains explicitly the variable t, in periodical form, and

is closely related to the important researches of Delaunay, Hill and Poincaré

in celestial mechanics. However, there is a serious objection: The question

of convergence has never been settled.

In the 1942 article, entitled Iteration of analytic functions he goes one step
further: the analytic power series

f(z) =
∞∑
k=1

akz
k

with the assumption that a1 is a number such that |a1| = 1 and an1 ̸= 1 for
n = 1, 2. . . . and

log|an1 − 1| = O(log n) (11)

is convergent.
It is then Siegel himself who states that the hypothesis (1) on a1 is

equivalent to stating that, written a1 in the exponential form a1 = e2πω ,
then

|ω − m

n
| > λn−µ (12)
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for arbitrary integers m and n, n ≥ 1, where λ and µ are positive numbers
depending only upon ω.

This is clearly the same Diophantine condition (8) that Kolmogorov im-
posed on the frequency of motion to obviate the problem of small divisors
which would have interfered with the convergence of the series.

Did Kolmogorov know the Siegel’s works?
Although the demonstrative techniques used by Siegel in 1942 and by

Kolmogorov in 1954 are completely different, the coincidence of the Dio-
phantine hypothesis used inevitably raises the question that entitles this
subsection. Indeed, it is clear from some studies ([Dumas 2014, p 15, 35,
64, 81], [Goldstein 1980, p 530]) that there is a belief among many scholars
that Kolmogorov was familiar with the work of his German colleague.

Dumas in [Dumas 2014] refers several times to the question. To cite a
few excerpts:

Occasionally, disagreement erupts over how much Kolmogorov proved

in 1954. [...] Still others think that C.L. Siegel’s name should be attached to

the theorem. [Dumas 2014, p 15]

And, again:
Kolmogorov (may have) adapted this step from Siegel’s work, as de-

scribed above. [Dumas 2014, p 64]

The author of "The KAM story", in note 1 on page 81, clarifies the reason
for that "(may have)":

In describing the first solutions of small divisor problems, many refer-

ences say something like “Kolmogorov adapted Siegel’s techniques,” as I

do here. However, in the sequel I’ll qualify this with ‘perhaps,’ because,

while there is no doubt that Siegel’s work on small divisors preceded Kol-

mogorov’s by a dozen years, there does not seem to be direct evidence that

Kolmogorov knew about Siegel’s work.

And, to support his statement, he refers to the article [Arnold 1997], al-
ready cited here. In fact, on p. 738 we find the reference that Dumas him-
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self reports, in abbreviated form:
I started inquiring whether somebody had examined all these questions

between A. Denjoy’s work of 1932 and my work of 1958. Among others, I

found C. L. Siegel’s papers on the linearization of holomorphic mappings

near fixed points. To be more precise, I first invented this problem myself

(as a simplified model of the problem of circle mappings) and solved it by

Kolmogorov’s method. Only later on, I discovered Siegel’s work who had

obtained the same result by another method in about 1940.

“We are in a good company,” Kolmogorov told me when I let him know

of my bibliographic findings. As far as I understand, he was aware of nei-

ther Siegel’s works nor J. E. Littlewood’s146 works on the exponential slow-

ness of an increase in perturbations. [Arnold 1997, p 738].

There is a fine, often blurred line between attributing developments in
classical mechanics to Siegel and Kolmogorov’s use of his work.

In this regard, Arnold in [Arnold 1963] also attributes merit to the two
mathematicians, placing their names side by side in the first lines of the
introduction to his work:

The difficulty of qualitative problems of classical mechanics is well known.

In spite of prolonged efforts by many mathematicians most of these prob-

lems still await solution. Only in recent times, beginning with the work

of C.L. Siegel (1942) and A.N. Kolmogorov (1954), has some progress been

made in solving problems on the stability of motion of dynamical systems.

But, as we have seen, Kolmogorov’s pupil thought that his men-
tor did not know the work of his German colleague.

In another more recent testimony by Arnold from 2004, [Arnold
2004], he returns to the question again and his conviction on the con-
nection between the works of the two mathematicians appears more

146He refers to John Edensor Littlewood (Rochester, England 1885 - Cambridge 1977),
English mathematician best known for his contributions in the field of function theory,
series theory, many of which obtained together with the mathematician Godfrey Harold
Hardy.
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evident:
Just at this time Kolmogorov was giving a course at Moscow University

on his work on small denominators and on Hamiltonian systems and on

what is now called KAM theory. [...] I came to Kolmogorov with my the-

orems. "Well," he said, "here is my paper in Doklady ’54. I think it will be

good if you continue with this problem, try to think of applications to celes-

tial mechanics and rigid body rotation. I am very glad that you have chosen

a good problem." [...] I read other people’s works and I finally discovered

some papers by Siegel, who was a personal friend of Kolmogorov when

they stayed in Göttingen in the 1930s. Kolmogorov was not aware that

Siegel had later worked on the small denominators problem. Siegel’s paper

was published in 1941 but was unknown to Kolmogorov. He knew about

the works of Poincaré, of Denjoy, and of Birkhoff, but not about Siegel. So

he told me that we were in very good company: "Siegel is really serious,"

he said. I had discovered the Siegel theorem related to the normal forms

for circle rotations because of the system of education at Moscow Univer-

sity, which was different from that in America. I think it followed the Ger-

man tradition that, when you have a result and wish to publish it, you first

have to check the literature to see whether someone else has ever studied

it. We were told this in our first introductory course in library work, in

which we were taught how to find, starting from zero information, every-

thing needed. There was no Internet at that time of course, but still we were

able to find the references, and this is how I discovered that Siegel existed.

[Arnold 2004, p 615]

Here, even, a friendly relationship between the two mathematicians is re-
ported, dating back to the times of the trip to Germany and France in 1930-
31 made by Kolmogorov together with Aleksandrov. We know that Siegel
defended his doctoral thesis in Göttingen in 1920 and was then appointed
lecturer at the Johann-Wolfgang-Goethe University of Frankfurt in 1922,
where he remained until 1938, when he accepted a professorship in Göt-
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tingen. In [Shiryaev 1989], where some details of the trip and the places
visited are reported, neither Siegel nor Frankfurt is mentioned. It is possi-
ble that, on the occasion of the arrival of the two Russian mathematicians,
Siegel decided to meet his Russian colleagues visiting Göttingen and that
was an opportunity to get to know each other, but we have no certain ref-
erences in this regard.

Another opportunity to investigate the matter occurred to me when,
on May 28, 2021, I had the opportunity to interview Jakov Grigorevich
Sinai (1935 - ), a pupil and then collaborator of Kolmogorov. The first
question posed concerned precisely the relationship between the works of
Kolmogorov and Siegel:

ME: The first question is about Siegel’s work on Diophantine estimates.

These techniques are also used by Kolmogorov in his 1954 proof of the the-

orem but he does not mention them in the bibliography. Do you know if

Kolmogorov knew this work?

SINAI: In my opinion, he didn’t know Siegel’s work. Siegel’s work was

discussed at Arnold’s seminar and I assume that Arnold explains Siegel’s

work to Kolmogorov which, as you know, also uses small denominators.

ME: And do you know what Kolmogorov’s inspiration for Diophantine es-

timates is?

SINAI: I’m not so sure about that.

As has already been underlined in the conversation with Sinai, Kolmogorov
never mentions Siegel’s works, neither in the three articles nor in the brief
statements subsequently made, which we have extensively analysed; when
Siegel publishes his 1942 work, mathematics is only the backdrop to world
events of World War II and he was already in America, a continent with
which connections were difficult from Russia. It is at least plausible that
the German mathematician’s article did not cross Russian borders for sev-
eral years.

Finally, we recall that Jürgen Moser was a student of Sinai when he was
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asked by Mathematical Review to review the work [Kolmogorov 1957] re-
lated to the 1954 ICM conference. At that time he had already dealt with
stability problems of fixed points mapping ellipticals preserving area, un-
der the exhortation of Siegel, [Moser 1999]. It seems rather strange that in
the review he wrote there is no connection with the works of his master.

However, it should be emphasized that the purpose of this research is
not to provide an absolute truth. Kolmogorov’s knowledge or otherwise
of Siegel’s work would in no way invalidate the importance and impact
that his work had on the development of KAM theory.

3.3 The roots of Kolmogorov-Arnold-Moser theory (KAM

theory)

I think that it is precisely them we must number among those of his pre-

decessors to whom he turned most of all. Somewhat surprising is the ab-

sence of references to Poincare. This is largely because Kolmogorov learnt

of Poincare’s ideas by reading the works of Chazy and Charlier. The other

mathematicians to whom Kolmogorov refers were part of the current scien-

tific scene. Here we must mention the great influence which the works of

Krylov-Bogolyubov and de Rham had on him. [Tikhomirov 1988, p. 23].

Let us analyze the points in Kolmogorov’s speech in which the influences
of the mathematicians mentioned in the conversation with Arnold are ev-
ident, and then briefly describe the future directions of his research pro-
gram.

One of Kolmogorov’s most claimed sources of inspiration was the work
of Bogolyubov and Krylov in the field of nonlinear mechanics. Their con-
tribution appears evident when Kolmogorov is preparing to make some
considerations on dynamical systems defined in noncompact spaces, §4.
The study of these specific dynamical systems appears simplified by the
extension of the ergodic theory that Ukrainian mathematicians developed
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in [Krylov, Bogolyubov 1937]. In their work, through the construction of
invariant and transitive measures even in cases where they are not present,
they extend the field of validity of the ergodic theory.

On this subject Kolmogorov makes only a few considerations, without
arriving at a definitive answer as had happened in the compact case, and
hypothesizes some scenarios that appear more probable:

The arguments which, in the case of a compact Ω, can be given in favour

of the idea that a compact dynamical system of "general type" is transitive,

when applied to non-compact dynamical systems, leads to the hypothesis

that "in general" one of the following two cases holds: either the system

is dissipative (that is, almost all its points recede) or the measure m is er-

godic (obviously, in the latter case the receding points constitute only a set

of measure zero).

[. . . ] When it is known in advance that there is a set of positive measure

consisting of receding points, then in accordance with what has been said,

the conjecture arises that the system is dissipative. Probably Birkhoff’s as-

sumption that the three-body problem is dissipative is based on some con-

sideration of this kind. [Kolmogorog 1957, p 369].

Therefore, the study of this particular case appears interesting as soon
as one thinks of the repercussions it entails in the field of celestial mechan-
ics: in the three-body problem - as Kolmogorov underlined - but also in
the cases of capture or receding problems of a celestial body . Regarding
the latter aspect, he points out that in fact there are very few scholars at-
tracted by these topics. In confirmation of what has been stated, it shows
the significant example of the disapproval of some considerations made in
the thirties by the astronomer Chazy - which we have studied in depth in
1.2.3 -, concerning the conjecture on the impossibility of the capture phe-
nomenon in the three-body problem, takes place only after almost twenty
years by O. Yu. Schimtd first and Sitnikov later:

We note that, among more elementary problems, particular problems
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dealing with receding trajectories of various specific types attract little at-

tention of specialists in the qualitative theory of differential equations. A

spectacular example of this is the fact that a disproof of Chazy’s assertions

that no "ex-change" and "capture" are possible in the three-body problem

[17, 18] was first carried out in a way which is cumbersome (and logically

unconvincing without precise error estimates), using numerical integration

(see Bekker [19] and Shmidt [20]), and only recently has Sitnikov [21] con-

structed an example of "capture" in a very simple manner and almost with-

out calculations. [Kolmogorov 1957, p 370].

In paragraphs §3 and §4 of his work [Kolmogorov 1957], Kolmogorov will
deepen the questions of the spectrum and its properties for a transitive
system and of the existence of transitive measures even in cases where the
phase space where the dynamical system is defined is not compact.

Indeed, we are not surprised by Kolmogorov’s interest in measure the-
ory, given his work in this area and his work Foundations of the Theory of
Probability [Kolmogorov 1933]. But, the mathematician Jan von Plato even
hypothesizes an interest in measure theory resulting from an interest in
physics, and not the other way around:

Two works precede Grundbegriffe’s axiomatization of measure theory

[Kolmogorov, 1929, 1931]. In the latter, there was a physical motivation for

constructing a theory of probability, namely the need to handle schemes of

statistical physics in which time and state space are continuous. [von Plato

2005, p 962].

We saw in Chapter 1 that these questions were also of great interest to von
Neumann - and to Birkhoff and Koopman, of course - and Sinai confirms
his master’s interest in these topics:

Apparently the interests of Kolmogorov in ergodic theory had already

started in the 1930s. In mathematical Moscow it was a period of construc-

tion of the foundations of the theory of stationary random processes. One
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might recall the paper by Khintchine [11]147 at that time dedicated to the

spectral theory of such processes. [...] The paper by Khintchine [10]148,

where he gave a purely metric proof of the Birkhoff ergodic theorem, be-

longed to ergodic theory itself. In view of this paper the ergodic theorem

on a.e. convergence of time averages is often called the Birkhoff-Khintchine

theorem at least in the Russian literature. In the 1930s, the well-known pa-

per by Krylov and Bogolyubov [12]149 on invariant measures for groups of

homeomorphisms of topological spaces was written.

In the beginning of the 1930s, there appeared the famous paper by von

Neumann [21] 150, where the general notion of the metric isomorphism of

one-parameter groups of measure-preserving transformations was intro-

duced. Also in [21] von Neumann proved a basic theorem of metric iso-

morphism of ergodic dynamical systems with pure point spectrum. This

theorem showed that for this class of systems the spectrum is the complete

metric invariant. Since that time the problem of metric classification of dy-

namical systems became one of the central ones in ergodic theory. The sci-

entific activity of von Neumann was always under close attention. It is not

surprising that this problem became well known quite soon in Moscow and

several mathematicians spent a lot of effort trying to make some progress

here.

[...] For Kolmogorov the end of the 1930s was the beginning of his clas-

sical works on hydrodynamics and turbulence. His first publication which

can be considered as relating to ergodic theory goes back to 1937151, where

he exposed the Birkhoff-Khintchine theorem in probabilistic terms. [Sinai

1989, p 833]

In these sections we find full confirmation of the words written by the

147He refers to [Khintchine 1938]
148He refers to [Khintchine 1933]
149He refers to [Krylov, Bogolyoubov 1937]
150He refers to [von Neumann 1932b]
151He referso to A simplified proof of the Birkhoff–Khinchin ergodic theorem [Kolmogorov

1937]
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Russian mathematician in the commentary on his works on classical me-
chanics. In the excerpt that we have already reported in this work, he
stated that his works in this area were influenced, among others, by von
Neumann’s writings on the spectral theory of dynamical systems. Like the
American of his time, Kolmogorov tackles the problem from a broad point
of view, trying to provide general answers, also through the study of the
system through ergodic theory and spectral theory. Proof of this is also
a testimony from Sinai, in which the mathematician reports information
about a seminar held in Moscow in 1957, Kolmogorov’s seminar on selected
problems of analysis, where Kolmogorov addresses once again the work of
von Neumann.

In the autumn of 1957, Kolmogorov organized his famous seminar on

dynamical systems and gave a lecture course on the same subject. Among

the participants and listeners there were Alekseev, Arnol’d, Girsanov, Me-

shalkin, Pinsker, Sinai, Sitnikov, Tikhomirov and others.

[...] The lectures by Kolmogorov started with the proof of the metric iso-

morphism of dynamical systems with pure point spectrum. He gave an

entirely probabilistic exposition of the corresponding theorem by von Neu-

mann.

[...] In the seminar the participants discussed in much detail the con-

struction of Ito’s multiple stochastic integrals and the ergodic properties of

Gaussian stationary processes. It is well known that such processes can

be obtained as natural limits of quasi-periodic processes, that is, processes

corresponding to dynamical systems with pure point spectrum. A general

feeling at that time was that there exist some boundary separating dynami-

cal systems of probability theory and dynamical systems appearing in ordi-

nary differential equations, classical mechanics and hydrodynamics or, as

we call them sometimes, classical dynamical systems. [Sinai 1989, p 834].

One of the first future directions of his research program was carried out
by Sinai himself after Kolmogorov published an article on the entropy of
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dynamical systems at the end of 1957. This work is strongly connected
to ergodic theory and classical mechanics works and will lead to future
developments of his student in his papers [Sinai 1959] and [Sinai 1964].

There are also future works, more properly related to the Theorem on
the persistence of invariant tori.

Kolmogorov’s classical papers Nos. 52 and 53 produced a very strong

effect on the subsequent development of the theory of dynamical systems,

and at present there are dozens of books developing or presenting the ma-

terial of these papers.

In this brief commentary it is impossible to embrace all applications of these

results and we confine ourselves to some improvements introduced into the

theory after 1954. [Arnold 1991, p. 504].

On the one hand, Arnold decided to devote himself to the topics con-
tained in the conference: in 1963 he published his formulation of Kol-
mogorov’s theorem [Arnold 1963a] and subsequently extended the results
obtained to some important cases of degenerate Hamiltonian systems152.
This will prove to be fundamental for the subsequent development in ce-
lestial mechanics since, although Kolmogorov’s work can be traced back
to the works of Poincaré, the necessary hypothesis of his theorem, i.e. the
non-degenerate condition (9) is not respected by the system representing
the motions of our solar system and, in particular, of the three-body prob-
lem.

Almost simultaneously with the works of Arnold, in 1962 the German
mathematician Jürgen Kurt Moser (1928-1999) published the paper On in-
variant curves of area-preserving mappings of an annulus after being asked
in 1959 to review Kolmogorov’s work on the speech at the ICM. He con-
tained a theorem dealing with Hamiltonian systems that have only a finite
number of derivatives (333 derivatives) and are not necessarily analytic -
as Kolmogorov had instead imposed.

152[Arnold 1963b] and [Arnold 1964]

167



Their contributions were intended to make an important contribution
in the studies of the general theory of dynamical systems, leading to the
birth and development of a new approach for the study of such problems:
the KAM theory. One of the peculiar characteristics of this new approach
is precisely the demonstration technique based on the construction of an
iterative algorithm that converges very rapidly which allows to neutral-
ize the influence of the aforementioned small denominators and to prove,
under some conditions, the stability of the studied problem.

3.3.1 KAM theorem or Kolmogorov’s theorem?

The proof of this theorem was published in Dokl. Akad. Nauk SSSR 98

(1954), 527–530, but the convergence discussion does not seem convincing

to the reviewer.) This very interesting theorem would imply that for an

analytic canonical system which is close to an integrable one, all solutions

but a set of small measure lie on invariant tori. [Moser 1959]

This theory is called KAM, or Kolmogorov–Arnold–Moser, and people say

that there is even a KAM theorem. I was never able to understand what

theorem is it. [Arnold 2004 p. 622].

When Jürgen Kurt Moser sent his review to Mathematical Review he had
just turned thirty. As he will write in [Moser 1999], acting as referee for
Kolmogorov’s intervention in the proceedings will fill him with enthusi-
asm, since he had found someone else who was dealing with Hamiltonian
mechanics in a historical moment in which there were fewer and fewer
scholars interested in the subject:

Some 40 years ago, when I was at MIT, the Mathematical Reviews asked

me to review the famous lecture of Kolmogorov, held at the International

Congress 1954 in Amsterdam. This is how I first learned about this work

and I was very excited about it. At that time there were few mathemati-

cians interested in Hamiltonian mechanics, and it was encouraging to me
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to find others working in this field. The significance of this fundamental

work was indeed apparent to me, since I had been working on the stabil-

ity problem of elliptic fixed points of area-preserving mappings, a problem

C.L. Siegel had urged me to pursue. Naturally, I was disappointed that

neither Kolmogorov’s address nor his Doklady announcement contained a

proof. Therefore I wrote to Kolmogorov asking for the argument. I never

received a reply, and I had to write my review not knowing whether this

theorem was actually true. I never believed in proof “by authority”! I also

had no doubt that Kolmogorov knew how to prove his claims, but that did

not help me! [Moser 1999, p 19].

Indeed, in the article of the proceedings, Kolmogorov states the theorem
in section 3, without giving any proof, recalling it from his recently pub-
lished article [Kolmogorov 1954]. Therefore, the proof of the theorem must
be sought in this article: here the author does not make a real rigorous
demonstration, but exposes the essential passages on which it is based:

The transformation

(Q,P ) = Kθ(q, p)

whose existence in asserted in Theorem 1 can be constructed as the limit

of transformations

(Q(k), P (k)) = K
(k)
θ (q, p),

where the trasformations

(Q(1), P (1)) = L(1)(q, p), (Q(k+1), P (k+1)) = L
(k+1)
θ (Q(k), P (k))

are found by a "generalized Newton’s method". In this paper, we con-

fine ourselves to the construction of the transformation K
(1)
θ = L

(1)
θ , which

makes it possible to understand the role of conditions (3) and (4)153 of The-

153It refers to the conditions that in our work are denoted by (9) and (10) in paragraph
3.2
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orem 1. [Kolmogorov 1954, pp. 350-351].

The proof of the theorem is substantially based on two fundamental steps,
described by Luigi Chierchia (born 1957) in his article Kolmogorov’s 1954
Paper on Nearly-Integrable Hamiltonian Systems [Chierchia 2008]:

1. the construction of the successive transformations of variables (q, p),
obtained each from the previous one through Newton’s quadratic
approximation method;

2. the convergence of the product iteration process.

So, one of the peculiar characteristics of this new approach is the con-
struction of an iterative algorithm that converges very rapidly (inspired by
Newton’s tangent method for finding the solutions of an algebraic equa-
tion). Indeed, this convergence makes it possible to neutralize the influ-
ence of small denominators.

Kolmogorov gives all the steps for constructing step 1 of his iterative
process, but doesn’t say much about a second step where he was supposed
to ensure convergence of the product iteration process. The only passage
in this regard can be found in the few papers Only the applications of condi-
tion (3)154 in the proof of the convergence of the mapping K

(k)
θ to an analytic limit

mapping Kθ is somewhat more intricate [Kolmogorov 1954, p 352].
Therefore, he almost takes for granted one of the most important as-

pects for proving the thesis, the analytical convergence of the sequence of
functions K

(k)
θ to a function function Kθ, assuming only the Diophantine

hypothesis on frequencies as sufficient. Instead, a detailed proof of the
theorem requires more arguments in this regard, such as for example the
introduction of a decreasing sequence of Banach spaces (of increasingly
smaller dimensions) where it is possible to ensure the convergence of the
single functions K(k)

θ at each step. A complete demonstration, which how-
ever attempts to retrace the original version, can be found in [Chierchia

154Diophantine condition
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2008]. Here, the author’s attempt is to highlight the missing arguments in
Kolmogorov’s article with the aim of showing that all passages must have
been well known to Kolmogorov:

We point out that step (ii)155 – which consists in introducing a scale

of Banach spaces, giving recursive estimates and deducing from such esti-

mates the convergence of the scheme – is based on very classical tools (such

as Cauchy estimates for analytic functions or the classical Implicit Function

Theorem) obviously well known to Kolmogorov. [Chierchia 2008, p 130]

It is possible that the actual lack of some demonstrative details, combined
with the revision made by Moser, have contributed to create some un-
certainty about it, so much so that most of the secondary sources on the
KAM theory ([Dumas 2014], [Charpentier, Lesne, Nikolski 2004], [Diacu,
Holmes 1996], for example) report the story of a theorem enunciated by
Kolmogorov, but proved after almost 10 years by Arnold and Moser (al-
though the latter in a different version) and a sort of unification of the
three results reported in [Kolmogorov 1954], [Moser 1962] and [Arnold
1963] under the name of the KAM Theorem156.

What is not clear is whether Kolmogorov really took the missing as-
pects for granted, perhaps considering them trivial or of little importance,
or whether, instead, he did not notice the demonstrative "flaw".

One could also wonder why, when Moser aroused doubts about his
result, by writing to him for further clarifications, he did not provide the
necessary evidence to put an end to the impasse, definitively validating
his thesis.

A possible explanation is provided by Arnold. Starting from the small
extract reported at the beginning of this paragraph and reporting an ex-

155He refers to the convergence of the product iteration process.
156Although Dumas is more cautious in his statements and writes: Occasionally, disagree-

ment erupts over how much Kolmogorov proved in 1954 (some say his sketch-of-a-proof had such
big gaps that it wasn’t a proof at all; others say that it was complete enough to drop the A and M
and simply call the KAM theorem ’Kolmogorov’s theorem’). [Dumas 2014, p 15]
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tension of his writing, we read:
I turn now to KAM theory. This theory is called KAM, or Kolmogorov–

Arnold–Moser, and people say that there is even a KAM theorem. I was

never able to understand what theorem is it. In 1954 Kolmogorov proved

his marvellous theorem on the preservation of tori in Hamiltonian systems

for the case when the Hamiltonian is almost integrable and all functions are

analytic. What I contributed was the study of some degenerate cases-when

one of the frequencies is zero in the nonperturbed system or when the vicin-

ity of the fixed points or periodic points or tori is of a smaller dimension-

and then applications to celestial mechanics. All these cases are separate

theorems. My main contribution was the discovery (in 1964) of the uni-

versal mechanism of instability in systems with many degrees of freedom,

close to integrable (later called "Arnol’d diffusion" by physicists).

In 1962 Moser extended Kolmogorov’s theorem to the case of smooth

functions." In the first papers of Moser the number of derivatives was enor-

mous. Now we know that in the simplest case of plane rotation you only

need three derivatives, and this is just the limit, the critical number of deriva-

tives. But in the beginning the number was 333. For Kolmogorov, this was

like a complete change of philosophy (he told me) because he expected, and

even claimed in his Amsterdam talk, that the result would be wrong even

in C∞ and that one would need analyticity or something close to it, some-

thing like the Gervais condition157.

Moser complained that a proof of the theorem in the case of analytic

Hamiltonians was never published by Kolmogorov. I think that Kolmogorov

was reluctant to write down the proof because he had other things to do in

his remaining years of active work-which is a challenge when you are sixty.

According to Moser, the first proof was published by Arnol’d. My opin-

ion, however, is that Kolmogorov’s theorem was proved by Kolmogorov.

157It refers to a condition introduced by the mathematician Maurice-Joseph Gevrey
(1884-1957), which defines an intermediate space between the spaces of smooth (i.e. C∞)
functions and real-analytic functions.
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[Arnold 2004, pp. 622-623]

Whatever may have been the reasons that led Kolmogorov not to pub-
lish a more rigorous result than the Theorem on the persistence of invari-
ant tori, what is certain is that the theorems of the three mathematicians
involved are actually different: Kolmogorov and Arnold adopt different
demonstrative techniques and even in [Moser 1962] the hypotheses of
the theorem stated are different from those of the original result of Kol-
mogorov.

Surely all three have contributed to the development of the KAM the-
ory which today appears to be a point of reference among the demonstra-
tive techniques used to research the convergence and stability of dynam-
ical systems or partial differential systems, but perhaps it would be more
correct in the future the theorems of the three mathematicians had differ-
ent names and references.

Concluding Remarks

1. "Problème général de la Dynamique": Did Kolmogorov give a reso-
lution?
More than sixty years before the formulation of the theorem on the per-
sistence of invariant tori, Poincaré had defined the General problem of
dynamics [Poincaré 1892-99, tome I] as the study of the quasi-periodic mo-
tions of a perturbed system written in Hamiltonian form (paragraph 1.3 of
this work). He had realized that the problem, written in its general form

F = F0 + µF1 + µ2F2 + . . . ,

where F0 denotes the Hamiltonian function of the unperturbed system
and µ the perturbation parameter, did not concern only aspects of celes-
tial mechanics - so dear to Poincaré - but all those problems of mechanics
"close" to integrable problems.
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His approach would have brought about developments in many ar-
eas of mechanics, managing to provide information on all those problems
which can be connected, through the theory of perturbations, to the few
known integrable systems.

In fact we have already observed that, while completely integrable sys-
tems are very few (paragraph 1.2 note 9), those close to integrable systems,
in the sense of perturbation theory, are many. Therefore it is easy to under-
stand the reasons that led Poincaré to define this problem as "general". His
approach is very ambitious. To date, without suitable additional hypothe-
ses on the unperturbed system or on the magnitude of the perturbation, a
result is not known.

However, we can say with certainty that Kolmogorov has provided an
important contribution to the opening of the problem and subsequent de-
velopments. Given the condition of non-degeneracy on the unperturbed
Hamiltonian system F0 - which corresponds to condition (10) present in
paragraph 3.2, albeit with different notations -, given a very large set of
frequencies in the set of real numbers (its complement is a set of zero
Lebesgue measure) - all frequencies satisfying the Diophantine condition
(9) in §3.2 -, and given a sufficiently small perturbation µ158 , the most of
the invariant tori present in the integrable unperturbed Hamiltonian sys-
tem continue to survive. Each torus will deform only slightly with respect
to the unperturbed torus having the same frequency and so, in the phase
space of the perturbed system, there are equally invariant tori, over which
the motions are nearly periodic. Furthermore, in the phase space of the
perturbed system it turns out that the invariant tori are the majority, in the
sense that the Lebesgue measure of the complement of their union is small
and depends on the perturbation µ of the system.

2. A micro-community of mathematicians connected by common re-

158In the Kolmogorov version, the perturbation corresponds to the parameter θ
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searchs
If the line connecting Kolmogorov’s works with some results and con-
jectures left open by Poincaré appears quite clarified and known also in
various secondary sources ([Diacu, Holmes 1996], [Barrow-Green 1997],
[Dumas 2014]), during the research for this thesis, the awareness of a fur-
ther invisible thread linking Kolmogorov to other almost contemporary
scholars became increasingly vivid, in a sort of small scientific commu-
nity, geographically separated, but strongly united in the intentions and
research methods used.

The apparent hiatus of more than fifty years between Kolmogorov and
Poincaré is filled by this network which, in the 1930s, connects works of
classical mechanics with similar research approaches and methods, which
goes even beyond the qualitative methods outlined in Poincaré: let’s talk
by von Neumann, Birkhoff, Koopman, Krylov and Bogolyubov up to, of
course, Kolmogorov.

This mathematical micro-community, although divided geographically
(three in the United States, two in Ukraine and one in Russia), has decided
to pursue a new study approach to mechanical systems: through measure
theory, already used by Poincaré for the qualitative study of mechanical
systems, and the nascent theory of operators, increased by the develop-
ments introduced in mathematics by the Hilbert spaces, the study of a
dynamical system was transferred from an analytical method to a geo-
metric approach, up to the study of the properties of functions defined on
a Hilbert space , which linked back to the original problem.

As we have seen in this work, this was the approach used by Koop-
man, Birkhoff and von Neumann, who saw the evolution of the ergodic
theory and the formalizations of the homonymous theorems - by Birkhoff
and von Neumann - driven by the theorem obtained by Koopman con-
necting Hamiltonian systems with unitary operators. And in this wake,
von Neumann’s interest in a further connection emerges: the spectral the-
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ory, which connects a dynamical system to its spectrum, in an attempt -
again - to provide information on the studied system by deriving it from
properties (continuous or discrete spectrum) concerned some operators
connected to it (the eigenfunctions defined by the eigenvalues of the spec-
trum).

Just a few years later, in an attempt to bring about developments in
non-linear mechanics, which was so popular in the Soviet Union in the
1930s because it was so present in the surrounding reality - unlike the re-
cent theories of relativity or quantum mechanics - the only objective of
science Soviet Union at the time of dialectical materialism, the Ukrainians
Krylov and Bogolyubov take up the work of the three American math-
ematicians and extend them to more general systems. In fact, we have
seen that in conservative Hamiltonian systems there is a natural measure-
ment function (the conservation of volume, for example) whose existence
is a necessary condition for the development of the techniques developed
by von Neumann in the field of ergodic theory, in non- linear, which of-
ten represent a dissipative dynamic, this measure is not present sponta-
neously.

Thus, in an attempt to apply the same approaches of their overseas col-
leagues, Krylov and Bogolyubov construct a measure function in nonlin-
ear systems, with the same properties as the one existing for Hamiltonian
systems, starting from which all the approaches used for the latter, they
can also be transferred to the study of non-conservative systems.

This new method, which transforms the study of classical mechanics
into a study in the field of operator theory and spectral theory, was the
key to Kolmogorov’s work: his research program, which we have had the
opportunity to deepen, perfectly reflects this methodology of researches
and follows all the research carried out by the colleagues just mentioned.
Furthermore, the study of the possible transitivity of the system (or ergod-
icity) and the study of its spectrum (continuous or discrete), allow us to an-
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swer questions about "general" or "typical" properties of almost integrable
perturbed Hamiltonian systems, and not simply to make a contribution to
a single specific case.

3. A new paradigm in classical mechanics

[. . . ] it seems to me that the subject I have chosen may also be of broader

interest, as one of the examples of the appearance of new, unexpected and

profound relationships between different branches of classical and modern

mathematics.

In his famous address at the Congress in 1900, D. Hilbert said that the

unity of mathematics and the impossibility of its division into independent

branches stem from the very nature of the science of mathematics. The most

convincing evidence for the correctness of this idea is the appearance of

new focal points at each stage in the development of mathematics, where,

in the solution of quite specific problems, notions and methods of quite

different mathematical disciplines become necessary and are involved in

new interrelations. [Kolmogorov 1957, p 355].

Kolmogorov was well aware of the coexisting interrelationships between
the various branches of mathematics and the natural development of the
discipline, in which the introduction of new mathematical formalisms im-
plies different approaches and new methods. But how to make all this tan-
gible? The natural progression of the mathematical discipline often leads
to new formalizations, which hide the laborious process of knowledge cre-
ation. It is with the elaboration of a story that, through an epistemological
and historical reflection that accompanies the evolution of the research, we
draw on the true meaning of the intellectual enterprise, bringing to light
reformulations of previous ideas, which are not rejected, but assumed in
visions new and which often make the original ideas of the mathemati-
cians of the past unrecognizable.

The contributions of the 1930s and 1950s just mentioned in the previ-
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ous point depend on all the previous contributions. The new mathemati-
cal formalisms introduced at the beginning of the twentieth century have
brought with them a strong change in the approach to classical mechan-
ics, but it is doubtful that they conceal all the contributions made by the
developments of Lagrange, Hamilton, Jacobi, Poincaré etc.

To use a metaphor, it is like trying to conquer a fortress by attacking
from different points of the enclosure and with ever more sophisticated
weapons. In our case, the fortress is the study of classical mechanics and
the different weapons, were the various evolutions from the direct ap-
proaches first of the eighteenth and nineteenth century mathematicians
and physicists, to then move on to the qualitative approach from a more
geometric and topological theory conceived by Poincaré at the end of the
19th century, to then again address qualitative issues, but with an ap-
proach in the field of functional analysis.

Each evolution contains the previous ones but, when consolidated and
permeated in the studies of the mathematicians who follow them, they
take the form of a new paradigm which in a certain sense replaces the pre-
vious one.

4. Future research
The main objective of this work seems to have been achieved. The cultural
origins of Kolmogorov’s works appear more defined and the connections
between his direct testimonies and the theories developed by his predeces-
sors who he identifies as sources of inspiration for him appear clear. It is
equally clear that we are dealing with a very multifaceted problem that en-
compasses very broad mathematical developments, with connections and
abrupt ruptures which were certainly influenced by the socio-political con-
ditions of the West and of the Soviet Union in the early 1950s, but which
probably they are also daughters of the natural course of mathematics as
a constantly evolving discipline. We feel we have provided a first step,
not only in the direction of the contribution that Dumas had hoped for in
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The KAM story, but also from a broader point of view, as an addition to
the history of mechanics, up to now not developed in the main textbooks.
There are several points which deserve further study and which we aim
to address in the immediate future.

1. Kolmogorov’s scientific personality still appears to be incompletely
defined. While this work has allowed us to dig deeper through the
profile of this mathematician who was active in so many different
disciplines of mathematics, the connections between scientific inter-
ests as well as his personal trajectory need further investigation.
One could wonder if, for example, his knowledge in the field of mea-
surement and probability theory, seen from a purer mathematical
point of view, then contributed to the birth of the interest in me-
chanics which then led to the works analyzed in this thesis - as one
might think by chronologically retracing the published works - or
if, on the contrary, Kolmogorov’s interests, which had existed for
"decades" before the 1950s, towards aspects of mechanics and celes-
tial mechanics, and in general of mathematical physics , have pushed
Kolmogorov to deepen the theory of probability starting from his
studies in the field of measure theory. This second hypothesis finds
a possible ally in von Plato’s 2005 contribution, within the work pub-
lished by Grattan Guinness Landmark Writings in Western Mathematics
1640-1940.
At the moment we are unable to provide an exhaustive answer, but
it certainly remains an aspect worthy of study.

2. The connection attempt that Arnold makes between the invariant
tori of Landau in the field of turbulence theory and those of Kol-
mogorov, discussed in §2.1, although not shared by Kolmogorov
himself, seems to us not negligible and worthy of attention. We in-
tend to study Landau’s works in this area and try to trace the sim-
ilarities that convinced Arnold so much, before being denied by his
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master.
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Appendix: Hamiltonian dynamical systems

The Solar system is paradigmatic of the general concept of “a handful” of
material bodies in motion due to reciprocal interactions constituting a sys-
tem with their positions evolving in time.

The word «system» indicates an assembly, a whole made up of several
components, from the Greek verb συνιστηµι meaning “to put together, to
gather”159. In celestial mechanics, celestial bodies are considered as points
– reducing the complexity of the actual situation in order to formulate a
mathematical description.

The word «dynamical» makes reference to motion/change (from the
Greek δυναµις), indicating the vigor making those inanimate bodies ap-
pear as having life, that are embedded in the modern concepts of “force”
and “energy” for this motion. In Über die Erhaltung der Kraft Hermann von
Helmholtz (1821-1894) first name his famous 1847 "On the conservation of
force", then changing it to "On the conservation of energy" (from the Greek
work ενεϱγεια «activity», derived from εϱγoν «endeavour»]

The modern concept of dynamical systems is extended to any system
evolving in time as for example population dynamics in the life sciences
or economic evolution.

Differential equations were the mainly mathematical tool to describe
the evolution in time: those are equations involving functions and its
derivatives. A different approach, what we now call Lagrangian mechan-
ics, is a mathematical formalism developed first by Euler and Lagrange,
in which the equations of motion are described by means of the so-called
variational Euler equations160[Fraser 1994].

159see Vocabolario della lingua italiana, Rome, Istituto della Enciclopedia Italiana, ad
vocem.

160The establishment of variational mechanics was largely the work of Euler and Joseph
Louis Lagrange. Although Lagrange’s Méchanique analytique (1788) is usually cited as
the definitive presentation of the subject, the theory was developed earlier, by Euler be-
tween 1740 and 1750 and by Lagrange between 1760 and 1780. Euler provided some of
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In the variational approach, the representation of the motion of a phys-
ical system depends on the positions it can assume and on the respective
speeds, and the trajectory of the system will be given by the solution of
the variational equations involving scalar quantities and no more, as hap-
pened in Newtonian mechanics, from the equations of the forces acting on
the system itself, which are vector quantities.

Lagrangian formulation of the Newtonian law of motiona

Newton’s equations of the Second Law of dynamics, for a mate-
rial point q = (q1, q2, q3) of mass m, free to move in three-dimensional
space R3 under the action of a force F = (F1, F2, F3) is

Fi = mq̈

where i = 1, 2, 3 and q̈ = d2qi
dt2

.
We consider here, for simplicity, a motion that occurs along only

one of the three dimensions (one-dimensional motion). Suppose it oc-
curs along the q1 direction and, again for convenience, we denote by q,
neglecting its subscript. So q = (q, 0, 0) and F = (F, 0, 0) = F (q).

The first step is to introduce a scalar quantity and describe the force
in terms of that quantity. We will say that a force F is conservative, if
there exists a scalar function V = V (q), called potential energy, such
that

F (q) = −dV

dq
.

Then, if the force F is conservative, we can write Newton’s equa-
tion in the form

the essential ideas, while the systematic mathematical elaboration of the theory was La-
grange’s achivement. Variational mechanics had its origins in the rule for equilibrium
know as the principle of virtual velocities. [Fraser 1994, p. 975]
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mq̈ = −dV

dq
. (13)

It is shown that this equation is equivalent to

d

dt

(
∂L
∂q̇

)
−∂L
∂q

= 0, (14)

where L is a function L = R×R → R, which depends by (q, q̇) and
with the form

L = T − V =
1

2
mq̇2 − V (q).b

L is called the Lagrangian and corresponds to the difference be-
tween kinetic energy and potential energy.

The equivalence of the two formulas is easy to prove. In fact, it
suffices to calculate the partial derivatives of L with respect to q and q̇

and substitute the results obtained within the expression (14):

∂L
∂q̇

= mq̇ and
∂L
∂q

= −dV

dq
.

So, the equation (14) becomes:

d

dt

(
∂L
∂q̇

)
−∂L
∂q

=
d

dt
(mq̇) +

(
dV

dq

)
= mq̈ − F = 0,

which is the Newton’s equation.
aSince the objective of this framed is intended to be a mathematical understand-

ing of the derivation of the Lagrangian formulation from Newton’s equations, we
use here a modern language, more congenial to this purpose.

bT represents the kinetic energy.

This new approach was perfected by William Hamilton and Carl Gus-
tav Jacobi. The philosophical foundation lied in Maupertuis minimal ac-
tion principle. Dynamical systems described by this mathematical formal-
ism are modernly called Hamiltonian systems, because a function name
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Hamiltonian is central to the description of evolution of the system in time.
René Dugas in his A history of mechanics (1957) explains how Hamilton

managed to reduce the number of differential equations to be studied for
determining the evolution of a system:

Hamilton recalled that the determination of the motion of a system of

free particles, subject only to their mutual attraction or repulsion, depended

on the integration of a system of 3(n− 1) ordinary differential equations of

the second order or, by a transformation due to Lagrange, on a system of

6(n− 1) ordinary differential equations of the first order.

Hamilton reduced this problem to the "search and differentiation of a

single function" which satisfied two equations of the first order in the partial

derivatives161. [Dugas 1957, p. 395]

First of all, we consider a system of n-coordinates q1, . . . qn and we define

pi =
∂L
∂q̇i

= mq̇i

where i = 1, . . . , n. pi are called the momentum.
Denoted by Ω it is a 2n-dimensional differentiable manifold, on which

are assigned the coordinates (q, p) = (q1, . . . , qn, p1, . . . , pn), the evolution
of the system is represented by the functions q(t), p(t), where t, the time,
varies in a real interval.

This evolution is determined by the Hamiltonian function H = H(q, p),
where H : Ω → R, through the equations:

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H

∂qi
(15)

where i = 1, . . . , n.
H is explicitly defined as

H = pq̇ − L(q, q̇) = mq̇2 − 1

2
mq̇2 + V (q) =

1

2
mq̇2 + V (q) =

p2

2m
+ V (q),

161Actually, they are 2n-equations, as we will see below.
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As the sum of the kinetic and potential energies of the system.
This Hamiltonian, or canonical, formalism must now be considered as

the main tool in the study of the dynamics of conservative systems and in
the development of perturbation theory.

In general, H could depend on time t and in this case H = H(q, p, t) is
a function from the Cartesian product Ω× R in R. If this does not happen
- that is, if H = H(q, p) is as we defined it above - the system defined by
equations (15) is called autonomous.

The Hamiltonian of an autonomous canonical system is a first integral,
i.e. it is constant along the solutions of the system; the system is called
conservative and H is called the energy of the system:

This equation can be written

H(q1, q2, . . . , qn, p1, p2, ..., pn) = h

and this is the integral of energy, which is possessed by the dynamical sys-

tem when the function H does not involve the time explicitly. For natural

problems, it follows [...] that H is the sum of the kinetic and potential ener-

gies of the system. [Whittaker 1917, p.265].
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