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Abstract

For the abelian self-dual Chern-Simons-Higgs model we address existence issues of periodic vortex confi-
gurations — the so-called condensates— of non-topological type as k — 0, where £ > 0 is the Chern-Simons
parameter. We provide a positive answer to the long-standing problem on the existence of non-topological
condensates with magnetic field concentrated at some of the vortex points (as a sum of Dirac measures)
as k — 0, a question which is of definite physical interest.
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1 Introduction and statement of main results

The Chern-Simons vortex theory is a planar theory which is physically relevant in connection with high
critical temperature superconductivity, the quantum Hall effect and anyonic particle physics, as widely
discussed by Dunne [19]. Hong-Kim-Pac [24] and Jackiw-Weinberg [25] have proposed an abelian self-dual
model where the electrodynamics is governed only by the Chern-Simons term. Over the Minkowski space
(R*2 g), with metric tensor g = diag (1,—1,—1), the model is described by the following Lagrangean
density:

k 1
LA 6) = 7P AuFyy + Dot D0 — o0 (192 — 1)°,

where the Chern-Simons coupling parameter k£ > 0 measures the strenght of the Chern-Simons term and the
antisymmetric Levi-Civita tensor e*57 is fixed with €12 = 1. The metric tensor g is used to lower and raise
indices in the usual way, and the standard summation convention over repeated indices is adopted. The gauge
potential A = —iA,dz® is a 1-form (a connection over the principal bundle R'*2 x U(1)), A, : R**? - R
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for a =0, 1,2, and the Higgs field ¢ : R'*2 — C is the matter field. The gauge field F4 = —% wpdr® A doP
is a 2—form (the curvature of A), where Fop = 0, Ag — 03 Aq, and the Higgs field ¢ is weakly coupled with
the gauge potential A through the covariant derivative D4 as follows: D¢ = Dyddz®, Dod = Opp —iAgd
fora =0,1,2.

The self-dual regime has been identified by Hong-Kim-Pac [24] and Jackiw-Weinberger [25] through the
choice of the “triple-well” potential 7%|¢|?(|¢|*> — 1)* which yields to a Bogomol'nyi reduction [5] for the
Chern-Simons-Higgs model, as we discuss below. Vortices are time-independent (z° is the time-variable)
configurations (A, ¢) which solve the Euler-Lagrange equations

DD =~ (6 = )EI6 ~ )6
B } (1.1)
ie#aﬁFaﬁ = JI:=i(¢pDF¢ — ¢D"9)

and have finite energy. In the self-dual regime, for energy-minimizing vortices (at given magnetic flux) the
second-order Euler-Lagrange equations are equivalent to the first-order self-dual equations

Did=0
Fio £ &[0(|¢]* —1) =0 (1.2)
kFis +2A0|¢? = 0,

where Dy = D +iD5 and the last equation is usually referred to as the Gauss law. In the sequel, we restrict
our attention to energy-minimizing vortices (at given magnetic flux), and we will simply refer to them as
vortices.

In the physical interpretation, the electric field E = (01A0,024A0,0) is planar, the magnetic field B =
(0,0, Fy5) is in the orthogonal direction, and J°, J = (J*, J2) can be identified with the charge density,
current density, respectively, as in the classical Maxwell theory. Thanks to the Gauss law, vortices are both
electrically and magnetically charged, a physical relevant property which was absent in the abelian Maxwell-
Higgs model [26], [36]. Notice that A and ¢ are not observable quantities, as they are defined only up to
a gauge transformation, whereas the electric and magnetic fields as well as the magnitude |$| of the Higgs
field define gauge-independent quantities. The second and third equations in (I.2]) only involve observable
quantities, whereas the first one D¢ = 0 (or D_¢ = 0) — a gauge invariant version of the Cauchy-Riemann
equations— implies holomorphic-type properties for the Higgs field ¢ (or ¢) in a suitable gauge. Following an
approach first developed by Taubes [36] for the abelian Maxwell-Higgs model, vortices (¢,.4) can be found
in the form:

¢ =P LT AreGr) g = i%(|¢|2 —1), A +iAy = —i(0) +idy)log¢ (1.3)

as soon as u = log |¢|? does solve the elliptic problem

N
1
—Au=e'(1-¢") — ATy "6y, (1.4)
j=1
where € = % and p1,...,pn are the zeroes of ¢ (repeated according to their multiplicities)— usually referred

to as the vortex points (with the convention N = 0 if ¢ # 0). We refer the interested reader to [35] B9] and
the references therein for more details and for an extensive discussion of several gauge field theories.

For planar vortices, the finite energy condition f]R2 e“(1 — e*) < 4oo imposes two possible asymptotic
behaviors at infinity. The topological behavior |#|* = e* — 1 as |z| — oo gives the vortex number N the



topological meaning of winding number for ¢ at infinity (up to a £ sign, depending on whether D¢ = 0
or D_¢ = 0), yielding to quantization effects for the energy E, the magnetic flux ® and the electric charge
@ in the class of topological N—vortices: £ = 27N, & = £27N and QQ = +27kN. The existence of planar
topological vortices has been addressed in [23] 33} 38]. The non-topological behavior |¢|> = e* — 0 as |z| —
oo has no counterpart in the abelian Maxwell-Higgs model, and the possible coexistence of topological and
non-topological N —vortices is the main new feature in Chern-Simons theories. After the seminal work [32] in
a radial setting with a single vortex point (see also [I0] for related results), it has been a challenging problem
to find planar non-topological N —vortices [7, 8] for an arbitrary configuration of pq,...,py. Surprisingly,
two different classes have been found by using different limiting problems: the singular Liouville equation
in [7] or the Chern-Simons equation —AU = eY(1 — eV) — 478y in [8]. Since the latter problem has no
scale-invariance, in [8] the points p1,...,py are taken along the vertices of a regular N —polygon in order to
glue together U(@), j=1,...,N, for there is no freedom to adjust the height at each p; to account for
the interaction, but the approximating function has invertible linearized operator.

Since the theoretical prediction by Abrikosov [2], the appearance of lattice structure, in the form of spatially
periodic vortices, has been experimentally observed. To account for it, the model is formulated on

11 11
5 5) x (—57 5)}7
where wy, wo € C\ {0} satisfy Im (£2) > 0. Condensates are time-independent configurations (A, #) which

solve the Euler-Lagrange equations (hﬂ]), have finite energy and satisfy the 't Hooft boundary conditions
[37):

e EFe) g 4wy) = e Fg(2),  Ag(z+wr) = Ao(2), (A +956) (2 +wi) = (Aj + ;&) (2)  (1.5)

forall z € T*UT?\T* and k = 1,2, where I'' = {z = twy; — Jwa : [t| <1}, T? ={2 = —Jwi +tws: [t| <1}
and &1, & are real-valued smooth functions defined in a neighborhood of I'? U {w; + I'?}, Tt U {w + '},
respectively. For energy-minimizing vortices (at given magnetic flux) the Euler-Lagrange equations (L.1]) are
still equivalent to the self-dual ones ([2)). Since (LE) just reduces to a double periodicity for the observable
quantities F1o and |¢| in Q, a configuration (A, ¢) in the form (L3) does solve (I.2) as soon as u = log |¢|?
is a doubly-periodic solution of (L4 in £, see [6] [34] for an exact derivation.

Q={z=tw +swz: (t,5) € (

Hereafter, up to a translation, let us assume that ¢ # 0 on 90 (i.e. p1,...,py € Q) in such a way the
winding number deg (¢, 9, 0) is well-defined, and the vortex number N is simply given by |deg (¢, 9%2,0)].
By ([L3) we still have quantization effects as in the case of planar topological vortices: E = 27N, ® = 27N
and Q = £27kN , where the + sign depends on whether D¢ = 0 or D_¢ = 0. Hereafter, up to change ¢
with ¢, let us assume that D, ¢ = 0 and restrict our attention to energy-minimizing condensates (at given
magnetic flux), simply referred to as condensates.

Letting G(z,p) be the Green function of —A in Q with pole at p:
{ —AG(z,p) =dp — ﬁ in Q
Jo G(z,p)dz =0,

one is led to consider the following equivalent regular version of (L4l

1 4N
— Av = e 0tV(1 — etot?) - il in Q (1.6)
e 1€
N
in terms of v = u — ug, where ug = —4x Z G(z,p;) and the potential e*° is a smooth non-negative function
j=1
which vanishes exactly at p1,...,pny. By translation invariance, notice that G(z,p) = G(z — p,0), and



G(z,0) can be decomposed as G(z,0) = —5= log|z|+ H(z), where H is a (not doubly-periodic) function with
AH = ﬁ in . If v is a solution of (L6]), by integration over Q notice that

/ et (1 — oty = / lo[>(1 — |¢]*) = 262/ Fiy = 4nN¢? (1.7)
Q Q Q

in view of (L2)), yielding to the necessary condition

2
1
167Ne* = |Q — 4/ (e"““’ - —) < |9
Q 2
1]

for the solvability. According to [6], Caffarelli and Yang show the existence of 0 < €. < y/ g5 so that (L4)

has a maximal doubly-periodic solution u,. for 0 < € < €., while no solution exists for € > ¢.. Notice that
(L0) admits a variational structure with energy functional

4T N

1 1 ug+v 2
JE(U):—/Q|VU|2+— (6 ot —1) +W QU

2 262 Q

where v € H'(Q) = {v € H} (R?) : v doubly periodic in 2}. Later, Tarantello [34] shows that the maximal
solution u, is a local minimum for J. in H'(Q2), and a second solution € is found as a mountain-pass critical
point for J..

To each solution v of (4] we can associate the N—condensate (A, ¢) in the form ([3]) (with the + sign

as we agreed), and let (A, @), (A, ¢°) be the ones corresponding to ue, u¢. Concerning the asymptotic

behavior as e — 0, by (7)) we can expect two classes of N—condensates:
e |¢| = 1 as e = 0 (“topological” behavior),
e |¢| = 0 as e = 0 (“non-topological” behavior),

to be understood in suitable norms. For example, (A., ¢.) exhibits “topological” behavior:

bl = 1in Cpoe(Q\A{p1,- -, PN });
with
N
(Fi2)e — 2#2 dp; in the sense of measures (1.8)
j=1
as € — 0 according to (7)), see [34]. The concentration property (L8) for the magnetic field has a definite

physical interest, and supports the use of the terminology “vortex points” for the zeroes p1,...,pn of the
Higgs field ¢. The N —condensate (A€, ¢¢) has in general a different asymptotic behavior as € — 0:

(i) when N =1, [¢¢| = 0 in C™(Q), for all m > 0, and (F12)¢ is a compact sequence in L!(Q) (see [34]);

(ii) when N =2, [¢¢] — 0 in C(Q) and either (Fi2)¢ is a compact sequence in L'(€2) or (Fy2)¢ — 47§, in
the sense of measures, for some g # p1, p2 with uo(g) = maxq ug, depending on whether

et s () 5
I(v) == V| — 8mlog e )+ — [ v
) 29' | Q 12 Jo

attains its infimum or not in H'(Q2) (see [31], and also [18]);



(iii) when N > 3, |¢¢] — 0 in C(Q2) and (Fi2)° — 2w NJ, in the sense of measures, for some ¢ # p1,...,pN
with ug(q) = maxq ug (see [12]).

In [I7] it is shown the existence of N—condensates (A, ¢) so that |¢| — 0 a.e. in  as e — 0. Concerning the
case N = 2, it is a very difficult question, which has been discussed in [9] 27] for p; = p2, to know whether
or not I attains the infimum in H'(2). An alternative approach of perturbative type has revelead to be
successful for N = 2 [29] (see also [20] among other things) by constructing a sequence of 2—condensates for
which the second alternative in (ii) does hold, for a critical point ¢ of ug. The same approach works as well
for N > 3, provided the concentration points of the magnetic field are not vortex points.

The existence of non-topological N —condensates with magnetic field concentrated at vortex points as € —
0 (like in (L.8))) is the main issue from a physical viewpoint and has not received an answer so far. A
first partial answer has been provided by Lin and Yan [28] who construct N —condensates (A, @) so that
(Fi2)e = 2mN6p, in the sense of measures as € — 0, as soon as N > 4 and p; is a simple vortex point in
{p1,...,pn}. Asin [8], they make use of the Chern-Simons equation —AU = eV (1 — V) — 474y as limiting
problem, which is not suitable to manage multiple concentration points. Moreover, such a condensate does
satisfy maxq [¢e| > ¢ > 0 for € small and |¢c| — 0 in C,.(Q2\{p;}), which fits the notion of “non-topological”
behavior in a weak sense. Our aim is to extend to N—condensates the perturbative approach developed by
Chae and Imanuvilov [7] for planar N—vortices, based on the use of the singular Liouville equation as
limiting problem. As far as non-topological behavior, let us stress that the problem on the torus is much
more rigid than the planar case, as well illustrated by the quantization property ® = 27N (valid just in the
doubly-periodic situation). For example, when Fjs is concentrated like a Dirac measure at a vortex point py,
by the use of Liouville profiles it is natural, as we will see, to have 4w (n; + 1) as concentration mass of Fio

m
at p;, where n; is the multiplicity of p; in the set {p1,...,pn}, and then the relation 27N = 4 Z(nl +1)

=1
m

does hold as soon as Fijo — 47 Z(m +1)6,, in the sense of measures. In particular, the concentration of the
1=1

magnetic field can not take place at all the vortex points p1,...,pny as in the planar case [7]. Let us stress

that the N—condensates constructed in [30] have exactly such a concentration property and then violate the

balancing condition (9.

Our aim is to provide a general answer to the long-standing question on the existence of non-topological
N —condensates with magnetic field concentrated at some vortex points. Compared with [7], our main result
is rather surprising and reads as follows.

Theorem 1.1. Let {p1,...,pm} be a subset of the vortex set {pi1,...,pn} C Q, {p;}; be the remaining
points and ny, n; be the corresponding multiplicities so that

2rN =4m Y (ng+1). (1.9)
=1
Letting Ho be a meromorphic function in Q so that |Ho(2)|? = eto+8™ i (DG (=) (which exists and is

unique up to rotations), assume that Ho has zero residue at each p1, ..., pm. Letting oo(z) = — (fz Ho (w)dw)
(a well-defined meromorphic function), assume that

Dy = 1 [/ eto+8T 30, (i+ )G (z,p1) _ (ng + 1)/ d_y4] <0 (1.10)
\oy ! (B,(0)) — ®2\B,(0) |Y

-1



for small p > 0 and the “non-degeneracy condition” det A # 0, where A is given by ([@II). Then, for e >0

small there exists N—condensate (Ae, de) so that |¢e| — 0 in C(2) and

(Fiz)e = 4w > (i + 1)y, (1.11)
=1

weakly in the sense of measures, as € — 0.

Notice that we can also allow some concentration point not to be a vortex point, by simply adding it to the
vortex set with null multiplicity. In section [Al we will see that in the double-vortex case N = 2 Theorem
[Tl essentially recovers the result in [20, 29] concerning single-point concentration, for the assumptions just
reduce to have the concentration point g # p1, p2 as a non-degenerate critical point of ug with Dy < 0 (for
similar results concerning the Liouville equation, see [4, 16, 21] in case of bounded domains with Dirichlet
b.c. and [22] in case of a flat two-torus). Despite of the complex statement, for a rectangle Q with p; = 0,
p2 = 5, p3 =% and py = %, and n1, n2,n3, ng even multiplicities with %+ odd, we will check in section
Blthat the assumptions of Theorem [[.T] do hold for m = 1 and concentration point p;, up to perform a small
translation so to have p; € €2. For computational simplicity, the “non-degeneracy condition” will be checked
just for a square with n = ng = 2 and (n1,n2) = (2,0) or viceversa. Even more important, examples with
m > 2 will be discussed in section [6l

Following an approach developed by Tarantello [34] and exploited in [31], (6] can be seen as a perturbed
mean-field equation (2.2 with potential e“0 and unperturbed part

A ewotw 1

— =4aN|—+———— —|. 1.12
T <fg ) (112)
Since e“0 vanishes like |z — p;|*™ near each p;, [ = 1,...,m, the Liouville equation —AU = |z|?"eV will

play a central role in the construction of an approximating function in the perturbative approach. Since
Us.o, = log % does solve —AU = |op|?eY in Q \ {poles of o0}, a natural choice is o9 = 2"*! when
m = 1 and p; = 0. Letting P be a projection operator on the space of doubly-periodic functions, the
approximation rate of PUs ,n+1 is unfortunately not sufficiently small to carry out the argument, a problem
which often arises in perturbation arguments and is usually overcome by refining the ansatz via linear theory
around the approximating function. However, such a procedure would require several subsequent refinements,
yielding in general to a high level of complexity. Inspired by [I4], in section 2] we will take advantage of the
Liouville formula to use the inner parameter oy, present in the Liouville formula, to get improved profiles.
Since PUs 5, ~ Us, s, —log(80%) +log |oo|* +8m(n+1)G(2,0) as § — 0, PUs 4, is a good approximate solution
of (LI2) if % = |(Ui0)’|2 = e t8m(n+1)G(2.0) - By definition of Hy, it is enough to find a meromorphic
oo with (Uio)’ = Ho, a solvable equation if and only if Hg has zero residue at its unique pole 0. As we
will discuss precisely in Remark [£.4] the assumption on the residues of Hq is then necessary in our context.
Moreover, since Hg has a pole at 0 of multiplicity n + 2 and zeroes p;’s of multiplicities n;, by the property
Ho(z +wj) = ePiHy(2), 7 = 1,2, near IQ for some 07,6, € R we deduce that
1 [ M)
=5 Hodz—n—i—Q Zj:n] =2(n+1) - N,

providing (L.9) as a necessary and sufficient condition for the existence of such Hy (the sufficient part in
shown in next section). Dy < 0 and the “non-degeneracy condition” will be necessary to determine § and
a, a sort of small translation parameter accounting for the perturbation term in (22)), according to the
asymptotic expansion for the corresponding “reduced equations” as derived in section Theorem [I.1] is
proved in section ] when m = 1 and in section [6] when m > 2.



2 Improved Liouville profiles

Let us decompose any solution v of (L6l as v = w + ¢, where ¢ = If_ll\ fQ v. In this way, w has zero average:
Jqwdz =0, and by (LZ) one has

626/ g2uot2w _ ec/ et L 4rNe? = 0.
Q Q

This last identity then provides a relation between ¢ and w in the form ¢ = ¢y (w), where
8T Ne?
fQ evotw E \/(fQ eu0+w)2 _ 167-‘-N€2 fQ 62u0+2w

ecx(w) —

(2.1)

whenever ( [, e““*w)Z —167Ne? [, e*"ot2¥ > (. The two possible choice of “plus” or “minus” sign in (2.1)
is another indication of multiple solutions for (L6). In [34], topological solutions are characterized to satisfy
@) with the “plus” sign. Since we are interested to non-topological solutions, it is natural to restrict the
attention to the case ¢ = ¢_(w), reducing problem (0] to the following equation in 2

glotw 1
—-Aw= 47N|-—+——— —
v " <fsz ewotw Q]
N 647T2N2€2 fQ e2u0+2w ( euo—i-w 62u0+2w ) ( )
(Jgetotw + \/(fQ evotw)2 — 16w Ne? [, e2uot2w)2 Jo et Jq e2uot?
/ w = 0.
Q

Here and in the next sections, we first discuss the case m = 1 in Theorem [[LJl Assume that p is present
n—times in {p1,...,pn}, and denote by p/s the remaining points in the set {p1,...,pny} with corresponding
multiplicities n;-s. Up to a translation, we are assuming that p; € 2 for j = 1,..., N, a crucial property
which will simplify the arguments below. Since the assumptions in Theorem [[.T] for the concentration at p
are just local properties, for simplicity in the notations let us simply consider the case p = 0.

Since e“0 behaves like |z|?" as z — 0, the local profile of w near 0 will be given in terms of solutions of the

“singular” Liouville equation:

— AU = |z]*™eVY. (2.3)
Recall that by Liouville formula the function

log S

HCEaraDE

does solve —AU = eV in the set {F’ # 0}, for any holomorphic map F. For e{ltire solutions of (23) with
finite-energy: [p. |2|*"eV < +oo, it is well known that necessarily F(z) = Z"ts =% and then all the entire
finite-energy solutions of (23] are classified as

8 1)252

Us.o(z) = log (nt+1) d>0,acC.

(02 + 271 — a2)2’

Moreover, we have that [g, [2[*"eVss = 8m(n + 1). Since by construction the corresponding v = w + c_(w)

will satisfy

1

E_Qequr'U (1 _ eu0+v) N 87T(7’L + 1)60



in the sense of measures, the balance condition

27N =4mw(n+1) (2.4)
is necessary in view of (LT).
Assume for simplicity e“0 = |z|?". Since [, |z|*"eYse — 87(n+1) as § — 0, by (2.4) we have the asymptotic
[z|?"e Us,a

matching of —AU;, = |z|?"eVs.a and 47TNW as 6 = 0. To correct Us, into a doubly-periodic

function, we consider the projection PUs, of Us , as the solution of

~APUsa = ~AUsa + 17 Jo AUsa  in Q
Jo PUs,a =0.

In this way, we gain the constant term

1 1 4N
AU = —— [ |z|eVse - ——— asd — 0
1] Ja 92/ Jo 9]
in view of (Z.4]), and we still need to check that the difference between —AUs , = |2]?"eYs« and 47 N ”727171”1:@

is asymptotically small. Thanks to an asymptotic expansion of PUs , in terms of Us 4, we will see that the dif-
ference is small (i.e. PUs, is an approximating function of (Z.Z)) but behaves at most like |z|2"eYs:« O(|z]+42)
which is not sufficiently small. A first refinement of the ansatz via the linear theory around PUs, could
improve the pointwise error estimate into |z|*"eY5.«O(|z|> + §2), which unfortunately is in general still not
enough. Since there is a strong mismatch between the dependence of Us , on 2"*! and that of the error on
z (or even on 22), we should push such a procedure through several subsequent refinements. Instead, we
play directly with the inner parameters present in the Liouville formula, for we have more flexibility in the
choice of F'(z) on bounded domains. Hereafter, let us fix an open simply-connected domain Q) so that @ c Q

and QN (W1 Z+ weZ) = {0}, and set M(Q) = {o . meromorphic in Q}. Let § € (0,400), a € C and

o € M(Q) be a function which vanishes only at 0 with multiplicity n + 1. Since log |o/(2)|? is harmonic in
{0’ # 0}, the choice F(z) = M yields to solutions

862
(0% +lo(2) — af?)?

of —AU = |o’(2)[?eV in Q \ {poles of ¢}, for Us ., is a smooth function up to {¢’ = 0}.

Us,a0(z) = log

The guess is so to find a better local approximating function PUs q  for a suitable choice of o, where PUs 4 »
does solve

{ ~APUs g0 = |0'(2)]?e507 — \sz| Jalo'(z)Pe% e in Q) (2.5)

fQ PUs .0 =0.
Notice that PUs,q, is well-defined and smooth as long as o € M(ﬁ), no matter ¢ has poles or not.

Recall that G(z,0) can be thought as a doubly-periodic function in C with singularities on the lattice vertices
w1Z + woZ, and H(z) = G(z,0) + 5=log|z| is then a smooth function in 20 with AH = If_ll\ Since 2 is

2
simply-connected, we can find an holomorphic function H* in 2§2 having the harmonic function H — ETpe

~ z 1]
real part. Since p; € ), take 2 close to €2 so that  —p; C 2Q for all j =1,..., N. The function
. .
H(z) = H(z—p])"Jexp dr(n+ 1)H* (2 —27TZH —pj) — mZh%F-FWZZPj (2.6)
j =1 =1



is holomorphic in Q with
%eung&T(nJrl)H(z) — e471'(71-i—2)H(z)—47r Zj n;G(z,p;5) in Q (27)
z n

()] =

in view of ([24). The meromorphic function Ho(z) = :i(fg does satisfy |Ho(2)|? = evot8m(+1G(20) iy Q,

Remark 2.1. For simplicity in the notations, we are considering the case p=0. When p # 0, by assuming
Q —p C 2Q the function

W) = [[—p)™ e (4w<n FH (2 - p)+

m(n+1) ipf? — 2rr(n + 1)21?) "

i 1 Q]
N N _ ~
X exp —27TZH*(z_pj) _Z|pj|2+_zzpj
j=1 2|9 = 1Y) =
is holomorphic in Q with
IHP(2)]2 = 1 cUoH8T(n+1) H(2=p) _ Am(n+2)H(z—p)—4w ¥, n; G(2.p;) s

e
in view of ([24). The meromorphic function H{(z) = % does satisfy |HE(2)]? = evot8T(n+1)G(zp) 4
Q.
Hereafter, for a meromorphic function g in Q the notation [7 g(w)dw stands for the anti-derivative of g(z),

which is a well-defined meromorphic function in the simply-connected domain  as soon as g has zero residues
at each of its poles. Since H(0) # 0 by (2.7)), we define

([ Aot = ( [ %dw) - o

1 dn+1H (O)
H(0)(n + 1)! dzntl

n+1

where

Co = (29)

guarantees that the residue of Ho(z)e *"" at 0 vanishes. By construction o9 € M(Q) vanishes only at
zero with multiplicity n + 1, as needed, with
ontl H(O)

li = 2.10
peey oo(z) mn+1’ (2.10)

and does solve

log(2)> = |ao(z)|4e“0+877("+1)G(270)e—2Re[CUZ"“] (2.11)
in view of (2.71).
Let 0 € M(Q) be a function which vanishes only at zero with multiplicity n+ 1. For a € C small there exist
ag, .. .,an so that {z € Q: o(z) =a} = {ao,...,a,} (distinct points when a # 0). For a small the function

Mao(z) = [](z—pj)"exp 47TZH z—a) |Q|zZak QFZH z—p;) (2.12)

J k=0

N
T 12




is holomorphic in Q with

1 n _ _ 2 n
[Ha,o(2)” = Izlz—n6“°+8”z’“:°H(z an) = Siolarl® iy (2.13)

in view of (24). The advantage in our construction of H, ., which might be carried over in a simpler
and more direct way, is the holomorphic/anti-holomorphic dependence in the a;’s as well as in z, a crucial
property as we will see in Appendix A. When a =0, then a9 =--- =a, =0 and H = Ho .

Endowed with the norm [lo := || Z||, o, the set M'(Q) ={o € M(Q) : ||o]| < oo} is a Banach space, and
let B, be the closed ball centered at oy and radius r > 0, i.e.

BT:{UEM H——lHOO)Qgr}. (2.14)

For a # 0 and r small, the aim is to find a solution o, € B, of

2 olw)—a w! a,0\W) —cqowt? B
”@>__l/ (i) e dé

for a suitable coefficient ¢, ,. To be more precise, letting

o(z) —a
Yao(2) = T
[Tio(z — ax)
for |a| < p and o € B,, by Lemma [A1] we have that g, , € M(Q) never vanishes, and the problem above

gets re-written as

-1

Z g2 (w n

o(z) = — / g;,g( )Ha,o(g}) e~ Ca,oW Hdw ) (2.15)
gO,U(w) wnt

The choice

(0) (2.16)

Ca,cr =

1 artt g?z,g(z)g(z),o(o) Hao(2)
(n+1ldznt | g2 5(0)95 5 (2) Ha,o(0)

)

lets vanish the residue of the integrand function in ([2.I5) making the R.H.S. well-defined. Since o, € B;,
the function o, vanishes only at zero with multiplicity n + 1, and satisfies

0! (2)|? = |oa(2) — al*exp <u0 +87Y Gz ax) — IQI Z lax)? — 2 Relca.o, z"+1]> (2.17)
k=0

in view of (2I3]). The resolution of problem (ZI5)-(2.I6]) will be addressed in Appendix A.
We have the following expansion for PUs, » as § — 0:
Lemma 2.2. There holds
PUs a,0 = Us.ao — 10g(80%) + 410g|ga.o| + 87 Y  H(z — ar) + Osa.0 +20° fa.s + O(5*) (2.18)
k=0

in C(Q), uniformly for |a| < p and o € B,., where

acr—_ 1
©s Mn/(%ahwd>—d%2

10



and fq.0 is defined in (2.22). In particular, there holds
PUs 4,0 =8 Z G(z,ar) + Os,0,0 + 252 (fayg —
2 o0) -
in Croe(Q\ {0}), uniformly for |a| < p and o € B,.
Proof: Define

Tsa.0 = PUsac — Us.ao +108(80%) — 4log|ga.s| — 87 H(z — ax).
k=0

The function Uy, , does satisfy —AUs 4.0 = |07(2)]?eYsev just in Q \ {poles of o}. At the same time, the
function —41log|ga.o| is harmonic in Q \ {poles of o}, and has exactly the same singular behavior of Us 4
near each pole of o. It means that

— A [Usas + 4108 |gaol] = |0’ () 2eVsom (2.19)
does hold in the whole . Since AH = ‘5—1“, by (23 and (2I9) we get that

1
_Arts,a,a = TAT |:87T(TL + 1) — |0'I(Z)|2€U5’a’aj| .
€2 0

By the Green’s representation formula we have that
1
T8.a0,0(2) = @/ T8,0,0 —|—/ (0075 0,0 (WG (W, 2) = 75,0,0(W)0,G(w, 2)]ds(w), (2.20)
Q a0

where v is the unit outward normal of 9Q and ds(w) is the line integral element. Since as § — 0 there holds

n 2
75,0,0(W) = PUs q,0(w) — 87 Z G(w,ar) +2 0
k=0

4
jo(w) —ap T O

in C*(0Q) uniformly in |a| < p and o € B,, by double-periodicity of PUs, , — 87 Z G(-, ax) we get that

k=0
/aQ [0075.0.0(W)G(W, 2) = T5.0.0(w)D, G(w, 2)]ds(w) = 262 fo.5(2) + O(5?) (2.21)
in C(Q), where
1 1
Fao(z) = /8 ) [ayma(w, )~ ot —ap G z)] ds(w). (2.22)
Inserting (Z21)) into (Z20) we get that
T5,0,0(2) = Os.0,0 + 26% fa,0(2) + O(6") (2.23)

in C(Q) uniformly in |a| < p and o € B,., where

1 1 lo(2) — alt
@tsﬁa’g = —/ Ts,a,0 = ——/ 10g .
9 Jo 9] Jo 7 (82 + |o(2) —al?)?

The estimate (2:23) yields to the desired expansion for PUs 4, as 6 — 0. L]

11



Letting o, € B, be the solution of (ZI5)-(2I6]), we build up the correct approximating function as W =
PUs,q,5,. We need to control the approximation rate of W for § and e small enough, by estimating the error
term

equrW 1
647T2N2€2 fQ 62u0+2W ( equrW 62u0+2W )
2 wotW U w |-
(fg cuo+W 4 \/(J"Q vt W)2 _ 167 Ne? [, e2u0+2W) Jaewot Joetuor?

In order to simplify the notations, we set Us o = Us,a,005 Ca = Ca,00> ©6,0 = ©6,0,00s fa = fa,0., and omit the
subscript a in o,. We have the following crucial result.

Theorem 2.3. Let |a| < § and set

2n_
77:625_ﬁ max{l,%}nﬂ. (2.25)

The following expansions do hold

A equrW 1
W+4nrN | —— — —
I <fg ot |ﬂ|)
2 Relc, 2™t
= |o'(2)|?eYse ¢ -1
| ( )| 1 1 52
1 +2Re[caFu(a)] + [cal? Re Gq(a) + 5|ca|?)ARe Go(a)d? log 5 + 1 Da

10/ (2)[2eV55 O(62|2] + 62|a| 7T + 63|cq| + 6 571 ) + O(52) (2.26)

and
GAT2N2e2 fg 2o +2W ( U0+ W 2o +2W )
(JqemotW + \/(fQ ewotW)2 — 167 Ne? [, e2uot2W)2 Joert™ o [qerot2W

8 1 2 2
Bt Ve g s Qo ()Pl
| T 6T

= |o’(2) 2o l [1+ O(leall2"™ + 1) + o(1)] (2.27)

as €,0 — 0, where ay, Fo, Ga, Dq, Equs are given in (231), 235), (Z43), @47), respectively.
Proof: Recall that (2I5) implies the validity of (2ZI7), which, combined with Lemma 2.2 yields to the

following crucial estimate:

W = Us o — log(86%) +log|o’(2)|* — uo + % Z lag|* + 2 Refca2™ ) + O5.0 + 20% f, + O(6*)  (2.28)
k=0

in C(Q) as § — 0, uniformly for |a| < p. Since by Lemma [ATl o = ¢"*! in 071(B,(0)), through the change
of variables y = ¢(z) in 071(B,(0)) = ¢~ (B _1_(0)), by (Z28) we have that

pntl
R 8252 2 / et W =/ |0’(z)|2eUs,a+2Re[caz”‘*1]+0(62|2|+54>
eTal S o lar|?+©s,a4+262 f4(0) o—1(B,(0)) ¢ (B %(0))
pm
_ 8(n A+ LMY o Refeata™ )1 1+0(5% 1 +6% (2.29)
52 ntl _ ,2)2¢ : '
B 4 (0 (6% + |y al?)
e

12



Since ¢~ 1(y) ~ y at y = 0, the following Taylor expansion does hold

+oo
ecald " 1 4 yntl Z afyk (2.30)
k=0

in B . (0), where the coefficients o depend on a through o = o,. In particular, we have that a, := a9

takes the form

) Zn-i—l
g = ;13% ) # 0. (2.31)
By (Z30)) we then deduce that
—1 +1 —1 +1 =
galess ") o O P 1 2R ey S by + e Pl S abar. (23)
k=0 k,s=0
Since . .
Dol I = Y7 e = 0
3=0 3=0

for all integer k ¢ (n + 1)N, by the change of variables y — eif_fljy we have that

ly|™y* _ ly|™y*
-—Z
B (0) (02 4 [y"+! — al?)? ML (62 + [y"+! — al?)?

pn

|y|myk Sy k
= [e*=+17]" =0 (2.33)
/B L (nc, (02 + [yt —al?)? ;

pntl J

for all m > 0 and integer k ¢ (n + 1)N, where C; is the sector of the plane between the angles "7t and
"1 - Formula 233) tells us that many terms of the expansion ([2:32]) will give no contribution when
inserted in an integral formula like ([2:29]). Using the notation ... to denote such terms, we can rewrite (2:32)
as

+o00 too
2Releala™ W)™ 1 4 9Re LaZa’;<”+”y<’“+”("“’]+|ca|2|y|2"+22|a’;|2|y|% (2:34)
k=0 k=0

+oo +oo
Rl Re [ 3 5 atalr et ey 4

k=0m=1
Setting
<« k(n+1), k+1 2 RERES —k k+m (n41),,| 25 m - k2, | -2k
y) = oy S DI Py + 3 kPl |, (235)
k=0m=1 k=0

13



through the change of variables y — y"*! we can re-write ([2.29) as

852 / uo+W
(1 + 1)e T Sioo [06P+06.0+2821200) J, 1 (5, o))

852 2 o
= [ T (1 Rl + oG]+ O +8%)

6%+ |y —al?)
852 862 1 2n+3
:87T—/ —+/ — — _Re[2¢.Fy(y) + [ca?Ga(y)] + O(83|a| 7T + 6771 ). (2.36
om0 W T 50 G2 g —al)? [ (y) + [cal"Ga(y)] + O(67|al )- (2.36)

Since [a| < § and F' is an holomorphic function in By (a) C B,(0), we can expand F, in a power series

around y = a:

(k)
Ry = 3 @y oy (237
k=0
and then get
2/3/)(0) 3+ |y —aP)y RelcaFu(y)] = 2/3}22((1) &y aP? Relca Fy ()] + O(82|ca))
= 167 Re[cq Fa(a)] + O(6%|cal) (2.38)

in view of .
/ (y—a) —0
By (a) (6% + |y —al?)?

for all integer k¥ > 1. The map ReG, is just Otk (B,(0)) and can be expanded up to second order in
y=a:

2(n+2)

Re G, (y) = ReGyla) + (VReGyla),y —a) + %(D2 ReGu(a)ly—a),y —a) + O(ly —a| »+T )  (2.39)

for y € B (a), yielding to

el [ ——ﬁﬁ——maw>wﬁj Y ReGuy) + O0eal?)
oo @y =apy RO =l | T app »

862
3 ly = al* + O(8%|cal?)

|Ca|
— 87|ca|? Re Ga(a) + Y ARe G, (a) B
Bo(a) (02 + ]y —al?)?

1
= 87|ca|? Re Gy(a) + 47|ca|*ARe Go(a)d? log < + O(6%|cal?) (2.40)

4]

in view of

/ _ ly—a)p / _ (y—a) :/ (y—ah(y—a) _,
By (a) (62 + [y — al?)? +|y—a| By (a) 52+|y—a| )2 By (a) (6% + |y —al?)?

[ S _ y-a} =y ly — af?

By (a) (62 + [y — al?)? +|y—a| By (a) 52+|y—a|) 2 By (a) (6% + [y —al?)?

14



By inserting (2.38)), (240) into (236) we get that

86° / uo+W
s n e
(n -+ 1)t iz |9 H080t20200) Jo s, o))

2
1
=81 — / 8¥;4 + 167 Re[ca Fy(a)] + 87|ca|® Re Gy (a) + 47|ca|* A Re Gy (a)6* log <

R2\ B, (0) |y )

2n+3

+O(6%|al 75T + 6%|ca| + 6777 ). (2.41)

By Lemma 22| (2.41)) and Lemma [A] we get that

62

/ euo-H/V =14+ 2Re[CaFa(a)] —+ |Ca|2Re Ga(a)
Q

7(n + 1)l Zino |4k +05.0+287 o (0)
Lo 2 1 2 2 |1 o 2n+3
+=|ca|*ARe Gy(a)d? log = + D, + O(6%|a|™+T + §%|cq| + 0 F7), (2.42)
2 0 n+1
where
D, = / euo+87r >h=o G(Z,“k)_% 2 k=0 ax|? _ / —n + 1_ (243)
\o~1(B,(0)) r2\B,©0) Y

In view of [Z4) and [, [o’(z)[?eYse = 8x(n+ 1) + O(6?), by 228) and ([Z42) we have that

AW 4 amy (1
A (fﬂeww ‘@)

e2 Refcaz"T140(82|2|+5%)
1

= |0/ (2)|?eYse |flﬂ'N

1
+ — o’ (2)[2eVse — 471']\7)
9] (

85267% ZZ:O ‘ak‘27@6,a7252fa(0) fQ e’u.oJrW Q

= [o/(z) eV

e2 Relce 2™t
-1
14 2Re[coFu(a)] + |cal> Re Go(a) + 3|ca?ARe Gq(a)d? log 3 + 25D,

1

0 (2) 75 O(8% 2] + 8%]a| 77 + 8% Jca| +6757) + O(8)

as 0 — 0, yielding to the validity of (2:26]).

Introducing the notation B(w) = 167N ( [, e**0t2¥)( [, e“ot*)~2, we can write the following expansion

167N [, e2uot2W _ B(W) + O(EBXW)). (2.44)

(fiy €vot™ + \/(fg w0t W)2 _ 167 Ne? [ 2uot2W)?2 4

Arguing as for ([2.42]), the change of variables y = o(z) yields to

4+i
647" /62u0+2W:5%ﬂ/ |07 (2)|2e2Us.a +OUeal 21" 146%) | 058+
47 n

e@Zk:olaklz‘iQ@S,a Q o=1(B,(0))

54+%+1|y|"27$1 1 2
= 64(n + 1)?|ag| 7T / —_ (1 + O(|cally| + 6% + |y|n—+1)) + O(6*t7)
B,(0) (6% + |y —al?)*

54+"L+1|y+a|"2_f1

= 64(n+ 1P 7 [

14 0(8% + |y| ™7 + |a|757)) + O(5*751) (245
e (14082 + |y + [a7T)) + O(6*77) (2.45)
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in view of

|0 (2)% = (n + 1)%|aa| 2|22 (1 + O(12])) = (n + 1)?|aa] "7 [0 (2)[ 757 (1 + O(lo (2)| 7)),

where «, is given by (231)). We have that

sit et F=a + ol
[, o e = L (e 0
By (62 +1[y[*) r2 (1+[y]?)

if |a| = O(9) and

sy +alntT /la T/ 1 [ 5
=(— |14+ O — +6°
/;3p<o> (0% + [y|?)* (5) re (14 [yl?) (Ial

if |a| >> 0, where in the latter we have used the inequality:

ly+ ol #5 =l + O(lal 7y + [y 7).

Setting

ly + &7
LGy =00
E,s =

)

%(%)T if |a| >> o,

by (2Z43]) we get that

6454t 7T
6‘% Sh—olak|?+205 4

/ 210 2W = 64(n + 1) o | "7 (1 4+ 0(1)) Eas.
Q

Since by a combination of (Z42) and (2.48) for B(W) we have that

Bw) =320 0 (1 o(1) B

Ty T
in view of (24)), by 244) and [2:49) we get that
167N [, e2uo+2W

(f €0t + \/(fﬂ w0t W)2 _ 167 Ne? [ e2uo+2W)? ==

(n+1)2

where 7 is given by ([225). As we have already seen in deriving (2:26)), by ([2.28]) we have that

euo-‘rW

AN = |0’ (2)]%e" [1+ O(|eal[2]"™*1) + O(|callal + 6| log 6])] ,

fQ euo +W

and in a similar way one can show that

64(n +1)3 2 e2uot2W

2 Zug+2W
GnFT Jo et

16

=82 |aa| "7 (1 + 0(1) + O(1)) Eays,

|| ™7 s Bas = 0! (2)[ 1€V [1 4 O(Jeal ") + 0(1)]

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)



in view of (Z48). In conclusion, by ([250)-(2.52) we have for the e2—term in R that

647T2N2€2f962u0+2w ( eug-‘,—W 62u0+2W )

(fq ewotW + \/(fQ euotW)2 — 16w Ne? [, e2uo+2W)2 \Jo evotW [ e2uot2W

=o' (2)[Pene [(n;”&,a —&lo’(2)PPe” = | [L+ O(lcallz]™™ + 1) +o(1)]

7la |n+1(5

in view of (Z4]), yielding to the validity of (Z2Z1). This completes the proof. L]
Let us introduce the following weighted norm

(52+IU() I) 2

Il = s
weh 01(o'(2)7 + 07)

|h(2)] (2.53)

for any h € L*°(Q2), where 0 < v < 1 is a small fixed constant. We have that

Corollary 2.4. There exist positive constants &g, €9 and Cy such that
IRl < Co (Sleal + 627 + 6757107 + [eallal F5F + 1+ ) (2.54)

for any § € (0,60) and € € (0, ¢p), where n is given by (225).
Proof: Since
e2 Re[cq 2™ 1]

14 2Re[coFu(a)] + |cal? Re Ga(a) + §|ca?AReGq(a)d?log § + 25D,

e2 Relcq 2™t _ 1

Tt 2RelcoFu(a)] + |ca? Re Ga(a) + 3|ca2ARe Gq(a)é? log + + j—jlpa
+0(Jeal?lal? + 6%[1og d]) = 2 Re[ca (2" — aga)] + O(leal*[2[*"+2 + |eal|af* + 62| log 8])

= 2Re[aaca((2) — a)] + O(lcal|2["*? + |callal* + 67| log 8]),

— 2Re[ca Fy(a)]

by Theorem 2.3 we deduce that
R =o' (2)]?e"2 0 (|callo(2) — a| + |cal[2[" 2 + |callal? + 6% [log 6] + 1+ 1?) + €3]0’ (2)|*e*V52 (1 + O(n)) + O(8?)

as § — 0, where 7 is given in ([2.28). In view of the estimates |z| = O(|U(z)|ﬁ) and |o’(2)|? = O(|U(Z)|"2%)
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near 0, by setting y = o(z) in 071 (B,(0)) we get that
52

IRl = O| suwp — 1T

veB,(0) (6% + |y —al?)'™2

254—y iy 52-7(52 o 12\14/2
+O0 [ sup 26 £l =1 +O0m] ) +O0( sup ( ;Iy Cin) +0(5*77)
veB,(0) (0% + [y —al?)°~2 yEB,(0) (Jy[7+T + 67+7)

[|ca||y —a| + |eally| 7T+ [eallal? + 6%|log 8| + 1 + ﬂ)

1 n n n
= O sw e oleallyl + 85 eal Iy + [cal|alFFE + 02 10g 6] + 1+ 7]
y€Ba,5(0) (14 [yl?) 72

25-2(§7 gy | T T
vo ap SN
YEBa,/5(0) (1+[y[?)*~2

1+ 0(?7)])

57%1*’7 52t 24y 52+ |y|2 Y
+O< (847 + [+ + 847y )

sup e
y€B,/5(0) (|y|"+1 + 1)

) +0(5*77)
= 0 (Oleal + 27+ 6T a0 4 el 4 )

as claimed. n

3 The reduced equations

As we will discuss precisely in the next section, it will be crucial to study the system fQ RPZy =0 and
JoRPZ =0, where PZy and PZ are the unique solutions with zero average of APZy = AZy — |_§12\ Jo AZy

and APZ = AZ — |_§12\ fQ AZ in Q. Here, the functions Zy and Z are defined as follows:

02 —lo(z) — af?

0(c(z) —a
:—52+|U(z)—a|2 and Z(z) = (o(z) )

Z =\
O(Z) 52+|0_(2) _a|27

and are (not doubly-periodic) solutions of —A¢ = |0/ (2)[?eYsa:v¢ in Q. Through the changes of variable

y = o(z) and y — ¥5* notice that

L
AZy — —/ o' (2)[2eVs e Zy + O(6° :—8n+152/ oz all L o
Q 0 o=1(B,(0)) (=)l 0 @ ( ) B,(0) (02 + |y —al?)? %
1- |3J|2 2 2
= —8n+1/ —=— 4+ 0(6*)=0() 3.1
( ) B, 5(0) (1+ |y|2)3 ( ) ( ) ( )
and
AZ = —/ o' (2)|?eYsee Z + 083 :—8n—|—153/ N A +0(83
/ 7 @) =it [+ 0
Yy 3 3
= —8n+1/ ——— +0(6°) =0(5 3.2
( ) 5, 0y (LF 9 (67) (67) (3.2)
in view of

/ﬂ_o /Lzo
we (LHWPP 0 Jee (T )
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By BI)-(B2) the following expansions, useful in the sequel, are easily deduced:

Zo+0(2), Pz=7-—2 [ z400) (3.3)

PZy = Zo — i
Q

@Q

in C(Q), uniformly in |a| < p and o € B,..

Notice that up to now there is no relation between a and §. However, as we will show in Remarks and
B3, the range |a| >> 4 is not compatible with solving simultaneously [, RPZy = 0 and [, RPZ = 0.
Hence, we shall restrict our attention to the case a = O(d) in next sections, so that, we can assume that

n=e25" 7T in @20) and E, s = Jge ‘Zﬁ@fﬁi in ([Z:47). We have that

Proposition 3.1. Assume |a| < Cyd for some Cy > 0. The following expansions do hold as §,n — 0

(ly[? = Dy + &|=+
(14 |yl?)°
+0(52 + 1) + O(6%|ca| + |a| 777 62| log 8| + 12), (3.4)

1
/RPZO = _16w(n+1)|aa|2|ca|2521og5_8w52Da+64(n+1)3|aa|*%+1n/
Q R2

and

2n
N 2 sy
RPZ = 4r(n + 1)6aaca — 64(n + 1)%| o] niln/ LA i 4
/n g2 (1+[y[?)°

where n = 2577 and ¢, = Ca,o05 O, Do are given by (2.10), (2310, (243), respectively.

Proof: Through the changes of variable y = ¢(z) in 7 (B,(0)), y = y"*" and y — %5* we get that

O (lo'(2)]2 +87F) (|0 (2)2 + 671) .
/ ( _/ (B,(0)) ( +0(57) (3.6)

o (02 + |o(2) —af?)'*2 0% +|o(z) — al?)'*2

O (Jy[>r + 87F1) / 5V (1 4 6% |y| )
¢ / ;] +o0@N=0 2 o
B 1 0 (24t —af?) ) B,0) (824 |y —af?)'*2 (97)

pn+

1+ |y + &7
-0 / |y—§|1+7 +O©) =0(1)
B,,5(0) (1+ [y[?)'*2

in view of .
A= ey
1 = ylon TN 0.
8,50 L+ [y = Jpi r2 (14 [y[2)'+>

Hence, by Corollary 2.4l we get that

+ 0(8|ca| + 8lal + 1+ 6%) + O(n?), (3.5)

1R =0 (3lcal + 827+ 578 TP el 402 (37)
By (B3) and B.1) we deduce that

/szo - / R(Zo+1) + 0(62) + 05 + n25?) (3.8)
Q Q
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in view of fQ R = 0. Since by Holder inequality

262 2n 52
Zo+1 / —+052_0</ yw7)+052
/Q 2o +1l o-1(B,(0)) 0%+ |o(2) — af? % B,(0) ol 02+ |y —al? e
0(5"‘1“/ %> +0(6%)
B,(0) y|"+T |y — a|+T

1 1 e 1 e 9 1
= Ol 6 / ETESY / — T + 0(5 ) = 0(5"+1),
B,(0) |y|»FT B,(0) |y — a| »FT

by (226)) we have that

/(Z 1) {AW 4 N< et 1 )] (3.9)
+ + 47N | — = :
@ Jaew™ 9]
e2 Re[cq 2™
- / o’ (2)?e"> (Zo + 1) 1 Ty L
o= 1(B,(0)) 1+ 2Re[caFu(a)] + [cal? Re Gq(a) + 5|ca?ARe Go(a)d?log 5 + g
+0(6%|cql) + 0(6°)
16(n + 1)254|y|>" o2 Relea(q™ (1)"*]
:/ 2 i 23 1 1 52 -1
B o (0 (02 + [yt —al?)3 | 1+ 2Refca Fu(a)] + |cal? Re Go(a) + 5lca|?ARe Gy (a)d? log 5 + ~5Da

pn+1

+0(62|ca]) + 0(6?%).

We have that the expansion (2.34) still holds in this context, where the notation ... stands for terms that
give no contribution in the integral term of (9) in view of the analogous of formula ([2Z33)):

ly|™y"
=0 3.10
/B ) (024 |yt —al?)3 (3.10)

pn+1

for all m > 0 and integer k ¢ (n + 1)N. Hence, through the changes of variables y — y™*?

the symmetries we have that

/ 16(n+ 120" 9> o refeu(q- () _ / 16(n + 1)8*
B 4 (0) (62 + [y"+! —al?)3 B,0) (6 + |y —al?)?
=

and y — %52, by

Re[l + 2CaFa(y) + |Ca|2Ga(y)]

16(n—|— 1)54 |: 2 1 9 9 2(n+2)
= ————— |1+ 2Re[c Fy(a)] + |ca|* ReGo(a) + =|ca|"AReGy(a)ly — al” + O(ly — a|] ™»+1
Lo @y [caFa(@)] + leal? Re Gala) + glea] @y~ af? +O(ly — a5

2(n+2)

+0(6*) = 8n(n+1) [1 + 2Relca Fu(a)] + |ca|? Re Gyla) + %|Ca|2A Re Gy(a)d?| + O =1 ) (3.11)

in view of ([Z37), (Z39) and

/ dy :/ ly[? ay="
re (L4 yl?)?  Jre (T+[y[?)? 2’
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where F, and G, are given by (235). By B.I1]) we can re-write (B.9)) as

e

uo+W 1
Zo+1 [AW+47TN (7__”
/Q( 0 ) eru0+W Q]

1+ 2Re[ca Fy o|?ReGq 1lca?ARe Go(a)s?
= 87‘((” + 1) + e[c (a)] + |c | ° 1 (a) + 4|C | ¢ (al) 52 - + 0(52|Ca|)
1+ 2ReleaFo(a)] + |cal? Re Ga(a) + 3lca?ARe Go(a)d? log 5 + 775 Da
1 1
+0(6%) = =167 (n + 1)|aa|*|ca|?0? log 5 8762 Dy + O(6%|cy| + |a|7+1 52| log 6]) + o(d?) (3.12)

in view of ARe G,(a) = 4|, | + O(|a|ﬁ). By [227)) we also deduce that
/ 64m2 N2¢2 [ ¢2uot2W
Q (f, et W + \/(fsz w0t W)2 _ 167 Ne? [, e2uot2W)?

= [ Rz )
o= H(Bs(0))

128(n+ 1)352 54
05477 :ﬁE‘l‘;/ 5= |1+0 callyl +m +o(1
o tlag|momT B0 (6% + 1y —al?)? [ (Ieallyl +m) +o(1)]

&Lyl
—128(n + 1)3€2|ag |~ 7T / 7
5,0) (2 + |y = o)’

euo-‘rW 62u0+2W
(Zo+1) (fg cuotW o 62u0+2W>

8 1 2.2
(n +2 ) 62 Eu, 5 — €2|O'/(Z)|26U6’a
g |71 i

)

[1+ O(leall2"™ + 1) + o(1)]

[1 +O(ly|= +n) + o(l)} +0(8"n)

56 b
= 64(n + 1) |aq| 7120 7 By 5 — 128(n + 1)3e2|aa|—%+1/ % [1+ 0yl +m) +o(1)]
B,0) (6% +[y[*)°
+o(n +6%) + O(n?)

in view of ([2.46]). Since

2 88|y + a|"HT 1 Iy—l-QI"%
sei [ T [k oyl ) +o(1)] = [ 2 o) +0ln)

) (02 +1y?)° z2 (L+yf?)
when |a| = O(§), we then have that
GAT2N262 [ 2u0+2W et +W o2uo+2W
/ Jo (Zo+1) ( utW 2u +2W>
@ (JoerotW + \/(fsz evotW)2 —16mNe? [, e2ot2W)2 Joer Joee

+o(n +6%) 4+ 0(n?) (3.13)

2n
2 Iyl = Dy + §|=+
= 64(n + 1)*|a| niln/
R (1+ [y[?)°

in view of ([Z47). Inserting (B12) and BI3)) into [B:]), we get the validity of (BA).

Remark 3.2. Notice that in the range |a| >> & we find that

o T Do o5 o] 5 (o))

in view of the inequality |y + a|n+1 = |a|™+T 4+ O(|a|n+1 ly| + |y|n+1), so that the main order of [, RPZy in
this range is essentially given by

32 T
—167(n +1)|? |ca|252log5 8162 Dy —TW( n+1)3aq|” n+1n(| |> .
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By B3) and B.1) we deduce that
/RPZ: / RZ 4 o(8|cq| + 6la| +n + 6%) + O(n?9) (3.14)
Q Q

in view of [, R = 0. Since as before

L121 = [ py T e O = O(/B,,m) W ) +00)
0(5"‘1“/ ﬁ) +0(8) = 0(57H),
B,(0) |y| ™7 |y — a|=FT
by ([2:26]) we have that
erotW 1
[ [ e (- 1] o

2Relcaz™ ]
:/ |0 (2)|PeV5e Z - T 1, o
o=1(B,(0)) 1+ 2Ref[coFu(a)] + |cal?* ReGala) + 5|ca|?ARe Go(a)d? log 5 + i Da
+0(8%|eq|) + 0(8?)

/ 8(n + 1)26%|y[2n (y™+1 — a) o2 Relea(a™ (1))
B 1 (0)

(0% + Iy = aP)® 1+ 2ReleaFu(a)] + |cal? Re Gula) + §lcaPAReGa(a)0log T + 25 Dy

pn+1

_ 8(n+1)83(y — a) 2, g
/B (0) (52+|y—a|2)3 +O(5 | a|)+ ((S )

P

8(n+1)28%|y** (y" ' —a) 2Relcq (¢~ (y)) !
Io o) = ey e e
=

+0(8%|ca]) + 0(6?)

- 1+ 2Refco Fu(a)] + |ca|? Re Go(a) + %|ca|2A Re G, (a)d? log% + n‘sjl D,

in view of

/ 8(n+1)0°(y —a) 0
By(a) (6%+y—al?)? '

Since expansion (Z.34)) is still valid in view of ([3.I0), through the changes of variables y — y™**
by the symmetries we have that

/ 8(n+ 1*S Ny (y"*! = a) 2refeatq @)
B 1 (0)
n+1

and y — 4%,

@+ T+ = aP}’

:/ 8(n+1)63(y — a)
B,(0)

(62 + |y — al?)? Re[l + 2¢. Fo(y) + |Ca|2Ga(y)]

8(n +1)83 |:7 o 1, ' , , ; .
— 53 |CaFl(a)ly — al” + Z|ca|* (01 +i02) Re Go(a)|y — al” + O(|cq —a +0(8
/Bm Ty o | Pl = ol + 5leal? (91 +i02) Re Gala)ly — af + Ofleal®ly — of) | + O(&)

=4r(n+1)8 {caF(;(a) + %|ca|2(81 +i02) Re Gy(a)| + O(8%|ca|? + 6°) (3.16)
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in view of (Z37), 2.39) and [, %dy = 3, where I, and G, are given by (Z33)). By (B.I6) we can
re-write (3.15]) as

enotW 1 — 1
Z|AW + 47N | e — — | | =4 1)0 |caF ~|ca|?(01 +i02) Re G,
2w e any (o - g )| = et + 08 [T + Gl 01 + i) Re G|
+0(8|cq| 4+ 0%) = dn(n + 1)d0qe, + o(8|ca| + 6?) (3.17)

in view of F(a) = aq + O(|a|) and (01 +i02) Re Ga(a) = O(lal). As far as the second term of R, by (Z27)
we have that

/ 647T2N262 fQ e2ug+2W ( eU0+W e2u0+2W )
Q

(Jewot™ + \/(fsz evotW)2 — 16w Ne? [, e?uot2W)2 Joert o e

S N O
o1 (By(0))

64(n—|— 1)362 53(y—a)
+053n:ﬁE¢1,/ ———————dy [1 4+ O(|eca||y| + ) + o(1
) | Qg | FHT 7 FT 0 B,0) (02 + 1y —al?)? [ (Ieallyl +mn) + o(1)]

—2 5Ly ™1 (y — a)
—64(n + 1)3e |7 / 4 B © )
B,(0) (02 + [y —al?)

2n
2y
= —64(n+1)%|ay| niln/ wrsit J
Rz (1+y[?)°

8(n + 1)2e2
( L) ——Fas — o’ (z)[2eVse
7T|aa|n+1 On+t

1+ O(|eall2|™ ™ 4+ 1) + o(1)]

[1 +O(ly|= +n) + o(l)} +0(8°n)

+o(n) +O(n) (3.18)

in view of (Z46]) and

5y —a) 3 (y —a)
—dy:/ _ YWD 105 = O(6).
S Tl = 0 Ty a0 = 0
Inserting B.IT) and BI8) into BI4), we get the validity of (B.3). L]

Remark 3.3. Since for |a| >>§ andn > 1

2 &yl =1 (y — a) 2 Oly+aly mm_ (la[\—wE
5"7“/ T s =0 27257”(1):7( )
B,0) (6% + |y —al?) B,0) (0% +1[y[*) 12(n +1)

n view of

Lo Lo Lvier
R (LH[Y12)° e (L [yt Jee (T+[yf?)> 12

and the inequality

n n n n
[y +al ™5 = |a 5 + —Ja| =7 (a7 + @) + O(lal T [y|? + |y 7).
notice that the main order of fQ RPZ, in this range, is essentially given by
— 16 2 2. _2_ T |a| 7%4@@
4 (n + 1)dage, — gwn(n +1)2€25 7 || T (7> 5

Since o is uniformly away from zero, the vanishing of fQ RPZ, which is equivalent to have 25wt (‘%)n%ll ~
®aCaa, is generally not compatible in the range |a| >> § with the vanishing of fQ RPZy in view of Remark
(32, which can take place only if co = 0 (in which case ¢, ~ a). Indeed, the vanishing of [, RPZ and
fQ RPZy in the range |a| >> § implies the contradiction |a|* ~ 62. This explains why we don’t consider the
case |a| >> 0.
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4 Proof of the main results

In the previous section, we have built up an approximating function W = PUs q,,,. We will now look for
solutions w of the form w = W + ¢, where ¢ is a small correcting term. In terms of ¢, problem ([2Z2)) is
equivalent to find a doubly-periodic solution ¢ of

L(¢) = —[R+ N(9)] in Q (4.1)

with [, ¢ = 0. Recalling the notation B(w) = 167N ( [, e*“0t2w)( [, e“+t*)~2  the linear operator L is given

by
L(¢) = Ao+ Ko + (),

where

K = 4xN et tW AnNe*B(W) ( etotW .y o2uo+2W )
Jo et (1—}—\/1—62B(W))2 JoerotW T fg eruot2W
and
o ewotW [ emtWeo 4rNe?B(W) etV -
30) = TN — e - (12 yT=cmmm] TP /Q cHot W g
Jr=epm))’ s
I 8nNe’B(W) ; g0 W /€2uo+2W¢
(1+\/m) (Jo e2uot2 )2 Jo
+ 4w N € DB(W)[¢] ( guot W Ruot2W )
(1++/1T—EBW))2/1—-2B(W) \ JoeuwtW [, e2uot2W
with

B fQ 62u0+2W¢ fQ €u0+W¢
DBW)6) = 2B(W) ( e~ |

The nonlinear term N (¢), which is quadratic in ¢, is given by

uo+W+¢ wo+W ug+W equrW
N(@) = 47N | S P Ll
fQ euo+W+¢ fQ e’u.oJrW fQ euo+W

fQ eu0+W
n 4rNe2B(W + ¢) 4rNe?B(W) 4rNe2DB(W)[¢) “
(I1+y1=eB(W+9¢))? (1++/1-eB(W))? (l—i-\/l—e?B(W))?\/l—e?B(W)
euot+W+é 62(u0+W+¢)
% (fQ euotW+e To 62(u0+W+¢7))
4rNe?B(W) eUotW+o - eto+W - puo+W 5 [ emt g )
(1 + /11— 62B(W))2 Joewot e JoewtW - JqenotW Joerot™ .
4rNe?B(W) e2(uotW+9) e2(uo+W) e2(uo+W) fg 2ot W) g
(i yT=em)” e e e ¢
—€
N 4rNe2DB(W)[¢] < euotW+o euotW e2(uotW+d) N e2(uot+W) )
(1+ \/1 —2B(W))2 \/1 —e2B(W) fQ euo+W+e fQ euo+W fﬂ e2(uo+W+¢) fQ e2(uo+Ww) |-
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Notice that we can re-write () as

~ (¢) - K fQ euOJrW(b T 87TN62B(W) fQ 62(U0+W)¢ B fQ equrWd) |: 6”0+W
NP) = Joe otV (14 V1-eEBW))2\/1 - 2B(W) [, €20t W) Jo etV Ty ewtW
2(uo+W)
TP ~ ) s
_x fpetVo N EB(W) Jp @t W [ ety
Joeo™W (14 /T=E@BW))/1-BW) \ [oe2wtW) [, euwtW ]|~
and L as
L(¢) = Ap + K[ +~(9)], (4.3)
where
+(¢) = _fﬂ equrW(b n EQB(W) fQ e2(qurW)¢ - fﬂ 6“°+W¢
Joe W T (14 /T=EBW)/1—BW) \ Jo oW [oewtW |-

Let us observe that
[ 7= [ L= [ Ny =o

Since the operator L is not invertible, equation L(¢) = —R — N(¢) is not generally solvable. The linear
theory we will develop in Appendix B states that L has a kernel which is almost generated by PZy, PZ and
PZ, yielding to

Proposition 4.1. Let My > 0. There exists n9 > 0 small such that for any 0 < & < ng, |logd|e? < 770671%1,
la| < Moo and h € L>®°(Q) with [, h =0 there is a unique solution ¢, dy € R and d € C to

{ L(¢) = h+ doAPZy + Re[dAPZ]  in Q (1.4)

Jo = [q0APZy = [, ¢APZ = 0.

Moreover, there is a constant C > 0 such that

1
loll <€ (tou ) Bl 1dol +1d] < Cl.

As a consequence, in Appendix C we will show

Proposition 4.2. Let My > 0. There exists n9 > 0 small such that for any 0 < & < ng, |logd|?e? < 7705"%1
and |a| < Moo there is a unique solution ¢ = ¢(,a), dg = do(d,a) € R and d = d(d,a) € C to

{ L(¢) = —[R + N(¢)] + doAPZy + Re[dAPZ] in Q (45)
Jo¢= [, ¢APZy = [, ¢APZ = 0. :
Moreover, the map (8,a) — ¢(6,a) is C* with

[6lloc < C|log o[ R][- (4.6)

The function W + ¢ will be a true solution of equation (Z2) once we adjust 6 and a to have dy(d,a) =
d(0,a) = 0. The crucial point is the following;:
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Lemma 4.3. Let ¢ = ¢(0,a), do = do(d,a) € R and d = d(d,a) € C be the solution of (LI given by
Proposition[{-2, There exists n9 > 0 such that if 0 < 6 <o, |a] <no and

/Q (L(6) + N(6) + R)YPZy = 0, /Q (L(®) + N(6) + R)PZ = 0 (4.7)

do hold, then W + ¢ is a solution of [Z2)), i.e. do(d,a) =d(d,a) =0.
Proof: Since by (33) and || Zo||co + [|Z]|co < 2 there hold

/ APZyPZy = / ANZyPZy = —/ |O'/(Z)|2€U‘5‘GZ0(Z0 + 1) + 0(52)
[¢) Q o~ 1(B,(0))

62 — |y — al? 8
= —16n+1(54/ T 4+ 0(0%) = ——(n+ 1)+ O(s*
( ) B,(0) (52+|y_a|2)4 ( ) 3 ( ) ( )
and
APZPZy = [ AzPZy= - / 10 (2) U5 Z(Zo + 1) + O(5?)
Q Q o=1(B,(0))

_ 16(n+1)55(y—a) 2y _ M ’ ,
= o @ amr HOEI= [ Ty O =00

in view of BI)-B2) and

/;Wd fg/L_/sz
e (L e AT e A+ PP 6

by (3] we rewrite the first of ({1 as

0=dy | APZyPZy+ / Re[dAPZPZy) = —gw(n + 1)do + O(82|do| + 6°|d|).
Q Q

Similarly, the second of ([@.T) gives that

1 - 1 -
0 = do | APZyPZ +/ = [dAPZ + dAPZ| PZ = —/ ~|o’(2) ]2V [dZ +d Z] Z
Q Q2 o-1(B,(0)) 2

2
O(8°|do| + 6|d|) = —4 1&/L O(8°|do| + 6|d
in view of fél APZyPZ = [,APZPZy = O(6%), B2) and B.3). Hence, [@T) can be simply re-written
as do + O(6%|do| + 62|d|) = 0, d + O(6%|dp| + d|d|) = 0. Summing up the two relations, we then obtain
|do| + |d| = 6O(|do| + |d|) which implies dy = d = 0. "

Remark 4.4. Since ¢ is sufficiently small, the system [@T) will be a perturbation of the reduced equations
fQ RPZy,=0, fQ RPZ = 0. The integral coefficient in [B.4) is negative for all §, as we will see in Appendiz
D. Since aqg — g = % #0 and cq — ¢ as a — 0, we can always exclude the case co # 0. Indeed, in such
a case the equation [, R PZy = 0 yields to 257 T ~ 52|1og | as § — 0 by means of B.4) (we are implicitly
assuming 2577 0, which is a natural range for solving the reduced equations through B4)-@B3)). This

is not compatible with [, RPZ =0, which allows at most § = 0(6257%*1) by means of (B3H).
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The last ingredient is an expansion of the system (7)) with the aid of Proposition Bt

Proposition 4.5. Assume ¢y = 0 and |a| < Moo for some My > 0. The following expansions do hold as
0—>0ande—0

T 2 2 Z-1 a|7fT
/(L(¢)+N(¢)+R)PZO = —8752Do+64(n+l)n—ﬁm(o)rn—ﬂe?av—ﬂ/ o 2R
) e (T P)

T0(6% + €257 7)) + O(e*6~ 751 | log |2 + €86~ 71| log 62) (4.8)

and

2n
_ _ n 4+ a|n+1
/(R+L(¢) +N(@®)PZ = 4rnd(Ta+Ta)—64(n+ 1)—3nf15|H(0)|*%+le25*%+1/ w
Q re (1+[y?)
+0(6% + €267 71) + O(e*6 711 | log 8]% + €25~ 71| log 6]?), (4.9)
where Dy and T, T are defined in (LI0) and Lemma[A.3, respectively.

Proof: First, note that from the assumptions and ([254)), we find that ||R|. = O(6*77 + n + n?), where
1= €26~ 71, Hence, since |(¢)] = O((1 +1)|[¢lo0) in view of @ZJ), by @F), BI), (BIW) and (T3) we

have that
[@+ro+ x5z = [ reze+o(an|E(Pzo+ o [ 70)] 161w+ 62 ) 410)
Q Q Q *
=/ RPZy+0(6* +n) + O(n* + n*)

and

[@+z@+nenrz ~ [ RPZ+0((1+77)Hi(PZ+ﬁ / Z)\L||¢||oo+||¢||io) (4.11)

/ RPZ +0(6% +n) + O(n* +n*)
Q

in view of PZy = O(1) and PZ = O(1), where L(¢) = A¢ + K¢. Since by Lemma A2 H(0)c, = T'a + Ta +
o(Jal) as @ — 0 in view of ¢y = 0, the desired expansions ([A8])-([3]) follow by a combination of (B.4)-(3H)
and ([@I0)-@II). We have used that ag — ag = % as a — 0 in view of ([2I0), where a, is given by
@31), and D, — Dg as a — 0, where D,, is given by (2.43)). L]

Thanks to ([£J)-([9), the aim is to find (6(¢), a(e)) so that (@1 does hold. To simplify the notations, we

denote

po(d,a,¢) = /Q<L<¢> CN@)+RIPZe p(6ac) = / (L(#) + N(6) + R)PZ,

Q
and ({1 reduces to find a solution of

900(6(6)7 a(6)7 6) = 90(5(6)7 a(e)v 6) =0 (4'12)

for € small. We are now ready to prove our first main result, which clearly implies the validity of Theorem
1] with m = 1.
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Theorem 4.6. Let Ho = -2, where H is given in (Z8), be a meromorphic function in Q with |Ho(2)|? =

euo 8T (DG 0) (hich exists in view of @A) and is unique up to rotations), and oo(z) = — ([~ Ho(w)dw)~?

Assume that o
d" A

and for some small p > 0

Dy = 1 / puo+8m(n+1)G(z,0) _/ nro +41 <0. (4.14)
T [Javeg (B, (0)) R2\B,(0) |l
If the “non-degeneracy condition”
n(2n + 3)
I # |1+ 222D 415
i [+ 2223 p, (4.15)

does hold, where I and Y are given in LemmalA.3, for € > 0 small there exist a(e), 6(e) > 0 small so that
We = PUs(c) a(e),00() T P((€), al€)) does solve [2.2) with

eUotwe 6472 N2%¢ 2f e2uot2we < eUotTwe e2uo+2we )
T twe 2ug+2
Jo et fsz euotwe 4 \/ Jo evotwe)2 —16mNe? [, e2uot2we)2 Joeroree - Jperorae

—8n(n+1)d

4T N

in the sense of measures as € — 0.

Remark 4.7. For simplicity, we are considering the case p = 0 in Theorem [£.6, which however is still
true for p # 0 by simply replacing in the statement H, Ho and corresponding quantities with HP, H{ and
corresponding quantities at p, where the latter have been defined in Remark[2.1l

Proof: Since the equation (6, a,€) = 0 naturally requires §2 ~ 2577 in view of [@3), we make the

following change of variables: § = [%] ﬁu and ¢ = §. The system (I2) is equivalent to find zeroes

of

which has the expansion T'c (1, ¢) = To(t, () +0(1) as € — 07, uniformly for u in compact subsets of (0, +00),
in view of ([@8)-@3), where the map I'g : R x C — R x C is defined as

8(n+1)* [ (lyP=Dly+¢ _ 16(n+ 1) [ |y+(|Fg
To(u, Q) = | wDow” / T+ — / .
o(1:0) ( T E S AHPP e S N TR

We need to exhibit “stable” zeroes of Iy in (0,400) x C, which will persist under L>°—small perturbations
yielding to zeroes of T'. as required. The easiest case is given by the point (po,0), that solves Iy = 0 for

Ho = (M) 25 > 0 in view of the assumption (£I4) and (see (D.7)

TFD[)
2 2n
— 1) |y|7meT
e [ WEUSE
= (L+[yP?)°
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Regarding I'y as a map from R? into R? and setting I’ = I'y + i[9, T = Y + iYXYo, we have that

2(7?:12)7TD0/L0 0 0
DTo(po,0) = 0 I+ 7T+ %Do Ty —Ty
0 o+ T FI_TI_%DO

in view of (D7) and
2n n
[yl =T /°° P AT
———dy=m ———dp=mI"".
/Rz (1 +1yl*)? o (1+p)° ’

2(n+2)
+1

Since
n(2n + 3)

det D].—‘Q(/,LO, O) = nt+1

Dy

2
7TDO/,LO <|F|2—’T+ ) 750
in view of assumption (IH]), the point (ug,0) is an isolated zero of Ty with non-trivial local index. Since
DT'o(po,0) is an invertible matrix, there exists v > 0 small so that |DI'g(u0,0)(p — 1o, ¢)| > v|(p — 1o, Q)|
By a Taylor expansion of I'y we can find 7y > 0 small so that

ICe(, Q)| = [To(p, ) 4 0(1) = v (1 — po, Q)| + O (1 — p0)? + I€1?) + 0(1) = =|(1r = 1o, ¢

NN

for all (u,¢) € 9B, (uo,0) and all » < rg, for € sufficiently small depending on r. Then, the map I'. has in
By, (10, 0) well-defined degree for all e small, and it then coincides with the local index of T'g at (u0,0). In
this way, the map T has a zero of the form (puc, () with ue. — po and || — 0 as € — 0. Therefore, we have

solved [I2) for d(e) = [%]%ﬂue and a(e) = d(e)¢, and the corresponding w, does solve ([2.2) and

satisfy the required concentration property as stated in Theorem n

Remark 4.8. With some extra work, it is rather standard to see that (&) does hold in a C*—sense. For ¢
in a bounded set, by IFT we can find ¢ > 0 small so that the first equation in T'¢(u, ) = 0 can be solved by
(e, €), depending continuously in ¢, so that

8(n +1)3 2 )y 4 o2 | 2
(e, ¢) = p(Q) :—( (7TD0> /R2 (ly (1+>||Z|2)§| )

2n
as € = 0. In Appendiz D it is proved that fR2 Waﬂ—;’rg){y“ < 0 for all ¢ € C, yielding to u(¢) > 0 when

Dy < 0. Plugging u(e, ¢) into the second equation in T'c(p,¢) = 0 we are reduced to find a “stable” zero of

/ (Jy)> — D]y + ¢|7
v (Lt [yP)

(T¢+10) —2my [ LT

Notice that Y¢ +TC acts in real notation as the multiplication for the matrix

B Re(T'+7) Im(YT-T)
A= < “Tm(T'+7T) Re(Y -T) > :

Since by Appendiz D we have that

2n_
/ (ly> = Dy + ¢[7
R2

+ (|7
T = [ S = e
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we can re-write the above equation as A = %ﬂwc Letting (A1, e1) be an eigen-pair of A with |e1| = 1,
we can find a solution (o = |(pler as soon as |(y| # O does solve %&I%D = A1. Since by Appendiz D

we know that f < 0 < g, we can find solutions (e, Cc) of Te(p,¢) = 0 with (. bifurcating from (o # 0 as
soon as one of the eigenvalues of A positive and belongs to 2Doq(O +00). In particular, by (D.7)-(D.8) and

(DI0)-(D.I10) we have that

o) __@nt3@ntl)  gld) L

f(0) 4n+1) F(Ch 356

| Do, MU)OD

and the condition above is fullfilled if one of the eigenvalues of A lies in (-2 CTCES))

178

5 Examples and comments

In this section, we will discuss the validity of (EI3)-(@I3) by providing some examples. Recall that in
Theorem .6 we were implicitly assuming that {p1,...,pn} C Q and denoting for simplicity the concentration
point p as 0. The assumption {p1,...,pn} C Q simplifies the global construction in Q of H but EI3)-
(I3 just require the local existence for such H at 0 as well as for oy and H*. In this respect, the
only relevant assumption is that the concentration point lies in €2, and so we will provide examples with
0€ {p1,...,pn}+ C . To be more precise, let us explain the general strategy we will adopt below. Since
we are in a doubly-periodic setting, the configuration of the vortex points has to be periodic in Q: for all
j=1,...,N the points (p; +w1Z+wsZ)NQ belong to {p1,...,Pn} and have all the same multiplicity. Then,
we can find J C {1,..., N} so that the points {p; : j € J} are all non-zero, distinct modulo w1Z + woZ
and ({p;: j € J}+wiZ+wZ) NQ = {P1,...,pn} \ {0}. Take now a translation vector 7 € Q2 so that
{Pr+7,...,D8 + 7} NI =0, or equivalently ({p1,...,Dn} + 7 +w1Z + we2Z) N O = (). Then, it follows
that (5 + 7 + w1Z + weZ) N is composed by a single point p;, for all j = 1,..., N. The idea is to apply
Theorem .6, as formulated in Remark 7] to the translated vortex configuration {r}U{p; : j € J} C Q with
7 as concentration point. The validity of (£I3)-(@I3) in the translated situation will follow by appropriate
assumptions on {p1,...,Pn}-

Before stating our first result, let us introduce the notion of even vortex configuration: —p; € {p1,...,pn}+
w1Z+w»Z with the same multiplicity of p;, for all j = 1,..., N. In the periodic case, notice that {p, : j € J}
is still an even configuration. The validity of ([@I3)) is discussed in the following:

Proposition 5.1. Assume n is even and the periodic vortex configuration is even with 0 € {p1,...,pn}-
Let H™ be the function corresponding to p = T and remaining vortex points {p; : j € J} C Q, as given in
Remark[21l Then, there holds

d*HT

dzk (r) =0
for all odd number k.
Proof: Since —Q) = Q and the periodic vortex configuration {p1,...,pn} is even, we have that G(z),
H(z) and e 7 25es "G(=Pi) are even functions in view of G(z,p) = G(z — p,0). So, it follows that

A H(E=r)=dmy e,y G0y +7) — pAn(nd2)H(z=m) =473 e, miG(=Pi) takes the same value at 4z + 7 for all
z € 1. The function H7 satisfies |H"|(z+7) = |H"|(—z+ 1) for all z € 2, and then HT(Z—FT) HT(—z+7)
for all z since H7 is an holomorphic function. By differentiating k—times at 7, it yields to d H (1) = 0 when
k is odd. (]

The discussion of (£I4) is more interesting and will make use of the Weierstrass elliptic function ¢ to
represent Dy in case of an even periodic vortex configuration. Furthermore, when €2 is a rectangle, the
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points p;’s are half-periods and all the multiplicities are even numbers, by some ideas in [9] we will show that
assumption (.I4) holds if and only if %* is an odd number, where n3 is the multiplicity of the half-period
@142 Due to the presence of high order derivatives (2(n + 1)th order) in ([@IH), we will verify the validity
of the “non-degeneracy” condition in the simplest case n = ng = 2 and 2 a square torus. As we will see, the
validity of (413 is just a computational matter which could be carried out in very generality for each case
of interest.

We have the following representation formula:

Proposition 5.2. Assume that the periodic vortex configuration is even with 0 € {p1,...,pn}, and n; is
even when p; € {4, %2, %} Let D§ be the coefficient corresponding to p = T and remaining vortex
points {pj : j € J} CQ, as given in Theorem[{.0. Then, for Tsmall we have that D is given by (BT, and

does not depend on T.

Proof: The Weierstrass elliptic function

1 1 1
plz) = 22 + (n,m)g(0,0) <(2 + w1 +mws)?  (nwy + mng)Q)

is a doubly-periodic meromorphic function with a single pole in  at 0 of multiplicity 2. Moreover, the only
branching points of o are simple and given by the three half-periods %+, ¢ and % = “’IJQF“’?, ie. p’(%ﬁ) =0
and (%) # 0 for j = 1,2,3. For p € Q\{0}, note that 27[2G(z,0)—G(z,p) —G(z, —p)] is a doubly-periodic
harmonic function in 2 with a singular behavior —2log |z| at z = 0. Moreover, it behaves like log |z — p| at

zh:p and log |z + p| at z = —p when p # %, 22 22 and like 2log |z — p| if p € {4, %2, %2 }. Thus, we have
that

27[2G(2,0) — G(2,p) — G(z,—p)] = log[p(z) — p(p)| + const.
no matter p is an half-period or not, in view of p(p) = p(—p), ¢'(p) = —p'(—p) # 0if p # G, %, and

@ (p) =0, p"(p) # 0if p € {5, 5,4 }. Since the periodic vortex configuration is even, take I as the

minimal subset of J so that ({px, —pr: k €I} +wiZ +wiZ)N{p;: j€ J}={p;: j € J} and

i = = if py is.an half-period
ny  otherwise.

Letting N =n+ 3, ;n; and ug(z) = —4mnG(z,0) — 4w >, ;n;G(2, p;), assumption (2.4) implies that

jEJS
ug + 87(n + 1)G(2,0) = 47 Y [2G(2,0) — G2, fr) — G(z, —pw)),
kel

yielding to
u T(n z ~ A |2
o t8m(n+1)G(2,0) — oonet ’ H(p(z) — o(pr)) k’ )
kel

The additional assumption that n; is even when p; is an half-period is crucial to have (p(z) — p(p;))™ as a
single-valued function. The function

Ho(2) = X [[(0(z) = pBr))™, Ao = 2T FDHO=2T 250, 1 GO (5.1)
kel

is an elliptic function with a single pole at 0 of zero residue, which satisfies

Ho|? = ewotSm(n+1)G(=.0) (5.2)
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Then

oo(z) = - ( / i Ho<w>dw) oy ( / Lot - p(ﬁmﬁkdw) ) (5.3)

kel
is a well-defined meromorphic function in 2{) which satisfies

1 ’
(ES
oo
Switching now to the translated vortex configuration {7} U {p; : j € J}, let us first notice that the total

multiplicity is still N, and introduce uff = uo(z — 7) = —4mnG(z,7) — 4m ), ;n;G(2,p;). We have that
H](2) = Ho(z — 7) is a meromorphic function in §2 with

2 _ |H0|2(z) _ e”“+8”(n+1)c(’z’0). (54)

|H70' |2 _ eu8+87r(n+l)G(z,‘r)

in view of (&.2)). Since such a function A is unique up to rotations, we can assume that H coincides with
the function H, corresponding to p = 7 and remaining vortex points {p; : j € J} C Q, as given in Theorem
Setting H(z) = 2" ?Ho(2), we also have that

H7(2) = H(z —7) (5.5)

) == ([ Hawyiw) h

with the correct choice of the constant in the integration [ *, we easily deduce that

for all z € Q. Letting

oG (z) = 00(z = 7) (5.6)
for all z € Q in view of (U—lg)'(z) = (L)(z = 7). Since (63)"1(B,(0)) — 7 = (00) "1 (B,(0)) in view of (5.6,

g0

according to ([{LI4]) let us re-write D] as

7Dy = / eu8+8ﬂ'(n+1)G(z,~r)_/ n+1
O\(07)~1(B,(0)) r2\B,(0) Y
_ / euo+87r(n+l)G(z,0)_/ n+1
(Q=m)\(0) 1 (B,(0)) r\B,(0) [Y!
_ / euo+8ﬂ'(n+1)G(z,O)_/ n+1
Q\(00)~1(B,(0) r2\B,0) Y

by the double-periodicity of euo 87 (n+1)G(0) "once we assume for 7 small that (o¢) "1 (B,(0)) C QN (Q—7).
By (B4) and the change of variable z — Uio(z) we get that

1\ 2 1
DLl BT o 5
Q\(0)~1(B,(0) | \ 00 R2\B,(0) |Vl

Area [aio (Q\ UOI(BP(O)))] — (n+1)Area (B (O)) . (5.7)

-
mDy

1
I3

By the Cauchy argument principle the number of pre-images in Q \ o4 1(Bp(0)) through the map 0—10 is

constant for all values in each connected component of C\ (Uio (09) UOB1 (O)) , and the area of each of these
P

components has to be counted in (B.7)) according to the multiplicity of pre-images. n
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Thanks to (B.7)), we can now discuss the validity of (£14).

Proposition 5.3. Let Q2 be a rectangle, and assume that the vortex configuration is the periodic one generated

by {0, %, %, M} with even multiplicities n,n1,ng,ng > 0. Suppose that
n n n n
Stoty =g+l (5.8)

Given D§ as in Propostion[2.2, then Dj < 0 (> 0)when = is odd (even).

Proof: The balance condition (Z4) is satisfied in view of (5.8). Let p1 = %, po = % and p3 = “592 be
the three half-periods. When § is a rectangle, the function p takes real values on 0N and " (p;) > 0 for
ji=1,2, 9" (ps3) < 0. As a consequence, we have that

p(B1) — 0(2), (2) — p(P2), p(£P1 +it) — p(Ps), p(P3) — (P2 +1) > 0 (5.9)
for all z € 9 and t € R. Write o¢(z) in (@3] as

=
3
o

vl
<
—~

g
N~—
|
<
—
b=l

V]
S~—
S~—

vl
<
—
=i
w
S~—

|
<
—~

g
N~—
N~—
o}
IS
g
N———
L

0(2) = (1205 ([ (o) - o)
in view of (B.8]). Since

(_ 1) n+2n2
oo(£p2 + 1)

d

7 = Qo(p(B1) = p(EP2 + )T (p(EP2 + ) = 0(2)) ¥ (p(s) — p(Ep2 + 1) F >0

n+n
in view of (B.9), the function % maps the horizontal sides of 0f) into horizontal segments with same

orientation. In the same way, the vertical sides of dQ are mapped into Vertlcal segments with same/opposite

orientation depending on whether % is an even/odd number. So, T":= (G 1) (09) is still a rectangle with
n+n2

same/opposite orientation and ()T is the right upper/lower corner of 7' depending on whether %2 is an
even/odd number. For p small, we then have that C\ ( (0Q)U OB 1 0 )) has three connected components:

the interior Q' of (—=1)"2 T, B.1(0 (0)\ € and C\ B1(0 B1(0). By Lemmam we have that values in B1(0)\ €,

C\ B:1 ( ) have exactly n + 1, 0 pre-images in Q\ o5 *(B,(0)) through the map Uio, respectively. By (B.7)) we
have that 7D = [k — (n+ 1)]Area()’), where k is the number of pre-images corresponding to values in §'.

+n2

Since p(z) — p(p3) = p”éﬁa) (z — p3)? + O(]z — p3|?) as z — p3, we obtain that

(_1) 714»2712
o0

/

(2) = u(z = p3)" + O(|z — ps|™ ™)

and N N
T (=) z — pg)natl o
( ) _( )~ :/L( 3) —|—O(|Z—p3| 3+2)
O'Q(Z) 0'0(]?3) ng + 1
n3
as z — D3, where p 1= Ao (—%) ’ (1) — p(f’s)]Tl [p(P3) — @(132)]72 > 0. When % is an odd number,
n+mng ntng
(_alo)T;) is the right lower corner of T and the function % maps {z =p3+pe’ |7 <0 <3 0<
p < po} onto a region whose part inside/outside 7T is covered 222 /%3=2 1 1 times, respectively, in view of
3 -2
(ns + 1) < (ng+1)0 < (ng + 1) = (ng + D) + 22—~ 4 7 4 =
2 4 2

33



~ 1 n3—2 /nz—2 . . . . ’ 1 . 1
Hence, near p3 the map 5o covers == / #= 41 times the interior/exterior part of Q' near (7 Since o

covers n + 1 times every values in B% (0) \ @/, there should be n — 22 distinct points z € Q\ o5 ' (B,(0)),

away from p1, P2, D3, so that og(z) = o¢(pPs). Since oj(x) # 0 if & # p1, Pa, P3, it follows that around any

such x 0—10 is a local homeomorphism, and then ULO covers exactly n/n + 1 times the interior/exterior part of
Q' near @. Hence, it follows that & = n and 7Df = —Area(Q)’) < 0. When % is even, in a similar way

we get that k =n + 2 and 7DJ = Area(Q') > 0. L]

Now, to discuss ({15 we further restrict the attention to the case n =ng = 2 to get

Proposition 5.4. Let () be a square of side a, a > 0, and assume that the vortex configuration is the periodic
one generated by {0, %, %, 212} with multiplicities 2,11, n2,2 and (ny,nz) = (2,0) (or viceversa). Then, for

T € Q assumption [@IH) does hold for the vortex configuration {T}U{p;: j€ J} C Q.

Proof: We are restricting the attention to the cases (n1,n2) = (2,0), (0,2) for they are the only possibilities
to have even multiplicities satisfying (5.8) for 2,n1,n2,2. Letting p1 = %, p2 = % and ps = 252 be the
three half-periods, the “non-degeneracy condition” reads as

6 — 28

000 ()30 + 10| £ | Sy o) - g (5.10)

in view of (H7)'(7) = (H™)"'(7) = 0 by Proposition [0.1] where

1 d w—qg (2
)= g[8 Gt =5

Since 0§ (2) = oo(z — 7) by ([B.8), we deduce that ¢f(z) = go(z — 7) and (¢f)™* = 7+ ¢y ', where gy =
Z[Z?L(fl)]%“ is defined out of o( as in Appendix A. Since H"(z) = H(z — 7) in view of (BH), by (BT the
“non-degeneracy condition” (BI0) gets re-written in the original variables as:

l(,T\—1
i G- )W) 0, =)

6m— 28
SO0+ 2fy ) | 0) - T (5.11)
in view of H(0) = Ao (see (BI))), where
1d w — qo(2) 1 ldgy'
- -2 — O L 4nH (2 — b= =—>-(0).
) = iy 2108 2oL e dn = g ()| ©) = S 0)
Since Cf;’,f (0) =0 for all odd k € N, we have that
2 Ao H"(0) , H(4)(0) 4 HO) ) 6 8
@ 3T 2 7 T Tm ¢ a0 ¢ T O
and then
3 4 9H"(0 35 33H"(0 A H'(0
oo(z) = —23—#25—%0(27), qo(z) = —iz—%zg—i-O(zj), q@ H(w) = —gw—i—Jwg—i-O(uﬁ)
Ao 2)\0 )‘8 2)‘8 33 6
as z,w — 0. Direct computation shows that by = w and
2 20  2by  27ho, . .
fa(z) = T300(2) + 9—22 + 73 - TO(H V() — 4mbs(H*)'(2)
H(4)(O) H(G)(O) 3 27‘()\0 *\/1/ 27 " *\/ 5
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as z — 0. Since then

(4) T T (6) T e
500y = PO 20 o o) oy o), 510) = Pl ET0 0 0)- 2o o)) 0 0),

condition (G.IT)) is equivalent to

" (4) (6) s TG
‘H (0)17'2[ (O) + )‘07_5[40(0) _ 27_‘_(7_[//(0))2(1_[*)//(0) _ %H”(O)(H*)M) (O) _ %(H*)(ﬁ) (0)

™ 28
EW”(O)F - gDO :

4

By the explicit expression (] of Ho we have that

H(z) = Aoz (p(2) — p(p1))(9(2) — p(P3)).

Replacing H with )\ﬂo, we can assume \g = 1 and simply study the stronger condition

2 ©0)| < o) 6.12)

H'(0)HH(0)  HO(0)

1 o~ O (0))* (H*)" (0) — 4xH" (0)(H")D(0) -

1
in view of Proposition and (7). Letting G; = E —— .1 >3, be the Eisenstein series,
(n,m)#(0,0) (neon + muws)!
n,m s

the Laurent expansion of p near 0 simply re-writes as

1 o0
= ;‘FZ (20+1) G2[+22
=1

and then
H(z) = 1= (p(p1) + p(B3))2* + (p(P1)p(Bs) + 6Ga) 2" + (10G6 — 3Gap(p1) — 3Gap(ps)) 2° + O(=®)
as z — 0. Letting e; = p(p;) for j = 1,2,3, recall that
ea<e3<0<e;, e +ex+e3=0, 15G4= —(e1e2+ ere3+eze3), 35Gg = ejeses, (5.13)
with e3 = 0 if and only if Q is a square (see [I]). By the expansion of H and (&I3]), we deduce that
H"(0) = 2e9, HW(0) = 24(ere3 + 6Gy), HO(0) = 720(10G + 3Gaez),
and condition ([.I2) gets re-written as

127 4

(H*)©) (0)’ < e (5.14)

2

‘460(?6 + 84G ey — 24me3(H*)"(0) — 8meq(H* )P (0) — 5

in view of (BI3).

From an explicit formula for the Green’s function (see [I1]) we have that

. 22 iz 1 1 1—e kai+ z kai — z
A =g =Rl Tae T 1z) ~27 18 H 1—e I=el ™

)
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where e(z) = €2™%*, yielding to

Direct, but tedious, computations show that

HY(0) = =+ T TS e 1), (YD) = o 4 2SN O+ 163 4 6 + 1
( )(O)__ﬁ_FW_G_QZ k(A +1),  (HY) (0>_15a4+72 k(Ak + 1)(6A + 6 +1)
k=1 k=1

810 G4m0 o
(H")O(0) = o5 — 2= 3~ Au(h + (120X + 2407% + 15047 + 30Me + 1),
k=1

where \g := ﬁ On a square torus the Green function G(z,0) has an additional symmetry, the invariance
under §—rotations. Therefore, H*(iz) = H*(z) for all z € Q, and then (H*)"(0) = (H*)®)(0) = 0. Since
es = Gg = 0, condition (5.I4) becomes

28 127
Ee% - 87r(H*)(4)(0)‘ < e (5.15)

in view of (BI3) and e; = —ez > 0. From the study of the Weierstrass function g it is known that (see [3])

1 167t & ,
_ - kS 2wikmT
Z (n+mm)* 45 + 3 Z ‘
(n,m)#(0,0) m, k=1

for 7 € C with Im 7 > 0. The choice 7 = ¢ yields to

4 >
4~ _ 42 T 4 3 _—2nkm
156Gy = a =7 + 807 gkilke

in view of (BI3]), which turns (G.I5]) into

4 o0 oo 4 oo
T 4 3 —omkm 4 2 m 4 3p—2mkm
’ 5 112 mz;;lk e 327 ;/\kw +1)(6M7 + 6\, + 1)’ <3m, |5 +807 mzk;k e .(5.16)

Since numerically we can approximately compute

327> " A\ + 1)(6A7 + 6X, +1) & 5,9194  80r* > ke 2™F™ ~ 14,7985,
k=1 m,k=1

we get the validity of (5.16]), or equivalently ([@IH]) for the vortex configuration {7} U {p;: j € J} C Q.
"

As a combination of Propositions 5.1l £.3] and 5.4l we finally get that

Theorem 5.5. Let ) be a square of side a, a > 0, and assume that the vortex configuration is the periodic

one generated by {0, 5, %’, ‘“gm} with multiplicities 2,n1,n2,2 and (n1,n2) = (2,0) (or viceversa). Then,

for T small the assumption of Theorem [{.6] do hold for the slightly translated vortex configuration {—7(1 +
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i), —T(1+i)+ &, —7(1+i)+ %, —7(144) + 2} In particular, for € > 0 small we can find N—condensate
(Ae, dc) so that |p| — 0 in C(Q) and

(F12) — 1271'50 (5 17)
weakly in the sense of measures, as € — 0, where {0, 5, Z;, “"'m} are the zeroes of ¢. with multiplicities

2,n1,n2,2 and (n1,n2) = (2,0) (or mceversa)

As a final remark, observe that for n = 0 Theorem essentially recovers the result in [29] concerning
single-point concentration in any torus € (see also [20]). Notice that n = 0 corresponds to have that the
concentration point 0 is not really a singular point and a more simple approach is possible as in the above-
mentioned papers. By (Z4) the total multiplicity N is 2 produced by two vortex-points p1,ps € Q\ {0}.
Assumption [@I3J) is equivalent to have (logH)’(0) = 0. By the Cauchy-Riemann equations, the last
condition can be just re-written as

V[2Relog #](0) = Vlog |H|*(0) = V[87H + u0](0) = 0.

Since VH(0) = 0 in view of H(z) = H(—z), we have that (£I3]) simply reads as: 0 is a critical point of wy.
As far as (£14), notice that Dy does not depend on p > 0 small for

dy 1 1
euo+8ﬂG<ZvO>—/ W — Avea (B2 (0)\ B2 (0)) —7(5 — 5 ) =0
/aol(Bp(o»\ool(Br(o» B,(0)\B.(0) [¥I* ( ’ ) (’”2 Pz)

for all 0 < r < p, in view of (211 with ¢g = 0. Therefore, Dy can be re-written as

D=L/ grovsncteo) _ [ gg:;gm[/ ii@fﬁ_/ iﬂ
T 1 Ja\ey 1 (B,(0)) R2\ B, (0) ly[* T =01 Jo\e; 1 (B.(0) |2|* R2\ B,.(0) |y*

uo(0)

, notice that

Since o9(2) = £ + 2/\(20) 34+ 0(]2°) and o5 (2) = Moz + O(|2[°) with Ay = et H(O)=
Byyr—cr3(0) C oy (BT( )) C Bagricrz(0) for all 7 > 0 small, for some constant C' > 0. Thus, there holds

’/ eSTr[H(z,O)—H(O,O)]+[u0(z)—u0(0)]_/ 1 eSTr[H(z,O)—H(O,O)]+[u0(z)—u0(0)]
oy (8,0 |21* o

\Bxyr(0) | |4
1
Bygrtcrs (0)\B>\0T or3(0) |Z|

as 7 — 0 in view of V[87H + u](0) = 0, yielding to the same expression for Dy as in [20, 29]:

A5 L8l (20)— H(0,0))+uo (=) —uo 0)] 1
Dy = — lim qe rluotE)muelBl |
m 0 | Jons. () 12[* R2\B,.(0) |Vl

The “non-degeneracy condition” ([@I5]) reads as

’2;$>_@dHWWW\=Kbg”V@>—®dHﬂ%m|#§%,

in view of oo = qo, b1 = Ao, fi1(2) = —dmAo(H*)'(2) + 222 — 002(2) and H'(0) = 0. Setting Hi(z) =
e~ H () (), we have that |H;(2)]? = etot 1= and

(o8 H)'(0) = 4m(H")"(0) = (108 #:)"(0) = 2(Relog )" (0) = (log 14 *)"(0) = (o + =) )
= 1 1040)20(0) — (1) (0) — 260}y 0)]
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in view of (2.6)-([2.7), and the above condition turns into

1 . 2 47T2 1 2 1 2 4:71'2

0 # 16 |(10)z2(0) — (UO)yy(O) - 2Z(u0)wy(0)| - W = 16 ((u0)z2(0) — (UO)yy(O)) + Z(UO)my(O) - W
= i(Au )2(0) — L et D?u (0) — A _ ~Laet D2 (0)
167 4 0 Q2 4 O

In conclusion, when n = 0 the assumptions in Theorem are equivalent to have 0 as a non-degenerate
critical point of ug(z) = —47G(z,p1) — 47G(z,p2) with Dy < 0.

6 A more general result

In this section we deal with the case m > 2 in Theorem [T} For more clearness, let us denote the concentra-
tion points as &, [ = 1,...,m, the remaining points in the vortex set as p;, and by n;,n; the corresponding
multiplicities.

From section 2 recall that H(z) = G(z,0) + 5= log |2| is a smooth function in 20 with AH = |s_11\= and H* is

2
an holomorphic function in 2Q with Re H* = H — 4%‘2 . Up to a translation, we are assuming that p; € Q

forall j =1,..., N, and taking Q close to © so that Q —pj C2Qforall j=1,...,N. Arguing as for (Z0),
the function

m N
H(z) = H(z —p;)"exp | 4w Z(nl +1)H (2= &) — 27TZH*(Z 2)
j=1

j 1=1
m - N - N
Z (g + 1)( 22)&——QZ|pj|2+ﬁZij
2 0] 2P )
is holomorphic in © and satisfies

H(2)|* = (H |2 - §z|2m> exp (uo +8ry (i +1)H (=~ 51))

=1 =1

in view of ([A)). For I =1,...,m the function

V£l
is holomorphic near & and satisfies
|H! (2)|? = exp | 4m(ny 4+ 2)H (2 — &) + 4n Z(nl/ +2)G(z, &) 4#2 n;G(z,p;) | - (6.1)
£l

To be more clear, let us spend few words to compare the case m = 1 and m > 2. When m = 1 notice that
H satisfies [H|? = evotST(n+DH(z)=2nloglzl i view of (7). The function evot8m(n+1)H(z)=2nlog|z| ig 5 gort
of effective potential for [Z.2) at 0, where e“0 27198 12| ig the non-vanishing part of e*0 and e87("+1DH(2) jg
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the self-interaction of the concentration point 0 driven by PUs g s, through (ZI8). When m > 2, (6.1 can
be re-written as

|H! (2)|> = exp | uo + 87(ny + 1)H(z — &) + 8n Z(nl/ + 1)G(z,&) — 2nylog |z — &
VAl

for I = 1,...,m, yielding to an effective potential for (Z.2) at & exhibiting an additional interaction term
ST 2wz (NG EEY) generated by the effect of the concentration points &, I/ # [, through G12).

Setting Ho = (z_gl)nﬁgn’fz_gm)nmﬂ, we now define o as
-1
oo(z) = — / Ho(w)exp | — Z ch(w — &)mH H(w — &)™ T2 dw , (6.2)
=1 £l
where
1 dnlJrlHl

=1

s, M,

O H@) o T e &

guarantee that all the residues of the integrand function in the definition of oy vanish. The presence of the
term ], (w — &)™ 2 is crucial to compute explicitly the ch’s for

ch(w — &))"t H(w — &) = O((w — &) +?)
V£l

has an high-order effect near any other &, I’ # I. By construction oy € M(Q) vanishes only at the &’s with

multiplicity n; + 1 and
_ ni+1 l
g F 8" HA&)
z=&  o0o(z) n+1

and satisfies

05(2)1% = lon() exp [ o+ 87> (i + 1)G (= &) — 23" Re [cixz L (e @)”l’“‘]
=1

=1 11

Under the assumptions of Theorem [[.T] notice that cé =0foralll=1,...,m and

(e

Since each & gives a contribution to the dimension of the kernel for the linearized operator (@3], the
parameters § and a are no longer enough to recover all the degeneracies induced by the ansatz PUs g o,
for 0 € M(Q) a function which vanishes only at the points &, I = 1,...,m, with multiplicity n; + 1. In
our construction, the correct number of parameters to use is 2m + 1, given by m small complex numbers
ai,...,a, and § > 0 small, where the latter gives rise to the concentration parameter §; at &, =1,...,m,
by means of ([GI4). The request that all the §;’s tend to zero with the same rate is necessary as we will
discuss later.

2
— |H0(2)|2 _ e“0+8772211(nl+1)c(27§z)_
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We need to construct an ansatz that looks as PUs, 4,,0,, near each &, for a suitable o,,; which makes the
approximation near £ good enough. In order to localize our previous construction, let us define PUs, o, » as
the solution of

{ —APUs 0,0 = X(|2 = G0’ (2)Pererm — & fo x(12 = &)lo’ (2)Pe”rev in ©
fQ PUél,al,cr = 07

where x is a smooth radial cut-off function so that x = 1 in [-7,7], x = 0 in (—oo0, —2n] U [2n, +00),
0 <n < $min{|§ — & |, dist (&,00Q) : 1,I' =1,...,m, | #'}. The approximating function is then built as

W =" PU, where Uy, a,.0,, and PUs, a, 0, , will be simply denoted by U; and PUL.
=1

Let us now explain how to find the functions o,;, [ =1,..., m. Setting

Bl = {0 holomorphic in Ba, (&) : H_ - 1” = T}
o0 BQn(fl)

forl =1,...,m, LemmalATlstill holds in this context for all ¢ € B, by simply replacing 0, n with &, n; and Q
with B, (&). Then, for allo = (01,...,0m) € By :=B}x---xB™and a = (a1, ..., a,) € C™ with |lalle < p
there exist pointsal, [ =1,...,mand i =0,...,n,so that {z € Bsy(&) : 01(2) = a;} = {{+ab, ..., &+dl,}
for all 1 =1,...,m. Arguing as for 2ZI2)), for I = 1,...,m the function

M () =]G—p)™ [[C—a)™ T ]Iz - & —af)2exp (47T SN H (z—& —dl)

J U'#1 U'#1i=0 I'=11=0

gy

N N
—27TZH*(Z—193 |Q|an/+1 51/—2z)5—ﬁ2|pjl2—|252 — & Za +|Q|Zzpj
i=1 =

'=1

is holomorphic near & and satisfies

nys m Ty
ML) =~ 612 explun + 873 HG: — &~ ) + 57 0 Gles o + o) |Q| TIPS
i=0 U1 i=0 I'=1i=0
in view of (L9]). Setting
! o(2) —a
Ya,,0 (Z) = Fn , Z2E€ B> (&)7
b [Tio(z = & —al) !
and
4 [Ty (& — &)=t grutt (gfzm (2)96.0, (51))2 H . (2) @) (6.4)
a,0 — 1)
’ (ng +1)! dzm A \gl (€096 .4,(2)) HL (&)
the aim is to find a solution 0, = (04,1, .-, 0a,m) € By of the system (I =1,...,m):

z l l m
o) = — / (uny? Mo ol oS el pw =) T] (w— &)™ dw| ., (65)

90701 (w) ('LU gl)nl+2 =1 174U
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where the definition of cflﬁg makes null the residue at & of the integrand function in (6.5). The function oy
will vanish only at & with multiplicity n; + 1 and satisfy

m Ny m Ny
0012 = |oa(z) — ailexp <u0 +87> > Gz & +adl Z S a2 (6.6)
I'=1 =0 l/ 1i=0
-2 Z Re |:szl7o-a (Z _ gl/)nl,+1 H (Z _ §lll)nl//+2:|
r=1 VA
in view of (G.3)).
Since M, = H' and cf,, = cf, for all | = 1,...,m, when a = 0 the system (B5) reduces to m-copies of
62) in each Boy(&§),l=1,...,m, and it is natural to find o, branching off (oo, ..., 09) for a small by IFT.
Let us emphasize that each o4, [ = 1,...,m, is close to oy €’ a crucial property to have Dy defined
Ban (&

in terms of a unique oy (see (ILI0)). Letting go; be the function so that op = qgllJr near &, arguing as in

Lemma [A.2] we have that

Lemma 6.1. Up to take p smaller, there exists a C'—map a € B,(0) — 04 € B, so that o, solves the
system [6.4)-©5). Moreover, the map a € B,(0) — ¢, := ¢, , is C* with

1 gutt I
HE)Bucal = n—l'd—+[ﬂ Oftyal9)] @) (6.7)
2m(ny + 1) 77— d™H!
A ARt e 6.8
(gl) 1Ca |Q|nl' n+1 dzm (gl) ( )
and for j #1
< nj+1 dvtt
Fl] = - — J _ ! 6.9
H(&1)0a, 4 a=0  (ng+ 1)l dzm+l {,H (2) nJ+1( )] (&) (6.9)
- 2m(n; +1)5— d™H!
TH .— - —— J v 6.10
(gl) j a, =0 |Q|n[' nj+1 dan (51)7 ( )
where
1 drtt w — qo(z) 1 d"Mgyy
l 0,1 * —1 1 0,1
= [2log———> +4nH" (2 — 0), b,, — (0
n1(2) (n+ 1)! dwn+1 l Go, (w) — 2 TH (= = 4o ()| (0) Tt ) dwntl ©)
and for j #1
g 1 dn-i—l —1 * —1
fai1(2) = Dl dwn T |~ 2log(z — qp ; (w)) +47H" (2 — go ; (w)) | (0).
Letting n = min{n; : I = 1,...,m}, up to re-ordering, assume that n = ny = -+ = ng, < n; for all
Il=m'+1,...,m, where 1 <m’ < m. The matrix A in Theorem [[.T]is the 2m x 2m—matrix in the form
AYS L AL
A= : : , (6.11)
ARy e TN
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where the 2 x 2-blocks are given by

__2
Reﬂ“'+-T”/+-"ﬁiT$l%> Iﬁ%&ﬂ "ti&_&y] InﬂT”/—IWﬂ
A2§/—112%l/ o HI(E)] T )
2 ’ ’ ’ ’ T nF1
Im[T% + T [l — Y n(iif) Do |7 ()| mFT o]

M (&)
when [ =1,...,m’ and by

AQZ/*l o Re[rll/ + 'rll/] Im[’rll/ _ I\ll']
20-1,21 — Im[l—‘”/ +Tll/] Im[l—‘”/ _ frll’]

when [ = m/ 4+ 1,...,m, with T/ and T given by 6.7), (69) and ©.8), (6.10), respectively, and &y the
Kronecker’s symbol.

Arguing as in Lemma 2.2 for I = 1,...,m we have that

PUJzyazyth = (|Z - &D [U51 ap,op 1Og(8512) +4log |gzlzl,al H
+8w2 5 (xlle = ) = D)log s = & = all + H(: & )| + O+ 202+ O
and
PU =8 < l 2 X('Z - gll) 4
di,a1,00 = T‘—Z G(Zugl + ai) + Os,01,00 + 207 | faror — m +O(é;) (612)

i=0
do hold in C(Q2) and Coc(2\ {&}), respectively, uniformly for |a| < p and o; € BL, where

|o1(2) — ai]*

1
a0 — T T B !
6617 1,01 |Q| ‘/QX(|Z &D 08 (5l2 + |0’l(2) - al|2)2

and f4, 0, is a smooth function in z (with a uniform control in a; and o; of it and its derivatives in z).

Choosing 0y = 0,,; and summing up over I = 1,...,m, by (6.0]) for our approximating function there hold
m ny
W = Us a.0, —log(867) + log|oy]* — Z Z lal' |2 + ©(a, 6) (6.13)
l’ 1i=0
+2Re [dh (= — &) ] (- & "l'”} +0(1 = & Il )+ D0 0GR — &l + 68)
Ul £l =1
and

W= 87TZZIG(Z,§[ +a§)+0<26ﬁ 10g|5l/|)

1=1 i=0 r=1
uniformly in B, (&) and in Q\ U", B, (&), respectively, where

m

el (G/, 6) = 2[651’7‘11’7‘71’ + 512’ fal’7al’ (fl)]

I'=1
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As a consequence, we have that

m

/equrW — E
Q

U'=1

ny +1 1 mnl/—l—l
+ol= )| =7 —— |1+ 0o(1)],
l/BP@ Gy = ar PP (5;,)] 2 g [+ o)

and then near & there holds
6“‘0+W ol 26U5zvalvdz +O(|Z*§l|nl+1)+0(1)

AN —— .
Jo etV 87 Y iy (n + 1)626,2 (1 + o(1))

In order to construct a N—condensate (A, ¢.) which satisfies (0.I7) as ¢ — 0, we look for a solution w. of

m

22) in the form w, = ZPU&,%UZ + ¢, where ¢ is a small remainder term and §; = d;(¢), a; = a;(e) are
=1

suitable small parameters, so that

6u0+w€ 647T2N2€2 fQ 62u0+2w€ ( eungwé eQqur2we )

_l’_ —
Jo ot (fq euotwe + \/(fQ euotwe)2 — 167 Ne? [, e2uot2we)2 erotwe  Jo e2uotAue

47t N

Q

— 87 Z(?’Ll + 1)6&

=1

in the sense of measures as ¢ — 0. Since |o]|2eVsievot — 87(n; + 1)d¢, as §,a; — 0, to have the correct
concentration property we need that

8w Z(m/ +1)6%6;,2 — 4rN
'=1

foralll=1,...,m, and then ;—l, — 1foralll,lI'!’=1,...,m in view of ([LY). It is then natural to introduce

1
just one parameter ¢ and to chose the §;’s as

0 =90 l=1,...,m. (6.14)
We restrict our attention to the case cé =0 for all [ = 1,...,m, which is necessary in our context and is
simply a re-formulation of the assumption that Ho has zero residues at p1,...,pm. As in Theorem LG we
will work in the parameter’s range:
n+1

a; = o(0), 0~ en+2

as € — 0. Since then

IR o P Tl Rk - . :
K 1§52+|!al<z>|_al|z <K, K 'z-gP™ <loj(2)? < Kz - g

in By, (&) for all oy € BL and [ = 1,...,m, where K > 1, the norm (Z.53) can be now simply defined as

2ny
m § (|Z_§l|2nz+5nl+1)

hl|« =su < h(z

for any h € L°°(Q), where 0 < v < 1 is a small fixed constant. In order to simplify notations, we set
Uy =Us.ay.00, ¢, = ¢ O; = 0O5¢,.4,,0, a0d fi = f4, »,- We have that

a,op)
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Lemma 6.2. There exists a constant C' > 0 independent of § such that
|R|. < C6%>7. (6.15)

Proof: We shall sketch the proof of (G.I5]), by following ideas used in the proof of Theorem Through
the change of variable y = 07(2) in o, '(B,(0)), by Lemma B1], (6I3), (6I4) and ¢ =0 for alll = 1,...,m
we find that

2
80 / cuotW — | [2UiHOU==& "+ i el 1467 2—&i] +6%)
1

o T8 ity Tido lal'12+61(a,6) B,(0)) o7 (B,(0)

8 2 2n;+3
—sam+ 1) - [ ST L o(jaf? 4 sal + 55,
R2\ B, (0) |y

where [la]|? = Z |a;|?. Setting Q, = U2 0,71 (B,(0)) we get that
=1

862 u ks 2 m , 8(71[ + 1)52
. /e R ) > Y (51)[87T(m+1)_/ Rt DS
e T 20 i V=11 JQ =1 R2\B,(0) Yy

2n,+3 m n
O(||a||2 + 5||a|| 4 5Tll+1 )} + 852/ et 8T 2%, > ito G(z,&+al) 4 0(54| 10g5| + 52||a||—nlaxl2nl+1)
o\Q

_ i {87r(nl +1) + 8m(ng + 1)62 i Jo (&) —8(n + 1)52/R L}

=1 =1 2\B,(0) |y|4
2 m
+852/Q\Q euot+8T 3o 1 X (ZELJra)_'_O((SZ), AN 1—|——52D +N52 Z(nl+1)fl’(€l)+0(52)
LU=1
in view of (LA)), where D, is given by
D, = / euo 8 XLy iL, Glzfital) Z n +1) / L
O\Q, - R2\ B, (0) yl*
Hence, for |z — &| < n we have that
et tW 1 2 U yrut1 yurt2
AW + 4T N W - ﬁ |0‘l| 112Re |: (Z — fl l H z — fl’ l jl (616)
Q V£l
e 207 ni+2 | 52 2 2
+02 ) ful&) - -~ (nj + 1) fr (&) + O(llalllz = &|™ ™ + %]z = &) + 0(67) | + O(67)
=1 Jlr=1

as § — 0, in view of (L9) and [, xi|o]|?e”t = 8x(n;+1)+O(6?) for all = 1,...,m. For z € Q\ U, B, (&),
we have that

euotW 1 5

On the other hand, arguing as in (Z45]), we have that
4 m’ 3 1 nzi
640 (n+1) ly + a;d—1|»+1 —I—O(éi%ﬂ),

2uo+2W _
A Sr S el P42y 6 /e - AT g / (1 +1y?)?
elal 2a/=1 2ui=1 1% =191 Jo = |aa)l|n+16n+1 R2 Y
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(z=&)m+!

where a,; = lim . Recall that n = min{n; : I = 1,...,m} =ny = -+ = ng, < ny for all
z—&; Ul(z)
Il=m'+1,...,m. Setting
b, 2 (n41)3 / ly + a6~ |7 ’
a,d — 5
g onir Jrz o (T4 [y2)

we have that
4rNe2B(W)

(51— @BN)P?

= 64€2Dy 5 + 0(626_%“),

and there hold
ArNe2B(W) ( etotW e2uo+2W ) o] 26U [1662

— = |gl2eVr | 2

(14 /1—=EBW))2 \ JeuwtW [, e2uot2W ! N

in By(&),l=1,...,m, and

Das — €|oy|?eVt + 0(625%) (6.18)

4rNe2B(W) < euotW e2uot2W

(1+/1- 2B(W))2 B > = O(e%07+) (6.19)

JoertW o JqernotiW
in Q\ U™, B,(&). Therefore, we conclude that || R, = O(6%~7 + |al|* + 625_%) and (615 follows.
n
As mentioned in section 4, when we look for a solution of (2.2]) in the form w = W + ¢, we are led to

study [@I). In order to state the invertibility of the linear operator L in a suitable functional setting, for
l=1,...,m let us introduce the functions:

6% — |oy(z) — ay|?

T2t oz) —al?

§(ou(z) —ar)

Z =
ou(2) 62 + |o1(z) — aq|?

Zl(z)

FAS B2n(€l).

Also, let PZy and PZ; be the unique solutions with zero average of

1 1
APZy = x1AZy — ﬁ/ X1AZoy, APZ; = xiAZ; — ﬁ/ X1AZ;
Q 0

m
where x;(z) := x(|z — &), and set PZy = Z PZy. As in Propositions LTHA2] it is possible to prove:
=1

Proposition 6.3. Let My > 0. There exists ng > 0 small such that for any 0 < & < no, |logd|?e® < noéﬁ
and ||al] < Mod there is a unique solution ¢ = ¢(9,a), dg = do(d,a) € R and d; = di(d,a) € C, I =1,...,m,

to

L(¢) = —[R+ N(¢)] + doAPZo + > Re[diAPZ] in
Ja® = fa6APZi =0 - =0, .m.

Moreover, the map (8,a) — ¢(6,a) is Ct with

[¢lloe < C6°~7|logd]. (6.20)
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The function W + ¢ is a solution of ([2.2)) if we adjust § and a so to have d;(§,a) =0 for all I = 0,1,...,m.
Similarly to Lemma (1.3, we have that

Lemma 6.4. There exists 19 > 0 such that if 0 < 6 < ng, ||la|]| < nod and

/Q(L(¢) + N (@) + R)PZ =0 (6.21)

does hold for alll =0,...,m, then W + ¢ is a solution of 2.2)), i.e. dj(d,a) =0 for alll =0,...,m.

Since there hold the expansions

m

1 1
PZo=Y" [uZa+ 1) - o [alZu+ )| +0@), PZi=xzi- o [ az+0®) 1=1..m
2 o Jo o Jo

in C(Q), arguing as in Proposition @5 by (L) and (6.16)-(6-20) we can deduce the following expansion for
©.21):

dy

Lemma 6.5. Assumech =0 for alll =1,...,m and ||a| < nod. The following expansions do hold as € — 0
s m 21|y + @|mE
/(L(¢)+N(¢)+R)PZ0 — 87D+ 64(n+ 1) W 25w 3 ! (&) *T/ (Il = Dly 2 g'
o - N e
+0(6% + €267 7)) + O(e*6 ™77 | log 6|2 + €25~ 777 | log 6[?)
and
2n
m.o _ . +ﬂ =
/ (R+L(¢p)+ N(¢)PZ, = 4né Z(T”’ay +TWay) — 64(n + 1)3n—++15625_ﬁ|7-[l(§l)|_ﬁx1\4(l)/ W
Q =1 R? Y

+0(6% + €267 751) + O(e*6 711 | log 8|2 + €25~ 71| log 6]?),
where Dy is defined in (LI0) and xar is the characteristic function of the set M = {1,...,m’}.

Finally, arguing as in the proof of Theorem [4.G] we can establish Theorem [[T] thanks to Dg < 0 and the
invertibility of the matrix A.

Let us now discuss some examples with m > 2. As already explained at the beginning of section B we can
consider the case &1, .. .,&y, € Q and p; € Q for all 5. In general, it is very difficult to establish the sign of Dy
as required in (LI0). The key idea is to start from a configuration of the vortex points {p1,...,pn} which
is obtained in a periodic way by a simpler configuration having just one concentration point. In this case,
([CI0) easily follows but Theorem [[1] is not really needed. One can use Theorem to obtain a solution
with such a simpler configuration and then repeat it periodically. We then slightly move some of the vortex
points in order to:

e keep zero residue of the corresponding Hg at each concentration point;
e break down the periodicity of the configuration.

In this way, assumption (LI0) is still valid but Theorem is no longer applicable in the trivial way we
explained above. We now really need to resort to Theorem [[LTl To exhibit some concrete examples, let us
focus for simplicity on the case m = 2 but the general situation can be dealt in the same way. Let 2 be a
rectangle generated by w; = a and wy = ib, a,b > 0, and let p1, p2, p3 be the three half-periods. Assume that
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the vortex set is {—&, 5,0, p1, p2, p3}, and the concentration points are §; = =&, & = & with multiplicity
n. Supposing that 0, p; have even multiplicity n; and ps, p3 have even multlphclty na w1th ny+ng =n+2,
we have that such a configuration is not only w; = 2p; periodic but also p; periodic: it can be tought as a
double repetition (in a p;-periodic way) of the vortex configuration {—£t,0,p2} in Q_ := [-5,0] x [—%, %]
with corresponding multiplicities n, n; and ny. If n is even, it is easy to see that d"*jﬁ (&) =0fori=1,2
since the given vortex configuration is even with respect to & and £;. Notice that this is still true if we
replace 0 and p; by —it and p; + it, respectively, for ¢t € R, provided they keep the same multiplicity n;.
Arguing as in (B.71), notice that Dy can be written as

7Dy = Area L (Q-\ O’OI(BP(O)))] + Area [i (Q4\ a5 " (B,(0))) | —2(n +1)Area (B; (O)) )
oo ] ’

where Q := [0, ] x [~

o

,2]. Since
uo 4 87(n 4 1)G(z,£1) + 8n(n + 1)G(z, &) = —47n,G(2,0) — 4mnoG(z, po) + 4m(n + 2)G(z, &)

in Q_, where G(z, p) is the Green function in the torus Q_ with pole at p, the function Hy can be expressed
as in (B.0) in terms of the Weierstrass function of € and the points —ZL, 0 and py. Arguing exactly as in
section Bl we have that

Area aio (- \ao_l(Bp(O)))} — (n+1)Area (B (O)) <0

1
P

provided the multiplicity na for the corner of €2 is so that %2 is odd. Arguing similarly in Q,, we get that
Dy < 0 as soon as 7 is an odd number. The example then follows by replacing 0, p; with —it, p; + it with

t small for the corresponding Dy — Dy as t — 0.

Appendix A: The construction of o,

Letting o be the solution of ([ZI1]) of the form ([2.8]), where ¢ is given by (2.9]), we have that Qo (z) = Z[i(fl) is

an holomorphic function near z = 0 so that Qo (0) = "J(rol) (see (ZI0)). Since Qp(0) # 0, the (n+1)—root Q”+1

of Qo is a well-defined holomorhpic function locally at z = 0, and it makes sense to define ¢o(z) = zQ"“ (2)
near z = 0.

For o € B,, where B, is given in (ZI4)), in a similar way we have that Q(z) = U,Si)l is an holomorphic function

near z = 0 with | Q(Z)) — 1| < r for all 2. Since in particular |Q(z) — ”*1 5| < 7lQo(2)] + |Qo(2) — "H oyl we

can find r and 7 > 0 small so that ¢(z) = 2Qwi1 (2) is a well-defined holomorphlc function in Bz, (0 ) for all
0 € By, with 0(2) = ¢"*1(2) for all z € By, (0). Since ¢'(0) = Q7 (0) satisfies |¢/(0)| > [L g7 > 0,
then q is locally bi-holomorphic at 0. In order to have uniform invertibility of ¢ for all o € B,., let us evaluate

the following quantity:

q'(2)
q'(0)

supp (o) |¢"] 2 1-nr)(n+1),__1_
- 26 o o 2 @m0t D (0 1

l¢'(0)] n 1H(0)] Ba, (0)
1
2 |’;’-[(O)|>"+1 1+7r, . 2
R _ ) n+1
n? <n+1 (1—7°) Bij%)|q0| i
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for all z € B,(0), in view of the Cauchy’s inequality and | ol _ 1| = |qn118 — 1| < r for all z € Bs,(0).

o0(2) ay
’ _1
Therefore, we can find p; small so that |1 — Z,Eg;| < 3 forall 2z € Bp{@% (0) and 2p; ™" |Q(0)|_ﬁ <
1
2p; " [%]#1 (1-— r)_n%l < 27, uniformly for o € B,. Hence, the inverse map ¢! of ¢ is defined from
B 1 (0) into B _i_ 1 (0): for all y € B _1_(0) there exists a unique z € B _1_ 1 (0) so
ok 2071 |Q(0)|” T Pok 2077 1Q0)| 7T
that ¢(z) =y, given by z = ¢~ (y). Since o = ¢"! in Bj,(0), we have that
Card {z€e B _._ L 0):o(z)=yt=n+1 Vy e B, (0)\ {0},
2 THQ(0)| T
for all o € B,.. Since
lo(z)]| > 1 —7) inf loo(z)| > (1 —7) inf loo(2)] >0
Q\B 1 __1 (0) Q\B 1 1 1 (0)
2oL Qo) T PFT 2p 01 [7‘2101)‘]"_“(1+r) T
forallz€ Q\ B _ (0) we can find p (< p1) small so that

e __1
20" Q(0)] " 7T

Card {zeflzo(z):y}zCard {zeB 0):0(2)=y}=n+1 Vy e B,(0)\ {0},

1 1
20771 Q(0)| P FT
for all o € B,.. Since

o 1 (B,(0))C B 0)C B

1 0) C B2,(0),
20 |QO)|” T (0 Bl0)

1 1
2p1n+1[\3:i01)\]n+1 (1—r) " nFT
for all z € do~1(B,(0)) = 07 1(dB,(0)) and o € B, we have that

|Z|n+1 B |Z|n+1 1

= L in 2)| 71
7 T ] TR S W) sy (@@ >0

for qo is well-defined in Bs,(0). We can summarize the above discussion as follows:

Lemma A.1. There existr, p > 0 such that q(z) = ZQ(Z)";“ is a locally bi-holomorphic map with o = ¢"+!
and inverse ¢~ defined on B = (0), for all o € B,.. In particular, there exists a neighborhhod V of 0 so
that, for all o € By, there hold V C 071(B,(0)) and o : 0= 1(B,(0)) — B,(0) is a (n+ 1) — 1 map in the
following sense:

Card {z€Q:0(2)=y} =n+1 Vy € B,(0)\{0}.
For |a| < p and ¢ € B,, by Lemma [A]] we have that
o Ya)={2€Q: o(2) =a} = {ao,...,an},

where aj, = ¢~ '(ax) and ay, k = 0,...,n, are the (n + 1)—roots of a, and then g, q(2) : olz) ~a

T oz — ar)

€
M(R) is a non-vanishing function. We are now in position to prove the following.

Lemma A.2. Up to take p smaller, there exists a C'—map a € B,(0) — o, € B, so that o, solves
@2I8)-@ZI6). Moreover, the map a € B,(0) — cq = Cq,0, is C* with

1 dt!
i O] = 2 1 fa(2)] 0
. i _ 2r(n+1) d"H
Y := H(0)dacCa T QT (0),
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where
1 dnti q 1

fr1(z) = (n+1)! dwn+! (0).

1 dntt [210 w — qo(z)
0 (

EESy R D s = g5 @) (0 b =

Proof: Given ¢, , as in (2I0), equation ([2.I3)) is equivalent to find zeroes of the map A : (a,0) € B,(0) x
B, — M(Q) given as

Ala,0) =0o(2) +

9p.o(w) wrt?

—1
z 2
/ ga,o’(w) H(Lg(ﬂ)) eca,0w7l+1dw‘| .

Observe that the zeroes ay = ax(a, o) = ¢~'(ax) are continuously differentiable in . Differentiating the rela-
tion o(ax) = a at oo along a direction R € M’(2), we have that o} (ax(a, 00))0sar(a, o) [R]+ R(ak(a,00)) =
0. Since of(ay) ~ a} and R(ar) ~ a}™ in view of |R| < oo, we get that dyax(0,00)[R] = 0 for all
R € M'(Q). For z # 0 the function iﬁ :Ej; is continuously differentiable in o with

n

Ga,0(2) . 2t R(2) o(z)—a "1 1 wila o
on (e ) W= o e ) T — e ) 2, o=, drai( oA

90,0(2)

for every R € M’(Q). In particular, we get that 0, (—g“*"(z))

_O[R] =0 for every z # 0 and R € M'(Q).

90,0 (2)
Since we can write 22Z) ag
90,0 (2)
gaaz n+1 - q _qak Zn+1 "/1 ’
= = q (ak + t(z — ag))dt (A1)
90.0(2) H Z—ag U(z)kl;[O 0
for z small in view of 0 = ¢"t!, we get that gg"’gi; is continuously differentiable in o and the linear

operator 0, (g“ "E )) is continuous at z = 0. In particular, we get that 0, (zz”“ éz;)
90,00

O[R] = 0 for every

zand R € M'(Q). By [ZI2) we have that H, . is continuously differentiable in o with 9,Ho ,[R] = 0 for
every R € M’'(Q). We have that c, , is also continuosuly differentiable in o with d,cg 4, [R] = 0 for every
R € M'(Q), and so A(a, o) is with d,A(0,00) = Id.

Since aj ~ |a|%+1, the smooth dependence in a is much more delicate, and will be true just for symmetric
expressions of the ay’s thanks to the symmetries of a; = g(ax). To fully exploit the symmetries, it is crucial
that the expression ([ZI2)) of H, » is in terms of an holomorphic function H*. Indeed, we have that

n . 5 n oo n A oo n
2ZH('Z—ak>_ﬁZak = 2Zgl(z)Za§C |Q|Zb12ak
k=0 k=0 1=0 k=0 =1 k=
0o l n+1 o)
= 2(n+ 1)§g(n+1)l(2)a — Q) z; bint1yal

in view of Z =0 for all | ¢ (n+ 1)N, where gi(2) = # 4 [H*(z — ¢ H(w))](0) and b; = l—l!dlqil (0) (recall

dw!

that by = q_l(O) = 0). Since for z small there holds

Zlog o ar) zzm(z)Zdé:(n—i—l)

h(n+1)l (z)al

[M]8

|
=]
E
Il
=]
-~
Il
=]



in view of ay = ¢ 1(ax), where hy(z) = %ddTl;l [log %} (0), we have that Zz;gzg is continuously dif-
2

ferentiable in a, a for all z in view of (A (for z far from 0 it is obvious). Hence, by (ZI2) 33"’ Hao
40,0

a0 and A(a,c) are continuously differentiable also in a, @, and then A is a C'—map with A(0,0¢) = 0,

95A(0,00) =1d. Up to take p smaller, by the Implicit Function Theorem we find a C'-map a € B,(0) — o,

so that A(a,0,) = 0, and the function a — ¢, = ca,0, is C1. By

2 2 2
ga.a’(z)go.a’(o) Ha a’(z) 90 U(O) 21 - Ha a’(z) H(Z)
0| ’ ’ 0) == Do [€?108 2. (2)=2108 90,0 (0) Z0T2211(()) — (1) 2 [ 11 (2) = frupa (0
[93)0(0)9870(2) Ha,a(o)]( ) gg)a(z) [ Ha,a(o)]( ) ( )H(O) [f +1( ) f +1( )]
. 2 ,(2)68.,(0)
9a,0(2)90,5(0) Hq d(z) 277(”"’ 1) H(Z)
0a[= : : 0)=——-—F—>—Lby112
RO Hao ) T )
we deduce the desired expression for I and Y in view of 0,¢9,, = 0 and (Z13). L]

Appendix B: The linear theory

In this section, we will prove the invertibility of the linear operator L given by (&3] under suitable or-
thogonality conditions. The operator L can be described asymptotically by the following linear operator in
RQ

8(n+1)%yl*"
(1+ |yt — Go[2)2
where (o = lim §. When (o = 0, as in the case n = 0 [4], by using a Fourier decomposition of ¢ it can be
shown in a rather direct way that the bounded solutions of Lo(¢) = 0 in R? are precisely linear combinations

of 2n+2 1
1— Jy*"* _ W
1+ [y[>r+2 L [yprt2r 0

Note that L is the linearized operator at the radial solution U = U; o of —AU = |z|*"eY.

Yo(y) = and  Yi(y)

For the linearized operator at Uj ¢, with (o # 0, the Fourier decomposition is useless since Uy ¢, is not
radial w.r.t. any point if n > 1. However, the same property is still true as recently proved in [15], and the
argument below could be carried out in full generality in the range a = O(J). Since in Theorem we are
concerned with the case a = 0(d), for simplicity we will discuss the linear theory just in this case.

Recall that 52 10(2) |2
—lo(z) —a
Z ===
O(Z) 52 + |O'(Z) — a|27

and PZ;, 1 =0,1,2, denotes the projection of Z; onto the doubly-periodic functions with zero average:

d[o(2) — ali

Zl(z) = 52 + |0__ a|25

1=1,2,

APZl = AZl — |_§12\ fQ AZl in Q
JoPZi=0.

Given h € L>(Q) with [, h = 0, consider the problem of finding a function ¢ in Q with zero average and
numbers d;, [ =0, 1,2, such that

2
L(¢) =h+ Y diAPZ inQ B.1)

=0
[y APZip =0 Vi=0,1,2.
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Since Z = Zy + 122, observe that (B.)) is equivalent to solve [{4]) with d = dy — id2. Let us stress that the
orthogonality conditions in (B.I)) are taken with respect to the elements of the approximate kernel due to
translations and to an extra element which involves dilations. A similar situation already appears in [13].

First, we will prove an a-priori estimate for problem (B when d; = 0 for alll = 0, 1,2, w.r.t. the ||-|-norm

defined as ) | ) |2)1+ P
0 +lo(z) —a v
Il = sup 120 Zal) 7 )
Seh o1 (|o/ ()P + 07)

where 0 < v < 1 is a small fixed constant.

Proposition B.1. There exist 19 > 0 small and C > 0 such that for any 0 < § < 1o, €2 < 9ed ™1, la] < nod
and any solution ¢ to

Lp)=h n
fQ APZip=0 VIi=0,1,2 (B.2)
fsz =0,
one has 1
19lloc < C'log Il (B.3)

Proof: The proof of estimate (B.3) consists of several steps. Assume by contradiction the existence of

_2
sequences 0 — 0, € with €5 = o(6;""), ar with a = 0(dx), functions hy with |logdy|||hell« = o(1)
as k — +o0, and solutions ¢y of (B2) with ||¢rl|cc = 1. Since by (@3] the operator L acts as L(¢) =
A+ K [¢p+ v(9)], where v(¢) € R, the function vy, = ¢r + v(¢) does solve

Ay + Ko, = hy  in Q
fQ APZp =0 VI=0,1,2,

where Wy, Ky, Zj,; denote the functions W, K, Z;, respectively, along the given sequence.

Claim 1. lkiminf lklloo > 0 and, up to a subsequence, Y — ¢ € R as k — +0o0 in C'IIOZ(Q \ {0}), for all
— 400
a € (0,1).

Indeed, assume by contradiction that 1kim£nf||1/)k||oo = 0. Up to a subsequence, assume that ||¢x|lcc =
—+00
2
|0 + v(dn)l| o — 0 as k — +o0. Since €5 = o(6; "), by (249) it follows that

J" 6“0+Wk¢k
V(¢k) = —W +o(1) =0(1).

Jao e 0t W gy
o oo

Jodx = 0, we get ¢ = 0 and ¢ — 0 in L>(Q), in contradiction with ||¢p|cc = 1. Moreover, since
Ykl = O(1), by Z35I)-(252) we have that Aty = o(1) in C),.(2\ {0}). Up to a subsequence, we have
that ¢ — ¢ as k — 400 in ClloZ(Q \ {0}). Since ||¢k|lcc = O(1), ¥ is a bounded function which can be
extended to a harmonic doubly-periodic function in §2. Therefore, ¢ = ¢ in Q with ¢ = kgl}rloo ~v(¢x), since

Up to a subsequence we have that — ¢, and then ¢ — ¢ uniformly in 2 as kK — 4o00. Since

1
o | Ve = (k).
0] Jo e
1
Now, consider the function Wy (y) = (6, "' y). Then, ¥, satisfies

N 1
AU, + Kk(y)‘llk = hk(y) in 5k ntl Q,

o1



2 1 . 2 1 1
where Kj,(y) = 6, K (6, " y) and hi(y) = ;" hi(6; " y). Also, we set o1 (y) = 6, "0, (6, y) for y in
compact subsets of R2.

Claim 2. U, — ¥ =0 in C},.(R?) as k — +oo.
Indeed, observe that by (Z49) and (ZX51)-(Z52) we have the following expansions:
K(z) = |0’ (2)*e"* [1 + O(leal[2["*") + Ollcallal + 6% |log 8])] + O(e?|o” (2)[*e7>=). (B4)

2
Since € = o(6;"*"), the first estimate above re-writes along our sequence as

Ki(y) = (1+ o(1) + O(0k[y|™1) LA _ +oll) 6407, () |* .
(14 losw) — art ') (1+ lowty) — x5 ')

1
uniformly in as k — +o00. dince o = 2 , we have that o (y) = vy a and o = (n+
iformly in 6, "7 Q as k Si nt1 have th Q0 "“ d ol (y

1 1 1
D)y Qa, (07 y) + 6, Ty Qs (67 y). Since Qa, (0) = gy =17 # 0 and [|Q;, Hoo,n < C0Qayllo,0 = €,
we have that

or(y) =y "y + o(1) + O, o D, ok(y) = (n+ 1)y [y +o(1) + 0(512% ly])]

as k — 4o00. Then we get that

n 212 2n n 4 4 4n 1
Kiy) = | ST U™y ) ST D™y sy o6 B5)

(1l =) (14 fonts) [

1
uniformly in ¢, "*' . Choose 7 small so that |oy(y)| > %|y|’“rl in B ,% (0) for k large. Since ||¥g|lco =
n

O(1) and |hi(y)| < C|lhill« — 0 on compact sets, by elliptic estimates and (B.5) we get that Uy (y ~w y) —
\IJ in C),.(R?) as k — 400, where ¥ is a bounded solution of Lo(¥) = 0 (with ¢, = 0). Then ¥(y) =

ijYj(y) for some b; € R, j =0,1,2.

Since AZy + |oj,[?eVseer Zyy = 0 for | = 0,1,2 (where Us, 4, stands for Us, a, 0, ), for I = 1,2 we have
that

810} (2)|*(0k — ardy 1)U 5
kaZk,l = —/ o, (z 2¢k€U5k’“k Zk,l = —/ — dy + O(63).

ékn n

Since for all { =0,1,2

Y APZy ) = / Yy {AZM AZk,l} = | YrAZk,; +o(1)
Q

1
|Q| Q Q

as k — oo in view of (BI)-([B.2), by dominated convergence we get that

- [yl (y" 1)
Uly) 2 L gy =0  forl=1,2
/Rz W)y @ s
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and we conclude that by = bs = 0. Similarly, for [ = 0 we deduce that

N S )
¥ dy = 0,
/R2 () 1+ [y+2)s Y

which implies that by = 0. Thus, the claim follows.

On the other hand, from the equation of ¥y we have the following integral representation

Ui (2) (s . Gy, 2) [Ke(W)¥r(y) — he(y)] dy. (B.6)

B 12 Jo
Claim 3. ¢=0

Indeed, Claims 1 and 2 imply that ¢ (0) = ¥, (0) — 0 and ﬁ fQ Y = v(¢r) — ¢ as k — 400 by definition.
So, by (B.f)) we deduce that

/Q G(y, 0) [Ki(y)r(y) — hu(y)] dy — —¢

as k — 4o00. Now, we first estimate the integral involving hy. Since fBé ©) |log |y|| dy = O(% log &%), we
k
get that

c
[ Gombdy| < Gl [ G.0)dy < Cllogail ..
Bs, (0) k Bs, (0)

By (B.6]) we have that

< cuogm/ ] < C|log 8|1k
Q

/ G(y,0)hi.(y)dy
O\Bj, (0)

and we conclude that

/ G(y,om(y)dy\ < O|log 8yl — 0
Q

in view of |log x| ||hg|l« = o(1) as k — +oo. By (B) we have that

Gy, 0)Kr (y)vor(y)dy = / G(y, 0)Kr(y)¥r(y)dy + O(37)

Q B, (0)

- 1 o o 5
= [ [ s - gy st + TR0 Kl Wiy + 06

Sk n+1 7

Since by (B) Ky = O( (- Ymzyz) does hold uniformly in B __y (0)\ B1(0) and Kx(y) — St as
6, "Thn :
k — +o00, by dominated convergence we get that *

1 1
/ [_ Logly| + H<5;+1y,o>]f<k<y>wk<y>dy
B __1_ (0) 0
5k n n

1 8(n + 1)*Jy[>"
/2 |: 9 0g |y| (070):| (1 |y|2n+2)2 (y) Y 0
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as k — 4o00. Since fQ hi = 0, the integration of the equation satisfied by v gives that fQ Krr = 0. Then,
by (B4) we get that

/ K Vidy = / Krrdy = —/ Krtor, = 0(63),
B__1_ (0 B, (0) O\ B, (0)

6k n+1 n
which implies that
log &, / K Udy = O(63 log 6¢).
B 1 (0)

5 i,

In conclusion, we have shown that [, G(y,0)Kx(y)¢r(y)dy — 0 as k — 400, yielding to ¢ = 0.
In the following Claims, we will omit the subscript k. Let us denote f/(z/J) = Ay + K.
Claim 4. The operator L satisfies the mazimum principle in B, (0) \BRM;+1 (0) for R large enough.

Indeed, as already noticed in the proof of the previous Claim in terms of Ky, there is C7 > 0 such that

(n + 1)252|Z|2n

K(z) < Gy (6% 1 |22 +2)2

(B.7)

in B, (0) \BM;+1 (0). The function

B 2n+2 2n+2 _ 52
2= - (L) = Ll
Pi= 7 n+2|z|2n+2 + 52

satisfies 2 2n+2|,(2n(, 2n+2],|2n+2 _ §2
o 022 TR 2PN (22 TR — 67)

(u2n+2 |Z|2n+2 + 52)3

~AZ(z) =16(n+1)

For R large so that p?"*2R?"2 > 2 we have that

~ 52lu2n+2|z|2n /L2n+2R2n+2 _ 1
2
—AZ(z) 216(n +1) (U2 F2[[2n42 | 62)2 2ni2REnt2 1 |
N 4(n N 1)2 62M2n+2R4n+4 1 (n + 1)2 52
= (U2 TZRIFZ { 1)2 [2ntd = 2042 |p[2ntd
in B,,(0) \Bm = (0). On the other hand, since Z < 1 we have that
- (n+1)262|z|?" (n+1)262
K(2)Z(z) < Olm < NP
in B,,(0) \BM¢+1 (0), and for 0 < pu < J%T we then get that
= 1 (n+1)262
L(Z) < (_—u2"+2 + 01> S <0
in B,(0) \BRsﬁ (0). Since

~(I) o [L2n+2R2n+2 _ 1 - l
— M2n+2R2n+2 +1 4

for |z| > RS ﬁ, we have provided the existence of a positive super-solution for L, a sufficient condition to
have that L satisfies the maximum principle.
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Claim 5. There exists a constant C' > 0 such that

1lloe. 5,008y ) < Clllvlli + A1,
RS

where
1l = 1¥]loo,0 L of 1%l 0,08,(0)-

R&™

Indeed, letting ® be the solution of

2 oi
O 1
a8 =233 B o Ri < <
d=0 for |z| =, RéwF1

with 7 € (1,2n), 01 = o(n + 1) and 02 = 2n + o(n + 1), we construct a barrier function of the form
O = 4{|y|;Z + ||h||«®P. A direct computation shows that

o 1
D(z2) = 226n+1 [_W + a;log|z| + ﬁz} ,
=1 T
where
02 log 02— R‘snﬂ Reigmr 1 oo 02 log RO R5n+1 Roignir 1
for i = 1,2. Since
2 o, 1 R6"+1 2
0<®(z) §2;6n+1 { p— —— +a;log Row +B] —2;6n+1a ilog—— < Z o

we get that

FE 67 5‘7+n2$1 ) 52|Z|2" 2 9

H = l—QIZI”C’(”“) - 2|z|2+2n+a<n+1> G+l (02 + |2[?n12)2 ; o?Ri

IN

5° 50-‘4-7?—" 59|z |2n
Il |2 - e * Tt
|Z|2+a(n+l) (52 + |Z|2n+2)1+a/2 ((52 + |Z|2n+2)1+0/2

67 (|2 + 677)
=l (62 + |2|2n+2)1+0/2

2
. 2 . ~ .
in view of (B.1), for R large so that C;(n + 1)2 E,l oy < 1. Since |[¢| < @ on (?BRM#1 (0) U dB,(0) in
view of 4Z > 1, by the maximum principle we conclude that [ < ® in B,(0)\ B

_1(0) and the claim
Rin+1

follows.

Since Claims 2 and 3 provide that [|1x|l; — 0 as kK — oo, by Claim 5 we conclude that ||¢x]lcc = o(1) as
k — 400, a contradiction with liminfy_, 1o ||%k||cc > 0 according to Claim 1. This completes the proof.
"
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We are now in position to solve problem (B.I]).

Proposition B.2. There exists ng > 0 small such that for any 0 < § < 19, |logdle? < 7705"%1, la] < nod
and h € L*>(Q) with fﬂh = 0 there is a unique solution ¢ := T(h), with ngb =0, and do,d1,ds € R of
problem (B). Moreover, there is a constant C' > 0 so that

2
1
ol < (1085 ) bl 3 il < Clal. (B.5)
=0

Proof: Since —AZ; = |0/(2)[?eV2Z; in Q (where Uy, stands for Usq0,) and [, AZ; = O(6%) in view of
@GI)-B2), we have that APZ; = O(|o’(2)|?eYs¢) + O(6?) in view of Z; = O(1), yielding to |APZ|l. < C
for all [ = 0,1,2. By Proposition [B.I] every solution of (B satisfies

1 2
[¢lo <C (10g 5) thH* + |dz|] :
=0

Set (f,g) = [, fg and notice that

(L(9), PZj) = (L(), PZ; + 1) = (¢ +7(8), L(PZ; + 1)) (B.9)

for any ¢ € R, in view of [, L(¢) = 0. To estimate the |d;|’s, let us test equation (Bl against PZj,

7=0,1,2, to get
2

(6 +7(0), L(PZ; + 1)) = (h, PZ;) + Y _ di(APZ;, PZ;)
=0

where ¢; = Ii_ll\ fQ Zj, j =0,1,2. From the proof of Lemma 3] we know that for Zy and Z = Z; +iZ5 there
hold the following:

02
/ APZyPZy = —16(n + 1)/ % +0(8?), / APZPZy = O(5?%)
Q r (1+yl?) Q

57 — _8(n lyl® _
/QAPZPZ = —8(n+ 1)/RQ Ty HOw) /QAPZPZ = 0(5)

2
where [, U_ff% =2 [o % = Z. In terms of the Z;’s we then have that

(APZ;,PZ;) = —(n +1)Cy;01; + O(6%),

where d;; denotes the Kronecker’s symbol and cop = %’T, C11 = Co9 = %’T. For 7 =0,1,2 let us now estimate
|L(PZ;+t))|,:

|L(PZ; +t)||. = || - 10"(2)]2eV52 Z; + K(PZ; + ;) + O(8%)||, = O(6 + &5~ 751 + b]ea)) (B.10)
in view of BI)-B3) and (B4). Since |v(¢)| = O(||¢]|co) in view of ([Z.49) and 257w = o(1), by [B.6) we
get that

(@ +7(0), L(PZ; +t5)) = O(6 + €671 [ 4] o,

which along the previous estimates yields to

2
141 < €| (5 + 25 %) [9]loe + 111l +az|dl|} (B.11)
=0

56



2

in view of PZ; = O(1). Since (BII]) gives that Z |di| = O(6 + 6257%“)”(25”00 + O(J|h||+), we have that
1=0

every solution of (B)) satisfies

1 2 1
§010g3(5+625 )[¢lleo + Clog <1A]..

2
Il + Y Idi

=0

1
ol < € (1065

In view of log }(8 + 6257%“) = o(1) as g — 0, the a-priori estimates (B.8) immediately follow.

To solve (B]), consider now the space
H= {¢ € H'(Q) doubly-periodic: [ ¢ =0, | APZ; ¢ =0 forl=0,1, 2}
Q Q

endowed with the usual inner product [¢, 1] = [, V¢$V1. Problem (B is equivalent to finding ¢ € H such
that

[¢71/)]:/Q[/C(¢—|—'y(¢))—h]1/) for all ¢ € H.

With the aid of Riesz’s representation theorem, the equation has the form (Id — compact operator)p = h.
Fredholm’s alternative guarantees unique solvability of this problem for any h provided that the homogeneous
equation has only the trivial solution. This is equivalent to (Bl with » = 0, which has only the trivial
solution by the a-priori estimates (B.8]). The proof is now complete. n

Appendix C: The nonlinear problem
We consider the following non linear problem
2
L(¢) = —[R+ N($)| + >_diAPZ inQ
1=0 (C.1)
JoAPZ ¢ =0 for all [ =0,1,2
fQ ¢ =0,

where R, N(¢) and L are given by 224), (£2) and (&3], respectively. Notice that (5] and (CIl) are
equivalent by setting d = dy — ids.

Lemma C.1. There exists o > 0 small such that for any 0 < § < no, |logd|?e? < 7705%“, la] < nod problem
(CI) admits a unique solution ¢ and dy, | = 0,1,2. Moreover, there exists C > 0 so that

[6llcc < C[logd|[R].. (C.2)
Proof: In terms of the operator T' defined in Proposition [B:2] problem (C.IJ) reads as
¢ =T (R+N()) := A(9).
For a given number M > 0, let us consider the space
Fu = {¢ € L=(Q) doubly-periodic : ||¢]|c < M|logd|||R|«}-
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It is a straightforward but tedious computation to show that

N (1) = N(2)ll+ < Ci([[@1]loc + IP2lloc)l|d1 — d2loc- (C.3)

. . wg+W+e wg+W
Just to give an idea on how (C3]) can be proved, observe that 0 < W < 2l f; e‘;ﬁw and

| Jo €TV H2| < ||§]loo [ €“0 TV F?. For ||¢]|oc < 1 we can then get that

euo+W+¢7

) eu0+W+¢ eu0+W 9 5
||¢||oo||D[W][¢]||* + D [W][fb, o)« = 0(||W||*||¢||oo) = O(ll9l1%)

ug+W

in view of || W |l = O(1) by (ZX51)). This exactly what we need to estimate in || - ||.—norm the difference
between the first term of N(¢1) and N(¢2). For the other terms we can argue in a similar way to get
e2(uo+W+9) e2(uo+W+9) (uo+
6]l 1D T

2(uo+W)
W]W]H* + ||D2[W][¢u¢]”* = O(||WH*H¢||§O) =0(|l¢ll%)
0 0 0

e2(ug+W)

T =g |1+ = O(1) by (Z52), and

in view of || T
Q

161l IDIBW + @)][]ll + | D*[BOW + @)@, 6]l = OBIV)[]1%) = O =7|]2)

in view of [249). Since €25~ 7T = o(1) we can deduce the validity of (C3).
Denote by C’ the constant present in (B.g). By Proposition [B:2] and (C3)) we get that

[A(¢1) — A(¢2)]loo < C'|10g 8[| N (¢1) — N(¢2)|l« < 2C"CLM || R|.1og” |1 — b2 loo
for all ¢1,¢2 € Fps. By Proposition [B.2l we also have that
[A(@)]loo < C'|10g 8| |||+ + |N(#)]|+] < C'[logd]||R]|« + C'Ci[log d][| ]2

for all ¢ € Fys. Fix now M as M = 2C’, and by (Z54) take 79 small so that 4(C")2C log? §||R||. < 1 in
order to have that A is a contraction mapping of Fj; into itself. Therefore A has a unique fixed point ¢ in
Fu, which satisfies (C2) with C = M. "

Appendix D: The integral coefficients in (3.4))-(3.5)

Letting ¢ = %, we aim to investigate the integral coefficients

2 2n 2n
_1 n+1 n+1

I::/ (ly| )Iy—;gl Gy, K= v+ "y
e (1+y?) re (1+1yl?)

which appear in B4)-BXH) or (@I)-T). We will show below that I = f(|¢]) and K = ¢(|¢|)¢ with
f <0< g, and the asymptotic behavior of f and g as |{] — 400 will be identified.

By the change of variable y — y + ¢ and the Taylor expansion

—+oo
(1—2)"°= chxk for |z| <1
k=0
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. 4+k)! .
with ¢ = (2114) , we can re-write I as

- ly|#41 (Jy — CP—l lyl 7 (|y[2 + [¢2 = 1 — yC — 50) (yC + 5O
I—/R2 Z/R dy

(1+ 1]y —¢?) (L+ [y[> +[¢[?)5+F
in view of Eagc
2\—5 2 2\—5 YTy -5
(L+1]y=¢F) 7 =0+ [yl"+ <) (1—W)
with _
el PP
L+ [y + (¢~ 1+ [yl +[¢?
Since
k
w0 =30 (§ )werte = 3 () e () ekt
j=0 1<j<& E<i<k

for k odd and

(y§+g<)k _ Z < f )Ck—ngk—2j|<|2j|y|2j 4 Z < .];5 )z?j—ky2j—k|<|2k—2j|y|2k—2j +<

& k-
1<j<3 5 <j<k

) clHll*

[N ESI

for k even, by symmetry we can simplify the expression of I as follows:

ly| 7T (|y[2 + [¢]2 = 1) (5 + §O)* E/ ly| 751 (yC + g¢)F+!
I = dy — d
Z / (1 + g2+ [CP2)F ZC’“ (T + [yl + [c2ypr ™Y

2n

2k AR (g2 4+ [¢2 - 1) 2k nT 2k
- ZC% |<|2k/ = (2|y| 2|C5| 2k d _ZCQk ! |<|2k/ |y|2 T
= k ke (L+[yl? +[¢?)>F k re (L [y +[C2)*F

o0 »
Since IP = / { i ) dp, ¢ > p+ 1, does satisfy the relations:
0

q—p—1
q

/4 14 p+1 __
Iq+1 Iq ’ I -

1
qf]'%[g, (D.1)

through the change of variable p> = M, A = 1 + |¢|?, in polar coordinates we have that

2n_ 4ok
L g = o =
_ Stk oan / | dy (D.2)
22+ k) (1 +[CP) Jra (1 + [y? + [C2)FF2F
and
/ Jy| 22k by = maskEEE L QG sy ek
we (1+ [y + ()22 242k B Oy ) b2k

(2+2k)(3 +2k) ) jy |2k
(k+ 292 +k— ) (1+1cl )/R2 1+ [y]2 + |C2)*+2* dy (D.3)
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Inserting (D.2) and (D.3) into I, we get that

= 34+k— 20 o,
I = Yen Lo 3Tk mEE N2k |<|2k/ |y ay
= 2+ k)1 +I[CP) k e (L [y[? + [¢[2)*+2%
+o0 2n
_Zc k 2k |<|2k/ |y|n+1+2k dy
2k—1 k R2 (1 + |y|2 + |<|2)4+2k
+
3+2k02;€2 1+ k 1 2k — 2 5 (2k) 2
kz (2+k_nLH 1+|<|2>< E_1 )( 1) —cana | 7 ) [C]

2n_ 4ok
X|<|2k—2/ |y|n+1+ dy.
2 (14 [y[? + [C[2)*2F

[\

. 2k — 2 2k . k _ 7T t2k
Since 2(34+2k)cop—2 ( 1 > =kcop_1 < A > for all k > 1, setting SBx = cak—1 < L ) ¢ [2R2 fR? %dy

we deduce that

re Y

k=1
—+oo

-2

k=

( Ltk ! ><1+|<|2>—|<|2] 8

2+k— - 1+4+|C]?

k+_ n+1

n+1

k I¢I? 1 )
<1"‘|C|2 - (2+k)(n+1)—n> (1+1¢*) =[] ]5k<z

n+1

k
— 1] [¢|?8 < 0.
k+n+1 ]|C| Br

In conclusion, we have shown that I = f(|¢|) with f < 0.

By the change of variable y — y + ¢ and the Taylor expansion of (1 — x)~%, arguing as before K can be
re-written as

Y| %57 (y — €) 9| %57 (y — Q) (yC + GO
— B A A L dy.
K / (T+ly— PP~ Z / (L g2+ [c)5+r Y

By the previous expansions of (y¢ + 7¢)* and

n+1 +2+2k + 1 + k
R +|?|j||2 e
R2 Yy
_ n—H"rl-f—k/ |y|n27$1+2k dy
542k Jro (14 [y[2+[¢[2)oH2k

for symmetry K reduces to

+1+k (241 2k |y|wET 2k
K = n+1 _ 27@/ du.
CZ{C%“ e () e ()l [

Since (1 + k)cag+1 ( 2k +1 > = (54 2k)cox < 2k > for all £ > 0, we get that

k k

+oo 2n 4ok
n 2k 2k/ ly| =+
K = _— dy.
<;<n+1x1+k>cz’“( L) [ e
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In conclusion, we have shown that K = g(|¢|)¢ with g > 0.

In order to determine the asymptotic behavior of f and g as |(| — 400, we will use complex analysis to get
some integral representation of f and g, see (D.6) and (D9). We split [ as I = J; — 2.J5, and we compute

separately the constants
2n 2n
ly + ¢ ly + ¢
Ji :/ ————dy, Jo= ————dy.
re (14 [y[?)* r2 (14 [y[?)°

Concerning J;, we re-write it in polar coordinates as

2n
ly| 7T oo sy [T do
= / (14 —C|2)4dy: prittdp 14 o2 2 _ o0 _ 7 i0\4
R2 Y 0 o (14p*+][C* —(pe Cpe'?)
+oo 3
. A.;,_l w
= -1 prT dp/ = dw.
J om0 (Cp)H(uw? — Lo 4 Loy
1 2 2 2
ince w* — ——w + ——= vanishes on at
S 2 +P<+ IC] |§|2 <h Iy
p
w, = LEP AP £ VA + 07+ [CP) — 4p°IC

2¢p
with |w_| <1 < |w4], by the Residue Theorem we have that

2n
w? > prtttl B { w3

—+o0
J = —i/ p%*'ldp/ — dw = 27r/ =73
0 o+ B1(0) (Cp)H(w —w ) (w —wy)t o 6(Cp)* dw

A straightforward computation shows that

] (w-)dp.

(w—wy)?

d? [ w3 ] 6w3 + w3 + Jww, (w + wy)

W |w—wp) W) ’
and then B (P 4 I+ 7 4[R2 + 602l
o ) ) =9 L+ + PP 4217

Recalling that A = 1 + [¢|?, through the change of variable p — p? we finally get for .J; the expression

Ji— W/“’pnil A+ p)[A+0)° +6(A—1p] |
0 [+ p)” — 40— D)ol

0. (D.4)

In a similar way, we first re-write J, as

too L, 4 too B4l g4 4
Ja Zi/ p"2_+1+1dp/ = - dw = —27r/ P —— [710 5} (w=)dp
0 o+ 8,(0) (CP)°(w —w_)>(w —wy)® 0 24(¢p)° dw?t [ (w —wy)

in view of the Residue Theorem. Since

)

dt { wt } _ 24w4 + wi + 16wwy (w? + wl) + 36w?wl
dw*

(w—wy)? (w —wy)?
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we get that

d* w? = 5 (L4 %+ [P + 1202C2 (1 + p2 + [¢)? + 42p*|¢]*
| ——— | (w_) = —24(Cp)®
dw4[w+—w+ﬁ](w )= —2e) [+ 22+ (22 — 42|

3

and then

Ty — 7T/"" o (A )+ 1200 = D)p(A + p)? +42(X — 1)%p? . (D5)
0

pr .
[(A+p)? —4(A = 1)p]2
By (D.4)-(D.5) we finally get that f(|¢|) takes the form

f= W/Opon%l A +p)° =20 +p)* +2(A = Dp(A + p)° = 240N = Dp(p +1)(A + p) = 84(A — 1)
0 [(A+p)2 = 4(A = 1)p]?

2.2
P dp(D.6)

where A = 1+ |¢|2.
Observe that for { =0 (i.e. A = 1) we simply have that

2 _n_
L s (D.7)

in view of (D.I). By the change of variable p = A + v/At and the Lebesgue Theorem we get that

. 0 t . 2+ P60+ )2+ F) dt
)\*n—ﬂjlzw/ (1+ —=)n+t VA A 4t‘/5 ﬁ‘dt—>207r/77
—vx VA (t?+4+ %)z r (17 +4)2
and
o0 b )4y oA=l(] 4t L2 A=1y2(] 4t )2
g o W/ (1+L)#1(2+\5) + 125701+ F)2+ #)" +2055)° 0+ %) "
vx VA (2 +44 4L)3
- 106W/L9
R (12 +4)2
dt 14 dt
as |¢| = 400 (i.e. A = +00). Since / ——— =— | —————, we get that
R (2+4)7F 3 Jg (#2+4)3
356 dt
AGIN e (D.5)
|¢|7FT 3 Jr (12 44)2

as || — oo.
In a similar way, for K we have that

+o0 4 +oo 241 g4 4
_ 2oy w* (pw — () _ prtt d {w (pw — O}
St AR N e e il B rrr ol ke ol Lt

in view of the Residue Theorem. Since

)

d* {w‘l(pw - C)] B 45pww+ (w3 + wd + 6wwy (w4 wy)] — C(w* + wi + 16ww (w? + w?) + 36w?w? ]

' [ Tw—ws ) (w—ws )
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we get that

b {w4(pw—<)} w) =12 )5<(A+p2)4+2p2(k—6—5p2) A+p7)2 +6(A = 1)p*(2A =7 - 5p%)
dwt [ Tw —wy)e |77 [+ )2 — 40— 1) |
and then

o(lch) = _g /OOO = A+ )t +2p(A =6 —5p)(A+ p)? + 6(A — 1)p*(2A — 7 — 5p) i. (D.9)

[(A+p)2 —4(A = 1)p]?

So, we have that

T _n_ _n_ 3n+1 n
0)=-=09" - 10[;"") = ————7I"! D.10
9(0) 2( 5 ¢) 2(n+1)775 ( )
in view of (D.1)), and, by the change of variable p = A 4+ v/t and the Lebesgue Theorem,
dt
S 177r/ I — (D.11)
R ACEE

as |¢] = 400, in view of

0 _t V4 _ _t 6+5v/\ t\2 _ a2l i T+5vV/ A

/ 1yt 2+ ) =20+ J5) A+ ER2) 2+ J5)? - 6251 (1 + 75)°(3 + TR t)dt%_/ 34 dt
—va VA (2 +4+ 25)% B (12 +4)3
as A — +00.
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