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ON THE MEAN FIELD EQUATION WITH VARIABLE INTENSITIES ON PIERCED
DOMAINS

PIERPAOLO ESPOSITO, PABLO FIGUEROA, AND ANGELA PISTOIA

ABSTRACT. We consider the two-dimensional mean field equation of the equilibrium turbulence with
variable intensities and Dirichlet boundary condition on a pierced domain

Au=x 0 A Ve T in Qe =0\ Lj B(&, 1)
— AU = A1 — AT m = iy €q

st Vievdx er Voe—Tudx € P} o

u=0 on 9,

where B(&;,¢€;) is a ball centered at & € Q with radius €;, T is a positive parameter and Vq, Va2 > 0

are smooth potentials. When A; > 87m; and Aa72 > 8m(m — my) with my € {0,1,...,m}, there

exist radii €1,..., €, small enough such that the problem has a solution which blows-up positively

and negatively at the points &1,...,&§m, and &my 41, ..., &m, respectively, as the radii approach zero.
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1. INTRODUCTION

In the pioneering paper [21] Onsager introduced an approach to explain the formation of stable large-scale
vortices, which in the context of the statistical mechanics description of 2D-turbulence allowed Caglioti,
Lions, Marchioro, Pulvirenti [3] and Sawada, Suzuki [29] to derive the following equation:

~Au= A / =2 dP(a) inQ
=11 @

u=0 on 0,

where Q is a bounded domain in R?, u is the stream function of the flow, A > 0 is a constant related to the
inverse temperature and P is a Borel probability measure in [—1, 1] describing the point-vortex intensities
distribution.

When P = §; is concentrated at 1, then (1.1) reduces to the classical mean field equation

eu

—Au=A——F— inQ
S{e“d:c (1.2)
u=0 on 0f),

which has been widely studied in the last decades (see the survey [18]). In particular, solutions are critical
points of the functional
1
Ia(u) = —/ |Vu|® — Mog (/ eu> . u € Hy(Q).
2 Ja Q
Date: August 30, 2019.

2010 Mathematics Subject Classification. 35B44; 35J25; 35J60.
Key words and phrases. pierced domain, blowing-up solutions, mean field equation.

1


http://arxiv.org/abs/1904.00127v2

2 P. ESPOSITO, P. FIGUEROA, AND A. PISTOIA

By Moser-Trudinger’s inequality solutions can be found as minimizers of Jy if A < 8r. In the supercritical
regime A > 8, the situation becomes subtler since the existence of solutions could depend on the topology
and the geometry of the domain. Using a degree argument Chen and Lin [5, 6] proved that (1.2) has a
solution when A ¢ 87IN and €2 is not simply connected. On Riemann surfaces the degree argument in
[5, 6] is still available and has received a variational counterpart in [9, 19] by means of improved forms of
the Moser-Trudinger inequality. When A\ = 87 problem (1.2) is solvable on a long and thin rectangle, as
showed by Caglioti et al. [4], but not on a ball. Bartolucci and Lin [1] proved that (1.2) has a solution for
A = 87 when the Robin function of €2 has more than one maximum point.

When P = 061 + (1 — 0)d—» with 7 € [-1,1] and o € [0, 1], equation (1.1) becomes

eu 677'11/
Au=A o —(l—)r
v Uf etdx ( U)Tfe*md:c

Q Q
u=0 on 0,

in Q

which can be rewritten (setting \1 = Ao, A2 = A(1 — o) and Vi = V2 =1) as

WL L W L in 0
[ Vietdz [ Vae~udx (1.3)
! !

u=2~0 on 0f).

—Au =

If 7 =1and V4 = Va2 = 1 problem (1.3) reduces to the sinh-Poisson equation or its related mean field
version, which has received a considerable interest in recent years, see [2, 12, 13, 15, 16, 17, 20, 25] and the
references therein.

Up to our knowledge, only few results are known in a more general situation. In [23] Pistoia and Ricciardi
built blowing-up solutions to (1.3) when 7 > 0 and A1, 272 are close to 8w, while in [24] the same
authors built an arbitrary large number of sign-changing blowing-up solutions to (1.3) when 7 > 0 and
A1, A272 are close to suitable (not necessarily integer) multiples of 8. In [26] Ricciardi and Takahashi
provided a complete blow-up picture for solution sequences of (1.3) and successively in [27] Ricciardi et
al. constructed min-max solutions when A\; — 871 and A2 — 0 on a multiply connected domain (in this
case the nonlinearity e~ 7" may be treated as a lower-order term with respect to the main term e*). In
a compact Riemann surface, a blow-up analysis is performed in [14, 28] and some existence results are
obtained when 7 > 0.

A natural question concerns whether do there exist solutions to (1.3) on multiply connected domain € for
general values of the parameters A1, A2 > 0. For the classical mean field equation (1.2) Ould-Ahmedou
and Pistoia [22] proved that on a pierced domain Q. := Q\ B(&o, €), & € 2, there exists a solution to (1.2)
which blows-up at & as ¢ — 0 for any A > 87 (extra symmetric conditions are required when A € 87N).
In the present paper we consider (1.3) on domains Q. := Q\ U2, B(&;, €;) with several small holes, where
&1y...,&m are distinct points in Q and € = (e1,...,€n) is small. The main assumption is that A1, A2

decompose as
A =dr(ar + -+ am, ), Aa7? = Am(Qmy+1+ -+ am), mi € {0,1,...,m}, a; >2, a; € 2N. (1.4)

Condition (1.4) when mi1 = m is simply equivalent to have A1 > 8mm. In general, for the decomposition
(1.4) to hold for 1 < m; < m and suitable a;’s a necessary condition is that Ay > 8rmi and AoT? >
8m(m — m1). Our main result reads as follows.

Theorem 1.1. If (1.4) holds, there exist radii €y, . .., €m small enough such that (1.3) has a solution we in
Qe blowing-up positively and negatively at &1, ...,&Em, and Emy+1, ..., Em, respectively, as €, ..., en — 0.

Let us briefly describe how we build the solution u. using a perturbative approach. We look for a solution
of (1.3) as
ue = PU + ¢, (1.5)
where U is a suitable ansatz, P. is the projection operator onto Hg (2 )(see (2.3)) and ¢. € Hg(€2) is a
small remainder term. The ansatz U is built as follows. Letting
2025

W=l e e — g2
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be a solution of the singular Liouville equation
Aw + |z —€*7%e" =0 in IR?

. |z — €| %V dx < +o0,
R

denote by U; be the function w corresponding to a;,& and d; > 0,4 =1,...,m. Then U is defined as
m

mi
U:ZUk—% > U
k=1

k=mq+1

In section 2 a careful choice of the parameters d;’s and the radii €;’s (see (2.7)) is needed in order to make
P.U be a good approximated solution: indeed we will show that the error term R given by

Vl@PéU ‘/267TP€U

= AP. A —A
" v Jo ViePTdz ~ T Vae P

(1.6)

is small in LP-norm for p > 1 close to 1 (see Lemma 2.4). A linearization procedure around P.U leads us
to re-formulate (1.3) in terms of a nonlinear problem for ¢. (see equation (3.1)). Thanks to some estimates
in section 3 (see (3.8) and (3.9)) we will prove the existence of such a solution ¢. to (3.1) by using a fixed
point argument. The corresponding solution ue in (1.5) blows-up at the point &’s thanks to the asymptotic
properties of its main order term P.U (see Corollary 2.2). In Section 4 we will prove the invertibility of the
linear operator naturally associated to the problem (see (3.2)) stated in Proposition 3.1. Finally, we point
out that this approach turns out also useful to address a sinh-Poisson type equation, which is related, but
not equivalent to problem (1.3) and it is carried out in [11].

2. THE ANSATZ

Let G(z,y) = —5=log|z — y| + H(z,y) be the Green function of —A in §, where the regular part H is
a harmonic function in © so that H(z,y) = 5= log|z — y| on Q. Let us introduce the coefficients 3i;,
i,7 =1,...,m, as the solution of the linear system

1 _ _ s 20 log §; ifi=j
/87«] (%IOgEJ _H(£J7£J)> _gjfglkG(gjyék)_4WQ1H(£’L:£J)+{ 2a110g|£7,_§7| lfl#] (21)
Notice that (2.1) can be re-written as the diagonally-dominant system
iglog e — 2| B H(E3,63) + 3 BinGE1,60) | = —8n°asH (6, &5) +{ qre 8 ifi=
ij 108 €5 | Pij FERN o ik JsSk) | = TOT ©5I draslog & — &5 ifi#j
J
for €; small, which has a unique solution satisfying
4ty log d; _
Bij = Tejéij +0(|loge;| ™) (2:2)
where §;; is the Kronecker symbol. Introducing the projection P.w as the unique solution of
AP.w=Aw in Q.
{ P.w =0, on 0f), (23)

we have the following asymptotic expansion of P.U;:

Lemma 2.1. There hold

P.U; = Ui — log [2076"] + 4mai H (,&) — > BiG(x, &) + O <5f‘i + (1 4 log 51’) € + (i)") (2.4)

k=1 log ei k=1 0

uniformly in Qe and

P.U; = 47TOéiG(JJ7&) — Zﬂsz(fc7€k) +0 <(571 + (1 + }Zi—il) Z6k + (%)Ch) (2.5)
i i

k=1

locally uniformly in Q\ {&1,...,&m}.
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Proof: The harmonic function

¢ = P.U; — U; + log [204?5?”] —droi H(,&) + ZﬂikG(m7§k)
k=1

satisfies ¢ = 21og(6;" + |z — &|Y) — dma; H (2, &) = O(6;%) on 9 and

_ o o ) ) - _ _ €\ logdiy o
b = 2log (6% + €21) — dmaw H (2, &) + ;@kcz(x,gk) -0 ((5—1_) + (1 * Tog Ei)Q) on dB(&:, &)

m

0= 21007+~ 61°) — dreui (5,60 + Y- BuG(06) =0 (37 + (14 {2)e; ) on 0B(6;,6)

— log €;

for all j # i in view of (2.1)-(2.2). By the maximum principle we conclude the validity of (2.4), and then
(2.5) easily follows. O

Notice that by (2.4)-(2.5) P.U displays in the expansion near &, i =1,...,m1 a term
my 1 m
Ui — ji — = ji i)
(ZBJ =D BJ>G(rc,£)
Jj=1 Jj=mi+1
Since —AP.U; = |m—§i|arzeUi needs to match with eV ifi =1,...,mi and e TV if i = mi+1,...,m,
we need to impose

my m
Y Bi—1 X Bu=2m(e—-2) i=1..,m
T (2.6)
—TZ,B]‘Z'—F Z ﬁj¢:2ﬂ'(ai—2) t=mi1+1,...,m.
i=1 j=my+1

;=2
Thanks to (2.2), (2.6) requires at main order that a;logd; = %.-2loge;, i.e. 67 ~¢; > . Moreover, due
to the presence of log [20767] in (2.4)-(2.5) we need further to assume that the 6;"*’s have the same rate,

as it is well known in problems of mean-field form, see for instance [5, 6, 8, 10].

Summarizing, for any ¢ = 1,...,m we choose
;=2

5 =die, € 2 =rie, (2.7)

7

for a small parameter € > 0, where d;, r; will be specified below, and introduce

mi

(al+2)H(§l7§l)+ ;(O‘J—’_Q)G(ghgj)_% fl: (O‘J—'_Q)G(ghgj) t=1...,m

j=mi+1
pPi = j#&l m
(al+2)H(§l7§l)_Tz:l(a1+2)G(§l7§J)+ ) Z+ (O‘J+2)G(€l7§J) t=mi1+1,...,m.
j= j=mi+1
JFi

Setting A; = B(&i,m) \ B(&, €) for n < $min{[& — & : i # j}, by Lemma 2.1 we deduce the following
expansion.

Corollary 2.2. Assume the validity of (2.6). There hold

m 2
P.U =U; — log [204?5?1'} + (s — 2)log |x — & + 2mp; + O <e + z:eﬂ)f2 + |z — §1|> (2.8)
k=1
uniformly in A;, i =1,...,m1,
2 coy m 2
—7PU-U; — log [20;67] + (cvi — 2)log |z — &| + 2mpi + O | e + z:e“k*2 + |z — &l (2.9)
k=1
uniformly in A;, i =m1+1,...,m, and
i P " 2
— . ) - . . ap—2
P.U = 2W§:1(al +2)G(x,&) — = | Zﬂ(al +2)G(z, &)+ O [ e+ kzle B (2.10)
1= 1=mi =

locally uniformly in Q\ {&1,...,&n}.

In order to achieve the validity of (2.6), we will make a suitable choice of r; and d;, as expressed by the
following Lemma.
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Lemma 2.3. Ifr; =dse” ™" for alli=1,...,m, then (2.6) does hold.

Proof: Set
my m
S Bi—L Y B i=1,....m
j=1

ﬂi = Jj= m1+1
_TZBJ7~+ Z sz t=m1+1,...,m
j=mi+1

When j =1,...,m1 let us add (2.1) fori =1,...,m; and—% x (2.1) for i=m1+1,...,m to get

—2a;log & + o % - loge; + (4may —B)H (&,&)+ > (Amoy — Bi)G (&, &) — % > (drai—Bi)G(&, &) =0
i— i=my+1

i#]
Similarly, when j =mi+1,...,m we add —7 x (2.1) for i =1,...,m1 and (2.1) for i =mi1 +1,...,m to
get

m

—2a; log §; +B log €; + (4ma; — B H (&5, &) — 7 Y _(dmau — Bi)G (&, &)+ Y (Amay — Bi)G (&, 65) =0
i=1

i=mq+1
i#j
Since
Bi Bj —2m(a; —2) Bi
—2a; log d; 1 =02 Y 2logd; + ————1 j
ajlog + og €; p— oge—2logd; + o — og 1
in view of (2.7), the previous conditions form a system of m equations in f1, ..., Bm which has diagonally-

dominant form 3; — 2w(a; — 2) + O(“Oge‘) = 0 for € small. The solution fi,...,Bn is then uniquely
determined and we want to check that 8; = 2w(a; — 2). Inserting 3; = 27(a; — 2) into the system, it
reduces to
10gﬁ+ﬂ'pj:0 j=1,...,m,
d;
which is always true by the choice of r; and d;. O
Finally, we need to impose that VieFV¢ and Vae "FV¢ give integral contributions on the balls B(¢&;,9) for

i=1,...,my and for i = mi + 1,...,m, respectively, which are proportional to the a;’s. As we will see
below, this is achieved by requiring that

a_vms )e?mPi o Vi (€;)e™

7 d;0; i,jzl,...,ml
Qi V2(§d )(jf & =qj Vz(%); h,j=mi+1,...,m 211)
The choice
%ﬁﬂpi i:17...7m1 %);ﬂpi i:L'”?ml
= %&2”% t=m1+1,..., T Mfg);ﬂ i=mi+1,...,m (2.12)

guarantees the validity of (2.6) and (2.11) in view of Lemma 2.3. We are now ready to estimate the
precision of our ansatz U.

Lemma 2.4. There exists o > 0, po > 1 and C > 0 such that for any € € (0,¢0) and p € (1,po0)
IR, < Ce? (2.13)

for some op > 0.

Proof: Setting A = max{ai,...,am}, by (2.8)-(2.9) and the change of variable z = §;y+¢&; let us estimate

Ne2mpi m
/ VlePede — M/ |x_é—i|a¢72eU 1+O<E+Zf_ak2*2 +|$—£z|>:| dr
Ay A;

2a268: P
2 a;—2 m
a5 |y| ‘ < T
= — ———— 14+0(e+ > s 2 +§y|l || dy
€ /€1<\y\ g (1 + [y]*)? ;
_ 2moy 1

[1+0(H)] (2.14)

€



6 P. ESPOSITO, P. FIGUEROA, AND A. PISTOIA

for any i = 1,...,m1 and similarly

/ Voe TPV gy — 2T [1 + O(e%)] (2.15)
A, €

for any i = mi1 + 1,...,m, in view of (2.7), (2.12) and
a;—2 2
/ lyl _dy= 2.
T+l o
R2

By (2.9) we have that

_ e |ai—2 _1
VeV =0 <[%6U"] T) uniformly in A;, for i =mq1 +1,...,m, (2.16)

and by (2.7) and (2.16) we get the estimate

oy _1 a;+2 a;—2 _1
Vie"Vder = O<5i7/ x—&|* %Y de> = 0(51_ 7 T2 / |yl T4 )
fv -] VA (el I

e =3;
aj+2 1 ;=2 11 a;+2
= 0(51. T *2[/ st ds+/6 s ds]) =0(1) (2.17)
g—z 1
for all ¢ =my +1,...,m. Similarly, by (2.7)-(2.8) we deduce that
/ Vae "PVdz = O(1) (2.18)
A;
fori=1,...,m1, in view of
_ g2 —T
Voe TPV — 0 <[%ew] ) uniformly in A;, for i =1,...,m . (2.19)
Therefore, by using (2.10), (2.14)-(2.15) and (2.17)-(2.18) we deduce that
mi m \
Vie"Vede = Z/ Vie"Vdo + ) /vlePEde +0(1) = 2214 0(€7)] (2.20)
Q — JA. L 2e
€ =1 i 1—m1+1Ai
my m 2
/ Vae TPVedz = Z/ Voe TPVdr 4 Y /Vze*TPedeJrou) = 22T L o] (2.21)
Q Ay ) 2¢
€ =1 K 'L:m1+1Ai
in view of (1.4), where 0 = +.
Since
—|z— &% %Y +0(e) inAyi=1,...,m,
Lig —g|*72e% +0(e) in Ay, i=mi+1,...,m
AP.U = T m
O(e) in Q\ J 4
i=1
in view of (2.7), by (2.8)-(2.9) and (2.19)-(2.21) we can estimate the error term R as:
R = |z — §i|ai*2eUio(e” Yz — §i|) +O(%) (2.22)
inA;,i=1,...,m1, and
1 a;—2 U; o o
R=——lo—&* 2" 0(" +]a - &l) + O() (2.23)

in A, ¢t = mi1 +1,...,m, while R = O(e) does hold in Q. \ U A;. By (2.22)-(2.23) we finally get that
i=1

there exist g > 0 small, po > 1 close to 1 so that |R]|, = O(e??) for all 0 < € < ¢ and 1 < p < po, for

some o, > 0. (]
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3. THE NONLINEAR PROBLEM AND PROOF OF MAIN RESULT

In this section we shall study the following nonlinear problem:

{ g(;b)()’: —[R+ A(o) + N(¢)] 2111%}267 (3.1)

where the linear operators £, A are defined as

L(¢) = A¢p + K1 ((Z) - )\il/g K1¢d$> + K2 ((25 - é/ﬂ K2¢dx) (3.2)

and

A VlepeU er V1€P€U¢dil7 \ 9 Vze—-rPeU er V267TP€U¢d.'IJ
O =M O e ta ) T T e O T Ve

(3.3)
K (6- i/ Kigde ) — K (¢ — L/ Kodda
A1 Q. X272 Q.
with
mi m
Ki=> lo—&|* %™, Ko=) |o— & %™ (3.4)
k=1 k=mq+1
The nonlinear term N (¢) is given by
N(S) =2 VyePeU+d - ViePeU - ViePeU B er ViePeU gdz
! ViePeUtody ViePeUdz ViePeUdz ViePeUdz
Qe Qe Qe Qe
R VayeT(PeU+0) g Voe TPU Ve TPU Jo, Ve TV gd
T fﬂé Voe—T(PU+&) dy fﬂe Voe—TPUdy Tfﬂé Voe—TPUdy ¢- fﬂe Voe—TPUdy

(3.5)
It is readily checked that ¢ is a solution to (3.1) if and only if u. given by (1.5) is a solution to (1.3). In
section 4 we will prove the following result.

Proposition 3.1. For any p > 1, there exists e > 0 and C > 0 such that for any e¢ € (0,e0) and
h € LP () there exists a unique ¢ € H}(Q) solution of

L(p)=h in Q, ¢=0 on I, (3.6)

which satisfies
ll¢ll < Cllogel [[Rl]- (3.7)

We are now in position to study the nonlinear problem (3.1) and to prove our main result Theorem 1.1.

Proposition 3.2. There exist po > 1 and eg > 0 so that for any 1 < p < po and all 0 < € < €, the
problem (3.1) admits a unique solution ¢(e) € Hg (), where £, R, A(¢) and N are given by (3.2), (1.6),
(3.3) and (3.5), respectively. Moreover, there is a constant C' > 0 such that

[¢lloc < Ce”7|loge,
for some op > 0.
Here, o), is the same as in (2.13). We shall use the following estimates.
Lemma 3.3. There exist po > 1 and eg > 0 so that for any 1 < p < po and all 0 < € < ¢p it holds

[A(D)lp < Celo]l, (3-8)
for all ¢ € Hy(Qe) with ||¢|| < ve®»|loge|, for some o}, > 0.

)\ﬁz(iq)%(x)e(fr)i*lpezf
T, Vi(@)e T P
(2.20)-(2.21) and similar computations as to obtain (2.22)-(2.23), we find that

Proof: For simplicity, we denote W,; = for i = 1,2. By using (2.8)-(2.10),

Wi() = |o - &[* %" [14 O(lz — & +¢™)]
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my
uniformly for z € A;, i =1,...,m1, Wi(z) = O(€) uniformly for z € Q '\ U A; and

i=1

Wa(e) = o = &% %" [1 4 O(jz - &] + ¢7)]

uniformly for z € A;, i = my + 1,...,m and Wa(z) = O(e) uniformly for z € Q\ U A;. Also, from

i=my+1
my my
the definition of K and K> in (3.4) it follows that K; = Z O (67") = O(e) uniformly for z € Q\ U A;
3 i=1

and K = Z O (6;%) = O(e) uniformly for z € '\ U A;. Hence, for any g > 1 there holds

i=mq+1 i=miq+1

e o, 511\
[Wr — K|¢ gc[z/ (I = &1 2e% o — &) + ™)) +/ (|W1|q+|K1|q)}
i=17 A AUy 4,

M1 a;—1 19 a;—2 |9
_ 207 y| i 5 207 [y|*i
<C 52 q/ — | dy+ €71 i dy ) 4 ¢
[2_21 < ' i€ | (14 [y[ei)? At | (14 [y|oi)?
< Cet1a
for some o1 ,. Similarly, we find that
m 3 2a2|y|ai71 q . Qazlylai72 q
W — Ko q < C[ <57,2 Q/ e =4 B dy+ 60211/ i 4 B dy +6q
” Hq i:%;rl Aié;fi (1 + |y|ai)2 A'L(;i&i (1 + |y|ai)2

<C €192,
for some o4 ,. It is possible to see that taking ¢ > 1 close enough to 1, we get that o7, > 0 for ¢ =1, 2.

Notice that A is a linear operator and we re-write A(¢) as

2
1 1
A¢) = ; [(Wi - Ki)o— N2 (Wi — Ki) . Wi¢ + mff@/&] (Ki —Wi)qb}-
Hence, we get that
1
[I1A (o Hp<§:1 (Wi — K3) |, + 261 (Wi — Ki) . +m K (Ki—Wi)¢
1= € P P
2 1
Z |:HW, Ki”p'rio ||¢||P3i0 + m ”Wl - Kin ”Wlel H(ZSHSA
=1

1
+ St Ml G = Wl 6l

2
<C) [ o] +€totosra g + e"“ﬂ*"“l\aﬁl\]

i=1
’
<cer|4l,
where 0;, = min {ag,pm;a;p + 03,7«1.1;027”2 +ospli=1,27=1,.. .7m1} with 745, si5,1=1,2,7=0,1,2
1 1
satisfying — + — = 1. We have used that
Tij Sij
mi 2 ai—2 |T11 mi —
2a j 2-2r17
IWallty < 0135 / S apre | so | v coemmon
Y i=1
and
2a2|y|aj—2 T21

dy + €l < Cvermffs,rm7

o1 2—2ro7 J
Wall;3t < € Z % /H \m

j=mi+1
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2—-2
where for ¢ > 1 we denote 03,4 = min{—q Cj= 1,...,m}, and similarly that ||K;||h < CeP7%».
a5q
92—
Note that < 1 for any j = 1,...,m. Furthermore, we have used the Holder’s inequality |luv|ly <
a;q

2]l gr V]| qs With %—l—% =1 and the inclusions L?(Q.) < LP"(Q.) for any r > 1 and Hj(Q) — LY(Qe) for

any ¢ > 1. Let us stress that we can choose p, ri; and s;;, ¢ = 1,2, 7 =0, 1, 2, close enough to 1 such that
/
op > 0. (]

Lemma 3.4. There exist po > 1 and €0 > 0 so that for any 1 < p < po and all 0 < € < €g it holds
[N (¢1) = N(g2)llp < Ce77 |1 — g2 (3.9)
for all ¢; € Hy(Q2e) with ||¢i|| < ve®»|loge|, i = 1,2, and for some o > 0. In particular, we have that
[N ()llp < Cer |4 (3.10)
for all ¢ € HY(Q) with ||¢]| < ve®|loge|.
Proof: We will argue in the same way as in [22, Lemma 5.1]. First, we point out that

Vi(z)e")' T (BeU+9)
Jo, Vi(@)eC T PUES)

N(@) =D X(=n)" {fi(®) = :(0) = F(0)[¢]}, where fi(¢) =

Hence, by the mean value theorem we get that

N(¢1) — Z)\ )T H{fildr1) — file2) — fi(0)[d1 — ¢2]}

=D (=) H{F(Ge) — FO)} 6 ¢2J—Z* )T (Bui)[Boss b1 — B2],

(3.11)
where ¢g, = 0;¢1 + (1 — 0;) 2, (;EW = pige, for some 0;, y; € [0, 1] i=1,2, and
F @, 0] =720 p[ i(@)e e V(e ’”vfg Vi@e' s Vi(w wfg Vi(@)e"tv
7 ) - 2 2
fﬂ Vi(z (fQ6 i( ) (fQ6 i( Z)
fQ etipu N 2Vi(x)e“i er Vi(z)eviv er Vi(x)e“iw}
- 2 N3 ’
(fné Vi(z 7’) (fsze %(x)e“r)
where for simplicity we denote u; = (—T)ifl(PeU + ¢). Using Holder’s inequalities we get that
i—) [ 1Vie* |lpr, [[Vie™ |17, [[Vie" |13,
F @], <P [%le\ sillvllpt; + To—m I0llpe: Y117 + s 1Y llpa: 1017
| I, [Viewi|[s 770 T [Viewi||z "7 [Views|[7 70
[Vie“ |lp 7w IVie  lp | v, uip2
+ 7”‘/16 I” TIHwHFﬂz”v”ﬂ i +27.”Vie IH n”v”ﬂ”"/’Hﬂ
[[Viewi |13 ! T WVaew |13 g
[Vie  llprs , IIVie" I5r | IVie 5,
et + e + e ] 1l
(3.12)
with r_ —|— — + — =1, 7'_ + q_ = pi’- + ; = 1. We have used the Hélder’s inequality, the inclusions

Lo 111 .
presented in the previous Lemma and ||[uvw||q < |[ul|gr||v]lgs||w|lqe with =+ =+ 1= 1. Now, let us estimate
ros
IVie" Lo,

View|| with ¢ = qB,W i =1,2. For i = 1, arguing exactly as in the proof of (2.20) we obtain that
i€ty

= iO (61.2*("1’*2)‘1) ZO < = H)q) for any ¢ > 1.
T =1

pP.U
e




10 P. ESPOSITO, P. FIGUEROA, AND A. PISTOIA

. C . . .
Moreover, (2.20) implies that HV;lePEUH > =L for some C; > 0. For i = 2, similarly we obtain that
1 €

_ q iis 2-(a;+2)q B C
HVge TRUNT — Z (@) <e o ) for any ¢ > 1 and HVze TPEUH > 2 for some Cs > 0.
T i=my 41 ! €
2—(a; +2 )
Note that 03,4 — 1 < M forany i=1,...,m.

aqq
On the other hand, using the estimate |e® — 1| < |a| for any a € IR we have that

— (/ ‘e(—r)iflPeU
q Q.

£ ([ eorne
<\

< HVie(*ﬂFlPeU

q i—17
‘/ie(*T) 14’“1- _ 1

q>1/q

)
qt;

Hweeﬂi*(&wéw) _ Ve TRU

q> 1/q

q

Hq

Hi

as;
1 1 . .

with — + o= 1, ¢ = 1,2. Hence, it follows that

(3 k3

< Ce”3asim! 7P| log e,

Pus

’Vieeﬂi*(Peuw"w — Viem TR

< et
q

in view of ||, || < ve?|loge|, i = 1,2. In particular, if ¢ = 1 we get

HView)i*l(PsUwSM) _ Vie(#)HPEU‘

=0 (603*3i71+‘7”| log ) for any s; > 1.

i—1 rg
By the previous estimates we find that HVie(fT) (PeUtdu;)

=0 (603’q5i71+‘7f’|10g €|+ 603"771). Also,
q
choosing s;, ¢ = 1, 2, close enough to 1, we get that o, 4+ 03,5, > 0 and

e e | 5 G gene o ogel > L (= et e = &
1 € € 2e
Taking ¢ = pri, we obtain the estimate for i = 1,2

i—1 e
||Vie(*7) (P6U+¢>ui)||m _

i > o (E [50P+03’Pﬁ'5i71| log e| + Eaa,prifl])
[VieC " PU+0u) | o

=0 (6"34”1- |:6‘7P+‘73w177‘i3i “7rri|log €| 4 1]) =0 (e7%7mi)

choosing s; > 1 close enough to 1 so that o, 4+ 03,pr;s; — pr; > 0, 4 = 1,2. Now, we can conclude the
estimate by using (3.11)-(3.13) to get
[T (PeU+du,) 113,

2
£ Gu)léodn = a2l < O3 oA T 160 llén - o

i=1

2
IN(1) = N(62)llp < DNl
i=1

2
< CY et log el ¢y — all < CeF |1 — onll,
=1

where o, = 2 min{op, 4+ 303,r, : i = 1,2} > 0 choosing r; close to 1 so that o) + 303 pr, > 0 for i = 1,2.

Let us stress that p > 1 is chosen so that o, > 0. (]

Proof of the Proposition 3.2. Notice that from Proposition 3.1 problem (3.1) becomes
¢ =-T(R+A(¢) +N(¢)) = A(¢).

For a given number v > 0, let us consider F, = {¢ € H : ||¢]| < ve’?|loge|}. From the Proposition 3.1,
(2.13), (3.8) and (3.10), we get for any ¢ € F,,

IA@)I < Clog el IRl + A6 » + IV (9),] < Clloge] [7 + €72 1gl] + €77 6]
< Ce?|log | [1 + zue"‘i“{f’%'”%'}|1oge|] .
Given any ¢1,¢2 € F,, we have that A(p1) — A(d2) = =T (A(p1 — ¢2) + N (1) — N(¢2)) and
A1) = A(g2)]| < Cllogel [[A(61 = d2)lly + IN (1) = N(g2)ll, | < Ce™™ 707 loge| g1 = gull,
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with C' independent of v, by using Proposition 3.1 and (3.8)-(3.9). Therefore, for some o > 0 we get
that || A(¢1) — A(p2)|| < Ce?|logel||p1 — p2||. It follows that for all e sufficiently small A is a contraction
mapping of F, (for v large enough), and therefore a unique fixed point of A exists in F,.

O

Proof of the Theorem 1.1. The existence of a solution

m

w=YPU -1 Y RU o
j=1

j=mi+1

to equation (1.3) follows directly by Proposition 3.2. The asymptotic shape of the solution ue as € — 0"
follows by the definition of U;, Lemma 2.1 and the choice of the parameters (2.7)-(2.11). O

4. THE LINEAR THEORY

In this section we present the invertibility of the linear operator £ defined in (3.2). Roughly speaking,
in the scale annulus 6;1(Bi — &;) the operator £ approaches to the following linear operator in IR?
207 [y|*
(14 [y[~i)?
It is well known that the bounded solutions of L;(¢) = 0 in IR? are precisely linear combinations of the
functions

Li(¢) = Ad + 6, i=1,...,m.

Jyl 7 ai wl? (e 1 — |yl
Yii(y) = ———— cos (—0), Yo2i(y) = ————sin (—0) and  Yoi(y) = ———,
W= (3 W= T o g W= Ty
which are written in polar coordinates for ¢ = 1,...,m. See [7] for a proof. In our case, we will consider

solutions of L;(¢) = 0 such that [, [Vo(y)|? dy < +oo, which reduce to multiples of Yp;. See [22, Theorem
A.1] for a proof. Another key element in the study of £, which shows technical details, is to get rid of the
presence of

- 1 .
(o) = —m/ﬂ Ko  j=12 (4.1)

Following ideas presented in [22], let us introduce the following Banach spaces for j = 1,2
o;—2
Lo, R? :{UEWi’f R?) : / Luy 2cly<—6—oo}

and
|ai—2

o0 = {w e wi2@®) [ wuPay+ [ Ul < oo

Jyl 2 20\
e, = ([ gl )
b, = ([, oyt

a;—2 1/2
Ul|H,, = Vu 2d—l—/ Lu 2d> .
fale, o= ([ 1vatRan+ [ R ay

It is important to point out the compactness of the embedding in, : Ha, (IR?) — La, (IR?) (see for example
[12]).

endowed with the norms

and

Proof of the Proposition 3.1. The proof will be done in several steps. Let us assume by contradiction
the existence of p > 1, sequences € = ¢, — 0 (with a slight abuse of notation), functions h, € LP(Q,),
b € W22 (Qe,,) such that

L(pn) =hn in Qc,, ¢n=0 on 0Q,, (4.2)

with ||¢n|| = 1 and |logen| ||hnllp = o(1) as n — +oo. We will shall omit the subscript n in §;, = ;.
Recall that 62” = d;j nen and points &1, ..., &m € Q are fixed.

Now, define ®; (y) := ¢n(& +diy) for y € Qi p 1= 5;1(Q€n —&;),i=1,...,m. Thus, extending ¢, =0
in IR? \ ., we can prove the following fact.

€n

Claim 1. The sequence {®; ., }n converges (up to a subsequence) to ®F weakly in He,(IR?) and strongly
in Lo, (IR?).
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Proof: First, we shall show that the sequence {‘I%',n}n is bounded in Hq, (]R2) Notice that fori =1,...,m

@nllngio, = [ OIVoun(e+dp)dy= [ [Von(@)de =1,

Qi n Qep,

Thus, we want to prove that there is a constant M > 0 such for all n (up to a subsequence)

o;—2
y K2
H‘I’zn||2L% :/Q u'_*w‘ﬁd!/) dy < M.

Notice that for any ¢ € {1,...,m} we find that in ; ,

AD; 4 57K (6 + 6iy) (Pirn + C1n) + 07 Ko (& + 65y) (Pin + Con) = 07 hn (& + 6i1), (4.3)

i

where for simplicity we denote ¢;j,n = &;(¢n), with ¢; given by (4.1). Furthermore, it follows that ®; ,, — ®;
weakly in H{(,,) and strongly in LP(K) for any K compact sets in R?. Now, let ¥ a smooth function
with compact support in R?. We multiply (4.3) by x and we get

- / V., Vx + /
Q'L,n Qi,n

+ / 67Ky (& + 0iy)PinX + C2n /
Q Q

i,m i,mn

ST K1 (& + 0:y)PinX + E1n / 07K (& + 0iy)x
Q'L,n

52K (€ + biy)x = / 52 (€5 + 011) .
Qi,n

Hence, we obtain that for 7 = 1,2

2 o;—2

(2 j) 2ilvl™
(1 + |y[*)

2077 ||~ 2
(1 + |y[e)?

+0(67e) ifi=1,....,m
5K (& + biy) =

(G—1) +0(8%e) ifi=mi+1,...,m

uniformly on compact subsets of IRZ. Thus, we get that

202y, i 202y,
— V&, »Vx +/ {27 +O(d;€)| Pinx + Cl,n/ —=—— + 0(d¢)| x
Lm o [Ty 00 o LT ez O
+\/
Q

fori=1,...,m1 and

—/ Vq)i,7LVx+/
o Q

i,mn i,mn

- 207 y|*i~? 2 9
’ ., L1+ y[*)? (%e) Q ( )

0(5?6)‘1>i,nx + 62,n /

Qi n

O(5fe)x = / 51-2hn(& +0iy)x

Qi n

in

{2a?|yl”’2

O 5?6 P nx+ ¢ n/
(05¢) : @+ [yl

Q'L,n

O(87e)x +/

+ 0(57;26)] D nx
Qi,n

i,m

for i =mq +1,...,m. We re-write the system for ¢, and ¢z, as a diagonal dominant one as n — 400

: 202yl | ~
n 205y o6 e —on
o /Qm [(1 + |y|ei)? + O(d;€) | x + o(1)éz, (1)

[ 205 |y|*~*

oW antan [ G

Qjm

+mﬁﬂx:om,

2 o —2
choosing i € {1,...,mi1}and j € {m1+1,...,m}. Thus, if we choose x so that MX dy # 0 for
gz (1+ |y|or)?

k =i, j then we obtain that ¢, = O(1), for i = 1,2. Now, we multiply (4.3) by ®;,,, for any i € {1,...,m}

and we get
IV, 0 [° +/
Q

),
<),

6 K1 (& + 51‘1/)‘1)?,71 + C1,n / 67 K1 (& + 0iy)Pin
Qi n

in

5?K2(& + 5iy)q>?,n + Co.n / 57;2K2(§i +0iy)Pin = / 5i2hn(§i + 05y) Pi .

in in Qin

i
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Hence, we deduce that
m
> 2071 PinlT,, = 14 Mi(E1,n)” + Ao (E2n)” + o(1). (4.5)
i=1
Therefore, the sequence {®;}n is bounded in Hai(le), so that there is a subsequence {®;,}» and
functions ®}, i = 1,2 such that {®;,}, converges to ®; weakly in H,,(IR?) and strongly in L., (IR?).
That proves our claim. O
Define the sequences v n = ¢n + Ci,n, © = 1,2. Notice that clearly
AQ/}i,n —+ K11/)17n —+ Kzi/}z’n = h, in Qen, 7= 1, 2. (46)

Now, define U; j n(y) := ¥in(§5+90;y) for y € Qjn,i=1,2and j = 1,...,m. Note that ¥; j , = @, +Ci n.
Thus, we can prove the following fact.

Claim 2. ¥y ;, — a;Yo; forj=1,...,m1 and V2 ;,, — a;Yo; for j=mi+1,...,m, weakly in Hea, (]Rz)
and strongly in La, (IR*) as n — 400 for some constant a; € IR, j=1,...,m.
Proof: From the previous computations, it is clear that in €2, ,
AL+ 83 K1 (5 + 559) W gin + 6 K2(&5 + 65y) (Wi — G + E2,n) = 65 ha(&5 + 65y)
and
AW + 5 K15 + 85y) (Wan — B2 + E1n) + 6 K2(&5 + 69) W5 = 65 hu (&) + 55y).-

Furthermore, {¢ »} is a bounded sequence in IR, so it follows that {W; ;»}» is bounded in He, (]RQ) for
i=1,2and j =1,...,m. Also, we have that

/ (621 (€5 + 859))7 dy = 622 / Vo (2)]? die = 622 [ 2 = o(1).

J.n n
Therefore, taking into account (4.4) we deduce that W; ;, — W} as n — +oo withi =11if j =1,...,m4
and i =2 if j =m1 +1,...,m, where U} is a solution to
2a3[y|" 2
J _ - . 2
A\I/+(1+|y|aj)2\l’ 0, j=1,...,m, in IR*\ {0}.
It is standard that W7, j = 1,...,m, extends to a solution in the whole IR?. Hence, by using symmetry
assumptions if necessary, we get that ¥; = a;Yo; for some constant a; € R, j = 1,...,m. O

For the next step we construct some suitable test functions. To this aim, introduce the coefficients 7;;’s

and 7s;’s, 4,7 = 1,...,m, as the solution of the linear systems
2 ifi=j
Vi {——logéﬁ-Héu&] D iGlEr &) = {O i (4.7)
k=1, ki ifi#j
and
4 8 8w e
3a]log6 +3+ H(&;,&) ifi=j
Vi | — 10g61—|—H &, &) :| Z ;G (&, &) = 8 (4.8)
k=1,k#i ?ajG(givé-j)v lfl#],

respectively. Notice that both systems (4.7) and (4.8) are diagonally dominant, system (4.7) has solutions

4 1 2m(a; — 2) 1 o
(k) = (L) i
loge; + | log €|? log e * | log €|? orr=d

o(@) for i ]

Vig =

and for the system (4.8) we get

8m ajlog d; ( 1 ) 4m 1 .
_ _ 4 o( ) for i =
. 3 loge; | log €| 3 (a5 =2) + |log €| ore=J
Yij = 1

O(@) for i
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267
Here, we have used (2.7). Consider now for any j € {1,...,m} the functions no;(z) = —W
J T =S
and _
4 57—z —& 8 57
(x) = 2 log(877 + |z — & J + - . )
(@) = G085 +la = 61 o + e
so that
Anoj + |z = &% %oy = —|x — e and  Anj + |z — &% ey = |o — &% Z;,
j — | — &% . ..
where Zo; (x) = Yo, (65 He—¢]) = W Notice that no; +1 = —Zo; and, by similar arguments
T —Gj| 7

as to obtain expansion (2.4), we have that the following fact.
Lemma 4.1. There hold

i & 871'
Penoj =noj + »_ 7 G(x,&) + O(c”)  and  Pemy =n; + — 3 4 H (@ &) Z%; (z,&) + O(e”)

i=1 i=1

uniformly in Qe for some & > 0.

Proof: On one hand, the harmonic function f(x) = Penoj(z) — noj(z Z%J (z,&;) satisfies
i=1
F(a) 27 O(57) on 90 and
)= T = /) on an
5j]+|x_§j|aj !
25;1]' 1 m
f@) = ——— —7j; |—5=loge; + H(E, &) +0(e)) | — > 755 [G(&,&) + Ole))]
d;7 + €% 2m i=1,i#]
€ m
:O((é_]) ) + 7350 Z 7i;O(€;)
J i=1,i#j
on 0B(&;,¢€;) by using the first equation in (4.7) and
267 i
flx) = Py Vij 10g6z + H(&, &) + O(e) ) ; Vi [G(&i, &) + O(ei)]
kA
:O(‘S ) +7i;0 Z Yr;iO(€i)

k=1,ks#i

on OB(&,€) for i # j by using the second equation in (4.7). Therefore, by the maximum principle we
deduce the expansion of Pecno;.
On the other hand, similarly as above the harmonic function

f(@) = Penj(z) —n;(z) — %ﬂaa‘H(%{j) +> G (@, &)
i=1
satisfies

2657 4 o o

: . ey @)
flx) = —%{log@] + log <1+ (;—z) )] : -~ <Z])aj - g - (1;_])(1] - Sgajﬂ(fj@j)
j

J

Fla) = —31os(65” +1o —gI™) | -1+

_ 1 N _ L
+ Vi {—glogq +H(§j7§j)] + > A5G, &) +95,;0(6) + Y 7i;0(e)
i=1,i#] i=1,i#j

o ((2)")+o((2)” |log6|)+0<ej>+%j0<ej>+_iz 5450(e))
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on 0B(&;,¢€5), by using the first equation (4.8) and

f(x) o tog o — €] — $1og (14 22 _ H 12 } 5o
r)=|—zsajloglr —§&;| — s lo — o T
e T 67 +le =gl ] 387 e — g
8m N 1
- 3o H(@,6) + Fis {—%IOgEi‘FH(fivfz] Z G (Eir €x) + 7i50(ei) Z i O(e)
k=1,k#1 k=1,k#1%
:O((S )+77,] Z ’Yk:] E’L
k=1,k#1

on 0B(&;, ¢;) for i # j by using the second equation (4.8). Therefore, by the maximum principle we deduce

the expansion of P.n;. O
Denote ¢; = IIT Cin for i = 1,2, up to a subsequence if necessary. Hence, we get that
n—r oo
Djn —a;Yo;—¢, forj=1,...,m1, and P, — a;Yo; —¢C, for j=mi+1,...,m, (4.9)

weakly in Ho; (]RZ) and strongly in L, (]Rz)7 since @, = Vs jn — Cin.

Claim 3. There hold that (a; — 1)aj + 2¢; = 0 either fori =1 and all j = 1,...,m1 or for i =2 and all
j=mi1+1,....,m

Proof: To this aim define the following test function P.Z;, where Z; = n; 4+ vino; and vj is given by

5 8w -
%log@ + <?Oéj —’ij> (€:&5) = Z i G (&ir &)

* i=1,i7#]
Vi = ,
1- Vii (5]7 é‘] Z '77,] é‘ué‘]) + == 7]] log5
1=1,i#]
so that
* 8 S * = * 1 ¥
V= 3% TVt H(&5,85) — Z (Fi5 — v57i5)G (&, &5) + (%J v; i) log 85 (4.10)
i=1,i#£7]

Thus, from the assumption on hy, [logen| ||hnll« = o(1), we get the above relation between a; and &
either for i =1 and all j =1,...,my or for ¢ =2 and all j =m1 +1,...,m. Furthermore, from (2.7) and
the expansions for v;; and 4;; we obtain that

M10g5j+0(1) o 9
N = i = — 33 loge+ O(1).
7” log5 +O(|loge|)

Notice that P.Z; expands as

8 -
PeZ; =2 + 5 o H(w, &) = 75 <——10g|1’—€a| + H(z,&;) ) Z ¥ii G (@, &)

i=1,i#j

£0E) 35 | (5 Togle = &+ H@.6)) + 3 26(.6) +O()

i=1,i4j
™ ~ * i *
(g — i +%ﬂj> @,&)— > (s — 7)) Gl@.&) (4.11)
i=1,i#]
1 * G
2—( — 7 755) log [& — &] + O(e”) 4 7; O(¢”).

Assume that ¢ =1 for all j =1,...,mq or i = 2 for all j =m1 +1,...,m. Multiplying equation (4.2) by
P.Z; and integrating by parts we obtain that

/ hP€Zj = / AZ] [1/}7, — Ez,n] —|—/ [Kl'l/)l + K21,Z12] Per7
Qe Qe

€
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in view of P.Z; = 0 and v¢; = ¢;,, on 02 and

/ AY; P Z; :/ ViAP.Z; — s
Qe Qe

/ APZ; = / AZ; i — ).
Qe J Qe Qe

Furthermore, we have that
/ hPZj = / (i — Gi.n] [lﬂf — &2 Zoy — | — &5 2 in,
Q. Q.

+; (—|9U — &% o~ §j|aj72€Uj770j)] +/ (K11 + Katpo] PeZ;
Q

€

- /Q il — &7 2y, +/Q o= &2 (P25 — Z; — )

+/ (Kﬂﬁl + Katpg — |x — §j|aj72€Uj1/)i) P.Z; — 5z‘,n/ |z — &% 2% (Zo; — my + 7} Zos)

€

in view of
Any + ;5 Anos = |z — &% % [Zo; —ny +7; (=1 = moy)] = o — &2 [Zo; —my + 5 Zog] -
Now, estimating every integral term we find that / hPZj =0 (|logel||hllp) =0(1) for all j =1,...,m,

Qe
in view of PZ; = O(|loge|) and G(z,&k) = O(|loger|). Next, by scaling we obtain that either for ¢ = 1
and all j=1,...,miori=2andall j =m;+1,...,m it holds

2y 203 |y 2 20 |y 2
Yilr — &|% 2foJZO‘:/ ey ‘I’i,‘,nYO‘dy:a'/ Y dy +o
/Qé o=l 5= o, T o oo Yoy =i |y arye Yor du - e(l):

J,n
JES Iy <1—|y|%> by
w2 (L [y1%)2 Y e (L Jy]°0)2 \ 1+ Jy|* 37

203 |y| i 2 / 2053 |y|*7 21— |y|™
or e Yoi log ly s o loglyldy = —dn
fo Tty el = [ G T o

Also, by using (4.10)-(4.11) we get that

Note that

and

g — : * a;— ; 3w ~ *
/Q v — &% ey (PZ; — Z; — ) :/ |z — &5 26U’¢i{PZj—Zj— <?0<j—%'j +7jﬂj>H(l’,£j)

Qe

- 1 .
+ > (B — ) G, &) — (%J Y5 i) log & — &-I}
i=1,i#j

+ [ e =177 (S~ ) UG 65) = B )
/ hilw — &]% % Z (B35 =577 ) [G(&i, &) — G(,€5)]
3y

+ o (s — s / il — &1 6% [log lo — & — log ;]

o U 5 202 |y|®
[ gl o) + [ 2050107 ol dy
Q.

. o (L Y[%9)
1, . 2aj|y|aﬂ
+ oo (35 %’m)/ﬂjn ot oy Vi og |y| dy
aj(aj —2) / 207 |y|* 2
=—-———"ay Tor Tz Yo log |y| dy + o(1),
3 P e (L4 Jyloa)2

in view of

1 - * aj(aj—2) 1
ey o).
o (’YJJ Yj ’YJJ) 3 + [log €|
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Furthermore, using (3.4) we have that

| (i lo = 1726 Pz =P, + by dy

€

2 oy —2
Z/ %\Pi,l,nﬂ&(gl + diy) dy = o(1)
~Ja,,, (L+1ly[*)?

I,n

since for [ # j and y € &, '(B; — &) it holds

8w X
Zi(& + 0y) = Zj(& + diy) + o H(& + 01y, &) — > Gws = veiy) G(& + Gy, &x)
k=1,k#j
1, &
+ o (’YJJ Vi ’YJJ) log |& + oy — &5] — ( Yii 'YJJ’YJ) H(& + 0y,&5) +0(€)

8m - . 1
= ai6(66) + 06 + 8D = (s = 1537) (=5 low oyl + H(61 + 0. )

= D (ks — i) (G, &) + Oilyl)

=— (315 — 57} ) log o1y 42 3 G(&,&5) — (i — s ) H (&, &)

- Z (ks — viv; ) G(&, &) + O(dilyl),

k=1,k#l

and using that 71; — y1;7; = O(|loge| ") for | # j, we deduce that

20(2 o —2
IR e GRS T

l.n
|al 2

1 ~ . 2& 2&2 ap—2
™ (’Ylj - ’Yzj’yj) log d; / Ll 1yl W, 1., log |y| dy

o, (L+1yl*)? L (L lylon)?

207 |y|*1 / 207 [y !
— (bounded constant 7\111- ndy+ O |6 7d
( )/ﬁ P e R A (R e

\Ilz,l,n dy + (’Ylj ’YU’Y}F) /{;

In

=o(1).

Notice that

207 |y|*9 / 207 [y|*~*
Vi) dy =0 [ T Yo, (y) dy + o(1) = o(1),
[, T st = [ T o) do o) = o)

Jsm

since
2a3[y[* > / 205[y|* % 1 |y[*
75/ dy = dy = 0.
fro Tttty = [ T T
If eitheri=2and j=1,...,miori=1and j =mi+1,...,m, from similar computations as above we
get that

|al 2

200 |y
/ K P.Z; —Z/ 1l+||y|al U, 1.0 PeZi (& + 8iy) dy = o(1).
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Here, we sum over [ =1,...,my fori=1and [ =m1 + 1,...,m for i = 2. Besides, similarly as above we
obtain that

[ o=l (G =m0 20) = () [ o= g1z [ o= gt
Qe Qe Qe

. 203 |y|* 72 1 — y|*
:(1+’YJ) / 13 a-21 | |a~
B (0\Be; (0) (14 Jy[®9)2 1+ Jy|*
% 55

J

dy +O(577)

20‘?|y|aj72 4 a o ) 8 1
- ZGL T 1200 (6% 4 6% y[®7) Yo (y) + o ———— | &
L, T (318 6+ W) Yoo+ S o
- 4 2a2,|y|a172
:O(ea|10ge|)——a-log6-/ — Yo, (y) dy
38 [ Ty

4 205y 2 _ 8 203 |y| > 2 1
- = — Yy (y)log (1 + |y|*7) dy — —/ z d
3 /{;j’n (1+ [y[°i)? 05 () log ( ly|®9) dy 3 o, (I + [y[®)2 1+ |y[* Y

8
= —?ﬂ-aj +o(1),

in view of
205 [y|*~*
(L4 y|9)2 1+ [y[~s

20é§|y|ajizy_ 1 1 aj dy = 2 . d dy =2 j
e (Lt [y]°9)2 0j(y)log (1 + [y|*) dy = —2ma; an - y = 2ma;.

Therefore, we conclude that

o(1) = (s +o(1)) -

Maj (=47 + 0(1)) — Eim (-%”aj + 0(1)> +o(1),

and hence (oj —1)a; +2¢ = Oeitherfori =landallj=1,...,mjori=2andall j =m;+1,...,m. O

Claim 4. There hold that

my m
ZO(J‘ (aj —2)a; =0 and Z aj(ay —2)a; =0. (4.12)
j=1 j=mi+1

Hence, from Claim 3 it follows that ¢; =0 fori=1,2 and then a;j =0 for all j =1,...,m.

Proof: Similarly as above, let us use suitable test functions to get the claimed relations. Consider the
functions Zo;(z) = Yoj(éfl[ac — &;]) so that —AZy; = |& — &% ~2eYi Zy;, for all j = 1,...,m. From the
fact that Zo; = —no; — 1, we have that

PcZoj = Zoj +1— Z%J‘G(%fi) +0()
i=1
for some & > 0, where the 7i;’s, 4,7 = 1,...,m, satisfy the diagonal dominant system (4.7). Assume that
either i = 1 forall j = 1,...,m1 or ¢ = 2 for all j = m1 + 1,...,m. Similarly as above, multiplying
equation (4.6) by yfijeZoj and integrating by parts we obtain that

it [ nPzo = [ (1wt Kavalyiy Py — 1o = 61772 2y
‘ ‘ (4.13)

+ s / Vig 1T = &1 e Zoj.
Qe Ve

Now, estimating every integral term we find that fy;jl/ hPZy; = O (|logel||h|lp) = o(1), in view of
Qe
PZy; = O0(1), G(z,&k) = O(|log ex]) and the choice of ;. Next, we obtain that

3 I _ 202y 72 1 — |y|* o

[ itle g1 eizo, =5t [ T+ |%->21+I : - O Hogel) = ol
Qe B{__(O)\Bi(o) Yy Yy

J 5

J
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Also, we have that
%‘}1/ (K,-PEZOJ- = |z - €j|aj72€UjZOj) Y =7{jl/ & — &7 %% (PeZoj — Zog)
Qe Qe
+7{j1/ (Kl |z —¢&; |aJ “2e )PZOﬂ/’l
Qe
We estimate the first term as
%‘31/9 | — &1 72" (PeZo; — Zog) i :%_7]_1/9 = &% %" <1 =D Gz, &) +O(65)> .
c e i=1
=it [ lemglm e [ e—gln e (Logle - 61 - fn.6) ) v
€ Qe
[ gl Y 2 G 6w+ O Hoge)
S2e i=1,i#]
71\/\ 2a2|y|a] \I/ ( )d + 1 2a2|y|a] 1 |5 |\I’ ( )d
=i T a5 Yi,0n - 5 1O IR
R T R ) e T A (e DT it e
205 |y[*i~?
\/Qj,n (1+|y|a]) (é‘] Jy £J) 3J» (y) y
. - 20‘2'|y|aj72 &
=Y it [ Ol + S 60V () dy + O log )
2 )
1=1,17#7) 7
1 1 / 205?|y|aj72 1 2a3|y|aﬂ
= (7' + — logd; G g, () dy + — G og |y|w; d
(35 grroms) [ Gt g [ G s i) dy
203 |y|* 2 2ozzlyl‘” 1
— H(&,&; / Jia.\l’i,-,nydy-%() 5'/ 7,1‘1/1, n dy + ——
&) | Ty e VW) 5 o, Tt e s @A i
1 )/ 205 |y|* 2 1 205 |y|* 2
= (v, +=—1logd; 7{1\1/1, n(y)dy + — 7alog Y| in(y)dy
(' + 55 s A e e A S (e M ER LA
+o(1).
For the next one, for i =1, j = 1,...,m1 we find that
B o yal 2
yjjl/ﬂ (K1 — |o— &% )PZ()JQ/}l'}’]] Z/ 1+||Z|/|‘” V10 (y)PeZoj (& + 01y) dy = o(1)
‘ l#ﬂ
in view of
P.Zo; (& + 81y) 20,7 f: G(& + a1y, &) + O(€7)
e 205 (& +01y) = = - — Ye;G(& + 01y, &k €
’ 57 e+ oy — &l =
o 1 . 5
=0(8;7) +mj <%log|61y| —H(§ + 6l|y|:£l)> - Z%j (G(&,&k) +O(alyl)) + O(€”)
k=1

k£l
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for [ # j and
2051|y|al §
is ;/ﬂ T+ yo)? ez Yt (Y) PeZoi (& + diy) dy
I#]
my a2
_ 2041|?/|L - (L _
14
mi 202 |yt 2
-> / %%J,n@xa(@m+0<5z|y|>>d
1=1,l#7 l,n
mi 2&2 ap—2 o B
-y [ ) D0 e (6 &) + Ol dy+ O | )
1=1,1#5 7 Q,n y k=1,k#j,1
=o(1).

Similarly, for i = 2, j = m1 + 1,..., m we find that
it [ (K=o =gl 2) P = o)
Qe

On the other hand, if either i =2 and j € {1,...,mi}ori=1and 7 € {m1+1,...,m}, from similar
computations as above and the expansion of P.Zy; (& + 0ry) for j # k, we obtain that

_ 20(2 yak 2
Vi / Koo PeZoj = 7;;" Z / a +'|'|ak) W o, (y) PeZoj (& + Sry) dy
Qe k417 Yy

S 20 [y|*F 2 —1 1
= W k. (Y)V55 Yhi | 5= l0g [0ky] — H (Ek + Ory, k)
DO i (g

i 2c or—2 i _
- [ R w0 Y G+ ) + O sl ) = o)
k=mi+1"7 2k,n (L+ Jy[ox) 1=1,l#k

in view of

20 |y|*+? -1 !
> et g os ol = (e + .60 ) dy

|a;C 2

20 |y[* 7% Vi i .
k i Tkj
- > S, T Wz”“”“”( o log B+ 2 gyl - (sk7sk>+0<5k|y|>>

k=mi+1 k,n

I (Vi e 2ai [y|*+?
_ 1og5k—H(£k,£k))/ 2Oy, (y)
k—%;l( 2 ., (L4 [y[on)?
m =1, . 20 jog—2
Vi Vkﬂ/ 20 |y|**
+ Uy kon 1 d
2 T o Tt e 0 s vl dy
- 20 |y !
k:%;Jrl < Qpn (1 + |y|ak) ( )

=o(1) + O(lloge| ™)+ D> O(%) = o(1),

k=mqi+1

and similarly it follows that

7514 K11/)2PEZOJ' = 0(1).
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Therefore, from (4.13) and the previous computations we conclude that either for i =1 and j =1,...,m1
or for i =2 and j = mi1 + 1,...,m there holds

a1 207 [y|™ 1 207 [y|™

D= (v + ==logé, L, . (y)d | U, dy (4.14

0( ) (7]] + 21 og ]) /Qjm (1—|—|y|aﬂ')2 IR ( ) y+ 27‘(‘/ i (1_|_| |a ) 0g|y| i,J,m ( ) Y ( )
+o(1).

Notice that from (2.7) and (4.7) we have that for any j =1,...,m

log ¢

1 1 1 1
1 Jogd = — o( ) 1 logd;] = —— 1 o).
Vg F o B0 4 | log €|? * 21y [log € +log d;] 2raj(a; — 2) oge+0(1)
. 203 |y|* :
Since we do not know the rate of the convergence W\I’i,j,n (y)dy =o(1) forany j =1,...,m,
Qj,n

we shall use the following rate
205 [y|*~* - 205 |y|* >
s Uy (y) dy = O(e”)  and / = Us i (y) dy = O(€”). (4.15
Z/ T s ) dy = () 3 Tt = 0. @415)
It is readlly checked that

= Z/ |z — €| 2l dx—z |:47rak+0(5:’“)+2_20(§):| =\ +0()

k=1
and simllarly
Ko = )\27’2 + 0(65)
Qe
for some & > 0, so that for 11 and 12 we have that

1 &
ng;&;( . 1)/ )/K@ o) [ Kip=0()

Also, we get that

my

@ 2 U 2a2|y|a]
K1w1=2 =gty = Z T reye Vi (v) dy
Jn

and )
20[y|* ~*
KQ’([)Q Z / \1’2,1 »(y) dy.
et 1+ [y|@)?
Hence, we deduce (4.15). Thus7 multiplying (4. 14) by —27maj(a; — 2) and taking the sum either over
j=1,....mifori=1or j=mi+1,...,m for i =2 we conclude that

1 200 ya] 200 ya -2
oy =3 [(loge+0<1>> / 205010 )y — (e —2) / 2000 oy () dy

=~ an(1+|y|“1) jn(1+| y|*)?
mi 2 . mi [
202 |y|*i~ 205 |y~
1ogez/ W e V@ v+ 2 0 /n T+ [y )2 Vsl
2a2|y|a172
—Zaj<aj—2>/ 2O 1og [y (1) dy
~ a,, (L+y[*)?

and similarly

207[y|* " S 207]y|*~*
=loge / 5 Wiin(y)dy + o1 / e — P (X
g Z 1+ |y|a]) in(y) dy Z (1) 0 (A+ylenz ¥ (y) dy

j=mi+1 j=mi+1 j,m
- 205 [y|*~*
- Z aj(aj—2)/ Wloglylﬂf gm(Y) dy.
Gj=ma+1 Qj,n

Therefore, passing to the limit we conclude that

< 20|y ~?
a-a-—Qa-/ 7{1105; y|Yo dy =20
Z J( J )J R2 (1+| | ) | | J()
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and
2 203y~
> aslas=2a; | | s g ulYos () dy = 0.
j=mi+1 TR Y
2a3[y|*~?

The first part of the claim follows since / —_—
me (1+y|*)?

On the other hand, from claim 3 we have that a; = —

log |y| Yo, (y) dy = —4.

1éi either fori =1and all j =1,...,m;1 or

J
for ¢ = 2 and all j =my + 1,...,m. Therefore, by replacing in (4.12) we deduce that

& (e —2) " aj(a —2)
_ ~ § : J\&5 — _ ~ E : J\*¥j —
0= —201 : ﬁ and 0= —202 ‘ ﬁ
Jj=1 j=mi+1
. , (e —2)
Therefore, ¢; = é2 = 0 and consequently a; = 0 for all j =1,...,m, since a1 > 0. O
Qj —

Now, using (4.9) and Claim 4, we deduce that ®;, — 0 weakly in Hq, (IR?) and strongly in Lo, (IR?) as
n — +o00. Thus, we reach a contradiction with (4.5), and then the a-priori estimate [|¢]| < C|loge| ||k, is
established. Concerning solvability issues, consider the space H = H} (©2) endowed with the usual inner

product [¢, ] = / V¢Vip. Problem (3.6) can be solved by finding ¢ € H such that
Qe

1 1
[¢71/’]:/6 [Kl (¢_71[25K1¢>+K1 <¢—W/GK2¢> —h} Y, for all v € H.

With the aid of Riesz’s representation theorem, this equation gets rewritten in H in the operatorial form
o =K(¢) + iL, for some h € H , where K is a compact operator in H. Fredholm’s alternative guarantees
unique solvability of this problem for any h provided that the homogeneous equation ¢ = K(¢) has only
the trivial solution in H. Since this is equivalent to (3.6) with h = 0, the existence of a unique solution
follows from the a-priori estimate (3.7). The proof is complete. |
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