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HARNACK INEQUALITIES AND QUANTIZATION PROPERTIES FOR THE

n−LIOUVILLE EQUATION

PIERPAOLO ESPOSITO AND MARCELLO LUCIA

Abstract. We consider a quasilinear equation involving the n−Laplacian and an exponential non-
linearity, a problem that includes the celebrated Liouville equation in the plane as a special case. For
a non-compact sequence of solutions it is known that the exponential nonlinearity converges, up to
a subsequence, to a sum of Dirac measures. By performing a precise local asymptotic analysis we
complete such a result by showing that the corresponding Dirac masses are quantized as multiples of
a given one, related to the mass of limiting profiles after rescaling according to the classification result
obtained by the first author in [9]. A fundamental tool is provided here by some Harnack inequality of
“sup+inf” type, a question of independent interest that we prove in the quasilinear context through
a new and simple blow-up approach.

1. Introduction

In the present paper we are concerned with solutions to

−∆nu = h(x)eu in Ω, (1.1)

where Ω ⊂ R
n, n ≥ 2, is a bounded open set and ∆nu = div(|∇u|n−1∇u) stands for the n-Laplace

operator. Solutions are meant in a weak sense and by elliptic estimates [7, 20, 22] such solutions are
in C1,α(Ω) for some α ∈ (0, 1).

When n = 2 problem (1.1) reduces to the so-called Liouville equation, see [15], that represents
the simplest case of “Gauss curvature equation” on a two-dimensional surface arising in differential
geometry. In the higher dimensional case similar geometrical problems have led to different type
of curvature equations. Recently, it has been observed that the n-Laplace operator comes into
play when expressing the Ricci curvature after a conformal change of the metric [18], leading to
another class of curvature equations that are of relevance. Moreover, the n−Liouville equation (1.1)
represents a simplified version of a quasilinear fourth-order problem arising [10] in the theory of log-
determinant functionals, that are relevant in the study of the conformal geometry of a 4−dimensional
closed manifold. In order to understand some of the bubbling phenomena that may occur in such
geometrical contexts, we are naturally led to study the simplest situation given by (1.1).

Starting from the seminal work of Brezis and Merle [3] in dimension two, the asymptotic behavior of
a sequence uk of solutions to

−∆nuk = hk(x)e
uk in Ω, (1.2)

with

sup
k

∫

Ω
euk < +∞ (1.3)

and hk in the class

Λa,b = {h ∈ C(Ω) : a ≤ h ≤ b in Ω}, (1.4)

can be generally described by a “concentration-compactness” alternative. Extended [1] to the quasi-
linear case, it reads as follows.

Concentration-Compactness Principle: Consider a sequence of functions uk such that (1.2)-
(1.3) hold with hk ∈ Λ0,b. Then, up to a subsequence, the following alternative holds:

(i) uk is bounded in L∞
loc(Ω);

(ii) uk → −∞ locally uniformly in Ω as k → +∞;
1
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(iii) the blow-up set S of the sequence uk, defined as

S = {p ∈ Ω : there exists xk ∈ Ω s.t. xk → p, uk(xk) → ∞ as k → +∞},
is finite, uk → −∞ locally uniformly in Ω \ S and

hke
uk ⇀

∑

p∈S

βpδp (1.5)

weakly in the sense of measures as k → +∞ for some coefficients βp ≥ nnωn, where ωn stands
for the volume of the unit ball in R

n.

The compact case, in which the sequence euk does converge locally uniformly in Ω, is expressed by
alternatives (i) and (ii), thanks to elliptic estimates [7, 22]; alternative (iii) describes the non-compact
case and the characterization of the possible values for the Dirac masses βp becomes crucial towards
an accurate description of the blow-up mechanism.

When a boundary control on uk is assumed, the answer is generally very simple. If one assumes that
the oscillation of uk on ∂Bδ(p), p ∈ S, is uniformly bounded for some δ > 0 small, using a Pohozaev

identity it has been shown [11] that βp = cnωn, cn = n( n2

n−1)
n−1, provided hk is in the class

Λ′
a,b = {h ∈ C1(Ω) : a ≤ h ≤ b, |∇h| ≤ b in Ω} (1.6)

with a > 0. Moreover, in the two-dimensional situation and under the condition

0 ≤ hk → h in Cloc(Ω) as k → +∞, (1.7)

a general answer has been found by Y.Y. Li and Shafrir [17] showing that, for any p ∈ S, h(p) > 0
and the concentration mass βp is quantized as follows:

βp ∈ 8πN. (1.8)

The meaning of the value 8π in (1.8) can be roughly understood as the sequence uk was developing
several sharp peaks collapsing in p, each of them looking like, after a proper rescaling, as a solution
U of

−∆U = h(p)eU in R
2,

∫

R2

eU < ∞, (1.9)

with h(p) > 0. Using the complex representation formula obtained by Liouville [15] or the more
recent PDE approach by Chen-Li [5], the solutions of (1.9) are explicitly known and they all have
the same mass:

∫

R2 h(p)e
U = 8π. Therefore the value of βp in (1.8) just represents the sum of the

masses 8π carried by each of such sharp peaks collapsing in p.

When n ≥ 3 a similar classification result for solutions U of

−∆nU = h(p)eU in R
n,

∫

Rn

eU < ∞, (1.10)

with h(p) > 0, has been recently provided by the first author in [9]. For later convenience, observe
in particular that the unique solution to

−∆nU = h(p)eU in R
n, U ≤ U(0) = 0,

∫

Rn

eU < +∞, (1.11)

is given by

U(y) = −n log

(

1 + c
− 1

n−1
n h(p)

1
n−1 |y| n

n−1

)

(1.12)

and satisfies
∫

Rn

h(p)eU = cnωn, cn = n(
n2

n− 1
)n−1. (1.13)
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Due to the invariance of (1.10) under translations and scalings, all solutions to (1.10) are given by
the (n+ 1)−parameter family

Ua,λ(y) = U (λ(y − a)) + n log λ = log
λn

(1 + c
− 1

n−1
n h(p)

1
n−1λ

n
n−1 |y − a| n

n−1 )n
, (a, λ) ∈ R

n × (0,∞),

and satisfy
∫

Rn h(p)e
U = cnωn. As a by-product, under the condition (1.7) we necessarily have in

(1.5) that

βp ≥ cnωn, (1.14)

a bigger value than the one appearing in the alternative (iii) of the Concentration-Compactness
Principle.

The blow-up mechanism that leads to the quantization result (1.8) relies on an almost scaling-
invariance property of the corresponding PDE, which guarantees that all the involved sharp peaks
carry the same mass. Since it is also shared by the n-Liouville equation, a similar quantization
property is expected to hold for the quasilinear case too:

βp ∈ cnωnN. (1.15)

However, the main point in proving (1.8) is the limiting vanishing of the mass contribution com-
ing from the neck regions between the sharp peaks. In the two-dimensional situation such crucial
property follows by a Harnack inequality of sup+ inf type, established first in [21] through an isoperi-
metric argument and an analysis of the mean average for a solution u to (1.1)n=2. A different proof
can be given according to [19] through Green’s representation formula, see Remark 2.3 for more
details, and a sharp form of such inequality has been later established in [2, 4, 6] via isoperimetric
arguments or moving planes/spheres techniques. However, all such approaches are not operating for
the n−Liouville equation due to the nonlinearity of the differential operator; for instance, the Green
representation formula is not anymore available in the quasilinear context and in the nonlinear po-
tential theory an alternative has been found [13] in terms of the Wolff potential, which however fails
to provide sharp constants as needed to derive precise asymptotic estimates on blowing-up solutions
to (1.2)-(1.3). We refer the interested reader to [12, 14] for an overview on the nonlinear potential
theory.

In order to establish the validity of (1.15), the first main contribution of our paper is represented by
a new and very simple blow-up approach to sup+ inf inequalities. Since the limiting profiles have the
form (1.12), near a blow-up point we are able to compare in an effective way a blowing-up sequence
uk with the radial situation, in which sharp constants are readily available. Using the notations (1.4)
and (1.6) our first main result reads as follows:

Theorem 1.1. Given 0 < a ≤ b < ∞, let Λ ⊂ Λa,b be a set which is equicontinous at each point of
Ω and consider

U := {u ∈ C1,α(Ω) : u solves (1.1) with h ∈ Λ}.
Given a compact set K ⊂ Ω and C1 > n− 1, then there exists C2 = C2(Λ,K,C1) > 0 so that

max
K

u+ C1 inf
Ω

u ≤ C2, ∀u ∈ U . (1.16)

In particular, the inequality (1.16) holds for the solutions u of (1.1) with h ∈ Λ′
a,b.

By combining the sup+ inf −inequality with a careful blow-up analysis, we are able to prove our
second main result:

Theorem 1.2. Let uk be a sequence of solutions to (1.2) so that (1.3)-(1.5) hold. If one as-
sumes (1.7), then h(p) > 0 and βp satisfies (1.15) for any p ∈ S.
Our paper is structured as follows. Section 2 is devoted to establish the sup+ inf inequality. Starting
from a basic description of the blow-up mechanism, reported in the appendix for reader’s convenience,
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a refined asymptotic analysis is carried over in Section 3 to establish Theorem 1.2 when the blow-
up point is “isolated”, according to some well established terminology as for instance in [16]. The
quantization result in its full generality will be the object of Section 4.

2. The sup+ inf inequality

When n = 2 the so-called “sup+inf” inequality has been first derived by Shafrir [21]: given a, b > 0
and K ⊂ Ω a non-empty compact set, there exist constants C1, C2 > 0 so that

sup
K

u+ C1 inf
Ω

u ≤ C2 (2.1)

does hold for any solution u of (1.1)n=2 with 0 < a ≤ h ≤ b in Ω; moreover one can take C1 = 1 if
h ≡ 1. Later on, Brezis, Li and Shafrir showed [2] the validity of (2.1) in its sharp form with C1 = 1
for any h ∈ Λ′

a,b, a > 0.

To reach this goal, a first tool needed is a general Harnack inequality that holds for solutions u of
−∆nu = f ≥ 0 in Ω. By means of the so-called nonlinear Wolff potential in [13] it is proved that
there exists a constant c1 > 0 such that

u(x)− inf
Ω

u ≥ c1

∫ δ

0

[

∫

Bt(x)
f
]

1
n−1 dt

t

holds for each ball B2δ(x) ⊂ Ω. Since f ≥ 0, note that the above inequality implies that

u(x)− inf
Ω

u ≥ c1

[

∫

Br(x)
f
]

1
n−1

log
δ

r
(2.2)

for all 0 < r < δ. The constant c1 is not explicit and our argument could be significantly simplified if

we knew c1 = (nωn)
− 1

n−1 , see Remark 2.3 for a thourough discussion. However, in the class of radial

functions, the following lemma shows that indeed (2.2) holds with the sharp constant c1 = (nωn)
− 1

n−1 :

Lemma 2.1. Let u ∈ C1(BR2(a)) and 0 ≤ f ∈ C(BR2(a)) a radial function with respect to a ∈ R
n

so that

−∆nu ≥ f in BR2(a).

Then

u(a)− inf
BR2

(a)
u ≥ (nωn)

− 1
n−1

∫ R2

0

(

∫

Bt(a)
f

)
1

n−1 dt

t
. (2.3)

In particular, for each 0 < R1 < R2 there holds

u(a)− inf
BR2

(a)
u ≥ (nωn)

− 1
n−1

(

∫

BR1
(a)

f

)
1

n−1

log
R2

R1
.

Proof. Consider the radial solution u0 solving

−∆nu0 = f in BR2(a), u0 = 0 on ∂BR2(a).

Since
−∆nu ≥ −∆nu0 in BR2(a), u− inf

BR2
(a)

u ≥ u0 on ∂BR2(a),

by comparison principle there holds

u− inf
BR2

(a)
≥ u0 in BR2(a). (2.4)

Furthermore, u0 is radial with respect to a and can be explicitly written as (r = |x− a|):

u0(r) =

∫ R2

r

(
∫ t

0
sn−1f(s)ds

)

1
n−1 dt

t
=

∫ R2

r

(

1

nωn

∫

Bt(a)
f

)
1

n−1 dt

t
. (2.5)
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By (2.4)-(2.5) we deduce the validity of (2.3). Since the function t →
∫

Bt(a)
f is non decreasing in

view of f ≥ 0, we have for each 0 < R1 < R2 that

u0(a) ≥ (nωn)
− 1

n−1

∫ R2

R1

(

∫

Bt(a)
f

)
1

n−1
dt

t
≥ (nωn)

− 1
n−1

(

∫

BR1
(a)

f

)
1

n−1

log
R2

R1

and the proof is complete thanks to (2.4). �

This lemma is helpful to extend (2.1) to the quasilinear case for all C1 > n−1 and this will be enough
to establish the quantization result (1.15). It is an interesting open question to know whether or not
the sharp inequality with C1 = n− 1 is valid for a reasonable class of weights h, as when n = 2 [2].
The sup+ inf inequality in Theorem 1.1 will be an immediate consequence of the following result.

Theorem 2.2. Let 0 < a ≤ b < ∞, consider the sets Λ and U defined in Theorem 1.1. Then given
K ⊂ Ω a nonempty compact set and C1 > n−1, there exists a constant C3 > 0 such that max

K
u ≤ C3

holds for all u ∈ U satisfying max
K

u+ C1 inf
Ω

u ≥ 0 (Theorem 1.1 follows by taking C2 = C1 + C3).

Proof. Choose δ > 0 so that Kδ = {x ∈ Ω : dist(x,K) ≤ 2δ} ⊂ Ω. Let u be a solution to (1.1) with
h ≥ 0 so that

max
K

u+ C1 inf
Ω

u ≥ 0. (2.6)

Denote by x̄ ∈ K a maximum point of u in K: u(x̄) = max
K

u. It follows from (2.2) that

u(x̄)− inf
Ω

u ≥ c1

[

∫

Br(x̄)
heu
]

1
n−1

log
δ

r
(2.7)

for all 0 < r < δ in view of B2δ(x̄) ⊂ Ω. Therefore, we deduce that

c1

[

∫

Br(x̄)
heu
]

1
n−1 ≤

{

u(x̄)− inf
Ω

u

log δ
r

}

≤ (1 +
1

C1
)
u(x̄)

log δ
r

for all 0 < r < δ in view of (2.6)-(2.7).

Arguing by contradiction, if the conclusion of the theorem is wrong, we can find a sequence uk ∈ U
satisfying (2.6) such that, as k → ∞, we have

max
K

uk → +∞. (2.8)

Letting x̄k ∈ K so that uk(x̄k) = max
K

uk and µ̄k = e−
uk(x̄k)

n , we have that µ̄k → 0 as k → +∞ in

view of (2.8). Since for each R > 0 we can find k0 ∈ N so that Rµ̄k < δ for all k ≥ k0, by (2.7) we
deduce that

c1 lim sup
k→∞

[

∫

BRµ̄k
(x̄k)

hke
uk

]
1

n−1 ≤ n

(

1 +
1

C1

)

. (2.9)

By applying Ascoli-Arzela, we can further assume, up to a subsequence, that

x̄k → p ∈ K, hk → h ≥ a > 0 in Cloc(Ω) (2.10)

as k → +∞.

Once (2.9) is established, in order to reach a contradiction we aim to replace x̄k by a nearby local
maximum point xk ∈ Ω of uk with uk(xk) ≥ uk(x̄k) = max

K
uk. We can argue as follows: the function

Ūk(y) = uk(µ̄ky + x̄k) + n log µ̄k satisfies

−∆nŪk = hk(µ̄ky + x̄k)e
Ūk in Ωk =

Ω− x̄k
µ̄k
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and

Ūk ≤ Ūk(0) = 0 in
K − x̄k

µ̄k
, lim sup

k→+∞

∫

BR(0)
eŪk ≤ 1

a

( n

c1

)n−1
(

1 +
1

C1

)n−1

(2.11)

in view of (2.9)-(2.10). From (2.11), the Concentration-Compactness Principle and Ūk(0) = 0 we
deduce, up to a subsequence, that:

(i) either, Ūk is bounded in L∞
loc(R

n)

(ii) or, hk(µ̄ky + x̄k)e
Ūk ⇀ β0δ0 +

I
∑

i=1

βiδpi weakly in the sense of measures in R
n, for some

βi ≥ nnωn, i ∈ {0, . . . , I}, and distinct points p1, . . . , pI ∈ R
n \ {0}, and Ūk → −∞ locally

uniformly in R
n \ {0, p1, . . . , pI}.

Case (i): Ūk is bounded in L∞
loc(R

n)

By elliptic estimates [7, 22] we deduce that Ūk → Ū in C1
loc(R

n) as k → +∞, where Ū satisfies (1.10)

with h(p) > 0 and Ū(0) = 0 in view of (2.10)-(2.11). Since in general K−x̄k

µ̄k
does not tend to R

n as

k → +∞, by (2.11) we cannot guarantee that Ū achieves the maximum value at 0. However, by the
classification result in [9] we have that Ū = Ua,λ for some (a, λ) ∈ R

n × (0,∞). Since Ū is a radially
strictly decreasing function with respect to a, we can find a sequence ak → a such that as k → +∞

Ūk(ak) = max
BR(ak)

Ūk, Ūk(ak) → Ū(a) = max
Rn

Ū (2.12)

for all R > 0 and k large (depending on R). Setting xk = µ̄kak + x̄k and µk = e−
uk(xk)

n , we have that

uk(xk) = Ūk(ak)− n log µ̄k ≥ Ūk(0) − n log µ̄k = uk(x̄k)

and

1 ≤ µ̄k

µk
= e

uk(xk)−uk(x̄k)

n = e
Ūk(ak)

n
k→∞−−−−→ e

max
Rn Ū

n (2.13)

in view of (2.12). Let us now rescale uk with respect to xk by setting

Uk(y) = uk(µky + xk) + n log µk.

Since (2.11)-(2.12) re-write in terms of Uk as

lim sup
k→+∞

∫

B
R

µ̄k
µk

(−
µ̄k
µk

ak)
eUk ≤ 1

a

( n

c1

)n−1
(

1 +
1

C1

)n−1

(2.14)

Uk(0) = max
B

R
µ̄k
µk

(0)
Uk = 0 (2.15)

for all R > 0, thanks to the uniform convergence (2.10), by (2.13)-(2.15) and elliptic estimates [7, 22]
we have that Uk → U in C1

loc(R
n) as k → +∞, where U satisfies (1.11) with h(p) > 0. Then U takes

precisely the form (1.12) and satisfies (1.13).

Therefore for each R > 0 and ǫ ∈ (0, 1), there exists k0 = k0(R, ε) > 0 so that for all k ≥ k0 there
hold BRµk

(xk) ⊂ Bδ(xk) ⊂ B2δ(x̄k) and

hk(x) ≥
√
1− ǫ h(p), uk(x) ≥ Uxk,µ

−1
k

+ log
√
1− ǫ in BRµk

(xk) (2.16)

in view of (2.10) and Uk ≥ U + log
√
1− ǫ in BR(0). Setting fk(t) = (1 − ǫ)h(p)e

U
xk,µ

−1
k χBRµk

(xk),

by (2.16) we have that hke
uk ≥ fk in Bδ(xk) and then Lemma 2.1 implies the following lower bound

for all k ≥ k0:

uk(xk)− inf
Bδ(xk)

uk ≥
(

1− ǫ

nωn

∫

BR(0)
h(p)eU

)
1

n−1

log
δ

Rµk
(2.17)
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in view of
∫

BRµk
(xk)

fk = (1 − ǫ)
∫

BR(0) h(p)e
U . Recalling that µk = e−

uk(xk)

n , by (2.17) we deduce

that
(

1− ǫ

nωn

∫

BR(0)
h(p)eU

)
1

n−1

≤
uk(xk)− infBδ(xk) uk

log δ
R + uk(xk)

n

.

Since

uk(xk) + C1 inf
Bδ(xk)

uk ≥ uk(x̄k) + C1 inf
Ω

uk = max
K

uk + C1 inf
Ω

uk ≥ 0

in view of (2.6), letting k → ∞ we deduce

(

1− ǫ

nωn

∫

BR(0)
h(p)eU

)
1

n−1

≤ n lim sup
k→∞

{

1− infBδ(xk) uk

uk(xk)

}

≤ n

(

1 +
1

C1

)

.

Since this holds for each R, ε > 0 we deduce that

1

nωn

∫

Rn

h(p)eU ≤
[

n(1 +
1

C1
)

]n−1

<

(

n2

n− 1

)n−1

in view of the assumption C1 > n − 1. On the other hand, by (1.13) the left hand side is precisely
(

n2

n−1

)n−1
and this is a contradiction.

Case (ii): hk(µ̄ky + x̄k)e
Ūk ⇀ β0δ0 +

I
∑

i=1

βiδpi weakly in the sense of measures in R
n, for some

βi ≥ nnωn, i ∈ {0, . . . , I}, and distinct points p1, . . . , pI ∈ R
n \ {0}, and Ūk → −∞ locally uniformly

in R
n \ {0, p1, . . . , pI}

If I ≥ 1, w.l.o.g. assume that p1, . . . , pI /∈ B1(0). Since Ūk → −∞ locally uniformly in B1(0) \ {0}
and max

B1(0)
Ūk → +∞ as k → +∞, we can find ak → 0 so that

Ūk(ak) = max
B1(0)

Ūk → +∞ (2.18)

as k → +∞. We now argue in a similar way as in case (i). Setting xk = µ̄kak+ x̄k and µk = e−
uk(xk)

n ,
we have that uk(xk) = Ūk(ak)− n log µ̄k ≥ Ūk(0)− n log µ̄k = uk(x̄k) and

µ̄k

µk
= e

Ūk(ak)

n → +∞ (2.19)

as k → +∞ in view of (2.18). Setting

Uk(y) = uk(µky + xk) + n log µk,

by (2.11) and (2.18) we have that

lim sup
k→+∞

∫

B
R

µ̄k
µk

(−
µ̄k
µk

ak)
eUk ≤ 1

a

( n

c1

)n−1
(

1 +
1

C1

)n−1

(2.20)

Uk(0) = max
B µ̄k

µk

(0)
Uk = 0 (2.21)

for all R > 0. Since BR(0) ⊂ B
R

µ̄k
µk

(− µ̄k

µk
ak) for all k large in view of (2.19) and lim

k→+∞
ak = 0, by

(2.19)-(2.21) and elliptic estimates [7, 22] we have that Uk → U in C1
loc(R

n) as k → +∞, where U
satisfies (1.11)-(1.13). We now proceed exactly as in case (i) to reach a contradiction. The proof is
complete. �
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Remark 2.3. When n = 2, the “sup+inf” inequality was first derived by Shafrir [21] through an
isoperimetric argument. It becomes clear in [19], when dealing with a fourth-order exponential PDE
in R

4, that the main point comes from the linear theory, which allows there to avoid the extra work
needed in our framework. For instance, in the two dimensional case, inequality (2.2) is an easy
consequence of the Green representation formula: given a solution u to −∆u = f in a domain
containing B1(0), we can use the fundamental solution of the Laplacian to obtain

u(x)− inf
B1(0)

u ≥ − 1

2π

∫

B1(0)
log

|x− y|
||x|y − x

|x| |
f(y) ∀ x ∈ B1(0),

which through an integration by parts gives

u(0)− inf
Ω

u ≥ − 1

2π

∫

B1(0)
log |y|f(y) = 1

2π

∫ 1

0
[

∫

Bt(0)
f ]
dt

t
.

This linear argument also provides the optimal constant c1 = 1
2π , which can be exploited to simplify

the proof of Theorem 2.2 as follows. The estimates (2.9) re-writes as

lim sup
k→+∞

∫

BR(0)
hk(µ̄ky + x̄k)e

Ūk = lim sup
k→+∞

∫

BRµ̄k
(x̄k)

hke
uk ≤

[

n

c1
(1 +

1

C1
)

]n−1

(2.22)

<
[ n2

c1(n− 1)

]n−1

for all R > 0 when C1 > n − 1. Since c1 = 1
2π and [ n2

c1(n−1) ]
n−1 = 8π when n = 2, in case

(i) of the above proof we deduce that

∫

R2

h(p)eŪ < 8π, in contrast with the quantization property
∫

R2 h(p)e
U = 8π for every solution U of (1.9). Assuming w.l.o.g. p1, . . . , pI /∈ B1(0) if I ≥ 1, in case

(ii) of the above proof we deduce from (2.22) with R = 1 that β0 < 8π, in contrast with the lower
estimate β0 ≥ 8π coming from (1.7) and (1.14) when n = 2. Therefore, the proof of Theorem 2.2 in
dimension two becomes considerably simpler.

When n ≥ 3 Green’s representation formula is not available for ∆n and (2.2) does hold [13] with

some constant 0 < c1 ≤ (nωn)
− 1

n−1 . Since c1 is in general strictly below the optimal one (nωn)
− 1

n−1 ,
we need to fill the gap thanks to the exponential form of the nonlinearity through a blow-up approach.
With this strategy a comparison argument with the radial case is exploited, since in the radial context

inequality (2.2) does hold with optimal constant c1 = (nωn)
− 1

n−1 thanks to Lemma 2.1.

As a consequence of the sup+ inf estimates in Theorem 2.2, we deduce the following useful decay
estimate:

Corollary 2.4. Let uk be a sequence of solutions to (1.2), satisfying (1.7) with hk ≥ ǫ0 > 0 in
B4r0(xk) ⊂ Ω and

|x− xk|neuk ≤ C in B2bk(xk) \Bak(xk) (2.23)

for 0 < 2ak < bk ≤ 2r0. Then, there exist α,C > 0 such that

uk ≤ C − α

n
uk(xk)− (n+ α) log |x− xk| (2.24)

for all 2ak ≤ |x− xk| ≤ bk. In particular, if e−
uk(xk)

n = o(ak) as k → +∞ we have that

lim
k→+∞

∫

Bbk
(xk)\B2ak

(xk)
hke

uk = 0. (2.25)

Proof. Letting Vk(y) = uk(ry+xk)+n log r for any 0 < r ≤ bk, we have that −∆nVk = hk(ry+xk)e
Vk

does hold in Ωk = Ω−xk

r and (2.23) implies that

sup
B2(0)\B 1

2
(0)

|y|neVk ≤ C < +∞ (2.26)
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for all 2ak ≤ r ≤ bk. Since Vk is uniformly bounded from above in B2(0) \ B 1
2
(0) in view of (2.26),

by the Harnack inequality [20, 23] it follows that there exist C > 0 and C0 ∈ (0, 1] so that

C0 sup
|y|=1

Vk ≤ inf
|y|=1

Vk + C (2.27)

for all 2ak ≤ r ≤ bk.

Up to a subsequence, assume that lim
k→+∞

xk = x0. By assumption we have that hk(ry + xk) →
h(ry + x0) ≥ ǫ0 > 0 in Cloc(B1(0)) as k → +∞ for all 0 < r ≤ 2r0. For any given C1 > n − 1, by
Theorem 1.1 applied to Vk in B1(0) with K = {0} we obtain the existence of C2 > 0 so that

Vk(0) + C1 inf
B1(0)

Vk = Vk(0) + C1 inf
|y|=1

Vk ≤ C2 (2.28)

does hold for all k and all 0 < r ≤ 2r0. Inserting (2.28) into (2.27) we deduce that

sup
|y|=1

Vk ≤ C − α

n
Vk(0)

for all 2ak ≤ r ≤ bk, with α = n
C0C1

> 0 and some C > 0, which re-writes in terms of uk as (2.24).

In particular, by (2.24) we deduce that

0 ≤
∫

2ak≤|x−xk|≤bk

hke
uk ≤ Ce−

α
n
uk(xk)

∫

2ak≤|x−xk|≤bk

dx

|x− xk|n+α
=

Cnωn

α2α
[ake

uk(xk)

n ]−α → 0

provided e−
uk(xk)

n = o(ak) as k → +∞, in view of (1.7) and B4r0(xk) ⊂ Ω. �

3. The case of isolated blow-up

The following basic description of the blow-up mechanism is very well known, see [17] in the two-
dimensional case and for example [8] in a related higher-dimensional context, and is the starting point
for performing a more refined asymptotic analysis. For reader’s convenience its proof is reported in
the appendix.

Theorem 3.1. Let uk be a sequence of solutions to (1.2) which satisfies (1.3) and

hke
uk ⇀ βδ0 weakly in the sense of measures in B3δ(0) ⊂ Ω (3.1)

for some β > 0 as k → ∞. Assuming (1.7), then h(0) > 0 and, up to a subsequence, we can find a
finite number of points x1k, . . . , x

N
k so that for all i 6= j

|xik|+ µi
k +

µi
k + µj

k

|xik − xjk|
→ 0 (3.2)

uk(µ
i
ky + xik) + n log µi

k → U(y) in C1
loc(R

n) (3.3)

as k → +∞ and

min{|x− x1k|n, . . . , |x− xNk |n}euk ≤ C in B2δ(0) (3.4)

for all k and some C > 0, where U is given by (1.12) with p = 0 and

uk(x
i
k) = max

B
µi
k
(xi

k
)
uk, µi

k = e−
uk(xik)

n . (3.5)

In this section we consider the case of an “isolated” blow-up point corresponding to have N = 1 in
Theorem 3.1, namely

|x− xk|neuk ≤ C in B2δ(0) (3.6)

for all k and some C > 0, where xk simply denotes x1k. The following result, corresponding to
Theorem 1.2 for the case of an isolated blow-up, extends the analogous two-dimensional one [17,
Prop. 2] to n ≥ 2.
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Theorem 3.2. Let uk be a sequence of solutions to (1.2) which satisfies (1.3), (1.7), (3.1) and (3.6).
Then

β = cnωn.

Proof. First, notice that xk → 0 as k → +∞ and h(0) > 0 in view of Theorem 3.1. Since h ∈ C(Ω)
take 0 < r0 ≤ δ

2 and ǫ0 > 0 so that h ≥ 2ǫ0 for all y ∈ B5r0(0). By (1.7) we then deduce that

hk ≥ ǫ0 > 0 in B4r0(xk) ⊂ Ω. Letting µk = e−
uk(xk)

n and Uk = uk(µky + xk) + n log µk, there holds

lim
k→+∞

∫

BRµk
(xk)

hke
ukdx = lim

k→+∞

∫

BR(0)
hk(µky + xk)e

Ukdy =

∫

BR(0)
h(0)eUdy

in view of (1.7) and (3.3). Therefore we can construct Rk → +∞ so that Rkµk ≤ r0 and

lim
k→+∞

∫

BRkµk
(xk)

hke
ukdx = cnωn (3.7)

in view of (1.13) with p = 0. Since (3.6) implies the validity of (2.23) with bk = r0 and ak = Rkµk

2 ,
we can apply Corollary 2.4 to deduce by (2.25) that

lim
k→+∞

∫

Br0(xk)\BRkµk
(xk)

hke
uk = 0 (3.8)

in view of µk = e−
uk(xk)

n = o(ak) as k → +∞. Since by the Concentration-Compactness Principle we
have that uk → −∞ locally uniformly in B3δ(0) \ {0} as k → +∞, we finally deduce that β in (3.1)
satisfies

β = lim
k→+∞

∫

Br0 (xk)
hke

uk = cnωn

in view of (3.7)-(3.8), and the proof is complete. �

4. General quantization result

In order to address quantization issues in the general case where N ≥ 2 in Theorem 3.1, in the
following result let us consider a more general situation.

Theorem 4.1. Let uk be a sequence of solutions to (1.2) which satisfies (1.3) and (3.1). Assume
(1.7) and the existence of a finite number of points x1k, . . . , x

N
k and radii r1k, . . . , r

N
k so that for all

i 6= j

|xik|+
µi
k

rik
+

rik + rjk
|xik − xjk|

→ 0 (4.1)

as k → +∞, where µi
k = e−

uk(xi
k
)

n , and

min{|x− x1k|n, . . . , |x− xNk |n}euk ≤ C in B2δ(0) \
N
⋃

i=1

Brik
(xik) (4.2)

for all k and some C > 0. If lim
k→+∞

∫

B
2ri

k
(xi

k
)
hke

uk = βi for all i = 1, . . . , N , then

lim
k→+∞

∫

B δ
2
(0)

hke
uk =

N
∑

i=1

βi. (4.3)

Proof. First of all, by applying the Concentration-Compactness Principle to uk(r
i
ky + xik) + n log rik

we obtain that βi > 0, i = 1, . . . , N , in view of
µi
k

ri
k

→ 0 as k → +∞. Since h(0) > 0 by Theorem 3.1

and h ∈ C(Ω), we can find 0 < r0 ≤ δ
2 so that hk ≥ ǫ0 > 0 in B4r0(xk) ⊂ Ω in view of (1.7). The
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case N = 1 follows the same lines as in Theorem 3.2: since (4.1)-(4.2) imply the validity of (2.23)
with bk = r0 and ak = rk, by Corollary 2.4 we get that

lim
k→+∞

∫

Br0 (xk)\B2rk
(xk)

hke
uk = 0

in view of µk = o(rk). Since uk → −∞ locally uniformly in B3δ(0) \ {0} as k → +∞ in view of the
Concentration-Compactness Principle, (4.3) is then established when N = 1.

We proceed by strong induction in N and assume the validity of Theorem 4.1 for a number of points

≤ N −1. Given x1k, . . . , x
N
k , define their minimal distance as dk = min{|xik−xjk| : i, j = 1, . . . , N, i 6=

j}. Since B dk
2

(xik) ∩ B dk
2

(xjk) = ∅ for i 6= j, we deduce that |x − xik| ≤ |x − xjk| in B dk
2

(xik) for all

i 6= j and then (4.2) gets rewritten as |x − xik|neuk ≤ C in B dk
2

(xik) \ Bri
k
(xik) for all i = 1, . . . , N .

By (4.1) and Corollary 2.4 with bk = dk
4 and ak = rik we deduce that

∫

B dk
4

(xi
k
)\B

2ri
k
(xi

k
)
hke

uk → 0 as

k → +∞ and then

lim
k→+∞

∫

B dk
4

(xi
k
)
hke

uk = βi ∀ i = 1, . . . , N. (4.4)

Up to relabelling, assume that dk = |x1k − x2k| and consider the following set of indices

I = {i = 1, . . . , N : |xik − x1k| ≤ Cdk for some C > 0}
of cardinality N0 ∈ [2, N ] since 1, 2 ∈ I by construction. Up to a subsequence, we can assume that

|xjk − xik|
dk

→ +∞ as k → +∞ (4.5)

for all i ∈ I and j /∈ I. Letting ũk(y) = uk(dky + x1k) + n log dk, notice that

ũk(
xik − x1k

dk
) = uk(x

i
k) + n log dk = n log

dk
µi
k

→ +∞ (4.6)

as k → +∞ in view of (4.1), and (4.2) re-writes as

min{|y − xik − x1k
dk

|n : i ∈ I}eũk ≤ CR uniformly in BR(0) \
⋃

i∈I

B ri
k

dk

(
xik − x1k

dk
) (4.7)

for any R > 0 thanks to (4.5). Since
rik
dk

→ 0 as k → +∞ in view of (4.1), by (4.6)-(4.7) and the

Concentration-Compactness Principle we deduce that

ũk → −∞ uniformly on BR(0) \
⋃

i∈I

B 1
4
(
xik − x1k

dk
)

as k → +∞ and then

lim
k→+∞

∫

BRdk
(x1

k
)\

⋃

i∈I

B dk
4

(xik)
hke

uk = 0. (4.8)

By (4.4) and (4.8) we finally deduce that

lim
k→+∞

∫

BRdk
(x1

k
)
hke

uk =
∑

i∈I

βi

since the balls B dk
4

(xik), i ∈ I, are disjoint.
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Set x′k = x1k, r
′
k = Rdk

2 and β′ =
∑

i∈I

βi. We apply the inductive assumption with the N − N0 + 1

points x′k and {xjk}j /∈I , radii r′k and {rjk}j /∈I , masses β′ and {βj}j /∈I thanks to the following reduced
form of assumption (4.2):

min{|x− x′k|n, |x− xjk|n : j /∈ I}euk ≤ C in B2δ(0) \ [Br′
k
(x′k) ∪

⋃

j /∈I

B
rj
k

(xjk)]

provided R is taken sufficiently large. It finally shows the validity of (4.3) for the index N , and the
proof is achieved by induction. �

We are now in position to establish Theorem 1.2 in full generality.

Proof. We first apply Theorem 3.1 to have a first blow-up description of uk. We have that βp = Ncnωn

for all p ∈ S in view of Theorem 4.1, provided we can construct radii rik, i = 1, . . . , N , satisfying
(4.1) and

lim
k→+∞

∫

B
2ri

k
(xi

k)
hke

uk = cnωn. (4.9)

Since by (1.7) and (3.3) we deduce that
∫

B
Rµi

k
(xi

k
)
hke

uk →
∫

BR(0)
h(p)eU (4.10)

as k → +∞, by (1.13) for all i = 1, . . . N we can find Ri
k → +∞ so that Ri

kµ
i
k ≤ δ and

∫

B
2Ri

k
µi
k
(xi

k)
hke

uk → cnωn. (4.11)

If N = 1 we simply set rk = Rkµk (omitting the index i = 1). When N ≥ 2, by (3.2) we deduce that

µi
k = o(dik), where dik = min{|xjk − xik| : j 6= i}, and we can set rik = min{

√

dikµ
i
k, R

i
kµ

i
k} in this case.

By construction the radii rik satisfy (4.1) and (4.9) easily follows by (1.13) and (4.10) and (4.11), in
view of the chain of inequalities

∫

B
Rµi

k
(xi

k)
hke

uk ≤
∫

B
2ri

k
(xi

k)
hke

uk ≤
∫

B
2Ri

k
µi
k
(xi

k)
hke

uk

for all R > 0 and k large (depending on R). �

5. Appendix

For the sake of completeness, we give below the proof of Theorem 3.1.

Proof. By the Concentration-Compactness Principle and (3.1) we know that

max
B2δ(0)

uk → +∞, uk → −∞ locally uniformly in B2δ(0) \ {0}. (5.1)

Let xk = x1k be the sequence of maximum points of uk in B2δ(0): uk(xk) = max
B2δ(0)

uk. If (3.4) does

already hold, the result is established by simply taking k = 1 and µk = µ1
k according to (3.5), since

(3.2) follows by (5.1) and the proof of (3.3) is classical and indipendent on the validity of (3.4).
Indeed, Uk(y) = uk(µky + xk) + n log µk satisfies Uk(y) ≤ Uk(0) = 0 in B 2δ

µk

(0) and

−∆nUk = hk(µky + xk)e
Uk in

Ω− xk
µk

,

∫

Ω−xk
µk

eUk =

∫

Ω
euk . (5.2)

Since Ω−xk

µk
→ R

n as k → +∞ in view of (3.2) and B3δ(0) ⊂ Ω, by (1.3), (1.7) and elliptic estimates

[7, 22] we deduce that, up to a subsequence, Uk → U in C1
loc(R

n), where U solves (1.11) with p = 0.
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Notice that h(0) = 0 would imply that U is an upper-bounded n−harmonic function in R
n and

therefore a constant function (see for instance Corollary 6.11 in [12]), contradicting
∫

Rn e
U < ∞. As

a consequence, we deduce that h(0) > 0 and U is the unique solution of (1.11) given by (1.12) with
p = 0.

Assume that (3.4) does not hold with xk = x1k and proceed by induction. Suppose to have found

x1k, . . . , x
l
k so that (3.2)-(3.3) and (3.5) do hold. If (3.4) is not valid for x1k, . . . , x

l
k, in view of (5.1)

we construct x̄k ∈ B2δ(0) as

uk(x̄k) + n log min
i=1,...,l

|x̄k − xik| = max
B2δ(0)

[uk + n log min
i=1,...,l

|x− xik|] → +∞ (5.3)

and have that (3.2) is still valid for x1k, . . . , x
l
k, x̄k with µ̄k = e−

uk(x̄k)

n as it follows by (3.3) for
i = 1, . . . , l and (5.3).

Let us argue in a similar way as in the proof of Theorem 2.2. Observe that min
i=1,...,l

|x̄k + µ̄ky − xik| ≥
1

2
min

i=1,...,l
|x̄k − xik| and

uk(µ̄ky + x̄k) + n log µ̄k ≤ n log min
i=1,...,l

|x̄k − xik| − n log min
i=1,...,l

|µ̄ky + x̄k − xik| ≤ n log 2

for |y| ≤ Rk = 1
2µ̄k

min
i=1,...,l

|x̄k − xik| in view of (5.3). Hence Ūk(y) = uk(µ̄ky + x̄k) + n log µ̄k satisfies

the analogue of (5.2) with Ūk ≤ n log 2 in BRk
(0). Since Rk → +∞ in view of (3.2) for x1k, . . . , x

l
k, x̄k,

up to a subsequence, by elliptic estimates [7, 22] Ūk → Ū in C1
loc(R

n), where Ū is a solution of (1.10)
with p = 0. By the classification result [9] we know that Ū = Ua,λ for some (a, λ) ∈ R

n × (0,∞).
Since Ū is a radially strictly decreasing function with respect to a, there exists a sequence ak → a as
k → +∞ so that

Ūk(ak) = max
BR(ak)

Ūk (5.4)

for all R > 0 and k large (depending on R). Setting xl+1
k = µ̄kak+ x̄k, since µ

l+1
k = e−

uk(xl+1
k

)

n satisfies

µ̄k

µl+1
k

= e
Ūk(ak)

n → e
max

Rn Ū

n (5.5)

as k → +∞, we deduce that (3.2) is valid for x1k, . . . , x
l+1
k and (3.5) follows by (5.4) with some

R > e−
max

Rn Ū

n . Since U l+1
k = uk(µ

l+1
k y + xl+1

k ) + n log µl+1
k satisfies U l+1

k (y) ≤ U l+1
k (0) = 0 in

B
R

µ̄k

µ
l+1
k

(0) in view of (5.4), by (1.3), (1.7), (5.5) and elliptic estimates [7, 22] we deduce that, up to

a subsequence, U l+1
k → U in C1

loc(R
n), where U is the unique solution of (1.11) given by (1.12) with

p = 0, establishing the validity of (3.3) for i = l + 1 too.

Since (3.2)-(3.3) and (3.5) on x1k, . . . , x
l
k imply

lim
k→+∞

∫

B3δ(0)
hke

uk ≥ lim
R→+∞

lim
k→+∞

l
∑

i=1

∫

B
Rµi

k
(xi

k)
hke

uk = lcnωn

thanks to (1.7), (1.13) and (3.3), in view of (3.1) the inductive process must stop after a finite number
of iterations, say N , yielding the validity of Theorem 3.1 with x1k, . . . , x

N
k . �
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