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THE GREEN FUNCTION FOR p—LAPLACE OPERATORS
SABINA ANGELONI AND PIERPAOLO ESPOSITO

ABSTRACT. On a bounded domain Q@ C RY, N > 2, we consider existence, uniqueness and “regu-
larity” issues for the Green function G of the quasi-linear operator u — —Apu — A|u|P~>u with
1 < p < N, homogeneous Dirichlet boundary condition and A < Ai, where A1 > 0 is the first
eigenvalue of —A,,.

1. INTRODUCTION

Given 1 < p < N and a bounded domain Q ¢ RN, N > 2, for zy € Q we are interested to nonnegative
solutions G, of

~A,G—A\GPFt =0 in Q\ {zo},
where Ap(-) = div(|V(-)|[P72V/(+)) is the p-Laplace operator and A < A;. Here G € W'l})f(Q \ {z0})
and Ap is the first eigenvalue of —A,, given by
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When A = 0, by elliptic regularity theory a nonnegative p—harmonic function Gy in Q\ {z(} belongs
to CL%(Q\{z0}) for some a € (0,1) and, according to [32], behaves - if singular - like the fundamental

loc
solution

%Np ifl<p<N
[(z) =< lz—zol P~
(NwN) Tloglz —xo| ifp=N
of —A,I' = &, in RY, where Cy = (N wN) T and wy is the measure of the unit ball in RY. By

a combination of scaling arguments and regularity estimates, Kichenassamy and Veron [24] showed
that, in the singular situation, up to a re-normalization, Gy is a solution of

— ApG = 0y in Q (1.1)
and differs from I' by a locally bounded function Hy = Go —I' in Q. Given g € L=(Q) N W1P(Q), a
solution Gy € I/V1 PO\ {zo}) N WEPTHQ) to () with Gy g = 9 can be found in many different

ways (see for example [24], [32]) and turns out to be unique thanks to the property VHy = o(|VI'|) as
x — xg. As noticed in [24], the same approach via scaling arguments leads to a continuity property
of Hy at xg.

The aim of the present paper is to establish the Holder continuity of Hy = G\ — 1" at g when A =0
and to include the case A < A;. Notice that such Hoélder property is new already when A = 0 and
is relevant since Green’s functions naturally arise in the description of concentration phenomena for
quasi-linear PDE’s, see for example [2], even if representation formulas are no-longer available in a
quasi-linear context. Since the seminal works [26] B2 B3] in the sixties, the regularity theory for
quasi-linear elliptic problems has been first refined in [I8] 27] in the p—harmonic setting, see also
[35], and then in [I1} 28, 34] for general p—Laplace type equations. To treat the case of a Radon
measure as right hand side, a general existence and uniqueness theory has been developed, both in
the scalar and vectorial case, through different approaches: renormalized solutions, see for instance
[9, 30]; entropy solutions or SOLA (solutions obtained as limit of approximations) in [1l B 4] [5]; in
weak Lebesgue spaces [12] (13| 14]; in grand Sobolev spaces [2I]. A powerful and general approach
1
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has also been developed through a potential theory in nonlinear form, see for example [23] 25] for
an overview on old and recent achievements. Also in the simplest case A\ = 0 the problem we are
interested in does not fit into these general theories and a different approach, based on a new but
rather simple idea, is necessary. The main point is to consider Hy as a solution of

— AT+ H)+ AT =" inQ)\ {z} (1.2)

for any G\ = I" + H), solving (LA]) below and to apply the Moser iterative scheme in [32] to derive
Holder estimates on H) thanks to the coercivity of the difference operator, as expressed by the
estimate

o (X +YP 32X +Y)—|X]P2X,Y)

XAy (XT+ Y2y P
When p > 2 gradient LP—estimates on H) can be derived for the difference equation (L2)) as in
the pure p—Laplace case and the only difficulty, when performing local estimates, comes from the
failure of good upper estimates on |VI'+ VH,[P~3(VI + VH,) — |[VI|P~2VT, caused by the singular
behavior of VI' at zg. Since the inequality (|X| + [Y])P72|Y|? > §|Y'|P, § > 0, is no longer true for
1 < p < 2, one realizes that the difference equation (2] differs from the pure p—Laplace case and
weighted gradient L?—estimates on H) are the natural ones one can hope for.

> 0. (1.3)

Let us first discuss the case A\ = 0, which is the most relevant since it concerns the behavior of
p—harmonic functions at isolated singularities. In the two-dimensional situation a very precise de-
scription has been provided in [29], whereas for N > 2 the only available result concerns the continuity
of Hy and has been given in [24], as already discussed. A special attention is paid here to avoid any
restrictions on p and our first main result below improves in full generality what was previously
known:

Theorem 1.1. Let Q C RY be a bounded domain, xo € Q and 1 < p < N. The unique nonnegative
solution Gy to

—ApG = by in
G=0 on 02
satisfies
- N(p-1
V(G -1 e i@, g="0=1 (1.4)

and the reqular part Hy = Go — I' is Holder continuous at xq.

Let us stress that the integrability condition (4] can be improved into VHy € LP(Q) if p > 2.
Since VI' € L1(Q) for all ¢ < g, the exponent g represents the threshold gradient-integrability which
distinguishes the singular situation from the non-singular one and the property (L)) is crucial, when
running the Moser iterative scheme, to use appropriate test functions W(H)) into (I.2]) as the equation
were valid in the whole €. The validity of higher regularity properties for Hy represents a challenging
open question in this context.

Let us now address the case A # 0 and consider the problem

-A,G — AGP~1 = 0o in Q
G>0 in Q (1.5)
G=0 on 0f).

Our second main result is the following:

Theorem 1.2. Let Q C RY be a bounded domain, xo € Q and 2 < p < N. If X < \j with X\ # 0,
problem (LH) has a solution Gy with
- N{p-1
Vioy -1y e (), q= 2=l (1.6)
which is unique in the class of solutions satisfying ([LG). Moreover, the reqular part Hy = Gy — T is
Hélder continuous at xq if p > %
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Some comments are in order. While (L4]) is proved to be true for Gg, for A # 0 we cannot guarantee
the validity of (L6l for any solution G). However, since (L) is generally valid for all solutions
obtained through an approximation scheme, assumption (L) in Theorem is a rather natural
request which - at the same time - allows us to show uniqueness of Gy when p > 2 and Holder
continuity of Hy when p > . In view of Hy € L>(Q) and
N(p=1)

P ifl<p< N
FeliQ) forl<qg<gqg,g={ N-»p '
(Q) for1<g¢g<qg",q {+oo ifp= N,

notice that condition p > & ensures Gifl € Li(Q2) for some g > % in (L2), a natural condition

arising in [32] to prove L®°—bounds. In this respect, observe that also in the semilinear case p = 2
the function H) is no longer regular at xy when 2 =p < %

The paper is organized as follows. Section 2 is devoted to establish the existence part in Theorems [Tl
and [[2 along with some L>°—estimates, while uniqueness issues are addressed in Section 3. Harnack
inequalities and Holder estimates for Hy are established in Section 4. For easy of notations, we will
just consider the case xg = 0.

The results of the present paper are crucial in [2] to discuss existence results for a quasi-linear elliptic
equation of critical Sobolev growth [0 22] in the low-dimensional case as in [I5], [16].

2. EXISTENCE OF GREEN’S FUNCTIONS
Given g € L®(Q) N WEP(Q), set W 9(Q) = g + Wol’q(Q) for all ¢ > 1 and consider
Vul?
Mg— i VU
wewlr@\{oy Jo lulP

Since the minimizer § of [, |[Vu[P in Wy (Q) is a p—harmonic function in Q so that [|§]le < [|g]lec,
we assume that either g = 0 or g € L>®(Q) N W1P(Q) is a p—harmonic and non-constant function in
(2 so to guarantee \; 4 > 0.

For g > 0 and A < Ay 4 let us discuss the problem

—A,G = \GPL = § in Q
G >0 in O (2.1)
G=yg on Jf)
with
g € L®(Q) N WhP(Q) p—harmonic in ©Q, g non-constant unless g = 0. (2.2)

Solutions of (ZJ]) are found by an approximation procedure based either on removing small balls
B(0) when A = 0 as in [24] or on approximating dp by smooth functions when A # 0 as in [I], 3] [4}, [5].
We have the following existence result.

Theorem 2.1. Let 1 <p < N, g > 0 satisfying (Z2), A < A1 4 and assume p > 2 only when X # 0.
Then there exists a solution Gy of problem (Z1)) so that Hy = G —T satisfies (LG)). Moroever, there
holds Hy € L> () whenever either A\=0 or A\ # 0, p > 5.

Proof. Consider first the case A = 0. We repeat the argument in [24] and the only point is to establish
suitable bounds on Hy = Gp —I'. Let G be the p—harmonic function in Q. = Q\ B.(0) so that
Ge = g on 002 and G, = T on 9B(0). Since I' is a positive p—harmonic function in Q \ {0}, by
comparison principle we deduce that Gc > 0 and |G —I'| < Cp in ., with Cy = ||g]|ec + [|T']|00,00-
By elliptic estimates [I8, 27), B5] for p—harmonic functions we deduce that G, is uniformly bounded
in C’llo‘z(ﬂ \ {0}). By Ascoli-Arzeld Theorem we can find a sequence €, — 0 so that G,, := G, — Gy

in Clloc(Q \ {0}) as n — +o0, where Gy > 0 is a p—harmonic function in '\ {0} so that
Hy=Gy—T € L*(Q). (2.3)
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Letting 1 be a cut-off function with n = 1 near 9Q2 and n = 0 near 0, use n’(Ge — g) € Wol’p(QE) as
a test function for A,G. = 0 in Q, to get

/ np<|VGe |p_QVGea V(Ge - g)> = _p/ np_l(Ge - g)<|VGe |p_QVGea V77> S C (24)

€ €

in view of Vi = 0 near 02 and 0. Since
1
| wwGr v <5 [ wiver e [ v
Q. 2 Ja. Q.

for some C > 0 in view of the Young inequality, by (Z4]) we deduce that G is uniformly bounded in
WLP near Q. Then Gy = g on 9Q and Gy solves (1) with A = 0 in view of (Z3)) and [24} [32].

Moreover, use (1 —n)(G. —T) € Wol’p(Qe) as a test function for —A,G. + A,I' =0 in Q. to get

/ (1 =n)([VG|P72VG, — [VT|P72VT, V(G - T)) < C (2.5)

€

in view of V7 = 0 near 9Q and 0. By the coercivity estimate (I3)) and the uniform W!P—bound on
G and I" away from 0 we deduce that (23] implies

/ (IVT| + |[VH )P 2 VH,? < C (2.6)

€

for some uniform constant C' > 0, where H, = G¢ —I". When p > 2 estimate (2.6]) implies

VH, e LP(Q)
thanks to the Fatou convergence Theorem along the sequence €,. For 1 < p < 2 by (2.6 and the
Hoélder inequality we get

/ VH|T = / (VT + |VH,)
Qe

€

(p— (2-p)q (2-p)q (2-p)g

2)q _ a
2 [VH/Y(|VT] + |VH.]) < C(IVllls . +IVHA 0. )

(2—p)a

2-p)(3—s) (2=p)d

< CUVDl,G  +10 5 VA, g )
for some C' > 0 and s = %&f), thanks to s < ¢ in view of p < 2 < N. By VI' € LI(Q) for all
g < g and the Young inequality we finally obtain er |VH,|7 < C for some uniform constant C' > 0
and then
VHy € LI(S)
does hold in the case 1 < p < 2 thanks to the Fatou convergence Theorem.

Once the case A = 0 has been treated, assume p > 2 and follow the approach in [I, B} 4, [5]. Notice that
for A = 0 we provide below an efficient approximation scheme which is different from the previous
one. Consider a sequence 0 < f,, € C3°(Q2) so that f,, — Jp weakly in the sense of measures in (2
with sup,, || fnll1 < +o00 and f,, — 0 locally uniformly in Q\ {0} as n — 4o00. Since A < A1 4 and
g, fn. > 0, the minimization of

1 A
—/ |Vu|p——/ |u|p—/ fau, uEng’p(Q),
P Ja P Ja Q

provides a nonnegative solution G,, € W; P(Q) to
— A,Gn = AGPT = £, in Q. (2.7)

We use here Lemmas and 23 below to show first that G5~ is uniformly bounded in L*(Q) and
then, up to a subsequence, G, — G in ng’q(Q) as n — +oo for some G and for all 1 < ¢ < ¢q. By
the Sobolev embedding Theorem we have that G,, — G, in L9(Q2) as n — +oo for all 1 < ¢ < ¢*
and in particular in LP~1(Q2). Therefore one can pass to the limit in 7)) and get that G > 0 solves

J) in view of ¢ > p — 1.
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In order to establish suitable bounds on Hy = G, — I, let 0 < én S ng’p(Q) be the solution of
~A,Gp = fn inQ,
obtained as a minimizer of % [ IVulP — [y fou in W, P(Q) in view of Ay > 0. Arguing as for 7,
we deduce that, up to a subsequence, G,, — G in ng’q(Q) as n — +oo for all 1 < g < ¢, where
G > 0 solves —A,G = §p in Q. By [32] and the uniqueness result in [24] we have that G = Gy and
H=G-T = Hy. Since -A,Gy + Apén = AG% ! in Q with Gn = G, on 99, by Lemmawe
deduce that sup ||V(G,, — Gp)llg < 400 in view of sup [|GE! ||, < +oo for all 1 < m < pEg- Since
n n
V(G —Gp) — V(Hy — Hp) ae. in Q as n — 400 and VHy satisfies (I4), by the Fatou convergence

Theorem we obtain that VH) satisfies (I6)). If either A = 0 or A # 0, p > & a L®—bound on H,
follows by Theorem below and the proof is complete. O

The following result has been crucially used in the proof of Theorem 2.l and in its proof we closely
follow a tricky idea in [31] combined with some apriori estimates given in Lemma below.

Lemma 2.2. Let 2 < p < N. Assume that a, € L=(Q), f, € L'(2), g, satisfy @2) and
lim lan, —allo =0, supa <A1, sup(|falls +lgnllec] < +oo. (2.8)
Q neN

n—+0oo
If uy, € ng;bp(Q) is a sequence of solutions to
—Apuy, — an|tn|P2un = fn in Q,

then supHuan 1 < +o0.
neN

Proof. Assume by contradiction that

llunllp—1 — +o0 as n — +00. (2.9)
. A~ _ Un, R J— gn 7
Setting u,, = Tanloos? fn= m n”p r and g, = Tanloor We have that ,, solves
TApaAn — |t [P 200, = f in Q (2.10)
Uy = Jn on 0f)
with .
ldnllp—1 =1, Sug lan e < o0, anHLl(Q) + [|gnlloc = 0 as n — 400 (2.11)
ne
. . . _ o N2(p—1)p-_1 . .
in view of (Z8)-@Z3). Fix p — 1 < pyp < ¢ and define p; = (NIDING=T)—p; 3] [ @ recursive way

for j > 1. Notice that N]E,p;f) < pj < pj+1 by induction and there exists a unique J > 0 so that

DOy PI1 < % < pj. Since Apg, = 0 in Q, by Lemma [Z3] with m = 1 we get that

— Jp is uniformly bounded in I/VO1 Q) for all 1 < ¢ < q in view of (ZI0)-(@ZII) and then, up to a

subsequence, i, — g, — v° in WP0(Q) as n — +oo. Define v = 4,, and v}, € ngrlp as the solution

of —Ayvh = aplvd P20, in Q in view of Aj 5, = A1y, > 0. Lemma 23} applied to v} — §, with

Np N mN(p—1 1 . . .
m = polng Nij,q—NJrl Nﬂm) and to v} — v with m = 1, ¢ = po in view of (ZI0)-(ZII),

provides that, up to a subsequence, v} —g, — v! in Wo PL(Q) and v} —v2 — 0in Wl’pO(Q) asn — +00.
By iterating we deduce that, up to a subsequence, v}, — §, — v’ in Wl’p 7(Q) and v}, — vt 0
in Wol’pj*l(ﬂ) asn — +oo for all j = 1,...,J. Since a,|v;][P~2v;] is uniformly bounded in L™()

n
with m = pp“’ > %, by Lemma m we deduce that, up to a subsequence vt — J+1

in Wol’p(Q) as n — +00. At the same time, by Lemma 2.3 v JH o) = 01in VVO P1(Q) as n — +00.
Since v}, — v}, ' — 0 in W, Po(Q) and v, — o)t = (v, — gn) (Wl = gn) = vJ — 0I~! weakly in
Wol’po(Q) asn — 4+ooforall j =1,...,J+1, we deduce that v* = ... = v/*! and then @, — g, — v°
in Wol’pO(Q) as n — +oo with 00 = v/*! ¢ Wol’p(Q).

Jn — v
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Let us compare 4, with z, € VVO1 P(Q), solution to
— Apzn = ap P2, + f,  in Q. (2.12)

Since |ty — 2| < ||gnllco on 02, by the weak maximum principle we deduce that ||, — 2z |lcc < [|dn]]co-
By (ZII)-ZI2) and Lemma 23 we deduce that, up to a subsequence and for some z°, there holds

2 — 20 i Wi(Q), 1<q¢<q. (2.13)
By testing —A,t, + Apz, = 0 in Q against nP (i, — 2,,), 0 < n € C§°(2), one gets

/ PV (i — z)? < C / PV i — 20) P2 4 [V 20”2V (it — 20) [t — 2]
9] Q

1

N R ~ poT —2
5 L7190 = 2P+ € (1anle + 1307 V2012 ) 0
p—1

IN

as n — +oo in view of the Young’s inequality and (2.I1]). We have used that sup ||Vz,|| pp-2 < +00
n p—1
thanks to ([Z.I3]) and % < q. Since V(uy — z,) — 0 locally in LP—norm as n — o0, by (ZI3))
we deduce that
iy —v°  in LP7HQ) and WH(QY), VQ ccQ, V1<¢<q, (2.14)
in view of ||t — 2nllco < [|9nlloe — 0 and @y, — g — v in Wol’pO(Q) as n — +oo for pg > p— 1.

By (ZI0) and ([2I4) we have that 0% € Wol’p(Q) solves
— A —a? P20 =0 in Q (2.15)

in view of (2.8) and (ZI1]). Since
/ ]Vvo\p—/a]volp =0
Q Q

by integration of ([ZI%) against v* € I/VO1 P(Q), by supa < \; one finally deduces that v = 0 and
Q
then 4, — 0 in LP~1(Q), in contradiction with ||i,[|,—1 = 1. O

The results in [I], 4], [5], valid for homogeneous boundary values, can be easily extended to non-
homogeneous ones when p > 2, as discussed for instance in the Appendix of [I] when p = N. For the
sake of completeness, we reproduce it here in the following simplest form, sufficient for our purposes:

Lemma 2.3. Let2 < p < N. Assume ||f1— fa|lm < Co for some Cy > 0 and either 1 < m < ﬁ,

1<g< % orm > ﬁ, 1 < q < p. Then there exists C > 0 so that |V (u1 — u2)|ly <
Cllfr — fallb for all solutions uy,us € WIP(Q) of —Apu; = fi, 1 =1,2, in Q with u; = uz on OSL.
Moreover, given g satisying ([22)) the set of solutions u € ng’p(Q) of —Apu = f in Q with || f]1 < Co
is relatively compact in WH4(Q) for all 1 < g < q.

Proof. Let uy,us € WHP(2) be solutions of —A,ju; = f;, i = 1,2, in Q with u; = uy on 9. Take
Ti1, 0 < k <1, as the odd function so that

Ty.1(s) = min{max{s — k,0},/ — k} in [0,4+00) (2.16)

and use T}, p+1(u1 — u2) as a test function to get

/ (IVu1 [P2Vuy — |Vug|P2Vug, V(u; — us)) = /(fl — f2) T 1 (w1 — u2),
{kg\u17u2|<k+1} Q
which implies

/ V(1 = w2)P < Ol = falbn o = wal > k)5 (2.17)
{k<|u1 —ua|<k+1}
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in view of (I3) and p > 2. By [ZI7) the function v = u; — uy € Wy ?(Q) satisfies

/ IVolP < col Ep| ™, k>0, (2.18)

By,

with ¢g = C||f1 — f2||m, where E = {|v| > k} and By = Ey \ Ej41.

Consider first the case 1 < m < m, 1<¢g< # and set ¢* = L. Since ¢ < % <p
N

thanks to m < ]Vp—ill\)f-i-p and

[ velr< ([ 1vemiisgT (219)
By, B
in view of the Holder inequality, by (ZI8]) we obtain that

q*)ppq 1

/ q qq* (m—1) _
Vol < e o]l ™" </ T -
B, q B, kq (z;: q)

B <k / o7, By <K / o]
By Q

Summing up and still by Holder’s inequality one deduces

q 1 q
Vel < ef ol A > )
/{Uzko} 0 Z kq (pm—aq)

for all £ > 1 thanks to

qqml)

k:ko mg
and then
q (pm q X 1 q
/ Vol < hocf 1957 + e llollye ™ (Y~ ) (2.20)
k=ko k ™1

for a given ky € N in view of (2IJ])-(ZI9) for £ = 0,...,ky — 1. Since % < q, by Young’s
inequality (Z20) implies in turn that

4 pm—gq 4 > 1 q
190t < o 19055 + O (ol + DY~ (2.21)
k=ko kK ™

Since %W;q) > 1 thanks to ¢ < %, the series in ([2.2]]) is convergent and we can choose ko
1 1

sufficienty large (depending on Cp) so that [jv|l;~ < C’c) and then ||[Vv|, < C¢f in view of the

Sobolev embedding Theorem, where the last estimate gets rewritten as

IV (w1 —us)lly < ClLfir = follin- (2.22)

Consider now the case m > NpN p 1 < g <p. Use uy —ug as a test function to get

Np—NTp’
IV(ur —u2)[[y < Cllur —uall_m_[|f1 = follm

in view of the Hélder inequality and then ||V (u; —u2)||, < C|/f1 — ngm by the Sobolev embedding
Np

Np-NFp 10

Theorem in view of "5 < p*. Notice that such last argument works as well as m =

Np
p < N since Np

Np—Nip > 1 in this case.

Fix now m =1 and let uy,us € ng’p(Q) be solutions of —Apu; = f;, i = 1,2, in Q with || fi]|1 < Co.
Use Ty (u1 — ug), Ty, given by ([2I6]), as a test function to get

/ \V(ul - UQ)’p S Cerl — f2”1 S QCCOG (2.23)
{lur—uz|<e}
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in view of (L3) and p > 2. Given 1 < g < ¢, by (222) and Hélder’s inequality (Z23]) implies
a q 5=4q
[V -wr < e Vi —)[*)* (s — s] > €}
Q {lur—uz|>€}

< C(er + {|u1 — us| > €}| %) (2.24)

for some g < s < ¢ in view of § < p. Since g is p—harmonic in €2, taking now a sequence of solutions
Un € WyP(Q) to —Ayup = f, in Q with sup,, || full1 < 400, by the first part we know that u, — g is
bounded in Wol’q(Q) and then, up to a subsequence, we have that u,, — v in ng’q(Q) foralll<g<q
and strongly in L*(Q2) for all 1 < s < ¢*. Applying 224) to u,, — u,, it is easily seen that u, is a
Cauchy sequence in ng’q(Q) and then converges to u in ng’q(Q) for all 1 < ¢ < q. The proof is
complete. O
Let us push further the analysis in Lemma towards an L*°-estimate when p > %

Proposition 2.4. Let 2 < p < N with p > % and M > 0. Then there exists C > 0 so that
lur — uzl|oo < C for any pair u; € ngi’p(Q), i =1,2, of solutions to

— Apu; — )\i\ui]p_zui =f inQ, (2.25)

+|gilloc | < M and g1, g2 satisfy 22).
+

1
where + sup | ———
170+ smp | 5

Proof. By Lemma we get an universal bound on ||f + A|u;[P~2u;l|;. Since g; is p—harmonic
function in 2, Lemma and the Sobolev embedding Theorem provide an universal bound on
u; — g; in Wol’q(Q) for all 1 < ¢ < g and u; in LY(Q) for all 1 < g < ¢*. Since 1% > % thanks to

p > %, we can find gy > % so that f = AuiP~2uy — A2|uglP~2uy satisfies

[fllgp <C (2.26)
for some universal C' > 0. Thanks to (Z.25]) we can write

—Apur + Apugy = f in

2.27
{ul—u2:gl—gg on 0. ( )
Since qg > % let us fix By > 0 sufficiently small so that py := % < q". Set u = uy — uo,

Co = [|g1]|0c + ||g2]|c0 and define W(s) = [To;(s F Co)+ + €’ — €, with I,¢ > 0 and 8 > By, where T}, ;
is given by (2.16]). Notice that | < 400 and € > 0 guarantee the boundedness and the differentiability
of ¥ in R, respectively. Use ¥(u) € VVO1 P(Q)) as a test function in ([2.27) to get

5/ (Toa(uF Co)s + 1 (Va] + [Vul) *(9u < € [ |fllToa(u Cos + P (229
{(uFCo)£<l} Q

in view of (L3]). Since p > 2, by Holder’s inequality with exponents %, qo and %

estimate (228]) implies the following estimate:

5pplﬁ / (g0—D(-1) . Bp _bp
—_— \V4 P < Q)| 20B-1+p) B-1tp (o B—1+p
B-1+p)p Q\ wy,e[? < | 70 |Hquonl,eH% < st\\%
for some C' > 0, where
B=1+p B=1+p Q:%iﬂ
wie=[To(uF Co)r+€¢ » , we=[uFCo)+r+e » , w=(uFCh,
B—1+p

By the Sobolev embedding Theorem on w;—¢ » € VVO1 P(2) and the Fatou convergence Theorem
as | — 400 we deduce that

e 6—€+p
lwe =7 lpr = C(B =1+ p)|[wel| o~ (2.29)

qp—1
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for some C' > 0 provided the R.H.S. is finite, where p* = NN—f;) if p < N and p* € (qﬁqfl,—i-oo) if

p = N. By using again the Fatou convergence Theorem on the L.H.S. and the Lebesgue convergence
Theorem on the R.H.S. in (Z29)), as € — 0 we deduce that

It}
[wllp < C(B =1+ p)llw] Sy

q0—1
for some C' > 0, provided HwH&ol < +00. By the definition of w and taking the z—t——power we
a0 —
then deduce that

B8
__p 115
[(uF Co)+|l @-11mp < [C(B =14 p)]7= 1% ||(uF Co)=ll o510 5
P

q0—1
or equivalently

(p—1)ag

yel —
] 700D || (u F Co)afl “ @V, (2.30)

qo—1
qo

[(wF Co)xlwp < [C

where p = 7‘10(50__1? ) and k = 7(‘10;1?1’*

j + 1 iterations of (2.30) to get

> 1 in view of ¢g > %. Setting p; = wIpy, we can perform

p—1

. P i 1—_7,{
I F Co)alluss < [C(Bo = 1+ p)w/] T | (u F Gy, P77 <

i Il J p—1
ZE ZE U(l_ (ﬂo—l%—P)ﬁs)
< [C(Bo = 14p) +1]5=0 " £s=0" |[(uF Co)llp”

in view of [C(By — 1+ p) + 1]/ > 1 and 1 — L

(50*1)171%7)%3 < 1. By letting j — +o00 we deduce that

1(w F Co)tlloo < C'[I(uF Co)|% < Ciy

in view of
i p—1 S R
=1 - ——) < +o0, —+Y 2 < 40
In conclusion, ||u; — uzllec < C; + Co < Cir and the proof is complete. O

The aim now is to extend Proposition [Z4 to H) as a solution of (L2) (to be compared with ([2.27]))
and to include the case 1 < p < 2. Since it is no longer a matter of universal estimates, the argument
is potentially simpler but the singular character of equation (2] has to be controlled thanks to the
assumption VH) € LI(Q). For later convenience, let us write the following result in a sufficiently
general way.

Lemma 2.5. Let 1 <p < N and u € Wllolé(Q \ {0}) be a solution of
- Ay +u)+ A, =f Q) {0} (2.31)
with f € LY(Q), Vu € L1(Q) and

1
GIVII<[VI|<CVr| if1<p<2

(2.32)
VI < C|VT| ifp > 2

in Q for some C > 1. Let n € CY(Q) and ¥: R — R be a bounded monotone Lipschitz function.
Assuming either n =0 or U(u) =0 on 02, then there holds

[ @]+ 19up2 9 < O [ leale@IvT]+ [Fulr 2l + [ o flle)])
Q Q Q

for some C > 0.
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Proof. Consider a sequence 1. € C'(Q) so that
ne=mnin 2\ Be(0), ne=0in Be(0), [ne|+€[Vne < Cin Be(0) \ B(0) (2.33)

for some C' > 0. Since n?W¥(u) vanishes in B¢ (0) and on 09, it can be used a test function in (2.31)):
| @I+ (9 2val < € [ [Indad09 ]+ Va9l + 215 e 23
for some C' > 0 since W’ has given sign. We have used here (L3]) and the estimate
|$-+yVFQ($%-y)—|$W72$‘=:U$|+Wpr7%9UyD-

Since (|[VI'| + |Vu|)P~2 = O(J]VL|P~2 + |Vu|P~2) in view of ([Z32), by the Holder inequality we have
that

B Vu Vul|P~—!
/ e Vel [ () [V 7] 4+ (VP2 V] < € (ol Nl
Be(0)\B¢ (0) Be(O\Bg(0) ¢ -1 €
_ 1 _ N-1
e (/ Vull)i + (/ a5 5o (2.35)
B(0)\Bg (0) Be(0)\B¢ (0)

as € — 0, in view of ||| < +oo and Vu € LI(Q). By inserting (2.35]) into ([234]) and by using the
Lebesgue convergence Theorem for [, n?|f||¥(u)| we get the validity of Lemma in view of the
monotone convergence Theorem. U

We are now ready to complete the proof of Theorem 2] by establishing L>°—bounds on Hj.

Theorem 2.6. Let 1 < p < N and assume either A =0 or A # 0 and p > 2 with p > % Then
Hy) =Gy —T € L>*(Q), where Gy is any solution to (ZI)) satisfying (LG).

Proof. By (2.1 the function u = H) solves (231 with I' =T and f = )\Ggfl. Given 0 < fBp < 1 to
be fixed later, by Lemma 235 with n = 1 and ¥(s) = [Ty;(s F Cp)+ + €]’ — ?, with I,e > 0, 8 > By,
Co = ||9lloo + [|T'||00,00 and T} given by (2.16]), we get that

5/ (ToaluF Co)s + (VT + [Vul) 2|Vuf? <€ [ |fl{Toa(u Cops+° (230
{(uFCo)+ <1} Q

in view of ¥U(u) = 0 on 02 thanks to Hy = g — I' on 0.
Let us first consider the case A = 0. Then f = 0 and the choice § =1 in (230]) gives

/Q(yvry V)PV T, (1 F Co)al? < 0.

Then Ty (u F Cp)+ = 0 a.e. in Q for any [ > 0, which implies |Hy| < Cj a.e. in Q.

Consider now the case A # 0 and assume p > 2 with p > % Since VG = VI' + VH), € L4(Q) for
all 1 < ¢ < g in view of (L.6l), by the Sobolev embedding Theorem G € L(Q2) for all 1 < ¢ < ¢*
and in particular f satisfies

[[fllgo < 00 (2.37)

N - : N
for some qg > 5 i view of p> 5.

Notice that (230)-(237) are the analogue of (220) and ([228]), and then the argument now goes
exactly as in the proof of Proposition 241 O

For the case g = 0 let us collect here some useful facts which will be used in the next two sections.
Given 1 < p < N, an important ingredient is given by the estimate

IVH,| = O(|VT]) inQ (2.38)
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for any solution G\ =T+ Hy of ([21])y—¢. Indeed, by [33] any solution G of ([21I)4—¢ satisfies

T
G SGVSCT in By (0) (2.39)

for some C' > 1, where Ry 1dist(0,09). For 0 < R < Ry consider the scaling Gy g(y) =

N—
Rt GA(Ry) of Gy in Qp = % which satisfies
~A,Gar — ARPGE 4 =6 in Qp
Gapr >0 in Qg (2.40)
Gar=0 on Jpg.

N—
Since I'r(y) = RPTlpI‘(Ry) = T'(y) in view of 1 < p < N, we have that condition (239) is scaling
invariant:

S G)\,R S CP in Bﬁ (0) (241)
R

Q|’1

Since G\ g is uniformly bounded in L C( 2(0) \ {0}) thanks to (241)), elliptic estimates [I1], [34] for
(Z70) imply that
G ) r uniformly bounded in C’1 a(Bg( )\ {0})

N—

for some a € (0,1). Since in particular [|[VG glloo,08,0) < C, setting Hy r(y) = RPTfHA(Ry) we

deduce that |[VH) Rll«,08,0) < C" in view of VG r = VI' + VH) g, which can be re-written as
C/

T N—1
p—1

\VH,| <

||

for all 0 < R < 1dist(0,0Q). Away from the origin VH) is bounded thanks to [T, 28] 34] and
|VT'| is bounded from below, and then estimate (2Z38) follows by (2.42]). Moreover, notice that for
1 < p < N there holds

|Hylloo < +00 = |VHy(z)] =0o(|]VT(z)|) asx— 0. (2.43)

= C|VI| on dBg(0) (2.42)

Indeed, for 1 < p < N we have that | H) rllc,0r — 0and then [|[VH) gl 08, 0) — 0as R — 0, which

provides the validity of (Z43)). When p = N the function G r(y) = GA(Ry) + (NcuN)fﬁ logR =
I'(y) + Hx(Ry) is uniformly bounded in LIOC(RN \ {0}) and satisfies

N-—1
—ANG)\7R—)\RN G)\7R—(]\7(,L}]\/)_ﬁ logR] =dp in Qp.

We argue as above to show that, up to a subsequence, Hy r(y) = Hx\(Ry) — Hy in Clloc(RN \ {0})

as R — 0, where ||[Hp|so < +o00 and I' + Hy is a N—harmonic function in RY \ {0}. It follows
that Hy is a constant function, see for example Lemma 4.3 in [I7]. Since this is true along any such
subsequence, then VHy g — 0 in C).(RY \ {0}) as R — 0 and (243)) does hold also in the case
p=N.

Once we have 6|VI|P=2 < (|[VD| + |[VH,[)P72 for 1 < p < 2 in view of ([Z38), it becomes clear the
usefulness of the following weigthed Sobolev inequalities of Caffarelli-Kohn-Nirenberg type [7]: given

1 < p < 2, there exists C' > 0 so that

N—p
) —
([ orr2u =) <o [ erpe v (2.44)
RN

for any compactly supported u € L®(RY) with [n |[VI[P72|Vu|? < +00. Valid in C§°(RY), @244)
can be first extended to W1?—functions with compact support in view of [VI'[P~2 & LfgC(RN ) and




THE GREEN FUNCTION FOR p—LAPLACE OPERATORS 12

then to compactly supported v € L®(RY) with Jan VT |P~2|Vu|?> < 400 through the sequence
neu € WH2(RYN), 5, being given by ([233) with n = 1 in RY, since

lim [ |VTPP2|Vn*u® — 0.

e—0 RN

For later convenience, when either 2 < p < N or p = N > 3 observe also the validity of the following

inequality
2N (p—1)
’u‘ N(p-D-p
RN

, p-2
for any compactly supported u € L®(RY) with [pn |z]7=1|[Vul* < +o0.

N(p—1)—p
N(p—1)

p—2
< c/ = (2.45)
RN

3. WEAK COMPARISON PRINCIPLE AND UNIQUENESS RESULTS

This section is devoted to discuss the uniqueness part in Theorem when 2 < p < N among
solutions satisfying the natural condition (L6). When A = 0 maximum and comparison principle in
weak or strong form are well known, see for example [36], and have been extended in various forms
to the case A < A; in connection with existence and uniqueness results, see [8 [I0 19 20] just to
quote a few.

To extend the previous uniqueness results to the singular situation, the crucial property is given by
the convexity of the functional

/ |Vw%|p if w> 0 and V(w%) € LP(Q)
I(w) = { Jo
+00 otherwise.

Proved in [I0] for p > 1, a quantitative form is established here giving a positive lower bound for I”
when 2 < p < N, crucial to be applied on Q. = Q\ B.(0) as € — 0.

Lemma 3.1. Letw > 0 a.e. in Q) so that V(w%) € LP(Q). Let ¢ be a direction so that wy = w+tep >0

1

a.e. inQ and V(w}?) € LP(Q) for t >0 small. Letting p(w,¢) be given in B0), there hold

I'(w)l4] = /ﬂ Vwh P2 (Vb VW' T ), I'(w)é.d] = /Q plw, ) (3.1)

with

P=1,5 . Lo (¢ PR =2 +2)(Ve, V) |
plw.9) = —=(p" = 3p* +5p —2)|Vur (awps—spusp—z)www)
(p-Dp-2) o

—p) i,
(PP —3p+op—2) [Vw?[P~2| V|, (3.2)

where I'(w)[¢] = %I(wt) ot and I"(w)[p, 9] = %I’(wt)[dﬂ‘

1 1-p
p 1 P
w{ = yw; " ¢, we have that

=0+

d

Proof. Since %

1-p

rwiol = [ IV PVl Y (w, 9)).

providing, when evaluated at ¢ = 0, the validity of the first in formula (B.J]). Differentiating once
more in ¢ at 0%, we have that

"W). ¢ = (p—2) /Q |Vw%|p—4<w%,v<w17”¢>>2+% /Q Vb PV )R (3.3)

1—

—1 1 1
e /QIVM%W%,W »9%)).
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Writing (Vw, V@) = cos a|Vw||V¢| the first, second and third term in (B3] produce, respectively,

1
1 1 1=p Vwer|P~2 Vw
/!pr[p HVwr, V(w pp¢)>2 = | 2(pL) {( 5 D | | ¢* + cos® a|Vo|? (3.4)
Q e L
2(p—1
2 )cosa‘vw‘ww},
w
L e [ VWP~ 1)2 Vol 2| o
[vuirweFor - [ FEE-[e & + Vo) (35)
Q Q wor p
2p-1), [Vul

cosa=1 6|V e
w

1
1. 1 1-2p , |Vwe|P~2 2p —1|Vuw|? 5 2 |Vw]|
/Q]pr‘l’ (Vwr, V(w » ¢ )>:/Q T [— R o) —i—;COSOéT(b’V(ﬁ‘]. (3.6)

w P p

Collecting (B4)-(BH), the expression of B3) becomes I" (w)[¢, ¢] = [, p(w, $), with

20-2) Vuw|? Vw
pw.6) = w Vw20 Ve 2 ¢y cosal U givel + oyl ve?] (37
201 Vw C 4C1C3 — C2 cos® a
= T (T - 2 cosalwa)? + FA L Qg

by a square completion in view of C; > 07 where

-1 2(p — 1 1
Cl—p (p —3p? +5p — 2), Cy= (p )(p —2p +2), 6’3:—+(p—2)c082a.
p p p
Since
p—1 4(p —1)? p—1
L - 52— 2) - 0 g ap - Pl -0y <0,
then 40103—022COS20424(1)_1);# and ([3.2) follows by (B1). O

As a first application, we deduce the validity of a weak comparison principle for positive solutions.
Proposition 3.2. Let 2 <p < N and a, f1, f € L=(Q). Let u; € C1(Q), i = 1,2, be solutions to
— Apu; — auffl =fi mQ (3.8)

so that
u
u;>0inQ, — <C near 09 (3.9)
U2

for some C > 0. If f1 < fo with fo >0 in Q and uy < us on 052, then uy < us in 2.

Proof. Setting wy = u}, wy = v} and ¢ = (w1 — wa)4, consider wy = swy + (1 — s)wy for s € [0,1].

Since
Uz

ws—i-t(ﬁ:ug[s(z—;)p-i-(l—s)‘f‘t((ﬂ)p_1>+}’

by B3) there exists tg > 0 small so that ws+t¢ > 0 in 2 and V(ws—i—t(b)% € LP(Q) for each s € [0, 1]
and [t| < tg. Then we can apply 1)) at s = 0,1 to get

Pl - Iwolel = [ Vel (vuf v f; )~ [ 19l v, 6)

= Vulp zvm,v ~ VUQP 2(Vus, V ‘Ji .
u 1
2
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Since ¢ € Wy*(Q) we deduce that

I(wn)lo] -~ I'wlel] = |

Q

( no f) (uf —uf)* <0
Ug

Uy

in view of B8) and f; < fy with fo > 0. Since

I'(wn)[d] — I'(w2)[d] = /0 ()l —wn,0lds = [ 17w, 0lds

0

in view of I"(ws)[wy —ws, @] = I" (ws)[¢p, ¢], by Lemma B I" (ws)[d, ¢] = fﬂ p(ws, @) with p(ws, ¢) >
0 thanks to (3:2) when p > 2. Then, we deduce that p(ws, ¢) = 0 for all s € [0, 1] and then
e Vop=01in Qifp>2
2 2
e (Vws, Vo) = ¢% if p = 2, which implies (V(w; — wg),V¢) = sng for all
0<s<1.
In both cases V¢ = 0 in Q and then w; < ws in €2, or equivalently u; < us in 2. O

Finally, we use Lemma [3.]] to show the uniqueness part in Theorem

Theorem 3.3. Let 2 <p < N. If X\ < A\; with A #0 and p > %, problem ([ZIl)y—o has exactly one
solution Gy so that Hy = G — I" satisfies (L. Moreover, if Hy € C(Q2) for all A < A1, then the
map A € (—oo, A1) = Hy(x) is strictly increasing at any given x € .

Proof. We follow the same argument as in the proof of Proposition Letting G and Gg be
two solutions of ([2.1I),—¢ satisfying (LG, by elliptic regularity theory [I1} 28, [32] [34] we know that
G; € 0L (Q\ {0}), i = 1,2, for some a > 0. By [33] we know that G;, i = 1,2, satisfies (2:39) and
by the strong maximum principle [36] 9,G; < 0, ¢ = 1,2, on 012, where v denotes the outward unit
normal vector. Set w; = Glf, we = Gg, ¢ = w1 —wy and wy = swy + (1 — s)ws for s € [0, 1]. We have
that for each s € [0, 1] there hold ws 4+ t¢ > 0 in ©Q and V(ws + tqﬁ)% € LP(Q) for t small, in view of
the properties of G and G. Letting I, be the functional I defined on Q. = Q\ B((0), by (1) at
s = 0,1 we have that

I(wn)[d] - (wn)d] = /ﬂ rvenp—%val,v%

1
/ (‘VGQ‘p72ayG2 B ’VGl ’p728VG1
0Be(0)

—1 —1
G G
in view of ¢ = 0 on 09 and the equation ([2.I))4—¢ satisfied by G, G2. Notice that

>—/ﬂ\va2vf—2<v02,v%>

2

)(GY = G3)

1
I/ (w))[6] — T (w3)[6] = /0 1" (w,)[6, élds

with I (ws)[6, @] = fQ (ws, @) in view of Lemma BJl Since p(ws,¢) > 0 when p > 2 in view of
[B2), by the Fatou convergence Theorem we deduce that

1 |VG2|p—28 Gy |VG1|p_28 Gy
ds/ W, @) < lim = - GY — GYh). 3.10
) s fptweo<im [ B e [ TR AT

We claim that the R.H.S. in (810) vanishes and then p(ws, ¢) = 0 for all s € [0, 1], which implies, as
already discussed in the proof of Proposition B2l V¢ = 0 in Q and then G; = G5 in Q.

In order to prove the previous claim, for i = 1,2 notice that H; = G; — ' € L*(Q) follows by
Theorem in view of the assumption (L) for G;. Once H; € L*°(2), we have that H; satisfies

(Z43)) and then
GI =T+ 0T, |VGP29,G; = |[VI[P~29,T +o(| VTP 1) (3.11)
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as x — 0 for ¢ > 0. By BI) we deduce that G} — G5 = O(T'?~!) and

IVG;[P~20,G;  |VI|P~29,T A2
Grt - Tel +ol rr—1

),

which imply
‘ / (|VG2|p_28yG2 B |VG1 |p_2(9,,G1
9B (0) i G

NG =Gh|=o( [ VTP = o)

0Bc(0)
as € — 0, as claimed.
Finally, assume Hy € C'(Q2) for all A\ < A; to have well defined values Hy(z) for all z € Q (at x =0

too) and take u; < pp. Letting 0 < GL,G? € Wol’p(Q) be the solutions of (2.7) corresponding
to A = p1 and A = pg, respectively, by the proof of Theorem 1] recall that G, = hr—Ikl G,l1 and
n—-+0o0

Gu, = hr—Ikl G% a.e. in 2, where f,, > 0 is a suitable smooth approximating sequence for the measure
n—-+0o0

0. Since G, > 0 in Q and 9,G% < 0 on 99 by the strong maximum principle [36], we can apply
Proposition to get GL < G2 in view of 0 < f,, < fu + (o — pu1)(G2)P~1 with f,,, G2 € L>(Q),
and then G, <G, in Q as n — +oo. Since

G = (G < 1a(G) = A, Gy in Q1 BL(0),

apply once again the strong maximum principle [36] to deduce G, < G, in Q\ B(0) for all € > 0,
and the strict monotonicity is established in Q \ {0}. Given 0 < e < dist (0,09), we can find
n € C3() with n = 1 in Bc(0) and § > 0 so that H,, — H,, + < 0 on supp(n) \ B¢(0). Observe
that u = H,, — H,, and I' =T + H,, satisfy Vu € LI(Q), [232)) and

—Ap(I'+u)+A,(I)=f inQ\{0}

with f = p1(Gpy )P~ — p2(G, )Pt < 0. We can apply a variant of Lemma 25 with  and ¥(u) =
(u+9)y4 to get

/Q IV (u+8), P < C /Q 0l [Vl (u + 8) - (IVT| + [V P3| V] + /Q P Fut 6)y <0

and then (u + 0)y = 0 in B(0), providing H,, — H,, < —6 < 0 in B((0) too. The proof is
complete. O

4. HARNACK INEQUALITIES AND HOLDER CONTINUITY OF H) AT THE POLE

In this section we will use the Moser iterative scheme in [32] to establish local estimates for the
solution Hy of ([L2) at 0, leading to an Harnack inequality for Hy + ¢ which is the crucial tool to
N—
show Holder estimates at 0. The function H(z) = er(iHA(Rx) +¢), 0 < R < idist (0,09),
satisfies
—A(I'+H)+ A, =G  in By(0)\ {0} (4.1)
N—
in view of (L2), where I' = ZERPTIPF(Rx) with VI' = £VI' and G = :I:)\RNGI;\A(R:U). Differently
from Proposition 2.4l and Theorem 2.6 we need to perform homogeneuos estimates on H and to this
aim for 2 < p < N assume
1
A= 1G13 py0) < Fo0 (4.2)
for some gy > %. Consider the weight function p = |[VI'|P"2 when 1 < p < 2, G =0and p = 1

1

otherwise, and introduce the weighted integrals ®,(s,h) = (th(O) p|u|s) * h,s>0. Define & as

T ifl<p<2andG=0
% if either 2<p< Norp=N >3 (4.3)
2 ifp=N=2

K =
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We are now ready to establish the main estimates in the section.

Proposition 4.1. Let H € L*>(B2(0)) be a solution of (&I so that VH € L1(By(0)), I' satisfies
@32) and [@2) holds. Assume G =0, |[VH| < M|VI| in B2(0) when 1 < p <2 and |H||cc+A < M,

\x!z’il < M|V in B2(0) when 2 <p < N, for some M > 0. Given p € R\ {0}, there exist v, >0
and C > 0 so that the function u = |H| + A + € satisfies

& B, (j1, ) < E[Clul? (h — i) ™P]5 B, (. ho) (4.4)

for all 1 < hy < hy <2 and 0 < e <1, uniformly for p away from 2 —p, 0 and 1, where kK > 1 is
gien in ([L3) and £ simply denotes the sign of .

Remark 4.2. The assumption |x|P_i1 < M|VI'| when 2 < p < N is sufficiently general in order to
establish the validity of Corollary [{.5, which will be used in a crucial way in [2].

Proof. Given T}, in (2I0)), introduce the bounded monotone Lipschitz function
W(s) = sign s ([Tou(ls] + A+ €))7 = [Tou(A +€))7) , B € R\ {0}.

Let n € C§°(Bp,(0)) be a cut-off function so that 0 < n <1, n =1 in By, (0) and |[Vn| < == h1
Since n = 0 on 9B2(0) and VH € LI(B2(0)) we can apply Lemma 25 to H, solution of ([&I]), to get

[ GOV + VP AVHE < C [avalv@o(v ]+ VR ITH (@)

e / 21611 ()

B+1 B—=1+p
for some C' > 0. Definev =u"2 andw =u » with u = |H|+ A + e Since ¥'(H) = fu’~! and

|U(H)| < uP for I > M + 1, by @3] we deduce that

o1 [+ 19l 2val <€ ([ Vol Qv+ 9ue 2w+ [iPiont) - o)
in view of |[VH| = |Vul.
Consider first the case 1 < p < 2, for which (8] implies
[errv < [avivrp-ve (@7
uniformly for 5 away from 0 in view of |Vu| < M|VI'| in B2(0). Since
¢ [alwnlvrp-2uvel < 5 [RVrE vl + o [ [Py
thanks to the Young inequality, we can re-write (A1) as
[Ivrr e <c [ vaprp (48)
Thanks to ([232]) and making use of ([2.44]), by ([AS8]) we deduce for = 5+ 1 that

1
P, (kp, h1) < £( )E (s ho)

¢
(ha — h1)?

does hold uniformly for  away from 1, where & is given by (£3]). Observe that the (5 + 1)—th root
of (L) for f < —1 reverses the inequality causing the presence of + in ({4]).
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Consider now the case 2 < p < N. Since

c / 08 (V3 [P (VT + [Vul)P~2|Vu

/ /
< B [ 2wt 19y 2val + o [19aPa w4 o [ v w2

C C
< @ / PPV [Vl vl / IVnl'o® + ey / [Vt

in view of the Young inequality, (Z32) and sup |VI'|P~2 < 400, by replacing n with 77% (6] implies
B2\B1

/ PVl < O / V2 +

_ 1
[V + 53 [ IVl 181 [ g’y (49

1
B[P~ 16l

uniformly for 3 away from 1 — p and 0. Since gg > %, fix o and ~ so that a € (q(?ﬂl, %) and

é + % = qoq—gl. By the Holder inequality with exponents qg, v and o we have that

s 1 Py p(gp+) 1 P p(ag+a) P p(ag+a)
= aq g
[#ia® < i 10100055 < Gl o 0 ol iy = ol ol o
a0 a0
in view of (£2]) and then

p(gg+a) plapta)

D
Clﬁl/n”lgluﬁ < CBlInwlp (nVwlly “* + lw¥Vnll, *° ) (4.10)

< gt IVl + OB e g+
2[B|P—2 P P B2
by the Sobolev embedding Theorem in view of (N — p)(qo + o) < Ngqp and the Young inequality.
Inserting (£I0) into (49) we get that
ago+(p—2)(gp+a)

p=2 3 2o+ (p=2)(gp+e) 1
[t wetor < o ([1vape 10555 [r o [1oapr) - @

[w ¥l

in view of 2|71 < M|VT| in B2(0). Since ||[H]lec + A < M if p > 2, we have that |jullec < M + 1
when 0 < € < 1 and then w? = v 1uP~2 < (M 41)P~20%. By using the Sobolev embedding Theorem
when p = N = 2 or (245]) otherwise, for = 3 + 1 estimate ([{LI1]) gives that

agp+(r—2)(gp+a)
e

(ho — h1)P

1
+®(kp, h1) < £[C J#®y (1, ho)

does hold uniformly for p away from 2 — p and 1, where & is given by ([@3]). Estimate (£4]) is then
established in all the cases and the proof is complete. O

N—
Hereafter we specialize the argument to H = R (£H)(Rx) 4+ ¢), R > 0. Let us consider now the
case = —1 in the proof of Proposition 1] when H > 0 and the result we have is the following.

Proposition 4.3. Let 1 <p < N if A\ =0 and p > 2 with p > % if A\ #£ 0. Assume % < qo < Niip

if A#0 and H = R%(:I:HA(Rx) +¢) > 0. There exist Ry > 0 and C > 0 so that v = logu, where
u=H-+A+¢e ande >0, satisfies
][ w—3<C
B

for all open ball B C B1(0), 0 < R < Ry and 0 < € < 1, where { denotes an integral mean and
U= fzu.
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Proof. First of all, observe that p > 2 and p > % imply p? > 2p > N. Let B = By(x) C B1(0).

Since |zo| + h < 1 implies |z| < |z — zo| + |zo| < 2h + |zo| < 2 for all z € B%h(azo), we have that

Bs, (xz9) C Ba. Let n € C§°(Bs,,(x0)) be a cut-off function with 0 <7 <1, n =1 in Bp(x) and
2 2

|Vn| < 4. Since H solves @) with VI' = £VI and G = £ARNGP~1(Rx), we can apply Lemma 23]

with the bounded monotone Lipschitz function W(s) = sign s ([To(|s| + A+ €)] ™! — [Tou (A + )] 1),
(N=D(p=2) _
for I > ||H|oo + A +1 and Ty, given by (ZI6)), and a cut-off function ns = n(d + |z|?) oy 1\35]%,

0 >0, to get
_ - g
[arvrr2wo <o [ulvaiorr-2eo+ [29)

in view of (2Z38) (which follows by ([243) and ||H)|lcc < +00 when p = N) and then by the Young

inequality

2 2|7, (2 / 2 -2 29| 2 @b
[avrp2ver < ([ rvmperp e g2 < /\ ’5+\ ) (v

2 (N-1)(p—2)
+/(5fix|2)2 = 77 /|x| 5+ |z S @> (4.12)

2
for universal constants in R, J and c. Since (64‘3‘3[42 )& < Cla|~m@{=20}  we have that

2 (N-1)(p=2)
o ()T < SR € ) ()
5 + |2 loc (4.13)
2, -nEe=2) ] e V=D e=2) :

in view of (prl)# < N. Since G = £ARPTP~(2)[1 + O(R%)] when 2 < p < N in view of

|Hx|lco < 400, for A # 0 there holds A > CR# 7 for some C' > 0 and all R small in view of
qo < Ni_p, where A is given by ([4£2), and then

54 o) Sl o (6 + Jop) ST
16+ Jaf?) "5 L < L e+ o) T g

N-1)(p—2)

C [ 1ol 7N+ Jaft) (4.14)

IN

On the other hand, since G = +ARN|log R|V 11 + O(%‘g)] in B2(0) when p = N thanks to

|H)||oo < 400, for A # 0 there holds A > CR%Hog R| for some C' > 0 and for all R small and
then

g
a1+ 1272 < L 1ot + 1627 7161 < € [ lallog a6+ o) *7op. - (415)
Since
PN 54 l22) T < oM ] 1 (RN 416
P+ Loglal| (0 + [2f?) “T5 < Clalrt N loglal| € Lo (RY) (1.16)

when A # 0 in view of p > 2, we can use (£I3]), ([AI0) and the Lebesgue convergence Theorem in
(@I2) and (@.I4)-(EIT) to get

2
n _N-1
/ 72ll|Vol? < © / 12| Vnl? + / o / 2P~ 5 [log [z | (4.17)
P
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thanks to the Fatou convergence Theorem. Since p — 2= > —1 if A # 0 and

/yv—v\ < c'h/yvuygc)h/ /\xuw !
B B
1 2 n* p—N=L 2
h(| ) lz|[Vn|* + [ =+ [ |z »=T|log |z||n
B |zl || .

A0
in view of ([£I17), for |z¢| < 3h one has that

MIH

=

N[

N[

N—
/ o — o] < CRYE [ AN 4 3T Y 1o h| | = 0(Y)
B
A0
in view of B3, (x0) C Bsy(0), while for |zo| > 3h there holds
2

1

1 o wa :
L=l < ] o[ 1liT) 4 00 gt 554
B B
2 Y N—2 on|? N
< R nlh¥ ) + 12| = o)
0
in view of 3 < |2—°| < |z| < 2|ao| for all z € B%h(xo). The proof is complete. O

N—
We are now ready to establish an Harnack inequality for H = R (£H)\(Rx) 4+ ¢) when H >0, a
crucial tool to establish the Holder continuity of H)y at 0.

Theorem 4.4. Let 1 < p < N if A\ =0 and p > 2 with p > % if X\ £ 0. Assume that H =
N—
RPTIP(iHA(Rx) +¢) >0 in By(0). Then there exist Ry > 0 and C > 0 so that

sup H < C( inf H+A) (4.18)
B1(0) B1(0)

or a < R < Ry, where A 1s given in in terms of G = (Rx
for all 0 < R < Ry, where A fG =+ARNGE (R

Proof. Given py > 0 to be specified below, let us fix 0 < p; < pg so that xip; # 2 —p, 1 for all j > 0.
Consider first the case p > 0 in Proposition [4.1] to get

~ 1
(kg ha) < [Cp(hg — ) ~PLe @, (u, ho) (4.19)
for all u # 2 — p,1 and for suitable v, 3 > 0, where u = [H| + A + ¢ > 0. Starting from p; along
;= KIpy estimate (@IF) with 1 <] =1+270F) < bl =1+ 277 < 2 gives
,(pj41, ) < [C(27K )]0 @ (pj, h3)
and then

. K 1 g
sup u < lim ®,(ujr1,h]) < C1®,(p1,2), Cp = Crnl=1(205")m 25 (4.20)
B1(0) J=rtoo

via an iteration argument as in the proof of Proposition 2:4l Since p > 0 in B1(0) \ {0}, notice that
< liminf & 1) <l ) 1) <
tllos, 1 0\ B.(0) < liminf @ (. 1) < im sup p(1, 1) < [t]loo, B, (0)

and then as ¢ — 0

lim @ = [l oo, 31 (0) = . 4.21
s @p(p, 1) = ulloo, 1 (0) Supu (4.21)
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Consider the case pu < 0 in Proposition [l to get

@, (g1, ) > [Clpal” (hy — hy) P15 @, (1, hy) (4.22)

for all y1 # 2 — p. Starting from —p; along p; = K7(—p1), one can use estimate [22) with h{ and h%
to get

; N ,
(I)p(luijl’ hjl) > [C(2BKV)]] 1 q)P(:U’]a h‘;)
and then, arguing as we did to show (4£.21]), one deduces that

K 1 j
inf u> lim @, (1, hl) > Cody(—p1,2), Cop=C 0D (285Y) 71 2057 (4.23)
Bl(O) j—+o0

in view of yu; — —o0 as j — +oo.

Assume now H > 0 in By(0). Let us finally use Proposition to compare ([4.20) and (4.23).
Indeed, as a consequence of John-Nirenberg Lemma (see Lemma 7 in [32]), Proposition 3] shows
the existence of pg > 0 so that

o o
per” / pe P < HPHOO / e / e <0
Lw> B (0) 52000\ [, (0) Bs(0)

for some universal C5 > 0, or equivalently
(Pp(po, 2) S Cg‘I)p(—pQ, 2) (424)
in terms of u = e’ = H + A + €. The use of ([@.24]) along with ([@20]) and (£23]) gives

! !
sup u < C1®,(p1,2) < C1P,(po,2) < C1C3P,(—po,2) < C1C5D,(—p1,2) < ¢1C3 inf w
B1(0) Cy Bi(0)

thanks to the Holder estimate in view of p; < pg and p € L>°(B2(0)). Since u = H + A + ¢, one then
deduces

sup H < C(inf H+A+e¢)
Bi1(0) B1(0)

for some C' > 0 and ([@I8) follows by letting ¢ — 0. O
In particular, for p > 2 we have the following a-priori L°°—estimate.

Corollary 4.5. Let 2 <p < N. Given M >0 and py > 1 there exists C' > 0 so that

12+ clloc,Bao) < CR P ||h+ llyg,pop(0) + ROCD 2 HquO Ban(0)) (4.25)
for all =1 < R < Ry = +dist(0,09) and all solution h to
—Ap(u+h)+Apu=f in Q\ {0}

1 1

so that Vh € L1(Q), % < |Vu| < M|VT| for some € > 0 and |c| + ||hlloo + [ fllég ' < M
M (e x| 7T

el

for some qo > %.

N—p
p—1

Proof. Set H(z) = R#»=1 (h(Rx) +¢), 0 < R < 2Ry. We have that H € L>(B2(0)) solves ([@I]) with
N-— _ N—
=R P*fu(Rx) = R f(Rz) and satisfies VH € L7(B(0)). Since [|H |0 py0) < 2M R »1 and

N(qp—1)

1917 0 = RWET AL, o) < MR#WO-D, (4.26)

we have that

[l o0,B2(0) + IIQI )< M

q0, B2
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for some M and all 0 < R < Ry. Since

1
[ |27

— —— < |VI'| < M|V
M((er= R71)P=T + |z]p=T) 7

in By(0) for =1 < R < Ry, Proposition Bl gives the validity of (&) for all 4 # 0 and we can argue
as in ([£20) to get
sup u < C1®1(p1,2) (4.27)
B1(0)
1
p—1

/ .
40, B3(0) + €. Since

for a given 0 < p; < pg so that xk’/p; # 1 for all j € N, where u = |H| + ||G]
pPo—P
®4(p1,2) < |B2(0)] bor1 ®1(po,2) by Holder estimate, by ([@27) we deduce that

_N-p _N-p L
”h + CHOO7BR(O) = R »-1 ;u(lg) ’H‘ S C/R p—1 (”HHme2(O) + ”g”;o,lB2(0) + 6/)
1

_N Ppag=—N_ %1 ’ _N-p

< C <R rolh + CHPO,B2R(0) + Rt HfH;()vB2R(O) tenr ot > (4.28)
in view of (£26) and
N-p N
||HHPO7B2(0) = Rv=TR vol[h+ C||P07B2R(O)'

Letting € — 0 in [£28)) we deduce the validity of ([£25]) and the proof is complete. O

Finally, let us discuss the Holder regularity of H) at the pole 0. Given A in (£Z) in terms of

N—
g= :I:)\RNGf\fl(Rx), let us re-write the Harnack inequality (£I8]) for H = Ry (£Hx\(Rx)4¢) >0
in Bagr(0) as

sup (£Hy +¢) <C ( inf (£H)+c¢)+ R") (4.29)
Br(0) Br(0)
for all 0 < R < Ry, in view of ([A26]) with f = i)\Gifl. Since we assume p > 2 with p > % if A#0,
notice that o = 2920 > (0 when A # 0 in view of @Z37) with ¢ > %, while the term R? is not

qo(p—1)
present when A = 0. In this second case, we can assume o € (0, +00).

We are now in position to follow the argument in [32] and establish the following Holder property.

Theorem 4.6. Let 1 <p < N if A\=0 and p > 2 with p > % if A\ # 0. Then Hy € C(Q) and there
exists C' > 0 such that

|Hy(z) — Hy(0)| < Clz|* Va2eQ (4.30)
for some a € (0,1).

Proof. Setting M(R) = sup Hy and p(R) = Bin(f(')) Hy for R > 0, we claim that the oscillation
Br(0) R
w(R) = M(R) — n(R) of H in Bg(0) satisfies

w(R) < CoR” (4.31)
for all 0 < R < Ry, for some «, Cy, Ry > 0.
Indeed, apply [@29) on Bz (0) either with ¢ = M(R) and the — sign or with ¢ = —p(R) and the +
2

sign to get

M(R) = i/ (R) < C[M(R) = M'(R)] + CR?, M'(R) — u(R) < C[p/(R) — p(R)] + CR7  (4.32)
for all 0 < R < 2Ry, where M'(R) = M(£) and p/(R) = p(£). By adding the two inequalities in
([#32) we get that

w(g) < 6w(R) + CoR® (4.33)
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for all 0 < R < 2Ry, where § = %= < 1 and Cy = C +1 If <0, then (A33) implies the validity
of(IEII)Wltha—0>0fora110<R§RoandsomeCo>0. In the case 6 > 0, for S > 2 ([{33)
gives that

W(g)

for some 7 > 0 and an iteration starting from r = Ry leads to

R
< w(E) <O(w(R)+TR?), 0< R<Ry,

j—1
(];?) 07[w(Ro) + TRE Y (05°)7"). (4.34)
k=0

Since 6 € (0,1) and o > 0 in (£33]) can be taken smaller than 1, the choice S = (%) > 2 is admissible
in (34) yielding

R
(SJO) < 09 (w(Ro) + 27RY). (4.35)
GivenO<R§%,lethZIbesothat STOH<R§% and by (435]) we have
R ,

w(R) < w(gg) < 67 (w(Ro) +27RY) < C° (4.36)
with C' = w(Rp) + 27R]. Setting v = —iggg >0, then = 277 = §7* with a = 7 € (0,1) and
(#30) implies

S
w(R) < C(=5)*R”
Ry

forall 0 < R < R027WT+1, and (£31)) is established in this case too.
Since (£31)) gives that Il%iglow(R) = 0, we deduce that Hy € C(Q) in view of G € C1#(Q\ {0}) by
elliptic regularity theory [11l 28 32l B4]. Setting R = |z|, (£31]) implies

[Hx(z) = HA(0)] < w(R) < Colz[*

for all z € Bg,(0). Since (£30) clearly holds in Q\ Bpg,(0) in view of the boundedness of H, we get
the validity of (£30]) in the whole € and the proof is complete. O
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