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THE GREEN FUNCTION FOR p−LAPLACE OPERATORS

SABINA ANGELONI AND PIERPAOLO ESPOSITO

Abstract. On a bounded domain Ω ⊂ R
N , N ≥ 2, we consider existence, uniqueness and “regu-

larity” issues for the Green function Gλ of the quasi-linear operator u → −∆pu − λ|u|p−2u with
1 < p ≤ N , homogeneous Dirichlet boundary condition and λ < λ1, where λ1 > 0 is the first
eigenvalue of −∆p.

1. Introduction

Given 1 < p ≤ N and a bounded domain Ω ⊂ R
N , N ≥ 2, for x0 ∈ Ω we are interested to nonnegative

solutions Gλ of

−∆pG− λGp−1 = 0 in Ω \ {x0},

where ∆p(·) = div
(
|∇(·)|p−2∇(·)

)
is the p-Laplace operator and λ < λ1. Here Gλ ∈ W

1,p
loc (Ω \ {x0})

and λ1 is the first eigenvalue of −∆p given by

λ1 = inf
u∈W 1,p

0 (Ω)\{0}

´

Ω |∇u|p
´

Ω |u|p
.

When λ = 0, by elliptic regularity theory a nonnegative p−harmonic function G0 in Ω\{x0} belongs

to C
1,α
loc (Ω\{x0}) for some α ∈ (0, 1) and, according to [32], behaves - if singular - like the fundamental

solution

Γ(x) =







C0

|x−x0|
N−p
p−1

if 1 < p < N

−(NωN )−
1

N−1 log |x− x0| if p = N

of −∆pΓ = δx0 in R
N , where C0 =

p−1
N−p

(NωN )−
1

p−1 and ωN is the measure of the unit ball in R
N . By

a combination of scaling arguments and regularity estimates, Kichenassamy and Veron [24] showed
that, in the singular situation, up to a re-normalization, G0 is a solution of

−∆pG = δx0 in Ω (1.1)

and differs from Γ by a locally bounded function H0 = G0 − Γ in Ω. Given g ∈ L∞(Ω) ∩W 1,p(Ω), a

solution G0 ∈ W
1,p
loc (Ω \ {x0}) ∩W 1,p−1(Ω) to (1.1) with G0

∣
∣
∣
∂Ω

= g can be found in many different

ways (see for example [24, 32]) and turns out to be unique thanks to the property ∇H0 = o(|∇Γ|) as
x → x0. As noticed in [24], the same approach via scaling arguments leads to a continuity property
of H0 at x0.

The aim of the present paper is to establish the Hölder continuity of Hλ = Gλ −Γ at x0 when λ = 0
and to include the case λ < λ1. Notice that such Hölder property is new already when λ = 0 and
is relevant since Green’s functions naturally arise in the description of concentration phenomena for
quasi-linear PDE’s, see for example [2], even if representation formulas are no-longer available in a
quasi-linear context. Since the seminal works [26, 32, 33] in the sixties, the regularity theory for
quasi-linear elliptic problems has been first refined in [18, 27] in the p−harmonic setting, see also
[35], and then in [11, 28, 34] for general p−Laplace type equations. To treat the case of a Radon
measure as right hand side, a general existence and uniqueness theory has been developed, both in
the scalar and vectorial case, through different approaches: renormalized solutions, see for instance
[9, 30]; entropy solutions or SOLA (solutions obtained as limit of approximations) in [1, 3, 4, 5]; in
weak Lebesgue spaces [12, 13, 14]; in grand Sobolev spaces [21]. A powerful and general approach
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has also been developed through a potential theory in nonlinear form, see for example [23, 25] for
an overview on old and recent achievements. Also in the simplest case λ = 0 the problem we are
interested in does not fit into these general theories and a different approach, based on a new but
rather simple idea, is necessary. The main point is to consider Hλ as a solution of

−∆p(Γ +Hλ) + ∆pΓ = λG
p−1
λ in Ω \ {x0} (1.2)

for any Gλ = Γ +Hλ solving (1.5) below and to apply the Moser iterative scheme in [32] to derive
Hölder estimates on Hλ thanks to the coercivity of the difference operator, as expressed by the
estimate

inf
X 6=Y

〈|X + Y |p−2(X + Y )− |X|p−2X,Y 〉

(|X| + |Y |)p−2|Y |2
> 0. (1.3)

When p ≥ 2 gradient Lp−estimates on Hλ can be derived for the difference equation (1.2) as in
the pure p−Laplace case and the only difficulty, when performing local estimates, comes from the
failure of good upper estimates on |∇Γ+∇Hλ|

p−2(∇Γ+∇Hλ)− |∇Γ|p−2∇Γ, caused by the singular
behavior of ∇Γ at x0. Since the inequality (|X| + |Y |)p−2|Y |2 ≥ δ|Y |p, δ > 0, is no longer true for
1 < p < 2, one realizes that the difference equation (1.2) differs from the pure p−Laplace case and
weighted gradient L2−estimates on Hλ are the natural ones one can hope for.

Let us first discuss the case λ = 0, which is the most relevant since it concerns the behavior of
p−harmonic functions at isolated singularities. In the two-dimensional situation a very precise de-
scription has been provided in [29], whereas for N ≥ 2 the only available result concerns the continuity
of H0 and has been given in [24], as already discussed. A special attention is paid here to avoid any
restrictions on p and our first main result below improves in full generality what was previously
known:

Theorem 1.1. Let Ω ⊂ R
N be a bounded domain, x0 ∈ Ω and 1 < p ≤ N . The unique nonnegative

solution G0 to {

−∆pG = δx0 in Ω

G = 0 on ∂Ω

satisfies

∇(G0 − Γ) ∈ Lq̄(Ω), q̄ =
N(p− 1)

N − 1
, (1.4)

and the regular part H0 = G0 − Γ is Hölder continuous at x0.

Let us stress that the integrability condition (1.4) can be improved into ∇H0 ∈ Lp(Ω) if p ≥ 2.
Since ∇Γ ∈ Lq(Ω) for all q < q̄, the exponent q̄ represents the threshold gradient-integrability which
distinguishes the singular situation from the non-singular one and the property (1.4) is crucial, when
running the Moser iterative scheme, to use appropriate test functions Ψ(Hλ) into (1.2) as the equation
were valid in the whole Ω. The validity of higher regularity properties for H0 represents a challenging
open question in this context.

Let us now address the case λ 6= 0 and consider the problem






−∆pG− λGp−1 = δx0 in Ω

G ≥ 0 in Ω

G = 0 on ∂Ω.

(1.5)

Our second main result is the following:

Theorem 1.2. Let Ω ⊂ R
N be a bounded domain, x0 ∈ Ω and 2 ≤ p ≤ N . If λ < λ1 with λ 6= 0,

problem (1.5) has a solution Gλ with

∇(Gλ − Γ) ∈ Lq̄(Ω), q̄ =
N(p− 1)

N − 1
, (1.6)

which is unique in the class of solutions satisfying (1.6). Moreover, the regular part Hλ = Gλ − Γ is

Hölder continuous at x0 if p > N
2 .
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Some comments are in order. While (1.4) is proved to be true for G0, for λ 6= 0 we cannot guarantee
the validity of (1.6) for any solution Gλ. However, since (1.6) is generally valid for all solutions
obtained through an approximation scheme, assumption (1.6) in Theorem 1.2 is a rather natural
request which - at the same time - allows us to show uniqueness of Gλ when p ≥ 2 and Hölder
continuity of Hλ when p > N

2 . In view of Hλ ∈ L∞(Ω) and

Γ ∈ Lq(Ω) for 1 ≤ q < q̄∗, q̄∗ =

{
N(p−1)
N−p

if 1 < p < N

+∞ if p = N,

notice that condition p > N
2 ensures G

p−1
λ ∈ Lq(Ω) for some q > N

p
in (1.2), a natural condition

arising in [32] to prove L∞−bounds. In this respect, observe that also in the semilinear case p = 2
the function Hλ is no longer regular at x0 when 2 = p ≤ N

2 .

The paper is organized as follows. Section 2 is devoted to establish the existence part in Theorems 1.1
and 1.2 along with some L∞−estimates, while uniqueness issues are addressed in Section 3. Harnack
inequalities and Hölder estimates for Hλ are established in Section 4. For easy of notations, we will
just consider the case x0 = 0.
The results of the present paper are crucial in [2] to discuss existence results for a quasi-linear elliptic
equation of critical Sobolev growth [6, 22] in the low-dimensional case as in [15, 16].

2. Existence of Green’s functions

Given g ∈ L∞(Ω) ∩W 1,p(Ω), set W 1,q
g (Ω) = g +W

1,q
0 (Ω) for all q ≥ 1 and consider

λ1,g = inf
u∈W 1,p

g (Ω)\{0}

´

Ω |∇u|p
´

Ω |u|p
.

Since the minimizer g̃ of
´

Ω |∇u|p in W
1,p
g (Ω) is a p−harmonic function in Ω so that ‖g̃‖∞ ≤ ‖g‖∞,

we assume that either g = 0 or g ∈ L∞(Ω)∩W 1,p(Ω) is a p−harmonic and non-constant function in
Ω so to guarantee λ1,g > 0.

For g ≥ 0 and λ < λ1,g let us discuss the problem






−∆pG− λGp−1 = δ0 in Ω

G ≥ 0 in Ω

G = g on ∂Ω

(2.1)

with

g ∈ L∞(Ω) ∩W 1,p(Ω) p−harmonic in Ω, g non-constant unless g = 0. (2.2)

Solutions of (2.1) are found by an approximation procedure based either on removing small balls
Bǫ(0) when λ = 0 as in [24] or on approximating δ0 by smooth functions when λ 6= 0 as in [1, 3, 4, 5].
We have the following existence result.

Theorem 2.1. Let 1 < p ≤ N , g ≥ 0 satisfying (2.2), λ < λ1,g and assume p ≥ 2 only when λ 6= 0.
Then there exists a solution Gλ of problem (2.1) so that Hλ = Gλ−Γ satisfies (1.6). Moroever, there

holds Hλ ∈ L∞(Ω) whenever either λ = 0 or λ 6= 0, p > N
2 .

Proof. Consider first the case λ = 0. We repeat the argument in [24] and the only point is to establish
suitable bounds on H0 = G0 − Γ. Let Gǫ be the p−harmonic function in Ωǫ = Ω \ Bǫ(0) so that
Gǫ = g on ∂Ω and Gǫ = Γ on ∂Bǫ(0). Since Γ is a positive p−harmonic function in Ω \ {0}, by
comparison principle we deduce that Gǫ ≥ 0 and |Gǫ − Γ| ≤ C0 in Ωǫ, with C0 = ‖g‖∞ + ‖Γ‖∞,∂Ω.
By elliptic estimates [18, 27, 35] for p−harmonic functions we deduce that Gǫ is uniformly bounded

in C
1,α

loc
(Ω \ {0}). By Ascoli-Arzelá Theorem we can find a sequence ǫn → 0 so that Gn := Gǫn → G0

in C1
loc(Ω \ {0}) as n → +∞, where G0 ≥ 0 is a p−harmonic function in Ω \ {0} so that

H0 = G0 − Γ ∈ L∞(Ω). (2.3)
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Letting η be a cut-off function with η = 1 near ∂Ω and η = 0 near 0, use ηp(Gǫ − g) ∈ W
1,p
0 (Ωǫ) as

a test function for ∆pGǫ = 0 in Ωǫ to get
ˆ

Ωǫ

ηp〈|∇Gǫ|
p−2∇Gǫ,∇(Gǫ − g)〉 = −p

ˆ

Ωǫ

ηp−1(Gǫ − g)〈|∇Gǫ|
p−2∇Gǫ,∇η〉 ≤ C (2.4)

in view of ∇η = 0 near ∂Ω and 0. Since
ˆ

Ωǫ

ηp|∇Gǫ|
p−1|∇g| ≤

1

2

ˆ

Ωǫ

ηp|∇Gǫ|
p + C

ˆ

Ωǫ

ηp|∇g|p

for some C > 0 in view of the Young inequality, by (2.4) we deduce that Gǫ is uniformly bounded in
W 1,p near ∂Ω. Then G0 = g on ∂Ω and G0 solves (2.1) with λ = 0 in view of (2.3) and [24, 32].

Moreover, use (1− η)(Gǫ − Γ) ∈ W
1,p
0 (Ωǫ) as a test function for −∆pGǫ +∆pΓ = 0 in Ωǫ to get

ˆ

Ωǫ

(1− η)〈|∇Gǫ|
p−2∇Gǫ − |∇Γ|p−2∇Γ,∇(Gǫ − Γ)〉 ≤ C (2.5)

in view of ∇η = 0 near ∂Ω and 0. By the coercivity estimate (1.3) and the uniform W 1,p−bound on
Gǫ and Γ away from 0 we deduce that (2.5) implies

ˆ

Ωǫ

(|∇Γ|+ |∇Hǫ|)
p−2|∇Hǫ|

2 ≤ C (2.6)

for some uniform constant C > 0, where Hǫ = Gǫ − Γ. When p ≥ 2 estimate (2.6) implies

∇H0 ∈ Lp(Ω)

thanks to the Fatou convergence Theorem along the sequence ǫn. For 1 < p < 2 by (2.6) and the
Hölder inequality we get
ˆ

Ωǫ

|∇Hǫ|
q̄ =

ˆ

Ωǫ

(|∇Γ|+ |∇Hǫ|)
(p−2)q̄

2 |∇Hǫ|
q̄(|∇Γ|+ |∇Hǫ|)

(2−p)q̄
2 ≤ C(‖∇Γ‖

(2−p)q̄
2

s,Ωǫ
+ ‖∇Hǫ‖

(2−p)q̄
2

s,Ωǫ
)

≤ C(‖∇Γ‖
(2−p)q̄

2
s,Ωǫ

+ |Ωǫ|
(2−p)(q̄−s)

2s ‖∇Hǫ‖
(2−p)q̄

2
q̄,Ωǫ

)

for some C > 0 and s = N(p−1)(2−p)
3N−2−Np

, thanks to s < q̄ in view of p < 2 ≤ N . By ∇Γ ∈ Lq(Ω) for all

q < q̄ and the Young inequality we finally obtain
´

Ωǫ
|∇Hǫ|

q̄ ≤ C for some uniform constant C > 0
and then

∇H0 ∈ Lq̄(Ω)

does hold in the case 1 < p < 2 thanks to the Fatou convergence Theorem.

Once the case λ = 0 has been treated, assume p ≥ 2 and follow the approach in [1, 3, 4, 5]. Notice that
for λ = 0 we provide below an efficient approximation scheme which is different from the previous
one. Consider a sequence 0 ≤ fn ∈ C∞

0 (Ω) so that fn ⇀ δ0 weakly in the sense of measures in Ω
with supn ‖fn‖1 < +∞ and fn → 0 locally uniformly in Ω \ {0} as n → +∞. Since λ < λ1,g and
g, fn ≥ 0, the minimization of

1

p

ˆ

Ω
|∇u|p −

λ

p

ˆ

Ω
|u|p −

ˆ

Ω
fnu, u ∈ W 1,p

g (Ω),

provides a nonnegative solution Gn ∈ W
1,p
g (Ω) to

−∆pGn − λGp−1
n = fn in Ω. (2.7)

We use here Lemmas 2.2 and 2.3 below to show first that Gp−1
n is uniformly bounded in L1(Ω) and

then, up to a subsequence, Gn → Gλ in W
1,q
g (Ω) as n → +∞ for some Gλ and for all 1 ≤ q < q̄. By

the Sobolev embedding Theorem we have that Gn → Gλ in Lq(Ω) as n → +∞ for all 1 ≤ q < q̄∗

and in particular in Lp−1(Ω). Therefore one can pass to the limit in (2.7) and get that Gλ ≥ 0 solves
(2.1) in view of q̄ > p− 1.
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In order to establish suitable bounds on Hλ = Gλ − Γ, let 0 ≤ G̃n ∈ W
1,p
g (Ω) be the solution of

−∆pG̃n = fn in Ω,

obtained as a minimizer of 1
p

´

Ω |∇u|p −
´

Ω fnu in W
1,p
g (Ω) in view of λ1,g > 0. Arguing as for (2.7),

we deduce that, up to a subsequence, G̃n → G̃ in W
1,q
g (Ω) as n → +∞ for all 1 ≤ q < q̄, where

G̃ ≥ 0 solves −∆pG̃ = δ0 in Ω. By [32] and the uniqueness result in [24] we have that G̃ = G0 and

H̃ = G̃ − Γ = H0. Since −∆pGn + ∆pG̃n = λG
p−1
n in Ω with Gn = G̃n on ∂Ω, by Lemma 2.3 we

deduce that sup
n

‖∇(Gn − G̃n)‖q̄ < +∞ in view of sup
n

‖Gp−1
n ‖m < +∞ for all 1 ≤ m < q̄∗

p−1 . Since

∇(Gn− G̃n) → ∇(Hλ−H0) a.e. in Ω as n → +∞ and ∇H0 satisfies (1.4), by the Fatou convergence
Theorem we obtain that ∇Hλ satisfies (1.6). If either λ = 0 or λ 6= 0, p > N

2 a L∞−bound on Hλ

follows by Theorem 2.6 below and the proof is complete. �

The following result has been crucially used in the proof of Theorem 2.1 and in its proof we closely
follow a tricky idea in [31] combined with some apriori estimates given in Lemma 2.3 below.

Lemma 2.2. Let 2 ≤ p ≤ N . Assume that an ∈ L∞(Ω), fn ∈ L1(Ω), gn satisfy (2.2) and

lim
n→+∞

‖an − a‖∞ = 0, sup
Ω

a < λ1, sup
n∈N

[‖fn‖1 + ‖gn‖∞] < +∞. (2.8)

If un ∈ W
1,p
gn (Ω) is a sequence of solutions to

−∆pun − an|un|
p−2un = fn in Ω,

then sup
n∈N

‖un‖p−1 < +∞.

Proof. Assume by contradiction that

‖un‖p−1 → +∞ as n → +∞. (2.9)

Setting ûn = un

‖un‖p−1
, f̂n = fn

‖un‖
p−1
p−1

and ĝn = gn
‖un‖p−1

, we have that ûn solves

{

−∆pûn − an|ûn|
p−2ûn = f̂n in Ω

ûn = ĝn on ∂Ω
(2.10)

with
‖ûn‖p−1 = 1, sup

n∈N
‖an‖∞ < ∞, ‖f̂n‖L1(Ω) + ‖ĝn‖∞ → 0 as n → +∞ (2.11)

in view of (2.8)-(2.9). Fix p − 1 < p0 < q̄ and define pj =
N2(p−1)pj−1

(N+1)[N(p−1)−pj−1]
in a recursive way

for j ≥ 1. Notice that N(p−1)
N+1 < pj < pj+1 by induction and there exists a unique J ≥ 0 so that

p0, . . . , pJ−1 ≤ Np(p−1)
Np−N+p

< pJ . Since ∆pĝn = 0 in Ω, by Lemma 2.3 with m = 1 we get that

ûn − ĝn is uniformly bounded in W
1,q
0 (Ω) for all 1 ≤ q < q̄ in view of (2.10)-(2.11) and then, up to a

subsequence, ûn − ĝn ⇀ v0 in W 1,p0(Ω) as n → +∞. Define v0n = ûn and v
j
n ∈ W

1,p
ĝn

as the solution

of −∆pv
j
n = an|v

j−1
n |p−2v

j−1
n in Ω in view of λ1,ĝn = λ1,gn > 0. Lemma 2.3, applied to v1n − ĝn with

m = p0
p−1 ≤ Np

Np−N+p
, q = N

N+1
mN(p−1)
N−m

and to v1n − v0n with m = 1, q = p0 in view of (2.10)-(2.11),

provides that, up to a subsequence, v1n−ĝn ⇀ v1 inW
1,p1
0 (Ω) and v1n−v0n → 0 inW

1,p0
0 (Ω) as n → +∞.

By iterating we deduce that, up to a subsequence, vjn − ĝn ⇀ vj in W
1,pj
0 (Ω) and v

j
n − v

j−1
n → 0

in W
1,pj−1

0 (Ω) as n → +∞ for all j = 1, . . . , J . Since an|v
J
n |

p−2vJn is uniformly bounded in Lm(Ω)

with m = pJ
p−1 > Np

Np−N+p
, by Lemma 2.3 we deduce that, up to a subsequence, vJ+1

n − ĝn ⇀ vJ+1

in W
1,p
0 (Ω) as n → +∞. At the same time, by Lemma 2.3 vJ+1

n − vJn → 0 in W
1,pJ
0 (Ω) as n → +∞.

Since v
j
n − v

j−1
n → 0 in W

1,p0
0 (Ω) and v

j
n − v

j−1
n = (vjn − ĝn) − (vj−1

n − ĝn) ⇀ vj − vj−1 weakly in

W
1,p0
0 (Ω) as n → +∞ for all j = 1, . . . , J +1, we deduce that v0 = . . . = vJ+1 and then ûn− ĝn ⇀ v0

in W
1,p0
0 (Ω) as n → +∞ with v0 = vJ+1 ∈ W

1,p
0 (Ω).
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Let us compare ûn with zn ∈ W
1,p
0 (Ω), solution to

−∆pzn = an|ûn|
p−2ûn + f̂n in Ω. (2.12)

Since |ûn−zn| ≤ ‖ĝn‖∞ on ∂Ω, by the weak maximum principle we deduce that ‖ûn−zn‖∞ ≤ ‖ĝn‖∞.
By (2.11)-(2.12) and Lemma 2.3 we deduce that, up to a subsequence and for some z0, there holds

zn → z0 in W
1,q
0 (Ω), 1 ≤ q < q̄. (2.13)

By testing −∆pûn +∆pzn = 0 in Ω against ηp(ûn − zn), 0 ≤ η ∈ C∞
0 (Ω), one gets

ˆ

Ω
ηp|∇(ûn − zn)|

p ≤ C ′

ˆ

Ω
ηp−1|∇η|(|∇(ûn − zn)|

p−2 + |∇zn|
p−2)|∇(ûn − zn)||ûn − zn|

≤
1

2

ˆ

Ω
ηp|∇(ûn − zn)|

p + C

(

‖ĝn‖
p
∞ + ‖ĝn‖

p
p−1
∞ ‖∇zn‖

p−2
p(p−2)
p−1

)

→ 0

as n → +∞ in view of the Young’s inequality and (2.11). We have used that sup
n

‖∇zn‖p(p−2)
p−1

< +∞

thanks to (2.13) and p(p−2)
p−1 < q̄. Since ∇(ûn − zn) → 0 locally in Lp−norm as n → +∞, by (2.13)

we deduce that

ûn → v0 in Lp−1(Ω) and W 1,q(Ω′), ∀ Ω′ ⊂⊂ Ω, ∀ 1 ≤ q < q̄, (2.14)

in view of ‖ûn − zn‖∞ ≤ ‖ĝn‖∞ → 0 and ûn − ĝn ⇀ v0 in W
1,p0
0 (Ω) as n → +∞ for p0 ≥ p− 1.

By (2.10) and (2.14) we have that v0 ∈ W
1,p
0 (Ω) solves

−∆pv
0 − a|v0|p−2v0 = 0 in Ω (2.15)

in view of (2.8) and (2.11). Since
ˆ

Ω
|∇v0|p −

ˆ

Ω
a|v0|p = 0

by integration of (2.15) against v0 ∈ W
1,p
0 (Ω), by sup

Ω
a < λ1 one finally deduces that v0 = 0 and

then ûn → 0 in Lp−1(Ω), in contradiction with ‖ûn‖p−1 = 1. �

The results in [1, 4, 5], valid for homogeneous boundary values, can be easily extended to non-
homogeneous ones when p ≥ 2, as discussed for instance in the Appendix of [1] when p = N . For the
sake of completeness, we reproduce it here in the following simplest form, sufficient for our purposes:

Lemma 2.3. Let 2 ≤ p ≤ N . Assume ‖f1−f2‖m ≤ C0 for some C0 > 0 and either 1 ≤ m ≤ Np
Np−N+p

,

1 ≤ q <
mN(p−1)
N−m

or m > Np
Np−N+p

, 1 ≤ q ≤ p. Then there exists C > 0 so that ‖∇(u1 − u2)‖q ≤

C‖f1 − f2‖
1
p
m for all solutions u1, u2 ∈ W 1,p(Ω) of −∆pui = fi, i = 1, 2, in Ω with u1 = u2 on ∂Ω.

Moreover, given g satisying (2.2) the set of solutions u ∈ W
1,p
g (Ω) of −∆pu = f in Ω with ‖f‖1 ≤ C0

is relatively compact in W 1,q(Ω) for all 1 ≤ q < q̄.

Proof. Let u1, u2 ∈ W 1,p(Ω) be solutions of −∆pui = fi, i = 1, 2, in Ω with u1 = u2 on ∂Ω. Take
Tk,l, 0 ≤ k ≤ l, as the odd function so that

Tk,l(s) = min{max{s− k, 0}, l − k} in [0,+∞) (2.16)

and use Tk,k+1(u1 − u2) as a test function to get
ˆ

{k≤|u1−u2|<k+1}
〈|∇u1|

p−2∇u1 − |∇u2|
p−2∇u2,∇(u1 − u2)〉 =

ˆ

Ω
(f1 − f2)Tk,k+1(u1 − u2),

which implies
ˆ

{k≤|u1−u2|<k+1}
|∇(u1 − u2)|

p ≤ C‖f1 − f2‖m|{|u1 − u2| ≥ k}|
m−1
m (2.17)
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in view of (1.3) and p ≥ 2. By (2.17) the function v = u1 − u2 ∈ W
1,p
0 (Ω) satisfies

ˆ

Bk

|∇v|p ≤ c0|Ek|
m−1
m , k ≥ 0, (2.18)

with c0 = C‖f1 − f2‖m, where Ek = {|v| ≥ k} and Bk = Ek \Ek+1.

Consider first the case 1 ≤ m ≤ Np
Np−N+p

, 1 ≤ q <
mN(p−1)
N−m

and set q∗ = Nq
N−q

. Since q <
mN(p−1)
N−m

≤ p

thanks to m ≤ Np
Np−N+p

and
ˆ

Bk

|∇v|q ≤ (

ˆ

Bk

|∇v|p)
q
p |Bk|

p−q
p (2.19)

in view of the Hölder inequality, by (2.18) we obtain that
ˆ

Bk

|∇v|q ≤ c
q
p

0 ‖v‖
qq∗(m−1)

pm

q∗ (

ˆ

Bk

|v|q
∗

)
p−q
p

1

k
q∗(pm−q)

pm

for all k ≥ 1 thanks to

|Bk| ≤ k−q∗
ˆ

Bk

|v|q
∗

, |Ek| ≤ k−q∗
ˆ

Ω
|v|q

∗

.

Summing up and still by Hölder’s inequality one deduces
ˆ

{|v|≥k0}
|∇v|q ≤ c

q
p

0 ‖v‖
qq∗(m−1)

pm

q∗ (

∞∑

k=k0

ˆ

Bk

|v|q
∗

)
p−q
p (

∞∑

k=k0

1

k
q∗(pm−q)

mq

)
q
p

and then
ˆ

Ω
|∇v|q ≤ k0c

q
p

0 |Ω|
pm−q
pm + c

q
p

0 ‖v‖
q∗(pm−q)

pm

q∗ (
∞∑

k=k0

1

k
q∗(pm−q)

mq

)
q
p (2.20)

for a given k0 ∈ N in view of (2.18)-(2.19) for k = 0, . . . , k0 − 1. Since q∗(pm−q)
pm

≤ q, by Young’s

inequality (2.20) implies in turn that
ˆ

Ω
|∇v|q ≤ k0c

q
p

0 |Ω|
pm−q
pm + Cc

q
p

0 (‖v‖
q
q∗ + 1)(

∞∑

k=k0

1

k
q∗(pm−q)

mq

)
q
p . (2.21)

Since q∗(pm−q)
mq

> 1 thanks to q <
mN(p−1)
N−m

, the series in (2.21) is convergent and we can choose k0

sufficienty large (depending on C0) so that ‖v‖q∗ ≤ C ′c
1
p

0 and then ‖∇v‖q ≤ Cc
1
p

0 in view of the
Sobolev embedding Theorem, where the last estimate gets rewritten as

‖∇(u1 − u2)‖q ≤ C‖f1 − f2‖
1
p
m. (2.22)

Consider now the case m > Np
Np−N+p

, 1 ≤ q ≤ p. Use u1 − u2 as a test function to get

‖∇(u1 − u2)‖
p
p ≤ C‖u1 − u2‖ m

m−1
‖f1 − f2‖m

in view of the Hölder inequality and then ‖∇(u1 −u2)‖p ≤ C‖f1− f2‖
1

p−1
m by the Sobolev embedding

Theorem in view of m
m−1 < p∗. Notice that such last argument works as well as m = Np

Np−N+p
for

p < N since Np
Np−N+p

> 1 in this case.

Fix now m = 1 and let u1, u2 ∈ W
1,p
g (Ω) be solutions of −∆pui = fi, i = 1, 2, in Ω with ‖fi‖1 ≤ C0.

Use T0,ǫ(u1 − u2), Tk,l given by (2.16), as a test function to get
ˆ

{|u1−u2|≤ǫ}
|∇(u1 − u2)|

p ≤ Cǫ‖f1 − f2‖1 ≤ 2CC0ǫ (2.23)
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in view of (1.3) and p ≥ 2. Given 1 ≤ q < q̄, by (2.22) and Hölder’s inequality (2.23) implies
ˆ

Ω
|∇(u1 − u2)|

q ≤ C ′ǫ
q
p + (

ˆ

{|u1−u2|>ǫ}
|∇(u1 − u2)|

s)
q
s |{|u1 − u2| > ǫ}|

s−q
s

≤ C(ǫ
q
p + {|u1 − u2| > ǫ}|

s−q
s ) (2.24)

for some q < s < q̄ in view of q̄ < p. Since g is p−harmonic in Ω, taking now a sequence of solutions
un ∈ W

1,p
g (Ω) to −∆pun = fn in Ω with supn ‖fn‖1 < +∞, by the first part we know that un − g is

bounded in W
1,q
0 (Ω) and then, up to a subsequence, we have that un ⇀ u in W

1,q
g (Ω) for all 1 ≤ q < q̄

and strongly in Ls(Ω) for all 1 ≤ s < q̄∗. Applying (2.24) to un − um it is easily seen that un is a

Cauchy sequence in W
1,q
g (Ω) and then converges to u in W

1,q
g (Ω) for all 1 ≤ q < q̄. The proof is

complete. �

Let us push further the analysis in Lemma 2.2 towards an L∞-estimate when p > N
2 .

Proposition 2.4. Let 2 ≤ p ≤ N with p > N
2 and M > 0. Then there exists C > 0 so that

‖u1 − u2‖∞ ≤ C for any pair ui ∈ W
1,p
gi (Ω), i = 1, 2, of solutions to

−∆pui − λi|ui|
p−2ui = f in Ω, (2.25)

where ‖f‖1 + sup
i=1,2

[
1

(λ1 − λi)+
+ ‖gi‖∞

]

≤ M and g1, g2 satisfy (2.2).

Proof. By Lemma 2.2 we get an universal bound on ‖f + λi|ui|
p−2ui‖1. Since gi is p−harmonic

function in Ω, Lemma 2.3 and the Sobolev embedding Theorem provide an universal bound on

ui − gi in W
1,q
0 (Ω) for all 1 ≤ q < q̄ and ui in Lq(Ω) for all 1 ≤ q < q̄∗. Since q̄∗

p−1 > N
p

thanks to

p > N
2 , we can find q0 >

N
p
so that f̂ = λ1|u1|

p−2u1 − λ2|u2|
p−2u2 satisfies

‖f̂‖q0 ≤ C (2.26)

for some universal C > 0. Thanks to (2.25) we can write
{

−∆pu1 +∆pu2 = f̂ in Ω
u1 − u2 = g1 − g2 on ∂Ω.

(2.27)

Since q0 > N
p

let us fix β0 > 0 sufficiently small so that p0 := q0(β0−1+p)
q0−1 < q̄∗. Set u = u1 − u2,

C0 = ‖g1‖∞+ ‖g2‖∞ and define Ψ(s) = [T0,l(s∓C0)±+ ǫ]β − ǫβ, with l, ǫ > 0 and β ≥ β0, where Tk,l

is given by (2.16). Notice that l < +∞ and ǫ > 0 guarantee the boundedness and the differentiability

of Ψ in R, respectively. Use Ψ(u) ∈ W
1,p
0 (Ω) as a test function in (2.27) to get

β

ˆ

{(u∓C0)±≤l}
[T0,l(u∓ C0)± + ǫ]β−1(|∇u2|+ |∇u|)p−2|∇u|2 ≤ C

ˆ

Ω
|f̂ |[T0,l(u∓ C0)± + ǫ]β (2.28)

in view of (1.3). Since p ≥ 2 , by Hölder’s inequality with exponents q0(β−1+p)
(q0−1)(p−1) , q0 and q0(β−1+p)

(q0−1)β

estimate (2.28) implies the following estimate:

δppβ

(β − 1 + p)p

ˆ

Ω
|∇wl,ǫ|

p ≤ |Ω|
(q0−1)(p−1)
q0(β−1+p) ‖|f̂‖q0‖wl,ǫ‖

βp
β−1+p
pq0
q0−1

≤ C‖wǫ‖
βp

β−1+p
pq0
q0−1

for some C > 0, where

wl,ǫ = [T0,l(u∓ C0)± + ǫ]
β−1+p

p , wǫ = [(u∓C0)± + ǫ]
β−1+p

p , w = (u∓C0)
β−1+p

p

± .

By the Sobolev embedding Theorem on wl,ǫ− ǫ
β−1+p

p ∈ W
1,p
0 (Ω) and the Fatou convergence Theorem

as l → +∞ we deduce that

‖wǫ − ǫ
β−1+p

p ‖p∗ ≤ C(β − 1 + p)‖wǫ‖
β

β−1+p
pq0
q0−1

(2.29)
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for some C > 0 provided the R.H.S. is finite, where p∗ = Np
N−p

if p < N and p∗ ∈ ( pq0
q0−1 ,+∞) if

p = N . By using again the Fatou convergence Theorem on the L.H.S. and the Lebesgue convergence
Theorem on the R.H.S. in (2.29), as ǫ → 0 we deduce that

‖w‖p∗ ≤ C(β − 1 + p)‖w‖
β

β−1+p
pq0
q0−1

for some C > 0, provided ‖w‖ pq0
q0−1

< +∞. By the definition of w and taking the p
β−1+p

−power we

then deduce that

‖(u∓ C0)±‖ (β−1+p)p∗

p

≤ [C(β − 1 + p)]
p

β−1+p‖(u∓ C0)±‖
β

β−1+p

q0(β−1+p)
q0−1

,

or equivalently

‖(u∓ C0)±‖κµ ≤ [C
q0 − 1

q0
µ]

pq0
µ(q0−1) ‖(u ∓C0)±‖

1−
(p−1)q0
µ(q0−1)

µ , (2.30)

where µ = q0(β−1+p)
q0−1 and κ = (q0−1)p∗

pq0
> 1 in view of q0 > N

p
. Setting µj = κjp0, we can perform

j + 1 iterations of (2.30) to get

‖(u∓ C0)±‖µj+1 ≤ [C(β0 − 1 + p)κj ]
p

(β0−1+p)κj ‖(u∓ C0)±‖
1− p−1

(β0−1+p)κj

µj ≤ . . .

≤ [C(β0 − 1 + p) + 1]

j
∑

s=0

1

κs
κ

j
∑

s=0

s

κs
‖(u∓ C0)±‖

j
∏

s=0

(1−
p− 1

(β0 − 1 + p)κs
)

p0

in view of [C(β0 − 1 + p) + 1]κj ≥ 1 and 1− p−1
(β0−1+p)κs ≤ 1. By letting j → +∞ we deduce that

‖(u∓ C0)±‖∞ ≤ C ′‖(u∓ C0)±‖
θ0
p0

≤ C ′
M

in view of

θ0 :=
∞∏

s=0

(1−
p− 1

(β0 − 1 + p)κs
) < +∞,

∞∑

s=0

1

κs
+

∞∑

s=0

s

κs
< +∞.

In conclusion, ‖u1 − u2‖∞ ≤ C ′
M + C0 ≤ CM and the proof is complete. �

The aim now is to extend Proposition 2.4 to Hλ as a solution of (1.2) (to be compared with (2.27))
and to include the case 1 < p < 2. Since it is no longer a matter of universal estimates, the argument
is potentially simpler but the singular character of equation (1.2) has to be controlled thanks to the
assumption ∇Hλ ∈ Lq̄(Ω). For later convenience, let us write the following result in a sufficiently
general way.

Lemma 2.5. Let 1 < p ≤ N and u ∈ W
1,p

loc
(Ω \ {0}) be a solution of

−∆p(Γ + u) + ∆pΓ = f in Ω \ {0} (2.31)

with f ∈ L1(Ω), ∇u ∈ Lq̄(Ω) and

1

C
|∇Γ| ≤ |∇Γ | ≤ C|∇Γ| if 1 < p < 2

|∇Γ | ≤ C|∇Γ| if p ≥ 2
(2.32)

in Ω for some C > 1. Let η ∈ C1(Ω̄) and Ψ: R → R be a bounded monotone Lipschitz function.

Assuming either η = 0 or Ψ(u) = 0 on ∂Ω, then there holds
ˆ

Ω
η2|Ψ′(u)|(|∇Γ | + |∇u|)p−2|∇u|2 ≤ C

(ˆ

Ω
|η||∇η||Ψ(u)|(|∇Γ | + |∇u|)p−2|∇u|+

ˆ

Ω
η2|f ||Ψ(u)|

)

for some C > 0.
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Proof. Consider a sequence ηǫ ∈ C1(Ω̄) so that

ηǫ = η in Ω \Bǫ(0), ηǫ = 0 in B ǫ
2
(0), |ηǫ|+ ǫ|∇ηǫ| ≤ C in Bǫ(0) \B ǫ

2
(0) (2.33)

for some C > 0. Since η2ǫΨ(u) vanishes in B ǫ
2
(0) and on ∂Ω, it can be used a test function in (2.31):

ˆ

Ω
η2ǫ |Ψ

′(u)|(|∇Γ |+ |∇u|)p−2|∇u|2 ≤ C

ˆ

Ω

[

|ηǫ||∇ηǫ|(|∇Γ | + |∇u|)p−2|∇u|+ η2ǫ |f |
]

|Ψ(u)| (2.34)

for some C > 0 since Ψ′ has given sign. We have used here (1.3) and the estimate
∣
∣
∣|x+ y|p−2(x+ y)− |x|p−2x

∣
∣
∣ = (|x|+ |y|)p−2O(|y|).

Since (|∇Γ |+ |∇u|)p−2 = O(|∇Γ|p−2 + |∇u|p−2) in view of (2.32), by the Hölder inequality we have
that

ˆ

Bǫ(0)\B ǫ
2
(0)

|ηǫ||∇ηǫ||Ψ(u)|(|∇Γ | + |∇u|)p−2|∇u| ≤ C

ˆ

Bǫ(0)\B ǫ
2
(0)

(
|∇u|

ǫ
N(p−1)−(N−1)

p−1

+
|∇u|p−1

ǫ
)

≤ C

[

(

ˆ

Bǫ(0)\B ǫ
2
(0)

|∇u|q̄)
1
q̄ + (

ˆ

Bǫ(0)\B ǫ
2
(0)

|∇u|q̄)
N−1
N

]

→ 0 (2.35)

as ǫ → 0, in view of ‖Ψ‖∞ < +∞ and ∇u ∈ Lq̄(Ω). By inserting (2.35) into (2.34) and by using the
Lebesgue convergence Theorem for

´

Ω η2ǫ |f ||Ψ(u)| we get the validity of Lemma 2.5 in view of the
monotone convergence Theorem. �

We are now ready to complete the proof of Theorem 2.1 by establishing L∞−bounds on Hλ.

Theorem 2.6. Let 1 < p ≤ N and assume either λ = 0 or λ 6= 0 and p ≥ 2 with p > N
2 . Then

Hλ = Gλ − Γ ∈ L∞(Ω), where Gλ is any solution to (2.1) satisfying (1.6).

Proof. By (2.1) the function u = Hλ solves (2.31) with Γ = Γ and f = λG
p−1
λ . Given 0 < β0 < 1 to

be fixed later, by Lemma 2.5 with η = 1 and Ψ(s) = [T0,l(s∓ C0)± + ǫ]β − ǫβ, with l, ǫ > 0, β ≥ β0,
C0 = ‖g‖∞ + ‖Γ‖∞,∂Ω and Tk,l given by (2.16), we get that

β

ˆ

{(u∓C0)±≤l}
[T0,l(u∓ C0)± + ǫ]β−1(|∇Γ|+ |∇u|)p−2|∇u|2 ≤ C

ˆ

Ω
|f |[T0,l(u∓ C0)± + ǫ]β (2.36)

in view of Ψ(u) = 0 on ∂Ω thanks to Hλ = g − Γ on ∂Ω.

Let us first consider the case λ = 0. Then f = 0 and the choice β = 1 in (2.36) gives
ˆ

Ω
(|∇Γ|+ |∇u|)p−2|∇T0,l(u∓ C0)±|

2 ≤ 0.

Then T0,l(u∓ C0)± = 0 a.e. in Ω for any l > 0, which implies |H0| ≤ C0 a.e. in Ω.

Consider now the case λ 6= 0 and assume p ≥ 2 with p > N
2 . Since ∇Gλ = ∇Γ +∇Hλ ∈ Lq(Ω) for

all 1 ≤ q < q̄ in view of (1.6), by the Sobolev embedding Theorem Gλ ∈ Lq(Ω) for all 1 ≤ q < q̄∗

and in particular f satisfies

‖f‖q0 < ∞ (2.37)

for some q0 >
N
p
in view of p > N

2 .

Notice that (2.36)-(2.37) are the analogue of (2.26) and (2.28), and then the argument now goes
exactly as in the proof of Proposition 2.4. �

For the case g = 0 let us collect here some useful facts which will be used in the next two sections.
Given 1 < p < N , an important ingredient is given by the estimate

|∇Hλ| = O(|∇Γ|) in Ω (2.38)
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for any solution Gλ = Γ +Hλ of (2.1)g=0. Indeed, by [33] any solution Gλ of (2.1)g=0 satisfies

Γ

C
≤ Gλ ≤ CΓ in B2R0(0) (2.39)

for some C > 1, where R0 = 1
4dist(0, ∂Ω). For 0 < R ≤ R0 consider the scaling Gλ,R(y) =

R
N−p
p−1 Gλ(Ry) of Gλ in ΩR = Ω

R
which satisfies






−∆pGλ,R − λRpG
p−1
λ,R = δ0 in ΩR

Gλ,R ≥ 0 in ΩR

Gλ,R = 0 on ∂ΩR.

(2.40)

Since ΓR(y) = R
N−p
p−1 Γ(Ry) = Γ(y) in view of 1 < p < N , we have that condition (2.39) is scaling

invariant:
Γ

C
≤ Gλ,R ≤ CΓ in B 2R0

R

(0). (2.41)

Since Gλ,R is uniformly bounded in L∞
loc(B2(0) \ {0}) thanks to (2.41), elliptic estimates [11, 34] for

(2.40) imply that

Gλ,R uniformly bounded in C
1,α

loc
(B2(0) \ {0})

for some α ∈ (0, 1). Since in particular ‖∇Gλ,R‖∞,∂B1(0) ≤ C, setting Hλ,R(y) = R
N−p
p−1 Hλ(Ry) we

deduce that ‖∇Hλ,R‖∞,∂B1(0) ≤ C ′ in view of ∇Gλ,R = ∇Γ +∇Hλ,R, which can be re-written as

|∇Hλ| ≤
C ′

|x|
N−1
p−1

= C|∇Γ| on ∂BR(0) (2.42)

for all 0 < R ≤ 1
4dist(0, ∂Ω). Away from the origin ∇Hλ is bounded thanks to [11, 28, 34] and

|∇Γ| is bounded from below, and then estimate (2.38) follows by (2.42). Moreover, notice that for
1 < p ≤ N there holds

‖Hλ‖∞ < +∞ ⇒ |∇Hλ(x)| = o(|∇Γ(x)|) as x → 0. (2.43)

Indeed, for 1 < p < N we have that ‖Hλ,R‖∞,ΩR
→ 0 and then ‖∇Hλ,R‖∞,∂B1(0) → 0 as R → 0, which

provides the validity of (2.43). When p = N the function Gλ,R(y) = Gλ(Ry) + (NωN )−
1

N−1 logR =

Γ(y) +Hλ(Ry) is uniformly bounded in L∞
loc(R

N \ {0}) and satisfies

−∆NGλ,R − λRN
[

Gλ,R − (NωN )−
1

N−1 logR
]N−1

= δ0 in ΩR.

We argue as above to show that, up to a subsequence, Hλ,R(y) = Hλ(Ry) → H0 in C1
loc(R

N \ {0})

as R → 0, where ‖H0‖∞ < +∞ and Γ + H0 is a N−harmonic function in R
N \ {0}. It follows

that H0 is a constant function, see for example Lemma 4.3 in [17]. Since this is true along any such
subsequence, then ∇Hλ,R → 0 in Cloc(R

N \ {0}) as R → 0 and (2.43) does hold also in the case
p = N .

Once we have δ|∇Γ|p−2 ≤ (|∇Γ| + |∇Hλ|)
p−2 for 1 < p < 2 in view of (2.38), it becomes clear the

usefulness of the following weigthed Sobolev inequalities of Caffarelli-Kohn-Nirenberg type [7]: given
1 < p < 2, there exists C > 0 so that

(
ˆ

RN

|∇Γ|p−2|u|
2(N−2+p)

N−p

) N−p
N−2+p

≤ C

ˆ

RN

|∇Γ|p−2|∇u|2 (2.44)

for any compactly supported u ∈ L∞(RN ) with
´

RN |∇Γ|p−2|∇u|2 < +∞. Valid in C∞
0 (RN ), (2.44)

can be first extended to W 1,2−functions with compact support in view of |∇Γ|p−2 ∈ L∞
loc(R

N ) and
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then to compactly supported u ∈ L∞(RN ) with
´

RN |∇Γ|p−2|∇u|2 < +∞ through the sequence

ηǫu ∈ W 1,2(RN ), ηǫ being given by (2.33) with η = 1 in R
N , since

lim
ǫ→0

ˆ

RN

|∇Γ|p−2|∇ηǫ|
2u2 → 0.

For later convenience, when either 2 ≤ p < N or p = N ≥ 3 observe also the validity of the following
inequality

(
ˆ

RN

|u|
2N(p−1)

N(p−1)−p

)N(p−1)−p

N(p−1)

≤ C

ˆ

RN

|x|
p−2
p−1 |∇u|2 (2.45)

for any compactly supported u ∈ L∞(RN ) with
´

RN |x|
p−2
p−1 |∇u|2 < +∞.

3. Weak comparison principle and uniqueness results

This section is devoted to discuss the uniqueness part in Theorem 1.2 when 2 ≤ p ≤ N among
solutions satisfying the natural condition (1.6). When λ = 0 maximum and comparison principle in
weak or strong form are well known, see for example [36], and have been extended in various forms
to the case λ < λ1 in connection with existence and uniqueness results, see [8, 10, 19, 20] just to
quote a few.

To extend the previous uniqueness results to the singular situation, the crucial property is given by
the convexity of the functional

I(w) =







ˆ

Ω
|∇w

1
p |p if w ≥ 0 and ∇(w

1
p ) ∈ Lp(Ω)

+∞ otherwise.

Proved in [10] for p > 1, a quantitative form is established here giving a positive lower bound for I ′′

when 2 ≤ p ≤ N , crucial to be applied on Ωǫ = Ω \Bǫ(0) as ǫ → 0.

Lemma 3.1. Let w ≥ 0 a.e. in Ω so that ∇(w
1
p ) ∈ Lp(Ω). Let φ be a direction so that wt = w+tφ ≥ 0

a.e. in Ω and ∇(w
1
p

t ) ∈ Lp(Ω) for t ≥ 0 small. Letting ρ(w,φ) be given in (3.7), there hold

I ′(w)[φ] =

ˆ

Ω
|∇w

1
p |p−2〈∇w

1
p ,∇(w

1−p
p φ)〉, I ′′(w)[φ, φ] =

ˆ

Ω
ρ(w,φ) (3.1)

with

ρ(w,φ) ≥
p− 1

p
(p3 − 3p2 + 5p − 2)|∇w

1
p |p
(
φ

w
−

p(p2 − 2p + 2)〈∇w,∇φ〉

(p3 − 3p2 + 5p− 2)|∇w|2

)2

+
(p − 1)(p − 2)

p(p3 − 3p2 + 5p − 2)
w

2(1−p)
p |∇w

1
p |p−2|∇φ|2, (3.2)

where I ′(w)[φ] = d
dt
I(wt)

∣
∣
∣
t=0+

and I ′′(w)[φ, φ] = d
dt
I ′(wt)[φ]

∣
∣
∣
t=0+

.

Proof. Since d
dt
w

1
p

t = 1
p
w

1−p
p

t φ, we have that

I ′(wt)[φ] =

ˆ

Ω
|∇w

1
p

t |
p−2〈∇w

1
p

t ,∇(w
1−p
p

t φ)〉,

providing, when evaluated at t = 0, the validity of the first in formula (3.1). Differentiating once
more in t at 0+, we have that

I ′′(w)[φ, φ] = (p− 2)

ˆ

Ω
|∇w

1
p |p−4〈∇w

1
p ,∇(w

1−p
p φ)〉2 +

1

p

ˆ

Ω
|∇w

1
p |p−2|∇(w

1−p
p φ)|2 (3.3)

−
p− 1

p

ˆ

Ω
|∇w

1
p |p−2〈∇w

1
p ,∇(w

1−2p
p φ2)〉.
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Writing 〈∇w,∇φ〉 = cosα|∇w||∇φ| the first, second and third term in (3.3) produce, respectively,

ˆ

Ω
|∇w

1
p |p−4〈∇w

1
p ,∇(w

1−p
p φ)〉2 =

ˆ

Ω

|∇w
1
p |p−2

w
2(p−1)

p

[(p− 1)2

p2
|∇w|2

w2
φ2 + cos2 α|∇φ|2 (3.4)

−
2(p − 1)

p
cosα

|∇w|

w
φ|∇φ|

]

,

ˆ

Ω
|∇w

1
p |p−2|∇(w

1−p
p φ)|2 =

ˆ

Ω

|∇w
1
p |p−2

w
2(p−1)

p

[(p− 1)2

p2
|∇w|2

w2
φ2 + |∇φ|2 (3.5)

−
2(p− 1)

p
cosα

|∇w|

w
φ|∇φ|

]

,

ˆ

Ω
|∇w

1
p |p−2〈∇w

1
p ,∇(w

1−2p
p φ2)〉 =

ˆ

Ω

|∇w
1
p |p−2

w
2(p−1)

p

[

−
2p− 1

p2
|∇w|2

w2
φ2 +

2

p
cosα

|∇w|

w
φ|∇φ|

]

. (3.6)

Collecting (3.4)-(3.6), the expression of (3.3) becomes I ′′(w)[φ, φ] =
´

Ω ρ(w,φ), with

ρ(w,φ) = w
2(1−p)

p |∇w
1
p |p−2

[

C1
|∇w|2

w2
φ2 − C2 cosα

|∇w|

w
φ|∇φ|+ C3|∇φ|2

]

(3.7)

= w
2(1−p)

p |∇w
1
p |p−2

[

C1(
|∇w|

w
φ−

C2

2C1
cosα|∇φ|)2 +

4C1C3 − C2
2 cos

2 α

4C1
|∇φ|2

]

by a square completion in view of C1 > 0, where

C1 =
p− 1

p3
(p3 − 3p2 + 5p − 2), C2 =

2(p − 1)

p2
(p2 − 2p + 2), C3 =

1

p
+ (p − 2) cos2 α.

Since

4
p − 1

p3
(p3 − 3p2 + 5p − 2)(p − 2)−

4(p − 1)2

p4
(p2 − 2p+ 2)2 = −4

p− 1

p4
(p3 − 4p2 + 8p − 4) < 0,

then 4C1C3 − C2
2 cos

2 α ≥ 4 (p−1)2(p−2)
p4

and (3.2) follows by (3.7). �

As a first application, we deduce the validity of a weak comparison principle for positive solutions.

Proposition 3.2. Let 2 ≤ p ≤ N and a, f1, f2 ∈ L∞(Ω). Let ui ∈ C1(Ω̄), i = 1, 2, be solutions to

−∆pui − au
p−1
i = fi in Ω (3.8)

so that

ui > 0 in Ω,
u1

u2
≤ C near ∂Ω (3.9)

for some C > 0. If f1 ≤ f2 with f2 ≥ 0 in Ω and u1 ≤ u2 on ∂Ω, then u1 ≤ u2 in Ω.

Proof. Setting w1 = u
p
1, w2 = u

p
2 and φ = (w1 − w2)+, consider ws = sw1 + (1 − s)w2 for s ∈ [0, 1].

Since

ws + tφ = u
p
2

[

s(
u1

u2
)p + (1− s) + t

(

(
u1

u2
)p − 1

)

+

]

,

by (3.9) there exists t0 > 0 small so that ws+ tφ ≥ 0 in Ω and ∇(ws+ tφ)
1
p ∈ Lp(Ω) for each s ∈ [0, 1]

and |t| ≤ t0. Then we can apply (3.1) at s = 0, 1 to get

I ′(w1)[φ]− I ′(w2)[φ] =

ˆ

Ω
|∇w

1
p

1 |
p−2〈∇w

1
p

1 ,∇(w
1−p
p

1 φ)〉 −

ˆ

Ω
|∇w

1
p

2 |
p−2〈∇w

1
p

2 ,∇(w
1−p
p

2 φ)〉

=

ˆ

Ω
|∇u1|

p−2〈∇u1,∇
φ

u
p−1
1

〉 −

ˆ

Ω
|∇u2|

p−2〈∇u2,∇
φ

u
p−1
2

〉.
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Since φ ∈ W
1,p
0 (Ω) we deduce that

I ′(w1)[φ] − I ′(w2)[φ] =

ˆ

Ω

(

f1

u
p−1
1

−
f2

u
p−1
2

)

(up1 − u
p
2)

+ ≤ 0

in view of (3.8) and f1 ≤ f2 with f2 ≥ 0. Since

I ′(w1)[φ]− I ′(w2)[φ] =

ˆ 1

0
I ′′(ws)[w1 − w2, φ]ds =

ˆ 1

0
I ′′(ws)[φ, φ]ds

in view of I ′′(ws)[w1−w2, φ] = I ′′(ws)[φ, φ], by Lemma 3.1 I ′′(ws)[φ, φ] =
´

Ω ρ(ws, φ) with ρ(ws, φ) ≥
0 thanks to (3.2) when p ≥ 2. Then, we deduce that ρ(ws, φ) = 0 for all s ∈ [0, 1] and then

• ∇φ = 0 in Ω if p > 2

• 〈∇ws,∇φ〉 = φ
|∇ws|2

ws
if p = 2, which implies 〈∇(w1 − w2),∇φ〉 = sφ

|∇(w1−w2)|2

ws
for all

0 ≤ s ≤ 1.

In both cases ∇φ = 0 in Ω and then w1 ≤ w2 in Ω, or equivalently u1 ≤ u2 in Ω. �

Finally, we use Lemma 3.1 to show the uniqueness part in Theorem 1.2.

Theorem 3.3. Let 2 ≤ p ≤ N . If λ < λ1 with λ 6= 0 and p > N
2 , problem (2.1)g=0 has exactly one

solution Gλ so that Hλ = Gλ − Γ satisfies (1.6). Moreover, if Hλ ∈ C(Ω) for all λ < λ1, then the

map λ ∈ (−∞, λ1) → Hλ(x) is strictly increasing at any given x ∈ Ω.

Proof. We follow the same argument as in the proof of Proposition 3.2. Letting G1 and G2 be
two solutions of (2.1)g=0 satisfying (1.6), by elliptic regularity theory [11, 28, 32, 34] we know that
Gi ∈ C1,α(Ω̄ \ {0}), i = 1, 2, for some α > 0. By [33] we know that Gi, i = 1, 2, satisfies (2.39) and
by the strong maximum principle [36] ∂νGi < 0, i = 1, 2, on ∂Ω, where ν denotes the outward unit
normal vector. Set w1 = G

p
1, w2 = G

p
2, φ = w1 −w2 and ws = sw1 +(1− s)w2 for s ∈ [0, 1]. We have

that for each s ∈ [0, 1] there hold ws + tφ ≥ 0 in Ω and ∇(ws + tφ)
1
p ∈ Lp(Ω) for t small, in view of

the properties of G1 and G2. Letting Iǫ be the functional I defined on Ωǫ = Ω \ Bǫ(0), by (3.1) at
s = 0, 1 we have that

I ′ǫ(w1)[φ]− I ′ǫ(w2)[φ] =

ˆ

Ωǫ

|∇G1|
p−2〈∇G1,∇

φ

G
p−1
1

〉 −

ˆ

Ω
|∇G2|

p−2〈∇G2,∇
φ

G
p−1
2

〉

=

ˆ

∂Bǫ(0)
(
|∇G2|

p−2∂νG2

G
p−1
2

−
|∇G1|

p−2∂νG1

G
p−1
1

)(Gp
1 −G

p
2)

in view of φ = 0 on ∂Ω and the equation (2.1)g=0 satisfied by G1, G2. Notice that

I ′ǫ(w1)[φ]− I ′ǫ(w2)[φ] =

ˆ 1

0
I ′′ǫ (ws)[φ, φ]ds

with I ′′ǫ (ws)[φ, φ] =
´

Ωǫ
ρ(ws, φ) in view of Lemma 3.1. Since ρ(ws, φ) ≥ 0 when p ≥ 2 in view of

(3.2), by the Fatou convergence Theorem we deduce that
ˆ 1

0
ds

ˆ

Ω
ρ(ws, φ) ≤ lim

ǫ→0

ˆ

∂Bǫ(0)
(
|∇G2|

p−2∂νG2

G
p−1
2

−
|∇G1|

p−2∂νG1

G
p−1
1

)(Gp
1 −G

p
2). (3.10)

We claim that the R.H.S. in (3.10) vanishes and then ρ(ws, φ) = 0 for all s ∈ [0, 1], which implies, as
already discussed in the proof of Proposition 3.2, ∇φ = 0 in Ω and then G1 = G2 in Ω.

In order to prove the previous claim, for i = 1, 2 notice that Hi = Gi − Γ ∈ L∞(Ω) follows by
Theorem 2.6 in view of the assumption (1.6) for Gi. Once Hi ∈ L∞(Ω), we have that Hi satisfies
(2.43) and then

G
q
i = Γq +O(Γq−1), |∇Gi|

p−2∂νGi = |∇Γ|p−2∂νΓ + o(|∇Γ|p−1) (3.11)
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as x → 0 for q > 0. By (3.11) we deduce that Gp
1 −G

p
2 = O(Γp−1) and

|∇Gi|
p−2∂νGi

G
p−1
i

=
|∇Γ|p−2∂νΓ

Γp−1
+ o(

|∇Γ|p−1

Γp−1
),

which imply
∣
∣
∣

ˆ

∂Bǫ(0)
(
|∇G2|

p−2∂νG2

G
p−1
2

−
|∇G1|

p−2∂νG1

G
p−1
1

)(Gp
1 −G

p
2)
∣
∣
∣ = o(

ˆ

∂Bǫ(0)
|∇Γ|p−1) = o(1)

as ǫ → 0, as claimed.

Finally, assume Hλ ∈ C(Ω) for all λ < λ1 to have well defined values Hλ(x) for all x ∈ Ω (at x = 0

too) and take µ1 < µ2. Letting 0 ≤ G1
n, G

2
n ∈ W

1,p
0 (Ω) be the solutions of (2.7) corresponding

to λ = µ1 and λ = µ2, respectively, by the proof of Theorem 2.1 recall that Gµ1 = lim
n→+∞

G1
n and

Gµ2 = lim
n→+∞

G2
n a.e. in Ω, where fn ≥ 0 is a suitable smooth approximating sequence for the measure

δ0. Since Gi
n > 0 in Ω and ∂νG

i
n < 0 on ∂Ω by the strong maximum principle [36], we can apply

Proposition 3.2 to get G1
n ≤ G2

n in view of 0 ≤ fn ≤ fn + (µ2 − µ1)(G
2
n)

p−1 with fn, G
2
n ∈ L∞(Ω),

and then Gµ1 ≤ Gµ2 in Ω as n → +∞. Since

−∆pGµ1 = µ1(Gµ1)
p−1 < µ2(Gµ2)

p−1 = −∆pGµ2 in Ω \Bǫ(0),

apply once again the strong maximum principle [36] to deduce Gµ1 < Gµ2 in Ω \Bǫ(0) for all ǫ > 0,
and the strict monotonicity is established in Ω \ {0}. Given 0 < ǫ < dist (0, ∂Ω), we can find
η ∈ C1

0 (Ω) with η = 1 in Bǫ(0) and δ > 0 so that Hµ1 −Hµ2 + δ ≤ 0 on supp(η) \ Bǫ(0). Observe
that u = Hµ1 −Hµ2 and Γ = Γ +Hµ2 satisfy ∇u ∈ Lq̄(Ω), (2.32) and

−∆p(Γ + u) + ∆p(Γ ) = f in Ω \ {0}

with f = µ1(Gµ1)
p−1 − µ2(Gµ2)

p−1 ≤ 0. We can apply a variant of Lemma 2.5 with η and Ψ(u) =
(u+ δ)+ to get

ˆ

Ω
η2|∇(u+ δ)+|

p ≤ C

ˆ

Ω
|η||∇η|(u + δ)+(|∇Γ |+ |∇u|)p−2|∇u|+

ˆ

Ω
η2f(u+ δ)+ ≤ 0

and then (u + δ)+ = 0 in Bǫ(0), providing Hµ1 − Hµ2 ≤ −δ < 0 in Bǫ(0) too. The proof is
complete. �

4. Harnack inequalities and Hölder continuity of Hλ at the pole

In this section we will use the Moser iterative scheme in [32] to establish local estimates for the
solution Hλ of (1.2) at 0, leading to an Harnack inequality for Hλ + c which is the crucial tool to

show Hölder estimates at 0. The function H(x) = R
N−p
p−1 (±Hλ(Rx) + c), 0 < R < 1

2dist (0, ∂Ω),
satisfies

−∆p(Γ +H) + ∆pΓ = G in B2(0) \ {0} (4.1)

in view of (1.2), where Γ = ±R
N−p
p−1 Γ(Rx) with ∇Γ = ±∇Γ and G = ±λRNG

p−1
λ (Rx). Differently

from Proposition 2.4 and Theorem 2.6, we need to perform homogeneuos estimates on H and to this
aim for 2 ≤ p ≤ N assume

Λ = ‖G‖
1

p−1

q0,B2(0)
< +∞ (4.2)

for some q0 > N
p
. Consider the weight function ρ = |∇Γ|p−2 when 1 < p < 2, G = 0 and ρ = 1

otherwise, and introduce the weighted integrals Φρ(s, h) =
(
´

Bh(0)
ρ|u|s

) 1
s
, h, s > 0. Define κ as

κ =







N−2+p
N−p

if 1 < p < 2 and G = 0
N(p−1)

N(p−1)−p
if either 2 ≤ p < N or p = N ≥ 3

2 if p = N = 2.

(4.3)
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We are now ready to establish the main estimates in the section.

Proposition 4.1. Let H ∈ L∞(B2(0)) be a solution of (4.1) so that ∇H ∈ Lq̄(B2(0)), Γ satisfies

(2.32) and (4.2) holds. Assume G = 0, |∇H| ≤ M |∇Γ | in B2(0) when 1 < p < 2 and ‖H‖∞+Λ ≤ M ,

|x|
1

p−1 ≤ M |∇Γ | in B2(0) when 2 ≤ p ≤ N , for some M > 0. Given µ ∈ R \ {0}, there exist ν, β ≥ 0
and C > 0 so that the function u = |H|+ Λ+ ǫ satisfies

± Φρ(κµ, h1) ≤ ±[C|µ|ν(h2 − h1)
−β]

1
µΦρ(µ, h2) (4.4)

for all 1 ≤ h1 < h2 ≤ 2 and 0 < ǫ ≤ 1, uniformly for µ away from 2 − p, 0 and 1, where κ > 1 is

given in (4.3) and ± simply denotes the sign of µ.

Remark 4.2. The assumption |x|
1

p−1 ≤ M |∇Γ | when 2 ≤ p ≤ N is sufficiently general in order to

establish the validity of Corollary 4.5, which will be used in a crucial way in [2].

Proof. Given Tk,l in (2.16), introduce the bounded monotone Lipschitz function

Ψ(s) = sign s
(

[T0,l(|s|+ Λ+ ǫ)]β − [T0,l(Λ + ǫ)]β
)

, β ∈ R \ {0}.

Let η ∈ C∞
0 (Bh2(0)) be a cut-off function so that 0 ≤ η ≤ 1, η = 1 in Bh1(0) and |∇η| ≤ 2

h2−h1
.

Since η = 0 on ∂B2(0) and ∇H ∈ Lq̄(B2(0)) we can apply Lemma 2.5 to H, solution of (4.1), to get
ˆ

η2|Ψ′(H)|(|∇Γ | + |∇H|)p−2|∇H|2 ≤ C

ˆ

η|∇η||Ψ(H)|(|∇Γ | + |∇H|)p−2|∇H| (4.5)

+C

ˆ

η2|G||Ψ(H)|

for some C > 0. Define v = u
β+1
2 and w = u

β−1+p
p with u = |H|+ Λ + ǫ. Since Ψ′(H) = βuβ−1 and

|Ψ(H)| ≤ uβ for l > M + 1, by (4.5) we deduce that

|β|

ˆ

η2uβ−1(|∇Γ |+ |∇u|)p−2|∇u|2 ≤ C

(
ˆ

η|∇η|uβ(|∇Γ |+ |∇u|)p−2|∇u|+

ˆ

η2|G|uβ
)

(4.6)

in view of |∇H| = |∇u|.

Consider first the case 1 < p < 2, for which (4.6) implies
ˆ

η2|∇Γ |p−2|∇v|2 ≤ C

ˆ

η|∇η||∇Γ |p−2v|∇v| (4.7)

uniformly for β away from 0 in view of |∇u| ≤ M |∇Γ | in B2(0). Since

C

ˆ

η|∇η||∇Γ |p−2v|∇v| ≤
1

2

ˆ

η2|∇Γ |p−2|∇v|2 + C ′

ˆ

|∇η|2|∇Γ |p−2v2

thanks to the Young inequality, we can re-write (4.7) as
ˆ

|∇Γ |p−2|∇(ηv)|2 ≤ C

ˆ

|∇η|2|∇Γ |p−2v2. (4.8)

Thanks to (2.32) and making use of (2.44), by (4.8) we deduce for µ = β + 1 that

±Φρ(κµ, h1) ≤ ±(
C

(h2 − h1)2
)
1
µΦρ(µ, h2)

does hold uniformly for µ away from 1, where κ is given by (4.3). Observe that the (β + 1)−th root
of (4.8) for β < −1 reverses the inequality causing the presence of ± in (4.4).
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Consider now the case 2 ≤ p ≤ N . Since

C

ˆ

η
p
2 |∇η

p
2 |uβ(|∇Γ |+ |∇u|)p−2|∇u|

≤
|β|

4

ˆ

ηpuβ−1(|∇Γ |+ |∇u|)p−2|∇u|2 +
C ′

|β|

ˆ

|∇η|2uβ+1|∇Γ |p−2 +
C ′

|β|

ˆ

ηp−2|∇η|2uβ+1|∇u|p−2

≤
|β|

2

ˆ

ηpuβ−1(|∇Γ |+ |∇u|)p−2|∇u|2 +
C

|β|

ˆ

|∇η|2v2 +
C

|β|p−1

ˆ

|∇η|pwp

in view of the Young inequality, (2.32) and sup
B2\B1

|∇Γ|p−2 < +∞, by replacing η with η
p
2 (4.6) implies

ˆ

ηp|∇Γ |p−2|∇v|2 +
1

|β|p−2

ˆ

ηp|∇w|p ≤ C(

ˆ

|∇η|2v2 +
1

|β|p−2

ˆ

|∇η|pwp + |β|

ˆ

ηp|G|uβ) (4.9)

uniformly for β away from 1 − p and 0. Since q0 > N
p
, fix α and γ so that α ∈ ( q0

q0−1 ,
pq0
N−p

) and
1
α
+ 1

γ
= q0−1

q0
. By the Hölder inequality with exponents q0, γ and α we have that

ˆ

ηp|G|uβ ≤
1

Λp−1

ˆ

|G|(ηw)
p
γ
+

p(q0+α)
αq0 ≤

1

Λp−1
‖G‖q0,B2(0)‖ηw‖

p
γ
p ‖ηw‖

p(q0+α)
αq0

p(q0+α)
q0

= ‖ηw‖
p
γ
p ‖ηw‖

p(q0+α)
αq0

p(q0+α)
q0

in view of (4.2) and then

C|β|

ˆ

ηp|G|uβ ≤ C ′|β|‖ηw‖
p
γ
p (‖η∇w‖

p(q0+α)
αq0

p + ‖w∇η‖
p(q0+α)

αq0
p ) (4.10)

≤
1

2|β|p−2
‖η∇w‖pp + C ′′|β|

αq0+(p−2)(q0+α)
αq0−α−q0 ‖ηw‖pp +

1

|β|p−2
‖w∇η‖pp

by the Sobolev embedding Theorem in view of (N − p)(q0 + α) < Nq0 and the Young inequality.
Inserting (4.10) into (4.9) we get that

ˆ

|x|
p−2
p−1 |∇(η

p
2 v)|2 ≤ C

(
ˆ

|∇η|2v2 + |β|
αq0+(p−2)(q0+α)

αq0−α−q0

ˆ

ηp|w|p +
1

|β|p−2

ˆ

|∇η|p|w|p
)

(4.11)

in view of |x|
1

p−1 ≤ M |∇Γ | in B2(0). Since ‖H‖∞ + Λ ≤ M if p ≥ 2, we have that ‖u‖∞ ≤ M + 1
when 0 < ǫ ≤ 1 and then wp = uβ+1up−2 ≤ (M+1)p−2v2. By using the Sobolev embedding Theorem
when p = N = 2 or (2.45) otherwise, for µ = β + 1 estimate (4.11) gives that

±Φ1(κµ, h1) ≤ ±[C
|µ|

αq0+(p−2)(q0+α)
αq0−α−q0

(h2 − h1)p
]
1
µΦ1(µ, h2)

does hold uniformly for µ away from 2 − p and 1, where κ is given by (4.3). Estimate (4.4) is then
established in all the cases and the proof is complete. �

Hereafter we specialize the argument to H = R
N−p
p−1 (±Hλ(Rx) + c), R > 0. Let us consider now the

case β = −1 in the proof of Proposition 4.1 when H ≥ 0 and the result we have is the following.

Proposition 4.3. Let 1 < p ≤ N if λ = 0 and p ≥ 2 with p > N
2 if λ 6= 0. Assume N

p
< q0 < N

N−p

if λ 6= 0 and H = R
N−p
p−1 (±Hλ(Rx) + c) ≥ 0. There exist R0 > 0 and C > 0 so that v = log u, where

u = H + Λ+ ǫ and ǫ > 0, satisfies
 

B

|v − v̄| ≤ C

for all open ball B ⊂ B1(0), 0 < R ≤ R0 and 0 < ǫ ≤ 1, where
ffl

denotes an integral mean and

v̄ =
ffl

B
v.
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Proof. First of all, observe that p ≥ 2 and p > N
2 imply p2 ≥ 2p > N . Let B = Bh(x0) ⊂ B1(0).

Since |x0| + h < 1 implies |x| ≤ |x − x0| + |x0| <
3
2h + |x0| < 2 for all x ∈ B 3

2
h(x0), we have that

B 3
2
h(x0) ⊂ B2. Let η ∈ C∞

0 (B 3
2
h(x0)) be a cut-off function with 0 ≤ η ≤ 1, η = 1 in Bh(x0) and

|∇η| ≤ 4
h
. Since H solves (4.1) with ∇Γ = ±∇Γ and G = ±λRNGp−1(Rx), we can apply Lemma 2.5

with the bounded monotone Lipschitz function Ψ(s) = sign s
(
[T0,l(|s|+ Λ+ ǫ)]−1 − [T0,l(Λ + ǫ)]−1

)
,

for l > ‖H‖∞+Λ+1 and Tk,l given by (2.16), and a cut-off function ηδ = η(δ+ |x|2)
(N−1)(p−2)

4(p−1)
−1

|x|
5
2 ,

δ > 0, to get
ˆ

η2δ |∇Γ|p−2|∇v|2 ≤ C

(
ˆ

ηδ|∇ηδ||∇Γ|p−2|∇v|+

ˆ

η2δ
|G|

u

)

in view of (2.38) (which follows by (2.43) and ‖Hλ‖∞ < +∞ when p = N) and then by the Young
inequality
ˆ

η2δ |∇Γ|p−2|∇v|2 ≤ C ′

(
ˆ

|∇ηδ|
2|∇Γ|p−2 +

ˆ

η2δ
|G|

u

)

≤ C

(
ˆ

|x|(
|x|2

δ + |x|2
)
−

(N−1)(p−2)
2(p−1) |∇η|2

+

ˆ

(
|x|2

δ + |x|2
)
2−

(N−1)(p−2)
2(p−1)

η2

|x|
+

ˆ

|x|(δ + |x|2)
(N−1)(p−2)

2(p−1) η2
|G|

u

)

(4.12)

for universal constants in R, δ and c. Since ( |x|2

δ+|x|2
)α ≤ C|x|−max{−2α,0}, we have that

|x|(
|x|2

δ + |x|2
)
−

(N−1)(p−2)
2(p−1) ≤ C|x|−max{

(N−1)(p−2)
p−1

−1,−1} ∈ L1
loc(R

N )

(
|x|2

δ + |x|2
)
2− (N−1)(p−2)

2(p−1)
1

|x|
≤ C|x|−max{

(N−1)(p−2)
p−1

−3,1} ∈ L1
loc(R

N )

(4.13)

in view of (N−1)(p−2)
p−1 < N . Since G = ±λRpΓp−1(x)[1 + O(R

N−p
p−1 )] when 2 ≤ p < N in view of

‖Hλ‖∞ < +∞, for λ 6= 0 there holds Λ ≥ CR
p

p−1 for some C > 0 and all R small in view of
q0 <

N
N−p

, where Λ is given by (4.2), and then

ˆ

|x|(δ + |x|2)
(N−1)(p−2)

2(p−1) η2
|G|

u
≤

1

Λ

ˆ

|x|(δ + |x|2)
(N−1)(p−2)

2(p−1) η2|G|

≤ C

ˆ

|x|p+1−N (δ + |x|2)
(N−1)(p−2)

2(p−1) η2. (4.14)

On the other hand, since G = ±λRN | logR|N−1[1 + O( log |x|logR )] in B2(0) when p = N thanks to

‖Hλ‖∞ < +∞, for λ 6= 0 there holds Λ ≥ CR
N

N−1 | logR| for some C > 0 and for all R small and
then

ˆ

|x|(δ + |x|2)
N−2

2 η2
|G|

u
≤

1

Λ

ˆ

|x|(δ + |x|2)
N−2

2 η2|G| ≤ C

ˆ

|x|| log |x||(δ + |x|2)
N−2

2 η2. (4.15)

Since

|x|p+1−N | log |x||(δ + |x|2)
(N−1)(p−2)

2(p−1) ≤ C|x|p+1−N | log |x|| ∈ L1
loc(R

N ) (4.16)

when λ 6= 0 in view of p ≥ 2, we can use (4.13), (4.16) and the Lebesgue convergence Theorem in
(4.12) and (4.14)-(4.15) to get

ˆ

η2|x||∇v|2 ≤ C








ˆ

|x||∇η|2 +

ˆ

η2

|x|
+

ˆ

|x|p−
N−1
p−1 | log |x||η2

︸ ︷︷ ︸

λ6=0








(4.17)
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thanks to the Fatou convergence Theorem. Since p− N−1
p−1 > −1 if λ 6= 0 and

ˆ

B

|v − v̄| ≤ C ′h

ˆ

B

|∇v| ≤ C ′h(

ˆ

B

1

|x|
)
1
2 (

ˆ

B

|x||∇v|2)
1
2

≤ Ch(

ˆ

B

1

|x|
)
1
2








ˆ

|x||∇η|2 +

ˆ

η2

|x|
+

ˆ

|x|p−
N−1
p−1 | log |x||η2

︸ ︷︷ ︸

λ6=0








1
2

in view of (4.17), for |x0| < 3h one has that

ˆ

B

|v − v̄| ≤ Ch
N+1

2




hN−1 + h

p−N−1
p−1

+N
| log h|

︸ ︷︷ ︸

λ6=0






1
2

= O(hN )

in view of B 3
2
h(x0) ⊂ B5h(0), while for |x0| ≥ 3h there holds

ˆ

B

|v − v̄| ≤ C ′

[

h2(

ˆ

B

1

|x|
)(

ˆ

|x||∇η|2) + hN+1(hN−1 + | log h|h
min{p−N−1

p−1
+N,N}

)

] 1
2

≤ C

[

h2(
hN

|x0|
)(|x0|h

N−2) + h2N
] 1

2

= O(hN )

in view of 3h
2 ≤ |x0|

2 ≤ |x| ≤ 3
2 |x0| for all x ∈ B 3

2
h(x0). The proof is complete. �

We are now ready to establish an Harnack inequality for H = R
N−p
p−1 (±Hλ(Rx) + c) when H ≥ 0, a

crucial tool to establish the Hölder continuity of Hλ at 0.

Theorem 4.4. Let 1 < p ≤ N if λ = 0 and p ≥ 2 with p > N
2 if λ 6= 0. Assume that H =

R
N−p
p−1 (±Hλ(Rx) + c) ≥ 0 in B2(0). Then there exist R0 > 0 and C > 0 so that

sup
B1(0)

H ≤ C( inf
B1(0)

H + Λ) (4.18)

for all 0 < R ≤ R0, where Λ is given in (4.2) in terms of G = ±λRNG
p−1
λ (Rx)

Proof. Given p0 > 0 to be specified below, let us fix 0 < p1 < p0 so that κjp1 6= 2− p, 1 for all j ≥ 0.
Consider first the case µ > 0 in Proposition 4.1 to get

Φρ(κµ, h1) ≤ [C̃µν(h2 − h1)
−β ]

1
µΦρ(µ, h2) (4.19)

for all µ 6= 2 − p, 1 and for suitable ν, β ≥ 0, where u = |H| + Λ + ǫ ≥ 0. Starting from p1 along

µj = κjp1 estimate (4.19) with 1 ≤ h
j
1 = 1 + 2−(j+1) < h

j
2 = 1 + 2−j ≤ 2 gives

Φρ(µj+1, h
j
1) ≤ [C(2βκν)j ]

1

κjp1Φρ(µj , h
j
2)

and then

sup
B1(0)

u ≤ lim
j→+∞

Φρ(µj+1, h
j
1) ≤ C1Φρ(p1, 2), C1 = C

κ
p1(κ−1) (2βκν)

1
p1

∑
j

j

κj (4.20)

via an iteration argument as in the proof of Proposition 2.4. Since ρ > 0 in B1(0) \ {0}, notice that

‖u‖∞,B1(0)\Bǫ(0) ≤ lim inf
µ→+∞

Φρ(µ, 1) ≤ lim sup
µ→+∞

Φρ(µ, 1) ≤ ‖u‖∞,B1(0)

and then as ǫ → 0

lim
µ→+∞

Φρ(µ, 1) = ‖u‖∞,B1(0) = sup
B1(0)

u. (4.21)
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Consider the case µ < 0 in Proposition 4.1 to get

Φρ(κµ, h1) ≥ [C̃|µ|ν(h2 − h1)
−β]

1
µΦρ(µ, h2) (4.22)

for all µ 6= 2− p. Starting from −p1 along µj = κj(−p1), one can use estimate (4.22) with h
j
1 and h

j
2

to get

Φρ(µj+1, h
j
1) ≥ [C(2βκν)j ]

− 1

κjp1 Φρ(µj, h
j
2)

and then, arguing as we did to show (4.21), one deduces that

inf
B1(0)

u ≥ lim
j→+∞

Φρ(µj+1, h
j
1) ≥ C2Φρ(−p1, 2), C2 = C

− κ
p1(κ−1) (2βκν)

− 1
p1

∑
j

j

κj , (4.23)

in view of µj → −∞ as j → +∞.

Assume now H ≥ 0 in B2(0). Let us finally use Proposition 4.3 to compare (4.20) and (4.23).
Indeed, as a consequence of John-Nirenberg Lemma (see Lemma 7 in [32]), Proposition 4.3 shows
the existence of p0 > 0 so that

(
ˆ

B2(0)
ρep0v

ˆ

B2(0)
ρe−p0v

) 1
p0

≤ ‖ρ‖
2
p0

∞,B2(0)

(
ˆ

B2(0)
ep0v

ˆ

B2(0)
e−p0v

) 1
p0

≤ C3

for some universal C3 > 0, or equivalently

Φρ(p0, 2) ≤ C3Φρ(−p0, 2) (4.24)

in terms of u = ev = H+ Λ + ǫ. The use of (4.24) along with (4.20) and (4.23) gives

sup
B1(0)

u ≤ C1Φρ(p1, 2) ≤ C ′
1Φρ(p0, 2) ≤ C ′

1C3Φρ(−p0, 2) ≤ C ′
1C

′
3Φρ(−p1, 2) ≤

C ′
1C

′
3

C2
inf
B1(0)

u

thanks to the Hölder estimate in view of p1 < p0 and ρ ∈ L∞(B2(0)). Since u = H+Λ+ ǫ, one then
deduces

sup
B1(0)

H ≤ C( inf
B1(0)

H +Λ + ǫ)

for some C > 0 and (4.18) follows by letting ǫ → 0. �

In particular, for p ≥ 2 we have the following a-priori L∞−estimate.

Corollary 4.5. Let 2 ≤ p ≤ N . Given M > 0 and p0 ≥ 1 there exists C > 0 so that

‖h+ c‖∞,BR(0) ≤ C(R
− N

p0 ‖h+ c‖p0,B2R(0) +R
pq0−N

q0(p−1) ‖f‖
1

p−1

q0,B2R(0)) (4.25)

for all ǫp−1 ≤ R ≤ R0 =
1
4dist(0, ∂Ω) and all solution h to

−∆p(u+ h) + ∆pu = f in Ω \ {0}

so that ∇h ∈ Lq̄(Ω), |x|
1

p−1

M(ǫp+|x|
p

p−1 )
N
p

≤ |∇u| ≤ M |∇Γ| for some ǫ > 0 and |c|+ ‖h‖∞ + ‖f‖
1

p−1
q0 ≤ M

for some q0 >
N
p
.

Proof. Set H(x) = R
N−p
p−1 (h(Rx) + c), 0 < R < 2R0. We have that H ∈ L∞(B2(0)) solves (4.1) with

Γ = R
N−p
p−1 u(Rx), G = RNf(Rx) and satisfies ∇H ∈ Lq̄(B2(0)). Since ‖H‖∞,B2(0) ≤ 2MR

N−p
p−1 and

‖G‖
1

p−1

q0,B2(0)
= R

N(q0−1)
q0(p−1) ‖f‖

1
p−1

q0,B2R(0) ≤ MR
N(q0−1)
q0(p−1) , (4.26)

we have that

‖H‖∞,B2(0) + ‖G‖
1

p−1

q0,B2(0)
≤ M̃



THE GREEN FUNCTION FOR p−LAPLACE OPERATORS 21

for some M̃ and all 0 < R ≤ R0. Since

|x|
1

p−1

M2
N

p−1
+N

p

≤
|x|

1
p−1

M((ǫp−1R−1)
p

p−1 + |x|
p

p−1 )
N
p

≤ |∇Γ | ≤ M |∇Γ|

in B2(0) for ǫ
p−1 ≤ R ≤ R0, Proposition 4.1 gives the validity of (4.4) for all µ 6= 0 and we can argue

as in (4.20) to get

sup
B1(0)

u ≤ C1Φ1(p1, 2) (4.27)

for a given 0 < p1 < p0 so that κjp1 6= 1 for all j ∈ N, where u = |H| + ‖G‖
1

p−1

q0,B2(0)
+ ǫ′. Since

Φ1(p1, 2) ≤ |B2(0)|
p0−p1
p0p1 Φ1(p0, 2) by Hölder estimate, by (4.27) we deduce that

‖h+ c‖∞,BR(0) = R
−N−p

p−1 sup
B1(0)

|H| ≤ C ′R
−N−p

p−1 (‖H‖p0,B2(0) + ‖G‖
1

p−1

q0,B2(0)
+ ǫ′)

≤ C

(

R
− N

p0 ‖h+ c‖p0,B2R(0) +R
pq0−N

q0(p−1) ‖f‖
1

p−1

q0,B2R(0) + ǫ′R
−N−p

p−1

)

(4.28)

in view of (4.26) and

‖H‖p0,B2(0) = R
N−p
p−1 R

− N
p0 ‖h+ c‖p0,B2R(0).

Letting ǫ′ → 0 in (4.28) we deduce the validity of (4.25) and the proof is complete. �

Finally, let us discuss the Hölder regularity of Hλ at the pole 0. Given Λ in (4.2) in terms of

G = ±λRNG
p−1
λ (Rx), let us re-write the Harnack inequality (4.18) for H = R

N−p
p−1 (±Hλ(Rx)+ c) ≥ 0

in B2R(0) as

sup
BR(0)

(±Hλ + c) ≤ C

(

inf
BR(0)

(±Hλ + c) +Rσ

)

(4.29)

for all 0 < R ≤ R0, in view of (4.26) with f = ±λG
p−1
λ . Since we assume p ≥ 2 with p > N

2 if λ 6= 0,

notice that σ = pq0−N
q0(p−1) > 0 when λ 6= 0 in view of (2.37) with q0 > N

p
, while the term Rσ is not

present when λ = 0. In this second case, we can assume σ ∈ (0,+∞).

We are now in position to follow the argument in [32] and establish the following Hölder property.

Theorem 4.6. Let 1 < p ≤ N if λ = 0 and p ≥ 2 with p > N
2 if λ 6= 0. Then Hλ ∈ C(Ω̄) and there

exists C > 0 such that

|Hλ(x)−Hλ(0)| ≤ C|x|α ∀ x ∈ Ω (4.30)

for some α ∈ (0, 1).

Proof. Setting M(R) = sup
BR(0)

Hλ and µ(R) = inf
BR(0)

Hλ for R > 0, we claim that the oscillation

ω(R) = M(R)− µ(R) of H in BR(0) satisfies

ω(R) ≤ C0R
α (4.31)

for all 0 < R ≤ R0, for some α,C0, R0 > 0.

Indeed, apply (4.29) on BR
2
(0) either with c = M(R) and the − sign or with c = −µ(R) and the +

sign to get

M(R)− µ′(R) ≤ C[M(R)−M ′(R)] + CRσ, M ′(R)− µ(R) ≤ C[µ′(R)− µ(R)] +CRσ (4.32)

for all 0 < R ≤ 2R0, where M ′(R) = M(R2 ) and µ′(R) = µ(R2 ). By adding the two inequalities in
(4.32) we get that

ω(
R

2
) ≤ θω(R) + C0R

σ (4.33)
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for all 0 < R ≤ 2R0, where θ = C−1
C+1 < 1 and C0 = 2C

C+1 . If θ ≤ 0, then (4.33) implies the validity

of (4.31) with α = σ > 0 for all 0 < R ≤ R0 and some C0 > 0 . In the case θ > 0, for S ≥ 2 (4.33)
gives that

ω(
R

S
) ≤ ω(

R

2
) ≤ θ(ω(R) + τRσ), 0 < R ≤ R0,

for some τ > 0 and an iteration starting from r = R0 leads to

ω(
R0

Sj
) ≤ θj[ω(R0) + τRσ

0

j−1
∑

k=0

(θSσ)−k]. (4.34)

Since θ ∈ (0, 1) and σ > 0 in (4.33) can be taken smaller than 1, the choice S = (2
θ
)
1
σ ≥ 2 is admissible

in (4.34) yielding

ω(
R0

Sj
) ≤ θj(ω(R0) + 2τRσ

0 ). (4.35)

Given 0 < R ≤ R0
S
, let j0 ≥ 1 be so that R0

Sj0+1 < R ≤ R0

Sj0
and by (4.35) we have

ω(R) ≤ ω(
R0

Sj0
) ≤ θj0(ω(R0) + 2τRσ

0 ) ≤ Cθj0 (4.36)

with C = ω(R0) + 2τRσ
0 . Setting γ = − log θ

log 2 > 0, then θ = 2−γ = S−α with α = σγ
γ+1 ∈ (0, 1) and

(4.36) implies

ω(R) ≤ C(
S

R0
)αRα

for all 0 < R ≤ R02
− γ+1

σ , and (4.31) is established in this case too.

Since (4.31) gives that lim
R→0

ω(R) = 0, we deduce that Hλ ∈ C(Ω̄) in view of Gλ ∈ C1,β(Ω̄ \ {0}) by

elliptic regularity theory [11, 28, 32, 34]. Setting R = |x|, (4.31) implies

|Hλ(x)−Hλ(0)| ≤ ω(R) ≤ C0|x|
α

for all x ∈ BR0(0). Since (4.30) clearly holds in Ω \BR0(0) in view of the boundedness of Hλ, we get
the validity of (4.30) in the whole Ω and the proof is complete. �
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