THE GREEN FUNCTION FOR p-LAPLACE OPERATORS

SABINA ANGELONI AND PIERPAOLO ESPOSITO

Abstract

On a bounded domain $\Omega \subset \mathbb{R}^{N}, N \geq 2$, we consider existence, uniqueness and "regularity" issues for the Green function G_{λ} of the quasi-linear operator $u \rightarrow-\Delta_{p} u-\lambda|u|^{p-2} u$ with $1<p \leq N$, homogeneous Dirichlet boundary condition and $\lambda<\lambda_{1}$, where $\lambda_{1}>0$ is the first eigenvalue of $-\Delta_{p}$.

1. Introduction

Given $1<p \leq N$ and a bounded domain $\Omega \subset \mathbb{R}^{N}, N \geq 2$, for $x_{0} \in \Omega$ we are interested to nonnegative solutions G_{λ} of

$$
-\Delta_{p} G-\lambda G^{p-1}=0 \quad \text { in } \Omega \backslash\left\{x_{0}\right\}
$$

where $\Delta_{p}(\cdot)=\operatorname{div}\left(|\nabla(\cdot)|^{p-2} \nabla(\cdot)\right)$ is the p-Laplace operator and $\lambda<\lambda_{1}$. Here $G_{\lambda} \in W_{\text {loc }}^{1, p}\left(\Omega \backslash\left\{x_{0}\right\}\right)$ and λ_{1} is the first eigenvalue of $-\Delta_{p}$ given by

$$
\lambda_{1}=\inf _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{p}}{\int_{\Omega}|u|^{p}}
$$

When $\lambda=0$, by elliptic regularity theory a nonnegative p-harmonic function G_{0} in $\Omega \backslash\left\{x_{0}\right\}$ belongs to $C_{\text {loc }}^{1, \alpha}\left(\Omega \backslash\left\{x_{0}\right\}\right)$ for some $\alpha \in(0,1)$ and, according to 32 , behaves - if singular - like the fundamental solution

$$
\Gamma(x)= \begin{cases}\frac{C_{0}}{\left|x-x_{0}\right|^{\frac{N-p}{p-1}}} & \text { if } 1<p<N \\ -\left(N \omega_{N}\right)^{-\frac{1}{N-1}} \log \left|x-x_{0}\right| & \text { if } p=N\end{cases}
$$

of $-\Delta_{p} \Gamma=\delta_{x_{0}}$ in \mathbb{R}^{N}, where $C_{0}=\frac{p-1}{N-p}\left(N \omega_{N}\right)^{-\frac{1}{p-1}}$ and ω_{N} is the measure of the unit ball in \mathbb{R}^{N}. By a combination of scaling arguments and regularity estimates, Kichenassamy and Veron [24] showed that, in the singular situation, up to a re-normalization, G_{0} is a solution of

$$
\begin{equation*}
-\Delta_{p} G=\delta_{x_{0}} \quad \text { in } \Omega \tag{1.1}
\end{equation*}
$$

and differs from Γ by a locally bounded function $H_{0}=G_{0}-\Gamma$ in Ω. Given $g \in L^{\infty}(\Omega) \cap W^{1, p}(\Omega)$, a solution $G_{0} \in W_{\text {loc }}^{1, p}\left(\Omega \backslash\left\{x_{0}\right\}\right) \cap W^{1, p-1}(\Omega)$ to (1.1) with $\left.G_{0}\right|_{\partial \Omega}=g$ can be found in many different ways (see for example [24, 32]) and turns out to be unique thanks to the property $\nabla H_{0}=o(|\nabla \Gamma|)$ as $x \rightarrow x_{0}$. As noticed in [24], the same approach via scaling arguments leads to a continuity property of H_{0} at x_{0}.
The aim of the present paper is to establish the Hölder continuity of $H_{\lambda}=G_{\lambda}-\Gamma$ at x_{0} when $\lambda=0$ and to include the case $\lambda<\lambda_{1}$. Notice that such Hölder property is new already when $\lambda=0$ and is relevant since Green's functions naturally arise in the description of concentration phenomena for quasi-linear PDE's, see for example [2], even if representation formulas are no-longer available in a quasi-linear context. Since the seminal works [26, 32, 33] in the sixties, the regularity theory for quasi-linear elliptic problems has been first refined in [18, 27] in the p-harmonic setting, see also [35], and then in [11, 28, 34] for general p-Laplace type equations. To treat the case of a Radon measure as right hand side, a general existence and uniqueness theory has been developed, both in the scalar and vectorial case, through different approaches: renormalized solutions, see for instance [9, 30]; entropy solutions or SOLA (solutions obtained as limit of approximations) in [1, 3, 4, 5]; in weak Lebesgue spaces [12, 13, 14]; in grand Sobolev spaces [21]. A powerful and general approach
has also been developed through a potential theory in nonlinear form, see for example [23, 25] for an overview on old and recent achievements. Also in the simplest case $\lambda=0$ the problem we are interested in does not fit into these general theories and a different approach, based on a new but rather simple idea, is necessary. The main point is to consider H_{λ} as a solution of

$$
\begin{equation*}
-\Delta_{p}\left(\Gamma+H_{\lambda}\right)+\Delta_{p} \Gamma=\lambda G_{\lambda}^{p-1} \quad \text { in } \Omega \backslash\left\{x_{0}\right\} \tag{1.2}
\end{equation*}
$$

for any $G_{\lambda}=\Gamma+H_{\lambda}$ solving (1.5) below and to apply the Moser iterative scheme in 32 to derive Hölder estimates on H_{λ} thanks to the coercivity of the difference operator, as expressed by the estimate

$$
\begin{equation*}
\inf _{X \neq Y} \frac{\left.\langle | X+\left.Y\right|^{p-2}(X+Y)-|X|^{p-2} X, Y\right\rangle}{(|X|+|Y|)^{p-2}|Y|^{2}}>0 \tag{1.3}
\end{equation*}
$$

When $p \geq 2$ gradient L^{p}-estimates on H_{λ} can be derived for the difference equation (1.2) as in the pure p-Laplace case and the only difficulty, when performing local estimates, comes from the failure of good upper estimates on $\left|\nabla \Gamma+\nabla H_{\lambda}\right|^{p-2}\left(\nabla \Gamma+\nabla H_{\lambda}\right)-|\nabla \Gamma|^{p-2} \nabla \Gamma$, caused by the singular behavior of $\nabla \Gamma$ at x_{0}. Since the inequality $(|X|+|Y|)^{p-2}|Y|^{2} \geq \delta|Y|^{p}, \delta>0$, is no longer true for $1<p<2$, one realizes that the difference equation (1.2) differs from the pure p-Laplace case and weighted gradient L^{2}-estimates on H_{λ} are the natural ones one can hope for.
Let us first discuss the case $\lambda=0$, which is the most relevant since it concerns the behavior of p-harmonic functions at isolated singularities. In the two-dimensional situation a very precise description has been provided in [29], whereas for $N \geq 2$ the only available result concerns the continuity of H_{0} and has been given in [24], as already discussed. A special attention is paid here to avoid any restrictions on p and our first main result below improves in full generality what was previously known:

Theorem 1.1. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain, $x_{0} \in \Omega$ and $1<p \leq N$. The unique nonnegative solution G_{0} to

$$
\begin{cases}-\Delta_{p} G=\delta_{x_{0}} & \text { in } \Omega \\ G=0 & \text { on } \partial \Omega\end{cases}
$$

satisfies

$$
\begin{equation*}
\nabla\left(G_{0}-\Gamma\right) \in L^{\bar{q}}(\Omega), \quad \bar{q}=\frac{N(p-1)}{N-1} \tag{1.4}
\end{equation*}
$$

and the regular part $H_{0}=G_{0}-\Gamma$ is Hölder continuous at x_{0}.
Let us stress that the integrability condition (1.4) can be improved into $\nabla H_{0} \in L^{p}(\Omega)$ if $p \geq 2$. Since $\nabla \Gamma \in L^{q}(\Omega)$ for all $q<\bar{q}$, the exponent \bar{q} represents the threshold gradient-integrability which distinguishes the singular situation from the non-singular one and the property (1.4) is crucial, when running the Moser iterative scheme, to use appropriate test functions $\Psi\left(H_{\lambda}\right)$ into (1.2) as the equation were valid in the whole Ω. The validity of higher regularity properties for H_{0} represents a challenging open question in this context.
Let us now address the case $\lambda \neq 0$ and consider the problem

$$
\begin{cases}-\Delta_{p} G-\lambda G^{p-1}=\delta_{x_{0}} & \text { in } \Omega \tag{1.5}\\ G \geq 0 & \text { in } \Omega \\ G=0 & \text { on } \partial \Omega\end{cases}
$$

Our second main result is the following:
Theorem 1.2. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain, $x_{0} \in \Omega$ and $2 \leq p \leq N$. If $\lambda<\lambda_{1}$ with $\lambda \neq 0$, problem (1.5) has a solution G_{λ} with

$$
\begin{equation*}
\nabla\left(G_{\lambda}-\Gamma\right) \in L^{\bar{q}}(\Omega), \quad \bar{q}=\frac{N(p-1)}{N-1} \tag{1.6}
\end{equation*}
$$

which is unique in the class of solutions satisfying (1.6). Moreover, the regular part $H_{\lambda}=G_{\lambda}-\Gamma$ is Hölder continuous at x_{0} if $p>\frac{N}{2}$.

Some comments are in order. While (1.4) is proved to be true for G_{0}, for $\lambda \neq 0$ we cannot guarantee the validity of (1.6) for any solution G_{λ}. However, since (1.6) is generally valid for all solutions obtained through an approximation scheme, assumption (1.6) in Theorem 1.2 is a rather natural request which - at the same time - allows us to show uniqueness of G_{λ} when $p \geq 2$ and Hölder continuity of H_{λ} when $p>\frac{N}{2}$. In view of $H_{\lambda} \in L^{\infty}(\Omega)$ and

$$
\Gamma \in L^{q}(\Omega) \quad \text { for } 1 \leq q<\bar{q}^{*}, \bar{q}^{*}= \begin{cases}\frac{N(p-1)}{N-p} & \text { if } 1<p<N \\ +\infty & \text { if } p=N\end{cases}
$$

notice that condition $p>\frac{N}{2}$ ensures $G_{\lambda}^{p-1} \in L^{q}(\Omega)$ for some $q>\frac{N}{p}$ in (1.2), a natural condition arising in [32] to prove L^{∞}-bounds. In this respect, observe that also in the semilinear case $p=2$ the function H_{λ} is no longer regular at x_{0} when $2=p \leq \frac{N}{2}$.
The paper is organized as follows. Section 2 is devoted to establish the existence part in Theorems 1.1 and 1.2 along with some L^{∞}-estimates, while uniqueness issues are addressed in Section 3. Harnack inequalities and Hölder estimates for H_{λ} are established in Section 4. For easy of notations, we will just consider the case $x_{0}=0$.
The results of the present paper are crucial in [2] to discuss existence results for a quasi-linear elliptic equation of critical Sobolev growth [6, 22] in the low-dimensional case as in [15, 16].

2. Existence of Green's functions

Given $g \in L^{\infty}(\Omega) \cap W^{1, p}(\Omega)$, set $W_{g}^{1, q}(\Omega)=g+W_{0}^{1, q}(\Omega)$ for all $q \geq 1$ and consider

$$
\lambda_{1, g}=\inf _{u \in W_{g}^{1, p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{p}}{\int_{\Omega}|u|^{p}}
$$

Since the minimizer \tilde{g} of $\int_{\Omega}|\nabla u|^{p}$ in $W_{g}^{1, p}(\Omega)$ is a p-harmonic function in Ω so that $\|\tilde{g}\|_{\infty} \leq\|g\|_{\infty}$, we assume that either $g=0$ or $g \in L^{\infty}(\Omega) \cap W^{1, p}(\Omega)$ is a p-harmonic and non-constant function in Ω so to guarantee $\lambda_{1, g}>0$.
For $g \geq 0$ and $\lambda<\lambda_{1, g}$ let us discuss the problem

$$
\begin{cases}-\Delta_{p} G-\lambda G^{p-1}=\delta_{0} & \text { in } \Omega \tag{2.1}\\ G \geq 0 & \text { in } \Omega \\ G=g & \text { on } \partial \Omega\end{cases}
$$

with

$$
\begin{equation*}
g \in L^{\infty}(\Omega) \cap W^{1, p}(\Omega) p \text {-harmonic in } \Omega, g \text { non-constant unless } g=0 \tag{2.2}
\end{equation*}
$$

Solutions of (2.1) are found by an approximation procedure based either on removing small balls $B_{\epsilon}(0)$ when $\lambda=0$ as in [24] or on approximating δ_{0} by smooth functions when $\lambda \neq 0$ as in [1, 3, 4, 5]. We have the following existence result.
Theorem 2.1. Let $1<p \leq N, g \geq 0$ satisfying (2.2), $\lambda<\lambda_{1, g}$ and assume $p \geq 2$ only when $\lambda \neq 0$. Then there exists a solution G_{λ} of problem (2.1) so that $H_{\lambda}=G_{\lambda}-\Gamma$ satisfies (1.6). Moroever, there holds $H_{\lambda} \in L^{\infty}(\Omega)$ whenever either $\lambda=0$ or $\lambda \neq 0, p>\frac{N}{2}$.

Proof. Consider first the case $\lambda=0$. We repeat the argument in [24] and the only point is to establish suitable bounds on $H_{0}=G_{0}-\Gamma$. Let G_{ϵ} be the p-harmonic function in $\Omega_{\epsilon}=\Omega \backslash B_{\epsilon}(0)$ so that $G_{\epsilon}=g$ on $\partial \Omega$ and $G_{\epsilon}=\Gamma$ on $\partial B_{\epsilon}(0)$. Since Γ is a positive p-harmonic function in $\Omega \backslash\{0\}$, by comparison principle we deduce that $G_{\epsilon} \geq 0$ and $\left|G_{\epsilon}-\Gamma\right| \leq C_{0}$ in Ω_{ϵ}, with $C_{0}=\|g\|_{\infty}+\|\Gamma\|_{\infty, \partial \Omega}$. By elliptic estimates [18, 27, 35] for p-harmonic functions we deduce that G_{ϵ} is uniformly bounded in $C_{\text {loc }}^{1, \alpha}(\Omega \backslash\{0\})$. By Ascoli-Arzelá Theorem we can find a sequence $\epsilon_{n} \rightarrow 0$ so that $G_{n}:=G_{\epsilon_{n}} \rightarrow G_{0}$ in $C_{\mathrm{loc}}^{1}(\Omega \backslash\{0\})$ as $n \rightarrow+\infty$, where $G_{0} \geq 0$ is a p-harmonic function in $\Omega \backslash\{0\}$ so that

$$
\begin{equation*}
H_{0}=G_{0}-\Gamma \in L^{\infty}(\Omega) \tag{2.3}
\end{equation*}
$$

Letting η be a cut-off function with $\eta=1$ near $\partial \Omega$ and $\eta=0$ near 0 , use $\eta^{p}\left(G_{\epsilon}-g\right) \in W_{0}^{1, p}\left(\Omega_{\epsilon}\right)$ as a test function for $\Delta_{p} G_{\epsilon}=0$ in Ω_{ϵ} to get

$$
\begin{equation*}
\left.\left.\left.\int_{\Omega_{\epsilon}} \eta^{p}\langle | \nabla G_{\epsilon}\right|^{p-2} \nabla G_{\epsilon}, \nabla\left(G_{\epsilon}-g\right)\right\rangle=-\left.p \int_{\Omega_{\epsilon}} \eta^{p-1}\left(G_{\epsilon}-g\right)\langle | \nabla G_{\epsilon}\right|^{p-2} \nabla G_{\epsilon}, \nabla \eta\right\rangle \leq C \tag{2.4}
\end{equation*}
$$

in view of $\nabla \eta=0$ near $\partial \Omega$ and 0 . Since

$$
\int_{\Omega_{\epsilon}} \eta^{p}\left|\nabla G_{\epsilon}\right|^{p-1}|\nabla g| \leq \frac{1}{2} \int_{\Omega_{\epsilon}} \eta^{p}\left|\nabla G_{\epsilon}\right|^{p}+C \int_{\Omega_{\epsilon}} \eta^{p}|\nabla g|^{p}
$$

for some $C>0$ in view of the Young inequality, by (2.4) we deduce that G_{ϵ} is uniformly bounded in $W^{1, p}$ near $\partial \Omega$. Then $G_{0}=g$ on $\partial \Omega$ and G_{0} solves (2.1) with $\lambda=0$ in view of (2.3) and [24, 32].
Moreover, use $(1-\eta)\left(G_{\epsilon}-\Gamma\right) \in W_{0}^{1, p}\left(\Omega_{\epsilon}\right)$ as a test function for $-\Delta_{p} G_{\epsilon}+\Delta_{p} \Gamma=0$ in Ω_{ϵ} to get

$$
\begin{equation*}
\left.\left.\int_{\Omega_{\epsilon}}(1-\eta)\langle | \nabla G_{\epsilon}\right|^{p-2} \nabla G_{\epsilon}-|\nabla \Gamma|^{p-2} \nabla \Gamma, \nabla\left(G_{\epsilon}-\Gamma\right)\right\rangle \leq C \tag{2.5}
\end{equation*}
$$

in view of $\nabla \eta=0$ near $\partial \Omega$ and 0 . By the coercivity estimate (1.3) and the uniform $W^{1, p}$-bound on G_{ϵ} and Γ away from 0 we deduce that (2.5) implies

$$
\begin{equation*}
\int_{\Omega_{\epsilon}}\left(|\nabla \Gamma|+\left|\nabla H_{\epsilon}\right|\right)^{p-2}\left|\nabla H_{\epsilon}\right|^{2} \leq C \tag{2.6}
\end{equation*}
$$

for some uniform constant $C>0$, where $H_{\epsilon}=G_{\epsilon}-\Gamma$. When $p \geq 2$ estimate (2.6) implies

$$
\nabla H_{0} \in L^{p}(\Omega)
$$

thanks to the Fatou convergence Theorem along the sequence ϵ_{n}. For $1<p<2$ by (2.6) and the Hölder inequality we get

$$
\begin{aligned}
\int_{\Omega_{\epsilon}}\left|\nabla H_{\epsilon}\right|^{\bar{q}} & =\int_{\Omega_{\epsilon}}\left(|\nabla \Gamma|+\left|\nabla H_{\epsilon}\right|\right)^{\frac{(p-2) \bar{q}}{2}}\left|\nabla H_{\epsilon}\right|^{\bar{q}}\left(|\nabla \Gamma|+\left|\nabla H_{\epsilon}\right|\right)^{\frac{(2-p) \bar{q}}{2}} \leq C\left(\|\nabla \Gamma\|_{s, \Omega_{\epsilon}}^{\frac{(2-p) \bar{q}}{2}}+\left\|\nabla H_{\epsilon}\right\|_{s, \Omega_{\epsilon}}^{\frac{(2-p) \bar{q}}{2}}\right) \\
& \leq C\left(\|\nabla \Gamma\|_{s, \Omega_{\epsilon}}^{\frac{(2-p) \bar{q}}{2}}+\left|\Omega_{\epsilon}\right|^{\frac{(2-p)(\bar{q}-s)}{2 s}}\left\|\nabla H_{\epsilon}\right\|_{\bar{q}, \Omega_{\epsilon}}^{\frac{(2-p) \bar{q}}{2}}\right)
\end{aligned}
$$

for some $C>0$ and $s=\frac{N(p-1)(2-p)}{3 N-2-N p}$, thanks to $s<\bar{q}$ in view of $p<2 \leq N$. By $\nabla \Gamma \in L^{q}(\Omega)$ for all $q<\bar{q}$ and the Young inequality we finally obtain $\int_{\Omega_{\epsilon}}\left|\nabla H_{\epsilon}\right|^{\bar{q}} \leq C$ for some uniform constant $C>0$ and then

$$
\nabla H_{0} \in L^{\bar{q}}(\Omega)
$$

does hold in the case $1<p<2$ thanks to the Fatou convergence Theorem.
Once the case $\lambda=0$ has been treated, assume $p \geq 2$ and follow the approach in [1, 3, 4, 5]. Notice that for $\lambda=0$ we provide below an efficient approximation scheme which is different from the previous one. Consider a sequence $0 \leq f_{n} \in C_{0}^{\infty}(\Omega)$ so that $f_{n} \rightharpoonup \delta_{0}$ weakly in the sense of measures in Ω with $\sup _{n}\left\|f_{n}\right\|_{1}<+\infty$ and $f_{n} \rightarrow 0$ locally uniformly in $\Omega \backslash\{0\}$ as $n \rightarrow+\infty$. Since $\lambda<\lambda_{1, g}$ and $g, f_{n} \geq 0$, the minimization of

$$
\frac{1}{p} \int_{\Omega}|\nabla u|^{p}-\frac{\lambda}{p} \int_{\Omega}|u|^{p}-\int_{\Omega} f_{n} u, \quad u \in W_{g}^{1, p}(\Omega)
$$

provides a nonnegative solution $G_{n} \in W_{g}^{1, p}(\Omega)$ to

$$
\begin{equation*}
-\Delta_{p} G_{n}-\lambda G_{n}^{p-1}=f_{n} \quad \text { in } \Omega \tag{2.7}
\end{equation*}
$$

We use here Lemmas 2.2 and 2.3 below to show first that G_{n}^{p-1} is uniformly bounded in $L^{1}(\Omega)$ and then, up to a subsequence, $G_{n} \rightarrow G_{\lambda}$ in $W_{g}^{1, q}(\Omega)$ as $n \rightarrow+\infty$ for some G_{λ} and for all $1 \leq q<\bar{q}$. By the Sobolev embedding Theorem we have that $G_{n} \rightarrow G_{\lambda}$ in $L^{q}(\Omega)$ as $n \rightarrow+\infty$ for all $1 \leq q<\bar{q}^{*}$ and in particular in $L^{p-1}(\Omega)$. Therefore one can pass to the limit in (2.7) and get that $G_{\lambda} \geq 0$ solves (2.1) in view of $\bar{q}>p-1$.

In order to establish suitable bounds on $H_{\lambda}=G_{\lambda}-\Gamma$, let $0 \leq \tilde{G}_{n} \in W_{g}^{1, p}(\Omega)$ be the solution of

$$
-\Delta_{p} \tilde{G}_{n}=f_{n} \quad \text { in } \Omega
$$

obtained as a minimizer of $\frac{1}{p} \int_{\Omega}|\nabla u|^{p}-\int_{\Omega} f_{n} u$ in $W_{g}^{1, p}(\Omega)$ in view of $\lambda_{1, g}>0$. Arguing as for (2.7), we deduce that, up to a subsequence, $\tilde{G}_{n} \rightarrow \tilde{G}$ in $W_{g}^{1, q}(\Omega)$ as $n \rightarrow+\infty$ for all $1 \leq q<\bar{q}$, where $\tilde{G} \geq 0$ solves $-\Delta_{p} \tilde{G}=\delta_{0}$ in Ω. By [32] and the uniqueness result in [24] we have that $\tilde{G}=G_{0}$ and $\tilde{H}=\tilde{G}-\Gamma=H_{0}$. Since $-\Delta_{p} G_{n}+\Delta_{p} \tilde{G}_{n}=\lambda G_{n}^{p-1}$ in Ω with $G_{n}=\tilde{G}_{n}$ on $\partial \Omega$, by Lemma 2.3 we deduce that $\sup _{n}\left\|\nabla\left(G_{n}-\tilde{G}_{n}\right)\right\|_{\bar{q}}<+\infty$ in view of $\sup _{n}\left\|G_{n}^{p-1}\right\|_{m}<+\infty$ for all $1 \leq m<\frac{\bar{q}^{*}}{p-1}$. Since $\nabla\left(G_{n}-\tilde{G}_{n}\right) \xrightarrow{n} \nabla\left(H_{\lambda}-H_{0}\right)$ a.e. in Ω as $n \rightarrow+\infty$ and ∇H_{0} satisfies (1.4), by the Fatou convergence Theorem we obtain that ∇H_{λ} satisfies (1.6). If either $\lambda=0$ or $\lambda \neq 0, p>\frac{N}{2}$ a L^{∞}-bound on H_{λ} follows by Theorem 2.6 below and the proof is complete.
The following result has been crucially used in the proof of Theorem 2.1 and in its proof we closely follow a tricky idea in [31] combined with some apriori estimates given in Lemma 2.3 below.
Lemma 2.2. Let $2 \leq p \leq N$. Assume that $a_{n} \in L^{\infty}(\Omega), f_{n} \in L^{1}(\Omega), g_{n}$ satisfy (2.2) and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|a_{n}-a\right\|_{\infty}=0, \quad \sup _{\Omega} a<\lambda_{1}, \quad \sup _{n \in \mathbb{N}}\left[\left\|f_{n}\right\|_{1}+\left\|g_{n}\right\|_{\infty}\right]<+\infty \tag{2.8}
\end{equation*}
$$

If $u_{n} \in W_{g_{n}}^{1, p}(\Omega)$ is a sequence of solutions to

$$
-\Delta_{p} u_{n}-a_{n}\left|u_{n}\right|^{p-2} u_{n}=f_{n} \quad \text { in } \Omega
$$

then $\sup _{n \in \mathbb{N}}\left\|u_{n}\right\|_{p-1}<+\infty$.
Proof. Assume by contradiction that

$$
\begin{equation*}
\left\|u_{n}\right\|_{p-1} \rightarrow+\infty \quad \text { as } n \rightarrow+\infty \tag{2.9}
\end{equation*}
$$

Setting $\hat{u}_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{p-1}}, \hat{f}_{n}=\frac{f_{n}}{\left\|u_{n}\right\|_{p-1}^{p-1}}$ and $\hat{g}_{n}=\frac{g_{n}}{\left\|u_{n}\right\|_{p-1}}$, we have that \hat{u}_{n} solves

$$
\begin{cases}-\Delta_{p} \hat{u}_{n}-a_{n}\left|\hat{u}_{n}\right|^{p-2} \hat{u}_{n}=\hat{f}_{n} & \text { in } \Omega \tag{2.10}\\ \hat{u}_{n}=\hat{g}_{n} & \text { on } \partial \Omega\end{cases}
$$

with

$$
\begin{equation*}
\left\|\hat{u}_{n}\right\|_{p-1}=1, \sup _{n \in \mathbb{N}}\left\|a_{n}\right\|_{\infty}<\infty,\left\|\hat{f}_{n}\right\|_{L^{1}(\Omega)}+\left\|\hat{g}_{n}\right\|_{\infty} \rightarrow 0 \text { as } n \rightarrow+\infty \tag{2.11}
\end{equation*}
$$

in view of (2.8)-(2.9). Fix $p-1<p_{0}<\bar{q}$ and define $p_{j}=\frac{N^{2}(p-1) p_{j-1}}{(N+1)\left[N(p-1)-p_{j-1}\right]}$ in a recursive way for $j \geq 1$. Notice that $\frac{N(p-1)}{N+1}<p_{j}<p_{j+1}$ by induction and there exists a unique $J \geq 0$ so that $p_{0}, \ldots, p_{J-1} \leq \frac{N p(p-1)}{N p-N+p}<p_{J}$. Since $\Delta_{p} \hat{g}_{n}=0$ in Ω, by Lemma 2.3 with $m=1$ we get that $\hat{u}_{n}-\hat{g}_{n}$ is uniformly bounded in $W_{0}^{1, q}(\Omega)$ for all $1 \leq q<\bar{q}$ in view of (2.10)-(2.11) and then, up to a subsequence, $\hat{u}_{n}-\hat{g}_{n} \rightharpoonup v^{0}$ in $W^{1, p_{0}}(\Omega)$ as $n \rightarrow+\infty$. Define $v_{n}^{0}=\hat{u}_{n}$ and $v_{n}^{j} \in W_{\hat{g}_{n}}^{1, p}$ as the solution of $-\Delta_{p} v_{n}^{j}=a_{n}\left|v_{n}^{j-1}\right|^{p-2} v_{n}^{j-1}$ in Ω in view of $\lambda_{1, \hat{g}_{n}}=\lambda_{1, g_{n}}>0$. Lemma 2.3, applied to $v_{n}^{1}-\hat{g}_{n}$ with $m=\frac{p_{0}}{p-1} \leq \frac{N p}{N p-N+p}, q=\frac{N}{N+1} \frac{m N(p-1)}{N-m}$ and to $v_{n}^{1}-v_{n}^{0}$ with $m=1, q=p_{0}$ in view of (2.10)-(2.11), provides that, up to a subsequence, $v_{n}^{1}-\hat{g}_{n} \rightharpoonup v^{1}$ in $W_{0}^{1, p_{1}}(\Omega)$ and $v_{n}^{1}-v_{n}^{0} \rightarrow 0$ in $W_{0}^{1, p_{0}}(\Omega)$ as $n \rightarrow+\infty$. By iterating we deduce that, up to a subsequence, $v_{n}^{j}-\hat{g}_{n} \rightharpoonup v^{j}$ in $W_{0}^{1, p_{j}}(\Omega)$ and $v_{n}^{j}-v_{n}^{j-1} \rightarrow 0$ in $W_{0}^{1, p_{j-1}}(\Omega)$ as $n \rightarrow+\infty$ for all $j=1, \ldots, J$. Since $a_{n}\left|v_{n}^{J}\right|^{p-2} v_{n}^{J}$ is uniformly bounded in $L^{m}(\Omega)$ with $m=\frac{p_{J}}{p-1}>\frac{N p}{N p-N+p}$, by Lemma 2.3 we deduce that, up to a subsequence, $v_{n}^{J+1}-\hat{g}_{n} \rightharpoonup v^{J+1}$ in $W_{0}^{1, p}(\Omega)$ as $n \rightarrow+\infty$. At the same time, by Lemma $2.3 v_{n}^{J+1}-v_{n}^{J} \rightarrow 0$ in $W_{0}^{1, p_{J}}(\Omega)$ as $n \rightarrow+\infty$. Since $v_{n}^{j}-v_{n}^{j-1} \rightarrow 0$ in $W_{0}^{1, p_{0}}(\Omega)$ and $v_{n}^{j}-v_{n}^{j-1}=\left(v_{n}^{j}-\hat{g}_{n}\right)-\left(v_{n}^{j-1}-\hat{g}_{n}\right) \rightharpoonup v^{j}-v^{j-1}$ weakly in $W_{0}^{1, p_{0}}(\Omega)$ as $n \rightarrow+\infty$ for all $j=1, \ldots, J+1$, we deduce that $v^{0}=\ldots=v^{J+1}$ and then $\hat{u}_{n}-\hat{g}_{n} \rightharpoonup v^{0}$ in $W_{0}^{1, p_{0}}(\Omega)$ as $n \rightarrow+\infty$ with $v^{0}=v^{J+1} \in W_{0}^{1, p}(\Omega)$.

Let us compare \hat{u}_{n} with $z_{n} \in W_{0}^{1, p}(\Omega)$, solution to

$$
\begin{equation*}
-\Delta_{p} z_{n}=a_{n}\left|\hat{u}_{n}\right|^{p-2} \hat{u}_{n}+\hat{f}_{n} \quad \text { in } \Omega \tag{2.12}
\end{equation*}
$$

Since $\left|\hat{u}_{n}-z_{n}\right| \leq\left\|\hat{g}_{n}\right\|_{\infty}$ on $\partial \Omega$, by the weak maximum principle we deduce that $\left\|\hat{u}_{n}-z_{n}\right\|_{\infty} \leq\left\|\hat{g}_{n}\right\|_{\infty}$. By (2.11)-(2.12) and Lemma 2.3 we deduce that, up to a subsequence and for some z^{0}, there holds

$$
\begin{equation*}
z_{n} \rightarrow z^{0} \quad \text { in } W_{0}^{1, q}(\Omega), 1 \leq q<\bar{q} \tag{2.13}
\end{equation*}
$$

By testing $-\Delta_{p} \hat{u}_{n}+\Delta_{p} z_{n}=0$ in Ω against $\eta^{p}\left(\hat{u}_{n}-z_{n}\right), 0 \leq \eta \in C_{0}^{\infty}(\Omega)$, one gets

$$
\begin{aligned}
\int_{\Omega} \eta^{p}\left|\nabla\left(\hat{u}_{n}-z_{n}\right)\right|^{p} & \leq C^{\prime} \int_{\Omega} \eta^{p-1}|\nabla \eta|\left(\left|\nabla\left(\hat{u}_{n}-z_{n}\right)\right|^{p-2}+\left|\nabla z_{n}\right|^{p-2}\right)\left|\nabla\left(\hat{u}_{n}-z_{n}\right)\right|\left|\hat{u}_{n}-z_{n}\right| \\
& \leq \frac{1}{2} \int_{\Omega} \eta^{p}\left|\nabla\left(\hat{u}_{n}-z_{n}\right)\right|^{p}+C\left(\left\|\hat{g}_{n}\right\|_{\infty}^{p}+\left\|\hat{g}_{n}\right\|_{\infty}^{\frac{p}{p-1}}\left\|\nabla z_{n}\right\|_{\frac{p(p-2)}{p-1}}^{p-2}\right) \rightarrow 0
\end{aligned}
$$

as $n \rightarrow+\infty$ in view of the Young's inequality and (2.11). We have used that $\sup _{n}\left\|\nabla z_{n}\right\|_{\frac{p(p-2)}{p-1}}<+\infty$ thanks to (2.13) and $\frac{p(p-2)}{p-1}<\bar{q}$. Since $\nabla\left(\hat{u}_{n}-z_{n}\right) \rightarrow 0$ locally in $L^{p}-$ norm as $n \rightarrow+\infty$, by (2.13) we deduce that

$$
\begin{equation*}
\hat{u}_{n} \rightarrow v^{0} \quad \text { in } L^{p-1}(\Omega) \text { and } W^{1, q}\left(\Omega^{\prime}\right), \quad \forall \Omega^{\prime} \subset \subset \Omega, \quad \forall 1 \leq q<\bar{q} \tag{2.14}
\end{equation*}
$$

in view of $\left\|\hat{u}_{n}-z_{n}\right\|_{\infty} \leq\left\|\hat{g}_{n}\right\|_{\infty} \rightarrow 0$ and $\hat{u}_{n}-\hat{g}_{n} \rightharpoonup v^{0}$ in $W_{0}^{1, p_{0}}(\Omega)$ as $n \rightarrow+\infty$ for $p_{0} \geq p-1$.
By (2.10) and (2.14) we have that $v^{0} \in W_{0}^{1, p}(\Omega)$ solves

$$
\begin{equation*}
-\Delta_{p} v^{0}-a\left|v^{0}\right|^{p-2} v^{0}=0 \quad \text { in } \Omega \tag{2.15}
\end{equation*}
$$

in view of (2.8) and (2.11). Since

$$
\int_{\Omega}\left|\nabla v^{0}\right|^{p}-\int_{\Omega} a\left|v^{0}\right|^{p}=0
$$

by integration of (2.15) against $v^{0} \in W_{0}^{1, p}(\Omega)$, by $\sup _{\Omega} a<\lambda_{1}$ one finally deduces that $v^{0}=0$ and then $\hat{u}_{n} \rightarrow 0$ in $L^{p-1}(\Omega)$, in contradiction with $\left\|\hat{u}_{n}\right\|_{p-1}^{\Omega}=1$.

The results in [1, 4, 5], valid for homogeneous boundary values, can be easily extended to nonhomogeneous ones when $p \geq 2$, as discussed for instance in the Appendix of [1] when $p=N$. For the sake of completeness, we reproduce it here in the following simplest form, sufficient for our purposes:
Lemma 2.3. Let $2 \leq p \leq N$. Assume $\left\|f_{1}-f_{2}\right\|_{m} \leq C_{0}$ for some $C_{0}>0$ and either $1 \leq m \leq \frac{N p}{N p-N+p}$, $1 \leq q<\frac{m N(p-1)}{N-m}$ or $m>\frac{N p}{N p-N+p}, 1 \leq q \leq p$. Then there exists $C>0$ so that $\left\|\nabla\left(u_{1}-u_{2}\right)\right\|_{q} \leq$ $C\left\|f_{1}-f_{2}\right\|_{m}^{\frac{1}{p}}$ for all solutions $u_{1}, u_{2} \in W^{1, p}(\Omega)$ of $-\Delta_{p} u_{i}=f_{i}, i=1,2$, in Ω with $u_{1}=u_{2}$ on $\partial \Omega$.
Moreover, given g satisying (2.2) the set of solutions $u \in W_{g}^{1, p}(\Omega)$ of $-\Delta_{p} u=f$ in Ω with $\|f\|_{1} \leq C_{0}$ is relatively compact in $W^{1, q}(\Omega)$ for all $1 \leq q<\bar{q}$.

Proof. Let $u_{1}, u_{2} \in W^{1, p}(\Omega)$ be solutions of $-\Delta_{p} u_{i}=f_{i}, i=1,2$, in Ω with $u_{1}=u_{2}$ on $\partial \Omega$. Take $T_{k, l}, 0 \leq k \leq l$, as the odd function so that

$$
\begin{equation*}
T_{k, l}(s)=\min \{\max \{s-k, 0\}, l-k\} \quad \text { in }[0,+\infty) \tag{2.16}
\end{equation*}
$$

and use $T_{k, k+1}\left(u_{1}-u_{2}\right)$ as a test function to get

$$
\left.\left.\int_{\left\{k \leq\left|u_{1}-u_{2}\right|<k+1\right\}}\langle | \nabla u_{1}\right|^{p-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}, \nabla\left(u_{1}-u_{2}\right)\right\rangle=\int_{\Omega}\left(f_{1}-f_{2}\right) T_{k, k+1}\left(u_{1}-u_{2}\right),
$$

which implies

$$
\begin{equation*}
\int_{\left\{k \leq\left|u_{1}-u_{2}\right|<k+1\right\}}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{p} \leq C| | f_{1}-f_{2} \|_{m}\left|\left\{\left|u_{1}-u_{2}\right| \geq k\right\}\right|^{\frac{m-1}{m}} \tag{2.17}
\end{equation*}
$$

in view of (1.3) and $p \geq 2$. By (2.17) the function $v=u_{1}-u_{2} \in W_{0}^{1, p}(\Omega)$ satisfies

$$
\begin{equation*}
\int_{B_{k}}|\nabla v|^{p} \leq c_{0}\left|E_{k}\right|^{\frac{m-1}{m}}, k \geq 0 \tag{2.18}
\end{equation*}
$$

with $c_{0}=C\left\|f_{1}-f_{2}\right\|_{m}$, where $E_{k}=\{|v| \geq k\}$ and $B_{k}=E_{k} \backslash E_{k+1}$.
Consider first the case $1 \leq m \leq \frac{N p}{N p-N+p}, 1 \leq q<\frac{m N(p-1)}{N-m}$ and set $q^{*}=\frac{N q}{N-q}$. Since $q<\frac{m N(p-1)}{N-m} \leq p$ thanks to $m \leq \frac{N p}{N p-N+p}$ and

$$
\begin{equation*}
\int_{B_{k}}|\nabla v|^{q} \leq\left(\int_{B_{k}}|\nabla v|^{p}\right)^{\frac{q}{p}}\left|B_{k}\right|^{\frac{p-q}{p}} \tag{2.19}
\end{equation*}
$$

in view of the Hölder inequality, by (2.18) we obtain that

$$
\int_{B_{k}}|\nabla v|^{q} \leq c_{0}^{\frac{q}{p}}\|v\|_{q^{*}}^{\frac{q q^{*}(m-1)}{p m}}\left(\int_{B_{k}}|v|^{q^{*}}\right)^{\frac{p-q}{p}} \frac{1}{k^{\frac{q^{*}(p m-q)}{p m}}}
$$

for all $k \geq 1$ thanks to

$$
\left|B_{k}\right| \leq k^{-q^{*}} \int_{B_{k}}|v|^{q^{*}}, \quad\left|E_{k}\right| \leq k^{-q^{*}} \int_{\Omega}|v|^{q^{*}}
$$

Summing up and still by Hölder's inequality one deduces

$$
\int_{\left\{|v| \geq k_{0}\right\}}|\nabla v|^{q} \leq c_{0}^{\frac{q}{p}}\|v\|_{q^{*}}^{\frac{q q^{*}(m-1)}{p m}}\left(\sum_{k=k_{0}}^{\infty} \int_{B_{k}}|v|^{q^{*}}\right)^{\frac{p-q}{p}}\left(\sum_{k=k_{0}}^{\infty} \frac{1}{k^{\frac{q^{*}(p m-q)}{m q}}}\right)^{\frac{q}{p}}
$$

and then

$$
\begin{equation*}
\int_{\Omega}|\nabla v|^{q} \leq k_{0} c_{0}^{\frac{q}{p}}|\Omega|^{\frac{p m-q}{p m}}+c_{0}^{\frac{q}{p}}\|v\|_{q^{*}}^{\frac{q^{*}(p m-q)}{p m}}\left(\sum_{k=k_{0}}^{\infty} \frac{1}{k^{\frac{q^{*}(p m-q)}{m q}}}\right)^{\frac{q}{p}} \tag{2.20}
\end{equation*}
$$

for a given $k_{0} \in \mathbb{N}$ in view of (2.18) -(2.19) for $k=0, \ldots, k_{0}-1$. Since $\frac{q^{*}(p m-q)}{p m} \leq q$, by Young's inequality (2.20) implies in turn that

$$
\begin{equation*}
\int_{\Omega}|\nabla v|^{q} \leq k_{0} c_{0}^{\frac{q}{p}}|\Omega|^{\frac{p m-q}{p m}}+C c_{0}^{\frac{q}{p}}\left(\|v\|_{q^{*}}^{q}+1\right)\left(\sum_{k=k_{0}}^{\infty} \frac{1}{k^{\frac{q^{*}(p m-q)}{m q}}}\right)^{\frac{q}{p}} \tag{2.21}
\end{equation*}
$$

Since $\frac{q^{*}(p m-q)}{m q}>1$ thanks to $q<\frac{m N(p-1)}{N-m}$, the series in (2.21) is convergent and we can choose k_{0} sufficienty large (depending on C_{0}) so that $\|v\|_{q^{*}} \leq C^{\prime} c_{0}^{\frac{1}{p}}$ and then $\|\nabla v\|_{q} \leq C c_{0}^{\frac{1}{p}}$ in view of the Sobolev embedding Theorem, where the last estimate gets rewritten as

$$
\begin{equation*}
\left\|\nabla\left(u_{1}-u_{2}\right)\right\|_{q} \leq C\left\|f_{1}-f_{2}\right\|_{m}^{\frac{1}{p}} \tag{2.22}
\end{equation*}
$$

Consider now the case $m>\frac{N p}{N p-N+p}, 1 \leq q \leq p$. Use $u_{1}-u_{2}$ as a test function to get

$$
\left\|\nabla\left(u_{1}-u_{2}\right)\right\|_{p}^{p} \leq C\left\|u_{1}-u_{2}\right\|_{\frac{m}{m-1}}\left\|f_{1}-f_{2}\right\|_{m}
$$

in view of the Hölder inequality and then $\left\|\nabla\left(u_{1}-u_{2}\right)\right\|_{p} \leq C\left\|f_{1}-f_{2}\right\|_{m}^{\frac{1}{p-1}}$ by the Sobolev embedding Theorem in view of $\frac{m}{m-1}<p^{*}$. Notice that such last argument works as well as $m=\frac{N p}{N p-N+p}$ for $p<N$ since $\frac{N p}{N p-N+p}>1$ in this case.
Fix now $m=1$ and let $u_{1}, u_{2} \in W_{g}^{1, p}(\Omega)$ be solutions of $-\Delta_{p} u_{i}=f_{i}, i=1,2$, in Ω with $\left\|f_{i}\right\|_{1} \leq C_{0}$. Use $T_{0, \epsilon}\left(u_{1}-u_{2}\right), T_{k, l}$ given by (2.16), as a test function to get

$$
\begin{equation*}
\int_{\left\{\left|u_{1}-u_{2}\right| \leq \epsilon\right\}}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{p} \leq C \epsilon\left\|f_{1}-f_{2}\right\|_{1} \leq 2 C C_{0} \epsilon \tag{2.23}
\end{equation*}
$$

in view of (1.3) and $p \geq 2$. Given $1 \leq q<\bar{q}$, by (2.22) and Hölder's inequality (2.23) implies

$$
\begin{align*}
\int_{\Omega}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{q} & \leq C^{\prime} \epsilon^{\frac{q}{p}}+\left(\int_{\left\{\left|u_{1}-u_{2}\right|>\epsilon\right\}}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{s}\right)^{\frac{q}{s}}\left|\left\{\left|u_{1}-u_{2}\right|>\epsilon\right\}\right|^{\frac{s-q}{s}} \\
& \leq C\left(\epsilon^{\frac{q}{p}}+\left.\left\{\left|u_{1}-u_{2}\right|>\epsilon\right\}\right|^{\frac{s-q}{s}}\right) \tag{2.24}
\end{align*}
$$

for some $q<s<\bar{q}$ in view of $\bar{q}<p$. Since g is p-harmonic in Ω, taking now a sequence of solutions $u_{n} \in W_{g}^{1, p}(\Omega)$ to $-\Delta_{p} u_{n}=f_{n}$ in Ω with $\sup _{n}\left\|f_{n}\right\|_{1}<+\infty$, by the first part we know that $u_{n}-g$ is bounded in $W_{0}^{1, q}(\Omega)$ and then, up to a subsequence, we have that $u_{n} \rightharpoonup u$ in $W_{g}^{1, q}(\Omega)$ for all $1 \leq q<\bar{q}$ and strongly in $L^{s}(\Omega)$ for all $1 \leq s<\bar{q}^{*}$. Applying (2.24) to $u_{n}-u_{m}$ it is easily seen that u_{n} is a Cauchy sequence in $W_{g}^{1, q}(\Omega)$ and then converges to u in $W_{g}^{1, q}(\Omega)$ for all $1 \leq q<\bar{q}$. The proof is complete.
Let us push further the analysis in Lemma 2.2 towards an L^{∞}-estimate when $p>\frac{N}{2}$.
Proposition 2.4. Let $2 \leq p \leq N$ with $p>\frac{N}{2}$ and $M>0$. Then there exists $C>0$ so that $\left\|u_{1}-u_{2}\right\|_{\infty} \leq C$ for any pair $u_{i} \in W_{g_{i}}^{1, p}(\Omega), i=1,2$, of solutions to

$$
\begin{equation*}
-\Delta_{p} u_{i}-\lambda^{i}\left|u_{i}\right|^{p-2} u_{i}=f \quad \text { in } \Omega, \tag{2.25}
\end{equation*}
$$

where $\|f\|_{1}+\sup _{i=1,2}\left[\frac{1}{\left(\lambda_{1}-\lambda^{i}\right)_{+}}+\left\|g_{i}\right\|_{\infty}\right] \leq M$ and g_{1}, g_{2} satisfy (2.2).
Proof. By Lemma 2.2 we get an universal bound on $\left\|f+\lambda^{i}\left|u_{i}\right|{ }^{p-2} u_{i}\right\|_{1}$. Since g_{i} is p-harmonic function in Ω, Lemma 2.3 and the Sobolev embedding Theorem provide an universal bound on $u_{i}-g_{i}$ in $W_{0}^{1, q}(\Omega)$ for all $1 \leq q<\bar{q}$ and u_{i} in $L^{q}(\Omega)$ for all $1 \leq q<\bar{q}^{*}$. Since $\frac{\bar{q}^{*}}{p-1}>\frac{N}{p}$ thanks to $p>\frac{N}{2}$, we can find $q_{0}>\frac{N}{p}$ so that $\hat{f}=\lambda^{1}\left|u_{1}\right|^{p-2} u_{1}-\lambda^{2}\left|u_{2}\right|^{p-2} u_{2}$ satisfies

$$
\begin{equation*}
\|\hat{f}\|_{q_{0}} \leq C \tag{2.26}
\end{equation*}
$$

for some universal $C>0$. Thanks to (2.25) we can write

$$
\begin{cases}-\Delta_{p} u_{1}+\Delta_{p} u_{2}=\hat{f} & \text { in } \Omega \tag{2.27}\\ u_{1}-u_{2}=g_{1}-g_{2} & \text { on } \partial \Omega .\end{cases}
$$

Since $q_{0}>\frac{N}{p}$ let us fix $\beta_{0}>0$ sufficiently small so that $p_{0}:=\frac{q_{0}\left(\beta_{0}-1+p\right)}{q_{0}-1}<\bar{q}^{*}$. Set $u=u_{1}-u_{2}$, $C_{0}=\left\|g_{1}\right\|_{\infty}+\left\|g_{2}\right\|_{\infty}$ and define $\Psi(s)=\left[T_{0, l}\left(s \mp C_{0}\right)_{ \pm}+\epsilon\right]^{\beta}-\epsilon^{\beta}$, with $l, \epsilon>0$ and $\beta \geq \beta_{0}$, where $T_{k, l}$ is given by (2.16). Notice that $l<+\infty$ and $\epsilon>0$ guarantee the boundedness and the differentiability of Ψ in \mathbb{R}, respectively. Use $\Psi(u) \in W_{0}^{1, p}(\Omega)$ as a test function in (2.27) to get

$$
\begin{equation*}
\beta \int_{\left\{\left(u \mp C_{0}\right)_{ \pm} \leq l\right\}}\left[T_{0, l}\left(u \mp C_{0}\right)_{ \pm}+\epsilon\right]^{\beta-1}\left(\left|\nabla u_{2}\right|+|\nabla u|\right)^{p-2}|\nabla u|^{2} \leq C \int_{\Omega}|\hat{f}|\left[T_{0, l}\left(u \mp C_{0}\right)_{ \pm}+\epsilon\right]^{\beta} \tag{2.28}
\end{equation*}
$$

in view of (1.3). Since $p \geq 2$, by Hölder's inequality with exponents $\frac{q_{0}(\beta-1+p)}{\left(q_{0}-1\right)(p-1)}, q_{0}$ and $\frac{q_{0}(\beta-1+p)}{\left(q_{0}-1\right) \beta}$ estimate (2.28) implies the following estimate:

$$
\frac{\delta p^{p} \beta}{(\beta-1+p)^{p}} \int_{\Omega}\left|\nabla w_{l, \epsilon}\right|^{p} \leq|\Omega|^{\frac{\left(q_{0}-1\right)(p-1)}{q_{0}(\beta-1+p)}}\|\mid \hat{f}\|_{q_{0}}\left\|w_{l, \epsilon}\right\|_{\frac{\beta q_{0}}{q_{0}-1}}^{\frac{\beta p}{q_{0}+p}} \leq C\left\|w_{\epsilon}\right\|_{\frac{p_{q}}{q_{0}-1}}^{\frac{\beta p}{\beta-1+p}}
$$

for some $C>0$, where

$$
w_{l, \epsilon}=\left[T_{0, l}\left(u \mp C_{0}\right)_{ \pm}+\epsilon\right]^{\frac{\beta-1+p}{p}}, \quad w_{\epsilon}=\left[\left(u \mp C_{0}\right)_{ \pm}+\epsilon\right]^{\frac{\beta-1+p}{p}}, \quad w=\left(u \mp C_{0}\right)_{ \pm}^{\frac{\beta-1+p}{p}} .
$$

By the Sobolev embedding Theorem on $w_{l, \epsilon}-\epsilon^{\frac{\beta-1+p}{p}} \in W_{0}^{1, p}(\Omega)$ and the Fatou convergence Theorem as $l \rightarrow+\infty$ we deduce that

$$
\begin{equation*}
\left\|w_{\epsilon}-\epsilon^{\frac{\beta-1+p}{p}}\right\|_{p^{*}} \leq C(\beta-1+p)\left\|w_{\epsilon}\right\|_{\frac{p q_{0}}{q_{0}-1}}^{\frac{\beta}{\beta-1+p}} \tag{2.29}
\end{equation*}
$$

for some $C>0$ provided the R.H.S. is finite, where $p^{*}=\frac{N p}{N-p}$ if $p<N$ and $p^{*} \in\left(\frac{p q_{0}}{q_{0}-1},+\infty\right)$ if $p=N$. By using again the Fatou convergence Theorem on the L.H.S. and the Lebesgue convergence Theorem on the R.H.S. in (2.29), as $\epsilon \rightarrow 0$ we deduce that

$$
\|w\|_{p^{*}} \leq C(\beta-1+p)\|w\|_{\frac{\beta q_{0}}{q_{0}-1}}^{\frac{\beta}{\beta-1+p}}
$$

for some $C>0$, provided $\|w\|_{\frac{p q_{0}}{q_{0}-1}}<+\infty$. By the definition of w and taking the $\frac{p}{\beta-1+p}-$ power we then deduce that

$$
\left\|\left(u \mp C_{0}\right)_{ \pm}\right\|_{\frac{(\beta-1+p) p^{*}}{p}} \leq[C(\beta-1+p)]^{\frac{p}{\beta-1+p}}\left\|\left(u \mp C_{0}\right)_{ \pm}\right\|_{\frac{q_{0}(\beta-1+p)}{q_{0}-1}}^{\frac{\beta}{\beta-1+p}},
$$

or equivalently

$$
\begin{equation*}
\left\|\left(u \mp C_{0}\right)_{ \pm}\right\|_{\kappa \mu} \leq\left[C \frac{q_{0}-1}{q_{0}} \mu\right]^{\frac{p q_{0}}{\mu\left(q_{0}-1\right)}}\left\|\left(u \mp C_{0}\right)_{ \pm}\right\|_{\mu}^{1-\frac{(p-1) q_{0}}{\mu\left(q_{0}-1\right)}} \tag{2.30}
\end{equation*}
$$

where $\mu=\frac{q_{0}(\beta-1+p)}{q_{0}-1}$ and $\kappa=\frac{\left(q_{0}-1\right) p^{*}}{p q_{0}}>1$ in view of $q_{0}>\frac{N}{p}$. Setting $\mu_{j}=\kappa^{j} p_{0}$, we can perform $j+1$ iterations of (2.30) to get

$$
\begin{aligned}
\left\|\left(u \mp C_{0}\right)_{ \pm}\right\|_{\mu_{j+1}} & \leq\left[C\left(\beta_{0}-1+p\right) \kappa^{j}\right]^{\frac{p}{\left(\beta_{0}-1+p\right) \kappa^{j}}}\left\|\left(u \mp C_{0}\right)_{ \pm}\right\|_{\mu_{j}}^{1-\frac{p-1}{\left(\beta_{0}-1+p\right) \kappa^{j}}} \leq \ldots \\
& \leq\left[C\left(\beta_{0}-1+p\right)+1\right]^{s=0} \frac{1}{\kappa^{s}} \sum_{\kappa^{s=0}}^{j} \frac{s}{\kappa^{s}}\left\|\left(u \mp C_{0}\right)_{ \pm}\right\|_{p_{0}}^{s=0}\left(1-\frac{p-1}{\left(\beta_{0}-1+p\right) \kappa^{s}}\right)
\end{aligned}
$$

in view of $\left[C\left(\beta_{0}-1+p\right)+1\right] \kappa^{j} \geq 1$ and $1-\frac{p-1}{\left(\beta_{0}-1+p\right) \kappa^{s}} \leq 1$. By letting $j \rightarrow+\infty$ we deduce that

$$
\left\|\left(u \mp C_{0}\right)_{ \pm}\right\|_{\infty} \leq C^{\prime}\left\|\left(u \mp C_{0}\right)_{ \pm}\right\|_{p_{0}}^{\theta_{0}} \leq C_{M}^{\prime}
$$

in view of

$$
\theta_{0}:=\prod_{s=0}^{\infty}\left(1-\frac{p-1}{\left(\beta_{0}-1+p\right) \kappa^{s}}\right)<+\infty, \quad \sum_{s=0}^{\infty} \frac{1}{\kappa^{s}}+\sum_{s=0}^{\infty} \frac{s}{\kappa^{s}}<+\infty
$$

In conclusion, $\left\|u_{1}-u_{2}\right\|_{\infty} \leq C_{M}^{\prime}+C_{0} \leq C_{M}$ and the proof is complete.
The aim now is to extend Proposition 2.4 to H_{λ} as a solution of (1.2) (to be compared with (2.27)) and to include the case $1<p<2$. Since it is no longer a matter of universal estimates, the argument is potentially simpler but the singular character of equation (1.2) has to be controlled thanks to the assumption $\nabla H_{\lambda} \in L^{\bar{q}}(\Omega)$. For later convenience, let us write the following result in a sufficiently general way.

Lemma 2.5. Let $1<p \leq N$ and $u \in W_{\text {loc }}^{1, p}(\Omega \backslash\{0\})$ be a solution of

$$
\begin{equation*}
-\Delta_{p}(\Gamma+u)+\Delta_{p} \Gamma=f \quad \text { in } \Omega \backslash\{0\} \tag{2.31}
\end{equation*}
$$

with $f \in L^{1}(\Omega), \nabla u \in L^{\bar{q}}(\Omega)$ and

$$
\begin{align*}
\frac{1}{C}|\nabla \Gamma| \leq|\nabla \Gamma| \leq C|\nabla \Gamma| & \text { if } 1<p<2 \tag{2.32}\\
|\nabla \Gamma| \leq C|\nabla \Gamma| & \text { if } p \geq 2
\end{align*}
$$

in Ω for some $C>1$. Let $\eta \in C^{1}(\bar{\Omega})$ and $\Psi: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded monotone Lipschitz function. Assuming either $\eta=0$ or $\Psi(u)=0$ on $\partial \Omega$, then there holds

$$
\int_{\Omega} \eta^{2}\left|\Psi^{\prime}(u)\right|(|\nabla \Gamma|+|\nabla u|)^{p-2}|\nabla u|^{2} \leq C\left(\int_{\Omega}|\eta||\nabla \eta||\Psi(u)|(|\nabla \Gamma|+|\nabla u|)^{p-2}|\nabla u|+\int_{\Omega} \eta^{2}|f||\Psi(u)|\right)
$$

for some $C>0$.

Proof. Consider a sequence $\eta_{\epsilon} \in C^{1}(\bar{\Omega})$ so that

$$
\begin{equation*}
\eta_{\epsilon}=\eta \text { in } \Omega \backslash B_{\epsilon}(0), \quad \eta_{\epsilon}=0 \text { in } B_{\frac{\epsilon}{2}}(0), \quad\left|\eta_{\epsilon}\right|+\epsilon\left|\nabla \eta_{\epsilon}\right| \leq C \text { in } B_{\epsilon}(0) \backslash B_{\frac{\epsilon}{2}}(0) \tag{2.33}
\end{equation*}
$$

for some $C>0$. Since $\eta_{\epsilon}^{2} \Psi(u)$ vanishes in $B_{\frac{\epsilon}{2}}(0)$ and on $\partial \Omega$, it can be used a test function in (2.31):

$$
\begin{equation*}
\int_{\Omega} \eta_{\epsilon}^{2}\left|\Psi^{\prime}(u)\right|(|\nabla \Gamma|+|\nabla u|)^{p-2}|\nabla u|^{2} \leq C \int_{\Omega}\left[\left|\eta_{\epsilon}\right|\left|\nabla \eta_{\epsilon}\right|(|\nabla \Gamma|+|\nabla u|)^{p-2}|\nabla u|+\eta_{\epsilon}^{2}|f|\right]|\Psi(u)| \tag{2.34}
\end{equation*}
$$

for some $C>0$ since Ψ^{\prime} has given sign. We have used here (1.3) and the estimate

$$
\left||x+y|^{p-2}(x+y)-|x|^{p-2} x\right|=(|x|+|y|)^{p-2} O(|y|) .
$$

Since $(|\nabla \Gamma|+|\nabla u|)^{p-2}=O\left(|\nabla \Gamma|^{p-2}+|\nabla u|^{p-2}\right)$ in view of (2.32), by the Hölder inequality we have that

$$
\begin{align*}
& \int_{B_{\epsilon}(0) \backslash B_{\frac{\epsilon}{2}}(0)}\left|\eta_{\epsilon}\right|\left|\nabla \eta_{\epsilon}\right||\Psi(u)|(|\nabla \Gamma|+|\nabla u|)^{p-2}|\nabla u| \leq C \int_{B_{\epsilon}(0) \backslash B_{\frac{\epsilon}{2}}(0)}\left(\frac{|\nabla u|}{\epsilon^{\frac{N(p-1)-(N-1)}{p-1}}}+\frac{|\nabla u|^{p-1}}{\epsilon}\right) \\
& \leq C\left[\left(\int_{B_{\epsilon}(0) \backslash B_{\frac{\epsilon}{2}}(0)}|\nabla u|^{\bar{q}}\right)^{\frac{1}{\bar{q}}}+\left(\int_{B_{\epsilon}(0) \backslash B_{\frac{\epsilon}{2}}(0)}|\nabla u|^{\bar{q}}\right)^{\frac{N-1}{N}}\right] \rightarrow 0 \tag{2.35}
\end{align*}
$$

as $\epsilon \rightarrow 0$, in view of $\|\Psi\|_{\infty}<+\infty$ and $\nabla u \in L^{\bar{q}}(\Omega)$. By inserting (2.35) into (2.34) and by using the Lebesgue convergence Theorem for $\int_{\Omega} \eta_{\epsilon}^{2}|f||\Psi(u)|$ we get the validity of Lemma 2.5 in view of the monotone convergence Theorem.

We are now ready to complete the proof of Theorem 2.1] by establishing L^{∞}-bounds on H_{λ}.
Theorem 2.6. Let $1<p \leq N$ and assume either $\lambda=0$ or $\lambda \neq 0$ and $p \geq 2$ with $p>\frac{N}{2}$. Then $H_{\lambda}=G_{\lambda}-\Gamma \in L^{\infty}(\Omega)$, where G_{λ} is any solution to (2.1) satisfying (1.6).
Proof. By (2.1) the function $u=H_{\lambda}$ solves (2.31) with $\Gamma=\Gamma$ and $f=\lambda G_{\lambda}^{p-1}$. Given $0<\beta_{0}<1$ to be fixed later, by Lemma 2.5 with $\eta=1$ and $\Psi(s)=\left[T_{0, l}\left(s \mp C_{0}\right)_{ \pm}+\epsilon\right]^{\beta}-\epsilon^{\beta}$, with $l, \epsilon>0, \beta \geq \beta_{0}$, $C_{0}=\|g\|_{\infty}+\|\Gamma\|_{\infty, \partial \Omega}$ and $T_{k, l}$ given by (2.16), we get that

$$
\begin{equation*}
\beta \int_{\left\{\left(u \mp C_{0}\right)_{ \pm} \leq l\right\}}\left[T_{0, l}\left(u \mp C_{0}\right)_{ \pm}+\epsilon\right]^{\beta-1}(|\nabla \Gamma|+|\nabla u|)^{p-2}|\nabla u|^{2} \leq C \int_{\Omega}|f|\left[T_{0, l}\left(u \mp C_{0}\right)_{ \pm}+\epsilon\right]^{\beta} \tag{2.36}
\end{equation*}
$$

in view of $\Psi(u)=0$ on $\partial \Omega$ thanks to $H_{\lambda}=g-\Gamma$ on $\partial \Omega$.
Let us first consider the case $\lambda=0$. Then $f=0$ and the choice $\beta=1$ in (2.36) gives

$$
\int_{\Omega}(|\nabla \Gamma|+|\nabla u|)^{p-2}\left|\nabla T_{0, l}\left(u \mp C_{0}\right)_{ \pm}\right|^{2} \leq 0 .
$$

Then $T_{0, l}\left(u \mp C_{0}\right)_{ \pm}=0$ a.e. in Ω for any $l>0$, which implies $\left|H_{0}\right| \leq C_{0}$ a.e. in Ω.
Consider now the case $\lambda \neq 0$ and assume $p \geq 2$ with $p>\frac{N}{2}$. Since $\nabla G_{\lambda}=\nabla \Gamma+\nabla H_{\lambda} \in L^{q}(\Omega)$ for all $1 \leq q<\bar{q}$ in view of (1.6), by the Sobolev embedding Theorem $G_{\lambda} \in L^{q}(\Omega)$ for all $1 \leq q<\bar{q}^{*}$ and in particular f satisfies

$$
\begin{equation*}
\|f\|_{q_{0}}<\infty \tag{2.37}
\end{equation*}
$$

for some $q_{0}>\frac{N}{p}$ in view of $p>\frac{N}{2}$.
Notice that (2.36)-(2.37) are the analogue of (2.26) and (2.28), and then the argument now goes exactly as in the proof of Proposition 2.4.

For the case $g=0$ let us collect here some useful facts which will be used in the next two sections. Given $1<p<N$, an important ingredient is given by the estimate

$$
\begin{equation*}
\left|\nabla H_{\lambda}\right|=O(|\nabla \Gamma|) \quad \text { in } \Omega \tag{2.38}
\end{equation*}
$$

for any solution $G_{\lambda}=\Gamma+H_{\lambda}$ of (2.1) $g=0$. Indeed, by [33] any solution G_{λ} of (2.1) $g=0$ satisfies

$$
\begin{equation*}
\frac{\Gamma}{C} \leq G_{\lambda} \leq C \Gamma \quad \text { in } B_{2 R_{0}}(0) \tag{2.39}
\end{equation*}
$$

for some $C>1$, where $R_{0}=\frac{1}{4} \operatorname{dist}(0, \partial \Omega)$. For $0<R \leq R_{0}$ consider the scaling $G_{\lambda, R}(y)=$ $R^{\frac{N-p}{p-1}} G_{\lambda}(R y)$ of G_{λ} in $\Omega_{R}=\frac{\Omega}{R}$ which satisfies

$$
\begin{cases}-\Delta_{p} G_{\lambda, R}-\lambda R^{p} G_{\lambda, R}^{p-1}=\delta_{0} & \text { in } \Omega_{R} \tag{2.40}\\ G_{\lambda, R} \geq 0 & \text { in } \Omega_{R} \\ G_{\lambda, R}=0 & \text { on } \partial \Omega_{R}\end{cases}
$$

Since $\Gamma_{R}(y)=R^{\frac{N-p}{p-1}} \Gamma(R y)=\Gamma(y)$ in view of $1<p<N$, we have that condition (2.39) is scaling invariant:

$$
\begin{equation*}
\frac{\Gamma}{C} \leq G_{\lambda, R} \leq C \Gamma \quad \text { in } B_{\frac{2 R_{0}}{R}}(0) \tag{2.41}
\end{equation*}
$$

Since $G_{\lambda, R}$ is uniformly bounded in $L_{\text {loc }}^{\infty}\left(B_{2}(0) \backslash\{0\}\right)$ thanks to (2.41), elliptic estimates [11, 34] for (2.40) imply that

$$
G_{\lambda, R} \text { uniformly bounded in } C_{\operatorname{loc}}^{1, \alpha}\left(B_{2}(0) \backslash\{0\}\right)
$$

for some $\alpha \in(0,1)$. Since in particular $\left\|\nabla G_{\lambda, R}\right\|_{\infty, \partial B_{1}(0)} \leq C$, setting $H_{\lambda, R}(y)=R^{\frac{N-p}{p-1}} H_{\lambda}(R y)$ we deduce that $\left\|\nabla H_{\lambda, R}\right\|_{\infty, \partial B_{1}(0)} \leq C^{\prime}$ in view of $\nabla G_{\lambda, R}=\nabla \Gamma+\nabla H_{\lambda, R}$, which can be re-written as

$$
\begin{equation*}
\left|\nabla H_{\lambda}\right| \leq \frac{C^{\prime}}{|x|^{\frac{N-1}{p-1}}}=C|\nabla \Gamma| \quad \text { on } \partial B_{R}(0) \tag{2.42}
\end{equation*}
$$

for all $0<R \leq \frac{1}{4} \operatorname{dist}(0, \partial \Omega)$. Away from the origin ∇H_{λ} is bounded thanks to [11, 28, 34] and $|\nabla \Gamma|$ is bounded from below, and then estimate (2.38) follows by (2.42). Moreover, notice that for $1<p \leq N$ there holds

$$
\begin{equation*}
\left\|H_{\lambda}\right\|_{\infty}<+\infty \quad \Rightarrow \quad\left|\nabla H_{\lambda}(x)\right|=o(|\nabla \Gamma(x)|) \quad \text { as } x \rightarrow 0 . \tag{2.43}
\end{equation*}
$$

Indeed, for $1<p<N$ we have that $\left\|H_{\lambda, R}\right\|_{\infty, \Omega_{R}} \rightarrow 0$ and then $\left\|\nabla H_{\lambda, R}\right\|_{\infty, \partial B_{1}(0)} \rightarrow 0$ as $R \rightarrow 0$, which provides the validity of (2.43). When $p=N$ the function $G_{\lambda, R}(y)=G_{\lambda}(R y)+\left(N \omega_{N}\right)^{-\frac{1}{N-1}} \log R=$ $\Gamma(y)+H_{\lambda}(R y)$ is uniformly bounded in $L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N} \backslash\{0\}\right)$ and satisfies

$$
-\Delta_{N} G_{\lambda, R}-\lambda R^{N}\left[G_{\lambda, R}-\left(N \omega_{N}\right)^{-\frac{1}{N-1}} \log R\right]^{N-1}=\delta_{0} \quad \text { in } \Omega_{R}
$$

We argue as above to show that, up to a subsequence, $H_{\lambda, R}(y)=H_{\lambda}(R y) \rightarrow H_{0}$ in $C_{\text {loc }}^{1}\left(\mathbb{R}^{N} \backslash\{0\}\right)$ as $R \rightarrow 0$, where $\left\|H_{0}\right\|_{\infty}<+\infty$ and $\Gamma+H_{0}$ is a N-harmonic function in $\mathbb{R}^{N} \backslash\{0\}$. It follows that H_{0} is a constant function, see for example Lemma 4.3 in [17]. Since this is true along any such subsequence, then $\nabla H_{\lambda, R} \rightarrow 0$ in $C_{\text {loc }}\left(\mathbb{R}^{N} \backslash\{0\}\right)$ as $R \rightarrow 0$ and (2.43) does hold also in the case $p=N$.
Once we have $\delta|\nabla \Gamma|^{p-2} \leq\left(|\nabla \Gamma|+\left|\nabla H_{\lambda}\right|\right)^{p-2}$ for $1<p<2$ in view of (2.38), it becomes clear the usefulness of the following weigthed Sobolev inequalities of Caffarelli-Kohn-Nirenberg type [7]: given $1<p<2$, there exists $C>0$ so that

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}|\nabla \Gamma|^{p-2}|u|^{\frac{2(N-2+p)}{N-p}}\right)^{\frac{N-p}{N-2+p}} \leq C \int_{\mathbb{R}^{N}}|\nabla \Gamma|^{p-2}|\nabla u|^{2} \tag{2.44}
\end{equation*}
$$

for any compactly supported $u \in L^{\infty}\left(\mathbb{R}^{N}\right)$ with $\int_{\mathbb{R}^{N}}|\nabla \Gamma|^{p-2}|\nabla u|^{2}<+\infty$. Valid in $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, (2.44) can be first extended to $W^{1,2}$-functions with compact support in view of $|\nabla \Gamma|^{p-2} \in L_{\operatorname{loc}}^{\infty}\left(\mathbb{R}^{N}\right)$ and
then to compactly supported $u \in L^{\infty}\left(\mathbb{R}^{N}\right)$ with $\int_{\mathbb{R}^{N}}|\nabla \Gamma|^{p-2}|\nabla u|^{2}<+\infty$ through the sequence $\eta_{\epsilon} u \in W^{1,2}\left(\mathbb{R}^{N}\right), \eta_{\epsilon}$ being given by (2.33) with $\eta=1$ in \mathbb{R}^{N}, since

$$
\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{N}}|\nabla \Gamma|^{p-2}\left|\nabla \eta_{\epsilon}\right|^{2} u^{2} \rightarrow 0
$$

For later convenience, when either $2 \leq p<N$ or $p=N \geq 3$ observe also the validity of the following inequality

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}|u|^{\frac{2 N(p-1)}{N(p-1)-p}}\right)^{\frac{N(p-1)-p}{N(p-1)}} \leq C \int_{\mathbb{R}^{N}}|x|^{\frac{p-2}{p-1}}|\nabla u|^{2} \tag{2.45}
\end{equation*}
$$

for any compactly supported $u \in L^{\infty}\left(\mathbb{R}^{N}\right)$ with $\int_{\mathbb{R}^{N}}|x|^{\frac{p-2}{p-1}}|\nabla u|^{2}<+\infty$.

3. Weak comparison principle and uniqueness results

This section is devoted to discuss the uniqueness part in Theorem 1.2 when $2 \leq p \leq N$ among solutions satisfying the natural condition (1.6). When $\lambda=0$ maximum and comparison principle in weak or strong form are well known, see for example [36], and have been extended in various forms to the case $\lambda<\lambda_{1}$ in connection with existence and uniqueness results, see [8, 10, 19, 20] just to quote a few.
To extend the previous uniqueness results to the singular situation, the crucial property is given by the convexity of the functional

$$
I(w)= \begin{cases}\int_{\Omega}\left|\nabla w^{\frac{1}{p}}\right|^{p} & \text { if } w \geq 0 \text { and } \nabla\left(w^{\frac{1}{p}}\right) \in L^{p}(\Omega) \\ +\infty & \text { otherwise }\end{cases}
$$

Proved in [10] for $p>1$, a quantitative form is established here giving a positive lower bound for $I^{\prime \prime}$ when $2 \leq p \leq N$, crucial to be applied on $\Omega_{\epsilon}=\Omega \backslash B_{\epsilon}(0)$ as $\epsilon \rightarrow 0$.

Lemma 3.1. Let $w \geq 0$ a.e. in Ω so that $\nabla\left(w^{\frac{1}{p}}\right) \in L^{p}(\Omega)$. Let ϕ be a direction so that $w_{t}=w+t \phi \geq 0$ a.e. in Ω and $\nabla\left(w_{t}^{\frac{1}{p}}\right) \in L^{p}(\Omega)$ for $t \geq 0$ small. Letting $\rho(w, \phi)$ be given in (3.7), there hold

$$
\begin{equation*}
I^{\prime}(w)[\phi]=\int_{\Omega}\left|\nabla w^{\frac{1}{p}}\right|^{p-2}\left\langle\nabla w^{\frac{1}{p}}, \nabla\left(w^{\frac{1-p}{p}} \phi\right)\right\rangle, \quad I^{\prime \prime}(w)[\phi, \phi]=\int_{\Omega} \rho(w, \phi) \tag{3.1}
\end{equation*}
$$

with

$$
\begin{align*}
\rho(w, \phi) \geq & \frac{p-1}{p}\left(p^{3}-3 p^{2}+5 p-2\right)\left|\nabla w^{\frac{1}{p}}\right|^{p}\left(\frac{\phi}{w}-\frac{p\left(p^{2}-2 p+2\right)\langle\nabla w, \nabla \phi\rangle}{\left(p^{3}-3 p^{2}+5 p-2\right)|\nabla w|^{2}}\right)^{2} \\
& +\frac{(p-1)(p-2)}{p\left(p^{3}-3 p^{2}+5 p-2\right)} w^{\frac{2(1-p)}{p}}\left|\nabla w^{\frac{1}{p}}\right|^{p-2}|\nabla \phi|^{2} \tag{3.2}
\end{align*}
$$

where $I^{\prime}(w)[\phi]=\left.\frac{d}{d t} I\left(w_{t}\right)\right|_{t=0^{+}}$and $I^{\prime \prime}(w)[\phi, \phi]=\left.\frac{d}{d t} I^{\prime}\left(w_{t}\right)[\phi]\right|_{t=0^{+}}$.
Proof. Since $\frac{d}{d t} w_{t}^{\frac{1}{p}}=\frac{1}{p} w_{t}^{\frac{1-p}{p}} \phi$, we have that

$$
I^{\prime}\left(w_{t}\right)[\phi]=\int_{\Omega}\left|\nabla w_{t}^{\frac{1}{p}}\right|^{p-2}\left\langle\nabla w_{t}^{\frac{1}{p}}, \nabla\left(w_{t}^{\frac{1-p}{p}} \phi\right)\right\rangle
$$

providing, when evaluated at $t=0$, the validity of the first in formula (3.1). Differentiating once more in t at 0^{+}, we have that

$$
\begin{align*}
I^{\prime \prime}(w)[\phi, \phi]= & (p-2) \int_{\Omega}\left|\nabla w^{\frac{1}{p}}\right|^{p-4}\left\langle\nabla w^{\frac{1}{p}}, \nabla\left(w^{\frac{1-p}{p}} \phi\right)\right\rangle^{2}+\frac{1}{p} \int_{\Omega}\left|\nabla w^{\frac{1}{p}}\right|^{p-2}\left|\nabla\left(w^{\frac{1-p}{p}} \phi\right)\right|^{2} \tag{3.3}\\
& -\frac{p-1}{p} \int_{\Omega}\left|\nabla w^{\frac{1}{p}}\right|^{p-2}\left\langle\nabla w^{\frac{1}{p}}, \nabla\left(w^{\frac{1-2 p}{p}} \phi^{2}\right)\right\rangle
\end{align*}
$$

Writing $\langle\nabla w, \nabla \phi\rangle=\cos \alpha|\nabla w||\nabla \phi|$ the first, second and third term in (3.3) produce, respectively,

$$
\begin{gather*}
\int_{\Omega}\left|\nabla w^{\frac{1}{p}}\right|^{p-4}\left\langle\nabla w^{\frac{1}{p}}, \nabla\left(w^{\frac{1-p}{p}} \phi\right)\right\rangle^{2}=\int_{\Omega} \frac{\left|\nabla w^{\frac{1}{p}}\right| p-2}{w^{\frac{2(p-1)}{p}}}\left[\frac{(p-1)^{2}}{p^{2}} \frac{|\nabla w|^{2}}{w^{2}} \phi^{2}+\cos ^{2} \alpha|\nabla \phi|^{2}\right. \tag{3.4}\\
\left.-\frac{2(p-1)}{p} \cos \alpha \frac{|\nabla w|}{w} \phi|\nabla \phi|\right], \\
\int_{\Omega}\left|\nabla w^{\frac{1}{p}}\right|^{p-2}\left|\nabla\left(w^{\frac{1-p}{p}} \phi\right)\right|^{2}=\int_{\Omega} \frac{\left|\nabla w^{\frac{1}{p}}\right|^{p-2}}{w^{\frac{2(p-1)}{p}}}\left[\frac{(p-1)^{2}}{p^{2}} \frac{|\nabla w|^{2}}{w^{2}} \phi^{2}+|\nabla \phi|^{2}\right. \tag{3.5}\\
\\
\left.-\frac{2(p-1)}{p} \cos \alpha \frac{|\nabla w|}{w} \phi|\nabla \phi|\right], \tag{3.6}\\
\int_{\Omega}\left|\nabla w^{\frac{1}{p}}\right|^{p-2}\left\langle\nabla w^{\frac{1}{p}}, \nabla\left(w^{\frac{1-2 p}{p}} \phi^{2}\right)\right\rangle=\int_{\Omega} \frac{\left|\nabla w^{\frac{1}{p}}\right|^{p-2}}{w^{\frac{2(p-1)}{p}}}\left[-\frac{2 p-1}{p^{2}} \frac{|\nabla w|^{2}}{w^{2}} \phi^{2}+\frac{2}{p} \cos \alpha \frac{|\nabla w|}{w} \phi|\nabla \phi|\right] .
\end{gather*}
$$

Collecting (3.4)-(3.6), the expression of (3.3) becomes $I^{\prime \prime}(w)[\phi, \phi]=\int_{\Omega} \rho(w, \phi)$, with

$$
\begin{align*}
\rho(w, \phi) & =w^{\frac{2(1-p)}{p}}\left|\nabla w^{\frac{1}{p}}\right|^{p-2}\left[C_{1} \frac{|\nabla w|^{2}}{w^{2}} \phi^{2}-C_{2} \cos \alpha \frac{|\nabla w|}{w} \phi|\nabla \phi|+C_{3}|\nabla \phi|^{2}\right] \tag{3.7}\\
& =w^{\frac{2(1-p)}{p}}\left|\nabla w^{\frac{1}{p}}\right|^{p-2}\left[C_{1}\left(\frac{|\nabla w|}{w} \phi-\frac{C_{2}}{2 C_{1}} \cos \alpha|\nabla \phi|\right)^{2}+\frac{4 C_{1} C_{3}-C_{2}^{2} \cos ^{2} \alpha}{4 C_{1}}|\nabla \phi|^{2}\right]
\end{align*}
$$

by a square completion in view of $C_{1}>0$, where

$$
C_{1}=\frac{p-1}{p^{3}}\left(p^{3}-3 p^{2}+5 p-2\right), \quad C_{2}=\frac{2(p-1)}{p^{2}}\left(p^{2}-2 p+2\right), \quad C_{3}=\frac{1}{p}+(p-2) \cos ^{2} \alpha .
$$

Since

$$
4 \frac{p-1}{p^{3}}\left(p^{3}-3 p^{2}+5 p-2\right)(p-2)-\frac{4(p-1)^{2}}{p^{4}}\left(p^{2}-2 p+2\right)^{2}=-4 \frac{p-1}{p^{4}}\left(p^{3}-4 p^{2}+8 p-4\right)<0
$$

then $4 C_{1} C_{3}-C_{2}^{2} \cos ^{2} \alpha \geq 4 \frac{(p-1)^{2}(p-2)}{p^{4}}$ and (3.2) follows by (3.7).
As a first application, we deduce the validity of a weak comparison principle for positive solutions.
Proposition 3.2. Let $2 \leq p \leq N$ and $a, f_{1}, f_{2} \in L^{\infty}(\Omega)$. Let $u_{i} \in C^{1}(\bar{\Omega}), i=1,2$, be solutions to

$$
\begin{equation*}
-\Delta_{p} u_{i}-a u_{i}^{p-1}=f_{i} \quad \text { in } \Omega \tag{3.8}
\end{equation*}
$$

so that

$$
\begin{equation*}
u_{i}>0 \text { in } \Omega, \quad \frac{u_{1}}{u_{2}} \leq C \text { near } \partial \Omega \tag{3.9}
\end{equation*}
$$

for some $C>0$. If $f_{1} \leq f_{2}$ with $f_{2} \geq 0$ in Ω and $u_{1} \leq u_{2}$ on $\partial \Omega$, then $u_{1} \leq u_{2}$ in Ω.
Proof. Setting $w_{1}=u_{1}^{p}, w_{2}=u_{2}^{p}$ and $\phi=\left(w_{1}-w_{2}\right)_{+}$, consider $w_{s}=s w_{1}+(1-s) w_{2}$ for $s \in[0,1]$. Since

$$
w_{s}+t \phi=u_{2}^{p}\left[s\left(\frac{u_{1}}{u_{2}}\right)^{p}+(1-s)+t\left(\left(\frac{u_{1}}{u_{2}}\right)^{p}-1\right)_{+}\right]
$$

by (3.9) there exists $t_{0}>0$ small so that $w_{s}+t \phi \geq 0$ in Ω and $\nabla\left(w_{s}+t \phi\right)^{\frac{1}{p}} \in L^{p}(\Omega)$ for each $s \in[0,1]$ and $|t| \leq t_{0}$. Then we can apply (3.1) at $s=0,1$ to get

$$
\begin{aligned}
I^{\prime}\left(w_{1}\right)[\phi]-I^{\prime}\left(w_{2}\right)[\phi] & =\int_{\Omega}\left|\nabla w_{1}^{\frac{1}{p}}\right|^{p-2}\left\langle\nabla w_{1}^{\frac{1}{p}}, \nabla\left(w_{1}^{\frac{1-p}{p}} \phi\right)\right\rangle-\int_{\Omega}\left|\nabla w_{2}^{\frac{1}{p}}\right|^{p-2}\left\langle\nabla w_{2}^{\frac{1}{p}}, \nabla\left(w_{2}^{\frac{1-p}{p}} \phi\right)\right\rangle \\
& =\int_{\Omega}\left|\nabla u_{1}\right|^{p-2}\left\langle\nabla u_{1}, \nabla \frac{\phi}{u_{1}^{p-1}}\right\rangle-\int_{\Omega}\left|\nabla u_{2}\right|^{p-2}\left\langle\nabla u_{2}, \nabla \frac{\phi}{u_{2}^{p-1}}\right\rangle .
\end{aligned}
$$

Since $\phi \in W_{0}^{1, p}(\Omega)$ we deduce that

$$
I^{\prime}\left(w_{1}\right)[\phi]-I^{\prime}\left(w_{2}\right)[\phi]=\int_{\Omega}\left(\frac{f_{1}}{u_{1}^{p-1}}-\frac{f_{2}}{u_{2}^{p-1}}\right)\left(u_{1}^{p}-u_{2}^{p}\right)^{+} \leq 0
$$

in view of (3.8) and $f_{1} \leq f_{2}$ with $f_{2} \geq 0$. Since

$$
I^{\prime}\left(w_{1}\right)[\phi]-I^{\prime}\left(w_{2}\right)[\phi]=\int_{0}^{1} I^{\prime \prime}\left(w_{s}\right)\left[w_{1}-w_{2}, \phi\right] d s=\int_{0}^{1} I^{\prime \prime}\left(w_{s}\right)[\phi, \phi] d s
$$

in view of $I^{\prime \prime}\left(w_{s}\right)\left[w_{1}-w_{2}, \phi\right]=I^{\prime \prime}\left(w_{s}\right)[\phi, \phi]$, by Lemma3.1 $I^{\prime \prime}\left(w_{s}\right)[\phi, \phi]=\int_{\Omega} \rho\left(w_{s}, \phi\right)$ with $\rho\left(w_{s}, \phi\right) \geq$ 0 thanks to (3.2) when $p \geq 2$. Then, we deduce that $\rho\left(w_{s}, \phi\right)=0$ for all $s \in[0,1]$ and then

- $\nabla \phi=0$ in Ω if $p>2$
- $\left\langle\nabla w_{s}, \nabla \phi\right\rangle=\phi \frac{\left|\nabla w_{s}\right|^{2}}{w_{s}}$ if $p=2$, which implies $\left\langle\nabla\left(w_{1}-w_{2}\right), \nabla \phi\right\rangle=s \phi \frac{\left|\nabla\left(w_{1}-w_{2}\right)\right|^{2}}{w_{s}}$ for all $0 \leq s \leq 1$.
In both cases $\nabla \phi=0$ in Ω and then $w_{1} \leq w_{2}$ in Ω, or equivalently $u_{1} \leq u_{2}$ in Ω.
Finally, we use Lemma 3.1 to show the uniqueness part in Theorem 1.2.
Theorem 3.3. Let $2 \leq p \leq N$. If $\lambda<\lambda_{1}$ with $\lambda \neq 0$ and $p>\frac{N}{2}$, problem (2.1) $g=0$ has exactly one solution G_{λ} so that $H_{\lambda}=G_{\lambda}-\Gamma$ satisfies (1.6). Moreover, if $H_{\lambda} \in C(\Omega)$ for all $\lambda<\lambda_{1}$, then the map $\lambda \in\left(-\infty, \lambda_{1}\right) \rightarrow H_{\lambda}(x)$ is strictly increasing at any given $x \in \Omega$.
Proof. We follow the same argument as in the proof of Proposition 3.2. Letting G_{1} and G_{2} be two solutions of (2.1) $g=0$ satisfying (1.6), by elliptic regularity theory [11, 28, 32, 34] we know that $G_{i} \in C^{1, \alpha}(\bar{\Omega} \backslash\{0\}), i=1,2$, for some $\alpha>0$. By [33] we know that $G_{i}, i=1,2$, satisfies (2.39) and by the strong maximum principle [36] $\partial_{\nu} G_{i}<0, i=1,2$, on $\partial \Omega$, where ν denotes the outward unit normal vector. Set $w_{1}=G_{1}^{p}, w_{2}=G_{2}^{p}, \phi=w_{1}-w_{2}$ and $w_{s}=s w_{1}+(1-s) w_{2}$ for $s \in[0,1]$. We have that for each $s \in[0,1]$ there hold $w_{s}+t \phi \geq 0$ in Ω and $\nabla\left(w_{s}+t \phi\right)^{\frac{1}{p}} \in L^{p}(\Omega)$ for t small, in view of the properties of G_{1} and G_{2}. Letting I_{ϵ} be the functional I defined on $\Omega_{\epsilon}=\Omega \backslash B_{\epsilon}(0)$, by (3.1) at $s=0,1$ we have that

$$
\begin{aligned}
I_{\epsilon}^{\prime}\left(w_{1}\right)[\phi]-I_{\epsilon}^{\prime}\left(w_{2}\right)[\phi] & =\int_{\Omega_{\epsilon}}\left|\nabla G_{1}\right|^{p-2}\left\langle\nabla G_{1}, \nabla \frac{\phi}{G_{1}^{p-1}}\right\rangle-\int_{\Omega}\left|\nabla G_{2}\right|^{p-2}\left\langle\nabla G_{2}, \nabla \frac{\phi}{G_{2}^{p-1}}\right\rangle \\
& =\int_{\partial B_{\epsilon}(0)}\left(\frac{\left|\nabla G_{2}\right|^{p-2} \partial_{\nu} G_{2}}{G_{2}^{p-1}}-\frac{\left|\nabla G_{1}\right|^{p-2} \partial_{\nu} G_{1}}{G_{1}^{p-1}}\right)\left(G_{1}^{p}-G_{2}^{p}\right)
\end{aligned}
$$

in view of $\phi=0$ on $\partial \Omega$ and the equation (2.1) $g=0$ satisfied by G_{1}, G_{2}. Notice that

$$
I_{\epsilon}^{\prime}\left(w_{1}\right)[\phi]-I_{\epsilon}^{\prime}\left(w_{2}\right)[\phi]=\int_{0}^{1} I_{\epsilon}^{\prime \prime}\left(w_{s}\right)[\phi, \phi] d s
$$

with $I_{\epsilon}^{\prime \prime}\left(w_{s}\right)[\phi, \phi]=\int_{\Omega_{\epsilon}} \rho\left(w_{s}, \phi\right)$ in view of Lemma 3.1. Since $\rho\left(w_{s}, \phi\right) \geq 0$ when $p \geq 2$ in view of (3.2), by the Fatou convergence Theorem we deduce that

$$
\begin{equation*}
\int_{0}^{1} d s \int_{\Omega} \rho\left(w_{s}, \phi\right) \leq \lim _{\epsilon \rightarrow 0} \int_{\partial B_{\epsilon}(0)}\left(\frac{\left|\nabla G_{2}\right|^{p-2} \partial_{\nu} G_{2}}{G_{2}^{p-1}}-\frac{\left|\nabla G_{1}\right|^{p-2} \partial_{\nu} G_{1}}{G_{1}^{p-1}}\right)\left(G_{1}^{p}-G_{2}^{p}\right) \tag{3.10}
\end{equation*}
$$

We claim that the R.H.S. in (3.10) vanishes and then $\rho\left(w_{s}, \phi\right)=0$ for all $s \in[0,1]$, which implies, as already discussed in the proof of Proposition 3.2, $\nabla \phi=0$ in Ω and then $G_{1}=G_{2}$ in Ω.

In order to prove the previous claim, for $i=1,2$ notice that $H_{i}=G_{i}-\Gamma \in L^{\infty}(\Omega)$ follows by Theorem 2.6 in view of the assumption (1.6) for G_{i}. Once $H_{i} \in L^{\infty}(\Omega)$, we have that H_{i} satisfies (2.43) and then

$$
\begin{equation*}
G_{i}^{q}=\Gamma^{q}+O\left(\Gamma^{q-1}\right), \quad\left|\nabla G_{i}\right|^{p-2} \partial_{\nu} G_{i}=|\nabla \Gamma|^{p-2} \partial_{\nu} \Gamma+o\left(|\nabla \Gamma|^{p-1}\right) \tag{3.11}
\end{equation*}
$$

as $x \rightarrow 0$ for $q>0$. By (3.11) we deduce that $G_{1}^{p}-G_{2}^{p}=O\left(\Gamma^{p-1}\right)$ and

$$
\frac{\left|\nabla G_{i}\right|^{p-2} \partial_{\nu} G_{i}}{G_{i}^{p-1}}=\frac{|\nabla \Gamma|^{p-2} \partial_{\nu} \Gamma}{\Gamma^{p-1}}+o\left(\frac{|\nabla \Gamma|^{p-1}}{\Gamma^{p-1}}\right)
$$

which imply

$$
\left|\int_{\partial B_{\epsilon}(0)}\left(\frac{\left|\nabla G_{2}\right|^{p-2} \partial_{\nu} G_{2}}{G_{2}^{p-1}}-\frac{\left|\nabla G_{1}\right|^{p-2} \partial_{\nu} G_{1}}{G_{1}^{p-1}}\right)\left(G_{1}^{p}-G_{2}^{p}\right)\right|=o\left(\int_{\partial B_{\epsilon}(0)}|\nabla \Gamma|^{p-1}\right)=o(1)
$$

as $\epsilon \rightarrow 0$, as claimed.
Finally, assume $H_{\lambda} \in C(\Omega)$ for all $\lambda<\lambda_{1}$ to have well defined values $H_{\lambda}(x)$ for all $x \in \Omega$ (at $x=0$ too) and take $\mu_{1}<\mu_{2}$. Letting $0 \leq G_{n}^{1}, G_{n}^{2} \in W_{0}^{1, p}(\Omega)$ be the solutions of (2.7) corresponding to $\lambda=\mu_{1}$ and $\lambda=\mu_{2}$, respectively, by the proof of Theorem 2.1 recall that $G_{\mu_{1}}=\lim _{n \rightarrow+\infty} G_{n}^{1}$ and $G_{\mu_{2}}=\lim _{n \rightarrow+\infty} G_{n}^{2}$ a.e. in Ω, where $f_{n} \geq 0$ is a suitable smooth approximating sequence for the measure δ_{0}. Since $G_{n}^{i}>0$ in Ω and $\partial_{\nu} G_{n}^{i}<0$ on $\partial \Omega$ by the strong maximum principle [36, we can apply Proposition 3.2 to get $G_{n}^{1} \leq G_{n}^{2}$ in view of $0 \leq f_{n} \leq f_{n}+\left(\mu_{2}-\mu_{1}\right)\left(G_{n}^{2}\right)^{p-1}$ with $f_{n}, G_{n}^{2} \in L^{\infty}(\Omega)$, and then $G_{\mu_{1}} \leq G_{\mu_{2}}$ in Ω as $n \rightarrow+\infty$. Since

$$
-\Delta_{p} G_{\mu_{1}}=\mu_{1}\left(G_{\mu_{1}}\right)^{p-1}<\mu_{2}\left(G_{\mu_{2}}\right)^{p-1}=-\Delta_{p} G_{\mu_{2}} \quad \text { in } \Omega \backslash B_{\epsilon}(0)
$$

apply once again the strong maximum principle [36] to deduce $G_{\mu_{1}}<G_{\mu_{2}}$ in $\Omega \backslash B_{\epsilon}(0)$ for all $\epsilon>0$, and the strict monotonicity is established in $\Omega \backslash\{0\}$. Given $0<\epsilon<\operatorname{dist}(0, \partial \Omega)$, we can find $\eta \in C_{0}^{1}(\Omega)$ with $\eta=1$ in $B_{\epsilon}(0)$ and $\delta>0$ so that $H_{\mu_{1}}-H_{\mu_{2}}+\delta \leq 0$ on $\operatorname{supp}(\eta) \backslash B_{\epsilon}(0)$. Observe that $u=H_{\mu_{1}}-H_{\mu_{2}}$ and $\Gamma=\Gamma+H_{\mu_{2}}$ satisfy $\nabla u \in L^{\bar{q}}(\Omega)$, (2.32) and

$$
-\Delta_{p}(\Gamma+u)+\Delta_{p}(\Gamma)=f \quad \text { in } \Omega \backslash\{0\}
$$

with $f=\mu_{1}\left(G_{\mu_{1}}\right)^{p-1}-\mu_{2}\left(G_{\mu_{2}}\right)^{p-1} \leq 0$. We can apply a variant of Lemma 2.5 with η and $\Psi(u)=$ $(u+\delta)_{+}$to get

$$
\int_{\Omega} \eta^{2}\left|\nabla(u+\delta)_{+}\right|^{p} \leq C \int_{\Omega}|\eta||\nabla \eta|(u+\delta)_{+}(|\nabla \Gamma|+|\nabla u|)^{p-2}|\nabla u|+\int_{\Omega} \eta^{2} f(u+\delta)_{+} \leq 0
$$

and then $(u+\delta)_{+}=0$ in $B_{\epsilon}(0)$, providing $H_{\mu_{1}}-H_{\mu_{2}} \leq-\delta<0$ in $B_{\epsilon}(0)$ too. The proof is complete.

4. Harnack inequalities and Hölder continuity of H_{λ} at the pole

In this section we will use the Moser iterative scheme in 32 to establish local estimates for the solution H_{λ} of (1.2) at 0 , leading to an Harnack inequality for $H_{\lambda}+c$ which is the crucial tool to show Hölder estimates at 0 . The function $\mathcal{H}(x)=R^{\frac{N-p}{p-1}}\left(\pm H_{\lambda}(R x)+c\right), 0<R<\frac{1}{2} \operatorname{dist}(0, \partial \Omega)$, satisfies

$$
\begin{equation*}
-\Delta_{p}(\Gamma+\mathcal{H})+\Delta_{p} \Gamma=\mathcal{G} \quad \text { in } B_{2}(0) \backslash\{0\} \tag{4.1}
\end{equation*}
$$

in view of (1.2), where $\Gamma= \pm R^{\frac{N-p}{p-1}} \Gamma(R x)$ with $\nabla \Gamma= \pm \nabla \Gamma$ and $\mathcal{G}= \pm \lambda R^{N} G_{\lambda}^{p-1}(R x)$. Differently from Proposition 2.4 and Theorem [2.6, we need to perform homogeneuos estimates on \mathcal{H} and to this aim for $2 \leq p \leq N$ assume

$$
\begin{equation*}
\Lambda=\|\mathcal{G}\|_{q_{0}, B_{2}(0)}^{\frac{1}{p-1}}<+\infty \tag{4.2}
\end{equation*}
$$

for some $q_{0}>\frac{N}{p}$. Consider the weight function $\rho=|\nabla \Gamma|^{p-2}$ when $1<p<2, \mathcal{G}=0$ and $\rho=1$ otherwise, and introduce the weighted integrals $\Phi_{\rho}(s, h)=\left(\int_{B_{h}(0)} \rho|u|^{s}\right)^{\frac{1}{s}}, h, s>0$. Define κ as

$$
\kappa= \begin{cases}\frac{N-2+p}{N-p} & \text { if } 1<p<2 \text { and } \mathcal{G}=0 \tag{4.3}\\ \frac{N(p-1)}{N(p-1)-p} & \text { if either } 2 \leq p<N \text { or } p=N \geq 3 \\ 2 & \text { if } p=N=2\end{cases}
$$

We are now ready to establish the main estimates in the section.
Proposition 4.1. Let $\mathcal{H} \in L^{\infty}\left(B_{2}(0)\right)$ be a solution of (4.1) so that $\nabla \mathcal{H} \in L^{\bar{q}}\left(B_{2}(0)\right)$, Γ satisfies (2.32) and (4.2) holds. Assume $\mathcal{G}=0,|\nabla \mathcal{H}| \leq M|\nabla \Gamma|$ in $B_{2}(0)$ when $1<p<2$ and $\|\mathcal{H}\|_{\infty}+\Lambda \leq M$, $|x|^{\frac{1}{p-1}} \leq M|\nabla \Gamma|$ in $B_{2}(0)$ when $2 \leq p \leq N$, for some $M>0$. Given $\mu \in \mathbb{R} \backslash\{0\}$, there exist $\nu, \beta \geq 0$ and $C>0$ so that the function $u=|\mathcal{H}|+\Lambda+\epsilon$ satisfies

$$
\begin{equation*}
\pm \Phi_{\rho}\left(\kappa \mu, h_{1}\right) \leq \pm\left[C|\mu|^{\nu}\left(h_{2}-h_{1}\right)^{-\beta}\right]^{\frac{1}{\mu}} \Phi_{\rho}\left(\mu, h_{2}\right) \tag{4.4}
\end{equation*}
$$

for all $1 \leq h_{1}<h_{2} \leq 2$ and $0<\epsilon \leq 1$, uniformly for μ away from $2-p, 0$ and 1 , where $\kappa>1$ is given in (4.3) and \pm simply denotes the sign of μ.

Remark 4.2. The assumption $|x|^{\frac{1}{p-1}} \leq M|\nabla \Gamma|$ when $2 \leq p \leq N$ is sufficiently general in order to establish the validity of Corollary 4.5. which will be used in a crucial way in [2.

Proof. Given $T_{k, l}$ in (2.16), introduce the bounded monotone Lipschitz function

$$
\Psi(s)=\operatorname{sign} s\left(\left[T_{0, l}(|s|+\Lambda+\epsilon)\right]^{\beta}-\left[T_{0, l}(\Lambda+\epsilon)\right]^{\beta}\right), \beta \in \mathbb{R} \backslash\{0\}
$$

Let $\eta \in C_{0}^{\infty}\left(B_{h_{2}}(0)\right)$ be a cut-off function so that $0 \leq \eta \leq 1, \eta=1$ in $B_{h_{1}}(0)$ and $|\nabla \eta| \leq \frac{2}{h_{2}-h_{1}}$. Since $\eta=0$ on $\partial B_{2}(0)$ and $\nabla \mathcal{H} \in L^{\bar{q}}\left(B_{2}(0)\right)$ we can apply Lemma 2.5 to \mathcal{H}, solution of (4.1), to get

$$
\begin{align*}
\int \eta^{2}\left|\Psi^{\prime}(\mathcal{H})\right|(|\nabla \Gamma|+|\nabla \mathcal{H}|)^{p-2}|\nabla \mathcal{H}|^{2} \leq & C \int \eta|\nabla \eta||\Psi(\mathcal{H})|(|\nabla \Gamma|+|\nabla \mathcal{H}|)^{p-2}|\nabla \mathcal{H}| \tag{4.5}\\
& +C \int \eta^{2}|\mathcal{G}||\Psi(\mathcal{H})|
\end{align*}
$$

for some $C>0$. Define $v=u^{\frac{\beta+1}{2}}$ and $w=u^{\frac{\beta-1+p}{p}}$ with $u=|\mathcal{H}|+\Lambda+\epsilon$. Since $\Psi^{\prime}(\mathcal{H})=\beta u^{\beta-1}$ and $|\Psi(\mathcal{H})| \leq u^{\beta}$ for $l>M+1$, by (4.5) we deduce that

$$
\begin{equation*}
|\beta| \int \eta^{2} u^{\beta-1}(|\nabla \Gamma|+|\nabla u|)^{p-2}|\nabla u|^{2} \leq C\left(\int \eta|\nabla \eta| u^{\beta}(|\nabla \Gamma|+|\nabla u|)^{p-2}|\nabla u|+\int \eta^{2}|\mathcal{G}| u^{\beta}\right) \tag{4.6}
\end{equation*}
$$

in view of $|\nabla \mathcal{H}|=|\nabla u|$.
Consider first the case $1<p<2$, for which (4.6) implies

$$
\begin{equation*}
\int \eta^{2}|\nabla \Gamma|^{p-2}|\nabla v|^{2} \leq C \int \eta|\nabla \eta||\nabla \Gamma|^{p-2} v|\nabla v| \tag{4.7}
\end{equation*}
$$

uniformly for β away from 0 in view of $|\nabla u| \leq M|\nabla \Gamma|$ in $B_{2}(0)$. Since

$$
C \int \eta|\nabla \eta||\nabla \Gamma|^{p-2} v|\nabla v| \leq \frac{1}{2} \int \eta^{2}|\nabla \Gamma|^{p-2}|\nabla v|^{2}+C^{\prime} \int|\nabla \eta|^{2}|\nabla \Gamma|^{p-2} v^{2}
$$

thanks to the Young inequality, we can re-write (4.7) as

$$
\begin{equation*}
\int|\nabla \Gamma|^{p-2}|\nabla(\eta v)|^{2} \leq C \int|\nabla \eta|^{2}|\nabla \Gamma|^{p-2} v^{2} \tag{4.8}
\end{equation*}
$$

Thanks to (2.32) and making use of (2.44), by (4.8) we deduce for $\mu=\beta+1$ that

$$
\pm \Phi_{\rho}\left(\kappa \mu, h_{1}\right) \leq \pm\left(\frac{C}{\left(h_{2}-h_{1}\right)^{2}}\right)^{\frac{1}{\mu}} \Phi_{\rho}\left(\mu, h_{2}\right)
$$

does hold uniformly for μ away from 1 , where κ is given by (4.3). Observe that the $(\beta+1)-$ th root of (4.8) for $\beta<-1$ reverses the inequality causing the presence of \pm in (4.4).

Consider now the case $2 \leq p \leq N$. Since

$$
\begin{aligned}
& C \int \eta^{\frac{p}{2}}\left|\nabla \eta^{\frac{p}{2}}\right| u^{\beta}(|\nabla \Gamma|+|\nabla u|)^{p-2}|\nabla u| \\
& \leq \frac{|\beta|}{4} \int \eta^{p} u^{\beta-1}(|\nabla \Gamma|+|\nabla u|)^{p-2}|\nabla u|^{2}+\frac{C^{\prime}}{|\beta|} \int|\nabla \eta|^{2} u^{\beta+1}|\nabla \Gamma|^{p-2}+\frac{C^{\prime}}{|\beta|} \int \eta^{p-2}|\nabla \eta|^{2} u^{\beta+1}|\nabla u|^{p-2} \\
& \leq \frac{|\beta|}{2} \int \eta^{p} u^{\beta-1}(|\nabla \Gamma|+|\nabla u|)^{p-2}|\nabla u|^{2}+\frac{C}{|\beta|} \int|\nabla \eta|^{2} v^{2}+\frac{C}{|\beta|^{p-1}} \int|\nabla \eta|^{p} w^{p}
\end{aligned}
$$

in view of the Young inequality, (2.32) and $\sup _{B_{2} \backslash B_{1}}|\nabla \Gamma|^{p-2}<+\infty$, by replacing η with $\eta^{\frac{p}{2}}$ (4.6) implies

$$
\begin{equation*}
\int \eta^{p}|\nabla \Gamma|^{p-2}|\nabla v|^{2}+\frac{1}{|\beta|^{p-2}} \int \eta^{p}|\nabla w|^{p} \leq C\left(\int|\nabla \eta|^{2} v^{2}+\frac{1}{|\beta|^{p-2}} \int|\nabla \eta|^{p} w^{p}+|\beta| \int \eta^{p}|\mathcal{G}| u^{\beta}\right) \tag{4.9}
\end{equation*}
$$

uniformly for β away from $1-p$ and 0 . Since $q_{0}>\frac{N}{p}$, fix α and γ so that $\alpha \in\left(\frac{q_{0}}{q_{0}-1}, \frac{p q_{0}}{N-p}\right)$ and $\frac{1}{\alpha}+\frac{1}{\gamma}=\frac{q_{0}-1}{q_{0}}$. By the Hölder inequality with exponents q_{0}, γ and α we have that

$$
\int \eta^{p}|\mathcal{G}| u^{\beta} \leq \frac{1}{\Lambda^{p-1}} \int|\mathcal{G}|(\eta w)^{\frac{p}{\gamma}+\frac{p\left(q_{0}+\alpha\right)}{\alpha q_{0}}} \leq \frac{1}{\Lambda^{p-1}}\|\mathcal{G}\|_{q_{0}, B_{2}(0)}\|\eta w\|_{p}^{\frac{p}{\gamma}}\|\eta w\|_{\frac{p\left(q_{0}+\alpha\right)}{\alpha q_{0}}}^{\frac{p\left(q_{0}+\alpha\right)}{q_{0}}}=\|\eta w\|_{p}^{\frac{p}{\gamma}}\|\eta w\|_{\frac{p\left(q_{0}+\alpha\right)}{q_{0}}}^{\frac{p\left(q_{0}+\alpha\right)}{\left(q_{0}\right.}}
$$

in view of (4.2) and then

$$
\begin{align*}
C|\beta| \int \eta^{p}|\mathcal{G}| u^{\beta} & \leq C^{\prime}|\beta|\|\eta w\|_{p}^{\frac{p}{\gamma}}\left(\|\eta \nabla w\|_{p}^{\frac{p\left(q_{0}+\alpha\right)}{\alpha q_{0}}}+\|w \nabla \eta\|_{p}^{\frac{p\left(q_{0}+\alpha\right)}{\alpha q_{0}}}\right) \tag{4.10}\\
& \leq \frac{1}{2|\beta|^{p-2}}\|\eta \nabla w\|_{p}^{p}+C^{\prime \prime}|\beta|^{\frac{\alpha q_{0}+(p-2)\left(q_{0}+\alpha\right)}{\alpha q_{0}-\alpha-q_{0}}}\|\eta w\|_{p}^{p}+\frac{1}{|\beta|^{p-2}}\|w \nabla \eta\|_{p}^{p}
\end{align*}
$$

by the Sobolev embedding Theorem in view of $(N-p)\left(q_{0}+\alpha\right)<N q_{0}$ and the Young inequality. Inserting (4.10) into (4.9) we get that

$$
\begin{equation*}
\int|x|^{\frac{p-2}{p-1}}\left|\nabla\left(\eta^{\frac{p}{2}} v\right)\right|^{2} \leq C\left(\int|\nabla \eta|^{2} v^{2}+|\beta|^{\frac{\alpha q_{0}+(p-2)\left(q_{0}+\alpha\right)}{\alpha q_{0}-\alpha-q_{0}}} \int \eta^{p}|w|^{p}+\frac{1}{|\beta|^{p-2}} \int|\nabla \eta|^{p}|w|^{p}\right) \tag{4.11}
\end{equation*}
$$

in view of $|x|^{\frac{1}{p-1}} \leq M|\nabla \Gamma|$ in $B_{2}(0)$. Since $\|\mathcal{H}\|_{\infty}+\Lambda \leq M$ if $p \geq 2$, we have that $\|u\|_{\infty} \leq M+1$ when $0<\epsilon \leq 1$ and then $w^{p}=u^{\beta+1} u^{p-2} \leq(M+1)^{p-2} v^{2}$. By using the Sobolev embedding Theorem when $p=N=2$ or (2.45) otherwise, for $\mu=\beta+1$ estimate (4.11) gives that

$$
\pm \Phi_{1}\left(\kappa \mu, h_{1}\right) \leq \pm\left[C \frac{|\mu|^{\frac{\alpha q_{0}+(p-2)\left(q_{0}+\alpha\right)}{\alpha q_{0}-\alpha-q_{0}}}}{\left(h_{2}-h_{1}\right)^{p}}\right]^{\frac{1}{\mu}} \Phi_{1}\left(\mu, h_{2}\right)
$$

does hold uniformly for μ away from $2-p$ and 1 , where κ is given by (4.3). Estimate (4.4) is then established in all the cases and the proof is complete.

Hereafter we specialize the argument to $\mathcal{H}=R^{\frac{N-p}{p-1}}\left(\pm H_{\lambda}(R x)+c\right), R>0$. Let us consider now the case $\beta=-1$ in the proof of Proposition 4.1 when $\mathcal{H} \geq 0$ and the result we have is the following.
Proposition 4.3. Let $1<p \leq N$ if $\lambda=0$ and $p \geq 2$ with $p>\frac{N}{2}$ if $\lambda \neq 0$. Assume $\frac{N}{p}<q_{0}<\frac{N}{N-p}$ if $\lambda \neq 0$ and $\mathcal{H}=R^{\frac{N-p}{p-1}}\left(\pm H_{\lambda}(R x)+c\right) \geq 0$. There exist $R_{0}>0$ and $C>0$ so that $v=\log u$, where $u=\mathcal{H}+\Lambda+\epsilon$ and $\epsilon>0$, satisfies

$$
f_{B}|v-\bar{v}| \leq C
$$

for all open ball $B \subset B_{1}(0), 0<R \leq R_{0}$ and $0<\epsilon \leq 1$, where f denotes an integral mean and $\bar{v}=f_{B} v$.

Proof. First of all, observe that $p \geq 2$ and $p>\frac{N}{2}$ imply $p^{2} \geq 2 p>N$. Let $B=B_{h}\left(x_{0}\right) \subset B_{1}(0)$. Since $\left|x_{0}\right|+h<1$ implies $|x| \leq\left|x-x_{0}\right|+\left|x_{0}\right|<\frac{3}{2} h+\left|x_{0}\right|<2$ for all $x \in B_{\frac{3}{2} h}\left(x_{0}\right)$, we have that $B_{\frac{3}{2} h}\left(x_{0}\right) \subset B_{2}$. Let $\eta \in C_{0}^{\infty}\left(B_{\frac{3}{2} h}\left(x_{0}\right)\right)$ be a cut-off function with $0 \leq \eta \leq 1, \eta=1$ in $B_{h}\left(x_{0}\right)$ and $|\nabla \eta| \leq \frac{4}{h}$. Since \mathcal{H} solves (4.1) with $\nabla \Gamma= \pm \nabla \Gamma$ and $\mathcal{G}= \pm \lambda R^{N} G^{p-1}(R x)$, we can apply Lemma 2.5 with the bounded monotone Lipschitz function $\Psi(s)=\operatorname{sign} s\left(\left[T_{0, l}(|s|+\Lambda+\epsilon)\right]^{-1}-\left[T_{0, l}(\Lambda+\epsilon)\right]^{-1}\right)$, for $l>\|\mathcal{H}\|_{\infty}+\Lambda+1$ and $T_{k, l}$ given by (2.16), and a cut-off function $\eta_{\delta}=\eta\left(\delta+|x|^{2}\right)^{\frac{(N-1)(p-2)}{4(p-1)}-1}|x|^{\frac{5}{2}}$, $\delta>0$, to get

$$
\int \eta_{\delta}^{2}|\nabla \Gamma|^{p-2}|\nabla v|^{2} \leq C\left(\int \eta_{\delta}\left|\nabla \eta_{\delta}\right||\nabla \Gamma|^{p-2}|\nabla v|+\int \eta_{\delta}^{2} \frac{|\mathcal{G}|}{u}\right)
$$

in view of (2.38) (which follows by (2.43) and $\left\|H_{\lambda}\right\|_{\infty}<+\infty$ when $p=N$) and then by the Young inequality

$$
\begin{align*}
\int \eta_{\delta}^{2}|\nabla \Gamma|^{p-2}|\nabla v|^{2} & \leq C^{\prime}\left(\int\left|\nabla \eta_{\delta}\right|^{2}|\nabla \Gamma|^{p-2}+\int \eta_{\delta}^{2} \frac{|\mathcal{G}|}{u}\right) \leq C\left(\int|x|\left(\frac{|x|^{2}}{\delta+|x|^{2}}\right)^{-\frac{(N-1)(p-2)}{2(p-1)}}|\nabla \eta|^{2}\right. \\
& \left.+\int\left(\frac{|x|^{2}}{\delta+|x|^{2}}\right)^{2-\frac{(N-1)(p-2)}{2(p-1)}} \frac{\eta^{2}}{|x|}+\int|x|\left(\delta+|x|^{2}\right)^{\frac{(N-1)(p-2)}{2(p-1)}} \eta^{2} \frac{|\mathcal{G}|}{u}\right) \tag{4.12}
\end{align*}
$$

for universal constants in R, δ and c. Since $\left(\frac{|x|^{2}}{\delta+|x|^{2}}\right)^{\alpha} \leq C|x|^{-\max \{-2 \alpha, 0\}}$, we have that

$$
\begin{align*}
& |x|\left(\frac{|x|^{2}}{\delta+|x|^{2}}\right)^{-\frac{(N-1)(p-2)}{2(p-1)}} \leq C|x|^{-\max \left\{\frac{(N-1)(p-2)}{p-1}-1,-1\right\}} \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right) \\
& \left(\frac{|x|^{2}}{\delta+|x|^{2}}\right)^{2-\frac{(N-1)(p-2)}{2(p-1)}} \frac{1}{|x|} \leq C|x|^{-\max \left\{\frac{(N-1)(p-2)}{p-1}-3,1\right\}} \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right) \tag{4.13}
\end{align*}
$$

in view of $\frac{(N-1)(p-2)}{p-1}<N$. Since $\mathcal{G}= \pm \lambda R^{p} \Gamma^{p-1}(x)\left[1+O\left(R^{\frac{N-p}{p-1}}\right)\right]$ when $2 \leq p<N$ in view of $\left\|H_{\lambda}\right\|_{\infty}<+\infty$, for $\lambda \neq 0$ there holds $\Lambda \geq C R^{\frac{p}{p-1}}$ for some $C>0$ and all R small in view of $q_{0}<\frac{N}{N-p}$, where Λ is given by (4.2), and then

$$
\begin{align*}
\int|x|\left(\delta+|x|^{2}\right)^{\frac{(N-1)(p-2)}{2(p-1)}} \eta^{2} \frac{|\mathcal{G}|}{u} & \leq \frac{1}{\Lambda} \int|x|\left(\delta+|x|^{2}\right)^{\frac{(N-1)(p-2)}{2(p-1)}} \eta^{2}|\mathcal{G}| \\
& \leq C \int|x|^{p+1-N}\left(\delta+|x|^{2}\right)^{\frac{(N-1)(p-2)}{2(p-1)}} \eta^{2} \tag{4.14}
\end{align*}
$$

On the other hand, since $\mathcal{G}= \pm \lambda R^{N}|\log R|^{N-1}\left[1+O\left(\frac{\log |x|}{\log R}\right)\right]$ in $B_{2}(0)$ when $p=N$ thanks to $\left\|H_{\lambda}\right\|_{\infty}<+\infty$, for $\lambda \neq 0$ there holds $\Lambda \geq C R^{\frac{N}{N-1}}|\log R|$ for some $C>0$ and for all R small and then

$$
\begin{equation*}
\int|x|\left(\delta+|x|^{2}\right)^{\frac{N-2}{2}} \eta^{2} \frac{|\mathcal{G}|}{u} \leq \frac{1}{\Lambda} \int|x|\left(\delta+|x|^{2}\right)^{\frac{N-2}{2}} \eta^{2}|\mathcal{G}| \leq C \int|x||\log | x| |\left(\delta+|x|^{2}\right)^{\frac{N-2}{2}} \eta^{2} \tag{4.15}
\end{equation*}
$$

Since

$$
\begin{equation*}
|x|^{p+1-N}|\log | x| |\left(\delta+|x|^{2}\right)^{\frac{(N-1)(p-2)}{2(p-1)}} \leq C|x|^{p+1-N}|\log | x| | \in L_{\operatorname{loc}}^{1}\left(\mathbb{R}^{N}\right) \tag{4.16}
\end{equation*}
$$

when $\lambda \neq 0$ in view of $p \geq 2$, we can use (4.13), (4.16) and the Lebesgue convergence Theorem in (4.12) and (4.14)-(4.15) to get

$$
\begin{equation*}
\int \eta^{2}|x||\nabla v|^{2} \leq C(\int|x||\nabla \eta|^{2}+\int \frac{\eta^{2}}{|x|}+\underbrace{\int|x|^{p-\frac{N-1}{p-1}}|\log | x| | \eta^{2}}_{\lambda \neq 0}) \tag{4.17}
\end{equation*}
$$

thanks to the Fatou convergence Theorem. Since $p-\frac{N-1}{p-1}>-1$ if $\lambda \neq 0$ and

$$
\begin{aligned}
\int_{B}|v-\bar{v}| & \leq C^{\prime} h \int_{B}|\nabla v| \leq C^{\prime} h\left(\int_{B} \frac{1}{|x|}\right)^{\frac{1}{2}}\left(\int_{B}|x||\nabla v|^{2}\right)^{\frac{1}{2}} \\
& \leq C h\left(\int_{B} \frac{1}{|x|}\right)^{\frac{1}{2}}(\int|x||\nabla \eta|^{2}+\int \frac{\eta^{2}}{|x|}+\underbrace{\int|x|^{p-\frac{N-1}{p-1}}|\log | x| | \eta^{2}}_{\lambda \neq 0})^{\frac{1}{2}}
\end{aligned}
$$

in view of (4.17), for $\left|x_{0}\right|<3 h$ one has that

$$
\int_{B}|v-\bar{v}| \leq C h^{\frac{N+1}{2}}(h^{N-1}+\underbrace{h^{p-\frac{N-1}{p-1}+N}|\log h|}_{\lambda \neq 0})^{\frac{1}{2}}=O\left(h^{N}\right)
$$

in view of $B_{\frac{3}{2} h}\left(x_{0}\right) \subset B_{5 h}(0)$, while for $\left|x_{0}\right| \geq 3 h$ there holds

$$
\begin{aligned}
\int_{B}|v-\bar{v}| & \leq C^{\prime}\left[h^{2}\left(\int_{B} \frac{1}{|x|}\right)\left(\int|x||\nabla \eta|^{2}\right)+h^{N+1}\left(h^{N-1}+|\log h| h^{\min \left\{p-\frac{N-1}{p-1}+N, N\right\}}\right)\right]^{\frac{1}{2}} \\
& \leq C\left[h^{2}\left(\frac{h^{N}}{\left|x_{0}\right|}\right)\left(\left|x_{0}\right| h^{N-2}\right)+h^{2 N}\right]^{\frac{1}{2}}=O\left(h^{N}\right)
\end{aligned}
$$

in view of $\frac{3 h}{2} \leq \frac{\left|x_{0}\right|}{2} \leq|x| \leq \frac{3}{2}\left|x_{0}\right|$ for all $x \in B_{\frac{3}{2} h}\left(x_{0}\right)$. The proof is complete.
We are now ready to establish an Harnack inequality for $\mathcal{H}=R^{\frac{N-p}{p-1}}\left(\pm H_{\lambda}(R x)+c\right)$ when $\mathcal{H} \geq 0$, a crucial tool to establish the Hölder continuity of H_{λ} at 0 .
Theorem 4.4. Let $1<p \leq N$ if $\lambda=0$ and $p \geq 2$ with $p>\frac{N}{2}$ if $\lambda \neq 0$. Assume that $\mathcal{H}=$ $R^{\frac{N-p}{p-1}}\left(\pm H_{\lambda}(R x)+c\right) \geq 0$ in $B_{2}(0)$. Then there exist $R_{0}>0$ and $C>0$ so that

$$
\begin{equation*}
\sup _{B_{1}(0)} \mathcal{H} \leq C\left(\inf _{B_{1}(0)} \mathcal{H}+\Lambda\right) \tag{4.18}
\end{equation*}
$$

for all $0<R \leq R_{0}$, where Λ is given in (4.2) in terms of $\mathcal{G}= \pm \lambda R^{N} G_{\lambda}^{p-1}(R x)$
Proof. Given $p_{0}>0$ to be specified below, let us fix $0<p_{1}<p_{0}$ so that $\kappa^{j} p_{1} \neq 2-p, 1$ for all $j \geq 0$. Consider first the case $\mu>0$ in Proposition 4.1 to get

$$
\begin{equation*}
\Phi_{\rho}\left(\kappa \mu, h_{1}\right) \leq\left[\tilde{C} \mu^{\nu}\left(h_{2}-h_{1}\right)^{-\beta}\right]^{\frac{1}{\mu}} \Phi_{\rho}\left(\mu, h_{2}\right) \tag{4.19}
\end{equation*}
$$

for all $\mu \neq 2-p, 1$ and for suitable $\nu, \beta \geq 0$, where $u=|\mathcal{H}|+\Lambda+\epsilon \geq 0$. Starting from p_{1} along $\mu_{j}=\kappa^{j} p_{1}$ estimate (4.19) with $1 \leq h_{1}^{j}=1+2^{-(j+1)}<h_{2}^{j}=1+2^{-j} \leq 2$ gives

$$
\Phi_{\rho}\left(\mu_{j+1}, h_{1}^{j}\right) \leq\left[C\left(2^{\beta} \kappa^{\nu}\right)^{j}\right]^{\frac{1}{\kappa^{j} p_{1}}} \Phi_{\rho}\left(\mu_{j}, h_{2}^{j}\right)
$$

and then

$$
\begin{equation*}
\sup _{B_{1}(0)} u \leq \lim _{j \rightarrow+\infty} \Phi_{\rho}\left(\mu_{j+1}, h_{1}^{j}\right) \leq C_{1} \Phi_{\rho}\left(p_{1}, 2\right), \quad C_{1}=C^{\frac{\kappa}{p_{1}(\kappa-1)}}\left(2^{\beta} \kappa^{\nu}\right)^{\frac{1}{p_{1}} \sum_{j} \frac{j}{\kappa^{j}}} \tag{4.20}
\end{equation*}
$$

via an iteration argument as in the proof of Proposition 2.4. Since $\rho>0$ in $B_{1}(0) \backslash\{0\}$, notice that

$$
\|u\|_{\infty, B_{1}(0) \backslash B_{\epsilon}(0)} \leq \liminf _{\mu \rightarrow+\infty} \Phi_{\rho}(\mu, 1) \leq \limsup _{\mu \rightarrow+\infty} \Phi_{\rho}(\mu, 1) \leq\|u\|_{\infty, B_{1}(0)}
$$

and then as $\epsilon \rightarrow 0$

$$
\begin{equation*}
\lim _{\mu \rightarrow+\infty} \Phi_{\rho}(\mu, 1)=\|u\|_{\infty, B_{1}(0)}=\sup _{B_{1}(0)} u \tag{4.21}
\end{equation*}
$$

Consider the case $\mu<0$ in Proposition 4.1 to get

$$
\begin{equation*}
\Phi_{\rho}\left(\kappa \mu, h_{1}\right) \geq\left[\tilde{C}|\mu|^{\nu}\left(h_{2}-h_{1}\right)^{-\beta}\right]^{\frac{1}{\mu}} \Phi_{\rho}\left(\mu, h_{2}\right) \tag{4.22}
\end{equation*}
$$

for all $\mu \neq 2-p$. Starting from $-p_{1}$ along $\mu_{j}=\kappa^{j}\left(-p_{1}\right)$, one can use estimate (4.22) with h_{1}^{j} and h_{2}^{j} to get

$$
\Phi_{\rho}\left(\mu_{j+1}, h_{1}^{j}\right) \geq\left[C\left(2^{\beta} \kappa^{\nu}\right)^{j}\right]^{-\frac{1}{k^{j} p_{1}}} \Phi_{\rho}\left(\mu_{j}, h_{2}^{j}\right)
$$

and then, arguing as we did to show (4.21), one deduces that

$$
\begin{equation*}
\inf _{B_{1}(0)} u \geq \lim _{j \rightarrow+\infty} \Phi_{\rho}\left(\mu_{j+1}, h_{1}^{j}\right) \geq C_{2} \Phi_{\rho}\left(-p_{1}, 2\right), \quad C_{2}=C^{-\frac{\kappa}{p_{1}(\kappa-1)}}\left(2^{\beta} \kappa^{\nu}\right)^{-\frac{1}{p_{1}} \sum_{j} \frac{j}{\kappa^{j}}} \tag{4.23}
\end{equation*}
$$

in view of $\mu_{j} \rightarrow-\infty$ as $j \rightarrow+\infty$.
Assume now $\mathcal{H} \geq 0$ in $B_{2}(0)$. Let us finally use Proposition 4.3 to compare (4.20) and (4.23). Indeed, as a consequence of John-Nirenberg Lemma (see Lemma 7 in [32]), Proposition 4.3 shows the existence of $p_{0}>0$ so that

$$
\left(\int_{B_{2}(0)} \rho e^{p_{0} v} \int_{B_{2}(0)} \rho e^{-p_{0} v}\right)^{\frac{1}{p_{0}}} \leq\|\rho\|_{\infty, B_{2}(0)}^{\frac{2}{p_{0}}}\left(\int_{B_{2}(0)} e^{p_{0} v} \int_{B_{2}(0)} e^{-p_{0} v}\right)^{\frac{1}{p_{0}}} \leq C_{3}
$$

for some universal $C_{3}>0$, or equivalently

$$
\begin{equation*}
\Phi_{\rho}\left(p_{0}, 2\right) \leq C_{3} \Phi_{\rho}\left(-p_{0}, 2\right) \tag{4.24}
\end{equation*}
$$

in terms of $u=e^{v}=\mathcal{H}+\Lambda+\epsilon$. The use of (4.24) along with (4.20) and (4.23) gives

$$
\sup _{B_{1}(0)} u \leq C_{1} \Phi_{\rho}\left(p_{1}, 2\right) \leq C_{1}^{\prime} \Phi_{\rho}\left(p_{0}, 2\right) \leq C_{1}^{\prime} C_{3} \Phi_{\rho}\left(-p_{0}, 2\right) \leq C_{1}^{\prime} C_{3}^{\prime} \Phi_{\rho}\left(-p_{1}, 2\right) \leq \frac{C_{1}^{\prime} C_{3}^{\prime}}{C_{2}} \inf _{B_{1}(0)} u
$$

thanks to the Hölder estimate in view of $p_{1}<p_{0}$ and $\rho \in L^{\infty}\left(B_{2}(0)\right)$. Since $u=\mathcal{H}+\Lambda+\epsilon$, one then deduces

$$
\sup _{B_{1}(0)} \mathcal{H} \leq C\left(\inf _{B_{1}(0)} \mathcal{H}+\Lambda+\epsilon\right)
$$

for some $C>0$ and (4.18) follows by letting $\epsilon \rightarrow 0$.
In particular, for $p \geq 2$ we have the following a-priori L^{∞}-estimate.
Corollary 4.5. Let $2 \leq p \leq N$. Given $M>0$ and $p_{0} \geq 1$ there exists $C>0$ so that

$$
\begin{equation*}
\|h+c\|_{\infty, B_{R}(0)} \leq C\left(R^{-\frac{N}{p_{0}}}\|h+c\|_{p_{0}, B_{2 R}(0)}+R^{\frac{p q_{0}-N}{q_{0}(p-1)}}\|f\|_{q_{0}, B_{2 R}(0)}^{\frac{1}{p-1}}\right) \tag{4.25}
\end{equation*}
$$

for all $\epsilon^{p-1} \leq R \leq R_{0}=\frac{1}{4} \operatorname{dist}(0, \partial \Omega)$ and all solution h to

$$
-\Delta_{p}(u+h)+\Delta_{p} u=f \quad \text { in } \Omega \backslash\{0\}
$$

so that $\nabla h \in L^{\bar{q}}(\Omega), \frac{|x|^{\frac{1}{p-1}}}{M\left(\epsilon^{p}+|x|^{\frac{p}{p-1}}\right)^{\frac{N}{p}}} \leq|\nabla u| \leq M|\nabla \Gamma|$ for some $\epsilon>0$ and $|c|+\|h\|_{\infty}+\|f\|_{q_{0}}^{\frac{1}{p-1}} \leq M$ for some $q_{0}>\frac{N}{p}$.
Proof. Set $\mathcal{H}(x)=R^{\frac{N-p}{p-1}}(h(R x)+c), 0<R<2 R_{0}$. We have that $\mathcal{H} \in L^{\infty}\left(B_{2}(0)\right)$ solves (4.1) with $\Gamma=R^{\frac{N-p}{p-1}} u(R x), \mathcal{G}=R^{N} f(R x)$ and satisfies $\nabla \mathcal{H} \in L^{\bar{q}}\left(B_{2}(0)\right)$. Since $\|\mathcal{H}\|_{\infty, B_{2}(0)} \leq 2 M R^{\frac{N-p}{p-1}}$ and

$$
\begin{equation*}
\|\mathcal{G}\|_{q_{0}, B_{2}(0)}^{\frac{1}{p-1}}=R^{\frac{N\left(q_{0}-1\right)}{q_{0}(p-1)}}\|f\|_{q_{0}, B_{2 R}(0)}^{\frac{1}{p-1}} \leq M R^{\frac{N\left(q_{0}-1\right)}{q_{0}(p-1)}}, \tag{4.26}
\end{equation*}
$$

we have that

$$
\|\mathcal{H}\|_{\infty, B_{2}(0)}+\|\mathcal{G}\|_{q_{0}, B_{2}(0)}^{\frac{1}{p-1}} \leq \tilde{M}
$$

for some \tilde{M} and all $0<R \leq R_{0}$. Since

$$
\frac{|x|^{\frac{1}{p-1}}}{M 2^{\frac{N}{p-1}+\frac{N}{p}}} \leq \frac{|x|^{\frac{1}{p-1}}}{M\left(\left(\epsilon^{p-1} R^{-1}\right)^{\frac{p}{p-1}}+|x|^{\frac{p}{p-1}}\right)^{\frac{N}{p}}} \leq|\nabla \Gamma| \leq M|\nabla \Gamma|
$$

in $B_{2}(0)$ for $\epsilon^{p-1} \leq R \leq R_{0}$, Proposition 4.1 gives the validity of (4.4) for all $\mu \neq 0$ and we can argue as in (4.20) to get

$$
\begin{equation*}
\sup _{B_{1}(0)} u \leq C_{1} \Phi_{1}\left(p_{1}, 2\right) \tag{4.27}
\end{equation*}
$$

for a given $0<p_{1}<p_{0}$ so that $\kappa^{j} p_{1} \neq 1$ for all $j \in \mathbb{N}$, where $u=|\mathcal{H}|+\|\mathcal{G}\|_{q_{0}, B_{2}(0)}^{\frac{1}{p-1}}+\epsilon^{\prime}$. Since $\Phi_{1}\left(p_{1}, 2\right) \leq\left|B_{2}(0)\right|^{\frac{p_{0}-p_{1}}{p_{0} p_{1}}} \Phi_{1}\left(p_{0}, 2\right)$ by Hölder estimate, by (4.27) we deduce that

$$
\begin{align*}
\|h+c\|_{\infty, B_{R}(0)} & =R^{-\frac{N-p}{p-1}} \sup _{B_{1}(0)}|\mathcal{H}| \leq C^{\prime} R^{-\frac{N-p}{p-1}}\left(\|\mathcal{H}\|_{p_{0}, B_{2}(0)}+\|\mathcal{G}\|_{q_{0}, B_{2}(0)}^{\frac{1}{p-1}}+\epsilon^{\prime}\right) \\
& \leq C\left(R^{-\frac{N}{p_{0}}}\|h+c\|_{p_{0}, B_{2 R}(0)}+R^{\frac{p q_{0}-N}{q_{0}(p-1)}}\|f\|_{q_{0}, B_{2 R}(0)}^{\frac{1}{p-1}}+\epsilon^{\prime} R^{-\frac{N-p}{p-1}}\right) \tag{4.28}
\end{align*}
$$

in view of (4.26) and

$$
\|\mathcal{H}\|_{p_{0}, B_{2}(0)}=R^{\frac{N-p}{p-1}} R^{-\frac{N}{p_{0}}}\|h+c\|_{p_{0}, B_{2 R}(0)} .
$$

Letting $\epsilon^{\prime} \rightarrow 0$ in (4.28) we deduce the validity of (4.25) and the proof is complete.
Finally, let us discuss the Hölder regularity of H_{λ} at the pole 0 . Given Λ in (4.2) in terms of $\mathcal{G}= \pm \lambda R^{N} G_{\lambda}^{p-1}(R x)$, let us re-write the Harnack inequality (4.18) for $\mathcal{H}=R^{\frac{N-p}{p-1}}\left(\pm H_{\lambda}(R x)+c\right) \geq 0$ in $B_{2 R}(0)$ as

$$
\begin{equation*}
\sup _{B_{R}(0)}\left(\pm H_{\lambda}+c\right) \leq C\left(\inf _{B_{R}(0)}\left(\pm H_{\lambda}+c\right)+R^{\sigma}\right) \tag{4.29}
\end{equation*}
$$

for all $0<R \leq R_{0}$, in view of (4.26) with $f= \pm \lambda G_{\lambda}^{p-1}$. Since we assume $p \geq 2$ with $p>\frac{N}{2}$ if $\lambda \neq 0$, notice that $\sigma=\frac{p q_{0}-N}{q_{0}(p-1)}>0$ when $\lambda \neq 0$ in view of (2.37) with $q_{0}>\frac{N}{p}$, while the term R^{σ} is not present when $\lambda=0$. In this second case, we can assume $\sigma \in(0,+\infty)$.
We are now in position to follow the argument in [32] and establish the following Hölder property.
Theorem 4.6. Let $1<p \leq N$ if $\lambda=0$ and $p \geq 2$ with $p>\frac{N}{2}$ if $\lambda \neq 0$. Then $H_{\lambda} \in C(\bar{\Omega})$ and there exists $C>0$ such that

$$
\begin{equation*}
\left|H_{\lambda}(x)-H_{\lambda}(0)\right| \leq C|x|^{\alpha} \quad \forall x \in \Omega \tag{4.30}
\end{equation*}
$$

for some $\alpha \in(0,1)$.
Proof. Setting $M(R)=\sup _{B_{R}(0)} H_{\lambda}$ and $\mu(R)=\inf _{B_{R}(0)} H_{\lambda}$ for $R>0$, we claim that the oscillation $\omega(R)=M(R)-\mu(R)$ of H in $B_{R}(0)$ satisfies

$$
\begin{equation*}
\omega(R) \leq C_{0} R^{\alpha} \tag{4.31}
\end{equation*}
$$

for all $0<R \leq R_{0}$, for some $\alpha, C_{0}, R_{0}>0$.
Indeed, apply (4.29) on $B_{\frac{R}{2}}(0)$ either with $c=M(R)$ and the $-\operatorname{sign}$ or with $c=-\mu(R)$ and the + sign to get

$$
\begin{equation*}
M(R)-\mu^{\prime}(R) \leq C\left[M(R)-M^{\prime}(R)\right]+C R^{\sigma}, \quad M^{\prime}(R)-\mu(R) \leq C\left[\mu^{\prime}(R)-\mu(R)\right]+C R^{\sigma} \tag{4.32}
\end{equation*}
$$

for all $0<R \leq 2 R_{0}$, where $M^{\prime}(R)=M\left(\frac{R}{2}\right)$ and $\mu^{\prime}(R)=\mu\left(\frac{R}{2}\right)$. By adding the two inequalities in (4.32) we get that

$$
\begin{equation*}
\omega\left(\frac{R}{2}\right) \leq \theta \omega(R)+C_{0} R^{\sigma} \tag{4.33}
\end{equation*}
$$

for all $0<R \leq 2 R_{0}$, where $\theta=\frac{C-1}{C+1}<1$ and $C_{0}=\frac{2 C}{C+1}$. If $\theta \leq 0$, then (4.33) implies the validity of (4.31) with $\alpha=\sigma>0$ for all $0<R \leq R_{0}$ and some $C_{0}>0$. In the case $\theta>0$, for $S \geq 2$ (4.33) gives that

$$
\omega\left(\frac{R}{S}\right) \leq \omega\left(\frac{R}{2}\right) \leq \theta\left(\omega(R)+\tau R^{\sigma}\right), \quad 0<R \leq R_{0}
$$

for some $\tau>0$ and an iteration starting from $r=R_{0}$ leads to

$$
\begin{equation*}
\omega\left(\frac{R_{0}}{S^{j}}\right) \leq \theta^{j}\left[\omega\left(R_{0}\right)+\tau R_{0}^{\sigma} \sum_{k=0}^{j-1}\left(\theta S^{\sigma}\right)^{-k}\right] \tag{4.34}
\end{equation*}
$$

Since $\theta \in(0,1)$ and $\sigma>0$ in (4.33) can be taken smaller than 1 , the choice $S=\left(\frac{2}{\theta}\right)^{\frac{1}{\sigma}} \geq 2$ is admissible in (4.34) yielding

$$
\begin{equation*}
\omega\left(\frac{R_{0}}{S^{j}}\right) \leq \theta^{j}\left(\omega\left(R_{0}\right)+2 \tau R_{0}^{\sigma}\right) \tag{4.35}
\end{equation*}
$$

Given $0<R \leq \frac{R_{0}}{S}$, let $j_{0} \geq 1$ be so that $\frac{R_{0}}{S^{j_{0}+1}}<R \leq \frac{R_{0}}{S^{j} 0}$ and by (4.35) we have

$$
\begin{equation*}
\omega(R) \leq \omega\left(\frac{R_{0}}{S^{j_{0}}}\right) \leq \theta^{j_{0}}\left(\omega\left(R_{0}\right)+2 \tau R_{0}^{\sigma}\right) \leq C \theta^{j_{0}} \tag{4.36}
\end{equation*}
$$

with $C=\omega\left(R_{0}\right)+2 \tau R_{0}^{\sigma}$. Setting $\gamma=-\frac{\log \theta}{\log 2}>0$, then $\theta=2^{-\gamma}=S^{-\alpha}$ with $\alpha=\frac{\sigma \gamma}{\gamma+1} \in(0,1)$ and (4.36) implies

$$
\omega(R) \leq C\left(\frac{S}{R_{0}}\right)^{\alpha} R^{\alpha}
$$

for all $0<R \leq R_{0} 2^{-\frac{\gamma+1}{\sigma}}$, and (4.31) is established in this case too.
Since (4.31) gives that $\lim _{R \rightarrow 0} \omega(R)=0$, we deduce that $H_{\lambda} \in C(\bar{\Omega})$ in view of $G_{\lambda} \in C^{1, \beta}(\bar{\Omega} \backslash\{0\})$ by elliptic regularity theory [11, 28, 32, 34]. Setting $R=|x|$, (4.31) implies

$$
\left|H_{\lambda}(x)-H_{\lambda}(0)\right| \leq \omega(R) \leq C_{0}|x|^{\alpha}
$$

for all $x \in B_{R_{0}}(0)$. Since (4.30) clearly holds in $\Omega \backslash B_{R_{0}}(0)$ in view of the boundedness of H_{λ}, we get the validity of (4.30) in the whole Ω and the proof is complete.

References

[1] J.A. Aguilar Crespo, I. Peral, Blow-up behavior for solutions of $-\Delta_{N} u=V(x) e^{u}$ in bounded domains in \mathbb{R}^{N}, Nonlinear Anal. 29 (1997), no. 4, 365-384.
[2] S. Angeloni, P. Esposito, The quasi-linear Brezis-Nirenberg problem in low dimensions, preprint arXiv.
[3] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J.L. Vazquez, An L^{1}-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa 22 (1995), no. 2, 241-273.
[4] L. Boccardo, T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), no. 1, 149-169.
[5] L. Boccardo, T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations 17 (1992), no. 3-4, 641-655.
[6] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
[7] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weights, Composition Math. 53 (1984), 259-275.
[8] M. Cuesta, P. Takac, A strong comparison principle for the Dirichlet p-laplacian, Reaction diffusion systems, Trieste (1995), 79-87.
[9] G. Dal Maso, F. Murat, L. Orsina, A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa 28 (1999), no. 4, 741-808.
[10] J.I. Dìaz, J.E. Saa, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 521-524.
[11] E. Dibenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), no. 8, 827-850.
[12] G. Dolzmann, N. Hungerbühler, S. Müller, The p-harmonic system with measure-valued right hand side, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), no. 3, 353-364.
[13] G. Dolzmann, N. Hungerbühler, S. Müller, Non-linear elliptic systems with measure-valued right hand side, Math. Z. 226 (1997), no. 4, 545-574.
[14] G. Dolzmann, N. Hungerbühler, S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side, J. Reine Angew. Math. 520 (2000), 1-35.
[15] O. Druet, Elliptic equations with critical Sobolev exponents in dimension 3, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), no. 2, 125-142.
[16] P. Esposito, On some conjectures proposed by Haïm Brezis, Nonlinear Anal. 54 (2004), no. 5, 751-759.
[17] P. Esposito, A classification result for the quasi-linear Liouville equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 3, 781-801.
[18] L.C. Evans, A new proof of local $C^{1, \alpha}$ regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations 45 (1982), no. 3, 356-373.
[19] J. Fleckinger-Pellè, J. Hernàndez, P. Takac, F. De Thélin, Uniqueness and positivity for solutions of equations with the p-laplacian, Reaction diffusion systems, Trieste (1995), 141-155.
[20] J. Fleckinger-Pellè, P. Takac, Uniqueness of positive solutions for nonlinear cooperative systems with the p-laplacian, Indiana Univ. Math. J. 43 (1994), 1227-1253.
[21] L. Greco, T. Iwaniec, C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math. 92 (1997), no. 2, 249-258.
[22] M. Guedda, L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (1989), no. 8, 879-902.
[23] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs (1993). The Clarendon Press, Oxford University Press, New York.
[24] S. Kichenassamy, L. Veron, Singular solutions of the p-Laplace equation, Math. Ann. 275 (1986), 599-616.
[25] T. Kuusi, G. Mingione, Guide to nonlinear potential estimates, Bull. Math. Sci. 4 (2014), no. 1, 1-82.
[26] O.A. Ladyzhenskaya, N.N. Ural'ceva, Linear and quasilinear elliptic equations. Academic Press, New York-London 1968.
[27] J.L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J. 32 (1983), 849-858.
[28] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), no. 11, 1203-1219.
[29] J.J. Manfredi, Isolated singularities of p-harmonic functions in the plane, SIAM J. Math. Anal. 22 (1991), no. 2, 424-439.
[30] F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Publications du Laboratoire d'Analyse Numérique R93023, (1993).
[31] L. Orsina, Solvability of linear and semilinear eigenavlue problems with L^{1} data, Rend. Sem. Mat. Univ. Padova 90 (1993), 207-238.
[32] J. Serrin, Local behaviour of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302.
[33] J. Serrin, Isolated singularities of solutions of quasilinear equations, Acta Math. 113 (1965), 219-240.
[34] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150.
[35] N.N. Ural'ceva, Degenerate quasilinear elliptic systems, Sem. Math. V.A. Steklov, Math. Inst. Leningrad 7 (1968), 184-222.
[36] J.L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.

Sabina Angeloni, Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo S. Leonardo Murialdo 1, Roma 00146, Italy.
Email address: sabina.angeloni@uniroma3.it
Pierpaolo Esposito, Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo S. Leonardo Murialdo 1, Roma 00146, Italy.

Email address: esposito@mat.uniroma3.it

